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PURPOSE. To test whether the interanimal variability in suscep-
tibility to visually induced myopia is genetically determined.

METHODS. Monocular deprivation of sharp vision (DSV) was
induced in outbred White Leghorn chicks aged 4 days. After 4
days’ DSV, myopia susceptibility was quantified by the relative
changes in axial length and refraction. Chicks in the extreme
tails of the distribution of susceptibility to DSV were kept and
paired for breeding (high- and low-susceptibility lines). A sec-
ond round of selection was then performed. The third gener-
ation of chicks, derived from the selected parents, was as-
sessed after either monocular DSV (4 or 10 days) or lens wear.

RESULTS. After two rounds of selective breeding, the chicks
from the high-susceptibility line developed approximately
twice as much myopia in response to 4 days’ DSV as did those
from the low-susceptibility line (P � 0.001). All ocular compo-
nent dimensions differed significantly (P � 0.001) between the
two selected lines, both before treatment and in the responses
of the treated eye. When DSV was conducted for 10 days, the
relative changes in axial length and refractive error were still
significantly different between the high and low lines
(P � 0.001). The chicks bred for high or low susceptibility to
DSV also showed significantly different responses to minus lens
wear, but not to plus lens wear. Additive genetic effects ex-
plained �50% of the interanimal variability in response to DSV.

CONCLUSIONS. Genes and environment interact to shape refrac-
tive development in chicks. (Invest Ophthalmol Vis Sci. 2011;
52:4003–4011) DOI:10.1167/iovs.10-7044

Myopia results from a mismatch between the optical power
of the eye and its length, causing light to be focused in

front of the retina and leading to blurred vision. It is one of the
most prevalent eye disorders worldwide,1,2 and high-degree
myopia is a leading cause of untreatable loss of sight resulting
from retinal and choroidal degeneration.3–5 Studies in both
humans and animals have demonstrated that the rate of post-
natal eye growth is regulated by visual experience, whereas
twin and family studies have shown that refractive errors are
highly heritable.6,7 Thus, myopia is largely considered a multi-
factorial, complex disorder.8,9 Although recent genome-wide as-
sociation studies for refractive error have successfully tagged
several causal genetic variants,10,11 the list of identified genetic
and environmental risk factors is able to explain only a small
proportion of the variance in refractive error in the populations
studied.7,12–14 Gene–environment interactions represent an at-
tractive explanation for the missing heritability15 and the seem-
ingly paradoxical evidence supporting both strongly genetic and
strongly environmental determination of refractive error. How-
ever, to date, the influence of gene–environment interactions in
complex disorders such as myopia is almost entirely unknown.16

Myopia that occurs due to the deprivation of sharp vision
(DSV; also known as form deprivation)17 during early life has
been found to occur in birds, fish, and mammals, including
man.18 DSV in the chicken has become a well-established
animal model of myopia.19,20 Interestingly, a considerable vari-
ation in the degree of myopia induced by a uniform regimen of
visual deprivation has been found, not only between chicken
strains but also within each strain,21–24 yet little is understood
about the causes of this variability. Troilo et al.21 found signif-
icant differences in both normal ocular development and the
ocular response to visual deprivation between two strains of
White Leghorn chickens and suggested that genetics may play
a role in the visual control of eye growth. Saltarelli et al.25 also
indicated a possible effect of genetics in the susceptibility to
DSV after finding a significant correlation between vitreous
chamber elongation induced over two successive periods of
treatment. Stimulated by these investigations using the chicken
myopia model, we adopted a novel, selective breeding strategy
to test directly the importance of gene–environment interac-
tions in refractive development.

MATERIALS AND METHODS

All experimental procedures involving animals complied with the U.K.
Home Office legislation and the European Communities Council Directive
86/609/EEC (1986) and were performed in accordance with the ARVO
Statement for the Use of Animals in Ophthalmic and Visual Research.
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Deprivation of Sharp Vision: Treatment and
Selective Breeding

The outbred White Leghorn chickens used in the initial round of
selection (generation 1) were obtained from Lohmann Tierzucht
GmBH (Cuxhaven, Germany) as fertilized eggs. The Lohmann Com-
pany has maintained this strain by random mating of a large breeding
population undergoing selection for production traits and thus the
population was expected to exhibit a high level of genetic diversity for
eye traits. The eggs were hatched in batches of 20 to 30 chicks. For the
first 4 days after hatching, the chicks were housed in a clear-sided,
thermoregulated (25–27°C) Perspex brooder. After ocular measure-
ments when the chicks were 4 days old, they were transferred to a
wire-mesh/Perspex-sided floor pen with a suspended infrared heat
lamp. Illumination in the brooder and floor pen was 250 to 300 lux
with a 12:12-hour light/dark cycle. The chicks were fed commercial
chick starter and given access to water ad libitum.

