
Understanding Ecommerce Clickstreams: A Tale of Two States
Humphrey Sheil
Cardiff University
Cardiff, Wales

sheilh@cardiff.ac.uk

Omer Rana
Cardiff University
Cardiff, Wales

RanaOF@cardiff.ac.uk

Ronan Reilly
Maynooth University
Maynooth, Ireland
Ronan.Reilly@mu.ie

ABSTRACT
We present an analysis of Ecommerce clickstream data using Re-
current Neural Networks (RNN), Gated Recurrent Units (GRU) and
Long-Short Term Memory (LSTM). Our analysis highlights the
substantial difference in the predictive power of LSTM models de-
pending on whether or not hidden state is shared across batches and
also assesses the ability of RNNs to learn and use both session-local
and dataset-global information under different sampling strategies.
We propose random sampling combined with stateless LSTM for
optimal performance of LSTM in an Ecommerce domain.

KEYWORDS
Deep Learning, Recurrent Neural Networks (RNN), Long Short
Term Memory (LSTM), Clickstreams, Ecommerce

ACM Reference Format:
Humphrey Sheil, Omer Rana, and Ronan Reilly. 2018. Understanding Ecom-
merce Clickstreams: A Tale of Two States. In Proceedings of ACM Conference
(Conference’17). ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 INTRODUCTION
Recurrent Neural Networks (RNNs) are one of the most common
forms of neural networks in use today. They are well-suited to
sequence processing tasks such as language modelling, tagging,
translation and image captioning [20].

In recent work [28], we applied multiple variants of the base
RNN model to the problem of analysing user clickstream data in
order to predict user intent in an Ecommerce setting. In that work
we tuned standard RNN hyperparameters such as dropout, batch
size, learning rate, optimiser selection, sampling strategy, number
and size of layers and also tested and employed less widely-used
techniques such as skip connections. However, implementing skip
connections required us to apply fine-grained control over each
layer in the model, in particular how hidden state is passed both
between batches and between layers. We noticed that choosing
whether or not to pass hidden state between batches had a substan-
tial impact on model performance. In fact, deciding how to handle
hidden state and order of presentation of examples to the model
during training were the two most important design decisions con-
tributing to the predictive power of the model.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
Conference’17, July 2017, Washington, DC, USA
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Although RNNs have been used recently to process clickstream
sequences, more traditional work has utilised Gradient Boosted
Machines (GBM) [9] and Field-aware Factorisation Machines (FFM)
[17] to perform this analysis. Both of these approaches work well,
especially when domain and dataset-specific features are used. Typ-
ical features constructed provide global context to the model, e.g.
frequency-based measures of item popularity. RNNs by contrast do
not receive this information explicitly, but can accrue it over time
and training epochs.

Virtually all Ecommerce systems can be thought of as a generator
of clickstream data - a log of {item −userid − action} tuples which
captures user interactions with the system. A chronological set of
these tuples grouped by user ID is commonly known as a session.

In an Ecommerce context, we can think of local state as the indi-
vidual "story" for a single user - their clicks including dwelltime and
items provide insight into their intent (buy vs browse). Additionally,
we posit that there is a global state telling a second story about the
dataset, over and above the first and most immediate story encoded
in each individual user session. Examples of global state are specific
items going on sale for a short period of time and seasonality of
particular items over weeks and months. It is intuitively appealing
to think of both global and local patterns encoded in clickstream
data that can be parsed and understood by LSTM to improve pre-
dictive performance. However, the inability of LSTM to handle very
long sequences (and thus learn global patterns) is also well-known
[22]. Our goal is to examine how well LSTM can learn global state
in an Ecommerce context.

Electing to pass hidden state between batches when training is,
inasmuch as we can determine, the default setting for RNN word
language models. RNN word language models are also frequently
used as the starting point for new sequence processing models and
applications. Colloquially, passing state is referred to as stateful
LSTM while choosing not to pass state is known as stateless LSTM.
However there do not appear to be any formal references to this
model configuration in the literature, even as a tips and tricks entry.

Practitioners are also faced with another important decision
- how to sample from the dataset at training time to maximise
performance at inference time. In the Experiments section, we
measure the performance of multiple RNN variants under different
settings to propose the optimal RNN configuration for Ecommerce
clickstream analysis.

