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ABSTRACT The field-programmable gate array (FPGA)-based real-time simulator takes advantage of many
merits of FPGA, such as small time-step, high simulation precision, rich I/O interface resources, and low
cost. The sparse linear equations formed by the node conductance matrix need to be solved repeatedly within
each time-step, which introduces great challenges to the performance of the real-time simulator. In this paper,
a fine-grained solver of the FPGA-based real-time simulator for active distribution networks is designed to
meet the computational demand. The framework of the solver, offline process design on PC and online
process design on FPGA are proposed in detail. The modified IEEE 33-node system with photovoltaics is
simulated on a 4-FPGA-based real-time simulator. Simulation results are compared with PSCAD/EMTDC
under the same conditions to validate the solver design.

INDEX TERMS Real-time simulation, field programmable gate array (FPGA), sparse matrix,
LU decomposition, parallel scheduling, active distribution networks (ADN).

I. INTRODUCTION
Real-time (RT) simulator for active distribution networks
(ADN) integrated with various renewable energy resources
is capable of reproducing the dynamic behaviors of the real
system being modeled in detail [1]–[3]. It makes possi-
ble for the testing and validation of the system equipment
and operation strategies, such as distributed generator (DG)
prototype and its controllers, system-level voltage and fre-
quency regulation strategies, protective devices and so on [4].
An RT simulator is required to complete the computation of
the model equations that characterize the system behavior
at a pace of the real-world clock time [5]. For the real-
time simulation of ADNs, the selected time-step should be
tens of microseconds to track the high-frequency transients
and thus preserve the fidelity of simulation [6]. However,
as an essential process, solving the linear equations resulting
from the model equations of ADNs with increasing large-
scales is time-consuming and computational demanding [7].
It severely restricts the calculation speed of the simulator so
that RT simulation can hardly be reached. A high-speed linear

equation solver with sufficient accuracy is desired to meet the
real-time constraints.

Due to the expanding scale of ADNs and fast dynamic
characteristics brought by DG integration, solving the
enlarged linear equations in real-time is challenging. The
calculation speed and computation burden are two conflicts
for RT simulators. The increasing scale of ADNs expand
the dimension of the linear equations. The solving process
of such equations involves massive arithmetic operations,
which requires plenty of computation resources. Besides,
the selected time-step for simulation is generally determined
by the smallest time constant (usually relating to the power
electronic devices). To meet the real-time constraint, more
computation resources are needed to complete solving the
equations.

The existing solutions for linear equations can be clas-
sified into two categories: direct methods and iterative
methods [8]–[11]. The direct methods attempt to solve the
equations by a finite sequence of operations that the unknown
variables are eliminated successively. The iterative methods

29146
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0003-4496-439X
https://orcid.org/0000-0003-1278-2903
https://orcid.org/0000-0001-6056-7103


Z. Wang et al.: Kernel Solver Design of FPGA-Based RT Simulator for ADNs

use an initial guess to generate a sequence of improving
approximate solutions. The iteration will not stop until
the corresponding sequence converges for the given ini-
tial approximations. For the linear problems involving a
large number of variables (sometimes of the order of mil-
lions), the iterative methods are often useful, where the
direct methods would be prohibitively expensive (and in
some cases impossible) even with the powerful com-
puting resources [12]–[14]. For the medium-scale linear
systems, the direct methods are considered to be more
efficient [12]–[14]. In addition, when using iterative linear
solvers, the solution time per time-step depends on the num-
ber of iterations and this number can change from solu-
tion point to solution point. For the real-time applications,
the computation hardware needs to be synchronized at evenly
spaced time-steps with a global clock, thus the solution time
per time-step should be constant, which is a conflict require-
ment. Considering that the scale of the studied power system
is not very large and the real-time computing is difficult to be
guaranteed by iterative methods, the direct methods are more
popularly employed by the advanced RT simulators, such as
RTDS R© , RT-LAB R© and HYPERSIM R© [1]. Although a
series of well-developed linear equation solutions have been
proposed, in RT simulators built with CPU or DSP based
sequential hardware, solving the linear equations is still a
bottleneck due to the relatively slower calculation speed and
limited computational power of such hardware.

