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Skeleton Propagation between Images

Since adjacent images are very similar, we propagate the segmentation of one slice as an initialisation of the segmentation of

the adjacent slice.

Given the final segmentation Si−1 of the slice i−1 and the initial segmentation S0
i of the slice i generated by Otsu method,

the skeleton of the background of Si−1 which is included in the foreground of S0
i can be calculated by Boolean intersection

Ci = skeleton(S̄i−1)∩S0
i, (1)

where skeleton(.) represents the morphological skeleton extraction, and S̄i−1 denotes the background of Si−1. The obtained

curves in Ci are superimposed upon S0
i. A pair of junction sections which should be matched are close to a curve in Ci.

Therefore, the curves in Ci can be used to match the pairs of junction sections which should be connected, and will provide an

initial guess for the final segmentation.

However, the narrow fused region in S0
i may obstruct the junction section matching. Fig. 1(a) presents the segmentation

Si−1 of slice i−1 as well as its foreground skeleton (red curve) and background skeleton (black curve), and Fig. 1(b) shows the

initial segmentation S0
i of slice i. The background skeleton of Si−1 contained in the foreground of S0

i is displayed in Fig. 1(c).

In this subfigure, the two junction sections between the two fused layers cannot be matched, because the background skeleton

of Si−1 between these two junction sections cannot be entirely contained in the narrow fused region, and is thereby broken

by Eq.(1). To tackle this problem, we exploit the foreground skeleton of Si−1 to identify which two curves in Ci should be

connected together. In Fig. 1(d), the red curve c with p1 and p2 as endpoints is a foreground skeleton of Si−1 included in the

background of S0
i. We link p1 and p2 by the shortest path t (red dotted line in Fig. 1(e)) along the layer boundary. If t only

touches two endpoints of two different curves in Ci and also satisfies 1
α ≤ length o f t

length o f c
≤ α , these two curves will be linked by

the shortest path along the layer boundary, as illustrated in Fig. 1(f). In our work, α is set as 5.

In reality, not all the curves in Ci are useful for the segmentation process, so we will remove those extraneous curves from

Ci. For each endpoint of a curve in Ci, we try to find in S0
i the junction section which meets the following three conditions: (i)

the junction section is within l1 pixels away from the curve; (ii) the distance between the junction section and the endpoint is

less than l2 pixels, and (iii) the junction section is nearest to the endpoint among all the junction sections meeting conditions (i)

and (ii). In our work, l1 and l2 are set as 3 and 20 respectively. The pair of junction sections corresponding to the same curve is

considered to be matched by this curve. From Ci will be deleted the curves which cannot match two junction sections and are

shorter than a threshold d (100 in our work), because these curves are too short and useless.

The obtained useful curves in Ci will be finally preprocessed as the initial guess for the further optimization. If the endpoint

e of the curve has a corresponding junction section, whose middle point m is closest to the point e′ of the curve (Fig. 2(a)),

then we will cut out the segment ee′ and link m and e′ together by a straight line segment. On the other hand, if e has no
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corresponding junction section, as shown in Fig. 2(b), then let the boundary point q be the nearest to e, and we will link q and e

by a straight line segment.

Optimization Method for Even Segmentation

The main body of the paper formulated the goal of optimizing a set of boundary curves in order to separate a fused region into

several layers as evenly as possible. Details are provided in the SI of how Eq. (4) is solved, and the method is then demonstrated

on a simple synthetic example.

Optimization Method

The necessary condition of Eq. (4) requires p to satisfy the Euler-Lagrange equation1

2
d4

dk4
p(k)+β∇pE(p(k)) = 0. (2)

The traditional method to solve Eq. (2) first treats p as a function of k as well as time t, and then sets the negative partial

derivative of p with respect to t equal to the left side of Eq. (2)

−
d

dt
p(k, t) = 2

d4

dk4
p(k, t)+β∇pE(p(k, t)), (3)

and finally solves Eq. (3) by finite difference (FD)2. In the practical application of FD, if �k is fixed, in order to stabilize the

solution p(k, t), the temporal step �t has to be carefully chosen to make the numerical scheme satisfy the Courant-Friedrichs-

Lewy condition3. However, it is difficult to find a �t suitable for all different kinds of parchment scrolls, due to the fact that

these scrolls are quite different in the shape of layer, image size, and gray level and so on. Therefore, for the adaptability of the

algorithm, we will treat Eq. (4) as nonlinear optimization. Discretizing Eq. (4) yields

min f (p2, . . . ,ph−1) =
h

∑
j=1

‖p j−1 −2p j +p j+1‖
2 1

�k3
+β

h

∑
j=1

E(p j)�k (4)

s.t.