Sampling and hidden state strategy are very important to overall
model performance. One example of the difference in model predic-
tive power when hidden layer state is either re-used or discarded
between batches is shown in Figure 1. When it is discarded, our best
LSTM-based model is able to recover over 98% of the performance
of a strong baseline - the State of the Art (SotA) model for this task
[25]. With re-use, the model is far less effective.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


Conference’17, July 2017, Washington, DC, USA H. Sheil et al.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Unshared (h)
Shared (h)

Figure 1: ROC curves for two LSTM models on the RecSys
2015 test set. Both models are identical apart from whether
or not hidden state is re-used between batches during train-
ing. The "no sharing" model displays superior classification
accuracy.

2 RELATEDWORK
This section focuses on two sub-problems that meet in this paper:
how to process and classify clickstreams effectively and the search
for an optimal RNN model architecture for this task.

The problem of user intent or session classification in an online
setting has been heavily studied, with a variety of classic machine
learning and deep learning modelling techniques employed. [25]
was the original winner of the competition using one of the the
datasets considered here using a commercial implementation of
GBM (a derivative has since been made publically available [8])
with extensive feature engineering and is still to our knowledge
the SotA implementation for this dataset. The paper authors also
made their model predictions freely available and we used these to
compare our model performance to theirs.

[14] uses RNNs on a subset of the same dataset to predict the next
session click (regardless of user intent) so removed 1-click sessions
and merged clickers and buyers, whereas this work remains fo-
cused on the user intent classification problem. [21] compares [14]
to a variety of classical Machine Learning algorithms on multiple
datasets and finds that performance varies considerably by dataset.
[33] extends [14] with a variant of LSTM to capture variations in
dwelltime between user actions. User dwelltime is considered an im-
portant factor in multiple implementations and has been addressed
in a variety of ways. For shopping behaviour prediction, [30] uses
a mixture of Recurrent Neural Networks and treats the problem as
a sequence-to-sequence translation problem, effectively combining
two models (prediction and recommendation) into one. However
only sessions of length 4 or greater are considered - removing the

bulk from consideration. From [16], we know that short sessions
are very common in Ecommerce datasets, moreover a user’s most
recent actions are often more important in deciphering their in-
tent than older actions. Therefore we argue that all session lengths
should be included.

Broadening our focus to include the general use of RNNs in the
Ecommerce domain, Recurrent Recommender Networks are used
in [32] to incorporate temporal features with user preferences to
improve recommendations, to predict future behavioural directions,
but not purchase intent. [29] further extends [14] by focusing on
data augmentation and compensating for shifts in the underlying
distribution of the data.

The search for better LSTM model architectures is almost as
old as LSTM itself [10], [2]. In [13], the authors found that the
forget gate and the output activation function are the most critical
components in the LSTM cell. In [7], the authors found that more
advanced recurrent units (i.e. variants such as LSTM and GRU that
incorporate gating mechanisms) regularly outperform standard
recurrent units and that for the most part, LSTM and GRU provide
equivalent performance. [1] employs layer normalisation to reduce
the training time for recurrent neural networks - an important goal
given the inordinate time required to train SotA models on larger
datasets. In [19], regularisation is applied to RNNs stochastically,
with the aim of improving generalisation.

That the performance of neural network-based models depends
heavily on the ordering of input sequences is well known. The
authors of [5] argue that careful selection of training samples can
achieve better generalisation. In [12], optimal performance on a
sequence generation task is achieved by preserving order during
training, while [4] observes that faster convergence can be observed
if batch order is randomised between epochs. These observations
are seemingly at odds with each other, and serve to illustrate the
requirement for domain and dataset-specific tuning of training
algorithms.

3 RECURRENT NEURAL NETWORKS
Recurrent neural networks [26] (RNNs) are a specialised class of
neural networks for processing sequential data. A recurrent net-
work is deep in time rather than space and arranges hidden state
vectors hlt in a two-dimensional grid, where t = 1 . . .T represents
time and l = 1 . . . L is the depth. All intermediate vectors hlt are
computed as a function of hlt−1 and hl−1t . Through these hidden
vectors, each output y at some particular time step t becomes an ap-
proximating function of all input vectors up to that time, x1, . . . ,xt
[18].