The inherent parallel hardware, field programmable gate
array (FPGA) has provided a feasible solution to meet the
need for high-performance linear equation solvers [15]. The
main advantages of FPGA is the massive parallelism, deep
pipeline, and rich distributed memories [16]. A number of
research efforts have been conducted to solve the linear
equations on FPGAs [17]–[19]. In [17], a block LU decom-
position algorithm using FPGA has been presented
in which memory accesses were studied for various
FPGA configurations. Reference [18] also proposed a block
LU decomposition algorithm on FPGAs that was applica-
ble for arbitrary matrix size. The computation time for the
aforementioned approaches are on the order of hundreds
of milliseconds or even tens of seconds. Reference [19]
proposed a small-scale real-time nonlinear electromagnetic
transient solver on FPGA, in which the partially linear alge-
braic equations were solved by Gauss-Jordan Elimination.

In this paper, a kernel solver design of FPGA-based
real-time simulator for ADNs using direct method is
proposed. In the direct methods set, LU decomposition algo-
rithm [20] is one of the commonly usedmethod to solve linear
equations. It has been included inmany popular linear algebra
libraries such as Linear Algebra Package (LAPACK) [21]
and Linear System Package (LINPACK) [22]. In this paper,
the LU decomposition algorithm is also adopted to solve
the linear equations for its simpler and easier hardware
implementation. The main solving procedure consists of
LU decomposition, forward substitution and backward sub-
stitution. Before the decomposition, the coefficient matrix

of the linear equations should be rearranged (pivoting) since
the original matrix may not support LU decomposition. The
column approximate minimum degree (COLAMD) algo-
rithm [23] is adopted to realize the matrix rearrangement.
To save the computation time, topology analysis of the result-
ing upper and lower triangular matrix is essential to compact
the column operations in the forward and backward sub-
stitution. It should be noted that the matrix rearrangement
and LU decomposition is in essence a series of elemen-
tary transformations that is realized by matrix multiplica-
tion. It involves massive arithmetic operations and consumes
plenty of time. Thus, thematrix rearrangement, LU decompo-
sition and topology analysis are performed in offline. While
the forward and backward substitutions are realized in online.
As the two substitution are in the same iterative scheme,
a unified hardware block is designed in the solver. When
performing the substitutions on FPGA, the compressed sparse
format [24] of the decomposed triangular matrices is adopted
to save storage resources. To demonstrate the proposed
FPGA-based solver, a modified IEEE-33 node system with
photovoltaics (PVs) is simulated on a 4-FPGA-based real-
time platform. The simulation results are compared with the
offline commercial program PSCAD/EMTDC R© to verify the
correctness and effectiveness of the design.

Themain contributions of this paper are summarized as fol-
lows: i) The framework of the FPGA-based real-time solver
is built which divides the work into offline part and online
part; ii) For the offline design, the detailed scheduling of
the subtasks for the substitutions are presented in terms of
the matrix arrangement and LU decomposition algorithm;
iii) For the online design, the compressed sparse format for
the decomposed triangular matrices and the column opera-
tions splitting for substitutions are realized. The hardware
design of the FPGA-based solver is presented as well.

The structure of this paper is organized as follows.
Section II introduces the framework of the FPGA-based real-
time solver. Section III provides the detailed design of the
solver, including the offline part on PC, the online part on
FPGA and the hardware design of the solver. In Section IV,
the modified IEEE 33-node system with PVs is simulated on
a 4-FPGA-based real-time simulator. The performance of the
solver is analyzed in detail as well. The conclusions are stated
in Section V.

