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ABSTRACT 

Recent social and educational policy debate in the UK has been strongly influenced by 

studies which have found children’s cognitive developmental trajectories to be 

significantly affected by the socio-economic status of the households into which they 

were born.  Most notably, using data from the 1970 British cohort study, Feinstein 

(2003) concluded that children from less advantaged backgrounds who scored high on 

cognitive tests at 22 months had been overtaken at age 5 by children from more 

advantaged origins, who had scored lower on the baseline test.  However, questions have 

been raised about the methodological robustness of these studies, particularly the 

possibility that their key findings are, at least in part, an artefact of regression to the 

mean.  In this paper we apply and assess the Growth Mixture Model (GMM) as an 

alternative approach for identifying and explaining cognitive developmental trajectories 

in children. We fit GMMs to simulated data and to data from the Millennium Cohort 

Study to assess the suitability of GMMs for studying socio-economic gradients in 

developmental trajectories. Our results show that GMMs are able to recover the data 

generating mechanism using simulated data, where the conventional approach is subject 

to regression to the mean. Substantively, our MCS findings provide no support for the 

contention that more initially able children from disadvantaged backgrounds are ‘over-

taken’ in cognitive development by less initially able children from more affluent 

backgrounds. We do, however, find that cognitive developmental trajectories are related 

to socio-economic status, such that initial class-based inequalities increase over time. 

  



 4 

INTRODUCTION 

Evidence of growing socio-economic inequalities in the UK, as in many other countries 

around the world (Picketty, 2014; Stiglitz, 2012; Wilkinson and Pickett, 2009) has led to a 

focus in policy research on the initial causes of such disparities and, in particular, on how 

economic inequality is reproduced between generations (Hout, 2015; Washbrook, Gregg 

and Propper, 2014). This body of research has demonstrated that disparities in cognitive 

development and educational attainment are evident at very early stages in the life course 

(Cunha et al., 2006; Goodman et al., 2009). Indeed, substantial social class gradients in 

cognitive test scores are found when children are as young as 18-24 months, which is 

perhaps the earliest stage at which it is feasible to administer valid and reliable measures 

of cognitive ability (Feinstein, 2015). Because cognitive ability and educational attainment 

are so key to later socio-economic outcomes (Heckman and Mosso, 2014), it is natural 

that policy-makers have drawn on this evidence to develop and justify policy 

interventions intended to improve intergenerational social mobility (Lupton 2015). For 

example, policies such as ‘Sure Start’ and ‘the Pupil Premium’ in the UK, which aim to 

even out attainment disparities across social class groups, provide additional resources to 

children from disadvantaged backgrounds at earlier points in the life course than has 

historically been the case. A key plank in the rationale underpinning this policy agenda is 

that interventions must be implemented as close as possible to the point in the 

developmental pathway at which socio-economic gradients begin to emerge. 

Interventions which are targeted later in childhood, adolescence, or early adulthood may 

arrive too late, as intransigent inequalities and accumulation to existing advantage will 

already have set in.  

 

Key to the debate over the timing of early years interventions have been studies which 

analyse longitudinal data on cohorts of young children to assess how cognitive 

developmental trajectories are related to socio-economic origins (Feinstein 2003;; Schoon 

2006; Blanden and Machin 2007; Parsons et al 2011). While varying in the detail of their 

approach, these studies have generally used a methodology which assigns children to 

groups based on a cross-classification of cognitive test scores at the first point of 

measurement (generally taken at an early age, such as 24 months) and their parents’ 

socio-economic status (such as social class or income quantile) at the first measurement 

occasion.  In its simplest form, this yields a four category classification: a high ability 

high-socio-economic status (SES) group; a low ability-high SES group; a low ability-low 
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SES group; and a high ability-low SES group.  Cognitive ability scores are then compared 

across the four groups at successive points of measurement.  These studies, which we 

shall henceforth refer to as the ‘pre-assigned groups’ method have consistently revealed 

two striking patterns. First, as noted above, children’s cognitive test scores exhibit stark 

socio-economic gradients by as early as 22 months. Second, and most importantly for 

our purposes here, the ‘high ability-low SES’ group tends to show a decline in test scores 

over subsequent measurement occasions relative to the test scores of the ‘low ability-high 

SES’ group. These countervailing trends result in a ‘cross-over’, whereby the able but 

disadvantaged group is ‘overtaken’ by the less able but more advantaged group by the age 

of approximately 7 (though the exact age at which the cross-over occurs is imprecisely 

measured and differs across studies). The cross-over effect is depicted in the well-known 

chart from Feinstein’s 2003 paper, which is reproduced in Figure 1 below.  

 

FIGURE 1 HERE 

 

While there is now little or no dispute regarding the emergence of socio-economic 

gradients in cognitive test scores early in childhood, scholars have questioned the validity 

of the methodology which produces the ‘cross-over’ effect (Read 2003; Tu and Law 

2010; Jerrim and Vignoles 2013; Goldstein and French 2015).  These authors have 

pointed to a number of limitations in studies that have used the pre-assigned groups 

approach, including non-comparability of tests across measurement occasions, conflation 

of average and individual effects, the arbitrary nature of the group boundary definitions, 

and failure to account for non-random nonresponse and attrition (see Feinstein, 2015).  

 

Most notably, however, criticism has focused on the potential for the cross-over effect to 

result as an artefact of regression to the mean (RTM), rather than any substantive 

differences between the groups. In assigning children to high or low ability groups on the 

basis of a single test score, some will be mis-classified as a result of measurement error 

(we note that it is not necessary for a test score to contain measurement error for a 

regression to the mean effect to be observed (Goldstein and French, 2015)).  That is to 

say, some children will have achieved higher or lower test scores relative to their ‘true 

ability’ purely by chance.  Thus, when the mis-classified children are re-interviewed in 

subsequent waves, those in the high ability groups will tend to show a decline in test 
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performance, while those in the low ability groups will tend to show an improvement in 

test performance. In other words, there will be a regression to the mean effect.  

 

Because test scores at the first point of measurement are already stratified by SES, 

regression to the mean should be most pronounced for the high ability-low SES and the 

low ability-high SES groups, because to have been allocated to the high and low ability 

groups, respectively, more children in these groups must have scored further from their 

‘true ability’ compared to the other two groups. And this pattern is exactly what the 

Feinstein analysis reveals. Jerrim and Vignoles illustrate this theoretical expectation using 

simulated data, showing that the cross-over effect is obtained using the pre-assigned 

groups method when the simulated data were generated from a population containing 

two groups with different intercepts but equal (zero) slopes (Jerrim and Vignoles, 2013).  