3.0.1 LSTM and GRU. Long Short-Term Memory (LSTM) [15]
is an extension to standard RNNs designed to address the twin
problems of vanishing and exploding gradients during training
[23]. Vanishing gradients make learning difficult as the correct
(downward) trajectory of the gradient is difficult to discern, while
exploding gradients make training unstable - both are undesirable
outcomes. Long-term dependencies in the input data, causing a
deep computational graph which must iterate over the data are the
root cause of vanishing / exploding gradients. In [11], the authors
explain this phenomenon succinctly. Like all deep learning models,



Understanding Ecommerce Clickstreams: A Tale of Two States Conference’17, July 2017, Washington, DC, USA

ct

Cell

× ht×

×

ft Forget Gate

itInput Gate otOutput Gate

xt

xt

xt

Figure 2: A single LSTM cell, depicting the hidden and cell
states, as well as the three gates controlling memory (input,
forget and output).

RNNs require multiplication by a matrix W . After t steps, this
equates to multiplying byW t . Therefore:

W t = (Vdiaд(λ)V −1)t = Vdiaд(λ)tV −1 (1)
Eigenvalues (λ) that are not more or less equal to 1 will either

explode if they are > 1, or vanish if they are < 1. Gradients will
then be scaled by diaд(λ)t .

LSTM solves this problem by using an internal recurrence, which
stabilises the gradient flow, even over long sequences. However
this comes at the price of complexity. For each element in the input
sequence, each layer computes the following function:

it = σ (Wiixt + bii +Whih(t−1) + bhi )
ft = σ (Wi f xt + bi f +Whf h(t−1) + bhf )
дt = tanh(Wiдxt + biд +Whch(t−1) + bhд)
ot = σ (Wioxt + bio +Whoh(t−1) + bho )
ct = ft ∗ c(t−1) + it ∗ дt
ht = ot ∗ tanh(ct )

(2)

where:
ht is the hidden state at time t,

ct is the cell state at time t,
xt is the hidden state of the previous layer at time t or inputt for
the first layer,
it , ft , дt , ot are the input, forget, cell, and out gates, respectively,
σ is the sigmoid function.

3.1 Model Structure / Hidden layers
In Deep Learning, the term "hidden layers" is used to refer to any
model layer where the training data does not stipulate the desired
output for these layers. Instead the training algorithm is free to use
these layers to construct the best approximation for the desired
function f ∗ - in other words hidden layers contribute to the overall
model capacity in the form of learnable / trainable parameters.

Figure 3 below illustrates the standard model under discussion
here - independent of the recurrent cell type used. The cells are

Time (width 10)

Price variance (width 10)

Item (width 100)

Price (width 10)

Item category (width 10)

LS
TM

 3 (256)

LS
TM

 2 (256)

LS
TM

 1 (256)

Linear (256)

Item quantity (width 10)

Shared h(t) and c(t) 

Skip connections

Figure 3: Schematic illustrating the general model architec-
ture used for all experiments. The three most important
variables are whether or not to re-use hidden state across
batches, the recurrence cell type and training sampler used.

organised into three layers with 256 cells per layer. The first layer
accepts input from a group of input embeddings (unique input
values are mapped to a corresponding vector of real values), while
the output of the last layer is combined using a linear layer and
passed through a non-linearity to generate a session prediction.

4 EXPERIMENTS
Our experiments focused on the two areas of RNN training where
we observed significant differences in RNN performance depending
on the choice taken:

• Whether or not hidden state was shared between batches.
• The sampling method used to construct batches as part of
the training algorithm.

4.1 Desired Task
Predicting a users intent to purchase from their clickstream is a
difficult task [27]. Clickers (users who only click and never purchase
within a session) and buyers (users who click and also purchase
at least one item within a single session) can appear to be very
similar, right up until a purchase action occurs. Additionally, the
ratio between clickers and buyers is always heavily imbalanced -
and can be 20:1 in favour of clickers or higher. An uninterested user
will often click on an item during browsing as there is no cost to
doing so - an uninterested user will not purchase an item however.
As noted in [30], shoppers behave differently when visiting online
vs physical stores and online conversion rates are substantially
lower, for a variety of reasons.

When a merchant has increased confidence that a subset of
users are more likely to purchase, they can use this information in
the form of preemptive actions to maximise conversion and yield.
The merchant may offer a time-limited discount, spend more on
targeted (and relevant) advertising to re-engage these users, create
bundles of complementary products to push the user to complete
their purchase, or even offer a lower-priced own-brand alternative
if the product is deemed to be fungible.



Conference’17, July 2017, Washington, DC, USA H. Sheil et al.

