Transmission risk predicts avoidance of infected conspecifics in Trinidadian guppies

Jessica F. Stephenson a,b,c*†, Sarah E. Perkins c, and Joanne Cable c

a Center for Adaptation to a Changing Environment, ETH Zürich, Institute of Integrative Biology, 8092 Zürich, Switzerland

b Department of Aquatic Ecology, EAWAG, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland

c School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK

* Corresponding author: jfrstephenson@gmail.com

†Present address: Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA

Summary

1. Associating with conspecifics afflicted with infectious diseases increases the risk of becoming infected, but engaging in avoidance behaviour incurs the cost of lost social benefits. Across systems, infected individuals vary in the transmission risk they pose, so natural selection should favour risk-sensitive avoidance behaviour that optimally balances the costs and benefits of sociality.

2. Here we use the guppy Poecilia reticulata-Gyrodactylus turnbulli host-parasite system to test the prediction that individuals avoid infected conspecifics in proportion to the transmission risk they pose.
3. In dichotomous choice tests, uninfected fish avoided both the chemical and visual cues, presented separately, of infected conspecifics only in the later stages of infection.

4. A transmission experiment indicated that this avoidance behaviour accurately tracked transmission risk (quantified as both the speed at which transmission occurs and the number of parasites transmitting) through the course of infection.

5. Together, these findings reveal that uninfected hosts can use redundant cues across sensory systems to inform dynamic risk-sensitive avoidance behaviour. This correlation between the transmission risk posed by infected individuals and the avoidance response they elicit has implications for the evolutionary ecology of infectious disease, and its explicit inclusion may improve the ability of epidemic models to predict disease spread.

Key-words effective contact rate (β); group-living; infectious disease avoidance behaviour; parasite transmission; redundant multimodal cues; risk-sensitive behaviour; social behaviour; social evolution.

Introduction

Social interactions between individuals influence infectious disease dynamics at the population level (Clay *et al.* 2009; Grear, Perkins & Hudson 2009; Aiello *et al.* 2016), so understanding factors affecting these interactions and how they change in the presence of disease will facilitate more accurate predictions of how diseases spread (Lloyd-Smith *et al.* 2005; Hawley *et al.* 2011; Paull *et al.* 2012; Aiello *et al.* 2016;
VanderWaal & Ezenwa 2016). Social animals associating with infected conspecifics likely increase their risk of infection, particularly with directly transmitted disease-causing organisms, and there is evidence from multiple taxa that they avoid doing so (Goodall 1986; Kiesecker et al. 1999; Kavaliers et al. 2003; Behringer, Butler & Shields 2006; Croft et al. 2011; Schaller 2011; Poirotte et al. 2017). For many animals, such ‘social barriers’ to disease transmission may be as important as immunological or physical ones (Loehle 1995; Schaller 2011; Zylberberg, Klasing & Hahn 2013). However, engaging in avoidance behaviour incurs the cost of lost social benefits (e.g. antipredator defence, foraging efficiency, mating opportunities: Seppälä, Karvonen & Valtonen 2008; Croft et al. 2011; Schaller 2011).

The outcome of this trade-off may be determined by the probability contact with a particular infected individual will result in transmission, or its ‘infectiousness’. Infectiousness is highly heterogeneous in natural populations: the vast majority of transmission events involve a minority of infected individuals (Lloyd-Smith et al. 2005; Paull et al. 2012). How infectious an individual is depends on the characteristics of its infection. For example, across a variety of systems the number of parasites an individual is infected with, its ‘infection load’, is an important predictor of the number of infectious particles it releases, and hence the transmission risk it poses to uninfected conspecifics (e.g. Matthews et al. 2006; Aiello et al. 2016; Stephenson et al. 2017). As well as variation between individuals, a single individual’s infection load and hence infectiousness is, for many disease systems, likely to change through the course of infection (Poulin 2007; Schmid-Hempel 2011). Infection duration also encompasses variation in the strength of the host’s immune response, symptoms and behaviour, as well as the demography of the infecting
parasites and their ability to transmit and establish infections on new hosts (Scott & Anderson 1984; Schmid-Hempel et al. 1999; Bakke, Cable & Harris 2007; Chase-Topping et al. 2008; Charleston et al. 2011; Therese & Bashey 2012; Fraser et al. 2014; Aiello et al. 2016). Given this heterogeneity, natural selection should favour the evolution of mechanisms that maximize the cost-benefit balance of association and avoidance, such as avoidance behaviour that is sensitive to the transmission risk posed by individual conspecifics.

The prediction that uninfected individuals mitigate the risk posed by infectious individuals by modulating their own avoidance behaviour can be formalized using an epidemiological modelling framework. In such models, the effective contact rate, β, is the product of the contact rate between infected and uninfected individuals (behavioural component of β_c) and the transmission rate per contact, which is often driven by the infected hosts’ response to the parasites, mediated by infection load (physiological component of β_p; Anderson & May 1991; Lloyd-Smith et al. 2005; Hawley et al. 2011; VanderWaal & Ezenwa 2016). Historically, models have assumed homogeneous population mixing and transmission risk, i.e. mean field estimates of β_c and β_p, but this typically leads to overestimated transmission rates (Keeling & Grenfell 2000). More recent work has demonstrated that incorporating empirical estimates of heterogeneity in both β_c and β_p improves model fit to natural disease dynamics (see Aiello et al. 2016 and references therein), but that β_c and β_p may themselves co-vary has been largely ignored. However, this co-variation has potentially powerful implications for disease dynamics. For example, using a simple modelling framework, Hawley et al. (2011) showed that behaviourally-mediated co-variation in β_c and β_p, such as risk-sensitive avoidance of infectious conspecifics, can...
mean the difference between a parasite invading a host population or fading out.

Despite this, empirical tests of how β_c and β_h co-vary in natural systems are still lacking (Hawley et al. 2011; VanderWaal & Ezenwa 2016).

We used the guppy *Poecilia reticulata-Gyrodactylus turnbulli* host-parasite system to experimentally test for risk-sensitive avoidance of infectious conspecifics. *G. turnbulli* is an ectoparasitic monogenean that reproduces on the host’s skin with a generation time of 24 hrs and is transmitted directly through close contact between socially interacting hosts (Stephenson et al. 2015a). *Gyrodactylus* spp. parasites are the most prevalent multicellular parasites in wild guppy populations (Stephenson et al. 2015a), and are associated with reduced guppy body condition (Stephenson, van Oosterhout & Cable 2015b), attractiveness (Kennedy et al. 1987), and survival (van Oosterhout et al. 2007; Stephenson et al. 2016). The ability to recognize and avoid infected individuals is therefore likely to be under strong selection and there is some evidence that it occurs; the presence of infected conspecifics reduces shoal cohesion in semi-natural conditions (Croft et al. 2011). However, the loss of shoal cohesion as a result of this infection avoidance behaviour carries a cost: less cohesive fish shoals are more vulnerable to predation (Seppälä, Karvonen & Valtonen 2008). If guppies balance this trade-off by employing risk-sensitive avoidance of infected conspecifics, avoidance should be positively correlated with infection duration: infection load initially increases over the course of infection, and is an important predictor of transmission risk (Stephenson et al. 2017).