II. FRAMEWORK OF FPGA-BASED REAL-TIME SOLVER
In this paper, the modified augmented nodal analysis
(MANA) framework is chosen to implement the real-time
simulation of ADNs [25]. The framework basically consists
of three steps: i) Discretizing the branch equation of each
element in ADNs yields the difference equations; ii) Forming
and solving the overall system equations to obtain the node
voltages; iii) Updating the historical voltages and currents for
each element.

In step ii), the overall system equations, known as nodal
equation, can be established as (1)

Gu = i (1)
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FIGURE 1. The framework of the FPGA-based real-time solver.

in which G denotes the nodal conductance matrix, u denotes
the vector of node voltages, and i denotes the vector of node
injected currents. Generally, the system matrix G resulting
from MANA is not symmetric due to the ideal switch mod-
elling [25]. In this paper, the switches are modelled as an
alternative resistance for the sake of the numerical stability.
Consequently, the system matrix G becomes a symmetric
matrix.

The LU decomposition algorithm used to solve (1) is
constructed by LU decomposition, forward substitution and
backward substitution expressed by (2)-(4). With the premise
that the ranks of the certain submatrices for G are nonzero,
G can be decomposed into an upper triangular matrix U and
a lower triangular matrix L. Specially, the symmetry of the
matrix G is exploited in the sense that the upper triangular
matrix U is the transposed matrix of L. After forward and
backward substitutions successively, u will be obtained. y is
the intermediate result. Note that the originalG resulting from
ADNs may not support LU decomposition, the elements ofG
have to be rearranged to meet the decomposition conditions.

G = LU (2)

Ly = i (3)

Uu = y (4)

Fig. 1 shows the detailed framework of the real-time
solver. It consists of the offline process on host PC and
the online process on FPGA. In the offline process, the
original G, u and i are converted to G′, u′ and i′ respectively
by elementary transformation. The detailed transition will
be described in Section III.A. Then the LU decomposition
algorithm is employed to accomplish the numerical factor-
ization of G′, obtaining L′ and U ′. Finally, scheduling the
subtasks of the forward and backward substitutions accord-
ing to the topology analysis of L′ and U ′ is performed to

generate the scheduling datasheet. The datasheet, L′ and
U ′ are downloaded into FPGA. In the online process,
the elements of L′ and U ′ are stored in the compressed
sparse format, which is in favor of storage cost reduce
and dataflow deep pipelines. According to the scheduling
datasheet, the entire solving task for each substitution is split
into N subtasks. N is the dimension of L′ and U ′. Each sub-
task is completed by a column operation using a processing
element (PE) which will be described in Section III.C in
detail.

III. DETAILED DESIGN OF THE REAL-TIME SOLVER
In this section, the detailed design of the solver based on
FPGA is promoted. The implementation details of both the
offline and online design are provided. The hardware design
of the solver is presented as well.

A. OFFLINE DESIGN
The offline design on PC accomplishes the rearrangement
of the matrix and finds the scheduling order of the sub-
tasks for forward and backward substitutions. It determines
the parallelism and pipeline depth of the online design
on FPGA.

1) MATRIX REARRANGEMENT
To ensure that the LU decomposition is validate and the
resulting L and U have better sparsity, COLAMD algorithm
is employed for sparse partial pivoting of G. It provides a
sparsity preserving column pre-ordering prior to numerical
factorization. The detailed procedure is as follows:

i) Find a column permutation matrix Q which is selected
without regard to the numerical values;

ii) Find the row permutation matrix P via standard partial
pivoting without regard to sparsity;
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The equation of (1) for solving can be rewritten as (5)

G′u′ = i′ (5)

where G′,u′ and i′ are obtained by

G′ = PGQ (6)

u′ = Q−1U (7)

i′ = Pi (8)

The forward and backward substitutions are expressed as

L′y′ = i′ (9)

U ′u′ = y′ (10)

in which y′ is the updated intermediate result. It is noted that
the matrix Q should be found to limit the worst-case fill-in,
regardless of how P is subsequently chosen.
As P and Q are permutation matrices which only change

the location of the elements in u and i, the calculation of (7)
and (8) are realized by recording the storage addresses of u
& i and u′ & i′ to avoid the matrix operation.