4.2 Dataset Used
The RecSys 2015 Challenge [3] is a set of Ecommerce clickstreams
well suited to testing purchase prediction models. It is reason-
able in size, consisting of 9.2 million user sessions. These sessions
are anonymous and consist of a chronological sequence of time-
stamped events describing user interactions (clicks) with content
while browsing and shopping online. The dataset also contains a
very high proportion of short length sessions (<= 3 events), making
this problem setting quite difficult for RNNs to solve.

No sessions were excluded - the dataset was used in its entirety.
This means that for sequences with just one click, we require the
trained embeddings to accurately describe the item, and time of
viewing by the user to accurately classify the session, while for
longer sessions, we can rely more on the RNN model to extract
information from the sequence. This decision makes the training
task harder for our RNN model, but is a fairer comparison to previ-
ous work using GBM where all session lengths were also included
[25],[31],[27]. Lastly, the dataset is quite imbalanced - the class of
interest (buyers) represents just 5% of the total number of samples.

4.3 RNNs vs GRU vs LSTM
Gated Recurrent Units, or GRU [6] are a simplification of LSTM,
with one less gate and the hidden state and cell state vectors com-
bined. These modifications mean that GRU is less computationally
intensive to train versus LSTM. In practice, both LSTM and GRU
are often used interchangeably and the performance difference be-
tween both cell types is often minimal and / or dataset-specific.
RNN cells are the simplest of all recurrence cell types, with just a
feedback loop from time t − 1 to time t and possessing none of the
gate structures / arrays used by GRU or LSTM.

Table 1 shows the impact of stateful vs stateless hidden state
sharing on 4 widely-used RNN architectures.

Model Stateful AUC Stateless AUC
LSTM 0.75 0.839
GRU 0.756 0.831

RNN (TANH) 0.716 0.807
RNN (RELU) 0.789 0.826

Table 1: The effect of sharing hidden layer parameters on
4 widely used RNN model architectures - LSTM, GRU, and
vanilla RNN using TANH or RELU non-linear activation
functions. In all cases the effect of not using non-local state
is a noticeable increase in AUC performance for a binary
classification task. We use AUC to measure model perfor-
mance since the classes are imbalanced.

4.4 Chronological Training Regime
A common technique to prevent over-fitting is to randomly sample
from the training set during training and present disjoint samples
to the model. However, if our goal is for LSTM to learn trends that
develop over time then we must train chronologically and assume
that there is a progression through time that our LSTM model can
learn to discern between session outcomes. Therefore we re-order
the training and testing set by time and perform both training and

0 20 40 60 80
Batches

0.700

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

AU
C

Sequential training
Random training

Figure 4: Training performance of LSTM under two sam-
pling regimes: chronological (sequential) and random. Ran-
dom presentation of examples performs better overall, both
in training and at inference time on the test set.

inference chronologically. As figure 4 shows, the initial results are
very positive with a higher training performance, but roughly 20%
into the epoch, training degrades substantially and does not recover.
Validation performance is also significantly reduced. Therefore we
conclude, that with conventional LSTM at least, there is no clear
evolution in patterns over linear time that can be used to improve
performance. Even though clickstreams are at some level a time
series, the best model performance is achieved when not treating
them as time series and instead sampling randomly. This finding is
closely related to the initial finding shown in 1, where it is counter-
productive to pass hidden state across batch boundaries.

4.5 Parameter Reduction
Our second experiment tests the theory that by selective ablation
of certain parts of the model, we can remove the model’s ability to
pay attention to global data features. We reduce model capacity by
freezing the embeddings only and retaining all of the RNN capacity.
Our motivation in doing this is that not all model parameters are
created equal - the embedding for an infrequently-encountered
item will have far less effect on model performance than the hidden
state contained directly in the model itself. Therefore we:

• Froze the entire embeddings layer - model loss was not back-
propagated to the input layer.



Understanding Ecommerce Clickstreams: A Tale of Two States Conference’17, July 2017, Washington, DC, USA

• Moved from LSTM to vanilla RNN with RELU activations -
removing internal memory from the model itself.

Under normal training conditions, themodel loss is back-propagated
all the way into the aggregate embedding layer, in effect treating
these embeddings as a trainable memory for concepts such as pop-
ular and unpopular items / categories / dates, similar versus dissim-
ilar item pairs and so on. With the embedding layers frozen, model
performance does indeed reduce, as the figure below demonstrates.