Beyond favouring the evolution of risk-sensitive behaviour, natural selection should favour the use of cues appropriate to the sensory environment. For example, in static
water bodies, chemical cues may provide reliable information, but turbidity may limit
the usefulness of visual cues; correspondingly, tadpoles use chemical but not visual
cues to avoid infected conspecifics (Kiesecker et al. 1999). By contrast, in habitats
classified by dynamic sensory environments selection should favor the use of
multiple sensory modalities to detect and respond to redundant cues (i.e. those that
elicit the same response in receivers when presented in isolation; Partan & Marler
2005). Such cue redundancy is most likely to evolve in habitats in which no single
sense is continuously informative. Rivers, such as those inhabited by guppies,
experience turbulent flow and turbidity; as a result, visual and chemical cues elicit
redundant risk-sensitive antipredator behavior in several riverine fishes (e.g. the
naked characin, Gymnocharacinus bergi; see Cordi, Ortubay & Lozada 2005).
Guppies may use similarly redundant visual and chemical cues in risk-sensitive
infection avoidance behavior. Previous work has shown that they are able to use
chemical cues to monitor temporally variable physiological characteristics in
conspecifics (reproductive status: Brask et al. 2012; disease: Stephenson & Reynolds
2016), and have excellent vision (Anstis, Hutahajan & Cavanagh 1998). However,
visual cues of infection may provide a general ‘sickness’ cue and include behavior,
which host animals are able to modify in the short term to conceal their disease (e.g.
Lopes et al. 2012). Chemical cues potentially provide more honest, less easily
manipulable information about health, which may also be specific to the disease-
causing agent: guppies may therefore respond differently to cues across these sensory
modalities.

We here test the prediction that social hosts display risk-sensitive avoidance of
infected conspecifics that pose the highest risk of transmission. We presented
uninfected ‘test’ guppies with a dichotomous choice between the cues (visual or chemical, presented separately) of *G. turnbulli*-infected and uninfected conspecific ‘stimulus’ fish. Uninfected guppies avoided both chemical and visual cues of infected conspecifics only in the later stages of infection. Models developed from a transmission experiment using this system (Stephenson *et al.* 2017) predicted that both transmission speed and the number of parasites transmitting increase through the course of the infection on the stimulus fish. Indeed, days on which the predicted risk was highest were those on which avoidance was strongest. These results comprise the first demonstration that infection avoidance behaviour is sensitive to present infection risk (*βc* and *βp* are negatively correlated), and therefore highlight a potentially important and under-studied source of variation in infectious disease transmission.

Materials and methods

Host and parasite origin and maintenance

We used wild caught guppies and their laboratory-bred descendants from the Caura River, Trinidad, and a single strain of the parasite *Gyrodactylus turnbulli* (*Gt3*). Guppies were housed at low densities in 70 L aquaria at 24±1°C, on a 12 h light: 12 h dark lighting schedule (overhead fluorescent lighting), and fed daily on Aquarian® flakes, supplemented with *Artemia* and bloodworm. *Gt3* was originally isolated from an ornamental guppy and has been maintained on inbred ornamental stocks (‘culture fish’) in the laboratory since 1997.

Chemical and visual cue production

We used F1 laboratory-bred virgin females to produce the chemical and visual cues of infection. These ‘stimulus pairs’ (uninfected *vs.* infected, *n* = 28 pairs) were size-
matched ±1 mm. Recently killed infected Gt3 culture fish were placed in close proximity to the anesthetized (0.02% tricaine methanesulfonate; MS222; PHARMAQ Ltd., Fordingbridge, UK) stimulus fish until two parasites had transferred, as observed under a dissecting microscope and fibre optic illumination. The stimulus fish were revived and housed individually in 1 L tanks, and the number of parasites infecting each was counted under anaesthetic every other day. As a handling control, uninfected stimulus fish were also anesthetized and held individually in 1 L tanks. All tanks were maintained under standard conditions and received 100% water exchanges every other day. We exclusively used female guppies as stimulus fish because male guppies typically have complex and highly polymorphic colour patterns that affect how both male and female conspecifics respond to them (reviewed in e.g. Houde 1997). By only using females, therefore, we avoided the substantial challenge of standardising male colour patterns among and between pairs.

The pairs of infected and uninfected fish were used to produce chemical stimuli for the behavioural trials. Due to a change in experimental design, chemical cues were produced either in batches or pairs. During the production of each batch, five fish were held individually, each in 500 ml of dechlorinated water in food grade plastic containers for 24 h. Fish were not fed during this isolation. These 500 ml fish conditioned water samples were then mixed and frozen in 150 ml aliquots at -20°C. During the production of paired chemical cues the same protocol was followed except that the samples from each stimulus fish were kept separate (see Appendix S1: Table S1 for more details).

Avoidance behaviour experiment
We exposed uninfected guppies (‘test fish’) to the chemical ($n = 87$) and visual ($n = 83$) cues of the stimulus pairs. All test and stimulus fish were unfamiliar to one another, i.e. they had never been in the same or adjacent stock tanks. We manipulated the length of time the infected stimulus fish had been infected, and measured the avoidance behaviour elicited in the test fish. We used a 30×60 cm tank, filled to 5 cm water depth (Appendix S1: Fig. S1). At one end of the tank we placed two glass cylinders with adjacent Nalgene® tubing, separated by an opaque barrier. At the other end was a settling compartment (10×30 cm), separated from the test arena by a removable opaque barrier. For the chemical cue trials, cues were introduced via the Nalgene® tubing at 10 ml/min, maintained by flow meters (MMA-35, Dwyer Instruments, High Wycombe, UK). Test fish of both sexes were taken from the wild-caught parental and F2 generations (see Appendix S1: Table S1) and tested individually. Fish acclimatized in the settling compartment for 10 min. For the visual cue trials, stimulus pairs were placed in the glass cylinders, one fish per cylinder, before this acclimatization period. The glass cylinders were entirely watertight and washed inside and out between trials with 70% ethanol and clean water: no chemical cues of the stimulus pair could have been detected by the test fish during the visual cue trials. In chemical trials, the flow of chemical cues (infected vs. uninfected) was started two min before the end of acclimatization. The barrier was lifted remotely via a pulley system at the end of the acclimatization period, and a 10 min test period began when the fish crossed into the test arena. After each trial the tank and components were rinsed with 70% ethanol and clean water. The sex of the test fish and the side of the tank that received the cue of infected conspecific were changed between trials according to a Latin square design. All behavioural trials were video recorded for later analysis using JWatcher™ 1.0 (www.jwatcher.ucla.edu).
We used different measures of association for the two senses to accommodate inherent differences between them: chemical cues could be detected across the whole side of the tank, while visually mediated preference is typically measured in time spent in proximity to the stimulus fish (Houde 1997). For chemical cue trials, therefore, we used the proportion of the 10 min test period that test fish spent on the side of the tank that received the cue of the uninfected fish. For visual cue trials we used the proportion of time test fish spent on the side of the ‘end zone’ next to the uninfected fish out of the total time (out of the 10 min test period) that test fish spent in the end zone (Appendix 1: Fig. S1).