 

These findings lead Jerrim and Vignoles to conclude that the pre-assigned groups 

method “can induce substantial bias in estimates of the educational achievement 

trajectories of different SES and ability groups and thus lead to the wrong conclusions 

being drawn from trends in the data” (2013, p904). They advocate instead the use of a 

measurement error correction procedure which they apply to data from the Millennium 

Cohort Study (MCS).  Application of the error correction procedure reveals the familiar 

social class gradient in cognitive test scores at the first measurement occasion in the 

MCS, but this gradient does not change appreciably over time (and does not, therefore, 

exhibit the cross-over effect).  

However, the Jerrim and Vignoles procedure requires a quite restrictive assumption that 

a parallel test of cognitive ability is available at the first measurement wave. A parallel test 

is one which measures the same underlying construct but whose errors of measurement 

are uncorrelated with the alternative test score. As Goldstein and French (2015) note, 

however, these conditions are unlikely to be met very frequently in practice. And, from a 

practical perspective, even if it were feasible to develop parallel measures, their inclusion 

in study questionnaires which are already long and complex may well represent an 

unacceptable additional burden on cohort members, potentially leading to higher rates of 

attrition. Moreover, the error correction procedure would clearly not be applicable to 

important existing data sets such as the British Cohort Study and the National Child 

Development Study, for which only single measures of cognitive ability will ever be 
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available. It is important, therefore, that new methodological approaches are explored 

and evaluated which are capable of overcoming the regression to the mean effect. That is 

our objective in this paper.  

We assess the utility of growth mixture modelling (GMM) (Muthén, 2004) as an 

alternative methodology for evaluating the association between socio-economic origin 

and cognitive developmental trajectories.  The GMM extends the linear growth curve 

model (e.g. Singer and Willett, 2003; Goldstein, 2011) by identifying latent classes of 

individuals who follow qualitatively distinct developmental trajectories, with different 

growth parameters estimated for each of the latent classes. Latent class membership is 

identified by applying finite mixture models to individual variation in growth parameters 

from the single latent curve model. In addition to providing a means of determining the 

number of different latent trajectory groups in a population and the shapes of their 

trajectories on the repeated outcome over time, GMMs allow trajectory group 

membership to be predicted as a function of covariates via multinomial logistic 

regression. 

 

In principle at least, the GMM framework offers a number of attractive properties for 

studying the relationship between socio-economic status and cognitive development.  

First, it is not necessary to assign cohort members to high and low ability groups using a 

discrete threshold on the ability measure at the first point of observation.  Instead, 

trajectory groups are defined as a function of test scores across all measurement 

occasions.  For this reason, we should not anticipate that the trajectory groups thus 

defined will be subject to the regression to the mean effects experienced by the pre-

assigned groups approach. Second, membership of the latent developmental trajectory 

groups is treated as probabilistic rather than determined, which is preferable from both a 

conceptual and a measurement perspective. Third, because trajectory groups are derived 

only as a function of the repeated cognitive ability measures and not of socio-economic 

origin, it is possible to include multiple predictors of trajectory group membership.  

Finally, GMMs use all the available data. While existing methods generally discard data 

from cohort members who are not defined as being in the high or low ability groups, 

GMMs use all available observations.  It is also straightforward in the GMM framework 

to implement procedures which correct for non-random nonresponse, attrition, and item 

missing data (Muthén et al., 2011). 
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The remainder of the paper is structured as follows. First, we present a formal account of 

the GMM and explain how it can be implemented to study socio-economic gradients in 

cognitive development. We then describe and set out the results of GMMs fitted to the 

simulated data used by Jerrim and Vignoles (2013) to assess whether GMMs can recover 

the data generating mechanism. Next, we fit GMMs to real data from the Millennium 

Cohort Study (MCS) and evaluate how the parameter estimates of our preferred model 

relate to the findings of existing studies. We conclude with an assessment of the 

substantive and methodological implications of our findings and of the suitability of 

GMMs for studying social class effects on cognitive development. 

 

THE GROWTH MIXTURE MODEL 

The GMM (Muthén, 2004; Muthén and Asparouhov, 2009; Vermunt, 2007) consists of a 

joint model for analysing repeated measures, conditional on individuals’ latent classes, 

and for individuals’ probabilities of belonging to each class. In the current context the 

repeated measures are children’s attainment scores across test occasions, while the classes 

represent subpopulations of children following qualitatively distinct developmental 

trajectories.  Let 𝑦𝑖𝑗 and 𝑡𝑖𝑗 denote a continuous attainment score and age at occasion 𝑖 

(𝑖 = 1, … 𝐼) for child 𝑗 (𝑗 = 1, … , 𝐽) and let 𝐶𝑗 denote the latent class, the values of which 

are indexed by 𝑘 (𝑘 = 1, … , 𝐾). For the current application, an appropriate GMM is 

where 𝑦𝑖𝑗 given 𝐶𝑗 = 𝑘 is a second degree polynomial function of 𝑡𝑖𝑗  

 

 𝑦𝑖𝑗|𝐶𝑗=𝑘 = 𝛽0
[𝑘]

+ 𝛽1
[𝑘]

𝑡𝑖𝑗 + 𝛽2
[𝑘]

𝑡𝑖𝑗
2 + 𝑢0𝑗

[𝑘]
+ 𝑢1𝑗

[𝑘]
𝑡𝑖𝑗 + 𝑒𝑖𝑗

[𝑘]
. (1) 

 

The regression coefficients 𝛽0
[𝑘]

, 𝛽1
[𝑘]

 and 𝛽2
[𝑘]

 measure the intercept, linear, and 

quadratic terms of the average attainment trajectory in latent class 𝑘, while the random-

intercept and -slope effects 𝑢0𝑗
[𝑘]

 and 𝑢1𝑗
[𝑘]

 allow the intercept and linear component of 

this trajectory to vary across children. As our application covers only three measurement 

occasions, we do not include a child-specific quadratic coefficient, although it is 

straightforward to add further random coefficients with more measurement occasions. 

The occasion-specific error or residual 𝑒𝑖𝑗
[𝑘]

 allows attainment scores to deviate from 

perfectly quadratic trajectories. 

 

The random effects in each latent class are assumed to be bivariate normally distributed 
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 (
𝑢0𝑗

[𝑘]

𝑢1𝑗
[𝑘]

) ~𝑁 {(
0
0

) , (
𝜎𝑢0

2[𝑘]

𝜎𝑢01
[𝑘]

𝜎𝑢1
2[𝑘]

)}, (2) 

 

where 𝜎𝑢0
2[𝑘]

 and 𝜎𝑢1
2[𝑘]

 denote the random-intercept and -slope variances in class 𝑘 and 

𝜎𝑢01
[𝑘]

 their covariance. The residuals in each class are assumed normally distributed with 

occasion-specific variances, 𝑒𝑖𝑗
[𝑘]

~𝑁 (0, 𝜎𝑒𝑖
2[𝑘]

). Thus, in the most general specification, 

each class is characterised not only by its own average quadratic trajectory, but also by 

the extent to which children vary around their average trajectories, and in the degree to 

which the actual attainment scores vary about the child-specific trajectories. We also 

estimate 𝜋𝑗
[𝑘]

, the posterior probability that child 𝑗 belongs to each class, 𝑘, given their 

attainment scores (𝑦1𝑗 , 𝑦2𝑗 , 𝑦3𝑗). 