Myopia was induced in one eye of 4-day-old chicks by monocular
DSV. Translucent diffusers were sutured to the skin around the orbit of
one eye with monofilament nonabsorbable suture material (Ethilone
4-0; Ethicon, Johnson and Johnson Intl., Norderstedt, Germany) while
the animal was under general anesthesia (produced by an intramuscu-
lar injection of ketamine 50 mg/kg and xylazine 3.5 mg/kg). Diffusers
were removed after 4 days’ DSV by removal of the sutures. Ocular
measurements were performed before and after DSV to quantify the
myopia susceptibility of each chicken (details of the ocular measure-
ment procedures and myopia quantification calculations are given
below). Please refer to Chen et al.26 for a more detailed description of
the procedures used. The sex of each chicken was determined via a
PCR-restriction enzyme digest assay, using DNA extracted from a blood
sample, as described previously24 (an exception was for a small num-
ber of chickens from generation 1, which were kept until adulthood,
in whom sex was apparent from secondary sexual characteristics).

From 232 outbred chickens treated in generation 1, 36 chickens
were selected and retained for breeding. These comprised the nine
male and nine female chicks with the highest level of susceptibility to
DSV, which were paired together (high-line pairs), and the nine male
and nine female chicks with the lowest level of susceptibility to DSV,
which were paired together (low-line pairs). Because the experiment
was performed using batches of chicks, as each new batch was as-
sessed, any male chick in the pool of selected chicks with a less
extreme phenotype than that of a newly phenotyped male chick was
replaced by the chick with the more extreme phenotype. Similarly, any
female chick in the selected pool was replaced if a female chick in a
new batch was identified as having a more extreme phenotype, until
all the batches had been examined. Because pedigree information was
not available for the outbred chicks treated in generation 1, we as-
sumed that these chicks were unrelated to one another.

Each pair of selected chickens was kept in a separate enclosure,
and their eggs were labeled when collected (daily). Chicks (the F1

generation, or generation 2) were hatched individually in hatching
boxes and tagged with a wing band to allow their parentage to be
ascertained. Chicks from the second generation were deprived of
sharp vision using the same regimen as above.

A total of 267 F1 chicks were assessed in generation 2 (144 chicks
from the high line and 123 from the low line). Chicks from the high-

and low-susceptibility lines were hatched and raised together to ensure
the uniformity of their environment. Since susceptibility to DSV is
partially dependent on sex,23,27 we sought to screen at least five male
and five female offspring from each set of parents. Furthermore, to
maximize genetic diversity and reduce inbreeding depression, we
selected one male and one female from each set of parents. Within
these caveats, the 18 F1 chickens (nine male, nine female) with the
highest degree of induced myopia from the high-susceptibility line
parents were selected for breeding, as were the 16 F1 chickens (eight
male, eight female) with the lowest degree of induced myopia from the
low-susceptibility line parents. The chickens within each susceptibility
group were paired, making sure that the male and female of each pair
were unrelated to one another.

Offspring from the F1 parents (the F2 generation, or generation 3)
were hatched as described above. A total of 392 F2 chicks were
assessed after 4 days’ DSV in generation 3 (200 and 192 chicks from the
high- and low-susceptibility lines, respectively). Table 1 lists the num-
ber of chicks used for this and the remaining experiments.

Ocular Measurements and Quantification of
Myopia Susceptibility

Measurements were performed by examiners masked to the identity
(i.e., high- or low-line status) of the animals. High-frequency A-scan
ultrasonography was used to measure ocular component dimensions,
including anterior chamber depth (ACD), lens thickness (LT), vitreous
chamber depth (VCD), and axial length (AL), in chickens under anes-
thesia before and after the period of DSV.26,28 The refractive state (RX)
of each eye was measured by using streak retinoscopy immediately
after removal of the diffuser. In the third generation, the radius of
corneal curvature (RCC) was measured with a custom-built infrared
videokeratometer based on the design of Schaeffel and Howland.29

Changes in ocular component dimensions resulting from DSV were
compared between the treated and control eye of each chick. The
relative changes in AL, VCD, and RX were chosen to quantify myopia
susceptibility26:

�AL � �ALT � �ALC

�VCD � �VCDT � �VCDC

�LT � �LTT � �LTC

�RX � RXT � RXC

�ACD � �ACDT � �ACDC

�RCC � �RCCT � c�RCCC

where,

�ALT � AL in the treated eye after DSV � AL in the treated eye
before DSV;

�ALC � AL in the control eye after DSV � AL in the control eye
before DSV;

TABLE 1. Number of Animals Used in Each Experimental Group

Generation Line
DSV

(4 Days Only/4 and 10 Days)
Lens Wear

(Plano/Plus/Minus) Untreated
AS-OCT

(10 Days DSV)
OKN

(Untreated) Total

1 Outbred 232 (232/0) 0 0 0 0 232
2 High 144 (144/0) 0 0 0 0 144
2 Low 123 (123/0) 0 0 0 0 123
3 High 200 (167/33) 56 (15/20/21) 22 6 4 288
3 Low 192 (161/31) 52 (14/19/19) 22 6 3 275

DSV, deprivation of sharp vision; AS-OCT, anterior segment optical coherence tomography; OKN, optokinetic nystagmus testing.
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and similarly for �VCDT, �VCDC, �LTT, �LTC, �ACDT, �ACDC, �RCCT,
and �RCCC and where,

RXT � RX in the treated eye after DSV;
RXC � RX in the control eye after DSV.

