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No exceptional precision of exceptional point sensors

W. Langbein
School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA, United Kingdom

(Dated: June 27, 2018)

Recently, sensors with resonances at exceptional points (EPs) have been suggested to have a vastly
improved sensitivity due to the extraordinary scaling of the complex frequency splitting of the n
initially degenerate modes with the n-th root of the perturbation. We show here that the resulting
quantum-limited signal to noise at EPs is proportional to the perturbation, and comparable to other
sensors, thus providing the same precision. The complex frequency splitting close to EPs is therefore
not suited to estimate the precision of EP sensors. The underlying reason of this counter-intuitive
result is that the mode fields, described by the eigenvectors, are equal for all modes at the EP, and
are strongly changing with the perturbation.

I. INTRODUCTION

In recent literature, following a first proposal [1], opti-
cal sensors operating at so-called exceptional points (EP)
have been discussed theoretically [2–4] and also recently
experimentally [5, 6]. The main attraction of EP sen-
sors is that the splitting of the complex eigenfrequencies
of the n initially degenerate modes is scaling with the
n-th root of the perturbation strength ε, which is extra-
ordinary compared to the linear scaling with ε for other
sensors. As a result, the rate of change of the complex fre-
quency splitting with ε can be arbitrarily large for small
perturbations, and is proportional to 1/

√
ε in the most

studied case with n = 2. The resulting enhanced complex
frequency splitting for a given perturbation was claimed
be exploitable for ultrasensitive mass sensing [1], and to
pave the way for sensors with unprecedented sensitivity
[5]. In this respect, it is important to note that the term
“sensitivity” is an ambiguous quantity, as it can either
refer to a transduction coefficient of the sensor from the
quantity to be measured to some intermediate output
quantity (such as the frequency splitting in the present
case), or to the smallest measurable change of the input
quantity given by the noise of the sensor output. The
latter is the precision of the measurement and is well de-
fined. Surprisingly, the precision was not evaluated for
EP sensors in all these works.

Now, considering that the actual physical mechanism
of the perturbation for the optical sensors considered in
[1–6] is the field change created by the interaction of the
mode field with the polarisability of the perturbation,
one would expect [7] that in the limit of small perturba-
tions, the resulting measurable effect, the change of the
field, is linear with the perturbation strength ε, which is
proportional to the change of the permittivity by the per-
turbation. It is therefore worth while to investigate the
significance of the complex frequency splitting in terms
of the measurable quantities which have a defined noise
limit. While we might think that the measurable quan-
tities would be proportional to the frequency splitting,
based on our experience with well separated resonances
having a linewidth smaller than the splitting, the situa-
tion is less clear for overlapping resonances with a line-

width larger than the splitting, which is the case for the
EP sensors.
The paper is organized as follows. In Sec. II we in-

troduce the mathematical description of the sensor in
terms of its Hamiltonian and its eigenstates, and cal-
culate its response in Sec. III, giving general expressi-
ons in Sec. III A. The signals of EP and DP sensors
when perturbed from their degeneracy point are discus-
sed in Sec. III B, and the precision at finite perturbation
is shown in Sec. III C. In the appendix we analyse publis-
hed data from an EP sensor to determine its precision.

II. HAMILTONIAN AND EIGENSTATES

To discuss these conflicting expectations for the sca-
ling of the signal field with the perturbation, let us use
the simple case of two degenerate states at the EP as
discussed in the literature [1, 5, 8]. The corresponding
2x2 Hamiltonian can be written as

H0 =

(

E0 A0

0 E0

)

(1)

with the degenerate state frequencies E0 and the off-
diagonal coupling frequency A0. For A0 6= 0, this matrix
has only one eigenvalue E0 and right eigenvector (1, 0)⊤,
i.e. its two eigenvalues are degenerate with equal eigen-
vectors. For A0 = 0 instead, a case known [1] as “dia-
bolic” point (DP), the two degenerate eigenvalues have
orthogonal right eigenvectors (1, 0)⊤ and (0, 1)⊤. This
observation gives us already a clue of the difference of the
response to a perturbation between EP and DP – the de-
generacy of the eigenvectors at the EP is lifted together
with the degeneracy of the eigenvalues, leading to a qua-
dratic behaviour of the measurable signal in the energy
splitting, thus recovering the linearity with perturbation
strength. But lets see this via a mathematical derivation,
where we introduce the perturbed Hamiltonian as

