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Abstract
Peritoneal dialysis (PD) is a cost-effective, home-based treatment option for patients with end-stage  
renal disease; however, PD is declining in many countries. A major reason for this is peritonitis, 
which commonly leads to technique failure and has led to negative perceptions of PD by clinicians 
and patients. To restore confidence in PD, better diagnostics are required to enable appropriate 
treatment to be started earlier; this needs to be coupled with improved understanding of the  
biology of peritonitis. Advances in culture-independent microbiological methods, in particular 
the use of bacterial flow cytometry and immune fingerprinting techniques, can enable organism  

Chakera and colleagues have provided an excellent review on the 
latest developments in microbiological diagnostic techniques 
for peritonitis in peritoneal dialysis. Despite being a cost-effective, 
home-based treatment option for patients with end-stage renal disease, 
peritoneal dialysis use is declining in many countries due to the concerns 
clinicians and patients have regarding peritonitis infection. To restore confidence, 
better diagnostics are required to enable appropriate treatment to be started 
earlier, alongside improved understanding of the biology of peritonitis. I hope this 
paper will spark discussion and debate among clinicians.

Samantha Warne
Editor
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INTRODUCTION

Worldwide, >2.5 million people have end-stage  
renal disease and are receiving renal replacement 
therapy.1 Over 250,000 patients with end-stage  
renal disease are treated with peritoneal dialysis  
(PD) worldwide,2 which equates to ˜10% of all 
dialysis patients, but this figure can be as high 
as 60–70% in some countries where a PD first 
strategy is employed.3,4 PD is cost-effective,  
offers a better quality of life compared to 
haemodialysis, and, in some settings, may be 
the only available treatment option. The annual  
global growth rate of PD is estimated to be 
˜8%, which is higher than for haemodialysis 
(˜6–7%).2 However, the proportion of dialysis 
patients treated with PD is declining in developed 
countries, despite PD being associated with  
superior survival in the first few years, better 
quality of life, and lower treatment costs; this is, 
therefore, of great concern.5-8 

PD uses a catheter placed into the abdomen, 
with instillation of dialysis solutions of varying 
composition to enable fluid and toxin removal; 
as a result, a major complication of PD is the 
development of a peritonitis infection. Peritonitis 
is the single largest cause of patients failing 
on PD; approximately half of all PD technique  
failures are due to peritonitis, with peritoneal 
infection also strongly associated with mortality.9 
Fear of peritonitis is a major reason for patients  
and clinicians not choosing PD.10 Gram-positive 
cocci, such as Staphylococcus epidermidis and 
other staphylococcal species, are the most 
frequent cause of PD-associated peritonitis 
worldwide, with Gram-negative organisms 
accounting for 20–25% of cases and fungal 
infections ~4%.11,12 Despite the use of broad 
spectrum antibiotics when patients present with 
peritonitis, many develop relapsing or recurrent 
life-threatening infections. Even when treatment 
is successful, deleterious changes may occur in 
peritoneal membrane function, which ultimately 
lead to inadequate solute or fluid removal and 
technique failure.

The treatment of, and outcomes from, peritonitis 
are highly variable between countries and even 
within medical centres in the same country. 
This is despite the publication of treatment 
guidelines.13 This suggests that despite decades 
of research and clinical experience, there 
remains concerns regarding guideline content 
and that there is a lack of consensus about the 
management of peritonitis.14-16 A major barrier 
to improving the treatment of patients with 
peritonitis is the use of traditional, culture-based 
diagnostic microbiology to confirm the presence  
of infection. These techniques are slow, with 
cultures usually taking 1–3 days to become  
positive, which can cause delays in diagnosis. In 
addition, many organisms are either difficult or 
impossible to culture,17 with reported culture-
negative rates of up to 20% in some centres.11 
As a result, clinicians commence empirical 
antimicrobial therapy based on historical profiles 
and published guidelines rather than patient-
specific laboratory evidence. Even when cultures 
are positive, definitive antimicrobial susceptibility 
results that enable the tailoring of antibiotic 
treatment to the most effective regimen often 
require a further 1–3 days. This delay likely 
contributes to the increased mortality and 
morbidity of patients on PD and the emergence 
of drug-resistant microbes.18,19 Reducing the 
time taken for clinicians to receive results that 
guide effective therapeutic decision-making is 
therefore critical to achieving better outcomes  
for patients.