x1 = xo,y1 = yo,xh = xe,yh = ye,

in which, the point p j corresponds to the point p(( j−1)�k), and ph = p(m). Because �k is fixed, Eq. (4) is equivalent to the

following minimization

min f (p2, . . . ,ph−1) =
h

∑
j=1

‖p j−1 −2p j +p j+1‖
2 +β ′

h

∑
j=1

E(p j) (5)

s.t.

x1 = xo,y1 = yo,xh = xe,yh = ye,

Figure 1. The connection of the curves in Ci. (a) The foreground skeleton (red curve) and the background skeleton (black

curve) of Si−1; (b) the initial segmentation S0
i; (c) the background skeleton segment of Si−1 is broken between the two junction

sections of the fused region in S0
i; (d), (e), and (f) determine which two curves in Ci should be linked by means of the

foreground skeleton of Si−1 included in the background of S0
i.
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Figure 2. The preprocessing of curves in Ci.

Figure 3. The construction of p0.

where β ′ = β�k4. The two additional points p0 and ph+1 in Eq. (5) can be constructed according to the shape of the junction

sections where p(0) and p(m) are respectively located. We take p0 as an example to explain the construction method. As

demonstrated in Fig. 3, given that p(0) is an endpoint of curve r, and q1 and q2 are two boundary points which are w pixels

away from and at both sides of p(0), p0 can be determined by

p0 =
l(0.5(q1 +q2)−p(0))

‖0.5(q1 +q2)−p(0)‖
, (6)

where l is the distance between p0 and p(0). Larger values of l will make the curve r smoother at the endpoint p(0). We set l

as 10 and w as 7 in our work. ph+1 can be decided in the same way.

By convention, Eq. (5) can be further rewritten into matrix form

min f (X) = XT MX+PT X+Q+β ′g(X), (7)

where X = [x2 · · ·xh−1 y2 · · ·yh−1]
T , M =

[

A 0

0 A

]

, in which A is a pentadiagonal matrix in the form

A =
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, and P =
[

G1 G2

]T
with G1 and G2 as

G1 =
[

2x0 −8x1 2x1 0 · · · 0 2xh 2xh+1 −8xh

]

; G2 =
[

2y0 −8y1 2y1 0 · · · 0 2yh 2yh+1 −8yh

]

; Q is

a constant expressed as Q = x0
2 + 5x1

2 − 4x0x1 + xh+1
2 + 5xh

2 − 4xhxh+1 + y0
2 + 5y1

2 − 4y0y1 + yh+1
2 + 5yh

2 − 4yhyh+1 +
β ′E(x1,y1)+β ′E(xh,yh), and finally g(X) = ∑

h−1
j=2 E(x j,y j). We use the steepest descent method to optimize Eq. (7). The

gradient of f (X) can be produced by

∇X f = 2MX+P+β ′∇Xg(X). (8)

Thus X(t+1) in tth iteration can be updated by

X(t+1) = X(t)−λ∇X f = (I−2λM)X(t)−λP−λβ ′∇Xg(t), (9)

where I denotes identity matrix, and λ is the step-size along the direction of the gradient, automatically chosen by Armijo

backtracking, and ∇Xg(t) =
[

∇x2
E(x2

(t)
,y2

(t)) · · · ∇yh−1
E(xh−1

(t)
,yh−1

(t))
]T

. With the fourth order central difference,

∇x j
E(x j,y j) and ∇y j

E(x j,y j) can be respectively calculated by

∇xk
E =

−E(xk +2,yk)+8E(xk +1,yk)

12
−

8E(xk −1,yk)+E(xk −2,yk)

12
, (10)
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∇yk
E =

−E(xk,yk +2)+8E(xk,yk +1)

12
−

8E(xk,yk −1)+E(xk,yk −2)

12
. (11)

It can be easily proved that the update formula (9) has the same form as the explicit finite difference discretization of Eq.(3)

has. However because of dynamically choosing the step-size λ , the proposed method does not suffer from the aforementioned

drawback of the FD.

As mentioned in the main body of this paper, all n curves in Ci will be sequentially optimized for three cycles by this

method, since we find that this provides sufficient convergence. The pseudo-code of our optimization method is described in

ALGORITHM 1 as follows.

ALGORITHM 1: Optimization

Input: n curves propagated from previous segmentation results.

For cycle=1 to 3

For r=1 to n

Get segmentation result by all the curves except curve r.

Generate the shape energy map E by Eq. (2).

Calculate p0 and ph+1 by Eq. (6).

Optimize the curve r by Eq (7).

