
Revisiting the Restricted Growth Function Genetic
Algorithm for Grouping Problems

R. Lewis and E. Pullin

School of Mathematics, Cardiff University, CF24 4AG, Wales.
Email: lewisR9@cf.ac.uk, emma pullin@msn.com

April, 2011

Abstract: An overview of the Restricted Growth Function Genetic Algorithm
is given. Empirically we show that the algorithm exhibits poor performance
and is consistently outperformed on a range of problems by two very basic
evolutionary algorithms with blind operators.

Keywords: Grouping, genetic algorithms, restricted growth functions, bin
packing, equal piles, graph colouring.

1 Introduction

Grouping problems involve partitioning a set of n items into an exhaustive
set of mutually exclusive subsets (groups), subject to certain constraints being
met. Examples include cutting and packing problems (Wäscher et al., 2007),
timetabling problems (Lewis and Paechter, 2007), routing problems (Pankratz,
2005), graph colouring problems (Galinier and Hao, 1999; Malaguti et al., 2008)
and balancing problems (Falkenauer, 1998), all of which are known to be NP-
hard in their general forms.

Over the past two decades an important research area has been to understand
whether evolutionary algorithms (EAs) might be applied to grouping problems
and, in particular, whether representation schemes and recombination operators
exploiting their underlying structures can be designed. This issue is especially
relevant because it has previously been argued that “traditional” evolutionary
operators and representations are inappropriate with such problems because
they are seen to indiscriminately break up the underlying building blocks of
such problems (Falkenauer, 1998; Ross et al., 1998). To illustrate, consider an
approach that uses an item-based encoding where a chromosome such as 23112
represents a solution in which item-1 is in group-2, item-2 is in group-3, an so
on. First, observe that this encoding exhibits degeneracy and contradicts the
Principle of Minimum Redundancy (Radcliffe, 1991) since, by simply relabel-
ing the groups, a candidate solution using m groups might be represented by
m! different chromosomes. Second, it is also proposed that the application of
“traditional” recombination operators (such as 1-, 2-, and n-point crossover) is
inappropriate with such representations as they typically pass context-specific

1

information out of context, often leading to nothing more than random jumps
within the search space and, depending on the problem at hand, perhaps even
creating illegal offspring.

In his book, Falkenauer (1998) presents compelling arguments regarding the
above and ultimately suggests that it is the groups of items that constitute
the underlying building blocks of grouping problems. In his case this proposal
motivates the design of the Grouping Genetic Algorithm (GGA), which features
operators that encourage complete groups of items to be passed from parents
to their progeny. In particular, the crossover operator of the GGA ensures that
if particular groupings of items are seen to be present in two parents, then their
offspring will also inherit these groups in their entirety (though these could
then be altered via mutation). In further work, Falkenauer has also hybridised
the GGA with local search methods, producing high-quality results for the bin
packing and equal piles problems (Falkenauer, 1998). More recently, Brown
and Sumichrast (2005) have also demonstrated the superiority of the GGA over
“traditional” EAs of the type mentioned above using a collection of different
grouping problems.

One drawback of the GGA, however, is that there is no “one-size-fits-all”
scheme. This is because its operators need to be augmented with problem-
specific constructive heuristics that are used for repairing solutions during a
run. Lewis and Paechter (2007) have shown that GGA operators also expe-
rience difficulties when the problem at hand involves a small number of large
groups (as opposed to many small groups), because offspring are less likely to
inherit complete groups of items from both parents. In these cases the GGA
recombination operator is thus seen to be more of a large mutation operator,
because complete groups (building blocks) tend only to be inherited from one
parent, with the remainder being formed via the chosen repair operator.