These two changes resulted in a very large decrease in the num-
ber of the model parameters - from 6,945,871 to 367,873, or a reduc-
tion of 94%. As shown in table 2, these changes caused the model
to under-perform our best model, but perhaps not by as much as
expected.

Model Num parameters Test AUC
LSTM 6,945,871 0.839
LSTM 1,470,721 0.74

RNN (TANH) 367,873 0.722
RNN (RELU) 367,873 0.762

Table 2: The effect of removing the ability of RNN and LSTM
to store dataset statistics other than those directly obtain-
able from a session (i.e. local). Due to the restrictions im-
posed, both RNN models have 5% of the best model param-
eters yet are able to recover 86% and 90% of the predictive
power.

4.6 Implementation
The experiments were carried out using PyTorch [24]. In the Py-
Torch framework, the chronological and random training regime
was implemented using the SequentialSampler and RandomSampler
classes, both sub-classes of the Sampler class. Hidden state was
initialised as a zero tensor in all cases and then either re-zeroed
between batches (to complement random presentation of samples
during training), or re-used between batches in the chronological
training case. When training chronologically, the hidden state was
detached from the computational graph after each batch to avoid
the automatic differentiation from back-propagating all the way
back to the beginning of each epoch.

5 SUMMARY AND CONCLUSION
We presented a series of experiments using different Recurrent Neu-
ral Network types to investigate if both global and local (session-
level) patterns in Ecommerce datasets are used to infer user intent.
The conclusion is yes, albeit with some caveats: although train-
ing results were substantially affected when the training set-up
was configured to enable global training, results on the validation
and test sets under-performed a training configuration where no
global patterns or context were assumed. Instead, RNNs can use
trainable embeddings to learn global statistics over time to improve
performance.

Our results demonstrate that careful selection and configuration
of both model and training regime is necessary when applying
RNNs / LSTM to the domain of Ecommerce and clickstream analysis.
Moreover, currently accepted best practices for RNNword language

models do not automatically transfer to clickstream analysis and
should be tested carefully on new datasets and domains.

In future work, we plan to investigate if the failure of a chrono-
logical training regime for LSTM is caused by an inherent weakness
of the LSTM architecture, or if better training regimes or modifica-
tions can be found.

REFERENCES
[1] Lei Jimmy Ba, Ryan Kiros, and Geoffrey E. Hinton. 2016. Layer Normalization.

CoRR abs/1607.06450 (2016). arXiv:1607.06450 http://arxiv.org/abs/1607.06450
[2] Justin Bayer, Daan Wierstra, Julian Togelius, and Jürgen Schmidhuber. 2009.

Evolving Memory Cell Structures for Sequence Learning. In Artificial Neural
Networks – ICANN 2009, Cesare Alippi, Marios Polycarpou, Christos Panayiotou,
and Georgios Ellinas (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 755–
764.

[3] David Ben-Shimon, Alexander Tsikinovsky, Michael Friedmann, Bracha Shapira,
Lior Rokach, and Johannes Hoerle. 2015. RecSys Challenge 2015 and the YOO-
CHOOSE Dataset. In Proceedings of the 9th ACM Conference on Recommender
Systems (RecSys ’15). ACM, New York, NY, USA, 357–358. https://doi.org/10.
1145/2792838.2798723

[4] Yoshua Bengio. 2012. Practical recommendations for gradient-based training of
deep architectures. CoRR abs/1206.5533 (2012). arXiv:1206.5533 http://arxiv.org/
abs/1206.5533

[5] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. 2009.
Curriculum Learning. In Proceedings of the 26th Annual International Conference
on Machine Learning (ICML ’09). ACM, New York, NY, USA, 41–48. https:
//doi.org/10.1145/1553374.1553380

[6] KyungHyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio.
2014. On the Properties of Neural Machine Translation: Encoder-Decoder Ap-
proaches. CoRR abs/1409.1259 (2014). arXiv:1409.1259 http://arxiv.org/abs/1409.
1259

[7] Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Bengio. 2014.
Empirical Evaluation of Gated Recurrent Neural Networks on SequenceModeling.
CoRR abs/1412.3555 (2014). arXiv:1412.3555 http://arxiv.org/abs/1412.3555

[8] Anna Veronika Dorogush, Andrey Gulin, Gleb Gusev, Nikita Kazeev, Liud-
mila Ostroumova Prokhorenkova, and Aleksandr Vorobev. 2017. Fighting bi-
ases with dynamic boosting. CoRR abs/1706.09516 (2017). arXiv:1706.09516
http://arxiv.org/abs/1706.09516

[9] Jerome H. Friedman. 2000. Greedy Function Approximation: A Gradient Boosting
Machine. Annals of Statistics 29 (2000), 1189–1232.