 

When 𝐾 = 1, model (1) collapses to a standard growth-curve model (Goldstein, 2011; 

Raudenbush and Bryk, 2002; Singer and Willet, 2003). When 𝜎𝑢0
2[𝑘]

= 𝜎𝑢1
2[𝑘]

= 𝜎𝑢01
[𝑘]

=

0 ∀𝑘, the model collapses to a latent class growth analysis (LGCA) or group-based 

trajectory model (Nagin, 1999, 2005) where the members of each latent class trajectory 

group are constrained to have identical intercepts and slopes.  Predictors of latent class 

membership can be introduced by inclusion of covariates in a multinomial logistic 

regression for latent class membership. This can be done in different ways with each 

approach having advantages and disadvantages. We consider the one-step approach 

(Muthén, 2004; Muthén and Asparouhov, 2009; Vermunt, 2007), the three-step approach 

(see Vermunt 2010; Asparouhov and Muthén, 2013), and the so-called pseudo-class 

approach (Wang et al., 2005).  

 

In the one-step approach, a multinomial logistic regression model for 𝐶𝑗 is fitted jointly 

with the above GMM. The model can be written as 

 

 𝑝𝑗
[𝑘]

≡ Pr( 𝐶𝑗 = 𝑘|𝐱𝑗) =
exp(𝐱𝑗

′𝛂[𝑘])

∑ exp(𝐱𝑗
′𝛂[𝑙])𝐾

𝑙=1

, (3) 
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where 𝐱𝑗 denotes the vector of child-level covariates and 𝛂[𝑘] denotes the associated 

vector of regression coefficients where the last class is set to be the reference category 

(i.e., 𝛂[𝑘] = 𝟎). 

 

In the three-step approach, Step 1 consists of fitting the above GMM. Step 2 assigns 

children to their modal latent classes �̂�𝑗 based on their predicted posterior class 

membership probabilities, �̂�𝑗
[𝑘]

. Step 3 involves fitting a standard multinomial logistic 

regression to �̂�𝑗 . A correction is applied in this final step to account for the classification 

error introduced in Step 2. 

 

In the pseudo-class approach, children are randomly allocated to classes as a function of 

their predicted posterior class membership probabilities and then, as before, a standard 

multinomial logistic regression is fitted to children’s assigned classes. This approach 

should be repeated a large number of times and the results combined via Rubin’s (1987) 

multiple imputation rules in order to propagate the uncertainty which arises from 

probabilistically assigning children to classes (Wang et al., 2005). 

 

The main disadvantage of the one-step approach is that adding predictors of class 

membership may lead to changes in the number and sizes of the latent classes and 

therefore their substantive interpretation (Muthén and Asparouhov, 2009; Vermunt, 

2007). This may not fit well with the logic of most applied researchers who view 

introducing covariates as a step that comes after the classification model has been built. 

However, a notable advantage of the one-step approach over the other two approaches 

is that it fits the growth curve and class membership components of the model jointly 

and by full-information maximum likelihood estimation and therefore assumes missing 

achievement and covariate data to both be missing at random (MAR). In contrast, the 

growth curve component in the three-step and pseudo-class approaches assumes that 

missing data is MAR and only with respect to the observed test score data not the 

observed covariate data. Moreover, the multinomial logistic regression component drops 

children with missing covariates and so makes the more restrictive assumption that the 

missing covariates are missing completely at random (MCAR). Thus, when there is 

substantial missing data the one-step approach may be preferred.  
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Deciding on the number of classes is a difficult topic in growth mixture modeling. 

Reviews by Nylund, et al. (2007), Tofighi & Enders (2008) and Yang (2006) suggest that 

the sample-size adjusted BIC (Sclove, 1987) and LMR statistic (Lo, Mendell & Rubin, 

LMR, 2001) tend to perform well in extracting the correct number of classes. The 

adjusted BIC measures the goodness of fit, penalized for model complexity (i.e., number 

of model parameters and sample size) while the LMR is a modified version of a standard 

likelihood ratio test which recognizes that LRT statistics which compare models with 

different numbers of classes have non-standard chi-squared distributions. We fit all 

models in the Mplus software Version 7.2 (Muthén and Muthén, 1998-2013). 

 

APPLICATION TO SIMULATED DATA 

We begin with an application of GMMs to simulated data to assess how well they 

recover features of the measurement model from which the data were generated.  

Perhaps the most compelling line of evidence in Jerrim and Vignoles’ (2013) critique of 

Feinstein (2003) is that they find the crossing pattern using the pre-assigned groups 

method using simulated data, even though no such pattern existed in the simulated 

population from which the sample data were drawn. A key first step in assessing the 

utility of GMMs in this context then is to evaluate whether they can successfully recover 

the data generating mechanism, or whether the cross-over effect is also incorrectly 

produced.    

 

The data were simulated using the same assumptions as Jerrim and Vignoles (2013). 

Denote by 𝐴𝑖𝑗 the ‘true ability’ at occasion 𝑖 for child 𝑗 and suppose that children are in 

one of two equally-sized SES groups indicated by 𝑥𝑗 such that  𝐴𝑖𝑗|𝑥𝑗=𝑔~𝑁(𝜇𝑔, 𝛿𝑔)  for 

𝑔 = 0, 1.  Following Jerrim and Vignoles we assume 𝛿𝑔 = 𝛿 = 1, and that a child’s 

ability is constant over time, i.e. 𝐴𝑖𝑗 = 𝐴𝑗  for all 𝑖.  Suppose that 𝐴𝑖𝑗 is measured with 

error and that we observe 𝑦𝑖𝑗 which is related to 𝐴𝑖𝑗 by the linear measurement model 

 

𝑦𝑖𝑗 = 𝐴𝑖𝑗 + 𝜖𝑖𝑗 

 

where the measurement error 𝜖𝑖𝑗~𝑁(0, 𝛾).   Based on these assumptions, the data 

generating model (DGM) for 𝑦𝑖𝑗 can be written 
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 𝑦𝑖𝑗 = 𝜃0 + 𝜃1𝑥𝑗 + 𝑢𝑗 + 𝜖𝑖𝑗     (4) 

 

where 𝑢𝑗~𝑁(0,1),  𝜃0 = 𝜇0 and 𝜃1 = 𝜇0 + 𝜇1.  Thus the measurement model takes the 

form of a random intercept multilevel model with a single predictor 𝑥𝑗 and no time 

trend.  

