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ABSTRACT	

	

The	 complex	 and	 heterogeneous	 nature	 of	 breast	 cancer	 presents	 significant	

challenges	 for	 many	 conventional	 cancer	 therapies.	 Immunotherapy	 has	 the	

potential	to	provide	a	more	potent,	less	invasive	and	less	toxic	approach	to	breast	

cancer	 treatment,	 with	 several	 successes	 already	 evident	 in	 the	 treatment	 of	

metastatic	melanoma.	Three	recently	described	tumour-associated	antigens	(TAAs);	

(1)	NY-BR-1,	 (2)	 cadherin-3/P-cadherin	 (CDH3),	 and	 (3)	 bone	marrow	 stromal	 cell	

antigen-2	(BST-2),	have	been	implicated	as	candidates	for	breast	cancer	vaccination	

strategies.	 However,	 peptide	 vaccines	 that	 are	 designed	 using	 wild-type	 (WT)	

sequences	 of	 these	 proteins	 are	 likely	 to	 elicit	 suboptimal	 T-cell	 responses	 in	

patients.	This	 is	 generally	attributable	 to	 the	 low	affinity	of	 thymically-selected	T-

cell	 receptors	 (TCRs)	 for	 “self”	 TAAs.	Here	 I	 describe	a	method	 for	enhancing	 the	

immunogenicity	 of	 these	 three	 HLA-A*0201	 (HLA-A2)-restricted	 breast	 cancer	

epitopes.	Firstly,	αβ	CD8+	T-cell	clones	were	generated	against	each	of	the	epitopes	

using	three	different	approaches;	(i)	T-cell	 lines	and	(ii)	T-cell	 libraries	(Chapter	3),	

and	 (iii)	 tumour-infiltrating	 lymphocytes	 (TILs)	 (Chapter	 4),	 and	 the	 breast	 cancer	

reactivity	 of	 these	 clones	 confirmed	 in	 vitro.	 Then,	 using	 a	 positional	 scanning	

synthetic	 combinatorial	 library	 (PS-SCL),	 altered	 peptide	 ligands	 (APLs)	 were	

designed	 for	each	of	 the	clones	 (Chapter	5).	 These	APLs	were	 shown	 to	be	up	 to	

100,000-fold	more	potent	than	the	respective	WT	epitopes.	Preliminary	“proof-of-

concept”	 CD8+	 T-cell	 priming	 experiments	 on	 healthy	 HLA-A2+	 donors	 were	 then	

used	 to	establish	whether	 a	 chosen	BST-2	APL	was	 capable	of	 activating	 superior	

breast	cancer	specific	T-cell	populations	in	vitro	(Chapter	6).	From	these	preliminary	

investigations,	 it	was	 found	that	 the	BST-2	APL	was	capable	of	generating	a	T-cell	

response	of	greater	magnitude,	and	that	was	also	better	able	to	kill	breast	cancer	

cells	 when	 compared	 to	 the	 corresponding	 BST-2	 WT	 peptide.	 Together,	 these	

experiments	 illustrate	 the	 potential	 use	 of	 APLs	 for	 the	 development	 of	 a	 highly	

effective	prophylactic	or	therapeutic	peptide	vaccine	for	breast	cancer.	
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1. INTRODUCTION	

	

1.1. Breast	Cancer	

	

1.1.1. Epidemiology	

	

Breast	 cancer	 continues	 to	 be	 a	major	 public	 health	 problem,	with	 its	worldwide	

incidence	rapidly	 increasing.	 In	2012,	the	GLOBOCAN	project	estimated	that	there	

were	 nearly	 1.7	million	 new	 cases	 of	 breast	 cancer	 diagnosed	 in	 that	 year,	 along	

with	522,000	breast	cancer	related	deaths	worldwide	(Ferlay	et	al.,	2015).	By	2050,	

the	number	of	new	cases	worldwide	 is	predicted	to	reach	a	staggering	3.2	million	

per	 annum	 (Hortobagyi	 et	 al.,	 2005).	 The	 most	 recent	 statistics	 provided	 by	 the	

American	 Cancer	 Society	 estimate	 that	 there	will	 be	 approximately	 255,180	 new	

breast	cancer	cases	reported	during	2017,	in	the	United	States	alone.	Of	these	new	

cases,	it	is	estimated	that	there	will	be	approximately	41,070	related	deaths	(Siegel	

et	al.,	2017).	Furthermore,	breast	cancer	incidence	has	been	shown	to	vary	across	

the	globe,	with	 rates	being	 typically	higher	 in	more	developed	parts	of	 the	world	

(Ferlay	et	al.,	2010).	Nevertheless,	breast	cancer	incidence	is	unquestionably	on	the	

rise	in	less	developed	regions.	This	is	generally	due	to	a	longer	life	expectancy,	and	

the	 health	 implications	 associated	 with	 adoption	 of	 a	 more	 westernised	 lifestyle	

(McCormack	 and	 Boffetta,	 2011).	Moreover,	 the	 level	 of	mortality	 appears	 to	 be	

much	greater	 in	 less	developed	 countries,	with	5-year	 survival	 rates	 varying	 from	

~90%	 in	 the	 United	 States	 (Siegel	 et	 al.,	 2017)	 to	 less	 than	 50%	 in	 some	 African	

countries	(Mabula	et	al.,	2012,	Mensah	et	al.,	2016,	Sankaranarayanan	et	al.,	2010).	

These	 differences	 are	 likely	 due	 to	 poor	 mammographic	 screening	 and	 late	

detection,	 along	 with	 limited	 access	 to	 treatment	 and	 follow-up	 care	 in	 less	

developed	areas	(Anderson	et	al.,	2008,	Shulman	et	al.,	2010,	Smith	et	al.,	2006).		
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1.1.2. Risk	Factors	

	

Gender	 is	undoubtedly	the	most	crucial	risk	factor	for	breast	cancer.	According	to	

the	American	Cancer	Society,	breast	cancer	is	the	most	frequently	occurring	cancer	

among	women,	and	is	currently	the	second	leading	cause	of	cancer	related	death	in	

women,	 after	 lung	 cancer	 (Siegel	 et	 al.,	 2017).	 In	 fact,	 it	 is	 estimated	 that	 1	 in	 8	

women	will	develop	breast	cancer	at	 some	point	 in	 their	 lifetime	 (DeSantis	et	al.,	

2014),	whereas	<	1%	of	all	breast	 cancer	cases	occur	 in	men	 (Siegel	et	al.,	2017).	

Additionally,	 age	 is	 also	 considered	 to	 be	 a	 major	 risk	 factor,	 with	 incidence	 of	

breast	 cancer	 doubling	 approximately	 every	 10	 years	 until	 the	 menopause	

(McPherson	et	al.,	2000).	What's	more,	having	a	 family	history	of	breast	cancer	 is	

also	 an	 important	 risk	 factor.	Genetic	 predisposition	 to	breast	 cancer	 is	 generally	

inherited	 in	 an	 autosomal	 dominant	 pattern.	 Specifically,	 carriers	 of	 a	 BRCA1	 or	

BRCA2	mutation	have	been	 shown	 to	 be	more	 susceptible	 to	 the	disease,	with	 a	

lifetime	risk	of	almost	85%.	However,	interestingly,	hereditary	BRCA1/BRCA2	breast	

cancers	 only	 account	 for	 5-10%	 of	 all	 breast	 cancers	 (Friedman	 et	 al.,	 1997,	

McPherson	 et	 al.,	 2000).	 In	 addition,	 early	 age	 at	 menarche	 (first	 occurrence	 of	

menstruation)	 and	 late	 age	 at	 menopause	 can	 also	 increase	 a	 woman’s	 risk	 of	

developing	 breast	 cancer.	 Finally,	 other	 risks	 include	 lifestyle/environmental	

factors,	 such	 as	 being	 overweight	 or	 obese,	 physical	 inactivity,	 excessive	 alcohol	

consumption,	 oral	 contraceptive	 use,	 delays	 in	 childbearing,	 and	 use	 of	 hormone	

replacement	therapy	(HRT)	(McPherson	et	al.,	2000).		

	

1.1.3. Symptoms	

	

The	main	symptoms	of	breast	cancer	have	been	illustrated	in	Figure	1.1.	

	

1.1.4. Classification	

	

Due	 to	 its	 complex	 and	 heterogeneous	 nature,	 breast	 cancer	 is	 categorised	

according	 to	 several	 different	 factors	 at	 diagnosis	 (Pareja	 et	 al.,	 2017).



	

1	https://www.breastcancercare.org.uk/information-support/have-i-got-breast-cancer/	 3	
signs-symptoms-breast-cancer	-	Breast	cancer	symptoms.	Accessed	July	2017.	

	
	
Figure	1.1:	Symptoms	of	breast	cancer.		Figure	adapted	from	breastcancercare.org.uk	1.		
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1.1.4.1. Origin	

	

The	human	breast	 is	made	up	of	a	network	of	 lobes	 (milk-producing	glands	made	

up	 of	 small	 lobules),	 and	 ducts	 (tubes	 that	 carry	 milk	 from	 the	 lobules	 to	 the	

nipple),	 surrounded	by	a	 layer	of	 fatty	 (adipose)	and	 fibrous	 tissue,	known	as	 the	

“stroma”.		(Figure	1.2).	Breast	cancer	can	originate	either	in	the	lobules	or	ducts	of	

the	breast,	and	tumours	are	categorised	as	 lobular	mammary	carcinoma	or	ductal	

mammary	 carcinoma,	 accordingly.	 However,	 sometimes	 breast	 cancer	 may	 also	

contain	a	mixture	of	lobular	and	ductal	cells.	These	mixed	tumours	are	often	called	

invasive	mammary	carcinomas	(Alizart	et	al.,	2012,	Sims	et	al.,	2007).	

	

1.1.4.2. Invasiveness	

	

Unlike	 invasive	 mammary	 carcinomas,	 non-invasive	 breast	 cancers	 do	 not	 grow	

beyond	their	original	location	within	the	lobules	or	ducts	of	the	breast,	and	so	are	

often	referred	to	as	in	situ	(“in	the	same	place”)	mammary	carcinomas.	As	a	result,	

non-invasive	 mammary	 carcinomas	 do	 not	 invade	 other	 normal,	 healthy	 tissue	

within	 the	breast	 or	 in	other	parts	 of	 the	body	 (Figure	1.3B)	 (Alizart	 et	 al.,	 2012,	

Sims	et	al.,	2007).	

	

1.1.4.3. Stage	

	

An	 important	 factor	 in	 the	 classification	 of	 breast	 cancer	 is	 “stage”,	 which	 is	 an	

indication	of	how	advanced	the	tumour	is,	in	terms	of	its	size	and	spread.	In	total,	

there	 are	 5	 stages	 of	 breast	 cancer	 that	 are	 graded	 from	 0	 to	 4.	 Stage	 0	 is	

considered	a	pre-cancerous	(non-invasive)	stage	that	has	the	best	prognosis.	Stages	

1	 to	 3	 represent	 cancers	 that	 are	 localised	 within	 the	 breast	 or	 regional	 lymph	

nodes.	Stage	4	is	used	to	describe	metastatic	(invasive)	cancers	that	have	spread	to	

other	 tissues	 and/or	 organs	within	 the	 body.	 Stage	 4	 cancers	 generally	 have	 the	

worst	prognosis,	as	they	are	so	advanced.	Figure	1.3C	illustrates	how	the	different	

stages	of	breast	cancer	are	defined	(Alizart	et	al.,	2012).	

	



	

2	http://nbcf.org.au/about-national-breast-cancer-foundation/about-breast-cancer/what-you-	 5	
need-to-know/breast-anatomy-cancer-starts/	-	Female	breast	anatomy.	Accessed	July	2017.	

	

	

Figure	1.2:	Female	breast	anatomy.	The	human	breast	is	made	up	of	a	network	of	15-20	lobes	(milk-
producing	glands	made	up	of	small	 lobules),	and	6-8	ducts	(tubes	that	carry	milk	from	the	lobes	to	
the	 nipple),	 surrounded	 by	 a	 layer	 of	 fatty	 (adipose)	 and	 fibrous	 tissue,	 known	 as	 the	 “stroma”.	
Regional	lymph	nodes	and	vessels	run	through	the	breast	and	armpit,	transporting	lymphocytes	and	
lymph	fluid.	Figure	adapted	from	nbcf.org.au	2.	

	

	 	



	

3	http://www.breastcancer.org/symptoms/diagnosis/invasive	-	Non-invasive	and	invasive	 	
breast	cancer.	Accessed	July	2017.	 	
4	http://advocates4breastcancer.org/index.php/about-breast-cancer/stages	-	The	5	stages	of	 6	
breast	cancer.	Accessed	July	2017.	

	

	

Figure	1.3:	Breast	cancer	classification	-	invasiveness	and	stage.	(A)	Diagrammatic	cross-section	of	a	
healthy	breast	duct,	lined	by	two	layers	of	epithelial	cells	(inner	“luminal”	and	outer	“basal”),	which	
are	 supported	 by	 a	 basement	 membrane.	 (B)	 Comparison	 of	 healthy	 breast	 duct	 cells	 with	 non-
invasive	 and	 invasive	 ductal	 carcinomas.	 In	 invasive	 carcinomas,	 cancerous	 epithelial	 cells	 break	
through	the	supportive	basement	membrane	and	 infiltrate	the	surrounding	stroma.	Cells	can	then	
go	on	to	invade	other	areas	of	the	breast	tissue	or	other	parts	of	the	body.	(C)	Breast	cancer	stage	is	
based	on	the	advancement	(i.e.	size	and	spread)	of	the	tumour.	There	are	5	stages	(0	to	4),	with	pre-
cancerous	 (non-invasive)	 stage	 0	 having	 the	 best	 prognosis	 (not	 shown).	 Stages	 1	 to	 3	 represent	
cancers	which	occur	within	the	breast	or	regional	lymph	nodes.	Stage	4	represents	cancers	that	are	
metastatic	(invasive)	and	have	spread	to	other	tissues	and/or	organs	within	the	body.	This	stage	has	
the	 poorest	 prognosis,	 as	 the	 cancer	 is	 so	 advanced.	 Figure	 adapted	 from	breastcancer.org	 3	 and	
advocates4breastcancer.org	4.	
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1.1.4.4. Histologic	grade	

	

Breast	cancer	is	also	categorised	according	to	“histologic	grade”,	which	is	a	measure	

of	 how	 abnormal	 the	 cells	 look	 under	 a	 microscope	 (graded	 1	 to	 3).	 The	 more	

abnormal	the	cells,	the	higher	the	grade,	and	the	poorer	the	prognosis.	Figure	1.4	

illustrates	 how	 histologic	 grade	 varies	 with	 the	 different	 molecular	 subtypes	 of	

breast	cancer	(Alizart	et	al.,	2012,	Sims	et	al.,	2007).	

	

1.1.4.5. Molecular	subtype	

	

Figure	 1.4	 depicts	 how	 the	 different	 molecular	 subtypes	 of	 breast	 cancer	 are	

defined	 in	 terms	 of	 receptor	 expression,	 and	 how	 they	 relate	 to	 histologic	 grade	

and	prognosis.	 In	brief,	 there	are	 four	main	subtypes	of	breast	cancer	 (luminal	A,	

luminal	B,	HER2	enriched,	and	triple	negative	(TN)/basal-like).	Luminal	A	is	the	most	

prevalent,	 and	 accounts	 for	 approximately	 40%	 of	 all	 breast	 cancer	 diagnoses.	

Luminal	 A	 (ER+	 PR+/-	 HER2-)	 and	 luminal	 B	 (ER+	 PR+/-	 HER2+)	 tumours	 are	 mainly	

defined	 by	 their	 expression	 of	 estrogen	 (ER)	 and	 progesterone	 (PR)	 hormone	

receptors.	These	two	subtypes	tend	to	have	a	 low	histologic	grade,	and	therefore	

good	prognosis.	HER2	enriched	(ER-	PR-	HER2+)	breast	cancers	are	characterised	by	

their	 overexpression	 of	 human	 epidermal	 growth	 factor	 receptor	 2	 (HER2),	 also	

known	as	ERBB2.	TN	(ER-	PR-	HER2-)	tumours	are	defined	by	their	lack	of	expression	

of	 any	 of	 the	 three	main	 receptors.	 The	 TN	 and	 basal-like	 phenotypes	 are	 often	

used	interchangeably.	However,	it	is	worth	noting	that	not	all	TN	tumours	are	basal-

like,	and	not	all	basal-like	tumours	are	TN.	TN	breast	cancers	are	generally	of	high	

histologic	grade	and	have	poor	prognoses	(Alizart	et	al.,	2012,	Sims	et	al.,	2007).	

	

1.1.5. Current	treatments	

	

An	 overview	 of	 common	 treatment	 strategies	 for	 the	 different	 breast	 cancer	

subtypes	 have	 been	 illustrated	 in	 Figure	 1.4.	 These	 treatments	 are	 frequently	

combined	to	give	the	best	possible	chance	of	patient	remission.	Briefly,	ER+	breast	

cancers	(i.e.	luminal	A	and	luminal	B	subtypes)	are	typically	treated	with	a	form	of		 	
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Figure	 1.4:	 Breast	 cancer	 classification	 –	 histologic	 grade	 and	molecular	 subtype.	 The	 four	main	
molecular	 subtypes	 of	 breast	 cancer	 have	 been	 shown,	 along	 with	 their	 prevalence	 (%	 of	 breast	
cancers),	 receptor	 expression	 (ER	 -	 estrogen	 receptor,	 PR	 -	 progesterone	 receptor,	HER2	 -	 human	
epidermal	 growth	 factor	 receptor	 2),	 histologic	 grade	 (1	 to	 3),	 prognosis	 and	 common	 treatment	
strategies.	 Luminal	 and	basal	 subtypes	 are	named	after	 the	 type	of	 breast	 epithelial	 cell	 of	which	
they	resemble.	Figure	adapted	from	(Sims	et	al.,	2007).	
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hormone	 (endocrine)	 therapy.	 For	example,	 Tamoxifen	 (brand	name	Nolvadex),	 a	

type	 of	 selective	 estrogen	 receptor	 modulator	 (SERM),	 successfully	 blocks	 the	

growth-promoting	effects	of	estrogen	in	breast	tissue	(Clemons	et	al.,	2002).	Other	

forms	 of	 hormone	 therapy	 include	 aromatase	 inhibitors	 (e.g.	 anastrozole,	 brand	

name	 Arimidex®)	 to	 successfully	 prevent	 estrogen	 production	 in	 postmenopausal	

women	 (Fabian,	 2007,	 Geisler	 et	 al.,	 1996),	 and	 also	 estrogen	 receptor	 down-

regulators	 (ERDs;	 e.g.	 fulvestrant,	 brand	 name	 Faslodex®)	 (Robertson,	 2001).	 As	

well	 as	 successfully	 treating	 the	 majority	 of	 hormone-positive	 breast	 cancers,	

hormone	therapies	are	often	used	for	years	following	patient	remission,	in	order	to	

prevent	disease	recurrence	in	high-risk	patients	and	increase	disease-free	survival.	

While	some	women	tolerate	these	treatments	well,	others	experience	severe	side	

effects	(e.g.	joint	and	muscle	pain,	osteoporosis,	hot	flushes	and	night	sweats),	and	

consequently	 stop	 treatment	before	completing	 the	 recommended	course	 (Flaum	

and	Gradishar,	2018).	Moreover,	HER2+	breast	cancers	(i.e.	HER2	enriched	subtype)	

are	commonly	treated	with	targeted	therapies.	Drugs	such	as	Trastuzumab	(brand	

name	 Herceptin®),	 a	 humanised	IgG1	 monoclonal	 antibody	 (mAb),	 is	 capable	 of	

specifically	 targeting	HER2	 and	blocking	 tumour	 growth-promoting	 signals	 (Carter	

et	 al.,	 1992,	 Cobleigh	 et	 al.,	 1999,	 Slamon	 	 et	 al.,	 2001,	 Vogel	 et	 al.,	 2002).	

Trastuzumab	has	been	combined	with	a	non-specific	cytotoxic	chemotherapy	agent	

(emtansine)	to	form	ado-trastuzumab	emtansine	(T-DM1,	brand	name	Kadcyla),	an	

antibody-drug	 conjugate	 that	 is	 used	 as	 a	 targeted	 therapy	 (Guerin	 et	 al.,	 2015).	

Finally,	 due	 to	 their	 lack	 of	 receptor	 expression,	 TN	 breast	 cancers	 are	 usually	

treated	with	a	 combination	of	 surgery	 (lumpectomy,	mastectomy,	or	 lymph	node	

removal),	chemotherapy	(intravenous	or	oral),	and	radiotherapy	(external,	internal	

or	intraoperative)	(Yagata	et	al.,	2011).	

	

1.1.6. The	need	for	alternative	therapies	

	

Despite	 significant	 improvements	 in	 the	 treatment	of	breast	 cancer	over	 the	past	

decade,	approximately	30%	of	patients	still	experience	recurrence	of	their	disease.	

Therefore,	there	is	a	vital	need	for	the	development	of	novel	therapeutic	strategies	
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to	 augment	 current	 therapeutic	 regimens	 (Harao	 et	 al.,	 2015).	 Conventional	

treatments,	 such	 as	 surgery,	 chemotherapy,	 and	 radiotherapy,	whilst	 effective	 at	

inducing	 temporary	 remissions,	 are	 all	 relatively	 invasive	 and	 aggressive	 in	 their	

nature,	 and	 often	 present	 many	 challenges	 for	 patients.	 For	 example,	 these	

treatments	 often	 have	 unpleasant	 side-effects,	 which	 can	 range	 from	 mild	 to	

severe,	can	be	short	term	or	long	term,	and	can	be	localised	or	systemic	in	nature	

(Carelle	 et	 al.,	 2002).	 The	 expression	 of	 non-immunogenic	 “self”	 antigens	 on	 the	

surface	of	breast	cancer	cells	 limits	the	number	of	feasible	therapeutic	targets	for	

these	 traditional	protocols,	 and	 thus	makes	 it	difficult	 to	design	effective	 therapy	

regimens	 without	 adverse	 effect.	 In	 addition	 to	 this,	 the	 complex	 and	

heterogeneous	 nature	 of	 breast	 cancer	 presents	 significant	 scientific	 and	 clinical	

challenges,	 with	 many	 of	 these	 current	 therapies	 proving	 ineffective	 against	

different	 subtypes	 of	 the	 disease	 (Pareja	 et	 al.,	 2017).	 As	 a	 result	 of	 the	 resilient	

nature	of	breast	cancer	cells,	many	patients	relapse,	following	tumour	resistance	to	

conventional	clinical	practices	(Coley,	2008).	Consequently,	there	is	now	an	urgent	

need	 for	 the	 development	 of	 more	 effective	 breast	 cancer	 therapies.	 One	 such	

treatment	 option	 is	 cancer	 immunotherapy.	 Cancer	 immunotherapy	 will	 be	

discussed	 below,	 but	 as	 an	 understanding	 of	 cancer	 immunotherapy	 requires	

knowledge	of	the	adaptive	immune	system,	and	in	particular	T-cells,	I	will	begin	by	

introducing	this	important	element.	

	 	



	

11	
	

1.2. The	human	adaptive	immune	system	

	

T-cells	and	B-cells	of	the	human	adaptive	immune	system	are	types	of	lymphocyte	

that	play	a	crucial	role	in	anti-tumour	immunity.	Specifically,	B-cells	function	as	part	

of	humoral	 immunity,	 secreting	antibodies	and	cytokines	 in	 response	 to	antigenic	

stimulation	of	the	B-cell	receptor	(BCR).	B-cells	also	act	to	present	antigens	to	other	

types	 of	 immune	 cell	 (e.g.	 T-cells).	When	 activated	 B-cells	 differentiate,	 antibody	

isotypes	 can	 change	 in	 response	 to	 cytokines	 released	 by	 helper	 T-cells,	 and	

somatic	hypermutation	(SHM)	can	alter	the	BCR/antibody	CDR	sequences.	Rates	of	

mutation	in	antibody	CDR	regions	are	known	to	be	up	to	a	million	times	higher	than	

elsewhere,	resulting	in	1	to	2	mutations	per	cell	generation.	Since	B-cells	must	then	

compete	 for	 limited	 antigen,	 the	 B-cell	 progeny	 with	 the	 highest	 affinities	 for	

antigen	are	favoured	for	survival.	This	mutation	and	clonal	selection	process	drives	

“affinity	 maturation”	 and	 ensures	 that	 a	 secondary	 immune	 response	 can	 elicit	

antibodies	with	several	 fold	greater	affinity	 than	 in	a	primary	 response	 (Teng	and	

Papavasiliou,	2007,	Janeway,	2011).		

	

In	 contrast,	 T-cells	 function	 as	 part	 of	 cell-mediated	 immunity,	 and	 are	

distinguishable	 from	 other	 types	 of	 lymphocytes	 by	 the	 presence	 of	 an	 antigen-

specific	 T-cell	 receptor	 (TCR).	 T-cells	 must	 recognise	 a	 self-MHC	 weakly	 in	 the	

thymus	 in	 order	 to	 receive	 the	 obligatory	 positive	 selection	 signal	 that	 allows	

onward	 development	 and	 release	 into	 the	 periphery	 (Xing	 and	 Hogquist,	 2012).	