[10] Felix A. Gers and Juergen Schmidhuber. 2000. Recurrent Nets That Time and
Count. Technical Report.

[11] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT
Press. http://www.deeplearningbook.org.

[12] Alex Graves. 2013. Generating Sequences With Recurrent Neural Networks.
CoRR abs/1308.0850 (2013). arXiv:1308.0850 http://arxiv.org/abs/1308.0850

[13] Klaus Greff, Rupesh Kumar Srivastava, Jan Koutník, Bas R. Steunebrink, and
Jürgen Schmidhuber. 2015. LSTM: A Search Space Odyssey. CoRR abs/1503.04069
(2015). arXiv:1503.04069 http://arxiv.org/abs/1503.04069

[14] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2015. Session-based Recommendations with Recurrent Neural Networks. CoRR
abs/1511.06939 (2015). arXiv:1511.06939 http://arxiv.org/abs/1511.06939

[15] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Comput. 9, 8 (Nov. 1997), 1735–1780. https://doi.org/10.1162/neco.1997.9.
8.1735

[16] Dietmar Jannach, Malte Ludewig, and Lukas Lerche. 2017. Session-based item
recommendation in e-commerce: on short-term intents, reminders, trends and
discounts. User Modeling and User-Adapted Interaction 27 (2017), 351–392.

[17] Yuchin Juan, Yong Zhuang, Wei-Sheng Chin, and Chih-Jen Lin. 2016. Field-
aware Factorization Machines for CTR Prediction. In Proceedings of the 10th ACM
Conference on Recommender Systems (RecSys ’16). ACM, New York, NY, USA,
43–50. https://doi.org/10.1145/2959100.2959134

[18] Andrej Karpathy, Justin Johnson, and Fei-Fei Li. 2015. Visualizing and Under-
standing Recurrent Networks. CoRR abs/1506.02078 (2015). arXiv:1506.02078
http://arxiv.org/abs/1506.02078

[19] David Krueger, Tegan Maharaj, János Kramár, Mohammad Pezeshki, Nicolas Bal-
las, Nan Rosemary Ke, Anirudh Goyal, Yoshua Bengio, Hugo Larochelle, Aaron C.
Courville, and Chris Pal. 2016. Zoneout: Regularizing RNNs by Randomly Pre-
serving Hidden Activations. CoRR abs/1606.01305 (2016). arXiv:1606.01305
http://arxiv.org/abs/1606.01305

[20] Zachary Chase Lipton. 2015. A Critical Review of Recurrent Neural Networks
for Sequence Learning. CoRR abs/1506.00019 (2015). arXiv:1506.00019 http:
//arxiv.org/abs/1506.00019

[21] Malte Ludewig and Dietmar Jannach. 2018. Evaluation of Session-based Rec-
ommendation Algorithms. CoRR abs/1803.09587 (2018). arXiv:1803.09587

http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1607.06450
https://doi.org/10.1145/2792838.2798723
https://doi.org/10.1145/2792838.2798723
http://arxiv.org/abs/1206.5533
http://arxiv.org/abs/1206.5533
http://arxiv.org/abs/1206.5533
https://doi.org/10.1145/1553374.1553380
https://doi.org/10.1145/1553374.1553380
http://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1706.09516
http://arxiv.org/abs/1706.09516
http://www.deeplearningbook.org
http://arxiv.org/abs/1308.0850
http://arxiv.org/abs/1308.0850
http://arxiv.org/abs/1503.04069
http://arxiv.org/abs/1503.04069
http://arxiv.org/abs/1511.06939
http://arxiv.org/abs/1511.06939
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1145/2959100.2959134
http://arxiv.org/abs/1506.02078
http://arxiv.org/abs/1506.02078
http://arxiv.org/abs/1606.01305
http://arxiv.org/abs/1606.01305
http://arxiv.org/abs/1506.00019
http://arxiv.org/abs/1506.00019
http://arxiv.org/abs/1506.00019
http://arxiv.org/abs/1803.09587