Since �AL, �VCD, and �RX correlated highly, �AL was used as the
primary indicator of myopia susceptibility when selecting chicks. How-
ever, for chicks in which �AL values were similar, those with the more
extreme �VCD and �RX values were chosen (i.e., for high-susceptibility
line chicks, those with higher �VCD and �RX values, and for low-
susceptibility line chicks, those with lower �VCD and �RX values).

Deprivation of Sharp Vision for 10 Days

Sixty-four chicks from the third generation (33 and 31 from the high-
and low-susceptibility lines, respectively) underwent monocular DSV
for 10 days. Refractive error, corneal curvature and ocular component
dimensions were measured before treatment when the chicks were 4
days old and then again after 4 and 10 days of DSV. An additional 44
chicks (22 from the high-susceptibility line and 22 from the low-suscep-
tibility line) were randomly chosen to serve as untreated controls and
measured alongside those undergoing the 10-day DSV treatment.

Visual Defocus by Lenses

Plano, �10-D plano-convex and �15-D plano-concave glass lenses
(diameter, 12 mm) were fitted inside short (8 mm) lengths of soft,
translucent silicone tubing (inner diameter, 12 mm), which were in
turn each attached to a Velcro ring. A mated ring of Velcro was glued
to the feathers around the eye to attach the lens. Fifty-six third-
generation chicks from the high-susceptibility line and 52 third-gener-
ation chicks from the low-susceptibility line were randomly assigned to
wear a plano, �10-D or �15-D lens. Refractive error, corneal curvature
and ocular component dimensions were measured before and after 4
days of continuous lens wear, with treatment starting at 4 days of age,
as for DSV. The lenses were cleaned twice daily.

Anterior Segment Imaging

Anterior segment imaging was performed on both eyes of a sample of
third-generation chicks (six from the high-susceptibility line and six
from the low-susceptibility line) after DSV treatment for 10 days,
before ultrasound biometry. Images were obtained with a custom-built
swept source optical coherence tomography (SS-OCT) system that
used the fast dispersion encoded full-range (DEFR) algorithm,30 to
double the usable depth range. Details of the biometry system have
been presented elsewhere.31

Assessment of Visual Function Using
Optokinetic Responses

Optokinetic responses were tested on 7-day-old untreated chickens
from the third generation. Details of the optokinetic nystagmus testing
paradigm have been reported previously.32,33 Briefly, seven randomly
selected chickens (4 from the high-susceptibility line and three from
the low-susceptibility line) were individually placed inside a large drum
with printed stripes (1 cyc/deg, 28.5% contrast) on the inner wall. The
rotating speed of the drum was 50 deg/s. The head movement of the
chickens, elicited by the drifting grating, was recorded from above by
a video camera and analyzed with custom-written software after digi-
tization of the video frames. Visual function was quantified as the ratio
of angular head speed to angular stripe speed. The OKN test was
performed under both binocular and monocular viewing conditions.
When monocular testing was performed (achieved by placing an
opaque occluder over one eye) only responses in the temporal-to-nasal
direction were recorded, because of the asymmetry of monocularly
elicited OKN in chicks.34 The relative performance (ratio of angular
head speed to angular stripe speed) of chicks from the high- and
low-susceptibility lines was tested with the Mann-Whitney U test.

Statistical Analysis

All data for the pretreatment ocular component dimensions and the
posttreatment traits �VCD, �AL, and �RX were tested for normality
with the Kolmogorov-Smirnov test. Due to a non-normal distribution of
�RX, differences between the high- and low-susceptibility lines were
compared by using the Mann-Whitney U test. Comparisons of the
ocular component dimensions and their DSV-induced changes be-
tween the two selected lines were made using an independent-samples
t-test (SPSS ver. 14.0; SPSS Inc., Chicago, IL).

Heritability Estimates for Susceptibility to
Deprivation of Sharp Vision

For each of the traits of interest (�RX, �AL, and �VCD), outliers,
defined as the trait values beyond three standard deviations from the
mean,35 were identified and removed. Outlier removal is common
practice in quantitative genetics, since extreme values are potentially
informative, but have a high risk of being the result of a measurement
error.36 The removal of falsely identified outliers (extreme trait values
that are not due to measurement errors) causes a small, downward bias
in heritability estimation, such that the result becomes conservative.
However, failure to remove true outliers (extreme values resulting
from measurement errors) can dramatically bias heritability estimates,
giving very misleading results.36,37 The number of outliers removed
was 2, 3, and 4 for the traits �RX, �AL, and �VCD, respectively (i.e.,
�0.5% of the total sample for all three traits). Next, the frequency
distributions of all ocular traits were tested for normality by the
Kolmogorov-Smirnov test. Only the trait �RX was non-normally dis-
tributed. Therefore, a normal quantile transformation of �RX was
made, as described previously.38,39 (This method assigns a normal
deviate value to each subject according to its phenotypic rank.) Heri-
tability estimates for susceptibility to DSV were calculated by using vari-
ance components analysis with the software package Sequential Oligo-
genic Linkage Analysis Routines (SOLAR, version 4.2.7).40 Here, the total
phenotypic variance of the trait is partitioned into an additive genetic
component and an environmental component that includes the nonaddi-
tive genetic component, environmental factors and measurement errors.
The narrow sense heritability (h2) was estimated as the proportion of total
phenotypic variance of the trait due to additive genetic effects. SOLAR
uses maximum likelihood to optimize the model parameters. Batch-to-
batch variability was taken into account using the house (household
effects) command, and sex was included as a covariate.

