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ABSTRACT With increasing integration of various distributed energy resources, electric distribution
networks are changing to an energy exchange platform. Accurate voltage-to-power sensitivities play a
vital role in system operation and control. Relative to the off-line method, measurement-based sensitivity
estimation avoids the errors caused by incorrect device parameters and changes in network topology.
An online estimation of the voltage-to-power sensitivity based on phasor measurement units is proposed. The
sparsity of the Jacobian matrix is fully used by reformulating the original least-squares estimation problem as
a sparse-recovery problem via compressive sensing. To accommodate the deficiency of the existing greedy
algorithm caused by the correlation of the sensing matrix, a modified sparse-recovery algorithm is proposed
based on the mutual coherence of the phase angle and voltage magnitude variation vectors. The proposed
method can ensure the accuracy of estimation with fewer measurements and can improve the computational
efficiency. Case studies on the IEEE 33-node test feeder verify the correctness and effectiveness of the
proposed method.

INDEX TERMS Smart distribution network, voltage-to-power sensitivity, compressive sensing, phasor
measurement units.

I. INTRODUCTION
The increasing penetration of distributed generators (DGs),
flexible loads and energy storage poses new challenges to
the operation and dispatch of distribution networks, requir-
ing substantial improvements in system observability and
controllability [1]–[3]. Reverse power flow and harmonic
pollution are challenging traditional management and protec-
tion technologies [4]. Distribution networks are more prone
to congestions and voltage problems [5], [6]. Therefore,
the distribution system operator (DSO) must have fast and
accurate access to the current status and its evolution in
the near future [7]. To effectively manage the uncertainties
associated with both demand and generation, it is critical to
precisely acquire the sensitivities of operation state variables
to the fluctuation of loads and renewables [8], [9]. Conven-
tionally, the voltage-to-power sensitivities are obtained from
the power flow calculation. The accuracy is not guaranteed
since the results depend heavily on accurate line parameters

and up-to-date network topology which may not always be
available [10].

To accommodate the DGs and flexible loads, the need
for monitoring and analysis of distribution system behav-
ior in real time is growing. However, the existing supervi-
sory control and data acquisition (SCADA) system cannot
readily meet the need for precision and real-time perfor-
mance [11]. Phasor measurement units (PMUs) can achieve
high-precision synchronous measurements [12] and are
applied both in electric transmission systems and distribu-
tion systems. Their application can effectively improve the
system observability and provide new options to address
the challenges in operation control [13]. Certain micro-
synchrophasors (µPMUs) have been exploited for distribu-
tion system operational control to improve the performance of
the electric power distribution and coordination [14].µPMUs
can support the control of distributed energy resources. With
lower cost and smaller size, µPMUs can meet the economic
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requirements of distribution utilities. Their applications in
fault detection, model validation, and state estimation were
evaluated in [15]. The high-resolution measurements of the
voltage phase angle can offer significant new options for
actively managing distribution systems.

The accuracy of state estimation is greatly improved with
the help of measurements from PMU in [16]. Furthermore,
considering the line parameter errors, PMU measurements
can be used in state estimation to identify the erroneous
transmission line parameters in [17]. Least-squares estima-
tion (LSE) is used to estimate the parameters of the branches
that are PMU-observable. Line parameters are estimated
directly from PMU data at the two ends via total least-
squares estimation (TLSE) in [18] to accommodate mea-
surement errors. With the buses monitored all equipped with
PMUs, sensitivity parameters of the complete system can
be estimated in the power transmission system [19], [20].
Linear sensitivity distribution factors were computed from
multi-time slot PMU data based on LSE in [21]. A statistical
admittance matrix estimation approach was proposed in [22]
based on PMUdata via cross-correlation analysis. Power flow
Jacobian matrix was estimated using LSE via the vectors
of active power, reactive power, phase angle and voltage
magnitude variations obtained from real-time and historical
PMU data in [23]. These sensitivity parameter estimation
methods depend entirely on the measurements, meaning that
inaccuracies in the line parameters and topology information
have no effect on the estimation results.