SHM	 never	 occurs	 in	 TCR	 genes.	 If	 SHM	 were	 to	 occur,	 it	 would	 allow	 affinity	

maturation	on	the	positively	selecting	 ligand.	T-cells	can	be	divided	into	two	main	

subsets,	 based	 on	 the	 expression	 of	 different	 TCR	 chain	 combinations;	 (1)	 alpha-

beta	(αβ),	and	(2)	gamma-delta	(γδ)	T-cells	(Janeway,	2011).	The	main	differences	in	

function	between	these	two	T-cell	subsets	will	be	described	below.	
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1.2.1. αβ	T-cells	vs.	γδ	T-cells	

	

αβ	T-cells	represent	the	majority	of	all	human	T-cells	(Kreslavsky	et	al.,	2010),	and	

formed	the	main	focus	of	my	research.	During	adaptive	immunity,	αβ	T-cells	mount	

a	response	to	a	variety	of	antigens	presented	by	an	array	of	protein	platforms,	with	

the	classically	 restricted	CD8+	cytotoxic	and	CD4+	helper	T-cell	 subsets	 recognising	

(“foreign”	or	“self”)	peptides	presented	by	major	histocompatibility	complex	class	I	

(MHC-I)	or	class	II	(MHC-II)	proteins,	respectively.	αβ	T-cells	recognise	peptide-MHC	

(pMHC)	 on	 the	 surface	 of	 antigen	 presenting	 cells	 (APCs)	 through	 their	

heterodimeric	 αβ	 T-cell	 receptors	 (TCRs),	 which	 are	 generated	 by	 somatic	

recombination	in	the	thymus	(Attaf	et	al.,	2015a,	Attaf	et	al.,	2015b).	Peptide-MHC	

recognition	by	αβ	T-cells	was	originally	described	by	Townsend	and	colleagues	over	

30	years	ago	(Townsend	et	al.,	1984,	Townsend	et	al.,	1985,	Townsend	et	al.,	1986,	

Gotch	et	al.,	1987),	and	has	become	the	 ‘convention’	 in	 terms	of	T-cell	 immunity.	

However,	some	αβ	T-cells	are	not	MHC-restricted	and	are	capable	of	recognising	a	

variety	 of	 different	 antigens,	 including	 small	molecules	 (molecular	weight	 <	 1000	

daltons),	 lipids,	 and	 modified	 bacterial	 metabolites.	 Examples	 of	 these	

“unconventional”	 T-cells	 include	 mucosal-associated	 invariant	 T-cells	 (MAIT),	

invariant	natural	killer	T-cells	(iNKT),	and	germline-encoded	mycolyl-reactive	(GEM)	

T-cells	(Godfrey	et	al.,	2015).	In	contrast	to	conventional	T-cells,	which	are	typically	

present	 in	 the	 peripheral	 blood	 and	 lymph	 nodes,	 unconventional	 T-cells	 reside	

predominantly	 in	 an	 epithelial	 environment	 (e.g.	 skin,	 gastrointestinal	 or	

genitourinary	 tract).	 These	 unconventional	 T-cells	 are	 thought	 to	 be	 involved	 in	

sensing	a	wide	variety	of	pathogen-	(bacteria/virus)	infected	and	malignant	cells,	as	

well	as	triggering	inflammatory	responses	in	these	tissues	(Liuzzi	et	al.,	2015).	γδ	T-

cells	 are	 also	 classed	 as	 “unconventional”	 T-cells,	 as	 they	 too	 are	 not	 MHC-

restricted,	 and	are	not	 capable	of	 recognising	peptide	antigens.	Unlike	αβ	T-cells,	

most	 antigens	 that	 are	 recognised	 by	 γδ	 T-cells	 are	 still	 largely	 unknown.	

Nevertheless,	 some	 are	 thought	 to	 recognise	 stress	 ligands	 on	 the	 surface	 of	

pathogen	infected	cells	and	tumours,	through	(NK)	receptors	such	as	NKG2D	(Bauer	

et	 al.,	 1999).	 Indeed,	 the	 importance	 of	 γδ	 T-cells	 in	 anti-cancer	 immunity	 is	

certainly	 well	 recognised	 (Legut	 et	 al.,	 2015,	 Silva-Santos	 et	 al.,	 2015).	 Since	 my	
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work	 concentrated	 on	 the	 recognition	 of	 processed	 peptide	 antigens	 by	

conventional	αβ	T-cells,	unconventional	T-cells	will	not	be	discussed	further.	

	

1.2.1.1. Thymic	development	and	selection	(central	tolerance)	

	

T-cells	 originate	 in	 the	 bone	 marrow	 as	 hematopoietic	 stem	 cells,	 and	 undergo	

differentiation	and	maturation	in	the	thymus	by	a	process	known	as	thymopoiesis	

(Zúñiga-Pflücker	and	Lenardo,	1996).	Thymic	hematopoietic	progenitor	cells	(known	

as	thymocytes)	 initially	do	not	express	either	of	the	CD4	or	CD8	co-receptors,	and	

consequently	appear	as	double-negative	 (DN;	CD4−CD8−)	cells.	As	 these	 immature	

T-cells	 progress	 through	 development,	 they	 become	 double-positive	 for	 CD4	 and	

CD8	 co-receptor	 expression	 (DP;	 CD4+CD8+),	 and	 then	 single-positive,	 expressing	

either	CD4	or	CD8	co-receptor	(SP;	CD4+CD8−	or	CD4−CD8+)	(Carpenter	and	Bosselut,	

2010).	These	mature	SP	thymocytes	are	then	released	into	the	periphery.	Some	DP	

T-cells	 have	 been	 reported	 in	 the	 periphery,	 and	 are	 thought	 to	 play	 a	 role	 in	

autoimmune	disease,	viral	 infection	and	cancer.	However,	 their	 role,	 function	and	

biological	significance	are	still	poorly	understood,	and	have	not	been	investigated	in	

detail.	(Parel	and	Chizzolini,	2004,	Rahemtullah	et	al.,	2006,	Desfrançois	et	al.,	2010,	

Nascimbeni	et	al.,	2011,	Chauhan	et	al.,	2012,	Quandt	et	al.,	2014).			

	

During	 the	DP	to	SP	stage	of	development,	T-cells	undergo	two	different	 types	of	

thymic	 selection	 (positive	 and	 negative	 selection),	 by	 which	 recognition	 of	 an	

individuals	own	unique	(“self”)	MHC	and	antigen	molecules	has	unusually	opposing	

outcomes.	 First,	 positive	 selection	 occurs	 in	 order	 to	 select	 thymocytes	 that	 are	

able	 to	 recognise	 “self”	 MHC	 molecules.	 Thymocytes	 that	 express	 useless	 TCRs,	

unable	 to	 recognise	 “self”	MHC,	 undergo	 death	 by	 neglect.	 In	 contrast,	 negative	

selection	 involves	 the	 removal	 of	 potentially	 harmful	 autoreactive	 T-cells	 that	

recognise	 “self”	 antigens	 by	 clonal	 deletion.	During	 this	 process,	 thymocytes	 that	

demonstrate	potentially	high	TCR	affinity	to	“self”	pMHC	complexes	expressed	on	

thymic	 APCs	 are	 eliminated	 by	 apoptosis	 (Kappler	 et	 al.,	 1987,	 Klein	 et	 al.,	 2014,	

Reza	 and	 Ritter,	 1998,	 Sprent	 and	 Kishimoto,	 2001,	 Xing	 and	 Hogquist,	 2012).	

Sometimes,	 thymocytes	 that	 display	 these	 high	 affinity	 TCRs	 can	 escape	 clonal	
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deletion	 by	 using	 an	 endogenous	 TCR-α	 chain	 created	 by	 secondary	 gene	

rearrangements	to	alter	their	antigen	specificity.	This	 is	known	as	receptor	editing	

(Wang	et	al.,	1998)	(McGargill	et	al.,	2000).	Overall,	this	process	by	which	immature	

T-cells	 are	 rendered	 non-reactive	 to	 “self”	 (i.e.	 non-mutated	 cancer	 antigens)	 is	

known	as	 central	 tolerance.	 Information	on	how	 to	overcome	 this	 immunological	

tolerance	for	the	purposes	of	cancer	immunotherapy	research	has	been	discussed	

in	Section	5.1.1.	Together,	 these	two	opposing	processes	of	positive	and	negative	

selection	 are	 often	 referred	 to	 as	 the	 “thymic	 paradox”	 (Reza	 and	 Ritter,	 1998,	

Sprent	and	Kishimoto,	2001,	Xing	and	Hogquist,	2012).	

	

Finally,	one	additional	checkpoint	that	occurs	during	T-cell	development	is	called	β-

selection.	 β-selection	 ensures	 that	 the	 correct	 TCRβ	 gene	 rearrangement	 occurs	

during	the	DN3	stage	of	T-cell	development,	and	that	each	TCRβ	chain	produced	at	

this	stage	is	fully	functional.	Only	functional	TCRβ	chains	are	successfully	presented	

on	the	surface	of	the	thymocyte	with	a	pre-TCRα	chain.	Indeed,	thymocytes	that	fail	

to	generate	a	functional	pre-TCR	are	eliminated	by	apoptosis	during	this	selection	

process.	(von	Boehmer	et	al.,	1998).	

	

Despite	the	fact	that	many	tissue-specific	antigens	are	now	known	to	be	expressed	

in	 the	 thymus,	primarily	 in	medullary	 thymic	epithelial	 cells	 (mTECs)	 (Derbinski	et	

al.,	2001,	Kyewski	et	al.,	2002,	Anderson	and	Kuchroo,	2003),	peripheral	tolerance	

occurs	 as	 a	 second	 branch	 of	 immunological	 selection.	 The	 role	 of	 peripheral	

tolerance	 is	 to	 ensure	 that	 self-reactive	 T-cells,	 which	 escape	 initial	 central	

tolerance	mechanisms	in	the	thymus,	do	not	remain	in	circulation	where	they	can	

cause	collateral	tissue	damage	and	subsequent	autoimmune	disease.	An	example	of	

this	 is	 regulatory	 T-cells	 (Treg),	 which	 help	 to	 suppress	 the	 effector	 functions	 of	

conventional	 T-cells	 in	 the	 periphery	 (after	 they	 have	 left	 the	 primary	 lymphoid	

organs)	 via	 numerous	 mechanisms,	 including	 producing	 anti-inflammatory	

cytokines,	direct	cell-cell	contact,	and	regulating	the	activation	and	function	of	APCs	

(Shevach	2009)	(Sakaguchi	et	al.,	2009)	(Xing	and	Hogquist,	2012).	The	role	of	Treg	in	

cancer	development	will	be	discussed	in	Section	1.2.1.5.	
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1.2.1.2. Antigen	processing	and	presentation	

	

During	 the	adaptive	 immune	 response,	 antigens	are	processed	 into	 short	peptide	

fragments	 for	 presentation	 either	 by	 MHC-I	 or	 MHC-II	 molecules	 on	 the	 APC	

surface.	 This	 can	 be	 done	 in	 one	 of	 two	 distinct	 ways.	 For	 MHC-I	 presentation,	

“foreign”	and	“self”	endogenous	proteins	 (from	within	the	cell)	are	 first	degraded	

by	 the	 proteasome	 (proteolytic	 machinery)	 in	 the	 cytosol	 of	 the	 cell	 (Kloetzel,	

2004).	Precursor	peptides	are	then	transported	to	the	endoplasmic	reticulum	(ER)	

lumen	by	a	 transporter	 associated	with	 antigen	processing	 (TAP),	where	 they	are	

cut	to	an	optimal	length	by	other	peptidases	in	the	ER,	such	as	ER	aminopeptidase	1	

(ERAP1)	(Hammer	et	al.,	2007,	Serwold	et	al.,	2002).	Next,	chaperone	proteins	(e.g.	

tapasin,	 calnexin,	 calreticulin)	help	 assist	with	pMHC-I	 assembly	 in	 the	ER,	before	

the	 complex	 is	 transported	 to	 the	 cell	 surface	 for	 peptide	 presentation	 to	 T-cell	

receptors	(Harding	and	Unanue,	1990,	Pamer	and	Cresswell,	1998)	(Solheim,	1999,	

Grandea	and	Van	Kaer,	2001).	On	the	other	hand,	MHC-II	molecules	typically	bind	

peptides	 derived	 from	 exogenous	 proteins,	 which	 have	 been	 processed	 during	

phagocytic	 or	 endocytic	 pathways.	 Nonetheless,	 MHC-I	 molecules	 can	 also	

occasionally	 bind	 exogenously	 derived	 peptides	 in	 this	 way.	 Emerging	 evidence	

suggests	 that	DCs	 have	 the	 ability	 to	 process	 exogenous	 antigens	 into	 the	MHC-I	

pathway.	 This	 cross-presentation	 process	 is	 particularly	 important	 for	 viral	

immunity	and	self-tolerance	mechanisms	(Heath	and	Carbone,	2001).	

	

In	humans,	MHC	molecules	are	termed	Human	Leukocyte	Antigens	(HLAs).	The	HLA	

genes,	 located	 on	 the	 short	 arm	 of	 human	 chromosome	 6,	 are	 extremely	

polymorphic,	 which	 enables	 them	 to	 present	 a	wide	 range	 of	 different	 peptides.	

HLAs	 corresponding	 to	MHC-I	 molecules	 (HLA-A,	 -B,	 or	 -C)	 are	 expressed	 on	 the	

surface	of	all	nucleated	cells,	and	also	platelets.	In	contrast,	HLAs	corresponding	to	

MHC-II	 molecules	 (HLA-DR,	 -DP,	 or	 -DQ)	 are	 constitutively	 expressed	 only	 on	

professional	immune	APCs,	such	as	dendritic	cells	(DCs),	monocytes,	macrophages,	

B-cells,	 and	 thymic	 epithelial	 cells.	 However,	 MHC-II	 expression	 may	 also	 be	

induced	on	 some	other	 cells	by	 IFNγ.	MHC-II	 expression	 can	also	be	 regulated	by	

other	 agents,	 e.g.	 IFNα/β,	 TNFα,	 IL-4,	 IL-10,	 and	 glucocorticoids	 (Ting	 and	
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Trowsdale,	 2011,	 Janeway,	 2011).	 Expression	 of	 both	 MHC-I	 and	 MHC-II	 can	 be	

upregulated	 by	 cytokines	 such	 as	 IFNγ	 (Steimle	 et	 al.,	 1994,	 Zhou,	 2009).	 As	

mentioned	previously,	MHC-I	molecules	are	responsible	for	presenting	peptides	to	

CD8+	 cytotoxic	 T-cells,	 and	 MHC-II	 molecules	 are	 responsible	 for	 presenting	

peptides	to	CD4+	helper	T-cells	(Sewell,	2012).	

	

In	terms	of	MHC	structure,	MHC-I	heterodimers	consist	of	two	polypeptide	chains;	

(1)	 a	 variable	 membrane-spanning,	 heavy	 chain	 (α1,	 α2,	 and	 α3),	 and	 (2)	 a	

conserved	β2	microglobulin	(β2M)	domain.	In	regards	to	the	heavy	chain,	the	two	

polymorphic	α1	and	α2	domains	form	the	peptide-binding	groove,	which	consists	of	

8	 β-strands	 and	 2	 α-helices.	 This	 α1α2	 binding	 groove	 has	 a	 closed-end	

conformation,	which	restricts	the	length	of	peptides	that	can	be	presented	(8	to	14	

amino	 acids),	 and	 is	 also	 responsible	 for	 the	 characteristic	 "bulge"	 seen	 for	

particularly	 long	 peptide	 sequences.	 However,	 typically	 MHC-I	 molecules	

accommodate	either	9mer	or	10mer	peptides.	Figure	1.5	illustrates	the	structure	of	

MHC-I.	MHC-II	heterodimer	molecules	are	 formed	of	a	membrane-spanning	alpha	

(α1	and	α2)	and	beta	(β1	and	β2)	chain.	The	α1	and	β1	domains	are	polymorphic	

and	form	a	peptide-binding	groove	with	an	open-end	conformation.	This	open-end	

conformation	allows	longer	peptides	to	bind	to	the	groove	(12	to	20	amino	acids	in	

length)	 without	 the	 characteristic	 "bulge"	 seen	 in	 MHC-I	 peptide	 presentation.	

Figure	1.5	depicts	this	MHC-II	structure	(Attaf	et	al.,	2015b).	

	

1.2.1.3. T-cell	receptor	(TCR)	

	

Each	of	the	~1012	T-cells	present	in	the	human	body	expresses	a	single	TCR,	and	a	

group	 of	 T-cells	 expressing	 the	 same	 TCR	 is	 known	 as	 a	 T-cell	 clonotype	 (Sewell,	

2012).	 An	 αβ	 TCR	 consists	 of	 an	 alpha	 (α)	 and	 beta	 (β)	 chain,	 each	containing	 a	

variable	 (V)	and	constant	 (C)	domain.	These	chains	are	 joined	by	a	"hinge"	region	

(disulphide	 bond)	 to	 form	 a	 heterodimer	 structure.	 The	 six	 variable	

complementarity-determining	 region	 (CDR)	 loops	 (CDR1α,	CDR2α,	CDR3α,	CDR1β,	

CDR2β,	and	CDR3β)	of	the	TCR	form	the	antigen-binding	site	that	engages	both	the	

MHC	and	its	peptide	cargo	(Figure	1.6).	The	CDR1	and	CDR2	loops	are	encoded	in	
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Figure	1.5:	Antigen	presentation	by	major	histocompatibility	complex	class	 I	 (MHC-I)	and	class	 II	
(MHC-II)	molecules.	(A)	Top	view	structure	of	the	human	MHC-I	(Protein	Data	Bank	(PDB):	1ZHL)	and	
MHC-II	(PDB:	1KG0)	peptide-binding	grooves.	The	peptides	shown	(red	and	blue,	N-	to	C-terminus)	
are	 both	 13	 amino	 acids	 long.	 The	 MHC-I	 peptide-binding	 groove	 (α1α2)	 shows	 a	 closed-end	
conformation,	and	the	MHC-II	peptide-binding	groove	(α1β1)	shows	an	open-end	conformation.	(B)	
A	schematic	representation	of	MHC-I	and	MHC-II	structural	domains.	A	MHC-I	heterodimer	consists	
of	a	variable	membrane-spanning	heavy	chain	 (α1,	α2,	and	α3),	and	a	conserved	β2	microglobulin	
(β2M)	domain.	A	MHC-II	heterodimer	consists	of	a	membrane-spanning	alpha	(α1	and	α2)	and	beta	
(β1	and	β2)	chain.	Figure	adapted	from	(Attaf	et	al.,	2015b).	
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Figure	1.6:	αβ	T-cell	receptor	(TCR)	structure.	(A)	Schematic	representation	of	the	CD8+	and	CD4+	αβ	
TCR	interaction	with	pMHC-I	and	pMHC-II	molecules,	respectively.	An	αβ	TCR	consists	of	an	alpha	(α)	
and	beta	(β)	chain,	each	containing	a	variable	(V)	and	constant	(C)	domain.	The	variable	domains	(Vα	
and	 Vβ)	 form	 the	 antigen-binding	 groove	 to	 which	 pMHC	interacts.	 CD8	 co-receptor	 can	 be	
expressed	 at	 the	 cell	 surface	 as	 either	 an	 α/α	 homodimer	 or	 an	 α/β	 heterodimer.	 CD8	 αβ	
heterodimers	(shown	here)	have	been	shown	to	be	more	effective	TCR	co-receptors,	possibly	due	to	
the	 role	 of	 CD8β	 in	 promoting	 the	 interaction	 between	CD8	 and	 TCR,	 and/or	 in	 stimulating	 T-cell	
signalling/regulatory	pathways.	CD8α	binds	 to	 the	α3	domain	of	MHC-I	 (Sun	and	Kavathas,	 1997).	
CD4	 co-receptor	 is	 expressed	 at	 the	 cell	 surface	 as	 a	 monomeric	 glycoprotein	 with	 four	
immunoglobulin	 (Ig)	domains	(D1	to	D4).	D1	and	D3	resemble	 Ig	variable	(IgV)	domains,	whereas	D2	
and	D4	 resemble	 Ig	 constant	 (IgC)	 domains.	 D1	 domain	 binds	 to	 the	 β2	 domain	 of	MHC-II	 (Leahy,	
1995).	(B)	Ribbon	model	of	the	αβ	TCR	structure,	displaying	the	position	of	the	six	complementarity-
determining	regions	(CDR)	loops	(CDR1α,	CDR2α,	CDR3α,	CDR1β,	CDR2β,	and	CDR3β)	in	the	antigen-
binding	domain	(PDB:	3HG1).	Figure	adapted	from	(Attaf	et	al.,	2015b).	
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the	 germline	 of	 the	 V	 region	 of	 both	 the	 alpha	 and	 beta	 polypeptide	 chains,	

whereas	 the	CDR3	 loop	 is	comprised	of	 the	V,	diversity	 (D,	beta	chains	only),	and	

joining	(J)	region	junction.	The	flexible	CDR3	loop	is	the	most	variable,	and	has	the	

greatest	contribution	to	the	degeneracy	of	TCR	recognition.	The	V(D)J	regions	and	

their	contribution	to	TCR	diversity	will	be	discussed	further	in	Section	1.2.1.4.	Two	

other	 receptors	 are	 known	 to	 engage	 MHC	 molecules	 at	 sites	 distinct	 from	 the	

peptide-docking	platform,	 and	act	 to	 augment	 T-cell	 recognition	of	 peptide-MHC.	

Since	these	molecules	co-receive	the	antigen	they	are	known	as	T-cell	co-receptors.	

Cytotoxic	 T-cells	 express	 the	 CD8	 co-receptor,	 which	 binds	 to	 the	 α3	 domain	 of	

MHC-I,	while	helper	T-cells	express	CD4,	which	binds	to	the	β2	domain	of	MHC-II.	

These	two	co-receptors	have	come	to	define	the	two	major	subtypes	of	αβ	T-cells.	

Figure	1.6	shows	the	structure	of	the	αβ	TCR,	along	with	positioning	of	the	six	CDR3	

loops	(Janeway,	2011,	Attaf	et	al.,	2015b).		

	

The	αβ	TCR	associates	with	various	signalling	domains	(CD3δ,	CD3γ,	CD3ε	and	TCR	ζ	

chain)	 at	 the	 T-cell	 surface	 to	 form	 the	 TCR	 complex	 (Figure	 1.7).	 This	 complex	

transduces	signals	across	the	plasma	membrane,	 in	concert	with	(CD4	or	CD8)	co-

receptor,	when	the	TCR	engages	its	cognate	antigen,	during	a	process	known	as	TCR	

triggering.	 Ligation	 of	 CD28	 co-stimulatory	 domain	 on	 the	 T-cell	 surface	 by	 CD80	

(B7-1)	or	CD86	(B7-2)	ligands	on	an	antigen-presenting	cell	(APC)	provides	a	second	

signal	 that	 augments	 TCR-mediated	 signal	 transduction	 pathways.	 Antigen-

mediated	 triggering	 of	 sufficient	 TCRs	within	 a	 short	 time	 period	 (Valitutti	 et	 al.,	

1995)	results	in	the	activation	of	T-cell	effector	functions.	Overall,	three	main	types	

of	 TCR	 triggering	 mechanisms	 have	 been	 proposed;	 (1)	 aggregation,	 (2)	

conformational	 change,	 and	 (3)	 segregation/redistribution.	 All	 three	 of	 these	

mechanisms	 are	 now	 thought	 to	 be	 involved	 in	 T-cell	 activation	 (van	 der	Merwe	

and	Dushek,	2011).	

	

1.2.1.4. TCR	Diversity	

	

TCR	diversity	 is	primarily	generated	by	combining	different	TCRα	and	TCRβ	chains	

to	form	a	heterodimeric	structure.	Moreover,	somatic	recombination	during	T-cell	
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Figure	1.7:	Schematic	representation	of	the	T-cell	receptor	complex,	with	TCR-α	and	-β	chains,	CD3	
(δ,	 γ,	 and	 ε),	 and	 ζ-chain	 accessory	molecules).	 Immunoreceptor	 tyrosine-based	 activation	motifs	
(ITAMs,	 in	 blue)	 are	 conserved	 sequences	 of	 four	 amino	 acids	 that	 are	 important	 for	 signal	
transduction	in	T-cells.	Figure	adapted	from	(Janeway,	2011).	
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Figure	1.8:	Generation	of	 the	human	αβ	TCR	by	V(D)J	 recombination.	Gene	 rearrangements	of	V	
(variable),	D	(diversity),	and	J	(joining)	segments	creates	a	functional	V	region	for	each	of	the	α	and	β	
TCR	chains.	 The	V	 regions	are	 then	 transcribed	and	 spliced	 to	 join	 the	 corresponding	 constant	 (C)	
region	of	each	chain.	(A)	The	TCRα	chain	undergoes	only	V	to	J	recombination,	whereas	(B)	The	TCRβ	
chain	undergoes	D	to	J,	followed	by	V	to	DJ	recombination.	(C)	The	resultant	TCRα	and	TCRβ	chain	
transcripts	are	then	translated	to	form	the	TCR	heterodimeric	structure.	Additional	diversity	is	added	
through	imprecise	joining	of	gene	segments	that	results	in	nucleotide	(N)	insertions	and/or	deletions	
at	 the	 recombination	 junctions	 of	 each	 chain.	 The	 hypervariable	 CDR3	 loop	 is	 formed	 at	 these	
recombination	junctions.	In	contrast,	CDR1	and	CDR2	loops	lie	in	the	V	region	of	each	chain	and	are	
completely	germline	encoded.	Figure	adapted	from	(Attaf	et	al.,	2015a).	 	
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development	in	the	thymus	allows	for	the	rearrangement	of	variable	(V),	diversity	

(D),	 and	 joining	 (J)	 gene	 segments	 in	 a	 process	 known	 as	 V(D)J	 recombination	

(Figure	 1.8).	 This	 process	 adds	 additional	 diversity	 through	 imprecise	 joining	 of	

gene	 segments	 that	 results	 in	 nucleotide	 insertions	 and/or	 deletions	 at	 the	

recombination	 junctions	 of	 each	 chain.	 For	 this	 reason,	 the	 TCR	 repertoire	 of	 a	

person	 is	 strikingly	 diverse	 (Attaf	 et	 al.,	 2015a).	 In	 addition,	 individual	 T-cell	

clonotypes	are	now	known	 to	exhibit	 remarkable	peptide	 cross-reactivity	 (Sewell,	

2012,	 Wooldridge	 et	 al.,	 2012).	 Indeed,	 TCRs	 are	 capable	 of	 undergoing	 large	

conformational	changes	in	order	to	bind	to	their	cognate	antigens.	Overall,	this	TCR	

diversity	and	flexibility	provides	the	host	with	sufficient	immunity	for	recognition	of	

>1015	potential	"foreign"	peptides	(Sewell,	2012).	