RESULTS

Myopia Susceptibility in Selectively Bred Chicks

The frequency distribution of the degree of induced myopia
(�RX) in the first generation of chickens was approximately
Gaussian, with the chicks (n � 232) developing �13.42 � 3.16 D
of myopia (mean � SD). The animals in the tails of the distribu-
tion were retained for breeding, and the selection process was
repeated (Fig. 1A; Tables 2, 3). After two rounds of selection, the
animals in the third generation showed a clear divergence in
their susceptibility to DSV-induced myopia (Figs. 1B–G). The
chickens in this generation with parents that had been
selected for high susceptibility to myopia developed an
average of �15.27 � 3.47 D, whereas those with parents
selected for low susceptibility developed only �6.88 � 3.35
D (n � 392; P � 0.001; Fig. 2A). There were similarly
significant differences between the two lines in the extent to
which each of the treated eye’s ocular components changed
relative to the untreated fellow (control) eye in response to
DSV (Figs. 2C–F; Tables 2, 3).

Remarkably, refractive error and ocular component dimen-
sions were also found to differ significantly between the high-
and low-susceptibility line chicks in the third generation, even
before treatment was initiated (Table 4). At 4 days of age, the
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chicks from the low-susceptibility line were an average of
�0.21 D more hyperopic than their high-susceptibility line
counterparts (�4.43 vs. �4.22 D, respectively, P � 0.001) and
had shorter eyes (8.05 vs. 8.14 mm, respectively, P � 0.001).

Assessment of Visual Function Using
Optokinetic Responses

Since DSV-induced changes in eye growth are vision depen-
dent, visual function in chickens from the high- and low-
susceptibility lines were tested using an optokinetic nystagmus

(OKN) testing paradigm to examine whether a generalized
visual deficit in the chickens from the low lines could explain
the divergence in myopia susceptibility. After the optokinetic
response of the chickens in the third generation was tested, no
significant difference in visual function was observed between
the high and low lines (Fig. 2F). The chickens from the two
selected lines showed similarly good visual function. The gain
(which quantified visual performance in the OKN test) ob-
served under binocular viewing condition was 0.95 � 0.11 and
0.96 � 0.11 in the low- and high-susceptibility lines, respec-

FIGURE 1. Selective breeding for
myopia susceptibility. Myopia was in-
duced in one eye of outbred chick-
ens (generation 1) by monocular de-
privation of sharp vision, and individuals
from the tails of the induced-myopia
frequency distribution were retained
for breeding. Offspring (generation
2) from the parents with the highest
myopia susceptibility (high line) and
the lowest myopia susceptibility
(low line) were hatched and raised
together, and subjected to monocu-
lar DSV treatment. The degree of in-
duced myopia was assessed in the
generation 2 chicks, and again, the
most and least susceptible chicks
were retained for breeding a third
generation. The degree of induced
myopia was assessed in the genera-
tion 3 chicks, with observers again
being masked to the high- or low-line
status of the animals. (A) The breed-
ing scheme. n, number of animals.
(B, D, F) Distribution of degree of
induced myopia (�RX) in genera-
tions 1, 2, and 3, respectively. (C, E,
G) Distribution of degree of induced
axial eye growth (�AL) in genera-
tions 1, 2, and 3, respectively. (B–G)
Red, outbred; green, low line; blue,
high line; black, high/low overlap.

TABLE 2. Refraction and Ocular Component Dimensions in Chicks after Monocular DSV for 4 Days

Round R2 (n � 267: L � 123, H � 144) Round R3 (n � 392: L � 192, H � 200)

Round R1 (n � 232) High Low P High Low P

Treated eyes
RX �9.26 � 3.10 �8.97 � 3.62 �4.42 � 3.36 � 0.001 �10.92 � 3.83 �2.43 � 3.53 � 0.001
RCC* — — — 2.92 � 0.05 2.93 � 0.06 0.045
ACD 1.35 � 0.09 1.35 � 0.09 1.29 � 0.07 � 0.001 1.37 � 0.09 1.23 � 0.07 � 0.001
LT 1.96 � 0.05 1.94 � 0.04 1.95 � 0.04 0.035 1.98 � 0.04 1.97 � 0.04 � 0.001
VCD 5.53 � 0.20 5.60 � 0.19 5.45 � 0.19 � 0.001 5.67 � 0.20 5.39 � 0.19 � 0.001
AL 8.84 � 0.27 8.88 � 0.26 8.66 � 0.23 � 0.001 9.01 � 0.25 8.57 � 0.23 � 0.001