H = H0 + εH1, with H1 =

(

0 A1

B1 0

)

(2)

with the perturbation strength ε > 0, and the pertur-
bation matrix H1 given by generally complex coupling
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frequencies A1 6= 0 and B1 6= 0. For simplicity, following
[3], we have set the diagonal elements of H1 to zero as
they do not provide the square-root frequency splitting
at the EP. The resulting eigenvalues are

e± = E0 ±
√

εA0B1 + ε2A1B1 = E0 ±∆ , (3)

having the left (e<±) and right (e>±) eigenvectors

e
<
± =

1√
2

(

1

v
,±1

)

e
>
± =

1√
2

(

v
±1

)

(4)

where v = ∆/(εB1). They are normalized according to
e
<
±e

>
± = 1 suited for modal decomposition. We see that

for an EP, the eigenvectors depend on ε, becoming pa-
rallel for vanishing ε.

III. HAMILTONIAN DYNAMICS AND
SENSING SIGNALS

Measuring the system involves exciting the system, and
detecting its response. Changes in the response with the
perturbation are then used to determine the perturba-
tion. In [1, 5] the basis of the Hamiltonian are the cloc-
kwise and counterclockwise propagating optical modes of
a microtoroid, which can be separately excited and de-
tected by evanescent coupling to a single mode fibre in
the two propagation directions in the fibre. These modes
correspond to the first and second element of the eigen-
vectors, respectively, in the above formulation.
Detecting the field, for example using heterodyne de-

tection [9], the noise in the detection is quantum-noise
limited to a given field uncertainty, which is due to a Hei-
senberg uncertainty relation between the real and imagi-
nary part of the field in the rotating wave picture. This
limit is called the standard quantum limit and is dis-
cussed for example in [10]. It is consistent with the
shot-noise-limit for intensity measurements. In the ex-
periments reported in [5, 6], a tuneable single frequency
laser was used as excitation source and the transmitted
and reflected power was measured using photodetectors.
This measurement is quantum limited by the photon shot
noise, which is equivalent to the standard quantum limit
for the measurement of the optical electric field.
Therefore, we can evaluate the quantum limited pre-

cision using the change of the detected field due to the
perturbation. The absolute sensitivity will depend on
the excitation field amplitude and calculating it is not
required for the comparison of the EP and DP sensors.
We will work in the rotating wave picture and omit the
complex conjugate part required to describe real fields,
for brevity.

A. Sensor signal

The Hamiltonian dynamics of the field S(t) of the sy-
stem with an excitation x(t) is given by

∂tS(t) = iHS(t) + x(t) . (5)

which for an initialy unexcited system yields

S(t) =

∫ t

−∞

exp (iH(t− t′))x(t′)dt′ . (6)

Using the modal decomposion of H, this simplifies to

S(t) =
∑

±

e
>
±e

<
±

∫ t

−∞

exp (ie±(t− t′))x(t′)dt′ , (7)

which for x(t) = δ(t)x0 yields

S(t) = θ(t)Ŝx0 = θ(t)
∑

±

e
>
± exp (ie±t) e

<
±x0 , (8)

with the Heaviside function θ(t). Using the expressi-
ons for the eigenvalues in Eq. (3) and the eigenvectors
in Eq. (4), we find

Ŝ = exp (iE0t)

(

cos(∆t) i sin(∆t)v
i sin(∆t)/v cos(∆t)

)

. (9)

To evaluate the frequency domain response, we
Fourier-transform the time-domain response Eq. (9)

into the angular frequency domain using S̃(ω) =
∫

S(t) exp(−iωt)dt, and find

˜̂
S =

1

2

(

p+ + p− (p+ − p−)v
(p+ − p−)/v p+ + p−

)

, (10)

with p± = i/(Ω±∆), using Ω = E0 − ω.