	

1.2.1.5. CD8+	and	CD4+	T-cell	responses	

	

Following	 development	 and	 selection	 in	 the	 thymus,	 naïve	 T-cells	 enter	 the	

periphery	where	they	are	primed	by	the	presentation	of	foreign	peptides	bound	to	

MHC	molecules	on	the	surface	of	APCs	(e.g.	DCs)	(Janeway,	2011).	DCs	express	high	

levels	of	T-cell	co-stimulatory	molecules	(e.g.	CD80	and	CD86),	which	bind	to	CD28	

domain	on	the	T-cell	surface,	and	aid	with	antigen-dependent	T-cell	activation	and	

proliferation	 (Banchereau	 and	 Steinman,	 1998,	 Malissen	 et	 al.,	 2014).	 Antigen	

contact	can	occur	within	secondary	lymphoid	organs	(e.g.	lymph	nodes,	spleen)	and	

also	directly	at	the	site	of	infection	or	tumourigenesis.	Trafficking	of	T-cells	to/from	

these	 sites	 requires	 expression	 of	 the	 necessary	 homing	 signals	 by	 T-cells	 (e.g.	

leukocyte-selectin	 (L-selectin)/CD62L)	 and	 the	 vascular	 endothelium	 (e.g.	 PNAd,	 a	

ligand	 for	 L-selectin)	 (Ager	et	 al.,	 2016).	While	our	 T-cells	 protect	us	 from	a	wide	

number	of	threats,	especially	infection,	my	work	focussed	of	tumour	immunity,	and	

I	will	therefore	focus	on	this	aspect	below.	

	

T-cells	that	are	specific	for	tumour-associated	antigens	(TAAs)	play	an	essential	role	

in	 anti-cancer	 immunity.	 TAAs	 can	 be	 divided	 into	 five	 major	 categories;	 (1)	

overexpressed	 “self”	 antigens,	 (2)	 differentiation/lineage	 antigens,	 (3)	 oncofetal	

antigens	 shared	 by	 embryonic	 or	 fetal	 cells,	 (4)	 cancer-testis	 antigens	 shared	 by	
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male	germ	cells,	and	(5)	mutated	antigens	(e.g.	transcriptional,	post-transcriptional,	

translational	 and	post-translational	modifications)	 that	 are	 unique	 to	 tumour	 (i.e.	

neo-antigens).	A	comprehensive	list	of	TAAs	has	been	reviewed	in	(Novellino	et	al.,	

2005),	with	specific	breast	cancer	TAAs	being	reviewed	in	(Criscitiello,	2012).	

	

Tumour-specific	 CD8+	 cytotoxic	 T-cells	 that	 successfully	 reach	 and	 infiltrate	 the	

tumour	site	are	capable	of	recognising	TAAs	as	processed	peptides	bound	to	MHC-I	

on	the	tumour	cell	surface,	and	can	directly	kill	the	cancer	cell.	Immediate	CD8+	T-

cell	mediated	 tumour	 killing	 occurs	 through	 constitutive	 release	 of	 lytic	 granules,	

which	contain	various	cytolytic	factors.	One	of	these	factors	 is	perforin,	which	is	a	

pore-forming	toxin	that	creates	holes	in	the	plasma	membrane	of	the	tumour	cell.		

Serine	proteases	 (e.g.	 granzyme	B)	 are	 then	able	 to	 enter	 the	 target	 cell	 through	

these	 pores	 and	 activate	 the	 caspase	 cascade	 (e.g.	 caspase-3),	 thus	 leading	 to	

apoptotic	pathways	(Ewen	et	al.,	2012,	Thiery	et	al.,	2011,	Voskoboinik	et	al.,	2010).	

As	 a	 by-product	 of	 lytic	 granule	 release,	 lysosomal-associated	 membrane	

glycoproteins	 (LAMPs;	 e.g.	 CD107a	 and	 CD107b)	 are	 transiently	 expressed	 by	

activated	CD8+	T-cells.	Expression	of	these	LAMPs	can	be	detected	with	antibodies	

and	 used	 to	 stain	 cells	 that	 have	 undergone	 degranulation	 (Betts	 et	 al.,	 2003).	

Activated	CD8+	T-cells	are	capable	of	producing	numerous	soluble	lymphokines	(e.g.	

MIP-1β,	 TNFα,	 IFNγ,	 and	 IL-2)	 upon	 antigenic	 stimulation.	 Following	 CD8+	 T-cell	

activation,	cytokines	are	produced	either	by	translation	of	pre-existing	mRNA	in	the	

cell,	or	by	upregulation	of	transcription	of	the	relevant	genes	(Denton	et	al.,	2011).	

For	example,	MIP-1β	(also	known	as	Chemokine	(C-C	motif)	 ligand	4/CCL4)	can	be	

secreted	 by	 T-cells	 to	 recruit	 additional	 immune	 cells	 (e.g.	 NK	 cells,	 monocytes,	

macrophages)	expressing	chemokine	 receptors	 (e.g.	CCR5)	 to	 the	 tumour	 site,	 via	

its	 chemoattractant	 properties	 (Kim	 and	 Broxmeyer,	 1999).	 Moreover,	 TNFα	 can	

also	be	released	by	CD8+	T-cells,	 in	order	to	multimerise	cognate	receptors	on	the	

surface	 of	 tumour	 cells	 and	 consequently	 induce	 apoptosis	 (Ratner	 and	 Clark,	

1993).	Furthermore,	secretion	of	IFNγ	by	CD8+	T-cells	can	help	increase	the	levels	of	

FasR	 (CD95)	 death	 receptor	 on	 tumour	 cells,	 and	 thus	 increase	 its	 sensitivity	 to	

killing	by	CD8+	T-cells	that	express	Fas	ligand	(FasL)	trimer.	Upon	ligand	binding,	Fas	

receptor	oligomerizes	(5-7	FasR	molecules)	and	forms	the	death-inducing	signaling	
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complex	 (DISC).	 Next,	 this	 receptor	 complex	 is	 internalised	 via	 the	 cellular	

endosomal	 machinery,	 where	 it	 binds	 to	 an	 adaptor	 molecule	 (Fas-associated	

protein	 with	 death	 domain,	 FADD)	 via	 its	 death	 domain.	 FADD	 then	 binds	 to	

caspase-8	 via	 its	 death	effector	 domain	 (DED).	 Caspase-8	 activation	 then	 initiates	

cell	death	through	apoptotic	pathways	(Bergmann-Leitner	and	Abrams,	2000,	Wang	

et	 al.,	 2010).	 Finally,	 CD8+	 T-cells	 can	 also	 release	 IL-2	 in	 response	 to	 antigenic	

stimulation.	 IL-2	 is	 a	 growth	 factor	 that	 is	 responsible	 for	 promoting	 T-cell	

proliferation	 and	 survival.	 It	 is	 therefore	 associated	 with	 amplifying	 the	 effector	

T-cell	 response,	 rather	 than	 having	 a	 direct	 cytotoxic	 effect	 itself	 (Seder	 et	 al.,	

2008).	

	

In	 terms	 of	 CD4+	 helper	 T-cells	 (e.g.	 Th1,	 Th2,	 Th17,	 and	 Treg),	 their	 role	 in	 anti-

tumour	 immunity	has	been	well	 recognised.	CD4+	T-cells	have	a	 range	of	effector	

and	 regulatory	 functions,	 but	 are	 largely	 known	 for	 their	 “helper”	 function	 –	 the	

ability	to	produce	cytokines	(e.g.	IL-2	and	IL-4)	that	stimulate	effector	and	memory	

CD8+	T-cells	(Antony	et	al.,	2005,	Gao	et	al.,	2002,	Janssen	et	al.,	2003).	In	regards	to	

their	contribution	to	anti-tumour	immunity,	CD4+	T-cells	are	now	known	to	not	only	

heavily	 influence	 the	 tumour	 microenvironment,	 but	 their	 role	 in	 tumour	

cytotoxicity	 is	 now	becoming	 increasingly	 apparent	 (Hombach	et	 al.,	 2006,	Perez-

Diez	et	al.,	2007,	Quezada	et	al.,	2010).	The	main	CD4+	T-cell	subset	thought	to	be	

involved	 in	 anti-tumour	 immunity	 is	 Th1.	 Th1	 cells	 produce	 large	amounts	of	 IFNγ	

and	 chemokines	 (e.g.	 CCL2	 and	 CCL3),	 which	 in	 turn	 enhance	 the	 priming	 and	

expansion	of	cytotoxic	CD8+	T-cells.	Th1	cells	can	also	help	recruit	various	 immune	

cells	 (e.g.	 NK	 cells	 and	macrophages)	 to	 tumour	 sites,	 which	 subsequently	 assist	

with	tumour	eradication	(Nishimura	et	al.,	1999a,	Corthay	et	al.,	2005).	Other	CD4+	

T-cell	subsets,	such	as	Th2,	are	also	thought	to	be	involved	in	anti-cancer	immunity,	

however	 evidence	 for	 their	 contributions	 are	 somewhat	 contradictory	 (Kim	 and	

Cantor,	 2014).	 Treg	 also	 play	 a	 crucial,	 yet	 somewhat	 controversial,	 role	 in	 cancer	

growth,	metastasis,	 and	 prognosis.	 Typically,	 Treg	 are	 associated	with	 suppressing	

anti-tumour	 immune	 responses	 and	 assisting	 with	 tumour	 escape	 from	 the	 host	

immune	 system	 (Whiteside,	 2008,	 Yamaguchi	 et	 al.,	 2011,	 Droeser	 et	 al.,	 2012,	

Whiteside,	 2012,	 Whiteside,	 2015).	 Indeed,	 in	 many	 human	 cancers	 and	 mouse	
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tumour	models,	 the	number	of	Treg	are	 increased	compared	to	those	reported	for	

healthy	 tissue	 (Wolf	 et	 al.,	 2003,	 Strauss	 et	 al.,	 2007,	Mougiakakos	 et	 al.,	 2010).	

Nevertheless,	 despite	 the	 view	 that	 high	 numbers	 of	 infiltrating	 Treg	 predict	 poor	

cancer	 outcome	 (Curiel	 et	 al.,	 2004,	Wolf	 et	 al.,	 2005,	 Deng	 et	 al.,	 2010),	 many	

studies	 have	 indicated	 that	 high	 Treg	 activity	 is	 associated	 with	 improved	 patient	

prognosis,	 as	 Treg	 are	 thought	 to	 prevent	 tissue	 damage	 by	 controlling	 chronic	

inflammation,	 and	 thus	 also	 limit	 inflammation-associated	 cancer	 progression	

(Badoual	et	al.,	2006,	Carreras	et	al.,	2006,	Tzankov	et	al.,	2008,	Farinha	et	al.,	2010,	

Droeser	et	al.,	2012).	

	

Tumour	cell	 lysis	 results	 in	the	release	or	more	TAAs,	which	are	then	taken	up	by	

local	 APCs,	 and	 the	 anti-tumour	 cycle	 starts	 again	 (Mellman	 et	 al.,	 2011)	 (Figure	

1.9).	However,	if	any	of	these	stages	in	the	cycle	are	interrupted,	then	the	tumour	

escapes	 immunosurveillance	and	disease	progression	occurs.	 For	example,	 lack	of	

the	appropriate	homing	signals	may	mean	that	the	tumour-reactive	T-cells	do	not	

reach	or	 infiltrate	the	tumour	site.	Furthermore,	T-cells	that	do	successfully	home	

to	the	tumour	site	may	not	be	able	to	detect	the	TAAs	due	to	down-regulation	of	

MHC	 molecules	 on	 the	 tumour	 cell	 surface,	 or	 may	 be	 inhibited	 by	 the	

immunosuppressive	tumour	microenvironment.	Indeed,	a	CD25+	CD4+	regulatory	T-

cell	(Treg)	and/or	CD4+	natural	killer	T	(NKT)	cell	response	may	be	elicited,	due	to	the	

"self"	origin	of	the	TAAs	(Joyce	and	Fearon,	2015,	Rabinovich	et	al.,	2007).	

	

1.2.2. 	Evidence	that	the	adaptive	immune	system	protects	against	cancer	

	

The	concept	 that	 lymphocytes	 form	the	basis	of	 tumour	 immunosurveillance,	and	

protect	 immunologically	 intact	 individuals	 against	 primary	 tumour	 development	

(Thomas,	 1959,	 Burnet,	 1970),	 was	 largely	 abandoned	 when	 subsequent	 studies	

highlighted	that	 there	was	no	significant	difference	 in	 tumour	 formation	between	

athymic	 nude	 mice	 and	 syngeneic	 wild-type	 (WT)	 mice	 (Stutman	 1970,	 Stutman	

1979a,	 Stutman	 1979b).	 Nevertheless,	 later	 observations	 demonstrating	 that	

athymic	nude	mice	are	not	completely	deficient	in	functional	lymphocytes	(Hunig,		
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Figure	 1.9:	 Anti-tumour	 T-cell	 response.	 (A)	 Tumour-associated	 antigens	 (TAAs)	 are	 first	 released	
from	 lysed	 tumour	 cells,	 and	 (B)	 are	 then	 taken	 up	 by	 local	 antigen-presenting	 cells	 (APCs),	 e.g.	
dendritic	 cells	 (DCs).	 (C)	 T-cells	 are	 then	 activated	 by	 the	 presentation	 of	 these	 TAAs	 on	 the	 DC	
surface	 in	 the	 lymph	nodes.	 (D)	Activated	T-cells	 are	 then	 recruited	 to	 the	 tumour	 site	 (via	 blood	
vessels),	 provided	 that	 the	 appropriate	 homing	 signals	 are	 available.	 (E	 -	G)	 T-cells	 then	 infiltrate,	
recognise,	and	kill	 the	 tumour	cells.	Tumour	cell	 lysis	 results	 in	 the	release	of	more	TAAs,	and	the	
anti-tumour	cycle	starts	again.	Figure	adapted	from	(Chen	and	Mellman,	2013).	
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1983,	 Maleckar	 and	 Sherman,	 1987)	 threw	 doubt	 on	 earlier	 conclusions.	

Subsequent	observations	showing	that	 IFNγ	assists	with	the	prevention	of	tumour	

development	 in	mice	 (Dighe	 et	 al.,	 1994,	 Kaplan	 et	 al.,	 1998),	 led	 to	 a	 renewed	

curiosity	in	the	role	of	the	immune	system	in	tumour	immunosurveillance.	

	

Work	 by	 Schreiber	 and	 colleagues	 in	 2001,	 was	 the	 first	 to	 resolve	 this	 cancer	

immunosurveillance	controversy	and	conclusively	prove	that	the	adaptive	immune	

response	 functions	 as	 an	 effective	 tumour-suppressor	 system.	 The	 group	 showed	

that	 lymphocytes	 and	 IFNγ	 work	 together	 in	 order	 to	 protect	 against	 tumour	

development.	 These	 studies	 demonstrated	 that	 recombination-activating	 gene-2	

(RAG2)	knockout	mice,	a	gene	expressed	only	in	lymphocytes	(Shinkai	et	al.,	1992),	

developed	 tumours	more	 rapidly	 than	WT	mice.	However,	 in	 the	same	study,	 the	

group	 also	 concluded	 that	 this	 cancer	 suppression	 system	 also	 leads	 to	 the	

immunoselection	 of	 tumour	 cells	 more	 capable	 of	 escaping	 immunosurveillance,	

and	thus	surviving	in	an	immunologically	intact	individual	(Shankaran	et	al.,	2001).	

This	apparent	paradox	of	tumour	development	in	immunocompetent	hosts	is	now	

known	 as	 the	 three	 Es	 of	 cancer	 immunoediting;	 (1)	 elimination,	 (2)	 equilibrium,	

and	(3)	escape.	(Dunn	et	al.,	2004,	Swann	and	Smyth,	2007).	

	

Additional	 evidence	 to	 suggest	 that	 the	 immune	 system	 protects	 against	 cancer	

comes	 from	 the	 observation	 that	 immunodeficient	 HIV/AIDS	 patients	 have	 an	

elevated	 cancer	 risk	 (Okoye	 and	 Picker,	 2013,	 Rubinstein	 et	 al.,	 2014,	 Corthay,	

2014),	as	do	organ	transplant	recipients,	who	are	treated	with	immunosuppressive	

drugs	 (Opelz	 and	 Dohler,	 2004,	 Engels	 et	 al.,	 2011).	 Moreover,	 the	 quantity	 of	

tumour	infiltrating	lymphocytes	(TILs)	 in	primary	tumours	has	been	shown	to	be	a	

favourable	prognostic	 factor	and	 significant	predictor	of	patient	 survival	 (Naito	et	

al.,	1998,	Hiraoka	et	al.,	2006,	Al-Shibli	et	al.,	2008,	Kawai	et	al.,	2008,	Mahmoud	et	

al.,	 2011).	 Furthermore,	 an	 emerging	 and	 promising	 strategy	 to	 treat	 cancer	 is	

through	 blockade	 of	 immune	 checkpoint	 molecules,	 such	 as	 CTLA-4	 or	 PD-1	

(Couzin-Frankel,	 2013).	 The	 success	 of	 immune	 checkpoint	 inhibitors	 clearly	

demonstrates	 the	 potential	 of	 the	 immune	 system	 to	 control	 cancer.	 These	

inhibitors	will	be	discussed	further	in	Section	1.3.3.	Finally,	a	more	recent	study	has	
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suggested	 a	 correlation	 between	 MHC-I	 genotype	 and	 the	 development	 of	

particular	oncogenic	mutations.	Specifically,	recurrent	tumour	associated	mutations	

are	biased	towards	poorly	presented	peptides	(Marty	et	al.,	2017).	

	

Since	different	arms	of	the	adaptive	immune	system,	particularly	CD8+	cytotoxic	T-

cells	 (Marty	et	 al.,	 2017),	possess	 the	ability	 to	 recognise	and	 limit	 the	growth	of	

transformed	malignant	cells,	immunotherapy	is	becoming	an	increasingly	desirable	

option	for	the	treatment	of	cancer.	
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1.3. Cancer	immunotherapy	

	

By	 harnessing	 the	 patient’s	 own	 adaptive	 immune	 system	 to	 reject	 tumours	 and	

prevent	their	recurrence,	immunotherapy	has	the	incredible	potential	to	provide	a	

more	 potent,	 less	 invasive	 and	 less	 toxic	 approach	 for	 the	 treatment	 of	 breast	

cancers.	 There	 are	 several	 different	 types	 of	 cancer	 immunotherapy	 as	 discussed	

below.	These	include	vaccines	(e.g.	whole	tumour	cell,	DNA/RNA,	recombinant	viral	

cell,	 dendritic	 cell,	 and	 peptide/protein),	 cell	 therapies	 (e.g.	 recombinant	 TCR	 T-

cells,	chimeric	antigen	receptor	(CAR)	T-cells,	and	tumour	infiltrating	lymphocytes),	

immune	 checkpoint	 inhibitors	 (e.g.	 anti-PD1	 and	 anti-CTLA-4),	 antibody	 therapies	

(e.g.	Herceptin),	and	cytokine	therapies	(e.g.	IL-2	and	IFNγ).	These	therapies	act	by	

either	 actively	 directing	 the	 immune	 system	 to	 attack	 tumour	 cells	 by	 targeting	

specific	tumour-associated	antigens,	or	by	passively	enhancing	existing	anti-tumour	

immune	responses	(Zhou	and	Zhong,	2004).	

	

1.3.1. 	Cancer	Vaccines	

	

Vaccination	 has	 vastly	 reduced	 the	 global	 burden	 of	 infectious	 diseases,	 and	 has	

even	 led	 to	 the	 eradication	 of	 two	 major	 infections,	 smallpox	 and	 rinderpest	

(Greenwood,	 2014).	 Cancer	 vaccines	 aim	 to	 promote	 tumour-specific	 immune	

responses,	particularly	those	of	cytotoxic	CD8+	T-cells.	Some	of	the	earliest	cancer	

vaccines	 were	 developed	 in	 1994-95,	 and	 primarily	 tested	 known	 immunogenic,	

non-mutated	 shared	 TAAs,	 which	 were	 shown	 to	 induce	 clinical	 responses	 in	

patients	with	late-stage	cancer	(Boon	et	al.,	1994,	Kawakami	et	al.,	1994a,	Topalian	

et	 al.,	 1994,	 Bakker	 et	 al.,	 1995,	 Finn	 et	 al.,	 1995).	 Despite	 the	 promise	 of	 these	

early	successes,	the	development	of	effective	cancer	vaccines	has	been	notoriously	

difficult	 to	 date	 (Schreiber	 et	 al.,	 2011,	 Zhou	 and	 Levitsky,	 2012).	 An	 effective	

cancer	 vaccine	 should	 result	 in	 the	 specific	 elimination	 of	 tumour	 cells,	 whilst	

sparing	healthy	cells,	and	should	also	develop	long-term	immunological	memory	for	

future	exposure	 to	antigen.	Major	hurdles	 in	cancer	vaccine	development	 include	

identifying	 suitable	 TAAs,	 overcoming	 immunological	 tolerance	 to	 “self”	 TAAs	

(discussed	in	Section	5.1.1.),	tumour	evasion	mechanisms	(Section	1.2.5.),	and	also	
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overcoming	 the	 immunosuppressive	 tumour	 microenvironment.	 The	 vaccine	

strategy	 used	 often	 depends	 on	 how	 well-defined	 the	 target	 antigen	 is,	 and	

whether	 the	 antigen	 is	 conserved	 amongst	 multiple	 individuals	 (Berzofsky	 et	 al.,	

2004).	 One	 strategy	 to	 improve	 prior	 knowledge	 of	 TAAs	 is	 whole	 exome	

sequencing	 and	 mRNA	 sequencing	 of	 patient	 tumour	 in	 comparison	 to	 normal	

tissue.	This	approach	can	identify	which	proteins	might	be	expressed	in	the	cancer	

but	not	healthy	tissue.	Such	sequencing	can	also	identify	tumour-specific	mutations	

(neoantigens)	that	could	act	as	potential	T-cell	epitopes	(Castle	et	al.,	2012,	Lu	and	

Robbins,	 2015,	 Cohen	 et	 al.,	 2015).	 However,	 such	mutations	 must	 occur	 within	

protein-coding	regions,	and	also	within	peptides	binding	to	MHC	molecules.	Various	

algorithms	 can	 be	 used	 to	 predict	 if	 a	 peptide	 is	 capable	 of	 binding	 to	 a	 specific	

MHC	molecule	(Karosiene	et	al.,	2012,	Paul	et	al.,	2016).	Additionally,	quantitative	

binding	assays	can	be	used	to	determine	the	formation	of	pMHC	complexes	(Buus	

et	 al.,	 1987).	 Nevertheless,	 whether	 the	 mutated	 peptide	 is	 expressed	 and	

presented	by	tumour	MHC	will	ultimately	determine	whether	the	TAA	is	effective	at	

generating	a	tumour-reactive	T-cell	response.	Mass	spectrometry	(MS)	sequencing	

of	eluted	peptides	from	purified	tumour	MHC	proteins	can	help	determine	whether	

a	prospective	TAA	or	neoantigen	is	presented	on	the	tumour	cell	surface	(Yadav	et	

al.,	2014).	

	

Many	types	of	cancer	are	known	to	be	 induced	by	viruses.	Human	papillomavirus	

(HPV)	 is	known	to	cause	~70%	of	all	 cervical	cancers.	Epstein-Barr	virus	 (EBV)	can	

cause	 nasopharyngeal	 cancer,	 as	well	 as	 some	 types	 of	 fast	 growing	 lymphomas,	

such	as	Burkitt	lymphoma.	Such	virally-induced	cancers	are	known	to	express	some	

proteins	 of	 viral	 origin.	 These	 non-self	 proteins	 make	 good	 targets	 for	 T-cell	

vaccination.	 The	 US	 Food	 and	 Drug	 Administration	 (FDA)	 has	 now	 approved	 two	

prophylactic	 cancer	 vaccines;	 including	 a	 vaccine	 for	 HPV,	 and	 also	 a	 vaccine	 for	

hepatitis	B	virus,	which	is	known	to	cause	some	liver	cancers	(Guo	et	al.,	2013).	The	

list	 of	 approved	 cancer	 vaccines	 was	 extended	 in	 April	 2010	 when	 the	 FDA	

approved	the	first	therapeutic	cancer	vaccine,	Sipuleucel-T	(Provenge®),	a	denditric	

cell	 (DC)	 vaccine	 for	 use	 in	men	with	 asymptomatic	metastatic	 castrate-resistant	

prostate	cancer	(mCRPC)	(Longo,	2010,	Cheever	and	Higano,	2011).	The	vaccine	 is	
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produced	by	 isolating	autologous	DCs	 from	each	patient,	which	are	 then	cultured	

with	 prostatic	 acid	 phosphatase	 (PAP)	 linked	 to	 granulocyte-macrophage	 colony-

stimulating	 factor	 (GM-CSF).	 PAP	 antigen	 is	 found	 on	most	 prostate	 cancer	 cells,	

and	 GM-CSF	 helps	 stimulate	 the	 immune	 system	 and	 enhance	 antigen	

presentation.	 In	 clinical	 trials,	 Provenge®	 was	 found	 to	 effectively	 increase	 the	

survival	of	men	with	mCRPC	by	about	4	months	(Kantoff	et	al.,	2010).	

	

These	major	breakthroughs	 in	cancer	vaccine	development	now	pave	the	way	 for	

the	rational	design	of	future	vaccines	with	improved	efficacy.	Many	diverse	cancer	

vaccine	 strategies	 are	 currently	 being	 evaluated	 both	 pre-clinically	 and	 clinically.	

These	strategies	can	be	classified	into	several	major	categories,	depending	on	their	

content/format	 (Guo	 et	 al.,	 2013).	 These	 platforms,	 including	 cell	 vaccines	 (e.g.	

tumour	 or	 immune	 cell),	 genetic	 vaccines	 (e.g.	 RNA,	 DNA	 or	 viral),	 and	

protein/peptide	vaccines,	will	be	discussed	in	turn	below.	