Replace the old curve r by the updated one.

End

End

Output: n optimized curves.

Experiment on Synthetic Data
An experiment is performed to verify the effectiveness of the proposed optimization algorithm. In this experiment, we set β ′ as

300. Fig. 4(a) illustrates a fused region which is comprised of 4 layers. Fig. 4(b) demonstrates the initial guess of the three

curves which link the matched junction sections to separate the fused region. Obviously, the quality of the initial guess is fairly

bad since not only are these curves quite irregular but they do not evenly separate the fused region at all. In order to update

one curve, we first use the other curves to segment the fused region, getting segmentation T, as shown in Fig. 4(c). The shape

energy map E of T is shown in Fig. 4(d), in which the brighter pixels correspond to higher energy. It can be noticed that the

local minima in E are located in the middle of each region. The optimization result of that curve is displayed in Fig. 4(e). It can

be seen that the optimized curve (blue) almost lies on the middle of the region and is much smoother than its initial guess (red).

The final segmentation result is presented in Fig. 4(f). As compared with Fig. 4(b), it evident that in spite of the bad initial

guess of these curves, the optimization algorithm still provides a high-quality segmentation result, which demonstrates the

effectiveness and robustness of our method.

Broken Skeleton Connection and Final Segmentation

We now detail how to connect the broken skeletons in Ui and the growth process used to get the final segmentation. Let fi be

the layer boundary of Bi, then the endpoints of the skeleton segments in Ui must lie on the boundary fi, as shown in Fig. 5(a).

Therefore, we can first link the broken skeletons in Ui along the boundary fi. Supposing that a sheet skeleton of Bi−1 has been

broken into m parts in Ui, which gives rise to 2m endpoints, we number these endpoints in order along the skeleton, as exhibited

in Fig. 5(a). It can be seen that a point with an even number may only be connected to a point with an odd number larger than

that even number, for example, the point 2 can only be linked with point 3 or point 5. Accordingly, given an even number point

r and an odd number point s, where r = 2,4, . . . ,2(m−1) and s = r+1,r+3, . . . ,2m−1, we respectively find in fi and Ki−1

the shortest paths p f
rs and pK

rs between these two points by Dijkstra’s algorithm. If p f
rs does not intersect with any of the

skeleton part in Ui, and p f
rs and pK

rs meet the relationship 1
ρ ≤ length o f p f

rs

length o f pK
rs
≤ ρ , we will delete the pixels of pK

rs in Ui, and

then link the endpoints r and s by p f
rs in Ui; we subsequently proceed to check the even number point s+1. Otherwise, the

point r+2 will be checked by the same way. ρ is set to 3 in our work. The connection result is illustrated in Fig. 5(b).

Note that the skeleton segments contained in the three longer sheets have been correctly connected. In order to finally link

the skeleton segments in the shortest broken sheet, we first calculate the convex hull Hi of Bi, and then obtain the Boolean union

Li of Hi, the background skeleton of Bi−1, and Ui. Li is provided in Fig. 5(c), where the convex hull Hi and the background

skeleton of Bi−1 are respectively represented by the brown and black curves. Fig. 5(c) indicates that Li gives the borders to the

gap between the broken skeleton parts. On the constraint of such borders, the curves which link the broken parts will be regular
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Figure 4. Curve optimization. (a) A fused region comprised of 4 layers; (b) the segmentation by the initial guess of the

curves; (c) the segmentation by all curves except the one to be optimized; (d) the shape energy map of Fig. 4(c); (e) the

optimization result of the first curve, and (f) the final optimization result.

and prevented from intersecting with other skeletons. For a sheet skeleton broken into v parts in Ui, we number these endpoints

in order along the skeleton, as illustrated in Fig. 5(c). It can be observed that each even number point r should be linked with

point r+1, r = 2,4, . . . ,2(v−1). Therefore we first obtain the shortest path pK
r(r+1) between points r and r+1 from Ki; then

fix the endpoints of pK
r(r+1), and meanwhile push pK

r(r+1) away from the borders by the optimization method (see Section C

in the main manuscript) with the shape energy map of the non-border region in Li+1. The final linking result is illustrated in

Fig. 5(d).

After getting the complete skeletons, we treat each skeleton as a set of seeds and grow them to generate the final segmentation

result. Let Fi be the foreground of Bi and R j be the set of seed points initially formed by the skeleton j in Ui, 1 ≤ j ≤ s, if a

point p which is 8-connected to R j satisfies the condition: p ⊆ Fi, p �⊆ R j and p is not adjacent to any other sets of seeds except

R j, then this point will be added to R j. We add all of R j’s adjacent points that satisfy the condition to R j, and take the grown

set R j as a new set of seeds. We repeatedly grow all the sets of seeds one by one until no point should be added to the seed

sets. Fig. 6 demonstrates some intermediate results during growing (Fig. 6(a)-(c)) and the final segmentation result (Fig. 6(d)).