B. Sensor precision at an EP or a DP

At an EP, subtracting the response for ε = 0 yields

ŜE
ε = exp (iE0t)

(

cos(∆t)− 1 i(v sin(∆t)−A0t)
i sin(∆t)/v cos(∆t)− 1

)

.

(11)

Now developing in orders of α =
√

εB1/A0,

∆ = αA0 +O(α3) ,
1

v
= α+O(α3) , and

v sin(∆t) = A0t+

(

A0A1

B1

t− A3
0

6
t3
)

α2 +O(α4) ,

we find using τ = A0t

ŜE
ε = α2 exp (iE0t)

(

−τ2/2 i
(

A1

B1

τ − τ3

6

)

iτ −τ2/2

)

+O(α4) ,

(12)
which in lowest order in α is

ŜE
ε ≈ εt exp (iE0t)

(

−τB1/2 iA1 − iB1τ
2/6

iB1 −τB1/2

)

, (13)

a signal proportional to the perturbation ε, as expected
from the initial physical argument.
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The frequency domain response corresponding to
Eq. (11) is given by

˜̂
SE
ε =

1

2

(

p+ + p− − 2p0 (p+ − p−)v − 2iA0p
2
0

(p+ − p−)/v p+ + p− − 2p0

)

, (14)

with p0 = i/Ω. Developing in α yields in lowest order

˜̂
SE
ε ≈ ε

Ω2

(

A0B1/Ω −i(A1 +A2
0B1/Ω

2)
−iB1 A0B1/Ω

)

, (15)

again scaling proportional to the perturbation ε.
We thus note that for all excitation - detection cases

and small perturbations, the measurable signal field from
the EP sensor is proportional to the perturbation, despite
the complex frequency difference scaling with the square
root of the perturbation.
Now, for comparison, lets consider the situation for a

DP sensor, given by A0 = 0. The eigenvectors, given by
Eq. (4), are now independent of the perturbation strength
ε, and subtracting the signal for ε = 0 we have

ŜD
ε = exp (iE0t)

(

cos(∆t)− 1 i sin(∆t)v
i sin(∆t)/v cos(∆t)− 1

)

, (16)

and developing in ∆ = ε
√
A1B1 yields in lowest order

ŜD
ε ≈ exp (iE0t)

(

−∆2t2/2 i∆tv
i∆t/v −∆2t2/2

)

, (17)

which written in ε becomes

ŜD
ε ≈ εt exp (iE0t)

(

−εA1B1t/2 iA1

iB1 −εA1B1t/2

)

, (18)

again proportional to ε in lowest order. Notably, the off-
diagonal elements linear in t are equal to the EP result,
while the diagonal elements are in lowest order propor-
tional to ε2, different from the EP result Eq. (13). In
spectral domain, we find

˜̂
SD
ε =

1

2

(

p+ + p− − 2p0 (p+ − p−)v
(p+ − p−)/v p+ + p− − 2p0

)

(19)

and developing in ∆ yields in lowest order

˜̂
SD
ε ≈ ∆

Ω2

(

i∆/Ω −iv
−i/v i∆/Ω

)

(20)

=
ε

Ω2

(

iεA1B1/Ω −iA1

−iB1 iεA1B1/Ω

)

Also here, the off-diagonal elements are equal to each
other, and identical to the EP result apart from the Ω−4

term in Eq. (15).
Note that the response of the system to an arbitrary ex-

citation pulse in time domain is given by the convolution
of the response for delta-excitation, the Green’s function,
given by Eq. (8), with the excitation pulse. Furthermore,
in spectral domain, the response is given by the product
of the spectral response function, Eq. (14), and the ex-
citation spectrum. The peak of the spectral response
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FIG. 1: Time-domain sensing signal amplitudes for sensors
at an EP (solid lines, A0 = γ0/2, Eq. (11)) or DP (dashed
lines, A0 = 0, Eq. (16)) for different perturbation strengths ε
as labeled and color-coded, using A1 = B1 = γ0. Top: |S10

ε |,
Middle: |S01

ε |; Bottom: |S00

ε | and |S11

ε |.

function therefore gives the highest achievable spectral
response for any excitation spectrum.