	

1.3.1.1. Whole	tumour	cell	vaccines	

	

Modified	 (irradiated)	 autologous	 (patient-derived)	 tumour	 cells	 were	 one	 of	 the	

first	 types	 of	 cancer	 vaccine	 to	 be	 investigated	 (Klein,	 1968,	 Hanna	 and	 Peters,	

1978),	and	since	then	have	been	tested	against	a	wide	variety	of	cancers,	including	

melanoma	 (Berd	 et	 al.,	 1990,	 Baars	 et	 al.,	 2002,	Mendez	 et	 al.,	 2007),	 colorectal	

cancer	(Ockert	et	al.,	1996,	Harris	et	al.,	2000,	Hanna	et	al.,	2001,	de	Weger	et	al.,	

2012),	 lung	cancer	 (Schulof	et	al.,	1988,	Nemunaitis,	2003,	Ruttinger	et	al.,	2007),	

prostate	cancer	 (Berger	et	al.,	2007),	and	 renal	cell	 cancer	 (Kinoshita	et	al.,	2001,	

Antonia	et	al.,	2002,	Fishman	et	al.,	2008).	One	major	advantage	of	whole	tumour	

cell	vaccines	is	that	they	are	capable	of	challenging	the	host	immune	system	with	a	

broad	 range	 of	 relevant	 TAAs,	 without	 needing	 the	 antigens	 to	 be	 well	 defined.	

Furthermore,	 tumour	 cells	 can	 be	 engineered	 to	 express	 immunostimulatory	

molecules	 (e.g.	 granulocyte	macrophage	 colony-stimulating	 factor	 (GM-CSF))	 and	

cytokines	 (e.g.	 IL-2)	 to	 improve	 vaccine	 immunogenicity.	 However,	 this	 type	 of	

personalised	(patient-	and	tumour-specific)	vaccine	is	frequently	undesirable	due	to	

its	costly,	time-consuming	and	laborious	development	process,	 lack	of	amenability	
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to	large-scale	production,	and	requirement	for	patient	tumour	samples,	which	are	

often	unavailable.	Moreover,	one	of	the	main	limitations	of	the	whole	tumour	cell	

approach	to	vaccines,	is	that	most	tumour	cells	are	generally	not	immunogenic,	and	

therefore	stimulate	poor	immune	responses	with	little	clinical	benefit	(Berzofsky	et	

al.,	2004).	

	

A	 more	 widely	 applicable,	 “off-the-shelf”	 approach	 would	 be	 to	 use	 modified	

allogeneic	(non-self)	tumour	cells	or	cell	lines	that	share	relevant	TAAs.	CanvaxinTM	

is	 an	 allogeneic	 whole-cell	 vaccine	 that	 consists	 of	 three	 melanoma	 lines	 in	

combination	with	 BCG	 adjuvant	 (Morton	 et	 al.,	 1992).	 Despite	 successes	 in	 early	

phase	II	trials	with	stage	III-IV	melanoma	patients	(Morton	et	al.,	2002,	Hsueh	et	al.,	

2002),	 CanvaxinTM	 failed	 to	 meet	 its	 primary	 end-points	 in	 randomised	 phase	 III	

trials	(Sondak	et	al.,	2006).	Another	example	of	an	allogeneic	tumour	cell	vaccine	is	

GVAX.	 GVAX	 has	 been	 evaluated	 for	 the	 treatment	 of	 several	 cancers	 including	

breast	 cancer	 (Emens	 et	 al.,	 2009),	 pancreatic	 cancer	 (Lutz	 et	 al.,	 2011),	 and	

prostate	 cancer	 (Simons	 et	 al.,	 2006,	 Small	 et	 al.,	 2007).	 Similar	 to	 CanvaxinTM,	

GVAX	 phase	 II	 trials	 demonstrated	 improved	 survival	 rates	 in	 the	 majority	 of	

prostate	 cancer	 patients.	 However,	 a	 phase	 III	 trial	 investigating	 GVAX	 in	

combination	with	chemotherapies	 for	mCRPC	did	not	reach	 its	primary	end-point,	

and	 so	 was	 terminated	 (Antonarakis	 and	 Drake,	 2010,	 Lassi	 and	 Dawson,	 2010).	

Nevertheless,	 a	 combination	 treatment	 for	 metastatic	 melanoma	 patients,	

consisting	 of	 GVAX	 and	 ipilimumab	 (and	 FDA-approved	 anti-CTLA-4	 monoclonal	

antibody),	 is	currently	being	 investigated	 (Wang	et	al.,	2011,	van	der	Eertwegh	et	

al.,	2012).	

	
1.3.1.2. DNA/RNA	vaccines	

	

During	the	early	1990s,	it	was	reported	that	delivering	plasmid	DNA	into	the	skin	or	

muscle	could	induce	antibody	responses	to	both	viral	and	non-viral	antigens	(Tang	

et	al.,	1992,	Fynan	et	al.,	1993,	Wang	et	al.,	1993,	Ulmer	et	al.,	1993).	Since	then,	

vaccines	 comprising	 of	 plasmid	 DNA	 have	 been	 of	 significant	 interest	 to	 the	

scientific	 community.	 DNA	 vaccines	 consist	 of	 a	 bacterial	 plasmid	 constructed	 to	
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deliver	 and	 express	 relevant	 TAA	 (short	 peptides),	 in	 order	 to	 generate	 targeted	

humoral	 and	 cellular	 immunity	 (Liu,	 2011).	 The	 bacterial	 DNA	 backbone	 acts	 as	

pathogen-associated	 molecular	 patterns	 (PAMPs)	 in	 order	 to	 stimulate	 immune	

cells	 through	 innate	 pattern	 recognition	 molecules,	 e.g.	 toll-like	 receptors	 (TLRs)	

(Spies	 et	 al.,	 2003,	 Beutler	 et	 al.,	 2006,	 Barber,	 2011).	 The	 transgene	 is	 normally	

under	 the	 control	 of	 the	 human	 cytomegalovirus	 (CMV)	 immediate-early	 (IE)	

promoter,	 as	 well	 as	 its	 adjacent	 intron	 A	 sequence,	 in	 order	 to	 ensure	 efficient	

transcription	(Isomura	and	Stinski,	2003).	The	TAA	is	either	introduced	into	DCs	for	

endogenous	processing	and	presentation	to	T-cells,	or	into	other	immune	cells	for	

DC	cross-presentation.	Some	advantages	of	DNA	vaccines	include	the	relative	ease	

and	cost-effectiveness	of	their	production,	and	the	fact	that	they	are	considerably	

stable	 for	 long-term	 storage	 and	 shipping.	 Nonetheless,	 one	 disadvantage	 is	 that	

plasmid	 production	 necessitates	 prior	 knowledge	 of	 the	 relevant	 TAA	 DNA	

sequence.	 Moreover,	 high	 doses	 of	 plasmid	 are	 usually	 required	 to	 generate	 a	

sufficient	 immune	 response	 (Berzofsky	 et	 al.,	 2004,	 Stevenson	 et	 al.,	 2010).	

However,	increased	antigen	expression	can	be	achieved	by	codon-optimisation,	for	

example,	 substitution	 of	 codons	 for	 rare	 transfer	 RNAs	 (tRNAs)	 (Stratford	 et	 al.,	

2000).	

	

Despite	 showing	 low	 toxicity	 and	 potent	 immunogenicity	 in	 pre-clinical	 mouse	

models	 (Conry	 et	 al.,	 1995,	Meng	 and	 Butterfield,	 2005,	 Xiang	 et	 al.,	 2008),	 DNA	

vaccines	have	failed	to	translate	to	humans,	with	most	proving	to	be	ineffective	and	

minimally	 immunogenic	 (Rosenberg	et	 al.,	 2003,	 Liu	 and	Ulmer,	 2005,	Rice	et	 al.,	

2008).	Nevertheless,	 the	 future	success	of	DNA	vaccines	may	be	 improved	by	 the	

development	of	new	vectors	and	strategies	of	administration.	 It	has	already	been	

shown	 that	 additional	 genes	 can	 be	 incorporated	 into	 plasmids	 to	 facilitate	

intracellular	 routing	and	antigen	 targeting	 (Walter	 and	 Johnson,	1994,	Rice	et	 al.,	

2008).	 Additionally,	 incorporation	 of	 immunostimulatory	 agents	 such	 as	 TLR	

agonists	 can	 help	 enhance	 the	 immune	 response	 (Aurisicchio	 et	 al.,	 2009,	

Dharmapuri	 et	 al.,	 2009),	 and	 also	 fusion	 of	 “non-self”	 antigens	 (e.g.	 virus	 coat	

protein,	 modified	 tetanus	 toxin	 fragment,	 and	 GFP)	 can	 help	 improve	 the	

immunogenicity	of	“self”	TAAs	(Rice	et	al.,	2001,	Savelyeva	et	al.,	2001,	Rice	et	al.,	
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2002,	Wolkers	et	al.,	2002,	Rice	et	al.,	2006).	DNA	vaccines	can	also	be	administered	

via	many	different	methods.	For	example,	as	well	as	intradermal,	subcutaneous	and	

intramuscular	 injection,	plasmids	can	be	injected	directly	 into	the	lymph	nodes,	 in	

order	 to	 promote	 antigen	 uptake	 by	 APCs	 and	 also	 enhance	 local	 inflammatory	

signals	(Weber	et	al.,	2011,	Ribas	et	al.,	2011).	Other	administration	approaches	can	

be	used	to	increase	antigen	expression,	and	subsequent	vaccine	efficacy,	including	

the	 “gene	 gun”	 (biolistic	 approach),	 electroporation,	 optical	 transfection,	

liposomes,	nanoparticles,	microparticles,	and	ultrasound	(Bins	et	al.,	2005,	Buchan	

et	al.,	2005,	Greenland	and	Letvin,	2007).	

	

In	 addition	 to	DNA	 vaccines,	messenger	 RNA	 (mRNA)	 can	 also	 be	 extracted	 from	

autologous	 tumour	 cells	 and	 administered	 as	 a	 vaccine	 (Carralot	 et	 al.,	 2004,	

Carralot	et	al.,	2005,	Scheel	et	al.,	2005).	The	administered	mRNA	is	translated	into	

protein	 antigen,	 which	 is	 then	 processed	 and	 presented	 by	 APCs,	 such	 as	 DCs.	

Administration	of	total	RNA	can	potentially	generate	an	 immune	response	against	

multiple	 tumour	 antigens,	 and	 thus	 decrease	 the	 likelihood	 of	 tumour	 antigen	

escape.	 Similar	 to	 DNA	 vaccines,	 RNA	 vaccines	 are	 also	 usually	 administered	

alongside	 other	 agents	 (e.g.	 liposomes,	 protamines),	 in	 order	 to	 increase	 vaccine	

stability	or	immunogenicity.	One	particular	advantage	of	RNA	vaccines	is	that	they	

are	 rapidly	 degraded,	 and	 so	 are	 less	 likely	 to	 cause	 side	 effects	 or	 autoimmune	

disease	than	DNA	vaccines	(Qiu	et	al.,	1996,	Espuelas	et	al.,	2005,	Fotin-Mleczek	et	

al.,	2012).	Personalised	(neo-antigen)	RNA-based	cancer	vaccines	have	been	tested	

in	clinical	trials	as	a	treatment	for	melanoma,	with	cases	of	tumour	regression	and	

progression-free	 survival	 being	 reported	 in	 some	 patients	 (Weide	 et	 al.,	 2008,	

Weide	et	al.,	2009,	Ott	et	al.,	2017,	Sahin	et	al.,	2017).	

	

1.3.1.3. Recombinant	viral	vectors	

	

Recombinant	 viral	 vectors	 with	 low-intrinsic	 immunogenicity	 and	 disease-causing	

potential	(e.g.	adenoviruses	and	lentiviruses)	can	be	engineered	to	express	relevant	

TAAs,	 as	 well	 as	 co-express	 immunostimulatory	 molecules	 (e.g.	 GM-CSF)	 and	

cytokines	 (e.g.	 IL-2)	 to	 enhance	 vaccine	 potency.	 Much	 like	 DNA	 vaccines,	 prior	
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knowledge	 of	 the	 TAA	 is	 required,	 and	 viral	 vectors	 can	 be	 used	 to	 express	 the	

desired	TAA	via	DCs.	

	

The	first	viral-based	vectors	to	be	evaluated	in	cancer	vaccine	trials	were	poxviruses	

(e.g.	 vaccinia),	 which	 have	 the	 ability	 to	 accommodate	 several	 transgene	 inserts	

(Moss,	1996,	Marshall	 et	 al.,	 1999,	Marshall	 et	 al.,	 2000,	Walsh	and	Dolin,	2011).	

Trovax	 is	 a	 modified	 vaccinia	 strain	 Ankara	 (MVA)	 vector-based	 cancer	 vaccine	

targeting	5T4	renal	cell	carcinoma	antigen,	and	has	been	evaluated	for	efficacy	in	a	

phase	 III	clinical	trial.	However,	the	vaccine	failed	to	meet	 its	primary	endpoint	of	

overall	 survival	 in	metastatic	 renal	 cancer	 patients	 (Amato	 et	 al.,	 2010).	 Another	

example	 of	 a	 poxvirus-based	 vaccine,	 developed	 for	 the	 treatment	 of	metastatic	

castrate	 resistant	 prostate	 cancer	 (mCRPC),	 is	 PROSTVAC	 (Bavarian	 Nordic).	

PROSTVAC	 consists	 of	 two	 poxvirus	 vectors;	 (1)	 a	 recombinant	 vaccinia	 priming	

vector	 (replication-competent),	 and	 (2)	 a	 recombinant	 fowlpox	 boosting	 vector	

(replication-incompetent),	each	containing	transgenes	for	prostate	specific	antigen	

(PSA)	plus	three	T-cell	co-stimulatory	molecules	(CD54,	CD58	and	CD80)	(Sanda	et	

al.,	1999,	Hodge	et	al.,	2005,	Madan	et	al.,	2012).	Unfortunately,	PROSTVAC	failed	

to	 meet	 interim	 efficacy	 goals	 in	 a	 phase	 III	 clinical	 trial	 (ClinicalTrials.gov:	

NCT01322490).	

	

Recombinant	 adenoviral	 vectors	 have	 also	 been	 trialled	 in	 cancer	 vaccination.	

Adenoviruses	 have	 the	 advantage	 that	 they	 are	 capable	 of	 transducing	 both	

dividing	and	non-dividing	cells,	in	order	to	aid	high	transgene	expression.	They	are	

also	 easy	 to	 produce	 in	 large	 quantities	 for	 clinical	 use.	 In	 contrast,	 one	 major	

caveat	of	utilising	recombinant	adenoviral	vectors	as	vaccines	is	that	viral	antigens	

often	 display	 immunodominance	 over	 the	 expressed	 TAAs.	 Consequently,	 weak	

anti-tumour	immune	responses	are	frequently	seen	with	adenoviral	vectors,	as	pre-

existing	 immunity	 against	 viral	 antigens	 can	 diminish	 the	 desired	 anti-tumour	

response	(Berzofsky	et	al.,	2004).	Despite	this,	adenovirus-based	vectors	expressing	

various	TAAs	(e.g.	PSA	and	HER2)	have	been	investigated	for	their	efficacy	as	cancer	

therapeutics	 in	 clinical	 trials	 	 (Liu	 et	 al.,	 2008,	Das	et	 al.,	 2012)	 (ClinicalTrials.gov:	

NCT00583024	and	NCT00197522).	
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Similar	 to	 viral	 vectors,	 yeast	 and	 bacteria	 have	 also	 proven	 to	 be	 beneficial	 as	

vaccine	 vehicles,	 and	 can	 be	 modified	 for	 immunisation	 of	 cancer	 patients.	 For	

example,	Saccharomyces	cerevisiae	is	intrinsically	non-pathogenic	and	can	easily	be	

engineered	to	express	relevant	TAAs	(Wansley	et	al.,	2008,	Remondo	et	al.,	2009).	

Furthermore,	live-attenuated	recombinant	Listeria	monocytogenes	has	been	shown	

to	stimulate	anti-tumour	 immune	responses	(Singh	and	Paterson,	2006,	Singh	and	

Paterson,	 2007).	 In	 addition,	 Bacillus	 Calmette-Guérin	 (BCG),	 a	 live-attenuated	

strain	 of	Mycobacterium	 bovis,	 has	 been	 used	 as	 a	 standard	 treatment	 for	 non-

muscle-invasive	bladder	cancer	for	nearly	40	years	(Redelman-Sidi	et	al.,	2014,	Fuge	

et	al.,	2015,	Lin	et	al.,	2015,	Zheng	et	al.,	2015,	Felgner	et	al.,	2016).		

	

1.3.1.4. Dendritic	cell	(DC)	vaccines	

	

Dendritic	 cells	 (DCs)	 are	 potent	 antigen	 presenting	 cells	 (APCs)	 that	 act	 at	

peripheral	 tissues	 to	uptake	and	process	pathogen-	or	host-derived	 immunogenic	

peptides,	 and	 then	 present	 them	 (via	 MHC	 molecules)	 to	 naïve	 T-cells	 at	 the	

lymphoid	 organs	 (Banchereau	 and	 Steinman,	 1998,	 Timmerman	 and	 Levy,	 1999,	

Banchereau	et	al.,	2000).	Studies	have	shown	that	different	subsets	of	DC	direct	the	

development	 of	 different	 T-cell	 populations,	 thus	 regulating	 different	 classes	 of	

immune	 response	 (Maldonado-Lopez	 et	 al.,	 1999,	 Pulendran	 et	 al.,	 1999).	

Undeniably,	 DCs	 are	 known	 to	 bridge-the-gap	 between	 innate	 and	 adaptive	

immunity,	 and	 many	 cancer	 immunotherapy	 strategies	 aim	 to	 target	 DCs	 either	

directly	 or	 indirectly,	 in	 order	 to	 induce	 peptide-specific	 immune	 responses.	 It	 is	

known	 that	 three	 criteria	 are	 typically	 required	 for	 functional	 DC	 activation	 and	

subsequent	innate	and	adaptive	anti-tumour	responses;	(1)	ample	loading	of	pMHC	

for	T-cell	priming,	 (2)	 co-stimulatory	molecule	upregulation	 (e.g.	CD80,	CD86,	and	

CD40),	 and	 (3)	 cytokine	 production	 for	 polarizing	 Th1/Tc1	 immune	 responses	

(Frankenberger	and	Schendel,	2012).	Protocols	are	now	widely	available	for	the	ex	

vivo	generation	of	 large	numbers	of	clinical-grade	antigen-loaded	autologous	DCs.	

However,	criteria	for	the	standardisation	of	the	final	DC	product	need	to	be	better	

defined	(Berzofsky	et	al.,	2004).	
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Similar	to	whole	tumour	cell	vaccines,	an	advantage	of	DC	vaccines	is	that	the	TAA	

of	interest	doesn’t	necessarily	need	to	be	well	characterised.	Furthermore,	multiple	

antigen	loading	methods	are	available	(e.g.	whole	protein,	tumour	cell	lysate,	DNA	

plasmid,	 mRNA,	 viral	 vector	 or	 peptide),	 yet	 the	 optimal	 technique	 for	 antigen	

loading	remains	elusive.	The	autologous	DC	production	required	for	this	approach	is	

time-consuming,	 laborious	 	 and	 very	 costly	 (Berzofsky	 et	 al.,	 2004).	 Additionally,	

there	is	also	the	unfortunate	possibility	that	the	TAA	of	interest	may	be	tolerised	by	

immature	DCs.	 Indeed,	 engagement	 of	 certain	DC	 receptors	may	 induce	 immune	

suppression,	 meaning	 that	 targeting	 antigens	 to	 DCs	 does	 not	 always	 induce	 an	

immune	response	(Li	et	al.,	2012).	Studies	have	shown	that	DC	maturation	signals	

are	crucial	for	preventing	the	induction	of	T-cell	tolerance,	and	thus	enhancing	the	

anti-tumour	 response	 (Hawiger	 et	 al.,	 2001,	 Bonifaz	 et	 al.,	 2004,	 Idoyaga	 et	 al.,	

2008,	Wei	et	al.,	2009,	Wang	et	al.,	2012).	

	

One	 of	 the	 first	 clinical	 trials	 investigating	 the	 potential	 use	 of	 DCs	 as	 a	 cancer	

vaccine	 was	 conducted	 in	 patients	 with	 metastatic	 prostate	 cancer,	 using	

autologous	 DCs	 pulsed	 with	 HLA-A2-restricted	 peptides	 derived	 from	 prostate-

specific	membrane	antigen	(PSMA).	The	results	of	the	trial	were	promising,	as	some	

patients	 demonstrated	 decreased	 PSA	 levels,	 as	 well	 as	 peptide-specific	 cellular	

responses	(Murphy	et	al.,	1996).	Since	then,	DC	vaccines	have	been	investigated	for	

the	treatment	of	many	other	cancers,	including	glioma	(Yu	et	al.,	2001,	Okada	et	al.,	

2011),	melanoma	(Palucka	et	al.,	2006,	Lesterhuis	et	al.,	2011,	Romano	et	al.,	2011),	

and	 renal	 cell	 carcinoma	 (Holtl	 et	 al.,	 1999).	 Further	DC	vaccine	 clinical	 trials	 into	

the	treatment	of	prostate	cancer	(Small	et	al.,	2006,	Kantoff	et	al.,	2010)	has	in	fact	

led	 to	 the	 FDA	 approval	 of	 Provenge®;	 a	 DC	 vaccine	 approved	 in	 2010	 for	 the	

treatment	of	mCRPC	(discussed	in	Section	1.2.3.).	

	

1.3.1.5. Peptide	vaccines	

	

Efforts	 to	develop	effective	breast	cancer	vaccines	have	been	underway	 for	more	

than	20	years,	with	the	majority	of	vaccine	trials	using	a	variety	of	different	peptide	

formulations,	including	single	or	multiple,	short	or	long,	MHC-I-	or	MHC-II-restricted	
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peptides,	either	alone	in	oil-based	emulsions,	or	in	combination	with	adjuvant	(e.g.	

incomplete	 Freund’s	 adjuvant	 (IFA),	 Aluminum	 (alum),	 toll-like	 receptor	 (TLR)	

agonists	(e.g.	CpG),	cytokines	(e.g.	GM-CSF,	 IL-2,	 IFNγ),	or	DC	activators)	(Slingluff,	

2011,	Harao	et	al.,	2015).	Such	peptide	vaccines	aim	to	stimulate	and	expand	TAA-

specific	 T-cell	 responses	 that	 are	 capable	 of	 effectively	 targeting	 and	 eradicating	

tumour	 (Figure	 1.10).	 Synthetic	 peptides	 are	 attractive	 as	 vaccines,	 as	 they	 are	

relatively	 easy	 to	 manufacture	 on	 a	 large	 scale,	 at	 high	 purity	 and	 low	 cost.	 In	

addition	to	this,	they	are	generally	safe	to	use	(i.e.	low	toxicity)	(Harao	et	al.,	2015).	

However,	 many	 peptide	 vaccines	 are	 still	 weakly	 immunogenic	 (efficacy	 <	 4%),	

particularly	 for	 large	 metastatic	 cancers	 where	 the	 tumour	 burden	 is	 high	

(Rosenberg	 et	 al.,	 2004).	 These	 failures	 are	 often	 due	 to	 the	 presence	 of	 an	

immunosuppressive	 tumour	 microenvironment	 or	 suboptimal	 peptide	

immunogenicity	 (Kumai	 et	 al.,	 2017).	 Recent	 studies	 have	 use	 several	

methodologies	 in	 an	attempt	 to	 improve	 the	 immunogenicity	of	peptide	 vaccines	

including;	 (1)	 identifying	 more	 immunogenic	 epitope	 combinations	 (e.g.	 target	

multiple	epitopes	to	increase	TAA	coverage	and	prevent	tumour	escape	by	antigen	

loss),	(2)	identifying	adjuvants	that	produce	greater	cellular	immune	responses	and	

enhance	 T-cell	memory	 (Section	 1.3.1.6.),	 and	 also	 (3)	 utilising	 a	 combination	 of	

immune	checkpoint	inhibitors	(Section	1.3.3.)	(Harao	et	al.,	2015).	

	

To	 date,	 clinical	 data	 from	 peptide	 vaccination	 trials	 has	 produced	 strikingly	

contrasting	 results	 (Melief	 et	 al.,	 2015).	 Several	 studies	 have	 shown	 an	

improvement	 in	overall	patient	 survival,	whereas	others	have	 resulted	 in	minimal	

therapeutic	 benefit	 (Rosenberg	 et	 al.,	 2004,	 Markovic	 et	 al.,	 2006,	 Legat	 et	 al.,	

2016).	 For	 example,	 a	 randomised	 clinical	 trial	 (ClinicalTrials.gov:	 NCT00094653)	

investigating	 the	 effects	 of	 Ipilimumab	 (anti-CTLA-4	 monoclonal	 antibody)	 and	

glycoprotein	 100	 (gp100)	 peptide	 vaccine	 in	 patients	 with	 previously	 treated	

metastatic	 melanoma,	 demonstrated	 that	 Ipilimumab	 (with	 or	 without	 a	 gp100	

peptide	vaccine)	improved	overall	survival	in	patients,	whereas	gp100	vaccine	alone	

had	 no	 significant	 beneficial	 effect	 on	 patient	 survival	 (Hodi	 et	 al.,	 2010).	 In	

contrast,	 IMA901,	 the	 first	 therapeutic	 vaccine	 for	 renal	 cell	 carcinoma	 (RCC),	

consisting	of	multiple	tumour-associated	peptides,	has	been	associated	with	longer		
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Figure	1.10:	Anti-cancer	peptide	vaccines.	An	anti-cancer	peptide	vaccine	consists	of	a	peptide	(or	
TAA)	 that	 is	 capable	 of	 priming	 tumour-specific	 T-cell	 responses,	 and	 also	 a	 non-specific	 adjuvant	
needed	 to	 activate	 dendritic	 cells	 (DCs)	 and	 augment	 peptide	 immunogenicity.	 Upon	 intradermal	
injection,	 the	peptide	 is	 taken	up	by	antigen-presenting	cells	 (APCs),	such	as	 immature	DCs,	and	 is	
presented	to	T-cells	 in	the	 lymph	nodes.	Activated	CD4+	helper	T-cells	produce	cytokines	that	help	
with	CD8+	cytotoxic	T-cell	 stimulation	and	expansion.	Activated	 (tumour-specific)	CD8+	cytotoxic	T-
cells	 are	 then	 recruited	 to	 the	 tumour	 site	 where	 they	 attack	 and	 kill	 the	 tumour	 cells.	 Figure	
adapted	from	(Drake	et	al.,	2014).	 	
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patient	survival	in	a	randomised	phase	II	clinical	trial.	However,	results	from	an	on-

going	phase	III	trial	will	be	required	in	order	to	determine	the	overall	clinical	benefit	

of	 IMA901	 treatment.	 (Walter	 et	 al.,	 2012).	 Moreover,	 a	 clinical	 trial	

(ClinicalTrials.gov:	NCT00019682)	investigating	the	effects	of	gp100	peptide	vaccine	

and	 IL-2	 in	 patients	with	 advanced	melanoma,	 showed	 that	 the	 overall	 response	

rate	and	progression-free	survival	was	significantly	greater	with	IL-2	treatment	plus	

vaccine,	compared	to	IL-2	treatment	alone	(Schwartzentruber	et	al.,	2011).	