In the present study, the voltage-to-power sensitivities
are obtained from the inversion of the estimated power
flow Jacobian matrix. Differing from the preliminary work,
we exploit a sparse representation of the Jacobian matrix
estimation. The sparsity was also used in [24] and [25] to
estimate the transmission system distribution factors and
nodal-admittance matrix. The accuracy of estimation is
improved considerably. However, unlike transmission sys-
tems, real and reactive power flows cannot be decoupled in
distribution networks; thus, their linear approximations are
invalid. To exploit the sparsity, the original LSE problem is
transformed into a sparse-recovery problem via compressive
sensing (CS). An exact solution of the CS reconstruction
problem directly from the minimization of the l0 norm is
unpractical as this approach requires an exhaustive combi-
natorial search [26]. Greedy algorithms such as orthogonal
matching pursuit (OMP) are effective ways to find approxi-
mate solutions in constrained error tolerance [27]. To guar-
antee the efficiency of finding the candidate solution that
is sufficiently sparse, the restrict isometry property (RIP) is
required which needs lower coherence between the columns
of the sensing matrix [27]. However, the sensing matrix of
the power flow Jacobian matrix estimation is composed of
the vectors of phase angle and voltage magnitude variations.
These vectors are highly correlated, which adversely affects
the convergence of the existing greedy algorithms.

Here, we present an online method to estimate the voltage-
to-power sensitivity considering the sparsity of the power

flow Jacobian matrix. The main contributions of this study
are as follows: 1) The sparsity of the power flow Jacobian
matrix is exploited in estimation. A sparse-recovery model of
the Jacobian matrix estimation is proposed via compressive
sensing. The demands of effective measurements are highly
reduced while ensuring estimation accuracy. 2) The correla-
tion in the sensing matrix is used to improve the performance
of the existing greedy algorithm. Coherence-based compres-
sive sampling match pursuit (CohCoSaMP) is proposed to
accommodate the deficiency of the existing greedy algorithm
caused by the correlation of the sensing matrix and enhance
the convergence.

The remainder of this paper is organized as follows.
Section II describes the PMU-based power flow Jaco-
bian matrix estimation problem based on LSE method.
In Section III, the LSE problem is transformed into a sparse-
recovery problem via compressive sensing, and CohCoSaMP
is proposed to solve the problem effectively. In Section IV,
case studies on IEEE 33-node test feeder verify the validity
of the proposed algorithm. The conclusions are drawn in
Section V.

II. ESTIMATION OF THE POWER FLOW JACOBIAN
MATRIX BASED ON PMU MEASUREMENTS
A. DEFINITION OF THE POWER FLOW JACOBIAN MATRIX
By linearizing the nonlinear power flow equation at the cur-
rent operation point, the relationship of power variation and
voltage variation can be expressed as shown in (1).[

1P
1Q

]
=

[
H N
M L

] [
1θ

1V

]
= J

[
1θ

1V

]
(1)

where 1P and 1Q denote the change of active power and
reactive power at each node, respectively.1θ and1V denote
the change of phase angle and voltage magnitude at each
node, respectively. J is the Jacobian matrix of the power
flow equation in the current state. H, N,M, and L are the
submatrices of J, and the elements are partial derivatives of
active and reactive power with respect to phase angle and
voltage magnitude as follows.

Hij = ∂Pi/∂θj, Nij = ∂Pi/∂Vj,

Mij = ∂Qi/∂θj, and Lij = ∂Qi/∂Vj.

B. APPROXIMATE LINEAR RELATIONSHIP BETWEEN
VARIATIONS OF VOLTAGE AND POWER
Let1P

θj
i denote the change in active power injection at node i

caused by a small variation of the phase angle at node j,
denoted by 1θj. Then, the relationship can be expressed as
shown in (2).

Hij = ∂Pi/∂θj ≈ 1P
θj
i /1θj (2)

Suppose that 1P
Vj
i denotes the change in active power

injection at node i due to a small variation of voltage magni-
tude at node j, expressed as1Vj. Then, the following relation
can be obtained.