A better understanding of the molecular  
pathways that control infection (susceptibility, 
initiation, severity, recovery, and/or relapse)  
should enable their manipulation to improve 
outcomes and reduce peritoneal membrane 
damage. New advances in culture-independent 
diagnostic methods and knowledge of mesothelial 
cells and peritoneal responses to infection 
provide hope that much-needed improvements 
in peritonitis outcomes are in sight.

detection and antimicrobial susceptibility testing to be performed in as little as 3 hours after  
samples are received. At the same time, improved understanding of peritoneal mesothelial cell  
responses to infection is providing insights into pathways that may be targeted to dampen deleterious 
elementsof the host immune response, promote healing, and preserve membrane function.
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ADVANCING CULTURE-INDEPENDENT 
MICROBIOLOGY

A number of culture-independent laboratory 
methods are now available that promise faster, 
more sensitive, and more specific aetiological 
diagnoses across a broad spectrum of pathogen 
and specimen types.20 Examples include nucleic 
acid-based approaches to detect bacteria-
specific DNA or RNA, and protein-based assays, 
such as matrix assisted laser desorption/ionisation 
time-of-flight (MALDI-TOF) mass spectrometry 
(MS), which  identifies organism-unique protein 
signatures.21,22 These techniques are relatively 
rapid, leading to faster reporting times and the 
detection of organisms that may be difficult 
to culture.23 Each approach, however, has 
significant limitations. They do not distinguish 
viable from nonviable organisms, the number 
of defined genetic targets for nucleic acid-
based detection are currently limited, and the 
interpretation of results can be complicated in 
polymicrobial infections contaminating species 
and/or the presence of commensal bacteria.23,24 
In addition, even if specific resistance genes are 
detected by polymerase chain reaction (PCR), 
expression of these genes may vary and multiple 
genes may be required to yield functional  
resistance in vivo.25,26 

To date, neither bacterial nucleic acid nor 
protein-based detection techniques are routinely 
used for analysis of samples from patients with 
suspected PD peritonitis.27 Major limitations 
of these techniques for the analysis of PD 
samples are the high bacterial concentrations 
required for adequate sensitivity during protein 
detection28,29 and the poor accuracy of nucleic 
acid detection, which has unacceptably high 
false negative rates, thought to be due to the 
presence of inhibitors in dialysate (Figure 1).30  
Bacterially derived DNA fragments in PD 
effluent show some value as a prognostic  
marker for relapsing peritonitis episodes, but as 
the presence of bacterial DNA does not directly 
correlate with live organisms capable of causing 
infection, the clinical applicability is limited.31  
23S ribosomal (r)RNA PCR and sequencing 
has been applied to the problem; however,  
the authors concluded that this method was 
best reserved as an adjunctive tool to traditional  
culture techniques  given the lack of specificity  
when applied as a diagnostic test.32 While not 
an exhaustive set of examples, this illustrates 
the complexity faced when attempting to use 
nucleic acid-based technology in a sample as 
complicated as PD effluent. 

Figure 1: Features of an ideal diagnostic test for kidney disease. 

AST: antimicrobial susceptibility testing; ED: emergency department; ID: identification of infecting organism.