	

Indeed,	 there	are	many	advantages	of	using	peptide	vaccines	over	other	 forms	of	

immunotherapy,	and	 these	have	been	summarised	 in	Table	1.1.	 In	brief,	 some	of	

the	main	 benefits	 of	 peptide	 vaccines	 are	 that	 they	 are	 extremely	 cost-effective,	

especially	when	compared	to	other	considerably	more	expensive	immunotherapies	

such	 as	 adoptive	 cell	 transfer	 (ACT;	 Section	 1.2.4.)	 and	 checkpoint	 inhibitors	

(Section	1.2.5.).	This	can	be	attributed	to	the	relatively	low	manufacturing	costs	of	

synthetic	peptides,	and	the	relative	ease	of	peptide	storage	and	shipping	(Berzofsky	

et	al.,	2004).	“Off	the	shelf”	peptide	vaccines	are	also	particularly	easy	to	prepare	

and	 apply	 in	 a	 clinical	 setting.	 On	 the	 other	 hand,	 immunogenicity	 of	 peptide	

vaccines	 is	generally	restricted	to	a	 limited	number	of	MHC	molecules,	and	is	also	

reliant	 upon	 appropriate	MHC	 expression	 on	 the	 tumour	 (Berzofsky	 et	 al.,	 2004,	

Kumai	et	al.,	2016).	Since	most	peptides	are	restricted	to	specific	HLA	haplotypes,	it	

is	 necessary	 to	 choose	 peptides	 that	 match	 the	 HLA-restrictions	 of	 the	 target	

patient	 population,	 e.g.	 the	 common	 HLA-A*0201	 (HLA-A2)	 allele	 (Browning	 and	

Krausa,	 1996).	 Additionally,	 it	 might	 prove	 desirable	 to	 design	 a	 vaccine	 that	

contains	TAAs	presented	by	both	MHC-I	and	MHC-II	molecules,	and	that	promote	

both	CD4+	helper	and	CD8+	cytotoxic	T-cell	responses	(Emens,	2012).		

	

Another	advantage	of	peptide	vaccines	is	that	they	are	extremely	flexible	in	terms	

of	antigen	targeting.	For	example,	 it	 is	possible	to	target	the	 immune	response	to	

peptides	that	are	distinct	from	their	corresponding	wild-type	(WT)	sequences	(e.g.	

TAAs	 with	 point	 mutations).	 Indeed,	 epitopes	 can	 be	 synthetically	 enhanced	 to	

create	peptides	with	improved	immunogenicity	(Berzofsky	et	al.,	2004).	This	can	be	

done	via	one	of	two	methods;	epitopes	can	be	rationally	designed	to	improve		 	
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Table	1.1:	The	advantages	and	disadvantages	of	peptide	vaccines	for	breast	cancer.	Table	adapted	
from	(Berzofsky	et	al.,	2004,	Kumai	et	al.,	2016).	
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peptide	 binding	 to	 either	 the	 (1)	 presenting	MHC	molecule,	 or	 (2)	 cognate	 TCR.	

Such	optimised	peptides	are	referred	to	as	heteroclitic	peptides	(Cole	et	al.,	2010)	

or	 altered	 peptide	 ligands	 (APLs)	 (Slansky	 et	 al.,	 2000,	 Shang	 et	 al.,	 2009),	

respectively.	Heteroclitic	peptides	have	been	well	documented	in	the	literature	as	a	

strategy	to	improve	the	immunogenicity	of	self-antigens,	overexpressed	on	tumour	

cells.	 Examples	 of	 such	 TAAs	 include	 human	 carcinoembryonic	 antigen	 (CEA)	

(Zaremba	et	al.,	1997),	Melan-A/MART-1	 (Cole	et	al.,	2010),	and	glycoprotein	100	

(gp100)	 (Parkhurst	 et	 al.,	 1996).	 The	 enhancement	 of	 peptide	 binding	 to	MHC	 is	

now	relatively	straightforward,	as	preferred	MHC-binding	motifs	are	widely	known	

(Hunt	et	al.,	1992,	Parker	et	al.,	1992,	Rammensee	et	al.,	1995,	Rammensee	et	al.,	

1999).	APLs	have	been	discussed	further	in	Section	5.1.1.	

	

Additionally,	 a	 “cocktail”	 of	 peptides	 (i.e.	 multi-peptide	 vaccine)	 can	 be	 used	 to	

target	 multiple	 TAAs	 at	 the	 same	 time,	 thus	 decreasing	 the	 chance	 of	 antigen	

escape	 mechanisms,	 and	 improving	 the	 chances	 of	 targeting	 different	 tumour	

subtypes,	in	a	variety	of	patients.	Finally,	one	caveat	of	peptide	vaccines	is	that	they	

typically	 necessitate	 the	 addition	 of	 a	 non-specific	 adjuvant	 to	 activate	 DCs	 and	

augment	 peptide	 immunogenicity	 (Berzofsky	 et	 al.,	 2004).	 Adjuvants	 have	 been	

discussed	in	the	next	section.	

	

1.3.1.6. Immunostimulatory	adjuvants	for	peptide-based	vaccines	

	

An	adjuvant	 is	a	pharmacological	or	 immunological	agent	 that	 is	used	to	enhance	

the	 immunogenic	 effects	 of	 a	 vaccine.	 Since	 TAAs	 are	 poorly	 immunogenic	 by	

nature,	use	of	an	immunostimulatory	adjuvant	is	extremely	important	for	effective	

peptide	vaccine	development.	Successes	seen	in	animal	models	with	potent	vaccine	

adjuvants	 do	 not	 necessarily	 translate	 to	 the	 clinic	 where	 safe,	 but	 very	 weak,	

adjuvants	are	normally	used.	Thus,	it	is	crucial	to	understand	how	vaccine	adjuvants	

work	in	order	to	design	safe	vaccines	that	also	demonstrate	robust	clinical	benefit	

(Khong	and	Overwijk,	2016).	
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Adjuvants	 can	 exert	 their	 effects	 through	 a	 variety	 of	 mechanisms.	 However,	 in	

order	 to	 generate	 effective	 humoral	 and	 cellular	 immune	 responses	 of	 high	

magnitude,	 a	 vaccine	adjuvant	will	 ideally	 satisfy	 two	main	 functional	 criteria:	 (1)	

provide	 a	 suitable	 antigen	 delivery	 system	 that	 optimally	 regulates	 antigen	

concentration,	 persistence,	 location,	 and	 presentation	 by	 APCs,	 and	 (2)	 stimulate	

the	 expression	 of	 co-stimulatory	 molecules	 and	 cytokines	 by	 APCs.	 Examples	 of	

antigen	delivery	systems	(i.e.	class	1	adjuvants)	include	IFA,	alum,	and	micro-/nano-	

particles.	IFA	and	alum	adjuvants	both	generate	antibody	and	CD4+	T-cell	(e.g.	Th2)	

responses,	 whereas	 the	 type	 of	 immune	 response	 generated	 by	 micro-/nano-	

particle	adjuvants	is	less	well	defined.	Examples	of	immunopotentiators	(i.e.	class	2	

adjuvants)	 include	cytokines	(e.g.	GM-CSF,	 IL-2,	 IFNγ),	and	TLR	agonists	(e.g.	CpG),	

which	are	 responsible	 for	activating	many	different	arms	of	 the	adaptive	 immune	

system	 (e.g.	 T-cells,	 B-cells,	 DCs,	 NK	 cells).	Multiple	 clinical	 trials	 are	 on-going	 to	

investigate	the	effects	of	these	various	adjuvants	on	the	efficacy	of	peptide	cancer	

vaccines	(Aguilar	and	Rodriguez,	2007)	(Khong	and	Overwijk,	2016).		

	

In	contrast,	adjuvant-free	vaccines	are	now	emerging	as	a	new	approach	to	peptide	

vaccination.	Adjuvant-free	vaccines	contain	 self-assembling	peptides	 that	are	able	

to	assemble	into	nanofibre	structures,	and	elicit	both	humoral	and	cellular	immune	

responses	 without	 the	 need	 for	 a	 separate	 antigen	 delivery	 system.	 Despite	

promising	 results	 from	 pre-clinical	 studies	 in	mouse	models,	 it	 is	 likely	 that	 self-

assembling	peptide	cancer	vaccines	will	still	require	the	use	of	immunopotentiators	

in	the	future,	to	optimise	immune	activation	and	to	maximise	therapeutic	efficacy	

(Rudra	et	al.,	2010,	Rudra	et	al.,	2012,	Chesson	et	al.,	2014).	

	

1.3.1.7. Breast	cancer	peptide	vaccines	in	the	clinic	

	

At	 present,	 there	 are	 no	US	 Food	 and	Drug	Administration	 (FDA)	approved	breast	

cancer	vaccines	 available.	 However,	 there	 are	 several	 vaccines	 in	 clinical	 trials.	

Preclinical	 studies	 with	 genetically	modified	mouse	models,	 either	 engineered	 to	

express	oncogenes	or	have	inhibited	tumour	suppressor	genes,	have	revolutionised	

cancer	vaccine	 research	and	consequently	paved	 the	way	 for	 the	development	of	
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peptide	vaccines	 in	the	clinic	(Lollini	et	al.,	2005,	Lollini	et	al.,	2006,	Cavallo	et	al.,	

2006,	Nanni	et	al.,	2007,	Quaglino	et	al.,	2010,	Bolli	et	al.,	2011,	Lollini	et	al.,	2011,	

Lollini	 et	 al.,	 2015).	 Notably,	 NeuVaxTM	(Nelipepimut-S/E75	peptide	 plus	 GM-CSF	

immunoadjuvant)	is	a	HER2369-377	(KIFGSLAFL)	extracellular	domain	derived	9	amino	

acid	 (9mer)	 peptide	 vaccine	 that	 has	 just	 completed	 its	phase	 III	 trial	

(ClinicalTrials.gov	NCT01479244).	The	vaccine	is	designed	for	(HLA-A2+	or	HLA-A3+)	

patients	with	stage	I-III	HER2+	breast	cancer,	and	who	have	a	high	risk	of	recurrence	

following	surgery.	High-risk	patients	can	be	identified	based	on	the	size,	histologic	

grade,	and	spread	(e.g.	lymph	node	status)	of	the	primary	tumour,	and	also	the	age	

and	 health/lifestyle	 of	 the	 patient	 can	 play	 an	 important	 role	 in	 recurrence	 risk	

(Martei	 and	Matro,	 2015).	During	 its	phase	 I/II	 trials,	NeuVaxTM	was	 shown	 to	be	

safe	for	use	(i.e.	minimal	toxicity)	and	also	improved	five-year	disease-free	survival	

(DFS)	 in	 patients	 (Clifton	 et	 al.,	 2016,	 Mittendorf	 et	 al.,	 2008,	 Mittendorf	 et	 al.,	

2014,	Peoples	et	al.,	2005,	Schneble	et	al.,	2014).	The	vaccine	is	also	being	tested	as	

a	 combination	 immunotherapy	 treatment	 with	 Trastuzumab	 (Herceptin®)	

monoclonal	 antibody	 (mAb)	 in	 current	 phase	 II	 trials	 (ClinicalTrials.gov	

NCT02297698).	 Other	 examples	 of	 breast	 cancer	 peptide	 vaccines	 include	 GP2	

(HER2654–662,	 MHC-I-restricted)	 and	 AE37	 (HER2776–790,	 MHC-II-restricted),	 both	 of	

which	have	shown	to	be	safe	for	use	and	also	improve	patient	survival	(Holmes	et	

al.,	2008,	Gates	et	al.,	2010,	Carmichael	et	al.,	2010,	Benavides	et	al.,	2011,	Clifton	

et	al.,	2015).	Phase	II	clinical	trials	investigating	the	GP2	peptide	together	with	GM-

CSF	 adjuvant,	 and	 also	 the	 AE37	 peptide	 together	 with	 GM-CSF	 adjuvant	 are	

currently	 ongoing	 (ClinicalTrials.gov	 NCT00524277).	 A	 summary	 of	 these	 breast	

cancer	peptide	vaccine	clinical	trials	is	shown	in	Table	1.2.	

	

To	date,	 the	majority	 of	 breast	 cancer	 vaccine	 clinical	 trials	 have	 targeted	 tissue-

specific	 antigens,	 shared	 overexpressed	 self-antigens,	 or	 TAAs	 from	 the	 cancer-

testis	antigen	 family.	 Examples	of	 tumour	antigens	used	 to	 construct	 vaccines	 for	

the	 treatment	 of	 breast	 cancer	 include	 HER2,	 carcinoembryonic	 antigen	 (CEA),	

mucin	1	(MUC1),	p53,	hTERT,	sialyl-Tn	(STn;	a	truncated	O-glycan	containing	a	sialic	

acid	 α-2,6	 linked	 to	 N-acetylgalactosamine	 (GalNAc)	 α-O-Ser/Thr),	 melanoma-

associated	antigen	(MAGE),	and	New	York	Breast	Cancer-1	(NY-BR-1))	(Emens	and		 	
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Table	1.2:	Summary	of	breast	cancer	peptide	vaccine	clinical	trials.	Table	adapted	from	(Benedetti	
et	al.,	2017).	 	
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Jaffee,	 2003,	 Curigliano	 et	 al.,	 2005,	 Cheever	 et	 al.,	 2009,	 Beatson	 et	 al.,	 2010).	

Nevertheless,	 there	 is	a	 requirement	 to	 find	 further	breast	cancer	 specific	 targets	

that	the	human	immune	system	has	not	generated	a	strong	self-tolerance	against,	

i.e.	 patient-specific	 and	 tumour-specific	 mutated	 neoantigens.	 In	 the	 future,	

targeting	 neoantigens	 in	 personalised	 therapies	 may	 help	 generate	 more	 poly-

functional	and	high	affinity	T-cell	responses	against	more	aggressive	breast	cancer	

subtypes	(e.g.	TN/basal),	which	may	in	turn	aid	the	treatment	of	recurrent	disease	

and/or	help	prevent	disease	relapse	(Hacohen	et	al.,	2013,	Ott	et	al.,	2017).	

	

1.3.2. Tumour	infiltrating	lymphocyte	(TIL)	Therapy	

	

Tumour-specific	 T-cells	 that	 are	 found	within	 the	 tumours	 of	 patients,	 known	 as	

tumour	 infiltrating	 lymphocytes	 (TILs),	 are	 usually	 incapable	 of	 controlling	 the	

disease	 alone	 (Ahmadzadeh	 et	 al.,	 2009).	 TIL	 therapy,	 a	 form	 of	 adoptive	 cell	

transfer	 (ACT),	 is	 a	 type	of	 personalised	 cancer	 immunotherapy	whereby	TILs	 are	

isolated	from	a	patient’s	tumour,	expanded	and/or	modified	ex	vivo,	and	then	re-

infused	 back	 into	 the	 patient	 where	 they	 induce	 a	 tumour-specific	 immune	

response	 (Rosenberg	et	al.,	 1986).	 TIL	 therapy	has	 shown	 remarkable	 therapeutic	

results	in	some	patients	(Andersen	et	al.,	2016).	Nonetheless,	it	is	an	unfortunately	

very	 expensive	 and	 technically	 challenging	process,	 and	 is	 limited	 to	 cancers	 that	

contain	 TILs.	 Therefore,	 a	 more	 simple	 and	 cost-effective	 strategy	 to	 generate	

tumour-reactive	 T-cells	 is	 required	 (e.g.	 vaccination).	 A	 detailed	 discussion	 of	 TIL	

therapy	and	its	relevance	to	breast	cancer	has	been	provided	in	Sections	4.1.1.	and	

4.1.2.	

	

1.3.3. Immune	checkpoint	inhibitors	

	

Immune	checkpoint	pathways	 (i.e.	T-cell	 inhibitory	pathways)	“put	the	brakes	on”	

T-cell	activation,	in	order	to	maintain	self-tolerance	and	also	regulate	the	duration	

and	amplitude	of	immune	responses	(de	Coaña	et	al.,	2015).	These	mechanisms	of	

preventing	 autoimmune	 disease	 and	minimising	 collateral	 damage	 to	 tissues	 are	

often	 exploited	 by	 tumour	 cells,	 in	 order	 to	 block	 anti-tumour	 responses	 in	 the	
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tumour	microenvironment	 and	escape	 immune	 surveillance	 (Pardoll,	 2012).	 Since	

many	immune	checkpoints	(e.g.	cytotoxic	T-lymphocyte	associated	antigen-4	(CTLA-

4)	and	programmed	cell	death	protein-1	(PD-1)	inhibitory	receptors)	are	initiated	by	

ligand-receptor	interactions,	they	can	be	easily	inhibited	by	antibodies.	

	

1.3.3.1.	Anti-CTLA-4	

	

Several	 antibodies	 that	 block	 immune	 checkpoints	 have	 been	 investigated	 in	 the	

clinic	 for	 their	 efficacy	 as	 anti-tumour	 immunotherapeutic	 agents	 (Akbay	 et	 al.,	

2013,	 Sharma	 et	 al.,	 2017).	 Anti-CTLA-4	 antibodies	 are	 the	most	 potent	 of	 these	

checkpoint	 blockade	 inhibitors	 (CBIs),	 mainly	 due	 to	 their	 ability	 to	 deplete	 Treg	

within	 the	 immunosuppressive	 tumour	microenvironment	 (Simpson	 et	 al.,	 2013).	

Ipilimumab	was	 the	 first	anti-CTLA-4	antibody	 to	 receive	US	FDA	approval	 for	 the	

treatment	 of	 advanced	melanoma	 in	 2010.	 Clinical	 trials	 investigating	 the	 use	 of	

Ipilimumab	 for	 the	 treatment	 of	 other	 cancer	 types	 are	 on-going	 (Pardoll,	 2012).	

CTLA-4	 is	 expressed	 exclusively	 on	 T-cells	 (expression	 is	rapidly	up-

regulated	following	T-cell	 activation),	and	 is	 responsible	 for	 negatively	 regulating	

the	 early	 stages	 of	 T-cell	 activation.	 It	 primarily	 does	 this	 by	 counteracting	 the	

activity	 of	 (constitutively-expressed)	CD28	 T-cell	 co-stimulatory	 receptor.	 CTLA-4	

has	a	10-fold	to	20-fold	higher	affinity	for	CD80	(also	known	as	B7.1)	and	CD86	(also	

known	 as	 B7.2)	 ligands	 than	 CD28,	 and	 thus	 outcompetes	 for	 their	 binding	

(Schwartz	 et	 al.,	 1992,	 Lenschow	et	 al.,	 1996,	 Rudd	 et	 al.,	 2009).	CD80	binds	 and	

dissociates	more	slowly	than	CD86	does	from	both	CD28	and	CTLA-4.	Moreover,	the	

kinetics	 of	expression	 of	 CD80	 and	 CD86	 also	 differ.	 It	 is	 thought	

that	CD86	functions	primarily	to	initiate	an	immune	response,	as	it	is	constitutively	

expressed,	therefore	 playing	 a	crucial	role	 in	 T-cell	 activation	 and	 anergy.	 CD80	

is	expressed	later,	and	is	therefore	thought	to	play	a	role	in	amplifying	or	regulating	

an	immune	response	(Oosterwegel	et	al.,	1999).	Evidence	for	the	key	role	of	CTLA-4	

in	 regulating	 T-cell	 activation	 comes	 from	 the	 lethal	 systemic	 immune	

hyperactivation	observed	 in	CTLA-4	knockout	mice	(Tivol	et	al.,	1995,	Waterhouse	

et	al.,	1995).	

	



	

48	
	

1.3.3.2.	Anti-PD-1	

	

Another	type	of	immune-checkpoint	receptor	that	is	emerging	as	a	promising	target	

for	cancer	immunotherapy	is	PD-1.	The	main	role	of	PD-1	is	to	limit	T-cell	effector	

functions	within	peripheral	tissues	during	an	inflammatory	response	to	infection,	in	

order	 to	 prevent	 autoimmunity	 (Nishimura	 et	 al.,	 1999,	 Freeman	 et	 al.,	 2000,	

Nishimura	et	al.,	2001,	Keir	et	al.,	2006,	Okazaki	and	Honjo,	2007,	Keir	et	al.,	2008).	

In	naïve	T-cells,	expression	of	PD-1	is	induced	upon	TCR	activation.	Upon	interaction	

with	one	of	 its	 ligands,	PD-L1	 (also	known	as	B7-H1)	or	PD-L2	 (also	known	as	B7-

DC),	 PD-1	 acts	 by	 inhibiting	 kinases	 that	 are	 involved	 in	 T-cell	 activation,	 through	

the	phosphatase	SHP2,	and	also	inhibits	CD28-mediated	co-stimulation.	Both	PD-L1	

and	 PD-L2	 bind	 to	 PD-1	with	 comparable	 affinities	 (Kd	 values	 ~10	 nM),	 however	

differences	 are	observed	between	 the	 association	 and	dissociation	 characteristics	

of	these	ligands.	Unlike	PD-L2,	PD-L1	has	been	shown	to	have	a	delayed	interaction	

with	PD-1,	thought	to	be	caused	by	a	conformational	change	necessary	for	binding	

to	the	receptor	(Ghiotto	et	al.,	2010).	Furthermore,	similar	to	CTLA-4,	PD-1	is	highly	

expressed	on	Treg.	Whilst	the	interaction	of	PD-1	and	its	ligands	inhibits	the	function	

of	T-cells	and	TILs,	this	interaction	increases	the	function	of	immunosuppressive	Treg	

(Dong	 et	 al.,	 2016).	 Since	 the	 tumour	 microenvironment	 usually	 contains	 high	

numbers	of	infiltrating	Treg	that	further	suppress	the	anti-tumour	immune	response,	

inhibition	 of	 the	 PD-1	 pathway	 can	 also	 help	 to	 enhance	 anti-tumour	 immune	

responses	by	decreasing	the	number	and	suppressive	activity	of	intratumoural	Treg	

(Francisco	et	al.,	2009).	For	advanced	(metastatic)	TN	breast	cancers,	several	clinical	

trials	now	involve	the	use	of	Pembrolizumab	(brand	name	Keytruda®),	a	humanised	

anti-PD-1	 antibody,	 either	 alone	 or	 in	 combination	 with	 other	 breast	 cancer	

treatments	(ClinicalTrials.gov	NCT02447003)	(Nanda	et	al.,	2016).	

	

1.3.3.3.	Next	generation	checkpoint	inhibitors	(LAG-3	and	TIM-3)	

	

Other	emerging	CBIs	in	development	include	those	targeting	lymphocyte	activation	

gene-3	 (LAG-3)	and	T-cell	membrane	protein-3	 (TIM-3)	 (Su	et	al.,	2016,	Burugu	et	

al.,	 2017a,	 Torphy	 et	 al.,	 2017).	 LAG-3	 is	 upregulated	 on	 TILs	 in	 some	 epithelial	
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cancers	 (e.g.	 ER-	 breast	 cancer),	 and	 is	 known	 to	 down-regulate	 T-cell	 functional	

activity	 via	 its	 interaction	 with	 MHC-II	 (Triebel,	 2003;	 Gandhi	 et	 al.,	 2006).	

Antibodies	that	block	the	LAG-3	 inhibitory	signal	may	result	 in	the	activation	of	T-

cells	 within	 the	 tumour	 microenvironment,	 and	 restore	 anti-tumour	 immunity	

(Goldberg	and	Darke,	2011,	Hemon	et	al.,	 2011,	 Su	et	al.,	 2016).	Novel	 strategies	

are	 currently	 being	 evaluated	 in	 clinical	 trials	 that	 target	 this	 LAG-3	 checkpoint	

(Burugu	 et	 al.,	 2017b).	 TIM-3	 is	 another	 newly	 emerging	 immune-checkpoint	

receptor.	The	ligand	for	TIM-3	is	galectin-9,	which	is	upregulated	in	multiple	types	

of	 cancer,	 including	 breast	 cancer,	 and	 is	 known	 to	 inhibit	 T-helper	 (Th1)	 cell	

responses	(Zhu	et	al.,	2005).	Antibodies	that	block	the	TIM-3	T-cell	inhibitory	signal	

have	already	been	shown	to	enhance	anti-tumour	 immunity	 (Ngiow	et	al.,	2011a,	

Ngiow	et	al.,	2011b).	Moreover,	TIM-3	and	LAG-3	are	both	reportedly	co-expressed	

with	PD-1	on	tumour-specific	CD8+	T-cells,	thus	a	combination	strategy	of	CBIs	may	

form	 an	 extremely	 viable	 future	 treatment	 option	 for	 breast	 cancer	 patients	

(Grosso	et	al.,	2009,	Woo	et	al.,	2012,	Burugu	et	al.,	2017b).	In	fact,	dual	blockade	

of	 TIM-3	 and	 PD-1	 in	 animal	 models	 has	 significantly	 enhanced	 anti-tumour	

immune	 responses	 and	 subsequent	 tumour	 rejection	 (Fourcade	 et	 al.,	 2010,	

Sakuishi	et	al.,	2010,	Baitsch	et	al.,	2012).	