Nij = ∂Pi/∂Vj ≈ 1P
Vj
i /1Vj (3)
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Therefore, the change of active power can be expressed
as the sum of variations resulting from the change of phase
angle and voltage magnitude at each node. Then, the change
of active power at node i, denoted by 1Pi, can be described
as shown in (4).

1Pi =
∑

j∈�

(
1P

θj
i +1P

Vj
i

)
(4)

where� denotes the set of nodes in the distribution network.
By substituting (2) and (3) into (4), the relationship of the

active power change of PQ nodes and PV nodes with the
phase angle and voltage magnitude change can be approxi-
mated as shown in (5).

1Pi ≈
∑

j∈�L∪�V
Hij1θj +

∑
j∈�L

Nij1Vj (5)

where�L denotes the set of PQ nodes,�V denotes the set of
PV nodes.

Similarly, as shown in (6), the relationship of the reactive
power change of PQ nodes to the phase angle and voltage
magnitude change can be approximated by the elements of
the Jacobian matrix.

1Qi ≈
∑

j∈�L∪�V
Mij1θj +

∑
j∈�L

Lij1Vj (6)

C. PMU-BASED JACOBIAN MATRIX ESTIMATION
The historical measurements of PMU for analysis can
be acquired via a phasor data concentrator (PDC) [30].
However, because of the high frequency of measurements,
the operation state change in the measurement time step
may be too small to be used in sensitivity estimation. Let
Pi (t),Qi (t), θi (t) and Vi (t) denote the current measure-
ments of active power, reactive power, phase angle and volt-
age magnitude at node i, respectively. The measurements of
the current operation point of node i are expressed as Pi [0] =
Pi (t),Qi [0] = Qi (t), θi [0] = θi (t), and Vi [0] = Vi (t). Let
Pi (t − m1t),Qi (t − m1t), θi (t − m1t), and Vi (t − m1t)
represent the mth history measurements of node i. To ensure
effective measurement, the distance between the mth histor-
ical time step and the current operation point is defined as
shown in (7).

Dm,0=

√∑
i∈�
(1Pi (m, 0)/SB)2+

∑
i∈�
(1Qi (m, 0)/SB)2

(7)

where1t is the time step of the measurements.1Pi (m, 0) =
Pi (t − m1t) − Pi [0], and 1Qi (m, 0) = Qi (t − m1t) −
Qi [0]. SB denotes the rated capacity. α is defined as the
threshold value of operation state judgement. If Dm,0 ≤ α,

then the mth time step is regarded as the same operation point
of the current state; otherwise, for Dm,0 > α and for any
p < m that satisfies Dp,0 ≤ α, then the mth time step is
regarded as the first group historical operation point, and for
the (m+1)th time step, its distance with the first group histor-
ical operation point, denoted by Dm+1,1, is calculated to find
a new historical operation point. This process continues until
C groups of historical measurements are obtained to meet the

estimation requirements. Suppose that Pi [k], Qi [k], θi [k],
and Vi [k] denote the active power, reactive power, phase
angle and voltage magnitude of the k th historical operation
point of node i, respectively. The corresponding flow chart to
obtain the effective PMU measurements is shown in Fig. 1.

FIGURE 1. Flow chart to obtain the effective PMU measurements.

Then C groups of variations of power and voltage are
obtained by subtracting each group historical measurement
from the current measurement.

1Pi [k] = Pi [k]− Pi [0]

1Qi [k] = Qi [k]− Qi [0]

1θi [k] = θi [k]− θi [0]

1Vi [k] = θi [k]− θi [0]

where k = 1, 2, · · · ,C . According to (5) and (6), the approx-
imate linear relationships are obtained as shown in (8) and (9).

1Pi [k] ≈
∑

j∈�L∪�V
Hij1θj [k]+

∑
j∈�L

Nij1Vj [k] (8)

1Qi [k] ≈
∑

j∈�L∪�V
Mij1θj [k]+

∑
j∈�L

Lij1Vj [k] (9)

For node i, the variation vectors of power and voltage are
interpreted as follows.