In a previous issue of this journal, Tucker et al. (2005) introduced what ap-
pears to be a more flexible alternative to the GGA, the so-called the Restricted
Growth Function Genetic Algorithm (RGFGA) (see also (Tucker et al., 2007)).
This method involves a specialised representation which ensures that each par-
tition of the n items is only representable by one distinct chromosome, thus
strictly adhering to the Principle of Minimum Redundancy. In addition, spe-
cialised evolutionary operators appropriate for this representation are defined.
In their work, Tucker et al. compare the RGFGA to the GGA using two ex-
ample problems: the grouping of variables in multivariate time series, and the
one dimensional bin-packing problem. We observe, however, that although the
authors claim to have gained “favourable” results for the latter problem, this
comparison has been made under a fitness function of the authors’ own design,
and it is not clear how these results compare to other well-known approaches
appearing in the literature, including the GGA itself. In this paper we seek to
clarify this issue and demonstrate that the RGFGA actually produces rather
poor solutions to the bin packing problem, being outperformed not only by the
GGA, but also in many cases by a simple single-parse greedy heuristic. We
also examine the capabilities of the RGFGA more generally by considering two
further grouping problems and comparing its results against two very basic EAs

2

suffering from the drawbacks the RGFGA is claimed to remedy. Surprisingly in
these experiments the RGFGA also demonstrates inferior performance in many
cases, and we investigate the reasons as to why

2 The Restricted Growth Function Genetic Al-
gorithm (RGFGA)

The main idea behind Tucker et al.’s algorithm is to use a method of solution
representation, the Restricted Growth Function (RGF), that features a one-to-
one correspondence between the set of RGFs and the set of partitions of [n].
Consequently, an RGF is defined as a function f : [n] → [n] such that:

f(1) = 1 (1)
f(i + 1) ≤ max{f(1), . . . , f(i)}+ 1. (2)

An RGF is thus an array of n integers, with f(i) representing the value (group)
of the ith item. We might, therefore, consider the RGF as the canonical form of
a partition of [n], where the groups have been labelled such that, by definition,
item-1 occurs in group-1, item-2 occurs in group-1 or 2, and so on.

In defining a recombination operator for use with RGFs, Tucker et al. make
use of the following notation.

Definition 1 Let f and g be two RGFs. We say that f ≤ g if f(i) ≤ g(i),
1 ≤ i ≤ n. We also write f < g if f ≤ g and f 6= g.

Definition 2 Let f and g be two RGFs. The distance, based on Hamming
distances, between f and g is defined:

H(f, g) =
n∑

i=1

|f(i)− g(i)|. (3)

Definition 3 Let f and g be two RGFs. Define fg : [n] → [n], where:

fg(i) = max{f(i), g(i)} (4)

The recombination operator of Tucker et al. operates by taking two RGFs f and
g (s.t. f ≤ g) and creates a path between these that crosses fg. The resultant
offspring are then two randomly selected points along this path. An example of
this process is provided in fig. 1. Observe that the path from f to fg is created
by incrementing the appropriate variables one-by-one from left to right in the
array. The same process is then also used to form the path between g and fg.
It is proved by Tucker et al. that all members of this path are RGFs. Also note
that the total length of this path including parents (and thus the number of
possible offspring) is H(f, g) + 1.

Regarding mutation with the RGFGA, Tucker et al. suggest that this can
come in three forms: 1) Move a randomly selected item into another randomly

3

1) f = (1, 2, 3, 1, 2)

2) (1, 2, 3, 2, 2)

3) (1, 2, 3, 3, 2)

4) = (1, 2, 3, 3, 3)

5) (1, 2, 2, 3, 3)

fg

6) g = (1, 1, 2, 3, 3)

Figure 1: Example RGFGA crossover with n = 5 and H(f, g) = 5 and illustra-
tion of the resultant groupings.

selected group; 2) Merge two randomly selected groups into one; and 3) Split a
randomly selected group into two groups. Further details on these can be found
in their publication, but it should be noted that a chromosome resulting from
these actions may not be an RGF. Thus a procedure is applied that relabels
the groups to restore the RGF property. Depending on the objectives of the
grouping problem under consideration, only some of these mutation schemes
might be appropriate (see below).

