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Abstract. In many applications of relational learning, the available data can be
seen as a sample from a larger relational structure (e.g. we may be given a small
fragment from some social network). In this paper we are particularly concerned
with scenarios in which we can assume that (i) the domain elements appearing
in the given sample have been uniformly sampled without replacement from the
(unknown) full domain and (ii) the sample is complete for these domain elements
(i.e. it is the full substructure induced by these elements). Within this setting,
we study bounds on the error of sufficient statistics of relational models that are
estimated on the available data. As our main result, we prove a bound based on
a variant of the Vapnik-Chervonenkis dimension which is suitable for relational
data.

1 Introduction

In one of the most common settings in statistical relational learning (SRL), we are given
a fragment of a relational structure (i.e. a training example) from which we want to learn
a model for making predictions about the unseen parts of the structure. For example, the
relational structure could correspond to a large social network and the training example
to a fragment of the social network specifying the relationships that hold among a small
sample of the users, along with their attributes. Clearly, in order to provide any guarantees
on the accuracy of these predictions, we need to make (simplifying) assumptions about
how the training structures are obtained. In this paper, we follow the setting from [9,8],
where it is assumed that these structures are all obtained as fragments induced by domain
elements sampled uniformly without replacement.

The specific problem that we consider in this paper is to bound the error that we make
when estimating probabilities of first-order theories from the training example, or more
specifically, the probability that a first-order theory Φ is satisfied in a small randomly
sampled fragment of the relational structure. While this setting has already been studied
in [9,8,7], one important remaining problem, which will be the focus of this paper,
relates to how the theory Φ is obtained. Typically, Φ is chosen from some hypothesis
class, based on the same training example that is used to estimate its probability. The
bounds that were derived in [7] for such cases depend on the size of this hypothesis class.
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Unfortunately, this can quickly lead to vacuous bounds in many cases. In fact, in some
applications, the most natural hypothesis classes are either infinite or so large that they
are effectively infinite for all practical purposes. This is the case, for instance, whenever
we want to use constructs involving numerical expressions. To address this issue, in this
paper we derive bounds which depend on the VC-dimension of the hypothesis class,
instead of its size. In this way, we can also obtain, in many cases, tighter bounds than the
ones we derived in [7]. To the best of our knowledge, the bounds we introduce in this
paper are the first VC-dimension based bounds for relational learning problems.

2 Preliminaries

In this paper we consider function-free language L, which is built from a finite set of
constants Const, a set of variables Var and a set of predicates Rel =

⋃
i Reli, where Reli

contains the predicates of arity i. Throughout this paper we assume that the sets Const,
Var and Rel are fixed. For a1, ..., ak ∈ Const ∪ Var and R ∈ Relk, we call R(a1, ..., ak)
an atom. If a1, .., ak ∈ Const, this atom is called ground. A literal is an atom or its
negation. A formula is called closed if all variables are bound by a quantifier. Note that
although the set Const is required to be finite, it can have arbitrary size, so that we could,
for instance, represent all 64-bit floating point numbers. From an application point of
view, this allows us to consider formulas involving numerical expressions. For example,
we could have a predicate Sum, whose intended meaning is that Sum(x, y, z) holds iff
z = x+ y where + represents floating-point addition.

2.1 Relational Learning Setting

Relational examples The learning setting considered in this paper follows the one that
was introduced in [9,8]. The central notion is that of a relational example (or simply
example if there is no cause for confusion),which is defined as a pair (A, C), with C a set
of constants and A a set of ground atoms which only use constants from C. A relational
example is intended to provide a complete description of a possible world, hence any
ground atom over C which is not contained in A is implicitly assumed to be false. Note
that this is why we have to explicitly specify C, as opposed to simply considering the set
of constants appearing in A. For instance, the relational example ({sm(alice)}, {alice})
is different from ({sm(alice)}, {alice, bob}), as in the latter case we know that bob does
not smoke (i.e. the atom sm(bob) is known to be false since it is not specified to be true)
whereas in the former case we have no knowledge about bob. We denote by Ω(L, k) the
set of all possible relational examples Υ = (A, C) where A only contains ground atoms
from L and |C| = k.

Example 1. Let us assume that the only predicate in L is sm/1 and the only constant in
is alice. Then Ω(L, 1) = {(sm(alice), {alice}), (∅, {alice})}.

Let Υ = (A, C) be a relational example and S ⊆ C. The fragment Υ 〈S〉 = (B,S) is
defined as the restriction of Υ to the constants in S , i.e. B is the set of all atoms from A
which only contain constants from S .
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Example 2. Let

Υ = ({fr(alice, bob), fr(bob, alice), fr(bob, eve), fr(eve, bob), sm(alice)},
{alice, bob, eve}),

i.e. the only smoker is alice and the friendship structure is:

alice bob eve

Then Υ 〈{alice, bob}〉 = ({sm(alice), fr(alice, bob), fr(bob, alice)}, {alice, bob}).