For illustration, we show the time-domain signals in
Fig. 1, for sensors at an EP, given by Eq. (11), or a DP,
given by Eq. (16), using perturbation strengths ε = 5,
1, 0.1, and 0.01. The corresponding frequency domain
signals are given in Fig. 2, according to Eq. (14) for an
EP and Eq. (19) for a DP sensor.

We split the complex frequency E0 = ω0 + iγ0 into
the real frequency ω0 and the damping γ0, take A0 =
γ0/2, which is the maximum possible due to the physical
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FIG. 2: As Fig. 1, but in frequency-domain, using Eq. (14)
and Eq. (19).

constrain of a dissipative system [3], and use A1 = B1 =
γ0, which provides a lossless scattering between the two
modes.

The off-diagonal signal |S10
ε | (row 1, column 0 of Sε)

shown in the top panels, is equal for EP and DP apart
from the slightly larger frequency splitting ∆ for the EP
(see Eq. (3)), which is directly observable in Fig. 2, and
results in a faster temporal beating period seen in Fig. 1.

The off-diagonal signal |S01
ε | shown in the middle pa-

nels is the same as |S10
ε | for the DP but is different for

the EP, where it is not background free. It shows an ad-
ditional contribution around zero detuning in frequency
domain, which interferes destructively with the main sig-
nal, leading to a strong suppression for ε = 1 at zero
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FIG. 3: Frequency-domain sensing signal amplitudes and
complex frequency splitting ∆ for sensors at an EP (solid li-
nes) or DP (dashed lines) at resonance (ω = ω0), as function
of the perturbation strength ε. Other parameters as in Fig. 1.

detuning.

The diagonal signals |S00
ε |, |S11

ε | are equal and shown
in the bottom panels, and are not background free for
both EP and DP. They are created only by the changing
temporal dynamics of the signal, providing an initial qua-
dratic rise. However, since ∆ is scaling for ε ≪ 1 with√
ε for the EP, and with ε for the DP, the resulting signal

is scaling for ε ≪ 1 as ε for the EP, and as ε2 for the DP.

We note that for the off-diagonal signals the time-
domain peak is scaling as γ−1

0 , and thus with the quality
factor of the modes given by ω0/(2γ0). The frequency
domain scaling acquires an extra factor γ−1

0 provided by
the changing time duration, for all signals. The EP off-
diagonal signal SE,10

ε has an additional component sca-
ling as γ−3

0 in time domain, which is interfering with the
main component giving rise to additional features. For
the diagonal signals the time-domain peak is scaling as
γ−2
0 . Therefore, for all signal components, smaller dam-

ping results in higher signals. In this respect, we note
that in the graphs presented we used the same loss rate
γ0 for both EP and DP sensor. However, due to the phy-
sical constrain [3] 2γ0 ≥ |A0| for a passive EP sensor, the
loss rate is typically higher for an EP sensor than for a
DP sensor, which is also observed in simulations [3] and
experiment [5]. Introducing optical gain into the system
to reduce the loss can be done in EP and DP systems,
and can enhance the signal of both. However, one has
to keep in mind that gain processes introduce additional
noise in the signal, and will not be further discussed here.

The dependence of the complex frequency splitting
and the frequency domain signals on the perturbation
is shown in Fig. 3 for both EP and DP sensors, at re-
sonance. We find that all signals are scaling for small
perturbations linear with the perturbation, except |S00

ε |
and |S11

ε | for the DP sensor which scales quadratically.
The highest signal is provided by |S10

ε | of the DP sensor,
nearly matched by |S10

ε | of the EP sensor. Importantly,
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while for the DP sensor the frequency splitting ∆ is sca-
ling proportional to the signal, for the EP sensor this
splitting is scaling differently than the signal, being pro-
portional to

√
ε for small ε. This clearly shows that for

EP sensors the complex frequency splitting is not suited
to estimate the precision.
This finding is consistent with an analysis of the sen-

sing precision in the data provided in [5] (see Appendix
A), which shows that the data taken for the EP have
higher noise in measuring the perturbation compared to
the data taken for the DP.