1P i = [1Pi [1] , · · · ,1Pi [C]]T ,

1Qi = [1Qi [1] , · · · ,1Qi [C]]T ,

1θ i = [1θi [1] , · · · ,1θi [C]]T ,

1V i = [1Vi [1] , · · · ,1Vi [C]]T ,

When C > 2 |�L| + |�V|, the following overdetermined
equations are formulated.

1P i ≈
[
(1θ j)j∈�L∪�V

(1V j)j∈�L

] [HT
i

NT
i

]
(10)

1Qi ≈
[
(1θ j)j∈�L∪�V

(1V j)j∈�L

] [MT
i

LTi

]
(11)
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where H i =

[
(H ij)j∈�L∪�V

]
,N i =

[
(N ij)j∈�L

]
,M i =[

(M ij)j∈�L∪�V

]
and Li =

[
(L ij)j∈�L

]
denote the ith row of

each submatrix of the power flow Jacobian matrix. |�L| is
the cardinality of �L, and |�V| is the cardinality of �V.
The LSE problem is modeled as (12) with the sensing

matrix Ã =
[(
1θ j

)
j∈�L∪�V

(
1V j

)
j∈�L

]
.

min eTi,Pei,P

s.t. 1P i = Ã
[
HT
i

NT
i

]
+ ei,P (12)

where ei,P denotes the residual vector of active power of
node i.
By solving the LSE problem (12), the optimal estimates of

H i and N i are given by (13).[
Ĥ
T
i

N̂
T
i

]
=

(
Ã
T
Ã
)−1

Ã
T
1P i (13)

where Ĥ i is the estimation of H i and N̂ i is the estimation
of N i.

In the same way, the optimal estimates ofM i and Li can be
acquired.

III. VOLTAGE-TO-POWER SENSITIVITY ESTIMATION
CONSIDERING THE SPARSITY OF THE
JACOBIAN MATRIX
It is necessary to formulate overdetermined equations to
estimate the power flow Jacobian matrix, which means that
the sets of effective measurements must be greater than the
dimensions of the linear equation. However, the Jacobian
matrix is a sparse matrix according to the power flow equa-
tions, as shown in (14) and (15). The nonzero elements of
each row arise only in the position corresponding to the
directly connected nodes.

Pi = Vi
∑

j∈�i
Vj
(
Gijcosθij + Bijsinθij

)
(14)

Qi = Vi
∑

j∈�i
Vj
(
Gijsinθij − Bijcosθij

)
(15)

wherePi andQi denote the active and reactive power injecting
node i, respectively. Vi and Vj denote the voltage magni-
tudes of node i and node j, respectively. θij = θi − θj
denotes the phase angle difference between node i and node j.
�i denotes the set of nodes directly connected to node i.
Gij and Bij denote the conductance and susceptance, respec-
tively, between nodes i and j.

A. SPARSE REPRESENTATION OF JACOBIAN MATRIX
ESTIMATION

Set x =
[
HT
i

NT
i

]
and y = 1P i. By normalizing matrix Ã,

a new sensing matrix A is acquired. The elements of A satisfy
the relationship as follows.

Ai,j = Ãi,j/
∥∥∥Ãj∥∥∥

2
(16)

where ‖·‖2 denotes the l2 norm. Then, we obtain the follow-
ing relationship.

y ≈ Ax (17)

Furthermore, the following sparse-recovery problem is
obtained by taking the sparsity of vector x into account.

min ‖x‖0
‖y− Ax‖2≤ε (18)

where ‖·‖0 denotes the l0 norm. ε is a user-specified error
tolerance that may depend on the level of measurement noise
expected from the PMU data. The value of ε can be set
according to the value of measurement variation vector y
which is obtained from the PMU data. With the influence of
the measurement errors and linear hypothesis of the relation
between the variation of power and voltage, the value of
‖y− Ax‖2 cannot be zero, even if the actual value of x is
obtained in the iteration of the method. Therefore, ε can be set
as a relative error tolerance of ‖y− Ax‖2 to ‖y‖2. When the
relative error is small enough, it is considered that the optimal
approximation is obtained.