Predicting transmission risk

To predict the transmission risk posed by the infected stimulus fish on each day of infection on which they were used as stimuli, we used models built on data from a transmission experiment using this system (for detailed methods and results see Stephenson et al. 2017). In brief, we experimentally infected parasite-naïve laboratory-bred females descended from guppies caught in the lower Aripo river, Trinidad (‘donors’, n = 60), using the methods and Gt3 parasite strain described above. We exclusively used female fish in this experiment to minimise variation in transmission attributable to the differences in behaviour between male and female guppies. We housed the donors individually in 1 L tanks and allowed them to develop natural variation in infection loads. On days 5 and 12 of infection, parasite-naïve female ‘recipients’ were size-matched to the donors±2 mm and added to the tanks. The number of *G. turnbulli* parasites on both donor and recipient was recorded daily. Once transmission had occurred, the recipient was removed from the tank. We thus
observed 105 transmission events, and used the data to construct Generalized Linear Mixed Models (GLMMs) explaining variation in how quickly transmission occurred (‘transmission speed’) and how many parasites transmitted (‘transmission load’). The best-supported model for transmission speed included only the donor’s infection load at the time of transmission, and that for transmission load included donor infection load, donor infection integral (i.e. the area under the curve of its infection load over time), and the day of infection of the donor (Stephenson et al. 2017). Using these models and the infection load, infection integral and day of infection on which they were used, we calculated the model predictions of the transmission speed and load of the stimulus fish in the behavioural experiment.

Data analysis

We analysed the data using R 3.3.1 (R Core Team 2016), and provide the data, script and output in Appendix S1. We used the proportion of time the test fish spent associated with the uninfected stimulus fish cue (i.e. avoiding the infected stimulus fish cue) as the response variable in a GLMM (beta error distribution with logit link function in the glmmADMB package; Fournier et al. 2012). As fixed effects, we included the day of infection and infection integral (i.e. the area under the curve of its infection load over time) of the stimulus fish; test fish sex and standard length; the cue type used (chemical or visual) and the side of the tank in which the cue of infected conspecific was placed (to test for any side bias). We also included the year in which the tests were conducted, which encompassed changes in test fish generation (wild-caught parental vs. laboratory-bred F2) and in stimulus production method (batch vs. pair; see Appendix S1: Table S1 for more details). We included the two-way interactions between test fish sex, cue type (visual or chemical), day of infection and
infection integral about which we had a priori hypotheses. The identity of the stimulus
pair used in a trial was included as a random term as each was used on multiple days.
The full output of this model is presented in Appendix S1.

We used two GLMMs to test whether the predicted transmission speed and
transmission load of the stimulus fish increased through time (both Gamma error
family, log link function in lme4; Bates et al. 2015). We included day of infection as a
fixed effect, and the stimulus pair identity as a random effect to control for the fact
that each was used on multiple days. These data are values predicted from a statistical
model and therefore have error associated with them. In order to investigate whether
this error affected the conclusions we are able to draw from this analysis, we reran the
GLMMs using both high and low estimates of the predicted values (value±1 standard
error).

Results

The full output and model fits for all models are given in Appendix S1. The length of
time the stimulus fish had been infected (day of infection) was the only variable that
explained variation in the proportion of time test fish spent avoiding the infected
stimulus fish, with test fish only avoiding stimulus fish in the later stages of infection
($\chi^2 = 9.84$, $P = 0.0017$; Fig. 1). There was no significant effect of cue type, or its
interaction with day of infection, indicating redundancy between the visual and
chemical cues. The predicted transmission speed (predicted values: $t_{92} = -2.15$, $P =
0.032$; low estimate: $t_{92} = -2.61$, $P = 0.009$; high estimate: $t_{92} = -1.68$, $P = 0.093$) and
transmission load (predicted values: $t_{92} = 6.59$, $P < 0.0001$; low estimate: $t_{92} = 4.23$, P
<0.0001; high estimate: $t_{92} = 4.81$, $P < 0.0001$) of the stimulus fish increased through the course of their infection (Fig. 2).

In post-hoc tests investigating the apparent threshold at day 15 of infection we found no difference between test fish response to chemical and visual cues (main effect) or how visually and chemically mediated behaviour changed depending on the duration of the infection of the stimulus fish (pre vs post day 15 interaction with cue type), again indicating redundancy between these multimodal cues. Guppies marginally but significantly preferred (i.e. spent more than 50% of the time associating with) conspecifics infected for fewer than 15 days over uninfected counterparts (mean±SE = 0.55±0.02, $t_{122} = 2.56$, $P = 0.012$), but strongly avoided those infected for longer than 15 days (i.e. spent less than 50% of the time with; mean±SE = 0.40±0.03, $t_{46} = -3.16$, $P = 0.0027$). Pre- and post-15 day stimulus fish elicited significantly different responses in test fish ($\chi^2 = 15.15$, $P < 0.0001$). Moreover, post-day 15 infection stimulus fish had significantly higher predicted transmission loads (predicted values: $t_{92} = 3.23$, $P = 0.0012$; low estimate: $t_{92} = 165.6$, $P < 0.0001$; high estimate: $t_{92} = 205.6$, $P < 0.0001$), but not speeds (all $P > 0.05$), than pre-day 15 stimulus fish.

Discussion

We tested whether natural selection has driven the evolution of infection avoidance behaviour that could potentially optimally balance the costs and benefits of sociality. In a dichotomous choice test, uninfected guppies avoided both the visual and chemical cues, presented separately, of *Gyrodactylus turnbulli*-infected conspecifics only in the later stages of infection (Fig. 1). Predictions of the transmission risk posed by these infected conspecifics from models built on data from a transmission experiment using
this system (Stephenson et al. 2017) illustrated that this avoidance behaviour tracked
transmission risk through time, such that those that posed the highest predicted risk
were most strongly avoided (Fig. 2). Our data represent unique empirical evidence
that the two components of the effective contact rate β (contact rate, β_c, and
infectiousness, β_p) co-vary quantitatively, rather than as a binary comparison of
infected and uninfected individuals.

Both chemical and visual cues for avoidance behaviour may be primarily derived
from the host and its response to the parasite, rather than from the parasite itself. This
suggestion is based on two observations. First, stimulus fish infection duration, rather
than infection load, was the most important predictor of avoidance behaviour in this
study. Second, guppies that have imprinted on the chemical cues of conspecifics
experiencing *G. turnbulli*-induced disease, but that have been parasite-free for over a
month, preferentially associate with the chemical cues of conspecifics in the late
stages of *G. turnbulli* infection (Stephenson & Reynolds 2016). There thus appears to
be a host-derived chemical cue of *G. turnbulli*-induced disease that elicits behavioural
responses in conspecifics. Parasite-derived cues may not elicit a response because
directly transmitted parasites are under strong selection to conceal their presence on
the host, thereby increasing their chances of transmitting to new hosts (Poulin 2007).
Indeed, malaria parasites strategically control the emission of chemical cues to
maximize their fitness, attracting vectors particularly strongly when they are ready to
transmit (Cornet et al. 2013; De Moraes et al. 2014).

Infectious hosts should also be under strong selection to disguise their infection in
order to continue benefitting from group living, and to increase their relative fitness
by transmitting parasites to unrelated group mates. In other systems hosts conceal pathology and sickness behaviour (Lopes et al. 2012), and early in infection the guppies in our experiment also appear to do so successfully, and are even marginally more attractive than their uninfected counterparts. This counterintuitive observation may be due to the infected stimulus fish interacting more with the test fish, or having a generally higher activity level than the uninfected fish; infected fish tend to initiate more social interactions in semi-natural conditions (Croft et al. 2011).