2) LU DECOMPOSITION ALGORITHM
A left-looking LU decomposition algorithm [26] is adopted to
realize the numerical factorization ofG′. The entire algorithm
is described in Algorithm 1. Especially, U ′ is normalized
(line 19) to force the diagonal elements of U ′ to 1 as L′

does. Thus the forward and backward substitutions will have
the same format and the hardware design of the PE will
be simplified. The execution of each substitution includes
N subtasks. During the subtask, the elements of a certain
column of L′ and U ′ are updated by (9) and (10).

Algorithm 1 Left-Looking Decomposition of a n-by-n G′

1: for j = 1 to n do
2: for i = 1 to j− 1 where G’(i, j) 6= 0 do
3: for k = i+ 1 to n where G’(k, i) 6= 0 do
4: G’(k, j) = G’(k, j)-G’(k, i) ∗ G’(i, j);
5: end for
6: end for
7: for k = j+ 1 to n where G’(k, j) 6= 0 do
8: G’(k, j) = G’(k, j)/G′(j, j);
9: end for
10: end for
11: for i = 2 to n do
12: for j = 1 to j− 1 where G’(i, j) 6= 0 do
13: L’(i, j) = G’(i, j);
14: end for
15: end for
16: for i = 1 to n do
17: for j = i to n where G’(i, j) 6= 0 do
18: U’kk (i) = G’(i, i);
19: U’(i, j) = G’(i, j)/G’(i, i);
20: end for
21: end for

3) SUBTASK SCHEDULING FOR THE SUBSTITUTIONS
Generally, executing the subtasks of the substitutions in
order will attain the desired solution u′. However, it is time-
consuming and needs to be improved for real-time applica-
tion. Thus the parallelism existing in both the forward and
backward substitutions should be found. Fortunately, some
subtasks are independent due to the zeros of L′ and U ′.
To maximize the fine-grained parallelism potential of the
substitutions, a strict scheduling of the subtasks is presented.

Firstly, we note that the time consuming of each floating-
point operation Top is fixed. For non-zero element Lij, the start
time of the corresponding floating-point operation is Tij. For
column i, its start time is Ti. Then all the fill-ins of this column
are injected into the PEs as a pipeline. One subtask is accom-
plished by one column operation. It should be noted that all
the operations are driven by the physical clock of FPGA.
For the first column of L′, it is stated that the participation
operation time of the first non-zero is at the first clock period
and obviously the participation operation time of the nth
non-zero element is at nth clock period due to the pipelined
dataflow.

Taking the scheduling of the forward substitution as an
example, the main steps are as follows:

1) Analyze the dependencies of the non-zeros and deter-
mine the operation start time of each non-zero. For the
non-zero Lij and Lmn, we state that they are interdepen-
dent if it meets the following condition:

{i = m || i = n || j = m || j = n}

1) Determine the initial start time of each column oper-
ation based on the start time of the non-zeros in this
column;

2) All the column operations are assigned to the PEs in
a time sequence based on Round-Robin. The column
operation is delayed when it comes and all the PEs are
busy. And the start time of the dependent column oper-
ations to be unassigned delays the same clock periods;

3) Store the updated start time of each column operation
and the element processing number corresponding to
the column operation.

To illustrate how the topology analysis works, we take the
matrix L shown in Fig. 2 as an example. The number in
the grid denotes the start time of the corresponding non-zero
and the shaded arrow denotes the dependencies between non-
zeros. For the non-zero Lij, the formula iij = ii−1j − Lijyi need
to be performed. As on FPGA the solving procedure includes
one multiplication, one addition and one assignment, and
each floating-point operation consumes 5, 7, 1 clock periods
respectively, the entire procedure consumes 13 clock periods.
Obviously, the start time of the formula for Lij relies on the
finishing time of ii−1j and yi. The columns required at any step
of the analysis process are represented by the shaded portion
of the matrix and the process is accomplished from the left
column to the right column.
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FIGURE 2. Topology analysis of the example matrix L.