B. GREEDY ALGORITHMS FOR SPARSE RECOVERY
As it is unfeasible to solve (18) directly, basis pursuit (BP)
algorithms [31] and greedy pursuit algorithms [32] have been
developed to find approximate solutions to (18). Relative
to the convex relaxation method, greedy algorithms have
merits in both accuracy and computational complexity [33].
OMP is the most commonly used greedy algorithm to solve
the sparse-recovery problem [34]; its flowchart is given in
Algorithm 1, where λn denotes the selected column index
of the sensing matrix in the nth iteration. rn is the residual
vector in the nth iteration. N is the column number of the
sensing matrix. Aj denotes the jth column of matrix A. 3n
denotes the index set of sensing matrix column number in
nth iteration. A3n is the matrix composing the columns of the
sensing matrix corresponding to the set 3n. x̂3n is a vector
composed of the elements of x̂ corresponding to set 3n.

OMP selects only one column of the sensing matrix in
the index set in each iteration and thus requires many iter-
ations and copious computation time to solve the problem.
If the sparsity level is K , regularized orthogonal matching
pursuit (ROMP) improves OMP by selecting K columns into
the index set in each iteration and introducing a regularization
rule that reduces not only the times of iteration but also
the number of columns selected [35]. Compressive sampling
matching pursuit (CoSaMP) introduces an additional pruning
step to refine the estimate recursively. CoSaMP retains only
2K components of the index set that corresponding to the
2K largest-magnitude components of the LSE solution [36].
In contrast to the two previous algorithms, CoSaMP can
remove the invalid candidates from index set, thus reducing
the size of the final index set and improving the accuracy of
estimation.
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Algorithm 1 OMP [34]
Input: sensing matrix A, observations y, threshold value of
estimation error ε, maximum iterations M
Output: estimated value x̂ of sparse vector x
Initialize: residual r0 = y, index set of the sensing matrix
column number 30 = ∅, iteration n = 1 x̂ = 0

1. Select the column of sensing matrix that has the
highest inner product with residual.

λn = argmaxj=1:N
∣∣〈rn−1,Aj〉∣∣ (19)

2. Update the index set 3n.

3n = 3n−1

⋃
{λn} (20)

3. Solve the LSE problem.

x̂n =
(
AT3n

A3n

)−1
AT3n

y (21)

4. Update the residual rn.

rn = y− A3n x̂n (22)

5. Continue to step 6 if n > M or ‖rn‖2 < ε;
otherwise, set n = n+ 1 and return to step 1.

6. Obtain the solution x̂ according to x̂n.

x̂3n = x̂n (23)

C. COHERENCE-BASED CoSaMP
The efficiency of existing greedy algorithms for sparse-
recovery depends on the sensing matrix satisfying the restrict
isometry property that is the columns of the sensing matrix
have relatively low coherence with each other [37]. However,
the columns of the sensing matrix of the Jacobian matrix
estimation, composed of the vectors of the phase angle and
voltage magnitude variations, are highly correlated with each
other. Therefore, the existing OMP-type algorithm cannot
guarantee the convergence and accuracy of the estimation.

Coherence in the sensing matrix is harmful to the con-
vergence of the greedy pursuit algorithm, but the vectors
of phase angle and voltage magnitude variations of directly
connected nodes typically have a higher coherence with each
other than with other nodes. The nonzero elements of each
row appear in the position that corresponds exactly to the
directly connected nodes. Therefore, we can select several
columns into the index set that have the highest correlation
with the corresponding phase angle and voltage magnitude
variations as initial candidates to improve the efficiency of
the algorithm.

CohCoSaMP is proposed to extend CoSaMP in estimating
the Jacobian matrix of the power flow equation. According to
(14) and (15), the relationship between the number of nonzero
elements, denoted by Ki, corresponding to the node i and
the degree of node i, is Ki = 2 (di + 1). We first estimate
the maximal degree of the nodes in the distribution network.
Then, 2(dmax + 1) columns of sensing matrix that have the

highest coherence with the phase angle and voltage magni-
tude variations of node i are selected to form the index set.
The LSE solution is obtained according to the index set. The
final estimation is obtained if the estimation error is less than
the threshold value. Otherwise, the number of elements in
the index set is extended. The 4 (dmax + 1) columns of the
sensing matrix are transferred into the index set according
to the coherence. A CoSaMP process is activated if the
algorithm still does not converge. The complete flowchart of
CohCoSaMP is shown in Algorithm 2.