The many potential uses of infection likely become increasingly difficult to suppress through the course of infection: in our data, a critical threshold in cue composition or concentration appears to be reached after 15 days of infection. One component may be alarm cue, a chemical released from fish skin damaged during predation events and infection (Poulin, Marcogliese & McLaughlin 1999), which elicits avoidance behaviour in guppies and many other species (Brown et al. 2009 and references therein). Other chemical cues may be related to epithelial cell composition or mucous chemistry, both of which change during the course of gyrodactylid infection (Buchmann & Lindenstrøm 2002; Gheorghiu, Marcogliese & Scott 2012). The parasite itself may use chemical cues from the host, or conspecifics, to determine when the benefits of transmission outweigh the risks (Stephenson 2012; Stephenson et al. 2017): such cues may therefore accurately reflect the real-time probability of parasite transmission. The visual cues of infection also become more obvious as the infection progresses. For example, guppies may display clamped fins, paleness, and difficulty swimming (Kennedy et al. 1987). Additionally, during later stages of infection gyrodactylid-infected guppies attempt to ‘rub up’ against shoal-mates (Croft et al. 2011). This abnormal behaviour itself, and the opportunity it provides shoal-
mates to sample the host’s chemical and visual cues at close range, potentially explains their observed avoidance by conspecifics in semi-natural conditions (Croft et al. 2011). Indeed, it is likely to be the abnormality of these cues, rather than what they signify, that guppies avoid (Stephenson & Reynolds 2016).

If the cues of infection are indeed host-derived and independent of infection load, as our data suggest, the infection avoidance behaviour they mediate could be widespread in natural populations despite the relatively low infection loads observed in field surveys (Stephenson et al. 2015a). Further, while the cues in our experiment were presented separately, in natural settings guppies are likely often in receipt of both. Together, they could have an effect equal to that of either cue alone or the response could be greater (Partan & Marler 2005); guppies are more attentive to visual cues when in receipt of chemical cues (Stephenson 2016). In avoiding infected individuals, guppies in natural populations also benefit from avoiding predators that might use the same cues to find relatively easy prey (Stephenson et al. 2016). Indeed, ostracizing infected individuals, thereby facilitating their capture by predators, may have the added benefit of reducing population level parasite prevalence and intensity (Packer et al. 2003), and thus the per capita infection risk. In a further contrast with the natural setting we constrained the stimulus fish in this experiment, but previous work on this and other systems suggests that infection may increase or decrease their attempts to interact (Croft et al. 2011; Lopes, Block & König 2016). Future work should elucidate how the behaviour of infected and uninfected hosts interacts with the infectiousness of infected hosts in driving disease transmission.
Our results highlight the importance of accounting for the feedback between host and parasite during the infection process in modelling the spread of infectious diseases (Ezenwa et al. 2016): a particular pitfall if basing such inference on empirically derived static social networks of uninfected animals (e.g. references in Rushmore, Bisanzio & Gillespie 2017). Modelling approaches provide one solution to this issue by incorporating the uncertainty associated with the co-dynamics of network structure and infection into static models, offering insight where the interplay is an empirical unknown (Silk et al. 2017). However, we have shown that disease can have a quantitative, non-linear effect on the contact behaviour of social animals, indicating that using dynamic models explicitly incorporating this feedback between infection and behaviour will likely improve predictions (Farine 2017). The relationship between β_c and β_p may also drive evolutionary change in both host and parasite. For example, heritable variation between uninfected hosts in their ability to avoid infected conspecifics (Zylberberg, Klasing & Hahn 2013), and between infected hosts in their ability to transmit the parasite (Boots et al. 2012), can shape the evolution of host defence mechanisms. Additionally, disease transmission and the interactions between infected and susceptible hosts drive the evolution of parasite virulence (e.g. Lion & Boots 2010). In light of its potentially profound importance for the evolutionary ecology of disease, further empirical and theoretical consideration of the relationship between β_c and β_p and the factors affecting it are sorely needed.

Data Accessibility

Data supporting the results will be archived in the Dryad repository and the data DOI will be included at the end of the article.
Acknowledgements

This work was conducted under the UK Home Office license (PPL 302876) with approval by the Cardiff University Animal Ethics Committee. J. Fox, A. Hunt, R. S. Mohammed and M. Reynolds provided technical assistance. J. Jokela, R. J. Thomas and K. A. Young made helpful comments on earlier versions of this manuscript. The Fisheries Society of the British Isles (FSBI; PhD studentship to J. F. S.), and the Center for Adaptation to a Changing Environment (ACE) at ETH Zürich (fellowship to J. F. S.) funded this work. The authors have no conflicts of interest.

Authors’ contributions

J. F. S. conceived the study, designed and conducted the behavioural experiment, analysed all data, interpreted the results, wrote and, with S. E. P., revised the paper. S. E. P. and J. C. designed and conducted the transmission experiment. All authors gave final approval for publication, and agree to be accountable for the accuracy and integrity of their work.

References

De Moraes, C.M., Stanczyk, N.M., Betz, H.S., Pulido, H., Sim, D.G., Read, A.F. & Mescher, M.C. (2014) Malaria-induced changes in host odors enhance...
mosquito attraction. Proceedings of the National Academy of Sciences, USA, 111, 11079-11084. doi:10.1073/pnas.1405617111

across hosts and space. Frontiers in Ecology and the Environment, 10, 75-82.
doi:10.1890/110111

doi:10.1126/sciadv.1601721

Poecilia reticulata. Parasitology, 89, 159-194. doi:10.1017/S0031182000001207

Supporting Information

The following supporting information is available for this article online:
Appendix S1. This file contains supplementary methodological details, as referred to in the methods (Figure S1 and Table S1). It also provides the code and full output of all analyses described in the main text.
Figure legends

Fig. 1. Uninfected guppies avoided *Gyrodactylus turnbulli*-infected conspecifics only when these were in the later stages of infection, based on both visual (a) and chemical (b) cues. The points give the raw data, thick lines the median, boxes the first and third quartiles, and whiskers extend to the largest and smallest value within 1.5 × the interquartile range.

Fig. 2. The predicted speed (in days) at which transmission would occur (a), and the number of parasites transmitting (b) from the stimulus fish increased through the course of infection, and covaried with the avoidance behaviour they elicited. The points give the values (± 1 standard error) predicted by models built on data from 105 transmission events (from the experiment presented in Stephenson *et al.* 2017), and using the infection load, infection integral (i.e. the area under the curve of its infection load over time) and day of infection of the stimulus fish in the present experiment. Thick lines denote the median values, boxes the first and third quartiles, and whiskers extend to the largest and smallest value within 1.5 × the interquartile range. The shading of the boxes denotes the mean behavioural avoidance elicited by the stimulus fish on each day of infection, as given by the scale bar (raw data in Fig. 1). One outlying data point (with a predicted transmission load of 90) has been omitted from (b) for clarity and the analysis to facilitate model convergence.
Appendix S1: Transmission risk predicts avoidance of infected conspecifics

J. F. Stephenson, S. E. Perkins, J. Cable

In this paper we explore how an individual’s avoidance behaviour is determined by the transmission risk posed by infected conspecifics, and how visual and chemical cues may be used to detect changes in transmission risk. This document is composed of two main sections. In the first, we present Fig. S1 and Table S1, which provide more details on the methods we employed. In the second, we present further details of the three steps involved in the data analyses. First, analyses of behavioural data show that uninfected guppies *Poecilia reticulata* spend less time with conspecifics infected with a directly transmitted monogenean *Gyrodactylus turnbulli*, but only during the later stages of infection. In the second, we use models explaining variation in the speed at which transmission occurs, and the number of parasites transmitting (constructed using data from this system, published in Stephenson et al 2017, Phil. Trans. Roy. Soc. B.), to predict the transmission risk, both in terms of speed and load, posed by the stimulus fish used in the behavioural experiment. We use these predicted values to explore whether variation in transmission risk might explain the pattern observed in the behavioural data. Finally, we present post-hoc tests investigating an apparent threshold at day 15 of infection on the stimulus fish. Further details on the methods of both experiments and our interpretation of the results can be found in the main text.