	

Despite	 some	 promising	 preliminary	 studies,	 the	 number	 of	 patients	 that	

successfully	respond	to	CBIs	is	low,	and	is	often	limited	to	cancer	types	that	contain	

a	pre-existing	pool	 of	 tumour-reactive	 T-cells.	 Consequently,	 it	 is	 likely	 that	 T-cell	

inducing	vaccines	will	help	increase	the	efficacy	of	these	CBIs	(Kumai	et	al.,	2017).			

	

1.3.4. Other	immunotherapeutic	strategies	

	

Other	 immunotherapeutic	 strategies	 for	 breast	 cancer	 include	 antibody	 therapy	

and	 cytokine	 therapy.	 Monoclonal	 antibodies	 (mAbs)	 are	 capable	 of	 binding	 to	

specific	targets	on	tumour	cells	and	consequently	stimulating	an	immune	attack	on	

those	cells.	As	mentioned	previously,	and	example	of	antibody	 therapy	 for	breast	

cancer	 is	 trastuzumab,	 which	 has	 undoubted	 therapeutic	 efficacy	 against	 HER2+	

subtypes,	and	can	also	be	combined	with	non-specific	chemotherapeutic	agents	in	
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order	 to	 deliver	 them	 directly	 to	 the	 tumour	 (Guerin	 et	 al.,	 2015).	 Moreover,	

cytokines	 (e.g.	 IFNγ	 and	 IL-2)	 can	 also	 be	 used	 to	modulate	 anti-cancer	 immune	

responses	in	immunotherapy	by	promoting	T-cell	effector	responses	and	also	T-cell	

proliferation	(Lee	and	Margolin,	2011).  
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1.4. PROJECT	AIMS	

	

The	overall	aim	of	my	research	was	to	generate	breast	cancer	specific	T-cell	clones	

with	reactivity	towards	three	key	breast	cancer	antigens;	(1)	NY-BR-1,	(2)	cadherin-

3/P-cadherin	(CDH3),	and	(3)	bone	marrow	stromal	cell	antigen-2	(BST-2),	and	then	

utilise	these	clones	to	generate	altered	peptide	ligands	(APLs)	that	could	be	used	to	

prime	superior	populations	of	breast	cancer	antigen	specific	CD8+	T-cells	 from	the	

peripheral	blood	mononuclear	cells	(PBMC)	of	healthy	HLA-A2+	donors.	I	decided	to	

focus	on	HLA-A2+	individuals,	as	HLA-A2	is	the	most	common	HLA	class-I	specificity	

(Browning	and	Krausa,	1996).	

Specifically,	 in	 Chapter	 3,	 I	 aimed	 to	 produce	 NY-BR-1	 and	 CDH3	 specific	 T-cell	

clones	 using	 a	 conventional	 protocol	 (“T-cell	 lines”	 strategy),	 but	 also	 aimed	 to	

develop	a	new	methodology	 for	 T-cell	 clone	generation	 (“T-cell	 library”	 strategy),	

which	 could	 allow	 for	 the	 rapid	 and	 simultaneous	 production	 of	 multiple	 T-cell	

clones	with	different	peptide	specificities.	Moreover,	with	access	 in	my	laboratory	

to	 TILs	 derived	 from	 a	 stage	 IV	 metastatic	 melanoma	 patient,	 who	 underwent	

complete	remission	following	ACT,	 I	hypothesised	that	these	TILs	could	be	a	good	

source	of	T-cells	that	react	to	a	wide	variety	of	other	tumour	types,	including	breast	

cancer.	Melanoma	 is	 known	 to	 share	 some	 antigens	with	 other	 cancers.	 Thus,	 in	

Chapter	 4,	 I	 aimed	 to	 dissect	 the	 tumour	 reactivity	 of	 these	 TILs,	 as	 well	 as	 use	

them	to	generate	a	BST-2	specific	T-cell	clone.	Next,	in	Chapter	5,	I	aimed	to	design	

superior	APLs	 for	 all	 of	 the	 the	breast	 cancer	 specific	 T-cell	 clones	 I	 generated	 in	

Chapters	3	 and	4,	 by	utilising	positional	 scanning	 synthetic	 combinatorial	peptide	

libraries	(PS-SCL).	Finally,	 in	Chapter	6,	 I	aimed	to	carry	out	preliminary	“proof-of-

concept”	experiments	to	 investigate	whether	priming	with	my	most	 immunogenic	

APL	 could	 result	 in	 an	 enhanced	 breast	 cancer	 antigen	 specific	 T-cell	 response,	

when	compared	to	priming	with	the	wild-type	(WT)	peptide,	in	vitro.	
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2. MATERIALS	AND	METHODS	

	

2.1. Cell	culture	

	

All	cells	were	cultured	at	37	°C,	5%	CO2	in	T25,	T75	or	T175	flasks	(Greiner	Bio-One,	

Frickenhausen,	Germany),	and	96	round	bottom,	48	flat	bottom,	or	24	flat	bottom	

multi-well	plates	(Greiner	Bio-One),	according	to	cell	type	and	numbers.	Cells	were	

not	 allowed	 to	 reach	 more	 than	 80%	 confluency,	 and	 half	 the	 cell	 medium	 was	

replaced	when	the	medium	turned	yellow	(indicating	a	decrease	in	pH),	in	order	to	

prevent	 the	accumulation	of	 toxic	waste	products.	Cells	were	 regularly	 tested	 for	

mycoplasma	infection	using	MycoAlertTM	kit	(Lonza,	Switzerland),	according	to	the	

manufacturer’s	 instructions.	Details	about	 culture	of	 specific	 cell	 types	have	been	

described	in	Sections	2.1.9.,	2.1.10.	and	2.1.11.	

	

2.1.1. Medium	and	buffers	

	

Cell	culture	medium	and	buffers	utilised	in	this	research	have	been	listed	in	Table	

2.1.,	 and	were	 filtered	 using	 a	 0.2μm	 sterile	 filter	 and	 syringe,	 or	 0.22μm	 sterile	

bottle	 filter	 (StericupTM;	 Merck	 Millipore,	 Bedford,	 MA,	 USA).	 IL-2	 was	 used	 to	

promote	T	cell-expansion	and	effector	cell	generation	after	initial	(peptide-specific)	

activation	via	TCR	signalling.	IL-15	was	used	to	act	as	a	stimulus	for	the	generation	

of	memory	 and	 effector	 T-cells	 (Cornish	 et	 al.,	 2006).	 T-cell	 priming	medium	was	

used	during	CD8+	priming	experiments,	and	for	early	culturing	of	T-cell	lines	and	T-

cell	libraries.	T-cell	library	medium	was	used	on	day	6	of	T-cell	library	generation.	T-

cell	 expansion	 medium	 was	 used	 for	 peptide-independent	 T-cell	 expansion	 and	

single-cell	 cloning.	 T-cell	 culture	 medium	 was	 used	 for	 general	 cell	 culture	 of	

established	T-cell	clones,	lines,	and	libraries.	
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MEDIUM/BUFFER COMPOSITION 
R0 (serum-free) 1X RPMI 1640 

100 U/ml penicillin 
100 µg/ml streptomycin 
2 mM L-Glutamine 

R5 R0  
5% heat-inactivated foetal bovine serum (HI- FBS) 

R10 R0  
10% HI-FBS 

D10 1X DMEM 
100 U/ml penicillin 
100 µg/ml streptomycin 
2 mM L-Glutamine 
10% HI-FBS 

Breast cancer cell line medium 1X DMEM/F-12 
100 U/ml penicillin 
100 µg/ml streptomycin 
2 mM L-Glutamine 
10% HI-FBS 
1 mM sodium pyruvate 
2.5 µg/ml insulin solution from bovine pancreas (Sigma- 
Aldrich, Poole, UK) 

T-cell priming medium R10 
10 mM HEPES buffer 
1 mM sodium pyruvate 
1X MEM non-essential amino acids (NEAA) 
20 IU/ml IL-2 (aldesleukin, brand name Proleukin®; 
Prometheus, San Diego, CA) 

T-cell library medium R10 
10 mM HEPES buffer 
1 mM sodium pyruvate 
1X MEM non-essential amino acids (NEAA) 
200 IU/ml IL-2 

T-cell expansion medium R10 
10 mM HEPES buffer 
1 mM sodium pyruvate 
1X MEM non-essential amino acids (NEAA) 
20 IU/ml IL-2 
25 ng/ml IL-15 (PeproTech, Rocky Hill, NJ)* 
1µg/ml phytohemagglutinin (PHA; Alere, Cheshire, UK) 

T-cell culture medium R10 
10 mM HEPES buffer 
1 mM sodium pyruvate 
1X MEM non-essential amino acids (NEAA) 
200 IU/ml IL-2 
25 ng/ml IL-15* 

Cell freezing buffer 90% HI-FBS 
10% dimethyl sulfoxide (DMSO; Sigma-Aldrich) 

Red blood cell (RBC) lysis buffer 155 mM NH4Cl, 10 mM KHCO3, 0.1 mM 
ethylenediaminetetraacetic acid (EDTA), pH 7.2 to 7.4 

PBS-EDTA phosphate buffered saline (PBS), 2mM EDTA 
FACS buffer PBS, 2% HI-FBS 
MACS buffer PBS, 2 mM EDTA, 0.5% bovine serum albumin (BSA) 
Dextramer Buffer 50 mM Tris-HCL, 15 mM NaN3, 1% BSA, pH 7.2 
	

Table	 2.1:	Medium	 and	 buffer	 list.	 Unless	 otherwise	 stated,	 all	 medium	 and	 buffer	 components	
were	obtained	from	Gibco®,	Life	Technologies	(Paisley,	UK).	*CD8+	T-cells	only.	
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2.1.2. Viable	cell	counting	

	

Cell	 suspensions	were	mixed	 1:1	with	 trypan	 blue	 solution	 (Sigma-Aldrich,	 Poole,	

UK)	in	a	single	96	round	bottom	well.	10	μl	of	the	mix	was	then	loaded	onto	a	glass	

haemocytometer,	 underneath	 a	 coverslip.	 Using	 a	 microscope,	 live	 cells	 were	

counted	across	one	set	of	16	squares,	excluding	dead	(blue-stained)	cells.	The	total	

number	of	viable	cells	was	calculated	according	to	the	following	formula:	(number	

of	cells	counted	in	16	squares)	x	(trypan	blue	dilution	factor,	i.e.	2)	x	104	=	number	

of	cells/ml.		

	

2.1.3. Cryopreservation	and	thawing	of	cells	

	

Cell	 suspensions	were	 counted	 (Section	 2.1.2.)	 prior	 to	 freezing.	 Cells	 were	 then	

centrifuged	 (400	 g,	 room	 temperature	 (RT),	 5	min),	 the	 supernatant	 removed	 by	

aspiration,	and	then	the	cell	pellet	air-dried	(RT,	1	min).	The	dry	cell	pellet	was	then	

resuspended	 in	 cell	 freezing	 buffer	 at	 concentrations	 typically	 ranging	 from	0.5	 x	

106	 cells/ml	 to	 1	 x	 107	 cells/ml.	 1	 ml	 aliquots	 were	 then	 placed	 into	 Nunc®	

CryoTubes®	 (Sigma-Aldrich)	 and	 then	 stored	 in	 a	 CoolCell®	 freezing	 container	

(Biocision,	 Larkspur,	CA)	at	 -80	 °C	 for	24	hours.	CryoTubes®	were	 then	moved	 for	

long	term	storage	into	liquid	nitrogen.	

	

Cells	 were	 removed	 from	 liquid	 nitrogen	 onto	 dry	 ice,	 and	 then	 thawed	 when	

needed	in	a	37	°C	water	bath.	Once	thawed,	cells	were	immediately	diluted	out	of	

the	cell	freezing	buffer	using	pre-warmed	R10	medium	in	a	15	ml	FalconTM	tube	(BD	

Biosciences,	 San	 Jose,	 CA).	 Cells	were	 centrifuged	at	 300	 g,	 RT	 for	 5	min	 and	 the	

supernatant	discarded.	The	cell	pellet	was	 then	resuspended	 into	 the	appropriate	

medium	 for	 use	 in	 experiments	 or	 cell	 culture.	 If	 necessary,	 thawed	 cells	 were	

treated	 with	 DNase	 I	 Solution	 (STEMCELL	 Technologies	 UK	 Ltd.,	 Cambridge,	 UK)	

(100	 µg/ml,	 15	 min	 to	 30	 min,	 37	 °C,	 5%	 CO2)	 and/or	 filtered	 (CellTrics®	 30µm	

sterile	filters,	Sysmex	UK	Ltd.,	Milton	Keynes,	UK)	prior	to	use,	 in	order	to	remove	

cell	clumps.		
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2.1.4. Blood	samples	and	peripheral	blood	mononuclear	cell	(PBMC)	isolation	

	

Buffy	 coats	 from	 healthy	 HLA-A2+	 donors	 were	 obtained	 from	 the	 Welsh	 Blood	

Service	 (WBS,	 Cardiff).	 All	 buffy	 coats	 were	 seronegative	 for	 hepatitis	 B	 (HBV),	

hepatitis	C	(HCV)	and	human	immunodeficiency	virus	(HIV-1).	Peripheral	blood	was	

obtained	 from	 an	 HLA-A2+	 donor	 with	 type	 1	 diabetes	 (T1D)	 (used	 in	 Section	

3.3.2.2.),	a	healthy	HLA-A2+	donor	who	had	previously	participated	in	a	clinical	trial	

(ClinicalTrials.gov	 identifier:	NCT00072605)	 for	an	Ebola	virus	 (EBOV)	DNA	vaccine	

(EBODNA012-00-VP)	 (Martin	et	al.,	2006)	 (used	 in	Section	3.3.2.3.),	and	a	healthy	

HLA-DRB*0101+	 (HLA-DR1+)	 donor	 (used	 in	 Section	 3.3.2.4.).	 Informed	 written	

consent	 was	 obtained	 from	 all	 donors,	 and	 blood	 was	 collected	 according	 to	

institutional	ethics	guidelines.		

	

PBMC	isolation	was	carried	out	by	density	gradient	centrifugation.	Buffy	coats	were	

first	diluted	1:1	with	R10	medium,	and	then	carefully	layered	on	top	of	25	ml/tube	

LymphoprepTM	(STEMCELL	Technologies	UK	Ltd.,	Cambridge,	UK)	across	multiple	50	

ml	FalconTM	tubes	(BD	Biosciences).	All	tubes	were	centrifuged	at	800	g,	RT	for	20	

min	 (brake	 off).	 Mononuclear	 cells	 at	 the	 interface	 layer	 were	 then	 carefully	

removed	using	a	sterile	Pasteur	pipette,	and	transferred	into	a	new	50	ml	tube.	The	

cells	were	washed	in	R0	medium,	by	centrifugation	at	700	g,	RT	for	10	min	(brake	

on).	Next,	the	cell	pellet	was	resuspended	in	25	ml	RBC	lysis	buffer	and	incubated	at	

37	°C	for	10	min.	Cells	received	a	final	wash	in	R0	medium	by	centrifugation	at	300	

g,	RT	for	6	min	(brake	on),	in	order	to	remove	any	platelets.	RBC	lysis	and	washing	

was	 repeated	 if	 pellets	 were	 still	 red	 in	 colour.	 The	 PBMC	 cell	 pellet	 was	 then	

resuspended	in	R10	medium,	and	stored	at	37	°C,	5%	CO2	until	needed.	

	

2.1.5. CD8+	and	CD4+	T-cell	subset	isolation	

	

T-cells	were	 enriched	 from	 fresh	 or	 freeze-thawed	PBMC	by	magnetic	 separation	

with	 anti-CD8	 or	 anti-CD4	 human	 microbeads,	 according	 to	 the	 manufacturer’s	

instructions	 (Miltenyi	 Biotec,	 Bergisch	 Gladbach,	 Germany).	 Briefly,	 cells	 were	

washed	 in	 MACS	 buffer	 (300	 g,	 4	 °C,	 5	 min)	 and	 then	 counted,	 before	 being	
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magnetically	 labelled	 with	 the	 appropriate	 microbeads	 (15	 mins,	 4	 °C	 -	 fridge).	

Labelled	 cells	were	 then	washed	 in	MACS	buffer	 (300	 g,	 4	 °C,	 5	min),	 and	eluted	

from	a	MACS	MS	(maximum	1	x	10⁷	labelled	cells,	2	x	10⁸	total	cells)	or	LS	column	

(maximum	 1	 x	 108	 labelled	 cells,	 2	 x	 109	 total	 cells)	 as	 the	 positive	 cell	 fraction.	

Positive	 cells	 were	 centrifuged	 (300	 g,	 4	 °C,	 5	 min)	 and	 resuspended	 into	 the	

appropriate	medium	for	use	in	experiments	or	cell	culture.	

	

2.1.6. Establishing	CD8+	T-cell	lines	(CD8+	priming)	

	

An	 overview	of	 the	 T-cell	 lines	methodology	 is	 summarised	 in	Figure	 3.1.	 Briefly,	

following	 isolation	 from	PBMC,	CD8+	T-cells	were	 immediately	 seeded	 into	24	 flat	

bottom	multi-well	plates,	at	a	density	of	3	x	106	cells	per	well	in	0.5	ml	per	well	of	T-

cell	priming	medium.	Next,	autologous	PBMC	or	CD8-	cells	were	pulsed	for	1	h	(37	

°C,	5%	CO2)	with	10-5	M	to	10-4	M	peptide,	in	2	ml	T-cell	priming	medium,	using	15	

ml	FalconTM	tubes	 (BD	Biosciences)	 in	a	MACSmixTM	tube	rotator	 (Miltenyi	Biotec)	

on	 the	 slowest	 rotation	 setting.	 Peptide-pulsed	 cells	 were	 then	 irradiated	 and	

washed	 in	 R10	medium	 (400	 g,	 RT,	 5	min),	 before	 being	 resuspended	 into	 T-cell	

priming	medium	at	a	density	of	8	x	106	cells	per	0.5	ml.	Peptide-pulsed,	irradiated	

presenting	 cells	were	 then	 co-incubated	with	 the	 CD8+	 T-cells	 by	 seeding	 8	 x	 106	

cells	per	well.	Anti-CD28	antibody	was	then	added	to	each	well	at	a	concentration	

of	2μg/ml	(Beckman	Coulter	Ltd.,	High	Wycombe,	UK).	On	day	3	of	culture,	1	ml	of	

T-cell	priming	medium	was	added	per	well.	Following	this,	half	of	the	cell	medium	

was	replaced	every	2	to	3	days	with	fresh	T-cell	priming	medium.	After	two	weeks	

in	 culture,	 T-cell	 lines	 were	 monitored	 functionally	 by	 flow	 cytometry	 (i.e.	

intracellular	 cytokine	 staining	 (ICS;	 Section	 2.3.2.)	 or	 TNFα	 processing	 inhibitor	

assay	 (TAPI;	 Section	 2.3.3.),	 by	 IFNγ	 enzyme-linked	 immunospot	 assay	 (ELISpot;	

Section	2.2.3.),	or	alternatively	by	using	peptide-MHC	 (pMHC)	multimers	 (Section	

2.3.4.).	If	a	low	frequency	or	undetectable	response	to	peptide	was	observed,	T-cell	

lines	 were	 re-stimulated	 with	 peptide-pulsed	 autologous	 presenting	 cells,	 as	

previously	described.	A	cycle	of	monitoring	and	peptide	restimulation	was	carried	

out	 every	 two	 weeks,	 until	 a	 convincing	 peptide-specific	 T-cell	 response	 was	
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observed.	 For	 ELISpot	 assays,	 a	 difference	 of	 >20	 SFCs	 between	 the	 peptide	

stimulated	and	no	peptide	control	wells	was	required	for	further	experiments	to	be	

conducted.	 If	 the	no	peptide	 control	well(s)	 gave	high	background	 reactivity	 (>50	

SFCs)	 for	 the	 initial	 screening,	 but	 with	 more	 spots	 with	 peptide	 (>20	 SFCs	

difference),	 the	 assay	was	 repeated	 before	 deciding	whether	 or	 not	 to	 take	 that	

particular	 culture	 forward	 for	 further	 experiments.	 For	 flow	 cytometry-based	

assays,	the	proportion	of	cytokine/chemokine	following	peptide	stimulation	had	to	

be	greater	than	that	seen	for	the	no	peptide	control	(typically	>5-fold),	for	the	T-cell	

line	 to	 be	 considered	 peptide-reactive.	 Additionally,	 the	 population	 of	 peptide	

responsive	T-cells	also	had	to	be	clearly	discernible	(cytokine	and/or	chemokine	+),	

with	convincing	fluorescence	intensity,	from	the	other	T-cells	within	the	same	assay	

sample.	In	some	example(s),	the	peptide	specific	T-cell	populations	were	as	low	as	

~0.1%	of	T-cells,	but	met	the	criteria	for	further	analyses.	

	

2.1.7. Establishing	CD8+	and	CD4+	T-cell	libraries	

	

An	overview	of	 the	T-cell	 library	methodology	 is	 illustrated	 in	Figure	3.4.	 In	brief,	

following	 isolation	 from	 PBMC,	 CD8+	 or	 CD4+	 T-cells	 were	 immediately	 seeded	

across	 several	 96	 round	 bottom	multi-well	 plates,	 (densities	 ranging	 from	 300	 to	

1500	 cells	 per	 well),	 at	 a	 1:2	 cell:bead	 ratio	 with	 Human	 T-Activator	 CD3/CD28	

Dynabeads®	(Life	Technologies)	(Trickett	and	Kwan,	2003),	 in	100	μl	per	well	T-cell	

priming	medium.	Library	plates	were	then	centrifuged	(300	g,	RT,	5	min)	in	order	to	

increase	cell-bead	contact,	and	incubated	at	37	°C,	5%	CO2.	On	day	3	of	culture,	100	

μl	of	T-cell	priming	medium	was	added	per	well.	On	day	6	of	culture,	half	of	the	cell	

medium	was	 replaced	 with	 T-cell	 library	medium.	 From	 day	 9	 onwards,	 libraries	

were	maintained	by	feeding	every	2	to	3	days	with	T-cell	culture	medium.	Between	

days	 14	 and	 17	 of	 culture,	 3	 random	 wells	 from	 each	 library	 plate	 were	

resuspended	and	counted	to	establish	an	average	T-cell	number	per	well.	Using	this	

count,	approximately	5	x	104	 cells	per	well	were	 transferred	 into	a	new	96	 round	

bottom	multi-well	plate.		These	cells	were	then	washed	in	R0	medium	(400	g,	RT,	5	

min),	and	rested	overnight	in	R5	medium	(18	h,	37	°C,	5%	CO2).	Rested	library	cells	
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were	then	screened	±	peptide(s)	 (10-6	 to	10-5	M)	via	 IFNγ	ELISpot	 (Section	2.2.3.),	

using	2.5	x	104	T-cells	per	well	and	5	x	104	peptide-pulsed	APCs	(T2s	or	T2-DR1s)	per	

well.	Cells	from	peptide-reactive	wells	of	the	screen	were	either	pooled	or	kept	as	

individual	wells.	

	

2.1.8. Isolating	T-cell	clones	(IFNγ/TNFα	secretion	assay)	

	

Peptide-specific	 (activated,	 IFNγ/TNFα	secreting)	T-cells	were	enriched	 from	T-cell	

lines	(Section	2.1.6.)	or	peptide-reactive	library	well(s)	(Section	2.1.7.)	using	an	IFNγ	

or	 dual	 IFNγ/TNFα	 secretion	 assay,	 according	 to	 the	 manufacturer’s	 instructions	

(Miltenyi	Biotec).	Briefly,	cells	were	rested	overnight	in	R5	medium	(18	h,	37	°C,	5%	

CO2),	and	then	stimulated	with	10-5	M	peptide	(4	h,	37	°C,	5%	CO2).	Next,	cells	were	

washed	 in	 MACS	 buffer	 (300	 g,	 4	 °C,	 10	 min)	 and	 then	 counted,	 before	 being	

labelled	 with	 IFNγ	 or	 IFNγ/TNFα	 catch	 reagent	 (5	 min,	 on	 ice).	 Cells	 were	 then	

diluted	in	pre-warmed	R5	medium	and	incubated	(45	min,	37	°C,	5%	CO2)	in	15	ml	

FalconTM	 tubes	 (BD	 Biosciences)	 using	 a	MACSmixTM	 tube	 rotator	 on	 the	 slowest	

rotation	setting	(cytokine	secretion	period).	Cells	were	washed	in	MACS	buffer	(300	

g,	4	°C,	10	min),	and	then	labelled	with	PE-conjugated	IFNγ	or	IFNγ/TNFα	detection	

antibody	(10	min,	on	 ice).	Cells	were	washed	once	again	 in	MACS	buffer	(300	g,	4	

°C,	10	min),	and	then	magnetically	labelled	with	anti-PE	microbeads	(15	mins,	4	°C	-	

fridge).	Labelled	cells	were	then	washed	in	MACS	buffer	(300	g,	4	°C,	10	min),	and	

eluted	from	a	MACS	MS	(maximum	1	x	10⁷	 labelled	cells,	2	x	10⁸	total	cells)	or	LS	

column	 (maximum	 1	 x	 108	 labelled	 cells,	 2	 x	 109	 total	 cells)	 as	 the	 positive	 cell	

fraction.	Positive	cells	were	centrifuged	(300	g,	4	°C,	5	min)	and	resuspended	 into	

the	 appropriate	medium	 for	 use	 in	 functional	monitoring	 experiments	 (ICS,	 TAPI,	

ELISpot,	 pMHC	 multimer	 staining)	 or	 cell	 culture.	 Most	 peptide-specific	

(magnetically	separated)	cells	were	cloned	to	the	single-cell	level	by	diluting	(0.5-1	

cells/well)	 in	 100	 μl	 per	 well	 T-cell	 expansion	 medium,	 within	 96	 round	 bottom	

multi-well	 plates,	 or	were	occasionally	 expanded	as	 an	enriched	 line	 (see	Section	

2.1.9.).	
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2.1.9. Peptide-independent	T-cell	expansion	and	culture	

	

T-cells	 were	 stimulated	 fortnightly	 in	 T-cell	 expansion	 medium,	 with	 irradiated	

(3,100	Gy)	allogeneic	 feeder	cells	 (PBMC	or	CD8-	 cells)	pooled	 from	three	healthy	

donors	(Table	2.2).	T-cells	in	expansion	were	maintained	at	37	°C,	5%	CO2,	and	T25	

flasks	 tilted	 at	 a	 45°	 angle	 in	 order	 to	 increase	 cell-cell	 contact.	 On	 day	 5	 of	

expansion,	half	of	the	cell	medium	was	replaced	with	fresh	T-cell	culture	medium.	