3 Experimental Setup

The three test problems considered in our experiments are as follows:

The Bin Packing Problem (BPP) assumes a “weight” wi for each item 1 ≤
i ≤ n, and a constant C. The objective is to partition the items into a set of
mutually exclusive groups U = {U1, . . . , U|U|} such that ∀Ui ∈ U , W (Ui) =∑

j∈Ui
wj ≤ C, with |U| being minimised. Note that Falkenauer’s GGA

for this problem operates such that no group (bin) is ever able to exceed its
capacity C. However, this is not the case for the RGFGA and a different
fitness function is proposed by Tucker et al.; namely:

F =
∑

{i≤|U|:W (Ui)≤C}

(
W (Ui)

C

)2

(5)

This function, which is to be maximised, does not consider groups whose
total weight exceeds C and, unlike other approaches, raises the possibility
of final solutions having some of their groups over-filled, making them
infeasible.

Similarly to (Falkenauer, 1998; Tucker et al., 2005) a suite of 80 “uniform”
BPP instances are used in our tests. These are generated such that weights

4

of items are uniformly distributed between 20 and 100, with C = 150. For
each instance the minimum number of groups needed χ is also specified
and we use this to generate our initial population (see below). However, as
with Tucker et al.’s experiments the number of groups is allowed to vary
during a run because of the behaviour of the three mutation schemes,
which are each applied with probability 1/3.

The Equal Piles Problem (EPP) assumes a weight wi for each item 1 ≤
i ≤ n, and takes a constant k. The objective is to partition the items
into k groups U = {U1, . . . , Uk} such that the weights of each group
are equal. We use the fitness function F =

∑k
i=1

√
|W (Ui)− µ|, where

µ = (
∑n

j=1 wj)/k is the mean weight of each group in an optimal solu-
tion (Falkenauer, 1998). This function is to be minimised, and a zero
fitness implies a solution with equi-weighted groups.

Ten problem instances are used here, which were kindly supplied by Ben
Paechter of Edinburgh Napier University. In all cases k = 10, and zero-
fitness solutions are known to exist. Note that unlike the BPP formulation
the number of groups is fixed for the EPP and so only mutation scheme
1) is used here.

The Graph k-Colouring Problem (GCOL) takes a simple undirected graph
G = (V, E), with |V | = n and a positive integer k. The objective is to
partition V into k groups U = {U1, . . . , Uk} such that no group contains
a pair of adjacent vertices. Thus an appropriate fitness function for min-
imisation is simply F =

∑k
i=1 c(i), where c(i) gives the number of edges

between pairs of vertices in each group Ui.

Five benchmark instances are used for our tests, details of which are given
in Table 2. The k-values for these instances are taken from (Galinier and
Hao, 1999) and it is known that zero-fitness solutions are achievable in all
cases. As with the EPP, only mutation scheme 1) is used here.

In our experiments with the RGFGA, each chromosome in the initial popu-
lation was produced by assigning items to a random group between 1 and χ (or
for the latter two problems, 1 and k). These chromosomes were then relabeled
to meet the RGF criterion. Each iteration of the algorithm then consisted of
(a) two parents being selected via binary tournament selection, (b) the creation
of two offspring using the RGFGA crossover operator, (c) a mutation of each
offspring, and (d) insertion of the offspring into the population using binary
tournament replacement. In all cases a population of size 100 was used, and the
best final solution was recorded. As with Tucker et al., computational effort was
gauged by monitoring the number of calls to the problem data (weight checks
for the BPP and EPP, adjacency checks for GCOL) and very high cut-off points
were used, giving some notion of excess time (see Table 2).

As mentioned earlier, for comparative purposes two control EAs are also
used in our experiments, which differ to the RGFGA only in their methods of
representation and offspring production. These are summarised as follows:

5

Table 1: Number of bins used in solutions from the RGFGA, FFD and GGA
using the 80 uniform BPP instances. Entries in parenthesis indicate solutions
seen to be infeasible due to at least one bin being over-filled.