 

We consider how the performance of the GMM depends on (i) the mean difference 

between the SES groups (𝜃1), and (ii) the reliability 𝑟 of 𝑦 where 𝑟 = corr(𝐴𝑖𝑗 , 𝑦𝑖𝑗) =

1/√1 + 𝛾 .  Following Jerrim and Vignoles, we generate data for each combination of 

𝜃1= 1.4 and 3, and 𝑟 = 0.4 and 0.75, leading to four simulation conditions.  Each 

simulated dataset contains 20,000 observations representing children, with each 

measured at all three occasions. 

 

We fit two-class GMMs to the simulated data to investigate how well the latent classes 

map on to the observed SES categories.  The fitted GMM has a more complex form 

than the DGM of equation (4).  In particular, we specified a model with a class-specific 

quadratic time trend (equivalent to including a dummy variable for each occasion for 3 

time points), and allowed for class-specific between-individual (intercept) variances.  

Class and occasion-specific residual variances were also considered, but these models 

failed to converge.  We therefore present results from models with the residual variances 

constrained to be equal across classes, i.e. 𝜎𝑒𝑖
2[𝑘]

= 𝜎𝑒𝑖
2  for 𝑘 = 1,2.   Convergence 

problems were experienced with several of the models which is to be expected because 

the simplicity of the DGM means that more general specifications are not supported by 

the simulated data.  Nevertheless it is important to release parameter constraints to assess 

the extent to which the parameter estimates are consistent with the DGM. 

 

The fitted model has the same form as equation (1) but excluding the random slope on 

𝑡𝑖𝑗 (and constraining the occasion specific residual variances to be class invariant): 

 

𝑦𝑖𝑗|𝐶𝑗=𝑘 = 𝛽0
[𝑘]

+ 𝛽1
[𝑘]

𝑡𝑖𝑗 + 𝛽2
[𝑘]

𝑡𝑖𝑗
2 + 𝑢0𝑗

[𝑘] + 𝑒𝑖𝑗
[𝑘],      𝑘 = 1, 2 
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where 𝑢0𝑗
[𝑘]~𝑁(0, 𝜎𝑢0

2[𝑘]) and 𝑒𝑖𝑗
[𝑘]~𝑁(0, 𝜎𝑒𝑖

2 ).  If the GMM perfectly reproduces the 

DGM, and the latent classes map on to the categories of 𝑥𝑗 , we would have |𝛽0
[1]

−

𝛽0
[2]

| = |𝜃1|, 𝛽1
[𝑘]

= 𝛽2
[𝑘]

= 0 for 𝑘 = 1, 2, 𝜎𝑢0
2[1]

= 𝜎𝑢0
2[2]

 and 𝜎𝑒1
2 = 𝜎𝑒2

2  = 𝜎𝑒3
2 .  

Furthermore, the average probability of class membership would be 0.5, �̅�
[1]

= �̅�
[2]

. 

  

The GMMs were fitted to standardised scores. While it is common to apply the pre-

assigned groups method to percentiles, this is inappropriate for the GMM because 

percentiles follow a uniform distribution while a GMM assumes that residuals and 

random effects are normally distributed. Under the model of equation (4) and using the 

result that var(𝑥𝑗) = 0.25 for a binary variable with equal sized categories, the marginal 

variance of the observed responses is given by 

 

 var(𝑦𝑖𝑗) = 𝑣2 = 0.25 𝜃1
2 + 1 + 𝛾. (5) 

 

Thus we compare estimates of |𝛽0
[1]

− 𝛽0
[2]

| with 𝜃1
∗ = 𝜃1/𝑣. 

 

After estimating the GMM, we assessed the correspondence between the two latent 

classes and categories of 𝑥𝑗 by fitting a multinomial logistic regression of modal class 

membership �̂�𝑗, as in the three-step approach discussed above, with 𝑥𝑗 as the only 

predictor.  As the third step of this approach did not converge for one of the simulation 

conditions, we account for uncertainty in class allocation using the pseudo-class 

approach.  We anticipate that the association between �̂�𝑗 and 𝑥𝑗 , as measured by the odds 

ratio exp (𝛼1), will be stronger when there is greater separation of the classes.  Therefore 

we expect exp(𝛼1) to be highest for the conditions where 𝜃1 = 3 and 𝑟 = 0.7. 

 

Simulation Results 

Table 1 and Figure 2 show the results from fitting two-class GMMs for three of the 

simulation conditions. The GMM did not converge for the fourth condition, 𝜃1 = 1.4 

and 𝑟 = 0.4, which corresponds to the situation where the groups defined by 𝑥𝑗 are least 

well distinguished.  Figure 2 shows that in each case the predicted trajectories are 

constant, as in the DGM; thus  𝛽1
[𝑘]

 and 𝛽2
[𝑘]

 are estimated close to zero in the GMM. 
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We also find that for each condition the estimated between-class difference in the 

intercepts is close to 𝜃1
∗, the standardised mean difference assumed in the DGM (Table 

1).  Estimates of the intercept variances are also similar for the two classes, estimates of 

the residual variances are similar across occasions (Appendix Table A1), and estimates of 

the total variance within each class are close to the variance conditional on 𝑥𝑗 under the 

DGM (Appendix Table A2).  In terms of the correspondence between the latent classes 

and the observed SES indicator 𝑥, the classes are of roughly equal size (Figure 2) and 

class membership is strongly associated with 𝑥 (Table 1).  As expected, the classes are 

more closely aligned with SES when the groups are better distinguished. 

 

Although the results suggest that the GMM is able to recover the key features of the 

DGM, we note that entropy is low (Table 1) when the mean difference between SES 

categories is small or reliability is low.  This may seem surprising given that the number 

of classes matches the number of groups in the DGM but entropy is a measure of the 

separation between classes and precision of the classification rather than model fit.  It is 

possible for a correctly specified model to have a low entropy, as for two of the scenarios 

considered here (Muthén, 2004; Petras and Masyn, 2010). In such cases, the latent classes 

may not be useful and it is especially important to allow for uncertainty in class allocation 

when modelling the effects of covariates on class membership.  Use of entropy-based fit 

indices (e.g. Celeux and Soromenho, 1996), might lead researchers to add spurious 

classes to the model in order to achieve more homogenous classes and therefore higher 

entropy.  However, for all three simulation conditions, the addition of a third class led to 

non-convergence because, as expected given the DGM, the average probability of class 

membership for the additional class was very low (<0.5%).    