Supplementary methods: Figure S1 and Table S1

![Diagram](image)

Fig. S1 The choice chamber used to test for behavioural responses of guppies to chemical and visual cues of infection in conspecifics. The dotted lines were not present on the tank, but delineate the zones and sides of the tank used during video analysis.
Table S1. Visual and chemical cue production and use during behavioural trials to test for responses of guppies to *Gyrodactylus turnbulli* infection in conspecifics. Stimulus fish were first generation laboratory-bred female offspring of wild caught guppies from Trinidad and were sexually mature virgins. F2 test fish were second-generation laboratory-bred sexually mature virgins of both sexes. Data are presented for the stage of infection rather than for each day for brevity (the ‘early’ stage of infection was up to Day 11).

<table>
<thead>
<tr>
<th>Year</th>
<th>Cue type</th>
<th>Stage of infection</th>
<th>Cue production method</th>
<th>No. of stimulus pairs or batches</th>
<th>Days of infection on which the stimulus was used</th>
<th>Stimulus fish (females only)</th>
<th>Mean no. of parasites on the infected stimulus fish</th>
<th>Test fish (both sexes)</th>
<th>Mean no. of trials conducted with each pair or batch</th>
<th>Total no. of trials</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>Visual</td>
<td>Early</td>
<td>Pairs</td>
<td>7</td>
<td>5, 6, 7, 8, 10</td>
<td>F1</td>
<td>12.5</td>
<td>Wild caught</td>
<td>5.1</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Late</td>
<td></td>
<td>7</td>
<td>15, 16, 20</td>
<td></td>
<td>63.5</td>
<td></td>
<td>4.3</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Chemical</td>
<td>Early</td>
<td>Batches</td>
<td>3</td>
<td>2, 8</td>
<td></td>
<td>9.4</td>
<td></td>
<td>13.3</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Late</td>
<td></td>
<td>1</td>
<td>17</td>
<td></td>
<td>83</td>
<td></td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>2014</td>
<td>Visual</td>
<td>Early</td>
<td>Pairs</td>
<td>11</td>
<td>6, 8, 10</td>
<td>F2</td>
<td>32.4</td>
<td></td>
<td>1.2</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Late</td>
<td></td>
<td>23</td>
<td>13, 16, 19</td>
<td></td>
<td>23.3</td>
<td></td>
<td>1</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Chemical</td>
<td>Early</td>
<td></td>
<td>5</td>
<td>6, 9</td>
<td></td>
<td>16.5</td>
<td></td>
<td>1.6</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Late</td>
<td></td>
<td>15</td>
<td>12, 14, 15, 17</td>
<td></td>
<td>57.7</td>
<td></td>
<td>1.3</td>
<td>20</td>
</tr>
</tbody>
</table>
Data analyses

```r
df1<-read.csv('DatasetS2.csv')
df2<-read.csv('DatasetS3.csv')

df1$sL<-as.numeric(as.character(df1$sL))
df1$sUL<-as.numeric(as.character(df1$sUL))
df1$AUC<-as.numeric(as.character(df1$AUC))
df1$year<-as.factor(df1$year)
df1$speedmax<-as.numeric(as.character(df1$speedmax))
df1$speed<-as.numeric(as.character(df1$speed))

require('lme4')
require('car')
require('MuMIn')
require('itsadug')
require('ggplot2')
require('gridExtra')
require('arm')
require('gllmmADMB')
require('visreg')
require('MASS')
require('lsmeans')
require('ResourceSelection')
```

Avoidance behaviour changes through time, and is based on redundant visual and chemical cues

For this analysis we used the data in the archived file ‘DatasetS2.csv’, which includes the following variables:

- **resp**: The proportion of time test fish spent associated with the cue of infected conspecific - our response variable.
- **pair**: The identity of the pair of stimulus fish used in a trial - a random effect controlling for repeated measures. Those labelled with a letter were batch-produced cues.
- **dayinf**: The day of infection on which cues from the stimulus pair were created (chemical) or used (visual).
- **intensitymax**: The number of parasites on the infected stimulus fish on the day on which the stimulus was created (chemical) or used (visual). For trials in which a batch-produced chemical cue was used, we took the maximum individual intensity within that batch.
- **AUC**: The area under the curve of the stimulus fish’s infection load over the course of its infection up to day 18 - a measure of its resistance, or ability to limit parasite growth. We have previously shown that transmission is affected by the resistance of the donor (details in the main text), and therefore tested if resistance of an infected conspecific affected how unininfected conspecifics responded to it.
- **sex**: The sex of the test fish (N.B. all stimulus fish were female).
- **tL, sL, uL**: Standard length (mm) of the test fish, infected stimulus fish and uninfected stimulus fish, respectively.
- **sense**: The sensory modality of the cue - c for chemical, v for visual.
- **infecinput**: The side of the test tank on which the cue of infection was placed, to test for side bias.
- **year**: The year of the experiment in which the trial was conducted. This factor encompasses changes in the generation of fish used, and the method of chemical cue production (batch vs paired).

```r
# This function is from 'Mixed effects models and extensions
panel.cor <- function(x, y, digits = 2, prefix = "", cex.cor, ...)
{
  usr <- par("usr")
on.exit(par(usr))
par(usr = c(0, 1, 0, 1))
r <- abs(cor(x, y))
txt <- format(c(r, 0.123456789), digits = digits)[1]
txt <- paste(prefix, txt, sep = "")
if (missing(cex.cor))
  cex.cor <- 0.8/strwidth(txt)
text(0.5, 0.5, txt, cex = cex.cor * r)
}
pairs(~AUC + year + dayinf + intensity + tL + iL + uL, data = df1,
  lower.panel = panel.smooth, upper.panel = panel.cor, na.action = na.omit)
```