Instancea

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16 #17 #18 #19 #20 Av±SDb

n = 120
RGFGA 48 49 46 50 50 49 49 50 51 47 53 49 49 49 50 49 52 53 50 50 49.65±1.68
FFD 49 49 47 50 50 49 49 50 51 47 52 50 49 49 50 49 52 53 50 50 49.75±1.44
GGAc 48 49 46 49 50 48 48 49 50 46 52 49 48 49 50 48 52 52 49 49 49.05±1.63
n = 250
RGFGA 102 102 104 102 104 104 103 106 108 103 108 104 108 104 102 108 99 102 102 104 103.95±2.44
FFD 100 101 104 101 102 104 103 105 107 102 106 103 107 104 101 107 99 101 102 103 103.10±2.32
GGA 99 100 102 100 101 102 102 104 106 101 105 101 106 103 100 106 97 100 100 102 101.85±2.43
n = 500
RGFGA 206 210 209 212 213 214 216 212 204 210 207 209 206 202 212 208 209 205 210 205 208.95±3.53
FFD 201 204 205 207 209 207 210 207 199 204 202 203 202 198 206 204 205 201 205 199 203.90±3.22
GGA 198 202 203 205 206 206 208 205 197 202 200 200 199 196 204 201 202 199 202 196 201.55±3.37
n = 1000
RGFGA (435) 443 441 (447) 430 435 428 436 435 432 434 430 422 425 427 436 436 438 434 (433) 433.85±5.82
FFD 403 411 416 416 402 404 399 408 404 404 404 405 398 401 400 408 407 409 403 406 405.40±4.80
GGA 400 407 412 413 398 400 396 404 400 399 400 402 393 397 396 404 404 405 400 400 401.50±4.94

aProblems instances are available at people.brunel.ac.uk/∼mastjjb/jeb/info.html. Results
are taken from one run on each instance.

bEntries in bold indicate sample means that are significantly different to the RGFGA’s at
the 1% level according to a paired two-tailed t-test.

cGGA implemented according to the operators and parameters specified by Falkenauer
(1994). In all cases the RGFGA and GGA were executed for 2.5× 1010 calls.

Algorithm B: employs the item-based encoding mentioned in Section 1 and
uses a classical n-point crossover, where each gene (item) is inherited from
either parent with probability 0.5.

Algorithm C: also employs the item-based encoding but uses no crossover.
Thus pairs of offspring are created by simply copying the two selected
parents before applying mutation.

Algorithms B and C thus represent the “traditional” EAs mentioned earlier and,
in particular, do not perform any relabeling, meaning they may well suffer from
the various pitfalls described in Section 1.

4 Results

Our first set of experiments considers the BPP and compares the performance of
the RGFGA to two well-known methods, the GGA (Falkenauer, 1994), and the
first-fit decreasing (FFD) heuristic. The latter method is a classical single-parse
algorithm for the BPP that operates by sorting the items into decreasing order
of weight and then simply inserting these one-by-one into the first bin seen to
have sufficient capacity (see for example (Dosa, 2007)).

It is obvious from the results in Table 1 that the RGFGA is outperformed
by the GGA. The GGA has found higher quality solutions in seventy-two of
the eighty problems, with the remaining eight (which all belong to the set of
smallest problems) being of equal quality. We also see that the gap in quality
widens as problem size is increased, with the RGFGA requiring an average of
over thirty extra bins for instances with n = 1000.

6

Table 2: Results Summary for the RGFGA and Algorithms B and C.