Features of an ideal test

Sensitivity and specificity

• Detect all true positives
• Identify true negatives
• Minimal false positives and negatives

Currently: 20% culture negative

Ease of performance

• No specialist training
• Minimal sample preparation
• Minimal biosafety concerns

Currently: Specialist staff in labs

Accessibility

• Comprehensive laboratory test
• Rapid screening for ED testing
• Point of care for rural and remote areas
• Acceptable cost-per-test

Currently: Laboratory test only

Time to result

• Clinically relevant timeframes
• ID and AST profile
• 4 hours total

Currently: 2-5 days
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ADVANCES IN FLOW CYTOMETRY 
ENABLE DIRECT VISUALISATION  
OF BACTERIA AND FUNGI 

While flow cytometry (FC) has been extensively 
used to detect eukaryotic cells, the smaller 
size of bacteria coupled with variability in 
cell wall structures has limited its use for 
bacterial detection.33 However, recent advances 
in hardware design, including the use of  

acoustic-focussing technology (Figure 2A), 
have greatly improved the effective resolution 
capable for small particles. Reliable detection of 
biological particles as small as 250 nm is now 
considered routine.34 Coupling this technology  
with DNA-intercalating and protein-binding  
fluorescent dyes improves resolution further 
and makes accurate identification of bacteria 
or fungi directly from clinical samples possible 
(Figure 2B). The quantitative nature of particle  
characterisation by FC also permits direct 

Figure 2: A) Acoustic versus standard hydrodynamic focussing for flow cytometry. B) Clear separation between 
bacterial and fungal pathogens in peritoneal dialysis dialysate as assessed by acoustic flow cytometry.
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enumeration of bacterial counts in dialysate 
providing information on inoculum dose, which 
may be an important feature in influencing  
clinical outcomes.

One unique aspect of this approach is the 
separation of bacterial detection from 
identification of their species (or Gram type), 
which may prove challenging for clinicians and 
microbiologists who have traditionally decided 
upon treatment options based on this knowledge. 
While this has implications for epidemiological 
data collection (if a traditional culture is not 
also conducted),35 this approach can provide 
answers where traditional culture techniques 
have failed, for example in cases of culture-
negative peritonitis, or where recent exposure 
to antimicrobial agents might impact culture. 
Furthermore, sample preparation for this 
technique can require as little as 25 minutes of 
manual handling, followed by 10 minutes for 
data acquisition and processing, representing 
a potential gain of >18 hours compared to  
traditional culture-based methods.36 

CULTURE-INDEPENDENT 
ANTIMICROBIAL  
SUSCEPTIBILITY TESTING

Most antimicrobial agents used in the treatment 
of PD peritonitis have bacterial (or fungal) cell 

lysis as their final mechanism of action. As FC 
detection of this mechanism works by identifying 
cell shape, size, and wall integrity, the effects 
of antibiotics on cells can be analysed and 
antimicrobial susceptibility profiles determined 
ex vivo in samples. This method, termed  
flow-assisted antimicrobial sensitivity testing 
(FAST), has demonstrated a strong positive 
correlation (r2: 0.81; p<0.0001) with current 
international standard culture-dependent 
methods, and has been demonstrated to be 
useful for common PD pathogens across a 
range of relevant antimicrobials (Figure 3).36  
Extensive development work is ongoing to assess 
the application of this technology to detect 
bacteria directly from PD effluent and determine 
the cost-effectiveness of this approach and its 
performance compared to standard culture-based 
assays. As a guide, currently a 96-well plate  
for antimicrobial susceptibility profiling with 12 
minimum inhibitory concentrations being  
assessed costs <$100, including consumables  
and technician time.

While improved diagnostic tools are clearly 
essential and have demonstrated promise in 
controlled situations with small cohorts, the 
majority of patients who develop peritonitis receive  
effective antimicrobial therapy. In these cases, 
peritonitis resolves within 7–10 days and most  
patients are managed in an outpatient setting.  

Figure 3: Comparison of timeframes for culture-dependent and culture-independent diagnostic methods to provide 
results in.