On	 day	 7	 of	 expansion,	 cells	 were	 harvested,	 counted,	 and	 plated	 in	 fresh	 T-cell	

culture	medium	 (Table	 2.3).	 Plated	 T-cells	were	 left	 until	wells	 became	 confluent	

and/or	medium	turned	yellow.	Typically,	every	2	to	3	days	half	the	cell	medium	was	

replaced	with	 fresh	T-cell	 culture	medium.	Between	2	 to	6	weeks	 following	 initial	

expansion,	T-cells	were	either	used	in	experiments	or	cryopreserved	for	future	use.	

	

2.1.10. Tumour	infiltrating	lymphocytes	(TILs)	

	

The	TIL	product	used	for	infusion	to	induce	a	complete	lasting	remission	(>5	years)	

in	 a	 HLA-A2+	 patient	 (MM909.24)	 with	 Stage	 IV	 metastatic	 melanoma	 were	

procured	 from	 the	 Center	 for	 Cancer	 Immune	 Therapy	 (CCIT),	 Herlev	 Hospital	 in	

Copenhagen,	Denmark,	 and	used	 for	 this	 study.	 ~1	 cm3	of	 excised	 tumour	 tissue,	

obtained	 via	 surgical	 resection,	 was	 used	 for	 TIL	 and	 autologous	 metastatic	

melanoma	 cell	 line	 (MM909.24)	 generation	 at	 the	 CCIT.	 The	majority	 of	 the	 TILs	

were	 expanded	 and	 re-infused	 into	 patient	 MM909.24,	 as	 part	 of	 the	 rapid	 TIL	

therapy	 performed	 at	 the	 CCIT.	 The	 patient	 underwent	 complete	 remission	

following	 participation	 in	 the	 phase	 I/II	 clinical	 trial	 (Andersen	 et	 al.,	 2016)	

(ClinicalTrials.gov	 identifier:	 NCT00937625).	 An	 outline	 of	 TIL	 therapy	 is	 shown	 in	

Figure	 4.1.	Protocols	 for	 TIL	 isolation	 have	 been	 extensively	 described	within	 the	

literature	 (Andersen	 et	 al.,	 2016,	 Donia	 et	 al.,	 2013,	 Ellebaek	 et	 al.,	 2012).	 All	

protocols	were	permitted	by	the	Scientific	Ethics	Committee	for	the	Capital	Region	

of	 Denmark,	 and	 informed	 written	 consent	 was	 obtained	 from	 all	 patients	

according	to	the	Declaration	of	Helsinki.	
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CULTURE 
VESSEL 

NUMBER OF T-CELLS 
FOR EXPANSION 

VOLUME OF T-CELL 
EXPANSION MEDIUM 

NUMBER OF FEEDER 
CELLS 

per 96 round 
bottom well ≤ 1 x 105 200 µl 5 x 104 

per T25 flask 0.5 x 106 to 1 x 106 10 ml to 15 ml 10 x 106 to 15 x 106 

	

Table	2.2:	Peptide-independent	T-cell	expansion.	Culture	vessel,	number	of	T-cells,	volume	of	T-cell	
expansion	 medium,	 and	 number	 of	 irradiated	 allogeneic	 feeder	 cells	 required	 for	 peptide-
independent	T-cell	expansion	have	been	shown.	

	
	
	
CULTURE 
VESSEL 

NUMBER OF T-CELLS 
FOR CULTURE 

VOLUME OF T-CELL 
CULTURE MEDIUM 

per 96 round 
bottom well ≤ 2 x 105 200 µl 

per 48 flat 
bottom well 1 x 106 to 2 x 106 1 ml 

per 24 flat 
bottom well 3 x 106 to 4 x 106 2 ml 

	
Table	 2.3:	 T-cell	 culture.	 Culture	 vessel,	 number	 of	 T-cells,	 and	 volume	 of	 T-cell	 culture	medium	
required	for	T-cell	culture	have	been	shown.	
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Some	of	the	infusion	product	was	cryopreserved	for	research	purposes,	and	3	vials	

of	5	x	106	TILs	transferred	to	Cardiff	University	for	various	T-cell-based	projects.	In	

order	to	preserve	the	nature	of	the	TIL	infusion	product,	excessive	rounds	of	further	

in	 vitro	 expansion	 were	 avoided.	 Whenever	 possible,	 the	 original	 TIL	 infusion	

product	was	thawed	and	used	directly	in	functional	assays.	Allogeneic	PBMCS	were	

used	to	re-stimulate	the	TILs	(described	in	Section	2.1.9.),	thus	it	was	possible	that	

a	proportion	of	the	TILs,	which	were	polyclonal	by	nature	(at	 least	200	TCRs	were	

present	 in	 the	 tumour-reactive	 population;	 personal	 communication	 with	 Dr	

Meriem	 Attaf),	 could	 favour	 allogeneic	 re-stimulation	 and	 enter	 more	 rounds	 of	

cellular	 division,	 thereby	 skewing	 the	 clonotypic	 architecture.	 Indeed,	 allogeneic	

PBMCs	were	used	 to	expand	 the	T-cell	 clones	 in	 this	 study,	as	autologous	PBMCs	

did	 not	 work	 as	 effectively	 (personal	 communication	 with	 Dr.	 Garry	 Dolton).	

CD3/CD28	 bead	 stimulation	 of	 the	 TILs	 caused	 activation	 induced	 cell	 death,	

possibly	due	to	lack	of	CD28	expression	on	the	TILs,	as	they	have	been	driven	to	an	

effector	 phenotype	 (personal	 communication	 with	 Dr.	 Garry	 Dolton).	 Therefore,	

CD3/CD28	bead	stimulation	was	not	an	option	to	avoid	use	of	allogeneic	PBMCs.	In	

light	of	 this,	 in	vitro	re-stimulation	was	kept	to	a	minimum	(2	or	3	passages),	and	

reactivity	 towards	 the	 autologous	 melanoma	 cell	 line	 was	 monitored	 prior	 to	

conducting	 my	 experiments.	 Culture	 conditions	 for	 the	 autologous	 metastatic	

melanoma	cell	line	(MM909.24)	have	been	described	in	Section	2.1.11.	

	

2.1.11. Tumour	and	immortalised	cell	lines	

	

All	 tumour	 and	 immortalised	 cell	 lines	 used	 in	 this	 research	 have	 been	 listed	 in	

Table	2.4.,	along	with	their	cell	culture	requirements.	All	cell	lines	were	seeded	into	

fresh	 medium,	 every	 2	 to	 3	 days.	 Adherent	 cells	 were	 detached	 from	 flasks	 by	

incubation	 in	PBS-EDTA	buffer	 (37	°C,	5%	CO2,	5	min	to	20	min	depending	on	cell	

type),	 following	 a	 wash	with	 PBS	 to	 remove	 all	 remaining	 cell	 medium	 from	 the	

flask.	Detached	 cells	were	 transferred	 to	 a	 50	ml	 FalconTM	 tube	 (BD	Biosciences),	

centrifuged	 (400	 g,	 RT,	 5	min),	 resuspended	 in	 the	 appropriate	 cell	medium,	 and	

then	 counted.	 Cells	 were	 then	 seeded	 into	 a	 new	 flask	 at	 the	 required	 seeding	

density.	Suspension	cultures	were	counted	if	required,	and	were	split	into	a	new		 	
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CELL 
LINE TYPE HLA-A2 

EXPRESSION 
CELL 
MEDIUM FLASK SEEDING 

DENSITY 

MDA-MB-
231 

Breast, 
adherent Endogenous Breast 

cancer T75 1:40 

MCF-7 Breast, 
adherent Endogenous Breast 

cancer T75 1:10 

SK-BR-3 
(WT) 

Breast, 
adherent - Breast 

cancer T75 1:5 

SK-BR-3 
(A2) 

Breast, 
adherent Transfected Breast 

cancer T75 1:5 

MM909.24 Skin, adherent Endogenous R10 T75 1:10 

COLO 205 Colon, 
adherent Endogenous R10 T75 1:10 

HepG2 Liver, 
adherent Endogenous D10 T25 1:3 

NCI-H69 Lung, 
suspension Endogenous R10 T25 1:2 

LNCaP Prostate, 
adherent Endogenous R10 T75 1:10 

MS751 Cervical, 
adherent Endogenous D10 T75 1:5 

RCC17 Renal, 
adherent Endogenous D10 T175 1:5 

Saos-2 Bone, 
adherent Endogenous D10 T75 1:10 

T2 
T-cell/B-cell 
hybrid, 
suspension 

Endogenous R10 T75 1:5 

T2 (DR1) 
T-cell/B-cell 
hybrid, 
suspension 

- R10 T75 1:5 

C1R (A2) B-cell, 
suspension Transfected R10 T75 1:5 

	

Table	 2.4:	 Tumour	 (pink)	 and	 immortalised	 B-cell	 lines	 (grey)	 used	 in	 this	 research.	 Unless	
otherwise	stated,	all	 cell	 lines	were	sourced	 in-house	 (T-cell	modulation	group,	Cardiff	University).	
MDA-MB-231	 and	MCF-7	 tumour	 cell	 lines	 were	 kindly	 provided	 by	 Dr.	 Julia	 Gee	 (Breast	 Cancer	
Campaign	Senior	Research	Fellow,	Cardiff	University).	SK-BR-3	(WT)	cells	were	kindly	provided	by	Dr.	
Matthias	 Eberl	 (Systems	 Immunity	 Research	 Institute,	 Cardiff	 University).	 MM909.24	 cells	 were	
kindly	 provided	 by	 Per	 thor	 Straten,	 Inge	 Marie	 Svane	 and	 Marco	 Donia	 (CCIT,	 Herlev	 Hospital,	
Copenhagen,	 Denmark).	 All	 immortalised	 B-cells	 were	 Epstein-Barr	 virus	 (EBV)-transformed	
lymphoblastoid	cell	lines	(LCLs),	and	were	used	as	antigen-processing	cells	(APCs).	
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flask	 at	 the	 required	 seeding	 density.	 All	 cell	 lines	 were	 regularly	 tested	 for	

mycoplasma	infection.	 	
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2.2. Functional	T-cell	assays	

	

2.2.1. Peptides	

	

The	 lyophilized	 peptides	 (crude	 <	 90%	 purity;	 pure	 ≥	 90%	 purity)	 utilised	 in	 this	

research	 were	 synthesised	 by	 GL	 Biochem	 Ltd.	 (Shanghai,	 China)	 and	 Peptide	

Protein	 Research	 Ltd.	 (Hampshire,	 UK).	 Peptides	 were	 reconstituted	 to	 a	 stock	

concentration	of	20	mg/ml	in	DMSO,	and	stored	at	-80	°C.	When	needed,	peptides	

were	 thawed	 at	 RT	 and	 diluted	 to	 the	 required	 concentration	 in	 R0	medium.	 All	

peptide	sequences	and	their	known	HLA-restriction	have	been	listed	in	Table	2.5.	

	

2.2.2. Peptide	 activation	 assay:	 MIP-1β/IFNγ	 enzyme-linked	 immunosorbent	

assay	

	

Peptide	specificity	and/or	sensitivity	of	T-cells	was	determined	by	quantifying	either	

MIP-1β	 or	 IFNγ	 release	 from	 peptide-activated	 T-cells	 in	 an	 enzyme-linked	

immunosorbent	 assay	 (ELISA),	 according	 to	 the	manufacturer’s	 instructions	 (R&D	

Systems,	Minneapolis,	MN).		

	

Firstly,	 T-cells	 were	 washed	 in	 R0	 medium	 (400	 g,	 5	 min,	 RT),	 and	 then	 rested	

overnight	 in	R5	medium	 (18	h,	37	 °C,	5%	CO2).	All	peptide	activation	assays	were	

assembled	 in	96	 round	bottom	multi-well	plates,	with	a	 total	volume	of	100μl	R5	

per	well.	Typically,	6	x	104	APC	per	well	(T2s,	T2-DR1s,	or	C1R-A2s),	3	x	104	rested	T-

cells	per	well,	and	10-5	M	of	peptide	was	used	for	each	assay.	In	order	to	determine	

clone	 sensitivity	 (dose-response),	 peptides	 were	 titrated	 (concentrations	 ranging	

from	10-4	M	to	10-12	M).	Activation	assay	plates	were	centrifuged	(400	g,	5	min,	RT)	

to	maximise	cell-cell	contact,	and	were	then	 incubated	overnight	 (18	h,	37	°C,	5%	

CO2).	Following	incubation,	plates	were	centrifuged	(400	g,	5	min,	RT)	to	form	cell	

pellets,	and	then	50	μl	per	well	 supernatant	harvested	and	diluted	with	70	μl	per	

well	 R0	 medium.	 Diluted	 cell	 supernatants	 were	 then	 analysed	 using	 a	 DuoSet®	

human	MIP-1β	or	IFNγ	ELISA	development	kit	(R&D	Systems).	In	brief,	96-well	half	
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area	flat	bottom	plates	(Corning	Incorporated,	NY,	USA)	were	first	coated	with	50	μl	

mouse	anti-human	MIP-1β	or	IFNγ	capture	antibody	(diluted	to	1.5	μg/ml	in	PBS)	

	

	

Table	 2.5:	 Peptide	 list	 HLA-restriction	 and	 full	 amino	 acid	 sequences	 have	 been	 shown	 for	 the	
majority	of	peptides.	Breast	cancer	epitopes	of	particular	interest	have	been	highlighted	in	pink.	As	
well	as	generating	T-cell	clones	specific	for	known	epitopes,	the	T-cell	library	strategy	(Section	2.1.7.)	
was	also	used	to	validate	new	peptide	epitopes	from	HLA-A2-restricted	Engrailed-2	(EN2)	(Morgan	
et	al.,	2011),	and	HLA-DR1-restricted	influenza	A	(flu)	haemagglutinin	(HA)	(Babon	et	al.,	2012)	and	
5T4	oncofetal	protein	(Starzynska	et	al.,	1994).	The	putative	peptide	sequences	of	these	proteins	will	
be	published	in	future	research	papers	from	our	laboratory.	The	bone	marrow	stromal	cell	antigen-2	
(BST-2)	peptide	listed	has	been	used	in	Chapter	4.	Figure	adapted	from	(Theaker	et	al.,	2016).	
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and	 incubated	 overnight	 at	 RT.	 Following	 incubation,	 the	 plates	 were	 washed	 3	

times	 with	 190	 μl	 per	 well	 of	 wash	 buffer	 (PBS-0.05%	 Tween	 20),	 using	 an	

automated	microplate	washer	(Thermo	Fisher	Scientific,	MA,	USA).	150	μl	per	well	

of	 reagent	diluent	 (RD)	buffer	 (PBS-1%	BSA;	diluted	1:10	 in	deionised	water)	was	

then	 added	 (blocking	 step),	 and	 the	 plates	 incubated	 for	 1	 h	 at	 RT.	 Next,	 plates	

were	 washed	 3	 times	 as	 before,	 and	 50	 μl	 per	 well	 of	 diluted	 cell	 supernatants	

added.	 At	 the	 same	 time,	 a	 human	MIP-1β	 or	 IFNγ	 standard	 was	 titrated	 in	 RD	

(1000	pg/ml	to	15.6	pg/ml)	and	50	μl	per	well	plated	to	produce	a	standard	curve	

(Figure	2.1.).	Plates	were	then	incubated	for	1	h	15	min	at	RT.	Plates	were	washed	a	

further	 3	 times,	 and	 then	 50	 μl	 per	well	 biotinylated	 goat	 anti-human	MIP-1β	 or	

IFNγ	detection	antibody	(diluted	to	50	ng/ml	in	RD)	added.	Following	a	1	h	15	min	

incubation	at	RT,	plates	were	washed	3	 times	and	50	μl	per	well	HRP-conjugated	

streptavidin	added	(diluted	1:40	in	RD).	Next,	plates	were	incubated	in	the	dark	for	

20	 min	 at	 RT,	 and	 then	 washed	 a	 final	 3	 times.	 50	 μl	 per	 well	 of	 a	 1:1	 mix	 of	

substrate	reagents	A	and	B	was	then	added	and	incubated	for	a	maximum	of	15	min	

in	 the	dark	at	RT.	The	 reaction	was	 then	quenched	by	adding	25	μl	per	well	 stop	

solution	 (1	 M	 sulphuric	 acid).	 	 Optical	 density	 (OD)	 was	 measured	 at	 dual	

wavelengths	 (450	 nm	 -	 570	 nm)	 to	 correct	 for	 background,	 using	 an	 iMark	

microplate	absorbance	reader	(Bio-Rad	Laboratories	Inc.,	Hercules,	California,	USA).		

	

2.2.3. IFNγ	enzyme-linked	immunospot	assay	(ELISpot)	

	

ELISpot	 screens	 were	 carried	 out	 according	 to	 the	 manufacturer’s	 instructions	

(Mabtech,	Nacka,	Sweden).	Briefly,	50	μl	per	well	mouse	anti-human	IFNγ	capture	

antibody	 (1-D1K;	 diluted	 to	 10	 μg/ml	 in	 PBS)	 was	 added	 to	 96-well	 PVDF	

membrane-bottomed	ELISpot	plates	 (Millipore,	Danvers,	MA).	Coated	plates	were	

then	 wrapped	 in	 cling	 film	 and	 incubated	 for	 4	 h	 (37	 °C,	 5%	 CO2).	 Following	

incubation,	 plates	were	washed	5	 times	with	150	μl	 per	well	 sterile	 PBS,	 blocked	

with	100	μl	per	well	R10	medium	(1	h,	RT),	and	then	blotted	dry.	Rested	T-cells	and	

(peptide-pulsed)	APCs	(as	described	in	Section	2.1.7.)	were	added	to	the	plates	in	a	

total	volume	of	150	μl	per	well	R5	medium,	and	then	incubated	overnight	(18	h,	37	

°C,	5%	CO2).	Following	incubation,	plates	were	washed	3	times	with	150	μl	per	well		
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Figure	2.1:	Example	of	a	MIP-1β	standard	curve.	MIP-1β	concentrations	were	calculated	against	a	7-
point,	 2-fold	 serial	 dilution	 standard	 curve	 (linear	 regression;	 y	 =	 mx	 +	 c).	 Final	 MIP-1β	
concentrations	were	calculated	by	multiplying	by	the	dilution	factor	(2.4),	and	then	subtracting	the	
appropriate	control	wells	(i.e.	average	“no	peptide”	background	value).	
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PBS,	 incubated	 with	 100μl	 per	 well	 sterile	 water	 for	 10	 min	 at	 RT	 (to	 lyse	 any	

remaining	cells),	and	then	washed	a	further	2	times	with	150	μl	per	well	PBS.	Next,	

50	μl	per	well	biotinylated	secondary	antibody	(7-B6-1-biotin;	diluted	to	1	μg/ml	in	

PBS)	was	added,	and	the	plates	incubated	in	the	dark	for	2	h	at	RT.	Plates	were	then	

washed	5	 times	with	150	μl	per	well	PBS,	and	50	μl	per	well	 streptavidin-alkaline	

phosphatase	(AP)	(diluted	1:1000	in	PBS)	added.	Plates	were	incubated	in	the	dark	

for	2	h	at	RT,	and	then	washed	a	final	5	times	with	150	μl	per	well	PBS.	To	develop	

the	plates,	substrate	solution	was	prepared	just	before	use,	by	mixing	200	μl/plate	

(25X)	AP	colour	development	buffer	(Bio-Rad),	50	μl/plate	AP	colour	reagent	A	(Bio-

Rad),	50	μl/plate	AP	colour	reagent	B	(Bio-Rad),	and	5	ml/plate	sterile	water.	50	μl	

per	well	 substrate	solution	was	added,	and	the	plates	 incubated	 in	 the	dark	 for	a	

maximum	of	15	min	at	RT.	Once	spots	became	visible,	the	reaction	was	stopped	by	

washing	the	plates	3	times	with	tap	water,	and	the	plates	left	to	dry	overnight	(18	

h)	in	the	dark	at	RT.	An	AID	ELISpot	reader	(AID,	Strassberg,	Germany)	was	used	to	

read	 the	 number	 of	 spot	 forming	 cells	 (SFC)	 present	 in	 each	well.	 If	 the	 limit	 of	

detection	was	exceeded,	and	individual	spots	could	not	be	accurately	distinguished	

by	the	reader,	peptide-reactive	wells	were	identified	by	eye.	Peptide-reactive	wells	

were	 defined	 as	 those	 with	 a	 SFC	 increase	 of	 ≥	 20	 when	 compared	 to	 the	

corresponding	“no	peptide”	well.	

	

2.2.4. Chromium-51	(51Cr)	release	cytotoxicity	assay	

	

A	 chromium-51	 (51Cr)	 release	 cytotoxicity	 assay	 (PerkinElmer,	Waltham,	MA)	was	

carried	 out	 to	 determine	 if	 tumour-specific	 T-cell	 clones	 were	 capable	 of	 lysing	

target	 tumour	 cells	 and/or	 peptide-pulsed	 T2	 cells.	 Target	 (T)	 cells	 were	 first	

washed	with	sterile	PBS	(400	g,	5	min,	RT),	and	then	the	dry	cell	pellet	labelled	for	1	

h	(37	°C,	5%	CO2)	with	30	µCi	51Cr	radionuclide	(sodium	chromate	in	normal	saline,	

pH	 8	 to	 10)	 per	 1	 x	 106	 cells.	 Labelled	 target	 cells	 were	 then	 washed	 with	 R0	

medium	(400	g,	5	min,	RT),	and	resuspended	in	R10	medium.	Target	cells	were	left	

to	 leach	 for	 1	 h	 (37	 °C,	 5%	 CO2),	 in	 order	 to	 allow	 the	 spontaneous	 release	 of	

chromium	by	any	dead	cells.	After	leaching,	target	cells	were	centrifuged	(400	g,	5	

min,	 RT)	 and	 resuspended	 in	 R10	medium.	 2000	 target	 cells	 per	 well	 were	 then	
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plated	with	effector	(E)	T-cells	in	a	96	round	bottom	multi-well	plate,	at	the	desired	

E:T	 ratio,	 and	 in	 a	 final	 volume	 of	 150	 µl	 R10	 medium	 per	 well.	 Maximum	 51Cr	

release	from	cells	was	determined	by	incubating	target	cells	with	2%	Triton	X-100	(a	

detergent	to	completely	lyse	target	cells).	Target	cells	were	also	incubated	alone	to	

determine	spontaneous	51Cr	release	from	cells.	The	incubation	time	(i.e.	4	h	or	18	h)	

was	dependent	upon	the	type	of	target	cell	being	used.	For	most	target	cells,	the	18	

h	incubation	was	found	to	be	preferable,	and	produced	clear	results	(e.g.	MDA-MB-

231).	However,	for	some	target	cells,	the	spontaneous	51Cr	release	became	too	high	

after	18	h,	and	so	produced	unclear	results	(e.g.	MCF-7).	Following	a	4	h	and/or	18	

h	incubation	(37	°C,	5%	CO2),	plates	were	centrifuged	(300	g,	5	min,	RT)	and	15	μl	

per	 well	 supernatant	 harvested	 into	 a	 96-well	 clear	 flexible	 polyethylene	

terephthalate	(PET)	microplate.	Supernatants	were	then	mixed	with	150	μl	per	well	

of	Optiphase	Supermix	scintillation	cocktail,	in	order	to	amplify	the	51Cr	signal.	The	

amount	of	51Cr	release	was	measured	using	a	1450	MicroBeta	counter	plate	reader	

(PerkinElmer).	 Percentage	 (%)	 specific	 lysis	 was	 calculated	 using	 the	 following	

equation:	 (experimental	 release	 –	 spontaneous	 release)	 ÷	 (maximal	 release	 –	

spontaneous	release)	x	100.	

	

2.2.5. Positional	scanning	synthetic	combinatorial	library	(PS-SCL)	

	

Positional	scanning	synthetic	combinatorial	libraries	(PS-SCLs)	were	purchased	from	

Pepscan	(Lelystad,	The	Netherlands).	T-cell	clones	were	screened	against	a	9mer	or	

10mer	PS-SCL	 (Figure	2.2.)	by	assessing	their	 level	of	activation	 in	a	MIP-1β	ELISA	

(described	in	Section	2.2.2.),	using	peptide-pulsed	(10-4	M	per	sub-library)	C1R-A2s	

as	APCs.	PS-SCLs	have	been	previously	described	(Borràs	et	al.,	2002,	Wilson	et	al.,	

2004).	