Algorithm 2 CohCoSaMP
Input: sensing matrix A, observations y, conservative esti-
mation ofmaximal degree dmax, threshold value of estimation
error ε, maximum iterations M
Output: estimated value x̂ of sparse vector x
Initialize: residual r0 = y, index set of sensing matrix
column number 30 = ∅, iteration n = 1 x̂ = 0, 8n = ∅

1. Calculate the coherence of each column with the
two column corresponding to the phase angle
and voltage magnitude variations. Obtain the
two coefficient vectors of coherence as uθ =
abs

[
ATi Aθ

]
,uU = abs

[
ATi AU

]
.

2. Select the column indexes that have the largest
dmax + 1 values in uθ and uU, and insert it into
the set 8n. Update the index set 3n.

3n = 3n−1 ∪8n (24)

3. Obtain the LSE solution x̂n using (21).
4. Update the residual using (22).
5. If ‖rn‖2 < ε, skip to step 9. Otherwise, if

n = 1, select the column indexes that have the
largest 2 (dmax + 1) values in uθ and uU, and
construct the set 8n with these indexes. Update
index set 3n using (24), and return to step 3.
Otherwise, set n = n+ 1 and continue to step 6.

6. Calculate the inner product of the sensing matrix
with residual as u = abs

[
AT rn−1

]
. Construct

8n with the column indexes corresponding the
largest 2(dmax + 1) values in u. Update index set
3n using (24).

7. Obtain the LSE solution x̂n using (21), and
construct8n with a column index corresponding
to the largest 4 (dmax + 1) absolute values in x̂n.
Reconstruct the index set using (25). Update the
residual using (26).

3n = 8n (25)

rn = y− A3n

(
AT3n

A3n

)−1
AT3n

y (26)

8. Continue to step 9 if n > M or ‖rn‖2 < ε;
otherwise, set n = n+ 1, and return to step 6.

9. Obtain the solution x̂ according to x̂n using (23).
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where Aθ denotes the submatrix of A that consists of the
vectors of phase angle variations.AU denotes the submatrix of
A that consists of the vectors of voltage magnitude variations.

Matrix J̃ is formed after estimating the rows of each node
via the proposed sparse-recovery algorithm. The estimation
of the power flow Jacobianmatrix Ĵ is obtained by calculating
the elements as shown in (27).

Ĵi,j = j̃i,j/
∥∥∥Ãj∥∥∥

2
(27)

By inverting the estimated power flow Jacobian matrix, the
voltage-to-power sensitivity matrix is obtained.

IV. CASE STUDIES AND ANALYSIS
To verify the proposed algorithm, case studies on the
IEEE 33-node test feeder are performed. The topology of
the IEEE 33-node system is shown in Fig. 2 [38]. The
rated voltage level is 12.66kV. Node 1 is the slack node.
Nodes 2-33 are PQ nodes. The maximal degree of the net-
work is 3. The rated capacity is 1MVA. Simulations are exe-
cuted on a desktop with Intel Core i5-6500 3.20 GHz CPU,
8.00GB RAM and Windows 10 operating system.

FIGURE 2. IEEE 33-node test feeder.

To simulate PMU measurements, equation (28) is used to
generate the mth actual active power of node i [21].

Ṗi (t − m1t) = Ṗi(t)+ Ṗi(t)vP1 (28)

where Ṗi(t) denotes the current actual active power of node i,
Ṗi (t − m1t) is the mth time step of actual active power, and
vP1 is a pseudorandom value drawn from the standard normal
distribution to simulate the inherent fluctuations in load with
zero mean and a standard deviation is 0.01.

The mth historical active power of node i is calculated as
shown in (29).