C. Sensor precision at finite perturbations

To determine the sensor precision at finite perturba-
tion, we analyze here the change of the signal due to a
change of ε at finite values of ε, i.e. detuned from the
EP or DP. This change is given by the responsivity of the
sensor, defined as the derivative of Ŝ (see Eq. (9)) with
respect to ε,

D̂ε =
dŜ

dε
= exp (iE0t)

(

d00 d10

d01 d11

)

(21)

where

d00 = d11 = −B1t

(

A0

2
+ εA1

)

sin(∆t)

∆
, (22)

d01 = i

(

A0

2ε
+A1

)(

t cos(∆t) +
sin(∆t)

∆

)

− i∆sin(∆t)

ε2B1

, (23)

d10 = i

(

A0

2
+ εA1

)(

t cos(∆t)− sin(∆t)

∆

)

εB2
1

∆2

+iB1

sin(∆t)

∆
. (24)

A quantum limited noise σS of the signal then results
in a quantum limited precision of the sensor for changes
in ε given by

σnm
ε = σS/|Dnm

ε | , (25)

with the indices n,m ∈ {0, 1} selecting the detected sig-
nal component. Examples of the responsitivities |Dnm

ε |
are given in Fig. 4 using parameters as in Fig. 1. We find
that for ε ≪ 1, the responsitivities have a stable ampli-
tude versus ε, as expected for a signal scaling linear with
ε. An exception are the diagonal components for the DP,
which scale quadratic with ε, thus showing a responsivity
proportional to ε in this regime. For larger ε, oscillati-
ons versus time are present, reflecting the significant fre-
quency splitting. Notably the maximum responsitivities
are similar to ones in the ε ≪ 1 regime.
For detection in frequency domain, we determine equi-

valently the derivative of
˜̂
S (see Eq. (10)) versus ε,

˜̂
Dε =

d
˜̂
S

dε
=

1

2

(

d̃00 d̃10

d̃01 d̃11

)

(26)
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where

d̃00 = d̃11 = i
B1

∆

(

A0

2
+ εA1

)

(

p2+ − p2−
)

, (27)

d̃01 =

(

A0

2ε
+A1

)(

i
(

p2+ + p2−
)

+
p+ − p−

∆

)

−∆
p+ − p−
ε2B1

, (28)

d̃10 =

(

A0

2
+ εA1

)(

i
(

p2+ + p2−
)

− p+ − p−
∆

)

εB2
1

∆2

+B1

p+ − p−
∆

. (29)

The resulting frequency domain responsitivities |D̃nm
ε |

for the parameters as in Fig. 2 are given in Fig. 5. As ex-
pected, the responsivity is maximum when exciting the
sensor on resonance. It is noticeable that, at resonance,
the off-diagonal responsivity is twice as large for ε ≪ 1
than for ε ≫ 1, corresponding to cases of overlapping or
separated resonances, respectively. The quantum limited
precision is still given by Eq. (25), using the quantum li-
mited noise in frequency domain. The highest precision
(i.e. the smallest σnm

ε ) in frequency domain is achieved
detecting the off-diagonal of a DP sensor, close to dege-
neracy (i.e. at ε ≪ 1). Increasing ε , the highest preci-
sion reduces, by a factor of two for ε ≫ 1, for probing
one of the resonances, see for example ε = 5 in Fig. 5 at
e± ≈ ω0 ± 5γ0.

Note that we evaluate the absolute value of the re-
sponsivity, which takes into account both amplitude and
phase changes of the signal. The latter are dominating
the sensor response at resonance for ε ≫ 1, reflecting
changes in the resonance frequency.