This plot shows that AUC and intensity were highly correlated. We decided to include AUC in our analyses,
and remove intensity. Apart from this, no pairs of the the continuous variables we were interested in showed a correlation of over 0.6, except for iL and uL (which is unsurprising given the infected and uninfected stimulus fish were size-matched). We therefore proceeded with the generalised linear mixed model including these factors, as below.

```r
modb <- glmmadmb(resp ~ dayinf + sense + sex + tL + year + infecinput +
    sense:dayinf + sex:dayinf + sex:sense + AUC + AUC:sense +
    AUC:sex + (1 | pair), data = df1, family = "beta"
```

```r
table(modb)
```

```r
summary(modb)
```

```r
## Call:
## glmmadmb(formula = resp ~ dayinf + sense + sex + tL + year +
##           infecinput + sense:dayinf + sex:dayinf + sex:sense + AUC +
##           AUC:sense + AUC:sex + (1 | pair), data = df1, family = "beta")
##
## AIC: -14.5
##
## Coefficients:
##                  Estimate Std. Error  z value Pr(>|z|)
## (Intercept)       -0.661265  1.135500   -0.58  0.560
## dayinf            0.042632  0.026944    1.58  0.114
## sensev            0.257380  0.792860    0.32  0.745
## sexm              -0.227205  0.490650   -0.46  0.643
## tL                -0.014686  0.049238   -0.30  0.766
## year2014          -0.252935  0.368760   -0.69  0.493
## infecinput        0.179579  0.168260    1.13  0.256
## AUC               0.000987  0.001287    0.77  0.443
## dayinf:sensev     0.041577  0.042277    0.98  0.325
## dayinf:sexm       0.012974  0.032562    0.40  0.690
## sensev:sexm      -0.273594  0.360600   -0.76  0.448
## sensev:AUC       -0.002756  0.001640   -1.68  0.093
## sexm:AUC          -0.000176  0.000659   -0.27  0.790
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Number of observations: total=170, pair=48
## Random effect variance(s):
##  Group=pair
##     Variance StdDev
## (Intercept)  0.8958 0.9464
##
## Beta dispersion parameter: 3.8191 (std. err.: 0.46928)
##
## Log-likelihood: 22.2491

Anova(modb)

```r
Analysis of Deviance Table (Type II tests)
##
Response: resp
Df Chisq Pr(>Chisq)
dayinf 1 9.8395 0.001708 **
sense 1 0.1660 0.683732
sex 1 0.0628 0.802113

```
### tL    1  0.0890  0.765507
### year  1  0.4705  0.492773
### infecinput  1  1.2876  0.256498
### AUC    1  0.7917  0.373572
### dayinf:sense  1  0.9672  0.325388
### dayinf:sex  1  0.1588  0.690305
### sense:sex  1  0.5757  0.448021
### sense:AUC  1  2.8251  0.092801
### sex:AUC  1  0.0709  0.789972

```r
this function tests for overdispersion. It's from
http://glmm.wikidot.com/faq
overdisp_fun <- function(model) {
 ## number of variance parameters in an n-by-n
 ## variance-covariance matrix
 vpars <- function(m) {
 nrow(m) * (nrow(m) + 1)/2
 }
 model.df <- sum(sapply(VarCorr(model), vpars)) + length(fixef(model))
 rdf <- nrow(model.frame(model)) - model.df
 rp <- residuals(model, type = "pearson")
 Pearson.chisq <- sum(rp^2)
 prat <- Pearson.chisq/rdf
 pval <- pchisq(Pearson.chisq, df = rdf, lower.tail = FALSE)
 c(chisq = Pearson.chisq, ratio = prat, rdf = rdf, p = pval)
}
overdisp_fun(modb)
```

```r
Hosmer-Lemeshow goodness of fit test with ResourceSelection
package
hoslem.test(df1$resp, y = fitted(modb))
```

```r
Hosmer and Lemeshow goodness of fit (GOF) test
data: df1$resp, fitted(modb)
X-squared = 1.7248, df = 8, p-value = 0.9883
```
Although this linear model fits well and shows there is an increase in avoidance behaviour through time, from Fig. 1 in the main text it is clear there is an apparent threshold in the behavioural response. Guppies exposed to conspecifics that had been infected for fewer than 15 days showed no significant avoidance, whereas those exposed to conspecifics infected for over 15 days showed significance avoidance of both visual and chemical cues. This apparent threshold is investigated further in the ‘Post-hoc tests’ section.

## The change observed in avoidance behaviour corresponds to the predicted change in transmission risk

For this analysis we used the data in the archived file ‘DatasetS3.csv’. This data sheet includes the following variables:

- **day**: The day of infection on which cues from the stimulus pair were created (chemical) or used (visual).
- **AUC**: The area under the curve of the stimulus fish’s infection load over the course of its infection up to day 18 - a measure of its resistance, or ability to limit parasite growth. We have previously shown that transmission is affected by the resistance of the donor (details in the main text), and therefore tested if resistance of an infected conspecific affected how uninfected conspecifics responded to it.
- **intensity**: The number of parasites on the infected stimulus fish on the day on which the stimulus was created (chemical) or used (visual). For trials in which a batch-produced chemical cue was used, we took the maximum individual intensity within that batch.
- **pair**: The identity of the pair of stimulus fish used in a trial - a random effect controlling for repeated measures. Those labelled with a letter were batch-produced cues.
- **speed and transload**: The predicted values of how quickly (in days), and how many parasites would transmit from the infected fish used as stimuli in the behavioural experiment. We used the models constructed using data from a transmission experiment using this system (published as Stephenson et al 2017, Phil. Trans. Roy. Soc. B.) to predict the transmission speed and load from the infection intensity and AUC values, and the day of infection of the stimulus fish. These three variables (intensity, AUC, and day of infection) were the only ones found to explain significant portions of the variation in transmission speed and load.
- **se.speed and se.load**: The standard error associated with the model predictions.
- **resp**: The proportion of time test fish spent associated with the cue of infected conspecific - our response variable.

```r
df3 <- subset(df2, speed != Inf)
removes the fish that were uninfected during the
behavioural trials and therefore transmission was predicted
to take an infinite amount of time.
```
df4 <- subset(df3, transload < 80)
# removes one outlier prediction of a transmission load of
# ~90 (all others were below 60).

df4$transload.high <- df4$transload + df4$se.load
df4$transload.low <- df4$transload - df4$se.load

df4$speed.high <- df4$speed + df4$se.speed
df4$speed.low <- df4$speed - df4$se.speed

# Testing transmission speed

sp <- glmer(speed ~ day + (1 | pair), data = df4, family = Gamma(link = "log"))
summary(sp)

## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: Gamma ( log )
## Formula: speed ~ day + (1 | pair)
## Data: df4
##
## AIC BIC logLik deviance df.resid
## 51.4 61.6  -21.7   43.4    92
##
## Scaled residuals:
##    Min  1Q Median  3Q Max
## -1.6159 -0.6158 -0.1344  0.4198  2.7232
##
## Random effects:
## Groups   Name        Variance Std.Dev.
## pair     (Intercept) 0.02149   0.1466
## Residual         0.03391   0.1841
## Number of obs: 96, groups: pair, 54
##
## Fixed effects:
##                Estimate Std. Error t value Pr(>|t|)
## (Intercept)  0.575128   0.063099  9.115   <2e-16 ***
## day         -0.009933   0.004630 -2.145    0.0319 *
## ---
## Signif. codes:  < ***' 0.001 '**' 0.01 '*' 0.05 '. 0.1' 1
##
## Correlation of Fixed Effects:
## (Intr)
## day  -0.836
##
## Model failed to converge with max|grad| = 0.00253098 (tol = 0.001, component 1)
overdisp_fun(sp)

```r
chisq ratio rdf p
2.54760102 0.02739356 93.00000000 1.00000000
```

```r
hoslem.test(df4$speed, y = fitted(sp))
```

```r
Hosmer and Lemeshow goodness of fit (GOF) test
#
data: df4$speed, fitted(sp)
X-squared = -1.6443, df = 8, p-value = 1
```