Conference’17, July 2017, Washington, DC, USA H. Sheil et al.

http://arxiv.org/abs/1803.09587
[22] Daniel Neil, Michael Pfeiffer, and Shih-Chii Liu. 2016. Phased LSTM: Acceler-

ating Recurrent Network Training for Long or Event-based Sequences. CoRR
abs/1610.09513 (2016). arXiv:1610.09513 http://arxiv.org/abs/1610.09513

[23] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. 2013. On the Difficulty
of Training Recurrent Neural Networks. In Proceedings of the 30th International
Conference on International Conference onMachine Learning - Volume 28 (ICML’13).
JMLR.org, III–1310–III–1318. http://dl.acm.org/citation.cfm?id=3042817.3043083

[24] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in PyTorch. (2017).

[25] Peter Romov and Evgeny Sokolov. 2015. RecSys Challenge 2015: Ensemble
Learning with Categorical Features. In Proceedings of the 2015 International ACM
Recommender Systems Challenge (RecSys ’15 Challenge). ACM, New York, NY,
USA, Article 1, 4 pages. https://doi.org/10.1145/2813448.2813510

[26] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. 1986. Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, Vol. 1. MIT Press,
Cambridge, MA, USA, Chapter Learning Internal Representations by Error Prop-
agation, 318–362. http://dl.acm.org/citation.cfm?id=104279.104293

[27] Humphrey Sheil and Omer Rana. 2017. Classifying and Recommending Using
Gradient Boosted Machines and Vector Space Models. In Advances in Compu-
tational Intelligence Systems. UKCI 2017., Zhang Q Chao F., Schockaert S. (Ed.),
Vol. 650. Springer, Cham. https://doi.org/10.1007/978-3-319-66939-7_18

[28] Humphrey Sheil, Omer Rana, and Ronan Reilly. 2018. Predicting purchasing
intent: Automatic Feature Learning usingRecurrent Neural Networks. In ACM
SIGIR Forum. ACM.

[29] Yong Kiam Tan, Xinxing Xu, and Yong Liu. 2016. Improved Recurrent Neural
Networks for Session-based Recommendations. CoRR abs/1606.08117 (2016).
arXiv:1606.08117 http://arxiv.org/abs/1606.08117

[30] Arthur Toth, Louis Tan, Giuseppe Di Fabbrizio, and Ankur Datta. 2017. Predicting
Shopping Behavior with Mixture of RNNs. In ACM SIGIR Forum. ACM.

[31] Maksims Volkovs. 2015. Two-Stage Approach to Item Recommendation from
User Sessions. In Proceedings of the 2015 International ACM Recommender Systems
Challenge (RecSys ’15 Challenge). ACM, New York, NY, USA, Article 3, 4 pages.
https://doi.org/10.1145/2813448.2813512

[32] Chao-YuanWu, Amr Ahmed, Alex Beutel, Alexander J. Smola, and How Jing. 2017.
Recurrent Recommender Networks. In Proceedings of the Tenth ACM International
Conference on Web Search and Data Mining (WSDM ’17). ACM, New York, NY,
USA, 495–503. https://doi.org/10.1145/3018661.3018689

[33] Yu Zhu, Hao Li, Yikang Liao, Beidou Wang, Ziyu Guan, Haifeng Liu, and Deng
Cai. 2017. What to Do Next: Modeling User Behaviors by Time-LSTM. In IJCAI.

http://arxiv.org/abs/1803.09587
http://arxiv.org/abs/1610.09513
http://arxiv.org/abs/1610.09513
http://dl.acm.org/citation.cfm?id=3042817.3043083
https://doi.org/10.1145/2813448.2813510
http://dl.acm.org/citation.cfm?id=104279.104293
https://doi.org/10.1007/978-3-319-66939-7_18
http://arxiv.org/abs/1606.08117
http://arxiv.org/abs/1606.08117
https://doi.org/10.1145/2813448.2813512
https://doi.org/10.1145/3018661.3018689

	Abstract
	1 Introduction
	2 Related Work
	3 Recurrent Neural Networks
	3.1 Model Structure / Hidden layers

	4 Experiments
	4.1 Desired Task
	4.2 Dataset Used
	4.3 RNNs vs GRU vs LSTM
	4.4 Chronological Training Regime
	4.5 Parameter Reduction
	4.6 Implementation

	5 Summary and Conclusion
	References