We emphasize that resonance frequencies cannot be
measured directly, but are deduced by fitting models of
the response to measured fields or intensities. For exam-
ple, for pulsed excitation, the time-dependent signal can
be measured, and fitted with Eq. (9). Exciting instead
with a field of given frequency, the amplitude and phase
of the signal at that frequency can be measured and fitted
with Eq. (10).

IV. CONCLUSIONS

In conclusion, we have demonstrated that the fre-
quency splitting of the complex eigenfrequencies is not
a suited measure for determining the precision of an EP
sensor. Rather, the resulting detected signal has to be
compared with the quantum noise limit of the detection,
and with any additional technical noise. Such an analysis
has not been presented in previous literature proposing
EP sensors. From the analysis presented in the present
work, it emerges that EP sensors do not provide the ex-
ceptional precision suggested by the frequency splitting
scaling with the n-th root of the perturbation, but rather
are comparable to other sensors, providing a signal field
proportional to the perturbation strength, in agreement
with expectations from first-order perturbation theory.
We also provide explicit expressions for the sensor re-
sponsivity in time and frequency domain, which might
prove helpful for sensor design.
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function of the position of a target scatterer. Data digitized
from Fig.2(a) in [5]. The green lines are 10 point averages.

APPENDIX A: ANALYSIS OF DATA
PRESENTED IN CHEN ET AL., NATURE 548,

192 (2017)

In the two experimental works on EP sensors [5, 6],
the precision of the investigated sensors was not repor-
ted. In order to investigate the precision, we therefore
analyze the experimental data shown in [5], to extract
the precision of the investigated sensor at the EP and
DP point. The relevant data are shown in Fig.2(a) of [5],
and a graph with the data digitized from this figure is
shown in Fig. 6. The difference in linewidth ∆γ and the
difference in frequency ∆ω of the two modes are given as
function of the position of a target scatter in arbitrary
units. It is unclear in [5] how this position relates to the
distance of the fibre tip from the toroidal resonator used
in the experiment. We will call this position p in the
following and treat it as unitless.

In order to determine the precision of the sensing, we
first have to determine the noise in the measurements,
and then translate this to the corresponding noise in p.
To determine the noise in the measured ∆ω and ∆γ , we
calculate a 10-point adjacent average of the data points
(see green lines in Fig. 6), and determine the square de-
viation of the data from this average, as shown in Fig. 7.

We then average the square deviation using a 20-point
adjacent averaging, to obtain the mean square deviation
σ2
γ and σ2

ω, as function of p, for ∆γ and ∆ω, respecti-
vely. We then calculate the complex frequency splitting
magnitude

∆ =
√

∆2
ω +∆2

γ (A1)
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FIG. 7: Square deviation between 10-point average and data
for the measured frequency splitting ∆ω linewdith difference
∆γ for a sensor close to the EP or DP, as labelled, as function
of the position of a target scatterer in arbitrary units p. The
green lines are 20-point averages.

and its mean square deviation

σ =

√

(

σω∆ω

∆

)2

+

(

σγ∆γ

∆

)2

(A2)

which are shown in Fig. 8. We can see that for the DP
sensor, σ is rather independent of p, indicating that for
the DP sensor the frequency splitting is a good measure
for the sensor precision. For the EP sensor instead, σ sig-
nificantly increases with decreasing splitting, indicating
that for EP sensors the frequency splitting is not a good
measure for the sensor precision.
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complex frequency splitting ∆, for DP and EP sensors, as
labelled.

To calculate the rms error of the position σp, determi-
ned by ∆, we use

σp =
dp

d∆
σ (A3)

with the results shown in Fig. 9. The derivative was
smoothed using the Savatski-Golay method with first or-
der and 100 points to reduce its noise.

We see that the error in determining the position of
the target scatterer for the EP sensor is a factor of 1.8
to 10 larger than for the DP sensor. We can therefore
conclude that the data presented in Fig.2a of [5] show
a lower precision of the EP sensor as compared with the
DP sensor. Importantly, the precision reduces for smaller
perturbations, opposite to the behaviour expected from
the scaling of the complex frequency splitting.

For the data analysis the program Origin 2016 (Ori-
ginLab, USA) was used.
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