AST: antimicrobial susceptibility testing.
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However, epidemiological data demonstrate 
clear differences in outcomes depending on  
the class of organism causing peritonitis, with  
Gram-negative and fungal species generally  
associated with higher morbidity and mortality.37  
Even in successful respondents, the impact of  
peritonitis on the long-term durability of PD is  
significant, with a high incidence of membrane  
dysfunction, leading to inadequate fluid and  
solute removal and technique failure.38,39 To alter  
these outcomes, detection must be improved 
to provide more rapid and targeted treatment,  
and, even more importantly, understanding of  
the host responses to different types of infection 
needs to be improved. Only by elucidating 
all the factors can the clinical course of PD  
peritonitis be better understood (resolution 
versus relapse, benign versus severe). This will 
allow the ability to develop new or modify  
existing treatments to reduce morbidity and 
mortality, and to preserve and protect the 
peritoneal membrane so that patients can 
continue on PD for longer.

IMMUNE FINGERPRINTING

As opposed to detecting the infecting micro-
organisms directly, an alternative approach 
has been to study pathogen-specific host 
responses instead, which has particular 
advantages in settings where organism numbers 
are below the detection limit of current tests.  
One novel approach to faster identification of 
bacterial peritonitis is to analyse the nature  
of the host response elicited by infection.  
This technique, known as ‘immune fingerprinting', 
utilises the fact that humans have evolved 
specific mechanisms to detect and respond to  
invading micro-organisms that the species 
have encountered throughout millions of years 
of evolution.24,40 These pattern recognition 
receptors and their signalling pathways define 
the initial host response to microbial infection, 
and systematic analysis of samples from 
patients with PD peritonitis has demonstrated 
that a unique signature can be identified  
that accurately distinguishes Gram-negative, 
Gram-positive, and culture-negative peritonitis 
at presentation, which are important distinctions 
when deciding upon the most appropriate 
treatment.24,41 These fingerprints can be rapidly 
determined through measurement of secreted 

proteins (present in PD fluid) and may be suitable 
for the development of point-of-care testing. 
Although this technique does not provide 
information about antimicrobial susceptibility 
profiles, which still rely on standard cultures 
being performed, it is highly complementary 
to organism-based approaches as it integrates 
the host responses into a comprehensive view 
of local infection and may offer additional 
insights into virulence and immunopathology. 
Studies assessing the accuracy and efficacy of 
immune fingerprinting and culture-independent 
approaches in comparison to standard traditional 
culture techniques are ongoing, and these  
studies will also provide important information  
on the real-world cost of these assays.

UNDERSTANDING PERITONEAL 
IMMUNITY AND ITS  
PROGNOSTIC SIGNIFICANCE

The central players in the initial host response 
to infection are the local immune and  
non-immune cells that survey the peritoneal 
cavity in the steady state and respond rapidly to 
injury and infection.  While the role of peritoneal 
macrophages in the local inflammatory response 
has been established,42,43 the contribution of 
mesothelial cells, a single cell monolayer that 
lines the visceral and parietal surfaces of organs 
within the abdominal and chest cavities,44  
to peritoneal immunity remains less well 
understood. These cells are highly metabolically 
active, have phagocytic properties, and produce 
numerous cytokines,45,46 which recruit other  
immune cells and initiate repair processes 
following resolution of infection.47,48

Few studies have directly assessed how different 
bacteria affect mesothelial cells, despite clear 
evidence that this influences clinical outcomes.49,50 
Recent work has shown that mesothelial cells 
vary widely in their responses to S. epidermidis  
isolates cultured from patients with PD  
peritonitis,51 indicating that unique characteristics 
of the specific bacterial isolates are responsible 
for the different patterns of gene expression 
observed. The variation in individual peritoneal 
inflammatory responses seen in peritonitis 
episodes caused by the same species clearly 
indicates that the quality and magnitude of 
the activation process varies significantly.  
This may be related to many factors, including  
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