End Fitness ab Additional Informationc

Problem Descriptiond Init. RGFGA Alg. B Alg. C RGFGA Alg. B Alg. C
BPP, n = 120, (×20) 14.64 47.60± 1.50 47.47± 1.46 47.47± 1.48 49.65 (20) 49.85 (20) 49.90 (20)
BPP, n = 250, (×20) 27.14 98.63± 2.22 98.40± 2.12 98.55± 2.17 103.95 (20) 104.40 (20) 104.10 (20)
BPP, n = 500, (×20) 48.43 193.63± 3.24 195.07± 3.30 195.64± 3.13 208.95 (20) 207.00 (20) 206.25 (20)
BPP, n = 1000, (×20) 91.07 373.68± 4.65 389.45± 4.74 390.40± 4.81 433.85 (17) 411.80 (20) 410.65 (20)
EPP (#1), n = 100 226.47 1.10± 1.10 0.29± 0.66 0.00± 0.00 35 80 100
EPP (#2), n = 100 330.13 0.00± 0.00 0.00± 0.00 0.00± 0.00 100 100 100
EPP (#3), n = 100 425.09 11.09± 6.84 6.78± 3.73 4.81± 4.77 0 0 10
EPP (#4), n = 100 884.97 1.67± 0.58 1.46± 0.58 0.52± 0.53 0 5 50
EPP (#5), n = 100 218.24 2.03± 4.84 0.00± 0.00 3.29± 5.69 85 100 75
EPP (#6), n = 500 1386.76 0.67± 0.83 0.10± 0.30 0.00± 0.00 50 90 100
EPP (#7), n = 500 333.07 0.17± 0.75 0.00± 0.00 0.00± 0.00 95 100 100
EPP (#8), n = 500 1042.06 1.11± 0.81 0.00± 0.00 0.00± 0.00 25 100 100
EPP (#9), n = 500 1037.95 0.94± 0.72 0.00± 0.00 0.25± 0.43 25 100 75
EPP (#10), n = 500 356.63 0.49± 1.47 0.00± 0.00 0.00± 0.00 90 100 100
GCOL, n = 250, k = 28 507.55 27.75± 3.42 19.10± 2.93 18.65± 1.96 0 0 0
GCOL, n = 500, k = 48 1223.15 128.65± 5.73 56.05± 3.53 69.65± 3.34 0 0 0
GCOL, n = 1000, k = 83 2882.05 517.85± 12.50 208.15± 9.88 289.65± 10.82 0 0 0
GCOL, n = 300, k = 31 635.50 41.90± 3.22 23.65± 3.13 26.10± 3.75 0 0 0
GCOL, n = 1000, k = 83 2844.15 502.05± 10.31 189.75± 7.13 269.95± 10.80 0 0 0

aMean ± standard deviation. For the BPP, samples are formed from one run on 20 in-
stances; else they are formed from 20 runs on each instance. Cut-off points of 2.5 × 1010,
2.5× 1010, and 1011 calls were used for the BPP, EPP and GCOL respectively.

bEntries in bold indicate situations where Algorithm B or C’s statistics are seen to be
significantly different to the RGFGA’s at the 1% level. For the BPP and GCOL this is due to
a paired two-tailed t-test; for the EPP, this is due to McNemar’s test on the success/failure of
an algorithm in producing zero-cost solutions.

cFor the BPP, the mean number of bins used in final feasible solutions is given, together
with the number of runs where feasibility was achieved (in parenthesis). For the EPP and
GCOL we give the percentage of runs where zero-fitness solutions were achieved.

dThe GCOL instances are available online at mat.gsia.cmu.edu/COLOR/instances.html.
The instances used are, respectively, DSJC250.5.col, DSJC500.5.col, DSJC1000.5.col,
flat300 28 0.col, and flat1000 76 0.col.

Perhaps even more surprising, the results also indicate that the RGFGA
is outperformed by the FFD heuristic. Specifically, the solutions produced by
FFD are superior to the RGFGA for all of the forty larger instances (n ≥ 500),
and fifteen of the twenty 250-item instances (with the remaining five being of
equal quality). However, for n = 120, no significant difference in the means of
the RGFGA and FFD is observed.

We should also note that the results of the GGA, though clearly superior to
the RGFGA, are by no means the best results available for this set of bench-
marks: for example, better results for the larger instances are reported due to
the hybrid-GGA of Falkenauer (1998), the ant colony optimisation-based ap-
proach of Levine and Ducatelle (2003) and the hill-climbing approach of Lewis
(2009).

In our next set of experiments, we consider all three grouping problems out-
lined in Section 3 and examine the fitness of solutions achieved by the RGFGA
compared to the two “traditional” EAs, Algorithms B and C. The results of
these trials are summarised in Table 2, where we recall that for the BPP we
seek to maximise fitness, while for the EPP and GCOL the aim is minimisation.

The results in Table 2 demonstrate that in many cases Algorithms B and C
produce solutions with fitnesses that are significantly better than the RGFGA.
However, the opposite is not true: in no cases has the RGFGA produced sig-

7

nificantly better results than either control algorithm.1 Nevertheless, to bring
these results into context we make note of two points. First, for the BPP all
three algorithms’ final results are equalled or significantly bettered by FFD;
second, none of the algorithms have come close to achieving optimal solutions
for GCOL, despite the fact that such solutions are known to exist. Thus al-
though the results of Algorithms B and C can be considered rather poor (as we
might expect according to the arguments of Falkenauer (1998)), the results of
the RGFGA have often shown to be significantly worse still.