 

TABLE 1 HERE 

 

FIGURE 2 HERE 

 

Despite these limitations, it is clear that the GMM represents a significant improvement 

over the pre-assigned groups method when applied to the simulated data; the DGM is 

accurately recovered in three of the four conditions, with no evidence of the cross-over 

pattern or other indicators of regression to the mean.  
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APPLICATION TO MILLENIUM COHORT STUDY DATA 

Data and Measures 

Having shown that the GMM is not subject to the same regression to the mean effect as 

the pre-assigned groups method when applying a simple 2-class model to simulated data, 

we proceed to fit more complex GMMs to data from the Millennium Cohort Study 

(MCS).  The MCS is a longitudinal survey that began in 2000 and tracks the social, 

economic, and health status of a nationally representative random sample of children 

born between 2000 and 2001.  The first wave survey had a response rate of 68% and an 

achieved sample size of 18,552.  The following three waves of data collection were 

conducted when the children were 3, 5 and 7 years old, with response rates (conditional 

on being present in the first wave) of 78%, 79% and 72% and achieved sample sizes of 

15,590, 15,246 and 13,857 respectively. The survey design and fieldwork outcomes are 

described in detail elsewhere (Hansen, 2012).   

 

For our measures of cognitive ability we use the scales administered and derived by the 

MCS team, which measure vocabulary and reading skills at ages 3, 5, and 7.  At ages 3 

and 5 the naming vocabulary subset of the British Ability Scale (BAS) was used.  

Children were shown brightly coloured pictures and asked to name the object in the 

picture.  At age 7, a word reading test was administered, in which children were shown a 

series of words on a card and asked to read them aloud.  The children were shown a 

maximum of 90 words, but if a child read 8 words in a block of 10 incorrectly the test 

was stopped (Hansen, 2012).  In order to make comparisons between these tests over 

time, test scores were standardised to a mean of zero and standard deviation of one.  The 

test at age 7 was an assessment of slightly different language skills to those tested at age 3 

and 5, but all tests are nonetheless indicative of a child’s overall language ability.  These 

tests have been used both by Jones and Schoon (2010) and Jerrim and Vignoles (2013) to 

compare changes in children’s language skills over time. 

 

As noted earlier, an advantage of the GMM is that we are not restricted to using only one 

measure of socio-economic status as a predictor of cognitive developmental trajectories 

and, therefore, include three such measures in our models.  The first is a measure of 

household income at wave 1. This is an equivalised income measure that adjusts 

household income for the number of adults and children in the household (Hansen, 

2012).  The second is a binary indicator of whether families were in receipt of one or 
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more of the following benefit payments at wave 1: Job Seekers Allowance, Income 

Support, Work Families Tax Credit, or Disabled Person’s Tax Credit.  The third is the 

National Statistics Socio-Economic Classification (NS-SEC) of the current or, in the case 

of parents who were not in work, their most recent job held by the interviewed parent at 

wave 1.  

 

We also include the following covariates measuring aspects of family structure: the 

interviewed parent’s marital status at wave 1¸their (banded) age at child’s birth; and 

whether or not the interviewed parent had a longstanding illness, disability or infirmity at 

wave 1. Sex of cohort members is also included as a covariate in all models. 

 

Model selection and interpretation of latent trajectory groups in the GMM 

Models are fitted using the one-step procedure and full-information maximum likelihood 

(FIML) estimation.  The one-step approach using FIML is preferred for the MCS data 

because it derives the latent trajectory groups assuming missing data to be missing at 

random (MAR), conditional on the covariates in the multinomial regression. The one-

step procedure in MPlus does not currently permit the covariates to be used to adjust for 

non-random missingness in the latent class model, although this is a software not a 

theoretical limitation. We also fitted the models using the three-step procedure with 

missing data deleted case-wise and found that, with some small variation, the latent class 

solutions were very similar to those presented here.   

 

We begin by examining the BIC, sample size adjusted BIC, and LMR p-values for 

models with an increasing number of latent classes to ascertain the optimal number of 

latent trajectory groups (Table 2). Entropy values are also presented as a measure of the 

separation of classes but, in light of the results from the analysis of simulated data, we 

note that entropy will in general be low when mean differences among classes are small 

or residual variance (measurement error) large. The fit statistics suggest that a five group 

model is optimal, taking into account fit to the data, substantive utility, and parsimony 

(Muthen 2004).  Although the p-value of the LMR becomes non-significant with the 

addition of the 6th trajectory group, the BIC and sample size adjusted BIC statistics 

decrease, although these decreases are marginal.  Moreover, the parameter estimates for 

the 6-class model reveal the additional trajectory group to be a ‘splinter’ class, 
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representing just 3% of children, which added little in terms of substantive insight. We 

therefore prefer the somewhat less well fitting but more parsimonious 5-class model. 

 

TABLE 2 HERE 

 

Table 3 presents the posterior probability table for the five class model. The posterior 

probability table is a cross-tabulation of the most likely (i.e., modal) class for each child 

by the mean posterior probability of class membership.  A model with clearly 

distinguished classes should have high values, approaching one, along the main diagonal 

and low off-diagonal values, approaching zero (Nagin 1999). Large off-diagonal values 

are indicative of indeterminacy between classes.  In support of our decision to settle on a 

five class model, values on the diagonal in Table 3 are high, ranging from 0.71 to 0.82, 

and those on the off diagonal are low and close to zero.   

 

TABLE 3 HERE 

 

Figure 3 shows fitted values for the latent trajectory groups for the five class model. The 

parameter estimates for this model are presented in Table A3 in the Appendix.  The 

GMM solution in Figure 3 bears strong similarities to the pattern in the Feinstein (2003) 

chart (reproduced in Figure 1). A group is identified which scores high on the baseline 

cognitive test and continues to achieve high scores over subsequent measurement 

occasions (group 1, 34% of observations), while a second group is identified which 

initially scores low and continues to do so over the next two measurements, with some 

evidence of a decline in achievement between the second and third measurement 

occasions (group 4, 17% of observations).  There is also a group which achieves a high 

score on the test at age 3 but whose performance on the test declines over time (group 2, 

16% of observations) and a group which initially scores low but test scores then increase 

over successive waves (group 3, 29% of observations).  These four groups appear to 

replicate the pattern shown in the Feinstein chart, including the ‘cross-over’ effect 

between groups 2 and 3.  Additionally, the GMM produces a small group of children 

(group 5, 4% of observations) who achieve very low scores on the age 3 test but who 

then show a marked improvement over successive waves. As we noted earlier, the 

emergence of additional classes of this kind is likely to result from including the full set 
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of sample observations, as opposed to selecting only those in the high and low ability 

groups at wave 1.  

 

FIGURE 3 HERE 

Correlates of latent trajectory group membership 

We turn next to an assessment of the correlates of group membership via multinomial 

logistic regression of group membership on the socio-economic status and household 

structure covariates.  Table 4 presents the coefficient estimates and the associated 

standard errors for each covariate.  Coefficients are the log odds of membership in the 

first group in the column header, relative to group 3, the reference group, for each unit 

increase in the covariate (additional contrasts are presented in table A4).  So, for 

example, 0.254 in the first cell of the second column (labelled 1 v 3) is the expected 

change in the log-odds of being in trajectory group 1 relative to trajectory group 3 for 

each unit increase in equivalised household income.  Given the large number of contrasts 

in Table 4 and A4, we do not interpret all of them here. Rather, we focus our attention 

on the contrasts which pertain most directly to the question of whether declining and 

increasing performance on the tests is associated with socio-economic (dis)advantage. 