Firstly, we give the start time of the non-zeros in column 1:
T31 = 1, T61 = 2, T91 = 3. For the non-zeros in column 2,
they are independent with the non-zeros in column 1, hence
T52 = 1, T91 = 2. For the non-zeros in column 3, the start
time of L43 relies on T31, hence T43 = T31 + 13 = 14.
Similarly, the start time of L93 relies on T43 and T91, hence
T93 = max{T43+1,T91+9} = 15. Then the start time pattern
of the non-zeros in matrix L can be calculate as Fig. 2 shows.

Next the initial start time of the column operation Ti for
column i is determined by (11).

Ti = max{Tij − m} (11)

where m denotes the offset of non-zero Lij from the
first non-zero in column i. For example, m = 0
for L31 and m = 1 for L61. For the column 1,
T1 = max {T31 − 0,T61 − 1,T91 − 2} = 1. After all
the initial start time of the column operations are cal-
culated, the scheduling of each column operation T =

{1, 1, 14, 27, 14, 40, 53, 27, 62, 71} is obtained. Meanwhile,
the column operations are divided into two groups according
to the dependencies shown in Fig. 2, where the abscissa
denotes the start time and the ordinate denotes the number
of the floating-point operations for each column. In detail,
Colg1 = {1, 3, 4, 6, 7, 9, 10 and Colg2 = {2, 5, 8}, where the
figures denote the column number.

Then the column operations are assigned to the PEs.
It is noted that the start time of the column operations
changes with the total number of PEs employed in the
solver. Explanatorily, Pi denotes the number of the PE that

implements the column operation for column i. If only
one PE is used, P = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}. Thus
the column operations for column 2 cannot be assigned
into the PE until the operation for column 1 is finished.
Hence, T2 = 4 and the operations depending on col-
umn 2 are delayed the same time to avoid data con-
flicts. It is the same with the other columns. Consequently,
the scheduling of each column operation is updated as T =
{1, 4, 14, 27, 17, 40, 53, 30, 62, 71}. When more than one PE
is used in the solver, two groups of columns can be processed
in parallel, hence T = {1, 1, 14, 27, 14, 40, 53, 27, 62, 71},
P = {1, 2, 1, 1, 2, 1, 1, 2, 1, 1}. It improves the flexibility and
parallelism for the scheduling of column operations.

Finally, T and P are pre-stored in the shared memory as
initial data that will be downloaded into FPGA.

B. ONLINE DESIGN
The online design on FPGA is to realize the forward and
backward substitutions. In this section, the compressed sparse
formats for the upper triangular matrixU and the lower trian-
gular matrix L are firstly stressed. Then the detailed splitting
of the column operations for the substitutions implemented
on FPGA is presented.

1) COMPRESSED SPARSE FORMAT OF L′ AND U ′

The matrix L′ and U ′ are generally sparse matrices in
ADNs [27]. To reduce the hardware storage resources,
the compressed sparse formats are used for the stor-
age of L′ and U ′. Compressed sparse row (CSR) and
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compressed sparse column (CSC) are the most common
formats for sparse matrices [24]. As the forward and back-
ward substitution are implemented by column operations,
the matrix L′ and U ′ are stored using CSC format to sim-
plify the design. The CSC format consists of three arrays as
follows:

1) val array. It is a floating-point array which stores the
value of the non-zeros by column;

2) row_ind array. It is an integer array which stores the
row index for the non-zeros in val array;

3) col_ptr array. It is an integer array. col_ptr[i] denotes
the offset of the first non-zero in column i. len[i]
denotes the count of the non-zeros in column i, which
can be calculated by (12).

len [i] = col_ptr [i+ 1]− col_ptr [i] (12)

The above three arrays are stored in the shared memory
as the offline design states. Specially, val array and row_ind
array are stored as a 72-bit data frame to facilitate parallel
processing as shown in Fig. 3.