To explore the RGFGA’s apparent lack of performance, one factor to con-
sider is the way in which population diversity varies during a run. As noted
earlier, given two parents, the number of possible offspring that can be pro-
duced by the RGFGA crossover is related to the parents’ Hamming distance.
On the other hand, when using n-point crossover if two parents contain different
values in x of their n genes, then the number of possible offspring 2x will usu-
ally be much higher than this figure (although, of course, many of these could
be illegal and/or represent the same groupings of items). Could it be that the
RGFGA crossover, with its smaller number of possible offspring, causes diversity
to be lost more quickly, leading to premature convergence?

Figure 2 suggests the answer to this question to be negative. In these graphs,
we use a diversity metric specialised for grouping problems due to Lewis and
Paechter (2007), calculated as follows. Given a population of p individuals, each
representing a partition of the n items, Ui = {Ui,1, . . . , Ui,|Ui|}, 1 ≤ i ≤ p,

D = p

(|⋃p
i=1 Ui|∑p

i=1 |Ui|
)

. (6)

This diversity metric thus compares the number of different item groupings in
the population to the total number of groupings. Consequently a fully diverse
population (containing no grouping of items more than once) gives D = p,
since |⋃p

i=1 Ui| =
∑p

i=1 |Ui|; on the other hand, a fully homogeneous population
implies

∑p
i=1 |Ui| = p (|⋃p

i=1 Ui|), giving D = 1.
As we might expect, the graphs in fig. 2 indicate that Algorithm C exhibits

the most rapid loss of diversity, since offspring are produced by simply copying
and mutating parents; however as noted above, the solutions produced by Al-
gorithm C tend to be of higher quality than the RGFGA. On the other hand,
Algorithm B’s diversity tends to fall more slowly than the RGFGA in initial
stages due to the random jumps initiated by the n-point crossover. However,
like Algorithm C, B’s results also seem offer an improvement on the RGFGA.
This suggests that the diversity levels experienced by the RGFGA are not crit-
ical in its comparative lack of performance.

Perhaps more telling patterns are revealed in fig. 3. In the three left-hand
graphs we show the relative frequencies of the difference in fitness between each
offspring and the mean fitness of its two parents for the BPP, EPP and GCOL
respectively. In each case these distributions were generated using the first

1Note that the RGFGA’s end fitness values for the BPP are consistent with those reported
by Tucker et al. (2005).

8

 0

 20

 40

 60

 80

 100

 0 10000 20000 30000 40000 50000

D
iv

er
si

ty

Evaluations

RGFGA
Alg. B
Alg. C

 0

 20

 40

 60

 80

 100

 0 10000 20000 30000 40000 50000

D
iv

er
si

ty

Evaluations

RGFGA
Alg. B
Alg. C

 0

 20

 40

 60

 80

 100

 0 10000 20000 30000 40000 50000

D
iv

er
si

ty

Evaluations

RGFGA
Alg. B
Alg. C

Figure 2: Changes in diversity using BPP, n = 1000 (top left); EPP #9 (top
right); and GCOL n = 1000, k = 83 (bottom). The BPP figure is the average
of one run on each of the 20 instances; the remaining figures are the mean of 20
runs on a single instance.

500, 000 offspring generated in a run — improvements are thus characterised
by positive values with the BPP and negative values for the EPP and GCOL.
For all problems the distributions of the three algorithms indicate that, on
average, offspring are inferior to their parents. However as we might expect,
Algorithm C’s distributions feature the lowest spreads (and means closest to

9

zero) since the offspring it produces tend to be very similar to the parents.
Algorithm B’s distributions are also quite similar to C’s, though its spreads are
higher due to the larger changes induced by the n-point crossover, which also
causes a greater proportion of offspring to assume worse fitness values than their
parents. However, the RGFGA features different shaped distributions to these,
particularly due to the presence of long tails on the left side for the BPP, and
on the right side for the EPP and GCOL. These tails have the effect of pulling
the mean away from zero and increasing the spread. They also indicate that
compared to Algorithms B and C, offspring produced via the RGFGA crossover
are inferior to their parents more regularly, and that the degradation caused by
this operator tends to be to a greater degree.