Pi (t − m1t) = Ṗi (t − m1t)+ vP2 (29)

vP2 represents the random measurement noise. vP2 is a pseudo-
random values drawn from the standard normal distribution
with a zero mean and a standard deviation of 0.025% [39].

Similarly, equation (30) and equation (31) are used to
generate the mth historical reactive power of node i.

Q̇i (t − m1t) = Q̇i(t)+ Q̇i(t)v
Q
1 (30)

Qi (t − m1t) = Q̇i (t − m1t)+ v
Q
2 (31)

where Q̇i(t) denote the current actual reactive power of node i.
Q̇i (t − m1t) is the mth time step of actual reactive power.

vQ1 represents the pseudorandom value drawn from the stan-
dard normal distribution with zero mean and a standard
deviation of 0.01. vQ2 represents the random measurement
noise. vQ2 represents the pseudorandom value drawn from the
standard normal distribution with zero mean and a standard
deviation of 0.025%.
α is set as 0.001 to obtain the effective simulated active and

reactive power measurements. The k th historical phase angle
and voltage magnitude are obtained by solving the power
flow equation with the k th active and reactive power that has
already been generated.

Equation (32) is used to calculate the estimation error of
the ith row of the Jacobian matrix. Equations (33) and (34)
are used to calculate the estimation errors of the power flow
Jacobian matrix and voltage-to-power sensitivity matrix.

MSEJ,i =
1
K

∑K

j=1

(
Ĵi,j − Ji,j

)2
(32)

MSEJ =
1
K 2

∑K

j=1

∑K

i=1

(
Ĵi,j − Ji,j

)2
(33)

MSES =
1
K 2

∑K

j=1

∑K

i=1

(
Ẑi,j − Zi,j

)2
(34)

whereK = 2 |�L|+|�V| denotes the dimension of the power
flow Jacobianmatrix and voltage-to-power sensitivitymatrix.
Ĵi,j and Ẑi,j denote the estimation values, and Ji,j and Zi,j
are the theoretical values. Error tolerance ε is set as 0.1% of
the l2 norm of the corresponding active and reactive power
measurement variations in estimation.

A. CONVERGENCE OF THE ALGORITHM
For IEEE 33-node test feeder, the power flow Jacobian matrix
is of 64 dimensions. More than 64 measurement groups are
required for LSE method. Therefore, the number of mea-
surement groups is set as 30, 35, 40, 45, 50, 55 and 60.
The conservative estimation of the maximal degree of the
distribution network is set as 4. LSE, OMP, ROMP, CoSaMP
and the proposed CohCoSaMP are applied to solve the prob-
lem. When the estimation error is less than 1, the ith row is
treated as successfully estimated. Table 1 shows the number
of rows of the Jacobian matrix that fail to be estimated with
the various algorithms. It is necessary to have more valid
measurements than the dimension of the Jacobian matrix for
the LSE to form the overdetermined equation, which means
that LSE cannot estimate the Jacobian matrix as long as the
number of measurements is less than 64, as shown in Table 1.
OMP, ROMP, and CoSaMP can estimate several lines of the

TABLE 1. Number of rows for which estimation failed.
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Jacobian matrix. As the number of measurements increases,
the number of successfully estimated lines in the Jacobian
matrix also increases. However, these algorithms are unable
to estimate the entire Jacobian matrix even if the number
of measurements increases to 60. In contrast, CohCoSaMP
can estimate the entire Jacobian matrix when the number of
measurements is greater than 40.

The first 32 values of the 6th row of the Jacobian matrix
estimated by OMP, ROMP, CoSaMP, and CohCoSaMP with
40 measurement groups are listed in Table 2. The correspond-
ing theoretical values are shown in the last column of Table 2.
In contrast to CohCoSaMP, the algorithm OMP, ROMP, and
CoSaMP cannot find the exact columns with the nonzero
elements of Jacobian matrix (shown in gray in Table 2), and
their estimation values deviate greatly from the theoretical
values.

TABLE 2. Estimation values with various methods of 6th row.