```r
Testing with low and high predicted values
spl <- glmer(speed.low ~ day + (1 | pair), data = df4, family = Gamma(link = "log"))
summary(spl)
```

```r
Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod]
Family: Gamma (log)
Formula: speed.low ~ day + (1 | pair)
Data: df4
##
AIC BIC logLik deviance df.resid
50.9 61.2 -23.5 42.9 42
##
Scaled residuals:
Min 1Q Median 3Q Max
```
## Random effects:
## Groups   Name   Variance Std.Dev.
## pair     (Intercept) 0.02986   0.1728
## Residual                     0.04210   0.2052
## Number of obs: 96, groups: pair, 54
##
## Fixed effects:
## Estimate Std. Error t value Pr(>|z|)
## (Intercept)  0.493194   0.072069   6.843 7.74e-12 ***
## day          0.013641   0.005231  -2.608 0.00911 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## day -0.826

sph <- glmer(speed.high ~ day + (1 | pair), data = df4, family = Gamma(link = "log"))
summary(spdh)

## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: Gamma  ( log )
## Formula: speed.high ~ day + (1 | pair)
## Data: df4
##
## AIC      BIC   logLik deviance df.resid
## 55.1     65.4   -23.5    47.1      92
##
## Scaled residuals:
##  Min     1Q   Median     3Q    Max
## -1.4521 -0.5482 -0.1707  0.3088  2.8499
##
## Random effects:
## Groups   Name   Variance Std.Dev.
## pair     (Intercept) 0.01647   0.1283
## Residual                     0.02912   0.1706
## Number of obs: 96, groups: pair, 54
##
## Fixed effects:
## Estimate Std. Error t value Pr(>|z|)
## (Intercept)  0.651995   0.057126  11.413  <2e-16 ***
## day          0.007107   0.004235  -1.678    0.0933 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## day -0.846

# Testing transmission load
co <- glmer(transload ~ day + (1 | pair), data = df4, family = Gamma(link = "log"))
summary(co)
```r
Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]
Family: Gamma (log)
Formula: transload ~ day + (1 | pair)
Data: df4
##
AIC BIC logLik deviance df.resid
566.6 576.9 -279.3 558.6 92
##
Scaled residuals:
Min 1Q Median 3Q Max
-1.3830 -0.5860 -0.1018 0.6931 2.4322
##
Random effects:
Groups Name Variance Std.Dev.
pair (Intercept) 0.4569 0.676
Residual 0.3588 0.599
Number of obs: 96, groups: pair, 54
##
Fixed effects:
Estimate Std. Error t value Pr(>|z|)
(Intercept) 0.78410 0.23990 3.268 0.00108 **
day 0.08044 0.01760 4.570 4.88e-06 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
##
Correlation of Fixed Effects:
(Intr)
day -0.829
```

![Graphs](image.png)
overdisp_fun(co)

## chisq  ratio  rdf      p
## 22.0722851  0.2373364  93.0000000  1.0000000

hoslem.test(df4$transload, y = fitted(co))

### Hosmer and Lemashe goodness of fit (GOF) test
### data: df4$transload, fitted(co)
### X-squared = -7.0337, df = 8, p-value = 1

# Testing with low and high predicted values
col <- glmer(transload.low ~ day + (1 | pair), data = df4, family = Gamma(link = "log"))
summary(col)

### Generalized linear mixed model fit by maximum likelihood (Laplace
### Approximation) [glmerMod]
### Family: Gamma ( log )
### Formula: transload.low ~ day + (1 | pair)
### Data: df4
###
### AIC       BIC     logLik deviance df.resid
### 537.1     547.4    -264.6    529.1      92
###
### Scaled residuals:
### Min      1Q  Median       3Q      Max
### -1.4072 -0.6014 -0.0878  0.7212  2.4867
###
### Random effects:
### Groups Name        Variance Std.Dev.
### pair     (Intercept)  0.4249   0.6519
### Residual             0.3720   0.6099
### Number of obs: 96, groups: pair, 54
###
### Fixed effects:
### Estimate Std. Error t value Pr(>|t|)
### (Intercept)  0.64579   0.24710  2.613   0.00896 **
### day          0.07836   0.01851  4.234  2.29e-05 ***
### ---
### Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
###
## Correlation of Fixed Effects:
##   (Intr)
## day -0.844

coh <- glmer(transload.high ~ day + (1 | pair), data = df4, family = Gamma(link = "log"))
summary(coh)

## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod]
## Family:  Gamma ( log )
## Formula:  transload.high ~ day + (1 | pair)
## Data: df4
##
##   AIC   BIC logLik deviance df.resid
## 592.7 602.9  -292.3  584.7      92
##
## Scaled residuals:
##     Min   1Q Median   3Q   Max
## -1.3630 -0.5637 -0.0912  0.6697  2.3914
##
## Random effects:
##   Groups   Name        Variance Std.Dev.
##   pair     (Intercept)  0.4781   0.6914
##   Residual             0.3512   0.5927
## Number of obs: 96, groups: pair, 54
##
## Fixed effects:
##                Estimate Std. Error t value Pr(>|t|)
## (Intercept)  0.904910   0.235890  3.8360 0.000125 ***
## day         0.082133   0.017082  4.8106 1.51e-06 ***
## ---
## Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
##
## Correlation of Fixed Effects:
##   (Intr)
##   day -0.819

### Post-hoc tests investigating the day 15 threshold

```r
Post-hoc test to see if test fish respond differently to
pre- and post-day 15 of infection stimulus fish

First: do their association preferences differ from 50% of
the time?

df1$cat[df1$dayinf < 15] <- "early"
df1$cat[df1$dayinf >= 15] <- "late"
df1$cat <- as.factor(df1$cat)
summary(df1$cat)

early late
123 47
```
dfeary <- subset(df1, cat == "early")
dflate <- subset(df1, cat == "late")

t.test(dfeary$resp, mu = 0.5)

## One Sample t-test
## data:  dfeary$resp
## t = -2.5637, df = 122, p-value = 0.01157
## alternative hypothesis: true mean is not equal to 0.5
## 95 percent confidence interval:
##  0.4062923  0.4879532
## sample estimates:
## mean of x
##  0.4471228

mean(dfeary$resp)

## [1] 0.4471228

sd(dfeary$resp)/sqrt(length(dfeary$resp))

## [1] 0.02062561

t.test(dflate$resp, mu = 0.5)

## One Sample t-test
## data:  dflate$resp
## t = 3.1646, df = 46, p-value = 0.002753
## alternative hypothesis: true mean is not equal to 0.5
## 95 percent confidence interval:
##  0.5360775  0.6621820
## sample estimates:
## mean of x
##  0.5991298

mean(dflate$resp)

## [1] 0.5991298

sd(dflate$resp)/sqrt(length(dflate$resp))

## [1] 0.03132415

# Second: do their association preferences differ when
# exposed to pre- vs post-day 15 of infection stimulus fish,
# or on the cue type available?

th <- glmmadmb(resp ~ cat * sense + (1 | pair), data = df1, family = "beta")
Anova(th)

## Analysis of Deviance Table (Type II tests)
##
## Response: resp
##    Df  Chisq Pr(>Chisq)
## cat  1 15.1504  9.928e-05 ***
```r
sense
1 1.0385 0.3082
cat:sense
1 0.3395 0.5601