In the considered setting, we are given a single relational example Υ = (A, C), and this
example is assumed to have been sampled from a larger relational example ℵ = (Aℵ, Cℵ).
The intended meaning is that ℵ covers the entire domain which we would like to model
and Υ is the fragment of the domain which is known at training time. Throughout this
paper, we will assume that Cℵ is finite. As in [8,7] we assume that Υ as sampled from ℵ
by the following process.

Definition 1 (Sampling from a global example). Let ℵ = (Aℵ, Cℵ) be a relational
example called the global example. Let n ∈ N \ {0} and let Unif(Cℵ, n) denote uniform
distribution on size-n subsets of Cℵ. Training relational examples Υ are sampled from
the global example ℵ by first sampling CΥ ∼ Unif(Cℵ, n) and defining Υ = ℵ〈CΥ 〉.

Probabilities of formulas In a given relational example, any closed formula α is
classically either true or false. To assign probabilities to formulas in a meaningful way,
considering that we typically only have a single relational example available for training,
we can consider how often the formula is satisfied in small fragments of the given
relational example.

Definition 2 (Probability of a formula [8]). Let Υ = (A, C) be a relational example
and k ∈ N. The probability of a closed formula α is defined as follows4:

QΥ,k(α) = PS∼Unif(C,k) [Υ 〈S〉 |= α]

where Unif(C, k) denotes uniform distribution on size-k subsets of C.

Clearly QΥ,k(α) = 1
|Ck| ·

∑
S∈Ck 1(Υ 〈S〉 |= α) where Ck is the set of all size-k subsets

of C. The above definition can straightforwardly be extended to probabilities of sets of
formulas (which we will also call theories interchangeably): if Φ is a set of formulas, we
then have QΥ,k(Φ) = QΥ,k(

∧
Φ) where

∧
Φ denotes the conjunction of all formulas in

Φ.

Example 3. Let sm/1 be a unary predicate denoting that someone is a smoker, e.g.
sm(alice) means that alice is a smoker. Let us consider the following example:

Υ = ({fr(alice, bob), sm(alice), sm(eve)}, {alice, bob, eve}),

and formulas α = ∀X : sm(X) and β = ∃X,Y : fr(X,Y ). Then, for instance,
QΥ,1(α) = 2/3, QΥ,2(α) = 1/3 and QΥ,2(β) = 1/3.

4 We will use Q for probabilities of formulas as defined in this section, to avoid confusion with
other “probabilities” we deal with in the text.
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It is not difficult to check that under the sampling assumption from Definition 1, for any
theory Φ it holds that Qℵ,k(Φ) = EΥ [QΥ,k(Φ)] [8].

Representing theories as functions By definition, to compute QΥ,k(Φ), we only
need to know for which of the elements of Ω(L, k) it holds that Φ is satisfied. To
make this view explicit, we will formulate the results in this paper in terms of func-
tions from Ω(L, k) to {0, 1}. For a given theory Φ, the associated function fΦ is
defined for Γ ∈ Ω(L, k) as fΦ(Γ ) = 1 if Γ |= Φ and fΦ(Γ ) = 0 otherwise.
The advantage of this formulation is that our results then directly apply to settings
where other representation frameworks than classical logic are used for representing
the theory. For example, a theory could be implicitly represented by a neural net-
work with a hard-thresholding output unit. For notational convenience, we also write
Γ |= f if f(Γ ) = 1. We then naturally extend the definition of QΥ,k to functions:
QΥ,k(f) = PS∼Unif(C,k) [Υ 〈S〉 |= f ] = PS∼Unif(C,k) [f(Υ 〈S〉) = 1] .

2.2 VC-Dimension

The next definition describes the classical notion of VC-dimension [15], specialized
to our relational learning setting that is used throughout this paper to measure the
complexity of hypothesis classes.

Definition 3 (VC-dimension). Let k be a positive integer and let H be a hypothesis
class of functions f : Ω(L, k)→ {0, 1}. Let X = {Υ1, Υ2, . . . , Υd} ⊆ Ω(L, k). We say
thatH shatters X if for every Y ⊆ X , there is f ∈ H such that f(Υ ) = 1 for all Υ ∈ Y
and f(Υ ) = 0 for all Υ ∈ X \ Y . The VC dimension ofH is the largest integer d such
that there exists a subset of Ω(L, k) with cardinality d that is shattered byH.

The next definition formalizes what we mean when we say that two functions are
equivalent w.r.t. a given global example.

Definition 4. We say two functions f and g are k-equivalent w.r.t. a global example ℵ if
for any size-k set S it holds that f(ℵ〈S〉) = g(ℵ〈S〉).

Naturally the above two definitions can also be applied to theories, e.g. two theories Φ
and Θ are k-equivalent w.r.t. a global example ℵ if their associated functions fΦ and fΘ
are k-equivalent. The following observation will play an important role in the proofs.

Remark 1 The maximum number of hypotheses that are mutually non-equivalent w.r.t.
a given (finite) global example ℵ is finite.