We also separately consider the correlates of group 5, given that it was not anticipated to 

emerge a priori. In particular, we wish to exclude the possibility that this group arises as 

an artefact of measurement or analysis operations.  

 

TABLE 4 HERE 

 

The intercepts of the latent trajectories for all groups represent the mean score for the 

group at the first point of measurement. These are ordered by income, as would be 

expected from existing research.  For example, the odds of membership in the highest 

scoring group (group 1) relative to all other groups increases with parental income, social 

class, and (non) receipt of benefits.  The only exception to this pattern is the contrast 

between groups 3 and 2, the two groups which cross over time. None of the three socio-

economic variables show a significant difference in the odds of being in the rising (group 

3) rather than the declining group (group 2).  This is, of course, counter to the pattern 

found using the pre-assigned groups approach. We also fitted these models using each 

socio-economic predictor in isolation to check whether the null results might have arisen 

due to multicollinearity, or some form of suppressor effect. However, none of the socio-
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economic variables significantly differentiates between groups 3 and 2 when considered 

on its own either. We therefore conclude that, while the GMM does detect groups which 

exhibit a reversal in their achievement on the cognitive test scores between age 3 and age 

7, there is no evidence to support the claim that these groups differ in their level of 

socio-economic disadvantage. 

 

However, although socio-economic status does not differentiate between the two ‘cross-

over’ groups (groups 3 and 2), there is evidence from the model to suggest that socio-

economic (dis)advantage is related to change in test performance over time.  Groups 1 

and 2 both have large intercepts, indicating approximately equivalent high performance 

in the age 3 baseline test.  However, while group 1 maintains this high level of 

achievement over time, group 2 declines significantly and substantially over the two 

successive waves.   The odds of membership in group 1 relative to group 2 are smaller 

for children from households with lower equivalised household income, in lower social 

class groups, and whose parents are in receipt of state benefits.  Similarly, group 3 and 

group 4 have small intercept coefficients, indicating a low score on the baseline test.  Yet, 

while group 4 continues to perform poorly, the test scores of the children in group 3 

increase significantly over time on average.   

The pattern of covariate relationships for these two groups mirrors that found for the 

contrast between groups 1 and 2. The odds of membership in the rising group (group 3) 

relative to the static group (group 4) increase with income and social class, though 

benefit receipt does not discriminate significantly between these groups. We therefore 

conclude that socio-economic status was significantly related to the cognitive 

developmental trajectories of this cohort during this period.  Amongst initially low 

scoring children, those from more affluent backgrounds were more likely to experience a 

subsequent improvement on their test scores, while amongst initially high scoring 

children, those from less affluent backgrounds were significantly more likely to 

experience a decline in their test scores at ages 5 and 7.  

While the socio-economic variables did not discriminate between the two cross-over 

trajectory groups, parental marital status at baseline did. Children whose parents were 

married at the time of first interview have significantly higher odds of being in the rising 

ability group (group 3) compared to the declining ability group (group 2), relative to 

children whose parents were divorced/separated, widowed, or had never married.  It 
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would be unwise to place too much interpretative emphasis on this association, based as 

it is on a single coefficient in a large and complex model. However, it may be taken as 

suggestive that aspects of family structure and dynamics, such as marital breakdown, may 

play a role in influencing children’s cognitive developmental trajectories. 

 

We also find that gender is significantly related to group membership for all but one 

contrast (between groups 4 and 5). We therefore also fitted models separately for male 

and female cohort members and found essentially the same latent class solutions as 

presented here for the joint model. This suggests that the latent class solution for the 

joint model is not driven by gender differences in cognitive development but, rather, that 

the gender mix varies across an essentially invariant pattern of latent trajectory groups.   

 

Lastly, we turn to group 5, which is a small (only 4% of children have group 5 as their 

most likely group based on the posterior probabilities), but potentially substantively  

interesting group, which would not have been detected using the pre-assigned groups 

approach. Group 5 shows the lowest mean score on the age 3 test of all five groups but 

this is followed by rapid improvement in test scores over the ensuing two waves.  The 

odds of membership in group 5 decrease with parental income and social class, for 

children whose parents are single and never married, and whose parents do not have a 

longstanding illness. This pattern of covariate associations is suggestive of trajectory 

group 5 comprising children from more economically disadvantaged backgrounds but 

who have a stable family structure.  

 

DISCUSSION 

Public policy in the UK has moved in recent years toward making interventions at earlier 

points in the life course than has historically been the case. This reflects a growing 

recognition that quite substantial gradients in cognitive development and academic 

achievement are evident very early in childhood (Crawford, Macmillian & Vignoles, 

2014; Cunha, Heckman & Lochner, 2006 ). Thus, the argument goes, if redistributive 

policy interventions are to have maximum impact on equalising important life outcomes, 

they need to be implemented at or before the point in the developmental pathway that 

socio-economic gradients begin to emerge.  
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A key plank in the evidence base supporting this early years policy framework has been 

provided by studies which track representative samples of children from birth, through 

childhood and into adolescence, such as the British Cohort Study and the Millennium 

Cohort Study. Researchers have analysed these and other data sets to show not only that 

large differences in cognitive test scores are evident at early points in the life course, but 

also that children from different socio-economic backgrounds appear to pursue quite 

different cognitive developmental trajectories. Of particular significance has been the 

finding that initially less able children from more affluent backgrounds ‘overtake’ initially 

more able children from less advantaged families between the ages of 5 and 7 years 

(Feinstein 2003;; Schoon 2006; Blanden and Machin 2007; Parsons et al 2011). This 

stylised fact has been cited by key political actors and referenced in a number of 

important UK government reports in support of early intervention policies (Lupton, 

2015). 

 

However, scholars have questioned the validity of the methodology underpinning this 

key conclusion, arguing that the ‘cross-over’ effect is a statistical artefact caused by 

regression to the mean (Tu and Law 2010; Jerrim and Vignoles 2013).  Yet, while these 

studies have convincingly demonstrated that the conventional approach to analysing this 

kind of data - what we have termed the pre-assigned groups approach - is likely to be 

subject to regression to the mean effects, we cannot conclude from this evidence alone 

that the cross-over effect does not happen, nor that socio-economic status does not 

affect cognitive development in other, perhaps more subtle ways. As Tu and Law note in 

their methodological critique of Feinstein (2003) and Blanden and Machin (2007), “it is 

not the case that the conclusions from studies whose data analyses suffer regression to 

the mean are always invalid” (Tu and Law, 2009, p1249). It is essential, then, that 

alternative methodological approaches are developed to address this key policy question, 

not least because, the error correction method proposed by Jerrim and Vignoles (2013) is 

quite restrictive in its data requirements.  