Control eyes
RX 4.17 � 1.26 4.98 � 0.55 5.05 � 0.40 0.276 4.34 � 1.29 4.45 � 0.90 0.886
RCC* — — — 2.92 � 0.05 2.92 � 0.06 0.777
ACD 1.38 � 0.04 1.39 � 0.05 1.38 � 0.05 0.492 1.38 � 0.05 1.36 � 0.05 � 0.001
LT 1.96 � 0.05 1.95 � 0.05 1.95 � 0.04 0.853 1.97 � 0.03 1.99 � 0.04 � 0.001
VCD 5.09 � 0.14 5.08 � 0.15 5.07 � 0.12 0.489 5.13 � 0.15 5.08 � 0.13 0.001
AL 8.42 � 0.18 8.41 � 0.18 8.40 � 0.16 0.617 8.47 � 0.19 8.41 � 0.16 0.001

Data are expressed as the mean � SD. For ocular component dimensions, P relates to the difference in trait means between high- and low-line
chicks, by t-test. For refraction, P relates to the difference between the high- and low-line chicks, by Mann-Whitney U test. RX, refraction; RCC,
radius of corneal curvature; ACD, anterior chamber depth; LT, length thickness; VCD, vitreous chamber depth; AL, axial length.

* Measured in generation 3 only (n � 178: L � 84, H � 94).
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tively (mean � SE; Mann-Whitney U test; P � 0.72). Similarly,
no significant difference in gain between the two selected lines
was detected under the monocular testing condition
(0.84 � 0.04 vs. 0.88 � 0.11, Mann-Whitney U test; P � 0.86).

Deprivation of Sharp Vision for 10 Days

In investigating whether the divergence in myopia susceptibility
was due to a delayed response to DSV in the chicks from the
low-susceptibility line, we deprived chicks from the high- and
low-susceptibility lines of sharp vision monocularly, starting at 4
days of age, as previously, but for a period of 10 days. Refractive
error, corneal curvature, and ocular component dimensions were
measured before treatment and after 4 (Table 4) and 10 (Tables 5, 6)
days of DSV. The chicks from the high-susceptibility line devel-
oped an average of �12.88 D of myopia after the first 4 days’ DSV
and �20.53 D after 10 days and exhibited an average daily in-
crease in axial length (in the treated eye relative to the control
eye) of 0.12 and 0.11 mm over the first 4 and the subsequent 6
days, respectively. The animals from the low-susceptibility line
developed an average of �5.21 and �7.61 D of myopia after 4
and 10 days of DSV, and showed an average daily axial length
increase (treated eye relative to control eye) of 0.02 and 0.05 mm,
respectively (Figs. 3A, 3C). The continued slower rate of axial
elongation and myopia development in the later 6-day period of
treatment in the low-line chicks, relative to those in the high line,
ruled out our having selected chicks on the basis of the maturity
of their visually guided growth regulation system.

Interestingly, while developing less vitreous chamber elon-
gation than chicks from the high-susceptibility line, the chicks
from the low-susceptibility line showed a significant DSV-in-
duced decrease in their rate of anterior chamber deepening
over the treatment period, combined with an increased rate of
corneal flattening. This effect was particularly pronounced
after 10 days of DSV (Figs. 3B, 3D; Tables 5, 6).

Visual Defocus by Lenses

Chicks from the high- and low-susceptibility lines were treated
with a plano, �10-D, or �15-D lens over one eye for 4 days.
The degree of refractive compensation for minus lenses dif-
fered significantly between the high and low lines. However,
this was not the case with plus or plano lens wear (Fig. 4A).
Specifically, minus lens wear induced �11.14 and �4.80 D of
myopia in the high and low lines, respectively (P � 0.001).
Plus lens wear induced �6.90 and �8.13 D of hyperopia in the
high and low lines, respectively (P � 0.093). Whereas the

TABLE 3. Changes in Refraction and Ocular Component Dimensions after 4 Days of DSV

Generation 1
(n � 232)

Generation 2
(n � 267: L � 123, H � 144)

Generation 3
(n � 392: L � 192, H � 200)

�RCC* — — L 0.012 � 0.03 P � 0.009
H �0.003 � 0.04

�ACD, mm �0.02 � 0.08 L �0.10 � 0.05 P � 0.001 L �0.13 � 0.05 P � 0.001
H �0.04 � 0.07 H �0.01 � 0.07

�LT, mm �0.002 � 0.038 L �0.02 � 0.04 P � 0.101 L �0.02 � 0.04 P � 0.001
H �0.01 � 0.05 H 0.01 � 0.04

�VCD, mm 0.47 � 0.14 L 0.38 � 0.13 P � 0.001 L 0.31 � 0.14 P � 0.001
H 0.52 � 0.13 H 0.54 � 0.13

�AL, mm 0.45 � 0.19 L 0.27 � 0.15 P � 0.001 L 0.16 � 0.16 P � 0.001
H 0.47 � 0.16 H 0.54 � 0.16

�RX, D �13.42 � 3.16 L �9.47 � 3.31 P � 0.001 L �6.88 � 3.35 P � 0.001
H �13.95 � 3.59 H �15.27 � 3.47

Data are the mean � SD change in treated eye minus control eye. H, high line; L, low line; other abbreviations and probabilities are as
described in Table 2.