A consequence of this observation is that even for infinite hypothesis classes, in principle,
there are only finitely many different hypotheses that need to be considered. However,
given that we typically do not know the size of the global example, in practice it is not
possible to rely on the number of non-equivalent hypotheses to apply the bounds from [7]
to infinite hypothesis classes. In contrast, the bounds that we introduce in this paper can
still be applied in such cases, as long as the hypothesis class has a finite VC-dimension.

The ability to deal with infinite hypothesis classes makes it possible, for instance,
to learn theories based on differentiable architectures [18,12] or based on graph kernels
[17].
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3 Motivation

The main aim of this paper is to derive bounds on how accurately we can estimate
Qℵ,k(f) from a given training relational example Υ , where f is viewed as a logical
formula. The need for such probability estimates naturally arises, among others, in the
setting of relational marginal problems, which were studied in [8]. In that setting, we
are given a set of formulas Θ = {α1, . . . , α|Θ|}, a set of constants C and a training
relational example Υ = (AΥ , CΥ ). The task is to use the probabilities of α1, . . . , α|Θ|
that are estimated from the training relational example Υ to perform inference on the
domain C. Specifically, the task is to find a maximum entropy distribution on the set of
all relational examples of the form Ψ = (AΨ , C), such that E[QΨ,k(αi)] = Q̂Υ,k(αi) for
all αi ∈ Θ. Here, Q̂Υ,k(αi) is an estimate of E[QΨ,k(αi)] which is based on QΥ,k(αi).
If |C| ≤ |CΥ | then this estimate is simply given by Q̂Υ,k(αi) = QΥ,k(αi). In general,
however, the value QΥ,k(αi) needs to be adjusted to account for the difference in the
size of the training relational example domain CΥ and the domain C over which we want
to perform inference. The resulting distribution is similar to a Markov logic network, and
can be used in applications for similar purposes5; it is an exponential family distribution
of the following form:

P (Ψ) =
1

Z
exp

(∑
αi∈Θ

wi ·QΨ,k(αi)

)
.

In the case |C| = |CΥ |, the weights wi can be obtained by solving a maximum likelihood
problem which is the dual of the maximum entropy problem. Ideally, we would use
Qℵ,k(αi) as the estimates of QΨ,k(αi) in the maximum entropy problems. Since, in real-
ity, we do not have access to Qℵ,k(αi), we need to use the estimates based on QΥ,k(αi).
The results we present in this paper shed light on the impact of this simplification. We
refer the reader to [8] for more details.

Estimates of Qℵ,k(f) also play a central role in the analysis of PAC-reasoning
[6,14] for relational domains as studied in [7]. This analysis also relies on the sampling
assumptions from Definition 1. Specifically, in that setting, a training relational example
Υ and a test relational example Ψ are sampled from ℵ and the learner’s task is to find
a set of first-order logic formulas that will not produce too many errors on Ψ when
using a restricted form of classical reasoning. To obtain guarantees on the number of
literals that are incorrectly inferred using this form or reasoning, we essentially need to
bound the difference of QΥ,k(Φ) and Qℵ,k(Φ) (which allows us to bound the difference
with QΨ,k(Φ)), which is exactly the problem we also study in this paper. In contrast to
[7], however, we are interested in bounds that are based on the VC-dimension of the
hypothesis space.

5 The relational marginal problems that we consider in this paper are referred to as Model A
in [8]. Another type of relational marginal problems, referred to as Model B in [8], leads to
distributions that are exactly Markov logic networks.



6 Kuželka, Wang, Schockaert

4 Summary of the Results

Intuitively, what we need to find is a suitable bound on the quantity |Qℵ,k(f)−QΥ,k(f)|,
i.e. we want to bound the error we make when estimating the overall probability of f (i.e.
the value Qℵ,k(f)) from a training fragment of the global example. In most application
settings, however, f itself is also chosen using the training relational example Υ , e.g.
by choosing the hypothesis f that maximizes QΥ,k(f) among the functions from some
hypothesis class H. This means that we cannot find a suitable bound for |Qℵ,k(f) −
QΥ,k(f)| without taking the hypothesis class H into account. The classical solution,
which we will also follow, is to instead bound the quantity supf∈H |Qℵ,k(f)−QΥ,k(f)|.
The main result of this paper takes the form of two theorems that provide probabilistic
bounds on this latter quantity. The proof of these theorems is presented in Section 6.

The first theorem bounds the expected value of supf∈H |Qℵ,k(f)−QΥ,k(f)| when
CΥ is viewed as a random variable. Interestingly, this bound is essentially the same as
the classical bound for the i.i.d. setting [13], except that the value of n from the classical
bound is replaced by bn/kc, which is perhaps not surprising as it is the maximum
number of non-overlapping size-k subsets of CΥ .