FIGURE 3. Compressed matrix storage example.

2) COLUMN OPERATION SPLITTING
In this paper, the online forward and backward substitutions
are accomplished by (9) and (10). The substitution algorithm
is described in Algorithm 2.

C. HARDWARE IMPLEMENTATION
Hardware design of the kernel solver for the FPGA-based
RT simulator is shown in Fig. 4. The simulator consists of
global control module, electrical system solution module,
control system solution module, data interaction module and
I/O interface [28]. The solver is embedded in the electrical
system solution module.

The column operations for the forward and backward
substitutions are assigned to the corresponding PEs. Each
PE has the universal structure that is constructed by a mul-
tiplier, a subtractor, a delayer and a start timer. The number
of PEs can be configured flexibly in accordance with the
scale of L′ and U ′. The output data of the PE are utilized to
update the vector y′ and u′ to be solved. All the initial data
are stored in shared read only memory (ROM). Global solve

Algorithm 2 Forward and Backward Substitutions Processes
1: /∗ Forward substitution ∗
2: for j = 1 to n do
3: y′(j) = i’(j);
4: for k = j+ 1 to n where L(k, j) 6= 0 do
5: i′(k) = i’(k)-L(k, j) ∗ y′(j);
6: end for
7: y′(j) = y′(j)/Ukk (j);
8: end for
9: /∗ Backward substitution ∗/
10: for j = n to 1 do
11: u′(j) = y′(j);
12: for k = j-1 to 1 where U ′(k, j) 6= 0 do
13: y′(k) = y′(k)-U ′(k, j) ∗ u′(j);
14: end for
15: end for

control is utilized to coordinate the operation of dataflow bus,
PE and ROM. Data selector is utilized to select the cor-
responding PE for each column operation according the
pre-stored data.

To illustrate how the online process works, the forward
substitution assigned to the PE is illustrated as shown
in Fig. 4. Firstly, the start timer and Data selector are ini-
tialized by the pre-stored data of the scheduling datasheet.
Meanwhile, the vector of i is reordered according to the
addresses generated by COLAMD algorithm. Then the start
signal sta is set to one, and start timer begins to count.
When a certain timer counts to ′1′, the corresponding enable
signal control_y_ena[K ] for column operationK is set to one.
Simultaneously, the non-zeros L[K ] and their row indexes
L_row[K ] are injected into the PE in parallel to finish the
floating-point operations with the reordered i′. The results are
temporarily stored in registers i_temp[K ] and subsequently
used to update i′ by the bus i & L memory bus. In addi-
tion,Delay_nclk module is utilized to align data and control
signal.

The backward substitution process is similar with the for-
ward substitution process. Whereas, the vector of U needs to
be reordered before involved into the operation of the other
modules in the simulator.

IV. CASE STUDY
To validate the solver, a modified IEEE 33-node sys-
tem with PVs is implemented on the 4-FPGA-based real-
time simulator. Fig. 5 shows the simulation platform and
Fig. 6 shows the test case. The performance of the solver
is investigated by the minimum time-step with respect
to the simulated system size. The simulation results are
compared with PSCAD/EMTDC R© to verify the accuracy
of the solver. To further highlight the performance of
the LU decomposition based solver, the inverse matrix
pre-calculation method has also be realized and executed
on the FPGA. The contrastive analysis are conducted in
detail.
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FIGURE 4. Hardware design of the kernel solver of FPGA-based real-time simulator.

FIGURE 5. The 4-FPGA-based real-time simulator.