* Measured in generation 3 only (both pre- and posttreatment data available for n � 178: L � 84, H � 94).

FIGURE 2. (A–E) Changes in refraction and ocular component dimen-
sions induced by 4 days’ DSV (treated eye minus control eye) in high-
and low-line chicks. Error bars, SE. *Significant difference between the
high and low lines (P � 0.001). (F) Optokinetic head pursuit responses
in untreated high- and low-line chicks in the third generation. Visual
function in chicks aged 7 days was assessed by measuring the ratio of
angular head speed during optokinetic smooth pursuit phases to the
angular speed of a low-contrast, drifting grating of spatial frequency 1
cyc/deg, where a ratio of 1.0 corresponds to normal performance and
a ratio of 0 corresponds to no visual function. Error bars show SE.
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frequency distributions of �RX in the two selected lines were
largely overlapping after plus lens wear, there was an obvious
divergence in the distributions after minus lens wear (Fig. 4B).

Magnitude of the Genetic Influence toward
Myopia Susceptibility

A variance components analysis of all the chickens used in
the selective breeding experiment yielded heritability esti-
mates for susceptibility to DSV of 0.51 � 0.05, 0.46 � 0.04,
and 0.38 � 0.04 (mean � SE) when quantified using the
traits �RX, �AL, and �VCD, respectively (all P � 0.001).
These results demonstrate that susceptibility to a completely
environmental cause of myopia was strongly dependent on
genetic background in these chickens.

DISCUSSION

Substantial variations have been observed in the degree of
myopia induced by a uniform regimen of DSV in outbred White
Leghorn chickens.21–24 After selective breeding for high and
low susceptibility to DSV, the degree of myopia induced by

DSV showed a highly significant difference between the high-
and low-susceptibility lines, as did the DSV-induced changes in
ocular component dimensions.

Plausible explanations for this divergence in susceptibility
to DSV between the selected lines would be (1) a genetic
effect, (2) the inheritance of an allele or alleles causing gener-
alized visual disability in the low-line chicks because of the
vision dependency of DSV-induced myopia, and (3) a relative
immaturity of the pathway of vision-dependent regulatory eye
growth in the low-susceptibility line. However, as assessed
using an optokinetic nystagmus testing paradigm, visual func-
tion was similarly good in both the high- and low-line animals,
ruling out a generalized visual deficit as the cause of the
divergence in susceptibility to DSV. Furthermore, there were
significant differences in the relative changes in ocular compo-
nent dimensions and induced myopia between the chickens
from the high- and low-lines treated with monocular DSV over
a longer deprivation period of 10 days. The slower rate of axial
elongation and myopia development in both the first 4 days
and later 6 days of treatment in the low-susceptibility line
chicks, relative to those in the high-susceptibility line, ruled

TABLE 4. Refraction and Ocular Component Dimensions in 4-Day-Old Chicks before DSV Treatment

Generation 1
(n � 232)

Generation 2
(n � 267: L � 123, H � 144)

Generation 3
(n � 544: L � 266, H � 278)

RCC, mm* — — L 2.77 � 0.05 P � 0.016
H 2.79 � 0.04

ACD, mm 1.26 � 0.04 L 1.25 � 0.04 P � 0.427 L 1.25 � 0.04 P � 0.001
H 1.26 � 0.04 H 1.27 � 0.03

LT, mm 1.82 � 0.04 L 1.81 � 0.03 P � 0.155 L 1.834 � 0.032 P � 0.010
H 1.80 � 0.03 H 1.828 � 0.030

VCD, mm 5.04 � 0.13 L 4.98 � 0.10 P � 0.002 L 4.97 � 0.12 P � 0.001
H 5.02 � 0.12 H 5.04 � 0.13

AL, mm 8.12 � 0.16 L 8.04 � 0.13 P � 0.034 L 8.05 � 0.15 P � 0.001
H 8.08 � 0.15 H 8.14 � 0.15

RX, D† — — L 4.43 � 0.75 P � 0.001
H 4.22 � 0.66

Data are expressed as the mean � SD. Measurements in the right and left eyes of each chick were averaged. Probabilities and abbreviations
are as described in Table 2.

* Measured in generation 3 only (pretreatment data available for n �226: L � 104, H � 122).
† Measured only in generation 3, before treatment (n � 216: L � 105, H � 111).