Theorem 1. Let ℵ = (Aℵ, Cℵ) be a global example and CΥ be sampled uniformly from
all size-n subsets of Cℵ and let us define Υ = ℵ〈CΥ 〉. Then for any hypothesis classH of
functions f : Ω(L, k)→ {0, 1} with finite VC-dimension d, the following holds:

E

[
sup
f∈H
|Qℵ,k(f)−QΥ,k(f)|

]
≤ 2 ·

√
2d log (2ebn/kc/d)

bn/kc

The second theorem provides a tail bound for P
[
supf∈H |Qℵ,k(f)−QΥ,k(f)| ≥ ε

]
.

We note that the bound on expected error from Theorem 1 cannot be derived from
Theorem 2, although a different bound on expected error with looser constants could be
derived from Theorem 2.

Theorem 2. Let ℵ = (Aℵ, Cℵ) be a global example and CΥ be sampled uniformly from
all size-n subsets of Cℵ and let us define Υ = ℵ〈CΥ 〉. Then for any hypothesis classH of
functions f : Ω(L, k)→ {0, 1} with finite VC-dimension d, the following holds for any
0 < ε ≤ 1:

P

[
sup
f∈H
|Qℵ,k(f)−QΥ,k(f)| ≥ ε

]

≤ exp

(
−bn/kcε

2

4

)
+ ε
√
8πbn/kc

(
2ebn/kc

d

)d
· exp

(
−bn/kcε

2

8

)
Up to somewhat looser constants, the tail bound from Theorem 2 can be shown to also
have the same form as the existing VC tail bounds [16]. In particular, the bound implies
the following simpler, albeit looser bound:

P

[
sup
f∈H
|Qℵ,k(f)−QΥ,k(f)| ≥ ε

]
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≤

(
1 +

√
8πbn/kc

(
2ebn/kc

d

)d)
· exp

(
−bn/kcε

2

8

)
.

5 Related Work

There have been several works studying theoretical properties of various statistical rela-
tional learning settings. Dhurandhar and Dobra [3] derived Hoeffding-type inequalities
for classifiers trained with relational data. However, there are several important differ-
ences with our work. First, their bounds are not VC-type bounds. Moreover, their results,
based on restricting the independent interactions of data points, cannot be applied in
our setting, which is more general than the one they consider. Certain other statistical
properties of learning have also been studied for SRL models. For instance, Xiang and
Neville [19] studied consistency of estimation in a certain relational learning setting.

From a different perspective, abstracting from the relational logic setting, our results
can also be seen as bounds for uniform deviations of U-statistics [4] under sampling
without replacement. Not many results are known for this particular setting in the
literature. One exception is the work of Nandi and Sen [11] who only derived bounds on
variance in this setting. It is not possible to derive our results from theirs. In particular,
we need Chernoff-type bounds whereas the variance bounds from their work would only
give us Chebyshev-type bounds. A more thoroughly studied setting is the estimation
of U-statistics under sampling with replacement. Clémencon, Lugosi and Vayatis [1]
derived among others6 VC-inequalities in a setting similar to ours, but under sampling
with replacement, which makes their analysis simpler. However, such an assumption
would not make sense in the relational learning setting where it would mean, for instance,
that we would end up with multiple copies of the same individual (e.g. ending up with
social networks in which the same person can occur multiple times).

6 Derivation of the Bounds

In this section, we prove Theorems 1 and 2 using a series of lemmas. First, in Section 6.1,
we define a sampling process for generating vectors containing bn/kc size-k fragments
of Υ . The sampling process has two important properties. First, the fragments in each
of the vectors are distributed as size-k fragments sampled i.i.d. from ℵ (assuming
Υ is sampled as in Definition 1). Second, the average of the estimates of Qℵ,k(f)
computed from the vectors converges to QΥ,k(f). These two properties allow us to
use the sampling process to derive a bound on expected value of the random variable
supf∈H |Qℵ,k(f)−QΥ,k(f)| in Section 6.2, which finishes the proof of Theorem 1.

The proof of Theorem 2 is a bit more involved. First, in Section 6.3, we derive bounds
on the moment-generating function of a random variable that can be obtained if we only
know its tail bounds. Then, in Section 6.4, we combine the results from the preceding
sections to prove Theorem 2. In particular, we use the bound moment-generating function

6 The main results of [1] are bounds that assume a certain ’low-noise’ condition. Although they
only derived bounds for the case k = 2 (in our notation), the results directly related to ours can
be extended for larger k’s as well.
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to obtain a tail bound on the estimates of Qℵ,k(f) by exploiting a trick that is sometimes
called average of sums-of-i.i.d blocks [1].

6.1 Extracting Independent Samples

In this section we describe a sampling process that allows us to obtain bn/kc samples
from Υ that are distributed as i.i.d. samples from ℵ, assuming Υ is sampled as in
Definition 1.