Accordingly, each single sheet can be obtained from Fig. 6(d).

Experiment on Real Scroll Data

Several experiments are performed to test the accuracy of the approach. The first experiment is conducted to deal with the

Bressingham scroll. β ′ in Eq. (5) is set as 200 here. Fig. 7(a) illustrates a typical XMT image of the parchment, whose initial

segmentation is shown in Fig. 7(b). It can been seen from Fig. 7(a) and (b) that there are a large number of missing parts of

the layers, and furthermore, the fused region consisting of 4 layers is compressed, and is only around 10 pixels wide. We use

our algorithm to separate the fused regions into several layers and connect the broken layers together. The result is shown in

Fig. 7(c), where the red box highlights the segmentation of a fused region consisting of 4 layers. Although the narrowest part of

this region is only about 10 pixels wide, our method still evenly separates it into four layers, which strongly testifies to the

effectiveness of our method. In addition, it should also be noticed that curves linking the broken layers are equally spaced in the

background of the image, thus avoiding intersecting with each other. The segmentation obtained by Liu et al.’s method4 is

illustrated in Fig. 7(d). As compared to our result (Fig. 7(c)), there exist some long and thin fused regions which have not been

segmented.

The next experiment is to segment the X-ray image of the Diss Heywood burnt scroll which consists of four sheets. β ′ in

Eq. (5) is set as 300 in this trial. All the sheets are fused together in this scroll, and it is therefore a great challenge for our

method to segment the four different sheets out of the XMT image. Fig. 8(a) presents a tomographic slice of the scroll. The big
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Figure 5. The layer connection for a parchment containing multiple sheets. (a) The layer boundary fi of Bi, on which the

endpoints are number in order along the skeleton; (b) some broken skeleton parts are connected along the boundary; (c) the

Boolean union of the convex hull of Bi, the background skeleton of Bi−1, and Ui; (d) the final linking result.

chunks of fused regions can be clearly observed in the initial segmentation (Fig. 8(b)). In spite of this big difficulty, our method

can still generate the correct segmentation for the scroll, as shown in Fig. 8(c). The red and green boxes at the top left corner

and the bottom right corner show the corresponding portions of the segmentation result. It can be seen that the fused region has

been evenly separated into as many as fifteen regular layers. Fig. 8(d) gives the segmentation result of Liu et al.’s method. As

observed, some long fused regions are not successfully separated into several layers. Fig. 9 displays the four sheets segmented

from the Fig. 8(b), which clearly demonstrates the correctness and effectiveness of our segmentation method.

Correcting Striping Artifacts

Since the scrolls were scanned as a series of separate volumes it was necessary to perform intensity correction, as otherwise

striping artifacts are clearly visible from the multiple volumes being merged together. This was carried out by normalising each

row, where a row corresponds to the reconstruction from a single image. Since the majority of the surface of a scroll does not

contain writing, and consequently makes up the parchment surface in the reconstruction, the median of the intensities along a

row provides an estimate of the typical parchment intensity value. The median absolute deviation (mad) of the row intensities

provides an indication of the contrast. It is calculated as the median of the differences of the intensity values from that median:

mad =
n

med
i=1

|ai −
n

med
j=1

a j|,

where ai denotes the set of intensities in a row. In practice, for the Bressingham scroll, to improve robustness, only 25% of the

pixels were used to estimate the median and mad, namely those towards the top of the scroll, since that portion of the scroll

was less damaged and contained less artifacts. The median and median absolute deviation respectively provided the offset and

scaling for the intensity normalisation. For an intensity I represented in the range [0,255] the normalised intensity is

I′ = (I −med)×
25

mad
+200.
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Figure 6. Skeletons are grown to generate the final segmentation. (a)-(c) The intermediate results. (d) The final result.
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Figure 7. The segmentation of the Bressingham scroll. (a) An XMT image of the Bressingham scroll; (b) the initial

segmentation by the Otsu method; (c) the final segmentation of our method; (d) the segmentation result of Liu et al.’s method.
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Figure 8. The segmentation of the burnt scroll. (a) An XMT image of the scroll; (b) the initial segmentation by the Otsu

method; (c) the final segmentation of our method; (d) the segmentation result of Liu et al.’s method.
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Figure 9. The four sheets segmented out of the original image.
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