TABLE 5. Refraction and Ocular Component Dimensions in Third-Generation Chicks Monocularly Deprived of Sharp Vision for 10 Days and in
the Right Eyes of Untreated Chicks Observed during the Same Period

Untreated Right Eyes Treated Eyes Control Eyes

High
(n � 22)

Low
(n � 22) P

High
(n � 33)

Low
(n � 31) P

High
(n � 33)

Low
(n � 31) P

After 4 Days’ DSV
RX (D) 4.42 � 1.03 4.19 � 1.50 0.720 �8.12 � 3.59 �0.74 � 3.30 � 0.001 4.76 � 0.73 4.47 � 1.25 0.595
RCC, mm 2.94 � 0.05 2.92 � 0.05 0.209 2.93 � 0.05 2.94 � 0.07 0.337 2.92 � 0.05 2.93 � 0.06 0.582
ACD, mm 1.40 � 0.04 1.38 � 0.04 0.077 1.41 � 0.07 1.26 � 0.06 � 0.001 1.41 � 0.04 1.39 � 0.03 0.129
LT, mm 1.97 � 0.03 1.99 � 0.03 0.016 1.97 � 0.03 1.96 � 0.03 0.542 1.96 � 0.03 2.00 � 0.04 � 0.001
VCD, mm 5.21 � 0.15 5.11 � 0.13 0.032 5.60 � 0.21 5.39 � 0.20 � 0.001 5.15 � 0.16 5.13 � 0.13 0.693
AL, mm 8.56 � 0.18 8.47 � 0.15 0.072 8.97 � 0.27 8.60 � 0.23 � 0.001 8.50 � 0.19 8.51 � 0.16 0.939

After 10 Days’ DSV
RX (D) 4.02 � 0.66 4.23 � 0.72 0.114 �15.91 � 6.09 �3.29 � 5.75 � 0.001 4.62 � 0.76 4.32 � 0.74 0.220
RCC, mm 3.16 � 0.05 3.13 � 0.05 0.197 3.14 � 0.09 3.29 � 0.09 � 0.001 3.14 � 0.06 3.15 � 0.07 0.411
ACD, mm 1.48 � 0.05 1.46 � 0.04 0.214 1.55 � 0.21 1.20 � 0.10 � 0.001 1.48 � 0.06 1.48 � 0.05 0.899
LT, mm 2.21 � 0.05 2.22 � 0.05 0.580 2.19 � 0.05 2.19 � 0.05 0.573 2.20 � 0.04 2.24 � 0.06 0.009
VCD, mm 5.46 � 0.16 5.38 � 0.12 0.063 6.45 � 0.44 6.13 � 0.40 0.003 5.39 � 0.19 5.39 � 0.15 0.959
AL, mm 9.14 � 0.19 9.05 � 0.15 0.100 10.17 � 0.58 9.49 � 0.43 � 0.001 9.06 � 0.24 9.08 � 0.18 0.628

Data are expressed as the mean � SD. Probabilities and abbreviations are as described in Table 2.
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out our having selected the chicks on the basis of the maturity
of their visually guided growth regulation system. Instead, the
results are consistent with the idea that the chicks were se-
lected dependent on the gain41 of their eye growth regulatory
system. Therefore, the evident divergence in the susceptibility
to DSV in the three generations of selective breeding provided
evidence of a strong genetic component in the development of
environmentally induced myopia. Indeed, genetic effects ex-
plained �50% of the variation in susceptibility to DSV in this
population of White Leghorn chickens. The most likely molec-
ular determinants underlying this genetic effect are multiple
DNA polymorphisms, each having a small individual effect42

(although, conceivably, epigenetic changes could also contrib-
ute to this heritable variation in response to DSV43).

The myopia susceptibility (�RX) of both lines of the se-
lected chicks diverged away from that of the outbred starting

population (both directions, P � 0.001). However, as seen
strikingly in Figure 2, the low-susceptibility line responded to
a much greater extent than the high-susceptibility line. Thus,
comparing the chicks in generation 3 against those in the
starting population (generation 1), birds in the low line devel-
oped, on average, 49% less induced myopia, whereas the
chicks from the high line developed just 14% more. Because
the stringency of selection was the same for the two lines, and
the frequency distribution of �RX in generation 1 was not
markedly skewed, this asymmetric divergence is likely to rep-
resent a biologically driven phenomenon rather than a statisti-
cally driven one. According to quantitative genetics theory,
several interrelated factors can create an asymmetry in the
response to selection, including directional dominance (for
instance, a tendency for the majority of alleles that confer low
myopia susceptibility to be recessive) and directional gene
frequencies (for instance, a tendency for the majority of the
alleles conferring low myopia susceptibility to be at a relatively
low frequency in the population).44 However, these causes are
rarely evident after just two generations of selective breeding.
Hence, we speculate that the principal reason for the reduced
divergence of the high-susceptibility line is that the rate of
myopic eye growth is limited to a finite, maximum level.

The myopia induced by DSV is primarily brought about by
an increase in vitreous chamber depth.45,46 Interestingly, how-
ever, the chicks from the low-susceptibility line showed signif-
icant anterior and posterior segment changes over the treat-
ment period. Thus, at the same time that they were developing
less vitreous chamber elongation than chicks from the high
line, treated eyes in chicks from the low line developed un-
usually flat corneas and unusually shallow anterior chambers.
These effects were particularly pronounced after DSV for 10
days (Fig. 3D). As a result of this relatively slow rate of anterior
chamber deepening and faster rate of corneal flattening, we
calculated47,48 the equivalent refractive power of the com-
bined cornea and crystalline lens to be approximately �153 D
in the treated eyes of 14-day-old low-line chicks, compared
with �156 D in the untreated, normal eyes of chicks from this
line at this age (assuming a total lens power of �61.83 D and
a first principal point distance for the lens of 0.93 mm, for 15
day old chicks48). Thus, the anterior segment changes in the
treated eyes of low-line chicks also served to make them less
myopic, augmenting the effect of slow vitreous chamber elon-
gation. The most straightforward explanation for this apparent