Lemma 1. Let ℵ = (Aℵ, Cℵ) be a global example. Let 0 ≤ n ≤ |Cℵ|, q ≥ 1 and
1 ≤ k ≤ n be integers. Let X = (S1,S2, . . . ,Sbnk c) be a vector of subsets of Cℵ, each
sampled uniformly and independently of the others from all size-k subsets of Cℵ. Next let
I ′ = {1, 2, . . . , |Cℵ|} and let Yj = (S ′j,1,S ′j,2, . . . ,S ′j,bnk c), for 1 ≤ j ≤ q, be vectors
sampled by the following process:

1. Sample CΥ uniformly from all size-n subsets of Cℵ.
2. For j from 1 to q:

(a) Sample subsets I ′1, . . . , I ′bnk c of size k from I ′.
(b) Sample an injective function g :

⋃bn/kc
i=1 I ′i → CΥ uniformly from all such

functions.
(c) Define S ′j,i = g(I ′i) for all 0 ≤ i ≤ bnk c.

Then the following holds:

1. The random vectors X and Yj have the same distribution for any 1 ≤ j ≤ q.
2. For any function f : Ω(L, k)→ [0, 1] it holds:

P

∣∣∣∣∣∣QΥ,k(f)− 1

qbn/kc

q∑
j=1

bn/kc∑
i=1

f
(
Υ 〈S ′j,i〉

)∣∣∣∣∣∣ ≥ ε
 ≤ 2 exp

(
−2qε2

)
Proof. The first part of the proof follows immediatelly from Lemma 3 in [8] (which, for
completeness, we reprove in the online7 appendix as Lemma 5). For the second part,
we may first notice that, after CΥ is sampled and fixed, QΥ,k(f) = E

[
f
(
Υ 〈S ′j,i〉

)]
, as

the probability of S ′j,i being a particular size-k subset of CΥ is the same for all such
subsets. The second part can then be shown by applying Hoeffding inequality to q i.i.d.
samples 1

bn/kc
∑bn/kc
i=1 f(Υ 〈Sj,i〉), j = 1, 2, . . . , q, which have the same expected value

QΥ,k(f). ut

At this point, one might wonder if the above lemma already gives us a way to find
VC-type bounds for relational data, based on the following strategy: sample bn/kc
size-k fragments from a given training relational example Υ using the procedure defined
in Lemma 1 and use this set of fragments as our training data. Although this would allow
us to use standard bounds that are known for learning from i.i.d. data [15], there are
two problems with this approach. The first problem is that in reality we do not always

7 https://arxiv.org/abs/1804.06188
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know the size of the global example ℵ and hence we do not know how to get a sample of
bn/kc size-k sets that behaves as an independent sample from ℵ (noting that we need to
know the size of ℵ to define the set I ′ in Lemma 1). The second problem is that there
are cases where only sampling the bn/kc samples is sub-optimal from the point of view
of statistical power, as we illustrate in the next example.

Example 4. Consider a global structure which takes the form of a large directed graph,
and assume that we are interested in estimating the probability that the formula ∃X,Y :
edge(X,Y ) holds for a fragment of the structure induced by two randomly sampled
nodes. Assume furthermore that the given graph was generated by sampling (directed)
edges independently with some probability p. The probability that ∃X,Y : edge(X,Y )
holds for any two nodes will thus correspond to some value p∗ close to 1 − (1 − p)2.
As we will see, given a training fragment induced by n nodes from this graph, we can
only generate bn2 c samples that behave like i.i.d. samples. In this case, a more accurate
estimate of p∗ can be obtained by using all size-2 fragments of the training fragment.

Nonetheless, the strategy based on sampling bn/kc size-k fragments may actually
be optimal in the worst case as we illustrate in the next example.

Example 5. Let us again consider the setting from Example 4, which we can now
describe more formally. In particular, assume that ℵ = (Aℵ, Cℵ) represents a large
directed graph. Let k = 2 and Φ = {∃X,Y : edge(X,Y )}. Let Υ be a relational
example sampled uniformly from ℵ (i.e. Υ = ℵ〈CΥ 〉 where CΥ is sampled uniformly
from all size-n subsets of Cℵ). Let us now, in contrast to the assumption underlying
Example 4, assume that the directed graph was constructed using the following process.
For all nodes v, we flip a biased coin with probability of heads being q. If it lands
heads, we add a directed edge from v to all other nodes. In this case8, Qℵ,k(Φ) = p′ ≈
1− (1− q)2. The main difference with the setting from Example 4 is that estimating p′

now effectively corresponds to estimation of a property of nodes, as we are also able to
recover p′ by observing how many nodes have at least one outgoing edge. However, this
also means that the effective sample size in this case only grows linearly with the number
of vertices (as opposed to quadratically in Example 4). This, at least asymptotically
(up to a multiplicative constant), is a worst-case scenario as the number of independent
samples that we are able to obtain using Lemma 1 also grows linearly with the number
of vertices in the sample Υ (i.e. linearly with |CΥ |).

6.2 Bounding Expected Error

In this section we use the results from Section 6.1 to obtain a bound on the expected
value of supf∈H |Qℵ,k(f)−QΥ,k(f)|.