Table 3 shows the coherence rank of phase angle variation
of each node. The table cells filled with orange are the node
IDs that are directly connected to the corresponding node.
As shown in Table 3, for most nodes their directly connected
nodes rank in top 7. Therefore, the column number of the

TABLE 3. Coherence rank of phase angle variations of each node.

sensing matrix corresponding to the directly connected nodes
can be selected into the index set after coherence evaluation
for most of the nodes. Moreover, for other nodes, a better
index set is initialized for the CoSaMP process that will
promote the efficiency of the recovery algorithm.

B. COMPUTATIONAL EFFICIENCY
To ensure the effectiveness of the comparison, more measure-
ment groups are needed for successful estimation with the
exiting methods. The number of measurement groups is set
as 100, 150, 200, 250, 300, 350 and 400. The conservative
estimation of maximal degree is set as 4. For each type of
group, 10 times of estimations are performed to obtain the
average error of estimation of the power flow Jacobian matrix
and the voltage-to-power sensitivity matrix shown in Table 4,
Fig. 3 and Table 5, Fig. 4, respectively. The accuracy of OMP
is the lowest; the accuracy of ROMP is higher. CoSaMP can-
not achieve estimation because of the coherence between the
columns of the sensing matrix, which makes it challenging
to find the directly connected nodes with a limited size of
the index set. In contrast, CohCoSaMP not only realizes the
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TABLE 4. Average error of the power flow Jacobian matrix (×10−4).

FIGURE 3. Average error of the power flow Jacobian matrix.

TABLE 5. Average error of the voltage-to-power sensitivity
matrix (×10−12).

estimation of the Jacobian matrix but also greatly improve the
accuracy.

Table 6 and Table 7 show the average iterations and average
computation time, respectively, for each algorithm. With the
increase in measurements, the iterations and computation
time greatly increase for OMP. The iterations and computa-
tion time of ROMP do not increase substantially for increas-
ing measurements, but large number of iterations are still
needed to find the optimal solution. Notably, relative to other
algorithms, CohCoSaMP can find the optimal solution with
fewer iterations and can reduce the computation time greatly
to achieve a correlation evaluation, making this approach
more suitable for online application.

C. ESTIMATION ACCURACY
First, the number of measurement groups is set as 30, 35,
40, 45, 50, 55 and 60. The conservative estimation of max-
imal degree is set as 4. CohCoSaMP is used to solve the
sparsity-recovery problem. The estimation errors are shown
in Table 8. Then, the number of measurement groups is set

FIGURE 4. Average error of the voltage-to-power sensitivity.

TABLE 6. Average iterations (×102).

TABLE 7. Average computation time (s).

TABLE 8. Estimation errors of the Jacobian matrix (×10−4).

TABLE 9. Estimation errors of the voltage-to-power sensitivity
matrix (×10−4).

as 100, 500, 1000, 1500 and 2000. LSE is used to solve the
problem. The estimation errors are shown in Table 9. When
the number of measurement groups is 60, CohCoSaMP has
a higher accuracy than LSE with a measurement number
of 1500 and almost the same accuracy when the measurement
number is 2000. Therefore, CohCoSaMP can ensure accurate
estimation and simultaneously reduce the dependence on the
number of measurements by a considerable degree.

V. CONCLUSION
We have presented an online method to estimate the voltage-
to-power sensitivity for smart distribution networks based on
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PMU measurements considering the sparsity of the power
flow Jacobian matrix. Using the sparsity of the power flow
Jacobian matrix, compressive sensing is used to transform
the estimation problem into a sparse-recovery problem that
enables estimation with fewer measurements. Furthermore,
the performance of the existing sparse-recovery algorithm
is improved using the coherence between the vectors of
phase angle and voltage magnitude variations of the directly
connected nodes. The proposed algorithm greatly increases
the success rate of estimation and improves the estimation
accuracy. To realize the estimation of the power flow Jacobian
matrix, PMU must be equipped in each node of the dis-
tribution network, which may not be economic affordable.
Planned further research will focus on estimating the equiv-
alent voltage sensitivities with fewer PMUs equipped in the
key nodes of the distribution network.
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