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

data

fitted(th)
resid(th)

overdisp_fun(th)

chisq ratio rdf p
111.1864566 0.6657872 167.0000000 0.9997131

calls_hoslem.test(df1$resp, y = fitted(th))

Hosmer and Lemeshow goodness of fit (GOF) test
data: df1$resp, fitted(th)
X-squared = 1.495, df = 8, p-value = 0.9928

Post-hoc test to see if pre- and post-day 15 stimulus fish differ in their predicted transmission speed or load.

df4$cat[df4$day < 15] <- "early"
df4$cat[df4$day >= 15] <- "late"
df4$cat <- as.factor(df4$cat)

summary(df4$cat)

early late
67 29

Testing transmission speed

sp2 <- glmer(speed ~ cat + (1 | pair), data = df4, family = Gamma(link = "log"))

summary(sp2)
```
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod]

**Family:** Gamma (log)

**Formula:** speed ~ cat + (1 | pair)

**Data:** df4

### AIC    BIC    logLik    deviance    df.resid
55.8    66.1    -23.9    47.8    92

### Scaled residuals:

**Min**    **1Q**    **Median**    **3Q**    **Max**
-1.86576  -0.59312  -0.07174  0.34426  2.37050

### Random effects:

**Groups**    Name    Variance    Std.Dev.
(pair)        (Intercept)    0.02186    0.1479
Residual      0.03476    0.1864
**Number of obs:**  96, **groups:** pair, 54

### Fixed effects:

**Estimate**    **Std. Error**    **t value**    **Pr(>|z|)**
(Intercept)    0.463894    0.037018    12.532    <2e-16 ***
catlate        -0.006662    0.042829    -0.156    0.876

---

**Signif. codes:** 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

### Correlation of Fixed Effects:

(Intr)
catlate -0.302

---

![Graphs](https://example.com/graph.png)
resid(sp2)

overdisp_fun(sp2)

# Hosmer and Lemeshow goodness of fit (GOF) test
# Data: df4$speed, fitted(sp2)
# X-squared = 1.6349, df = 8, p-value = 1
# Testing with low and high predicted values
sp2l <- glmer(speed.low ~ cat + (1 | pair), data = df4, family = Gamma(link = "log"))
summary(sp2l)

# Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod]
# Family: Gamma ( log )
# Formula: speed.low ~ cat + (1 | pair)
# Data: df4
#
# AIC  BIC  logLik deviance df.resid
# 57.2 67.5 -24.6  49.2  92
#
# Scaled residuals:
#  Min     1Q    Median     3Q    Max
# -2.00979 -0.67477 -0.04411  0.49024  2.27545
#
# Random effects:
# Groups   Name        Variance  Std.Dev.
# pair     (Intercept) 0.03008 0.1734
# Residual             0.04389 0.2095
# Number of obs: 96, groups: pair, 54
#
# Fixed effects:
# Estimate   Std. Error t value Pr(>|z|)
# (Intercept) 0.34493    0.04333  7.961 1.71e-15 ***
# catlate     -0.02543    0.04878 -0.521   0.602
# ---
# Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#
# Correlation of Fixed Effects:
```r
(Intr)
catlate = -0.292

sp2h <- glmer(speed.high ~ cat + (1 | pair), data = df4, family = Gamma(link = "log"))
summary(sp2h)

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod]
Family: Gamma (log)
Formula: speed.high ~ cat + (1 | pair)
Data: df4
#
AIC BIC logLik deviance df.resid
57.8 68.1 -24.9 49.8 92
#
Scaled residuals:
Min 1Q Median 3Q Max
-1.6979 -0.5410 -0.1547 0.2325 2.8729

Random effects:
Groups Name Variance Std.Dev.
pair (Intercept) 0.01685 0.1298
Residual 0.02935 0.1713
Number of obs: 96, groups: pair, 54

Fixed effects:
Estimate Std. Error t value Pr(>|z|)
(Intercept) 0.569131 0.032643 17.435 <2e-16 ***
catlate 0.007112 0.038877 0.183 0.855

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
(Intr)
catlate -0.313

Testing transmission load
co2 <- glmer(transload ~ cat + (1 | pair), data = df4, family = Gamma(link = "log"))
summary(co2)

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod]
Family: Gamma (log)
Formula: transload ~ cat + (1 | pair)
Data: df4
#
AIC BIC logLik deviance df.resid
582.0 592.2 -287.0 574.0 92

Scaled residuals:
Min 1Q Median 3Q Max
-1.28737 -0.55314 -0.09676 0.59190 2.68102

Random effects:
Groups Name Variance Std.Dev.
pair (Intercept) 0.5300 0.7280
```
## Residual
0.4164 0.6453
## Number of obs: 96, groups: pair, 54
##
## Fixed effects:
##
## Estimate Std. Error t value Pr(>|z|)
## (Intercept) 1.647326 0.001651 997.8 <2e-16 ***
## catlate 0.310917 0.001651 188.3 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## catlate -0.001

```
overdisp_fun(co2)
chisq ratio rdf p
26.0506782 0.2801148 93.0000000 1.0000000
hoslem.test(df4$transload, y = fitted(co2))
##
Hosmer and Lemeshow goodness of fit (GDF) test
##
data: df4$transload, fitted(co2)
X-squared = -9.84, df = 8, p-value = 1
```

```
co2l <- glmer(transload.low ~ cat + (1 | pair), data = df4, family = Gamma(link = "log"))
```
```r
table()

Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]
Family: Gamma (log)
Formula: transload.low ~ cat + (1 | pair)
Data: df4
#
AIC BIC logLik deviance df.resid
550.9 561.2 -271.5 542.9 92
#
Scaled residuals:
Min 1Q Median 3Q Max
-1.3028 -0.58372 -0.08158 0.62869 2.71409
#
Random effects:
Groups Name Variance Std.Dev.
pair (Intercept) 0.4983 0.7059
Residual 0.4275 0.6539
Number of obs: 96, groups: pair, 54
#
Fixed effects:
Estimate Std. Error t value Pr(>|z|)
(Intercept) 1.492092 0.001684 885.8 <2e-16 ***
catlate 0.278914 0.001685 165.6 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#
Correlation of Fixed Effects:
(Intr)
catlate -0.001
```

```r
c02h <- glmer(transload.high ~ cat + (1 | pair), data = df4,
family = Gamma(link = "log"))
table()

Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]
Family: Gamma (log)
Formula: transload.high ~ cat + (1 | pair)
Data: df4
#
AIC BIC logLik deviance df.resid
609.1 619.4 -300.6 601.1 92
#
Scaled residuals:
Min 1Q Median 3Q Max
-1.2736 -0.5406 -0.1053 0.5563 2.6563
#
Random effects:
Groups Name Variance Std.Dev.
pair (Intercept) 0.5508 0.7422
Residual 0.4105 0.6407
Number of obs: 96, groups: pair, 54
```
## Fixed effects:

|          | Estimate | Std. Error | t value | Pr(>|z|) |
|----------|----------|------------|---------|----------|
| (Intercept) | 1.782642 | 0.001631 | 1093.2  | <2e-16   |
| catlate    | 0.335376 | 0.001631 | 205.6   | <2e-16   |

---

**Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1**

## Correlation of Fixed Effects:

- (Intr)
- catlate -0.001