 

The GMM framework, we have argued, offers a number of potential advantages over 

existing approaches to the study of social class gradients in cognitive development. 

GMMs easily incorporate information from multiple waves. Where the number of time 

points is greater than three, it is possible to introduce quadratic and higher order 

polynomial growth functions, which vary across latent trajectory groups to accurately 
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model qualitative differences in developmental change. GMMs are also able to deal 

flexibly with unit and item missing data, an inevitable feature of cohort studies.  In the 

analyses presented here, we used a full information maximum likelihood estimator 

(Arbuckle 1996), which is consistent and efficient assuming missing data to be missing at 

random (MAR) conditional on the observed data. Other approaches for dealing with 

missing data, such as multiple imputation, and nonresponse weighting can also be 

implemented in software for estimating GMMs.  Most importantly with regard to 

regression to the mean, GMMs do not require trajectory groups to be defined at the first 

observation by placing an arbitrary threshold on the test score.  Instead, the groups are 

derived as a function of change across all measurement occasions. 

 

In our empirical applications, the GMM performed well. Applied to the same simulated 

data used by Jerrim and Vignoles (2013), the GMM was able to recover the data 

generating mechanism, under a range of mean differences between groups and levels of 

measurement error on the test score. However, the entropy values indicate that the 

groups were not well defined when mean differences between groups were small and 

there was a high level of measurement error on the test score. In such cases, although the 

selected model may be a good fit to the data, further analysis of the latent trajectory 

groups should be carried out with caution and must take account of classification error.   

Reassuringly, the addition of a third class to the GMM was not supported by data 

generated from a two-class model. In practice of course the DGM will be unknown and 

a variety of factors, including model misspecification and violation of distributional 

assumptions, may lead to the addition of spurious classes to achieve a good-fitting model 

(Bauer and Curran, 2004). It is therefore especially important with GMM to check model 

assumptions and to assess the validity of the extracted groups.  

 

When applied to the MCS data, the preferred GMM produced a solution very similar in 

structure to the Feinstein (2003) chart. Thus, the model yielded a group with a high initial 

test score which was maintained over successive waves, a group with a low initial test 

score which did not improve over subsequent waves, a group which started with a low 

test score but then improved over time, and a group which scored high on the baseline 

test but whose performance then declined. The latter two groups exhibited the ‘cross-

over’ pattern that has come to attract so much attention in both policy and academic 

debate. Additionally, the GMM produced a small 5th latent trajectory group, characterised 
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by a very low initial test score followed by substantial and sustained improvement over 

the subsequent 2 waves.  

 

However, while the GMM produced two large groups which crossed in their trajectories, 

we found no evidence that membership of these groups was related to socio-economic 

status, whether measured using household income, social class, or receipt of state 

benefits. The MCS models did, though, provide evidence in support of the contention 

that socio-economic status is associated with widening gradients in cognitive test scores 

at this point in the life course.  Our analyses showed that the group of children who start 

poorly but improve over time are more likely to be in higher socio-economic groups than 

those who achieve low initial scores and do not improve.  Conversely, we found that 

children who start with high initial scores but subsequently decline are more likely to be 

from less socio-economically advantaged backgrounds compared to the group that 

achieve high initial test scores and continue to perform well in subsequent tests.   

 

Thus, while the GMMs fitted to MCS data provide no evidence in support of the claim 

that “by the age of five, bright children from poorer backgrounds have been overtaken 

by less bright children from richer ones” (Nick Clegg, 2011), neither do they accord with 

Jerrim and Vignoles’ conclusion that, “although family background has a major influence 

on the child’s earliest level of cognitive development, it does not have a strengthening 

effect that would cause SES gaps in children’s cognitive achievement to widen further 

beyond the age of 3 years” (2013, p905). In fact, our results are closer substantively to 

those of Goldstein and French (2015) who, using the same MCS data but employing 

linear growth curve models, also find evidence of growing disparities in cognitive 

performance as a function of household income. While the visually powerful image of 

bright working class children being overtaken by their less able but more affluent peers 

appears to be over-stated as a general phenomenon, our findings suggest that the critique 

of the evidence on which this was based may itself have been something of an over-

correction. The application of growth mixture models leads us to conclude that the 

method has much to recommend it in this substantive context and that socio-economic 

status is related to change in as well as to levels of cognitive ability at this early stage of 

the life cycle.  
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TABLES AND FIGURES 
 
Table 1. Results from fitting two-class GMMs to simulated data.  The model assumes 

quadratic growth and random intercepts within classes. 

Simulation conditions GMM estimates Effect of 𝑥 on class 

membership 

𝜃1 𝑟 𝜃1
∗ |�̂�0

[1]
− �̂�0

[2]
| Entropy exp (𝛼1) p-value 

1.4 0.75 0.932 0.988 0.275 3.66 <0.001 

3 0.75 1.494 1.499 0.695 44.61 <0.001 

3 0.40 1.059 1.075 0.456 9.67 <0.001 
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Table 2. MCS model fit statistics and entropy  

Classes BIC Sample Size Adjusted BIC LMR p-value Entropy 
2 94905 94816 <.001 .523 
3 94299 94149 <.001 .616 
4 94032 93822 0.106 .632 
5 93654 93383 .001 .643 
6 93615 93284 0.571 .653 
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Table 3. Average Latent Class Probabilities by Most Likely Classes for 5 Class Model 

  Average latent class probabilities 
 Groups 1 2 3 4 5 
Most 
likely 
group 

1 0.818 0.106 0.074 0.002 0.000 

2 0.140 0.710 0.072 0.077 0.001 

3 0.111 0.051 0.726 0.089 0.022 

4 0.004 0.082 0.142 0.736 0.035 

5 0.003 0.006 0.077 0.09 0.824 
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Table 4. Covariate coefficient contrasts with group 3 of the MCS 5 class multinomial 
logistic model for trajectory group membership 

 1 v 3 2 v 3 4 v 3 5 v 3 

Standardised income  0.254* (0.043) 0.011 (0.059) -0.804* (0.095) -1.44* (0.227) 

benefit payments 
    

Yes -0.379* (0.083) 0.016 (0.102) 0.073 (0.099) 0.035 (0.145) 

NS-SEC, ref: 
Managerial/prof 

    

Intermediate -0.408* (0.084) -0.09 (0.115) -0.016 (0.147) 0.314 (0.244) 

Self Employed -0.181 (0.158) 0.165 (0.204) 0.502* (0.229) 0.993* (0.322) 

Technical -0.57* (0.148) 0.215 (0.164) 0.522* (0.186) 0.872* (0.283) 

Routine -0.709* (0.091) -0.029 (0.114) 0.671* (0.128) 1.059* (0.205) 

Marital Status ref: 
single 

    