To explain the RGFGA crossover’s susceptibility for producing unfit off-
spring, we now refer back to the illustrative example in fig. 1. Note that while
chromosomes f and g define solutions featuring groups that are relatively equi-
sized, the construction of paths from both f and g to fg involves iteratively
moving items rightwards. In other words, as we progress along these paths
there is a bias for items to accumulate in the higher indexed groups. How-
ever, there is generally no benefit in doing this — indeed, this tendency may
offer a distinct disadvantage in many grouping problems including those con-
sidered here, where some sort of suitable “balance” of the items across groups
is desirable. The right-hand graphs of fig. 3 illustrate the cumulative effects
of this feature, where we indeed observe that the RGFGA produces substan-
tially inferior performance during the course of a run compared to the other two
algorithms.2

5 Conclusions and Discussion

Problems that require items to be grouped are common in computing and math-
ematics, and the potential of evolutionary-based algorithms in this domain is
an interesting and on-going area of research. Indeed, at the time of writing it is
arguable that such algorithms, when hybridised with suitable local search pro-
cedures, even produce state-of-the-art results in some cases (Galinier and Hao,
1999; Malaguti et al., 2008).

On first glance, the RGFGA of Tucker et al. (2005) is appealing, particularly
because it elegantly copes with the issue of degeneracy and also offers a set of
general-purpose evolutionary operators. However, we cannot concur with the
authors’ claim that the RGFGA offers “favourable” results, particularly as it
is consistently outperformed by traditional evolutionary algorithms exposed to
the very difficulties the RGFGA purports to remedy.

In further experiments, we also looked at the performance of a modified
version of Algorithm B that, after performing n-point crossover and mutation,
relabeled offspring in order to satisfy the RGF criterion. However our tests
with the BPP, EPP, and GCOL indicate that this modified method actually

2Note that the shape of the RGFGA’s curve in fig. 3 (top-right) is consistent with the
equivalent graph in (Tucker et al., 2005).

10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-40 -30 -20 -10 0 10

R
el

at
iv

e
F

re
q.

Change in Fitness

RGFGA (Av=-17.3, SD=20.9)
Alg. B (Av=-0.98, SD=1.16)
Alg. C (Av=-0.50, SD=0.68)

 200

 250

 300

 350

 400

 0 5e+009 1e+010 1.5e+010 2e+010 2.5e+010

F
itn

es
s

Calls

RGFGA
Alg. B
Alg. C

 0

 0.05

 0.1

 0.15

 0.2

-200 0 200 400 600 800 1000 1200

R
el

at
iv

e
F

re
q.

Change in Fitness

RGFGA (Av=180.4, SD=179.8)
Alg. B (Av=134.0, SD=107.9)
Alg. C (Av=104.3, SD=68.02)

 0

 5

 10

 15

 20

 0 5e+009 1e+010 1.5e+010 2e+010 2.5e+010

F
itn

es
s

Calls

RGFGA
Alg. B
Alg. C

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

-20 -10 0 10 20 30 40 50

R
el

at
iv

e
F

re
q.

Change in Fitness

RGFGA (Av=33.8, SD=94.6)
Alg. B (Av=4.63, SD=4.55)
Alg. C (Av=3.74, SD=3.08)

 0

 200

 400

 600

 800

 1000

 0 2e+010 4e+010 6e+010 8e+010 1e+011

F
itn

es
s

Calls

RGFGA
Alg. B
Alg. C

Figure 3: (left, top to bottom) Relative frequencies of the difference in fitness
between each offspring and the mean fitness of their parents for the BPP, EPP
and GCOL respectively; (right, top to bottom) Best-so-far graphs for the BPP,
n = 1000; EPP #9; and GCOL n = 1000, k = 83. Each plot is the average of
20 runs.

produces inferior performance compared to the original version of B, seemingly
due to difficulties it experiences in allowing item groupings to be propagated
during evolution. A demonstration of why such difficulties exist is given in fig. 4.
Chromosome a) in this figure is an RGF, while chromosome b) represents the