TABLE 6. Relative Changes in Ocular Component Dimensions and Refraction in Third-Generation Chicks during Monocular DSV for 10 Days

Changes in the
First 4 Days P

Changes in the
Latter 6 Days P

Changes in
10 Days P

�RX, D L �5.21 � 2.71 � 0.001 �2.40 � 3.58 � 0.001 �7.61 � 5.59 � 0.001
H �12.88 � 3.54 �7.65 � 3.76 �20.53 � 5.89

�RCC, mm L 0.01 � 0.03 0.732 0.12 � 0.06 � 0.001 0.14 � 0.06 � 0.001
H 0.01 � 0.05 �0.01 � 0.06 0.003 � 0.08

�ACD, mm L �0.12 � 0.04 � 0.001 �0.15 � 0.07 � 0.001 �0.28 � 0.09 � 0.001
H 0.002 � 0.05 �0.07 � 0.15 0.08 � 0.19

�LT, mm L �0.04 � 0.05 � 0.001 �0.01 � 0.07 0.328 �0.05 � 0.07 0.029
H 0.01 � 0.03 �0.02 � 0.06 �0.01 � 0.05

�VCD, mm L 0.25 � 0.15 � 0.001 0.48 � 0.26 0.077 0.73 � 0.35 � 0.001
H 0.46 � 0.11 0.60 � 0.27 1.06 � 0.31

�AL, mm L 0.09 � 0.16 � 0.001 0.31 � 0.25 � 0.001 0.40 � 0.36 � 0.001
H 0.47 � 0.14 0.65 � 0.35 1.12 � 0.44

Data are expressed as the mean � SD change in treated eye minus control eye. For high line, n � 33; for low line n � 31. For �RCC, �VCD,
and �AL, P relates to the difference in trait means between high line and low line chicks, by t-test. For �ACD, �LT, and �RX, P relates to the
difference between the high- and low-line chicks, by Mann-Whitney U test. L, low-susceptibility line; H, high-susceptibility line; other abbreviations
are as described in Table 2.

FIGURE 3. (A, C) Changes in refraction (�RX) and axial length (�AL)
in high- and low-line chicks in the third generation after 4 and 10 days
of DSV. Bars show change in the treated eye minus the change in the
control eye over the treatment period, error bars, SE. *Significant
difference between the high and low lines (P � 0.001). (B, D) Repre-
sentative in vivo anterior segment images of the treated and control
eyes of chicks from the (B) high and (D) low lines after 10 days of DSV.
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coupling of influences on the rate of growth of both the
anterior and posterior segments of the eye is that separate
groups of alleles, some regulating the response of the anterior
segment to DSV and other regulating the response of the
posterior segment, were subject to selection. However, an
alternative, albeit speculative, explanation is that alleles with
pleiotropic effects on the growth of both the anterior and
posterior segments were subject to selection (in support of the
latter idea, we recently observed pleiotropic genetic effects in
the control of axial length and corneal curvature in normally
developing chicks49).

Chicks raised wearing a spectacle lens in front of one eye
are able to modify their refractive development in a sign of
defocus-dependent manner.50 When the chicks from the high
and low lines were fitted with a plano, �10-D, or �15-D lens
over one eye, the degree of refractive compensation for minus
lenses differed significantly between the two selected lines, as
was the case for DSV (Fig. 4). However, this was not the case
with plus (or plano) lens wear. These findings suggest that the
regulatory systems responsible for DSV-induced changes in
refractive development and minus lens-induced changes in
refractive development have one or more molecular compo-

nents in common. However, this component is not part of the
visually guided regulatory system responsible for compensa-
tion for the blur caused by plus lenses. Although previous
studies51–54 have reported similarities in the responses to mi-
nus lenses and diffusers, an important aspect of the similarity
found here is that it can be more directly attributed to a shared
causal mechanism (but note that we cannot argue this point
with certainty, since it is possible that the �15-D lenses we
used were beyond the range for which chicks of this age could
emmetropize, and thus the minus lenses may have produced
form deprivation rather than simply hyperopic defocus). Our
results support previous work in demonstrating that the mo-
lecular pathways underlying emmetropization in response to
plus lens wear and DSV must be distinct to at least some
extent. More important, however, the difference in suscepti-
bility to myopia induced by minus lens wear in the selected
chicken lines suggests that a single genetic gain control system
may determine a chick’s susceptibility to all types of visually
induced myopic eye growth, and thus have crucial relevance to
human myopia.

In conclusion, a selective breeding experiment demon-
strated that susceptibility to environmentally induced myopia
in chickens is strongly genetic in origin. If gene–environment
interactions of this kind are also important in human myopia,
then projects seeking to identify myopia-predisposing gene
variants will benefit by considering genetic and lifestyle risk
factors jointly.
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