Lemma 2. Let ℵ = (Aℵ, Cℵ) be a global example and CΥ be sampled uniformly from
all size-n subsets of Cℵ and let us define Υ = ℵ〈CΥ 〉. Let Yj = (S ′j,1, . . . ,S ′j,bnk c),

8 More formally, the following holds, assuming ℵ is generated by the respective random processes.
In the setting from Example 4 we have Eℵ [Qℵ,k(Φ)] = 1− (1− p)2 and in the setting from
this example we have Eℵ [Qℵ,k(Φ)] = 1− (1− q)2.
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where 1 ≤ j ≤ q, be random vectors sampled as in Lemma 1. Then for any hypothesis
class H of functions f : Ω(L, k) → {0, 1} with finite VC-dimension d, the following
holds:

E
[
sup
f∈H
|Qℵ,k(f)−QΥ,k(f)|

]
≤ lim
q→∞

E

sup
f∈H

∣∣∣∣∣∣Qℵ,k(f)−
1

q ·
⌊
n
k

⌋ q∑
i=1

∑
S∈Yi

f(Υ 〈S〉)

∣∣∣∣∣∣


Proof. We have

E

[
sup
f∈H
|Qℵ,k(f)−QΥ,k(f)|

]

= lim
q→∞

E

[
sup
f∈H

∣∣∣∣∣Qℵ,k(f)−
(

1

q
⌊
n
k

⌋ q∑
i=1

∑
S∈Yi

f(Υ 〈S〉)

)

+

(
1

q
⌊
n
k

⌋ q∑
i=1

∑
S∈Yi

f(Υ 〈S〉)

)
−QΥ,k(f)

∣∣∣∣∣
]

≤ lim
q→∞

E

[
sup
f∈H

∣∣∣∣∣Qℵ,k(f)−
(

1

q
⌊
n
k

⌋ q∑
i=1

∑
S∈Yi

f(Υ 〈S〉)

)∣∣∣∣∣
]

+ lim
q→∞

E

[
sup
f∈H

∣∣∣∣∣
(

1

q
⌊
n
k

⌋ q∑
i=1

∑
S∈Yi

f(Υ 〈S〉)

)
−QΥ,k(f)

∣∣∣∣∣
]

(1)

To finish the proof, we show that the last summand in (1) is zero. To this end, first note
that it follows from Remark 1 that the supremum only needs to be taken over a finite
number t of hypotheses, one from each equivalence class of functions that are equal on
all size-k subsets of Cℵ. Together with Lemma 1 and the union bound on the finitely
many equivalence classes, we find

P

[
sup
f∈H

∣∣∣∣∣
(

1

q
⌊
n
k

⌋ q∑
i=1

∑
S∈Yi

f(Υ 〈S〉)

)
−QΥ,k(f)

∣∣∣∣∣ ≥ ε
]
≤ 2 · t · exp

(
−2qε2

)
Then it follows using E [X] =

∫ 1

0
P [X ≥ x]dx (assuming P [X ∈ [0; 1]] = 1) that

E

[
sup
f∈H

∣∣∣∣∣
(

1

q
⌊
n
k

⌋ q∑
i=1

∑
S∈Yi

f(Υ 〈S〉)

)
−QΥ,k(f)

∣∣∣∣∣
]
≤
∫ 1

0

2 · t · exp
(
−2qx2

)
dx.

Finally, noticing that limq→∞
∫ 1

0
2 · t · exp

(
−2qx2

)
dx = 0 finishes the proof. ut

Lemma 3. Suppose Yj = (S ′j,1, . . . ,S ′j,bnk c) is a random vector sampled as in Lemma
1. Then for any hypothesis class of functions f : Ω(L, k)→ {0, 1} with VC-dimension
d we have:

P

sup
f∈H

∣∣∣∣∣∣Qℵ,k(f)− 1

bn/kc
∑
S∈Yj

f(Υ 〈S〉)

∣∣∣∣∣∣ ≥ ε
 ≤ 4

(
2ebn/kc

d

)d
exp

(
−bn/kcε

2

8

)
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and

E

sup
f∈H

∣∣∣∣∣∣Qℵ,k(f)− 1

bn/kc
∑
S∈Yj

f(Υ 〈S〉)

∣∣∣∣∣∣
 ≤ 2

√
2d log (2ebn/kc/d)

bn/kc

Proof. Since S ′j,1, . . . ,S ′j,bnk c are sampled in an i.i.d. way, the classical VC inequality
applies [16]. The expected value bound can be derived from the bound (6.4) in [13]9. ut

We are now ready to prove Theorem 1.