A. SIMULATION PLATFORM
Fig. 5 provides the overview of the FPGA-based real-time
simulator. Four Stratix R© V Edition DSP development boards
from Altera R© are utilized. They are connected directly
by optical fibers through Quad Small Form-factor Plug-
gable (QSFP). FPGA 1 is treated as the master FPGA, which
provides synchronization signals for the other three FPGAs.
The entire design on FPGAs are driven by a 125MHz clock
which determines the execution time of the design.

B. TEST CASE
Fig. 6 shows the structure of the modified IEEE 33-node
system with PVs, which consists of a network with 33 three-
phase nodes and three PV units, connecting to node 18,
node 22, node 33 respectively. The detailed structure of the
PV unit is shown in Fig. 7. Line types and the respective
parameters are given in [29]. The PV array is modeled by a
single diode equivalent circuit [30]. The PV array is directly
connected to the DC bus. The inverter is controlled by the
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TABLE 1. Numbers of different types of elements for the subsystems.

TABLE 2. The scheduling datasheet for PV unit.

FIGURE 6. The IEEE 33-node system with PVs.

FIGURE 7. The detailed structure of the PV unit.

Vdc-Q strategy, in which the referent DC voltage is pro-
vided by the maximum power point tracking (MPPT) algo-
rithm [31]. The power factor is set to 1.0.

The modified IEEE 33-node system with PVs is portioned
into four subsystems, including a 33-node system and three
PV units. Four subsystems are simulated on four intercon-
nected FPGAs. The entire system contains 3 supply source
elements, 6 controlled source elements, 120 RLC elements,
18 IGBTs, 18 diodes, 24 meters, 96 lines and 9 transformers.
The numbers of different types of the elements in the four
subsystems are shown in Table 1.

TABLE 3. The scheduling of the PEs for PV unit.

C. CASE ANALYSIS
In the modified IEEE 33-node system with PVs, the matrix
dimension of the network is 120 and the matrix dimension of
each PV unit is 15. The results of the COLAMD algorithm
are shown in Fig. 8. For the 33-node system and PV unit,
the original conductance matrices cannot be LU decomposed
directly. After LU decomposition with COLAMD algorithm,
the matrices can be decomposed. For the PV unit, the count
of non-zeros in matrix L′ and U ′ are 35 and 38 respectively.
For the network, the count of non-zeros in matrix L′ and U ′

are 235 and 238 respectively. The count of non-zeros in the
inverse matrixG−1for the 33-node system and the PV unit are
4569 and 225 respectively. It is noted that the inverse matrices
are almost full rank.

The scheduling of subtasks gives the initial start time of
each column operation for the subsystems. Table 2 shows
the scheduling datasheet of the PV unit in detail. To balance
the time and resources consumption, the optimal schedul-
ing of the PEs for PV unit and 33-node system are shown
in Table 3 and Table 4 respectively. For the PV unit, 4 PEs are
consumed, and for the network, 9 PEs are consumed. All the
PEs are implemented in parallel, which takes full advantage
of the dataflow processing pattern on FPGA.
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FIGURE 8. Results of the COLAMD algorithm (a) The IEEE 33-node network. (b) The PV unit.

TABLE 4. The scheduling of the PEs for the 33-node system.

Table 5 lists the main hardware resource utilization of the
four subsystems. As can be seen, the logic resources have
been mostly utilized for the 33-node system and the hardware
of the FPGA 2, FPGA 3 and FPGA 4 for PVs still have
enough room for further expansion. Compared with other
modules, resources consumed by the solver are perfectly
acceptable.

The execution time of each subsystem within a simulation
time-step is shown in Table 6. The total time consumption
of each PV and the 33-node system is 3.576µs and 10.512µs
respectively. The time consumption of the solver is acceptable
for real-time simulation. The selected time-steps for PV and
the 33-node system are 4µs and 12µs respectively.

TABLE 5. Resource utilization for the subsystems.

TABLE 6. Execution time of each subsystem within one time-step.