11

a) (1, 2, 3, 4, 4, 4, 5, 5)

b) (1, 1, 3, 4, 4, 4, 5, 5)

c) (1, 1, 2, 3, 3, 3, 4, 4)

Figure 4: Illustration of the issues caused by a relabeling process.

same solution except that a single item has been moved to a different group. As a
result of this change, b) no longer meets the RGF criterion and so it is necessary
to relabel the groups to restore this property, as is the case with chromosome
c). However, despite the fact that chromosomes a) and c) feature four identical
item-groupings, we see that the RGF relabeling process has resulted in these
being allocated different group numbers. This means that unlike an n-point
crossover between a) and b), where groups 3, 4, and 5 would be inherited in their
entirety, the recombination of a) and c) is unlikely to produce offspring featuring
these complete groupings. Thus, although the strategy of relabeling groups
ensures a one-to-one relationship between chromosomes and groupings, in this
case it is also inhibiting the ability of crossover to combine the underlying sub-
structures existing in the parents, compromising what is a desirable attribute
in a recombination operator.

References

Brown, E. and Sumichrast, R. (2005). Evaluating performance advantages of grouping
genetic algorithms. Engineering Applications of Artificial Intelligence, 18:1–12.

Dosa, G. (2007). The tight bound of first fit decreasing bin-packing algorithm is
ffd(i) ≤ 11/9 opt(i) + 6/9. In Chen, B., Paterson, M., and Zhang, G., editors,
Combinatorics, Algorithms, Probabilistic and Experimental Methodologies, volume
4614 of Lecture Notes in Computer Science, pages 1–11. Springer, Berlin.

Falkenauer, E. (1994). A new representation and operators for genetic algorithms
applied to grouping problems. Evolutionary Computation, 2(2):123–144.

Falkenauer, E. (1998). Genetic Algorithms and Grouping Problems. John Wiley and
Sons.

Galinier, P. and Hao, J.-K. (1999). Hybrid evolutionary algorithms for graph coloring.
Journal of Combinatorial Optimization, 3:379–397.

Levine, J. and Ducatelle, F. (2003). Ant colony optimisation and local search for bin
packing and cutting stock problems. Journal of the Operational Research Society,
55(12)(7):705–716.

12

Lewis, R. (2009). A general-purpose hill-climbing method for order independent min-
imum grouping problems: A case study in graph colouring and bin packing. Com-
puters and Operations Research, 36(7):2295–2310.

Lewis, R. and Paechter, B. (2007). Finding feasible timetables using group based
operators. IEEE Transactions on Evolutionary Computation, 11(3):397–413.

Malaguti, E., Monaci, M., and Toth, P. (2008). A metaheuristic approach for the
vertex coloring problem. INFORMS Journal on Computing, 20(2):302–316.

Pankratz, G. (2005). Dynamic vehicle routing by means of a genetic algorithm. Inter-
national Journal of Physical Distribution and Logistics Management, 35(5):362–383.

Radcliffe, N. J. (1991). Forma analysis and random respectful recombination. In R.K.,
B. and B, B. L., editors, the Fourth International Conference on Genetic Algorithms,
pages 222–229, San Marco CA. Morgan Kaufmann.

Ross, P., Hart, E., and Corne, D. (1998). Some observations about ga-based exam
timetabling. In Burke, E. and Carter, M., editors, Practice and Theory of Automated
Timetabling (PATAT) II, volume 1408, pages 115–129. Springer-Verlag, Berlin.

Tucker, A., Crampton, J., and Swift, S. (2005). RGFGA: An efficient representa-
tion and crossover for grouping genetic algorithms. Evolutionary Computation,
13(4):477–499.

Tucker, A., Swift, S., and Crampton, J. (2007). Efficiency updates for the restricted
growth function ga for grouping problems. In Proceedings of the 9th annual confer-
ence on Genetic and evolutionary computation, GECCO ’07, pages 1536–1536, New
York, NY, USA. ACM.

Wäscher, G., Haußner, H., and Schumann, H. (2007). An improved typology of cutting
and packing problems. European Journal of Operational Research, 183:1109–1130.

13