Married -0.102 (0.077) -0.21* (0.092) -0.156 (0.094) 1.78* (0.224) 

Divorce/Separate 0.154 (0.141) 0.08 (0.159) 0.193 (0.15) 1.157* (0.284) 

Widowed -0.442 (0.740) 0.106 (0.712) -0.519 (0.974) 2.102* (0.775) 

Parent long term 
illness 

    

Yes -0.006 (0.073) -0.021 (0.091) 0.031 (0.091) -0.337* (0.147) 

Parent’s Age at Birth: 
ref: Under 20 

    

20-39 0.225 (0.172) 0.065 (0.163) 0.062 (0.143) -0.022 (0.285) 

40+ 0.323 (0.258) 0.376 (0.282) 0.087 (0.312) -0.009 (0.515) 

Child’s gender 
    

Female 0.599* (0.061) 0.244* (0.095) -0.444* (0.082) -0.302* (0.12) 

*p<=0.05; Standard errors in parentheses 
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Figure 1. Reproduction of Figure 2 of Feinstein (2003) showing average rank of test 

scores at 22, 42, 60 and 120 months, by SES of parents and early rank position.  
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Figure 2. Predicted trajectories and latent group membership probabilities from 2-class 

GMM model with quadratic growth and random intercepts within classes 

 

(a) 𝜃1 = 1.4, 𝑟 = 0.75 (b) 𝜃1 = 3, 𝑟 = 0.75  (c) 𝜃1 = 3, 𝑟 = 0.40 
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Figure 3. Latent trajectory plot for 5 class growth mixture model (MCS data) 
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Appendix 

Table A1. Estimates (and standard errors) of intercept and residual variances from fitting 

two-class GMMs to simulated data.  The models assume quadratic growth and random 

intercepts within classes. 

𝑘 𝜎𝑢
2[𝑘]

 𝜎𝑒1
2  𝜎𝑒2

2  𝜎𝑒3
2  

𝜃1 = 1.4, 𝑟 = 0.75 

1 0.418 (0.058) 
0.348 (0.006) 0.343 (0.006) 0.360 (0.005) 

2 0.396 (0.059) 

𝜃1 = 3, 𝑟 = 0.75 

1 0.237 (0.010) 
0.197 (0.003) 0.194 (0.003) 0.202 (0.003) 

2 0.240 (0.010) 

𝜃1 = 3, 𝑟 = 0.4 

1 0.128 (0.019) 
0.594 (0.009) 0.585 (0.009) 0.612 (0.009) 

2 0.107 (0.019) 
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Table A2. Comparison of estimates of the within-class variance from the GMM with the 

conditional variance of the standardised response 𝑦𝑖𝑗
∗  given 𝑥𝑗 under the data generating 

model. 

   𝜎𝑢
2[𝑘]

+ �̅�𝑒
2 

𝜃1 𝑟 var(𝑦𝑖𝑗
∗ |𝑥𝑗) 𝑘 = 1 𝑘 = 2 

1.4 0.75 0.78 0.75 0.77 

3 0.75 0.44 0.44 0.44 

3 0.40 0.74 0.72 0.70 

 

Note: Under the data generating model, the conditional variance of the standardised 

response given 𝑥𝑗 is var(𝑦𝑖𝑗
∗ |𝑥𝑗) = var(𝑦𝑖𝑗|𝑥𝑗)/var(𝑦𝑖𝑗) = (1 + 𝛾)/(0.25 𝜃1

2 + 1 +

𝛾) , from equation (5).  The calculation of the within-class variance uses the mean of the 

residual variances across occasions, �̅�𝑒
2. 
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Table A3. Growth parameter estimates of MCS 5 class growth mixture models 

Groups Intercept Standard 
error 

Slope Standard 
error 

Quadratic Standard 
error 

Estimated 
Posterior % 

1 0.857* 0.017 -0.359* 0.033 0.144* 0.017 34 
2 0.691* 0.028 -0.308* 0.073 -0.205* 0.045 16 
3 -0.445* 0.016 0.367* 0.043 0.02 0.025 29 
4 -0.668* 0.021 0.639* 0.051 -0.472* 0.027 17 
5 -2.067* 0.085 0.637* 0.143 0.143* 0.068 4 

*p=<.05 
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 Table A4. Covariate coefficient contrasts of the MCS 5 class multinomial logistic model for trajectory group 
membership 

 2 v 1  4 v 1 4 v 2  1 v 5 2 v 5 4 v 5 

Standardised income  -0.244* (0.051) -1.058* (0.091) -0.815* (0.097) 1.694* (0.224) 1.45* (0.226) 0.635* (0.239) 

benefit payments 
      

Yes 0.395* (0.111) 0.452* (0.093) 0.057 (0.122) -0.414* (0.144) -0.019 (0.155) 0.038 (0.151) 

NS-SEC, ref: 
Managerial/prof 

      

Intermediate 0.318* (0.123) 0.392* (0.133) 0.074 (0.170) -0.722* (0.24) -0.404 (0.251) -0.331 (0.269) 

Self Employed 0.346 (0.21) 0.683* (0.204) 0.337 (0.265) -1.174* (0.312) -0.828* (0.337) -0.491 (0.352) 

Technical 0.785* (0.187) 1.093* (0.172) 0.308 (0.208) -1.442* (0.283) -0.657* (0.291) -0.35 (0.302) 

Routine 0.681* (0.12) 1.38* (0.118) 0.699* (0.151) -1.769* (0.203) -1.088* (0.214) -0.389 (0.226) 

Marital Status ref: 
single 

      

Married -0.109 (0.098) -0.055 (0.086) 0.054 (0.108) -1.881* (0.219) -1.99* (0.221) -1.936* (0.224) 

Divorce/Separate -0.074 (0.171) 0.038 (0.0136) 0.112 (0.169) -1.002* (0.279) -1.076* (0.287) -0.964* (0.281) 

Widowed 0.549 (0.714) -0.076 (0.921) -0.625 (0.996) -2.544* (0.83) -1.996* (0.831) -2.621* (1.067) 

Parent long term 
illness 

      

Yes -0.015 (0.098) 0.037 (0.084) 0.052 (0.107) 0.331* (0.145) 0.316* (0.152) 0.367* (0.152) 

Parent’s Age at Birth: 
ref: Under 20 

      

20-39 -0.16 (0.215) -0.163 (0.158) -0.003 (0.170) 0.246 (0.296) 0.087 (0.291) 0.084 (0.284) 

40+ 0.053 (0.321) -0.236 (0.304) -0.289 (0.344) 0.331 (0.515) 0.384 (0.516) 0.095 (0.536) 

Child’s gender 
      

Female -0.355* (0.1) -1.043* (0.076) -0.689* (0.112) 0.901* (0.118) 0.546* (0.135) -0.143 (0.129) 

*p<=0.05; Standard errors in parentheses 