The inverse matrix pre-calculation is one of the current
real-time linear equations solving methods [32], [33]. The
nodal equation is solved by multiplying the pre-calculated

29154 VOLUME 6, 2018



Z. Wang et al.: Kernel Solver Design of FPGA-Based RT Simulator for ADNs

FIGURE 9. Simulation results of test case. (a) Phase-A voltage waveform of PV unit 2 (b) Phase-A current waveform of PV unit 2. Active power
output waveform of PV unit 2 (d) Reactive power output waveform of PV unit 2. (e) DC voltage waveform of PV unit 2 (f) Relative error
of the DC voltage.

inverse nodal conductance matrix by the node injected cur-
rents. All the inverse matrices, corresponding to the possible
network topologies resulting from switching operations, are
calculated and stored before the real-time simulation process.

The hardware resource and execution time consumption of
the network solver based on the inversematrix pre-calculation
as well as the LU decomposition, for the 33-node system, are
given in Table 7.
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As can be seen from Table 7, the time consumption of
the LU decomposition based solver is larger than the inverse
matrix pre-calculation based one, since the number formats
of the two solvers are different. The addition operations in
the first solver are performed using the floating-point format,
while the second solver uses fix-point format. The floating-
point addition operation is more time-consuming but more
precise so as to reduce the rounding error of the directmethod.
It should be noted that the execution time of the two solvers
are on the same order and are both appropriate for the RT sim-
ulation. In addition, the hardware resource consumption of
the former ismuch smaller than the latter, which demonstrates
the superiority of the LU decomposition based solver.

TABLE 7. Comparison of the resources used with different kernel solvers
for the 33-node system.

D. SIMULATION RESULTS
In the test case, two events are as follows to reproduce the
transients: i) At 2.0 second, a Phase-A ground fault occurs
at node 22 and lasts 0.2 second. ii) At 2.4 second, the irra-
diance arises from 500W/m2 to 1000W/m2. The simulation
results are compared with PSCAD/EMTDC R© to validate
the performance of the real-time solver. The time-step of
PSCAD/EMTDC is 4.0µs. The waveforms of the test case are
shown in Fig. 9(a)-(f). Fig. 9(a) and Fig. 9(b) plot the Phase-A
voltage and Phase-A current waveforms of PV unit 2. During
the fault, the Phase-A voltage drops from 150V peak to 0V
at 2.0 second and recovers back at 2.2 second. The Phase-A
current raises with the irradiance increasing at 2.4 second.
Fig. 9(c)-(f) show the active power output, reactive power
output, DC voltage and its relative error of PV unit 2.

As can be seen from Fig. 9, the results of the two simu-
lation tools are nearly the same, which verifies the accuracy
and the correctness of real-time solver design. The errors of
the FPGA-based simulator are introduced by the following
aspects:

i) The modelling method for power electronic devices are
different in FPGA and PSCAD R©. In FPGA, the device is
represented by the associated discrete circuit (ADC) [34],
while in PSCAD/EMTDC R©, it is represented by large-small
resistance;

ii) In FPGA, the entire system is decoupled due to the
hardware resources limitation. In PSCAD/EMTDC R© it is
solved as a whole;

iii) Different time-steps are used in the FPGA-based simu-
lator while the same time-step is used in PSCAD/EMTDC R©.

V. CONCLUSIONS
This paper proposed a high-performance solver design for
the FPGA-based real-time simulator, which is a key compu-
tational kernel of the matrix solution phase. A fine-grained
framework of the solver is designed for the multi-FPGA sys-
tem, which enables full use of hardware resources. An offline
design on PC and an online design on FPGA are presented
in detail, which maximizes the parallelism potential of the
solver. The IEEE 33-node system with PVs is simulated to
validate the solver in the simulator. The performance of the
solver in the offline process and online process is analyzed
in detail, and both processes design are further verified. The
results are compared with PSCAD/EMTDC under the same
conditions, which verifies the correctness of the solver.
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