Proof (of Theorem 1). Let Yj = (S ′j,1, . . . ,S ′j,bnk c), where 1 ≤ j ≤ q for a given
integer q, be random vectors sampled as in Lemma 1. First, using Lemma 2 for the first
step, we find

E

[
sup
f∈H
|Qℵ,k(f)−QΥ,k(f)|

]

≤ lim
q→∞

E

sup
f∈H

∣∣∣∣∣∣Qℵ,k(f)− 1

q

q∑
j=1

1

bn/kc
∑
S∈Yj

f(Υ 〈S〉)

∣∣∣∣∣∣


= lim
q→∞

E

sup
f∈H

∣∣∣∣∣∣1q
q∑
j=1

Qℵ,k(f)− 1

bn/kc
∑
S∈Yj

f(Υ 〈S〉)

∣∣∣∣∣∣


≤ lim
q→∞

E

1
q
sup
f∈H

q∑
j=1

∣∣∣∣∣∣Qℵ,k(f)− 1

bn/kc
∑
S∈Yj

f(Υ 〈S〉)

∣∣∣∣∣∣


≤ lim
q→∞

E

1
q

q∑
j=1

sup
f∈H

∣∣∣∣∣∣Qℵ,k(f)− 1

bn/kc
∑
S∈Yj

f(Υ 〈S〉)

∣∣∣∣∣∣


= lim
q→∞

1

q

q∑
j=1

E

sup
f∈H

∣∣∣∣∣∣Qℵ,k(f)− 1

bn/kc
∑
S∈Yj

f(Υ 〈S〉)

∣∣∣∣∣∣


= E

[
sup
f∈H

∣∣∣∣∣Qℵ,k(f)− 1

bn/kc
∑
S∈Y1

f(Υ 〈S〉)

∣∣∣∣∣
]

(2)

Note that the last equality is a consequence of Lemma 1, from which it among others
follows that all Yj’s have the same distribution. In other words, all the q expected values
are equal. Finally, we can use Lemma 3 to bound (2) which finishes the proof. ut

It is also possible to get rid of the logarithmic factor in the bound on expected error.
However, as mentioned in [2], such bounds are worse up to very large training set sizes
due to the increased constant factors.

9 The specific form that we use here can be found in the lecture notes of Philippe Rigollet
https://bit.ly/2H89wPn.
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6.3 From Tail Bounds to Moment-Generating Functions

In this section, we derive bounds on the moment-generating function of a random
variable from its tail bounds.

Lemma 4. For a non-negative random variable X , if there exist constants C ≥ e and
B > 0 such that

P [X ≥ t] ≤ C exp(−t2/B) ∀t ≥ 0,

then for any λ > 0

E [exp (λX)] ≤ 1 + λC
√
πB exp

(
λ2B

4

)
Proof. We have:

E [Xp] =

∫ ∞
0

P (Xp ≥ u) du =

∫ ∞
0

P (Xp ≥ tp) · p · tp−1dt

=

∫ ∞
0

P (X ≥ t) · p · tp−1dt ≤
∫ ∞
0

C · e−t
2/B · p · tp−1dt

Next, for the moment-generating function, we have

E [exp (λX)] ≤ 1 +

∞∑
p=1

λpE [Xp]

p!
≤ 1 +

∞∑
p=1

λp
∫∞
0
C · e−t2/B · p · tp−1dt

p!

≤ 1 + C

∫ ∞
0

e−t
2/B ·

∞∑
p=1

λpp · tp−1

p!
dt

= 1 + Cλ

∫ ∞
0

e−t
2/B ·

∞∑
p=0

λp · tp

p!
dt

= 1 + Cλ

∫ ∞
0

e−t
2/B · etλdt = 1 + Cλ

∫ ∞
0

e−
(t− 1

2
λB)

2

B +λ2B2

4 dt

= 1 + Cλe
λ2B2

4

∫ ∞
0

e−
(t− 1

2
λB)

2

B dt

= 1 +
1

2
Cλ
√
πBe

λ2B2

4

(
erf

(
λ
√
B

2

)
+ 1

)

≤ 1 + Cλ
√
πB exp

(
λ2B

4

)
Note that it is easy to check that all the series in the above derivation converge absolutely.
The Fubini-Tonelli theorem justifies the change of order of summation and integration.

ut
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6.4 From Moment-Generating Functions to Tail Bounds

We can now finish the proof of our main result, Theorem 2.

Proof (of Theorem 2). Let Yj = (S ′j,1, . . . ,S ′j,bnk c), for 1 ≤ j ≤ q, be random vectors
sampled as in Lemma 1. For convenience, let us also define

R
(q)
Υ (f) =

1

q

q∑
j=1

1

bn/kc
∑
S∈Yj

f(Υ 〈S〉).

First, we have

P

[
sup
f∈H
|Qℵ,k(f)−QΥ,k(f)| ≥ ε

]

= P

[
sup
f∈H

{∣∣∣Qℵ,k(f)−R(q)
Υ (f) +R

(q)
Υ (f)−QΥ,k(f)

∣∣∣} ≥ ε]

≤ P

[
sup
f∈H

{∣∣∣Qℵ,k(f)−R(q)
Υ (f)

∣∣∣+ ∣∣∣R(q)
Υ (f)−QΥ,k(f)

∣∣∣} ≥ ε]

≤ P

[
sup
f∈H

{∣∣∣Qℵ,k(f)−R(q)
Υ (f)

∣∣∣}+ sup
f∈H

{∣∣∣R(q)
Υ (f)−QΥ,k(f)

∣∣∣} ≥ ε]
It follows from the fact that the supremum needs to be taken only over the finitely many
equivalence classed of H on ℵ and from Lemma 1 (see the discussion in the proof of
Lemma 5) that for any ε∗ > 0 and δ∗ > 0 there is an integer q0 such that for all q ≥ q0:

P

[
sup
f∈H

{∣∣∣R(q)
Υ (f)−QΥ,k(f)

∣∣∣} ≥ ε∗] ≤ δ∗.
Hence, for any ε∗ > 0, δ∗ > 0 and a suitably large q ≥ q0 we have

P

[
sup
f∈H

{∣∣∣Qℵ,k(f)−R(q)
Υ (f)

∣∣∣}+ sup
f∈H

{∣∣∣R(q)
Υ (f)−QΥ,k(f)

∣∣∣} ≥ ε]

≤ P

[
sup
f∈H

{∣∣∣Qℵ,k(f)−R(q)
Υ (f)

∣∣∣} ≥ ε− ε∗]+ δ∗.

Taking the limit q0 →∞ we obtain

P

[
sup
f∈H
|Qℵ,k(f)−QΥ,k(f)| ≥ ε

]
≤ lim

q→∞
P

[
sup
f∈H

∣∣∣Qℵ,k(f)−R(q)
Υ (f)

∣∣∣ ≥ ε]
Next we need to bound the right-hand side of the above inequality. For any q we have

P

[
sup
f∈H

∣∣∣Qℵ,k(f)−R(q)
Υ (f)

∣∣∣ ≥ ε]
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= P

sup
f∈H

∣∣∣∣∣∣Qℵ,k(f)− 1

q

q∑
j=1

1

bn/kc
∑
S∈Yj

f(Υ 〈S〉)

∣∣∣∣∣∣ ≥ ε


= P

sup
f∈H

∣∣∣∣∣∣1q
q∑
j=1

Qℵ,k(f)− 1

bn/kc
∑
S∈Yj

f(Υ 〈S〉)

∣∣∣∣∣∣ ≥ ε


≤ P

sup
f∈H

1

q

q∑
j=1

∣∣∣∣∣∣Qℵ,k(f)− 1

bn/kc
∑
S∈Yj

f(Υ 〈S〉)

∣∣∣∣∣∣ ≥ ε


≤ P

1
q

q∑
j=1

sup
f∈H

∣∣∣∣∣∣Qℵ,k(f)− 1

bn/kc
∑
S∈Yj

f(Υ 〈S〉)

∣∣∣∣∣∣ ≥ ε


Let us denote

Tj = sup
f∈H

∣∣∣∣∣∣Qℵ,k(f)− 1

bn/kc
∑
S∈Yj

f(Υ 〈S〉)

∣∣∣∣∣∣ .
Combining Lemma 3 and Lemma 4, we can bound E [exp (λTj)] as

E [exp (λTj)] ≤ 1 + 4λ

√
8π

bn/kc

(
2ebn/kc

d

)d
exp

(
2λ2

bn/kc

)
.

Let us denote T = 1
q

∑q
j=1 Tj . We use the observation from [5] that due to Jensen’s

inequality and linearity of expectation

E [exp (λT )] ≤ 1

q

q∑
j=1

E [exp (λTj)] = E [exp (λT1)] .

Next we obtain a bound on P [T ≥ ε] from the bound on E [exp (λT )]. In particular, for
positive λ, we have

P [T ≥ ε] = P [eλ·X ≥ eλ·ε] ≤ e−λ·εE
[
eλ·T

]
≤ e−λ·ε

(
1 + 4λ

√
8π

bn/kc

(
2ebn/kc

d

)d
exp

(
2λ2

bn/kc

))
.

where the Markov inequality was used for the third step. Since the above bound holds
for any q, it also holds in the limit. Next, we can plug in λ := ε·bn/kc

4 and obtain:

P [T ≥ ε] ≤ exp

(
−bn/kcε

2

4

)
+ ε
√
8πbn/kc

(
2ebn/kc

d

)d
· exp

(
−bn/kcε

2

8

)
.

ut
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7 Concluding Remarks

We have derived VC-dimension based bounds which can be applied in relational learning
settings where one may assume that the training data (i.e. some given relational structure)
was obtained from a larger relational structure by sampling without replacement. This
includes many of the typical application settings in which, for instance, Markov logic
networks are used. The considered bounds are useful, among others, for the analysis of
relational marginal problems [8] and PAC-reasoning in relational domains [7].

There are several interesting avenues for future work. First, in this paper, we have
not studied the realizable learning case for which, at least in the classical i.i.d. case, one
can obtain faster convergence rates. It would be interesting to extend our results into
the realizable case. Similarly, it would be of interest to study bounds under low-noise
conditions [1], which sit somewhere between the realizable case and the case studied
in this paper. Another natural direction for future work would be to extend the PAC-
Bayesian setting into relational learning, as the bounds that are derived in this setting
tend to be tighter in practice [10].
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8. Kuželka, O., Wang, Y., Davis, J., Schockaert, S.: Relational marginal problems: Theory and
estimation. In: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence
(AAAI-18) (2018)
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