	

2.2.6. Altered	Peptide	Ligand	(APL)	Design	

	

Data	 obtained	 from	 all	 PS-SCLs	 was	 analysed	 using	 a	 novel	 web	 tool	

(wsbc.warwick.ac.uk/wsbcToolsWebpage),	 developed	 by	 Dr.	 Barbara	 Szomolay	 at	

Cardiff	University	(Szomolay	et	al.,	2016).	The	web	tool	was	utilised	to	identify		 	
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Figure	2.2:	Schematic	of	a	9mer	and	10mer	positional	scanning	synthetic	combinatorial	library	(PS-
SCL).	At	each	position	along	the	peptide	backbone,	one	L-amino	acid	was	fixed	(pink,	circle)	and	all	
the	 other	 residues	 were	 degenerate	 (black,	 cross).	 Cysteine	 was	 excluded	 from	 degenerate	
(randomised)	 positions,	 in	 order	 to	 decrease	 the	 likelihood	 of	 disulphide	 bond	 formation	 and	
peptide	 aggregation.	 (A)	 The	 9mer	 PS-SCL	 was	 comprised	 of	 a	 total	 of	 5	 x	 1011	 ((9	 +	 19)	 x	 198)	
peptides,	 divided	 into	 180	 sub-libraries,	with	 each	 sub-library	 containing	 1.7	 x	 1010	 (198)	 different	
peptides.	 (B)	The	10mer	PS-SCL	was	comprised	of	a	 total	of	9.36	x	1012	 ((10	+	19)	x	199)	peptides,	
divided	into	200	sub-libraries,	with	each	sub-library	containing	3.2	x	1011	(199)	different	peptides.	
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potential	APLs	that	could	preferentially	activate	the	cognate	TCR	when	compared	to	

the	WT	 peptide	 sequence.	 The	 agonist	 likelihood	 score	method	 used	 in	 the	web	

tool	has	been	described	extensively	by	Szomolay	and	colleagues	 (Szomolay	et	al.,	

2016b).	 In	 brief,	 various	 mathematical	 algorithms	 were	 used	 to	 rank	 peptide	

sequences	in	order	of	likelihood	of	TCR	recognition	(agonist	likelihood	scores).	APLs	

were	also	designed	manually	using	 the	PS-SCL	data,	 in	parallel	 to	use	of	 the	web	

tool.	 	
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2.3. Flow	cytometric	analysis	

	

2.3.1. LIVE/DEAD	and	cell	surface	staining	

	

Typically,	 50,000	 to	 250,000	 cells	 per	 test	 were	 transferred	 into	 either	 96	 round	

bottom	multi-well	plates	or	5	ml	FACS	 test	 tubes	 (Elkay	Laboratory	Products	 Ltd.,	

Hampshire,	UK),	and	were	then	washed	with	sterile	PBS	(700	g,	4	°C,	3	min).	Cells	

were	then	stained	(5	min,	RT)	with	either	LIVE/DEAD®	Fixable	Violet	Dead	Cell	Stain	

or	 LIVE/DEAD®	Fixable	Aqua	Dead	Cell	 Stain	 (both	 from	Molecular	Probes	 TM,	 Life	

Technologies),	diluted	1:40	in	PBS	(2	μl	per	test).	Next,	cells	were	stained	(20	min,	

on	 ice,	 in	 dark)	 with	 the	 required	 volumes	 of	 mouse	 anti-human	 cell	 surface	

monoclonal	 antibodies	 (mAbs)	 (Table	 2.6.).	 Following	 cell	 surface	 staining,	 cells	

were	washed	for	a	final	time	with	PBS	(700	g,	4	°C,	3	min),	and	then	resuspended	in	

100	 μl	 PBS	 per	 test.	 Cells	 were	 stored	 on	 ice,	 in	 the	 dark	 (or	 fixed	 with	 2%	

paraformaldehyde	(PFA)	for	18	h	at	4	°C)	until	sample	acquisition	(Section	2.3.8.).		

	

2.3.2. Intracellular	cytokine	staining	(ICS)	

	

All	 intracellular	 cytokine	 staining	 (ICS)	 was	 carried	 out	 according	 to	 the	

manufacturer’s	instructions	(BD	Biosciences).	In	brief,	effector	(E)	T-cells	were	first	

washed	in	R0	medium	(400	g,	5	min,	RT),	and	then	rested	overnight	in	R5	medium	

(18	h,	37	°C,	5%	CO2).	Rested	T-cells	were	seeded	(100,000	to	200,000	cells	per	well)	

into	 96	 round	 bottom	multi-well	 plates,	with	 or	without	 peptide	 (10-5	M)	 and/or	

target	(T)	cells	(tumour	cells	or	T2	cells)	at	a	1:1	E:T	ratio.	A	total	volume	of	100μl	

R5	 per	 well	 was	 achieved	 by	 addition	 of	 BD	 GolgiStopTM	 (0.06	 μl	 per	 well),	 BD	

GolgiPlugTM	(0.1	μl	per	well),	and	mouse	anti-human	CD107a	mAb	(2	μl	per	well;	BD	

Biosciences),	prior	to	incubation	for	4	h	to	5	h	(37	°C,	5%	CO2).	Following	incubation,	

cells	 from	 each	 well	 were	 either	 kept	 in	 the	 plate	 or	 transferred	 into	 5ml	 FACS	

tubes,	 washed	 with	 sterile	 PBS	 (700	 g,	 3	 min,	 4	 °C),	 and	 then	 subjected	 to	

LIVE/DEAD	and	cell	surface	staining	(Section	2.3.1.).	Cells	were	washed	again	with	

PBS	(700	g,	3	min,	4	°C),	and	then	permeabilised/fixed	by	incubating	in	100	μl	per		
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SPECIFICITY FLUOROCHROME µl/TEST CLONE SUPPLIER 

CD3 Pacific Blue 

PerCP 

2 

2 

UCHT1 

BW264/56 

Biolegend* 

Miltenyi Biotec 

CD4 FITC 1 VIT4 Miltenyi Biotec 

CD8 APC 

APC-Vio770 

PE-Vio770 

2 

2 

2 

BW135/80 

REA734 

REA734 

Miltenyi Biotec 

Miltenyi Biotec 

Miltenyi Biotec 

CD19 Pacific Blue 2 HIB19 Biolegend 

CD107a FITC 

PE 

2 

2 

H4A3 

H4A3 

BD Biosciences 

BD Biosciences 

IFNγ APC 1 45-15 Miltenyi Biotec 

MIP-1β PE 0.5 D21-1351 BD Biosciences 

TNFα PerCP Cy5.5 

PE-Vio770 

1 

1 

MAb11 

cA2 

Biolegend 

Miltenyi Biotec 

Vβ1 (TRBV9) FITC 3 BL37.2 Beckman Coulter 

Vβ13.1 (TRBV6.5) FITC 3 IMMU 222 Beckman Coulter 

Vβ13.2 (TRBV6.2) PE 3 H132 Beckman Coulter 

HLA-A2 FITC 2 BB7.2 Biolegend 

HLA-DR PE 2 L243 Biolegend 

	

Table	 2.6:	 Mouse	 anti-human	 monoclonal	 antibody	 (mAb)	 list.	 	 All	 mAb	 specificities,	
fluorochromes,	volumes	used	 (μl/test),	 clone	names,	and	supplier	names	have	been	shown.	*(San	
Diego,	 CA,	USA).	 Flow	panels	were	designed	using	 available	 antibodies	within	 the	 laboratory,	 and	
alongside	standardised	protocols,	primarily	 to	distinguish	T-cells	 (CD3+)	 from	dead	 (viable	stain)	or	
irrelevant	immune	cell	subsets	(CD14+	or	CD19+).	The	fluorochrome	chosen	for	co-receptor	(CD4	or	
CD8)	Ab	was	based	on	what	other	molecules	needed	to	be	stained	within	a	particular	panel;	FITC,	
PE,	 APC,	 PE	 Vio770	 and	 APC	 Vio770	 conjugations	 all	 gave	 good	 staining.	 Tetramer	 was	 used	
conjugated	to	PE	as	this	gave	relatively	bright	staining	(Dolton	et	al.,	2015),	and	was	partnered	with	
APC	 or	 APC	Vio770	 conjugated	 anti-CD8	 antibodies.	 Antibody	 panels	 for	 functional	 analyses	were	
based	 on	 the	 work	 of	 Dr	 Mai	 Pin	 Tan	 from	 the	 group	 (Tan	 et	 al.,	 2017),	 with	 highly	 expressed	
antigens	 being	 paired	 with	 dimmer	 fluorochromes,	 and	 lower	 expression	 antigens	 paired	 with	
brighter	fluorochromes.	
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test	BD	Cytofix/CytopermTM	(20	min,	on	ice,	in	dark).	Next,	cells	were	washed	with	

BD	Perm/Wash	Buffer	 (diluted	1:10	 in	 sterile	water)	 (700	g,	3	min,	4	 °C),	prior	 to	

staining	 (20	 min,	 on	 ice,	 in	 dark)	 with	 the	 appropriate	 volumes	 of	 mouse	 anti-

human	 cytokine	 (IFNγ,	MIP-1β,	 TNFα)	 antibodies	 (Table	 2.6.).	 Following	 ICS,	 cells	

were	washed	for	a	final	time	with	BD	Perm/Wash	Buffer	(700	g,	3	min,	4	°C),	and	

were	then	resuspended	in	100	μl	PBS	per	test.	Cells	were	stored	on	ice,	in	the	dark	

(or	fixed	with	2%	PFA	for	18	h	at	4	°C)	until	sample	acquisition	(Section	2.3.8.).	

	

2.3.3. TNFα	processing	inhibitor	(TAPI)	assay		

	

Protocols	 for	 the	 detection	 of	 antigen-specific	 CD8+	 T-cells	 based	 on	 cell	 surface	

membrane-bound	TNFα	expression	have	been	well	described	within	the	 literature	

(Haney	et	al.,	2011),	whereby	TNFα	processing	inhibitor	(TAPI)	is	used	to	effectively	

prevent	 the	 release	 of	 TNFα	 from	 the	 T-cell	 surface	 (Crowe	 et	 al.,	 1995).	 Briefly,	

effector	 (E)	 T-cells	were	 first	washed	 in	 R0	medium	 (400	 g,	 5	min,	 RT),	 and	 then	

rested	overnight	 in	R5	medium	(18	h,	37	 °C,	5%	CO2).	Rested	T-cells	were	seeded	

(100,000	to	200,000	cells	per	well)	into	96	round	bottom	multi-well	plates,	with	or	

without	peptide	(10-5	M)	and/or	target	(T)	cells	(tumour	cells	or	T2	cells)	at	a	1:1	E:T	

ratio.	A	total	volume	of	100μl	R5	per	well	was	achieved	by	addition	of	30	μM	TNFα	

processing	 inhibitor	 (TAPI;	 0.5	 μl	 per	 well;	 Sigma-Aldrich),	 mouse	 anti-human	

CD107a	mAb	(2	μl	per	well;	BD	Biosciences),	and	mouse	anti-human	TNFα	mAb	(1	μl	

per	 well;	 Miltenyi	 Biotec),	 prior	 to	 incubation	 for	 4	 h	 to	 5	 h	 (37	 °C,	 5%	 CO2).	

Following	 incubation,	 cells	 from	 each	 well	 were	 either	 kept	 in	 the	 plate	 or	

transferred	into	5ml	FACS	tubes,	washed	with	sterile	PBS	(700	g,	3	min,	4	°C),	and	

then	 subjected	 to	 LIVE/DEAD	 and	 cell	 surface	 staining	 (Section	 2.3.1.).	 Following	

cell	surface	staining,	cells	were	washed	for	a	final	time	with	PBS	(700	g,	4	°C,	3	min),	

and	then	resuspended	in	100	μl	PBS	per	test.	Cells	were	stored	on	ice,	in	the	dark	

(or	fixed	with	2%	paraformaldehyde	(PFA)	for	18	h	at	4	°C)	until	sample	acquisition	

(Section	2.3.8.).		
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2.3.4. Peptide-MHC	(pMHC)	multimer	staining	

	

Staining	with	pMHC	multimer	(described	previously;	(Dolton	et	al.,	2014,	Dolton	et	

al.,	2015,	Tungatt	et	al.,	2015))	was	used	to	confirm	TCR	binding	to	peptide	via	HLA-

A2	 presentation	 (dextramer	 staining;	 Chapter	 3),	 and	 also	 to	 identify	 peptide-

specific	T-cell	populations	in	CD8+	priming	experiments	(tetramer	staining;	Chapter	

6).	Soluble	biotinylated	pMHC-I	monomers	were	kindly	provided	by	Anna	Fuller	and	

Aaron	Wall	 (T-cell	modulation	 group,	 Cardiff	University).	 In	 brief,	multimers	were	

assembled	 in-house	 by	 addition	 of	 premium	 grade	 streptavidin-R-phycoerythrin	

(SAPE;	 Life	 Technologies	 catalogue	 number	 S21388)	 or	 dextramer	 backbone	

(dextran	 +	 SA	 +	 PE)	 (Immudex,	 Copenhagen,	 Denmark)	 to	 biotinylated	 pMHC-I	

monomer.	 In	 the	 case	 of	 tetramer,	 successive	 additions	 were	 carried	 out	 over	

multiple	 incubation	 steps	 whereas,	 for	 dextramer,	 one	 step	 was	 required	 for	

assembly.	 Specific	 details	 about	 multimer	 assembly	 have	 been	 outlined	 in	 Table	

2.7.	Assembled	multimers	were	diluted	to	a	working	concentration	of	0.1	μg/μl	 in	

PBS	(tetramer)	or	dextramer	buffer,	and	protease	inhibitors	(Set	1;	Merck	Millipore)	

added.	Multimers	 were	made	 immediately	 prior	 to	 use,	 and	 were	 stored	 for	 no	

longer	 than	 48	 h	 (4	 °C,	 in	 the	 dark).	 Approximately	 250,000	 cells	 per	 test	 were	

transferred	into	5	ml	FACS	test	tubes,	and	washed	with	sterile	FACS	buffer	(700	g,	4	

°C,	3	min).	Next,	cells	were	incubated	(30	min,	37	°C,	5%	CO2)	with	50	nM	dasatinib	

protein	 kinase	 inhibitor	 (PKI)	 in	 order	 to	 prevent	 TCR	 triggering	 and	 pMHC	

internalisation.	 Cells	were	 then	 stained	with	 either	 dextramer	 (0.3	 µg	 per	 test;	 6	

μg/ml)	or	tetramer	(0.5	μg	per	test;	6	μg/ml),	and	incubated	on	ice,	in	the	dark,	for	

30	min.	Following	multimer	staining,	cells	were	washed	with	sterile	PBS	(700	g,	4	°C,	

3	min),	and	then	subjected	to	LIVE/DEAD	and	cell	surface	staining	(Section	2.3.1.).	

After	cell	surface	staining,	cells	were	washed	for	a	final	time	with	PBS	(700	g,	4	°C,	3	

min),	and	then	resuspended	in	100	μl	PBS	per	test.	Cells	were	stored	on	ice,	in	the	

dark	 (or	 fixed	 with	 2%	 paraformaldehyde	 (PFA)	 for	 18	 h	 at	 4	 °C)	 until	 sample	

acquisition	(Section	2.3.8.).	Irrelevant	multimers	were	used	as	negative	controls	for	

all	staining.	
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 Molar strep-PE:pMHC ratio Incubation steps 

Tetramer 1:4 5 x 20 min, on ice 

Dextramer 1:3 1 x 30 min, RT 

	

Table	2.7	Details	of	multimer	(tetramer	and	dextramer)	assembly.	All	additions	of	streptavidin-R-
phycoerythrin	(strep-PE)	to	biotinylated	pMHC-I	monomer	were	carried	out	in	the	dark.	 	
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2.3.5. Bead-based	cytotoxicity	assay	

	

A	 bead-based	 cytotoxicity	 assay	 was	 used	 to	 determine	 the	 ability	 of	 peptide-

specific	 T-cell	 populations	 (from	 CD8+	 priming	 experiments)	 to	 kill	 MM909.24	

melanoma	cells	(Chapter	6).	First,	effector	(E)	T-cells	were	co-incubated	in	96	round	

bottom	multi-well	plates	with	1	x	105	target	(T)	tumour	cells	(i.e.	MM909.24)	in	200	

μl	 of	 T-cell	 priming	 medium.	 The	 number	 of	 T-cells	 added	 to	 each	 well	 was	

calculated	 according	 to	 staining	with	 BST-2	WT	 tetramer	 (Section	 2.3.4.),	 so	 that	

approximately	5	x	105	BST-2	WT	reactive	(tetramer-positive)	T-cells	were	added	per	

well.	Following	4	days	 in	culture,	quantification	beads	(BDTM	CompBeads	Negative	

Control;	 BD	Biosciences)	were	 added	 to	 each	well	 and	 the	 samples	 processed	 by	

flow	 cytometry.	 Cells	 from	each	well	were	either	 kept	 in	 the	plate	or	 transferred	

into	 5	 ml	 FACS	 tubes,	 washed	 with	 sterile	 PBS	 (700	 g,	 3	 min,	 4	 °C),	 and	 then	

subjected	 to	 LIVE/DEAD	 and	 cell	 surface	 staining	 (Section	 2.3.1.),	 in	 order	 to	

exclude	T-cells	from	the	analysis.	Following	cell	surface	staining,	cells	were	washed	

for	a	final	time	with	PBS	(700	g,	4	°C,	3	min),	and	then	resuspended	in	100	μl	PBS	

per	test.	Cells	were	stored	on	ice,	 in	the	dark	(or	fixed	with	2%	paraformaldehyde	

(PFA)	 for	 18	 h	 at	 4	 °C)	 until	 sample	 acquisition	 (Section	 2.3.8.).	 Control	 wells	

included	 T-cells	 or	 beads	 alone,	 which	 were	 required	 for	 gating	 purposes,	 and	

tumour	 cells	 alone	 in	 order	 to	 establish	 the	maximum	number	of	 viable	 tumours	

cells	 that	remained	after	culture.	 In	order	to	determine	the	amount	of	killing,	 the	

number	of	tumour	cells	for	each	condition	was	normalised	relative	to	the	number	

of	beads,	and	 then	percentage	 (%)	killing	calculated	using	 the	 following	equation:	

(number	 of	 tumour	 cells	 in	 control	 well	 –	 number	 of	 tumour	 cells	 in	 test	 well	 ÷	

number	of	tumour	cells	in	control	well)	x	100.	

	

2.3.6. Cell	sorting	(for	clonotyping)	

	

Tumour-specific	TIL	populations	(Chapter	4)	were	identified	by	TAPI	assay	(Section	

2.3.3.).	Peptide-specific	T-cell	populations	(Chapter	6)	were	 identified	by	tetramer	

staining	 (Section	 2.3.4.).	 All	 cells	 were	 kept	 in	 5ml	 sterile,	 capped	 culture	 tubes	

(Elkay	Laboratory	Products	Ltd.),	prior	to	flow	cytometric	analysis	and	sorting	on	a	
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BD	FACSARIATM	III	Cell	Sorter	(BD	Biosciences).	Cells	were	sorted	directly	into	350	μl	

lysis	buffer	(Qiagen,	Hilden,	Germany),	within	a	sterile	1.5	ml	microcentrifuge	tube	

(Eppendorf®,	Stevenage,	UK).	Cells	were	stored	at	-80	°C	until	ready	for	clonotyping	

(Section	2.4.).	

	

2.3.7. Compensation	Controls	

	

Compensation	controls	were	set-up	for	every	flow	cytometry	experiment,	in	order	

to	correct	for	emission	spectra	overlap,	and	thus	prevent	fluorescence	from	more	

than	one	fluorochrome	being	detected.	BD™	CompBeads	Anti-Mouse	Ig,	κ	particles	

(BD	Biosciences)	were	used	to	bind	all	fluorescence	conjugated	mAbs	utilised	in	this	

research	(Table	2.6.).	ArC™	Amine	Reactive	Compensation	Beads	(Molecular	Probes	
TM,	Life	Technologies)	were	used	to	bind	LIVE/DEAD®	Fixable	Aqua	Dead	Cell	Stain	

(Molecular	Probes	TM,	Life	Technologies).	

	

2.3.8. Sample	acquisition	and	analysis	

	

All	samples	for	flow	cytometric	analysis	were	acquired	on	a	BD	FACSCantoTM	II	flow	

cytometer	 (BD	Biosciences)	 using	 FACSDiva	 software	 (BD	Biosciences).	Analysis	 of	

all	FCS	files	was	carried	out	in	FlowJo	V10	(Tree	Star	Inc.,	USA).	
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2.4. Clonotyping	

	

TCR	clonotyping	of	T-cell	clones,	cancer	cell	 line-reactive	TILs	and	tetramer-sorted	

T-cell	lines	(Section	2.3.6.)	was	kindly	performed	by	Meriem	Attaf	and	Cristina	Rius	

(T-cell	 modulation	 group,	 Cardiff	 University),	 using	 Sanger	 Sequencing	 for	 clones	

and	 Next	 Generation	 Sequencing	 (NGS)	 for	 polyclonal	 TIL	 and	 tetramer-sorted	

populations.	All	cell-based	work	and	sorting	was	performed	by	myself.	Briefly,	total	

mRNA	was	 first	 extracted	 from	 lysed	 clones	 or	 flow	 cytometry-sorted	 TILs.	 Next,	

complementary	 DNA	 (cDNA)	 was	 synthesised	 by	 reverse	 transcription	 (RT)	 and	

amplified	 using	 PCR.	 The	 PCR	 product	was	 then	 cloned	 into	 a	 commercial	 vector	

and	transformed	into	bacteria.	For	clones,	the	TCR	α	and	β	chains	were	sequenced,	

with	16	and	8	bacterial	colonies	for	α	and	β	chains,	respectively	(Eurofins	Genomics,	

Ebersberg,	Germany).	More	 colonies	were	 sent	 for	α	 chain	 sequencing	 as	 CD8	 T-

cells	 can	 often	 express	 two	 α	 chains.	 For	 in-house	NGS	 sequencing	 of	 the	 TCR	 β	

chains	from	TILs	and	peptide-primed	lines,	an	Illumina	MiSeq	instrument	and	MiSeq	

v2	reagent	kit	(Illumina,	Cambridge,	UK)	was	used,	as	previously	described	(Donia	et	

al.,	2017).	TCR	chains	were	assembled	using	MiXCR	software	(Bolotin	et	al.,	2015).	

Human	TCR	α	and	β	sequences	were	visualised	using	Biological	Sequence	Alignment	

Editor	 (BioEdit;	 Ibis	 Biosciences,	 Carlsbad,	 CA,	 USA)	 (Hall,	 1999).	 V,	 D	 and	 J	 gene	

segments	were	analysed	using	ImMunoGeneTics	(IMGT)/V-QUEST	(Giudicelli	et	al.,	

2011).	IMGT	nomenclature	(TRBV,	TRBD,	TRBJ)	has	been	used	to	describe	all	TCR	α	

and	β	gene	segments	(Lefranc	et	al.,	1999).	
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2.5. Figures	and	data	analysis	

	

With	 the	 exception	 of	 flow	 cytometric	 data,	 all	 figures	 were	 produced	 using	

Microsoft	 OfficeTM	 PowerPoint,	 Microsoft	 OfficeTM	 Excel,	 and	 GraphPad	 Prism	 5	

(GraphPad	Software	Inc.,	La	Jolla,	CA,	USA).	
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3. T-cell	 libraries	 as	 a	 new	approach	 for	 generating	peptide-specific	

T-cell	clones	for	breast	cancer	research	

	

3.1. INTRODUCTION	

	
3.1.1. Using	T-cell	clones	for	research	

	

The	 availability	 of	 characterised	 peptide-specific	 T-cell	 clones	 is	 advantageous	 to	

the	 T-cell	 immunologist,	 as	 they	 provide	 a	 useful	 experimental	 system	 to	

investigate	 research	 hypotheses,	 without	 the	 uncertainties	 associated	 with	

polyclonal	T-cell	populations.	Nevertheless,	their	isolation	is	frequently	challenging	

and	time-consuming,	and	often	depends	on	multiple	factors.	For	example,	sample	

size,	 clonotype	 frequency	 in	 peripheral	 blood,	 and	 culture	 conditions	 can	 all	

influence	the	success	of	generating	a	T-cell	clone.	

	

3.1.2. Methods	for	generating	T-cell	clones	

	

Existing	 methods	 of	 T-cell	 clone	 production	 have	 been	 well	 documented	 in	 the	

literature,	and	often	 involve	peptide-based	enrichment	strategies	prior	to	cloning.	

For	instance,	monocyte-derived	dendritic	cells	(DCs)	in	combination	with	antigenic	

peptide	have	 commonly	 been	used	 to	 elicit	 T-cell	 proliferation	 in	 vitro	 (Ho	et	 al.,	

2006),	 as	 have	 monoclonal	 antibodies	 that	 bind	 T-cell	 expressed	 co-stimulatory	

molecules	(e.g.	CD28	and	CD49d),	in	order	to	mimic	the	presence	of	DCs	(Gauduin,	

2006).	Nonetheless,	both	of	these	approaches	are	often	time-consuming	and	need	

ample	amounts	of	donor	material.	In	addition	to	this,	repeated	exposure	to	peptide	

can	often	 lead	 to	T-cell	 exhaustion	 (Wherry	 and	Kurachi,	 2015a).	However,	 it	 has	

been	demonstrated	that	the	inclusion	of	certain	cytokines	(e.g.	IL-7	and	IL-21)	(Liu	

et	al.,	2007)	and/or	the	use	of	human	serum	(Block	et	al.,	2008)	during	these	initial	

priming	stages	can	help	 improve	the	peptide-induced	expansion	of	T-cells	 in	vitro.	

Furthermore,	 peptide-MHC	 (pMHC)	 multimers	 have	 also	 been	 utilised	 to	 enrich	

peptide-specific	 T-cells	 prior	 to	 cloning.	 Nevertheless,	 low	 T-cell	 frequency,	 low	

affinity	T-cell	 receptors	 (TCRs),	and	TCR	down-regulation	due	to	 in	vivo	activation,	
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can	all	hinder	successful	T-cell	 isolation	via	multimer	staining.	Nonetheless,	recent	

advances	in	our	laboratory	have	been	described	to	help	overcome	these	limitations.	

Briefly,	there	are	five	main	techniques	that	are	routinely	used	in	our	laboratory	to	

improve	 staining	of	antigen-specific	T-cells	with	pMHC	multimers.	These	methods	

include	 (1)	 using	 higher-order	 multimers,	 (2)	 using	 a	 bright	 fluorochrome,	 (3)	

including	protein	 kinase	 inhibitor	 (PKI)	 during	 staining,	 (4)	 using	 a	 signal	 boosting	

anti-multimer	 antibody,	 and	 (5)	 staining	 with	 anti-coreceptor	 antibody	 following	

pMHC	 multimer	 staining	 (Dolton	 et	 al.,	 2015,	 Tungatt	 et	 al.,	 2015).	 These	

approaches	 allow	 the	 detection	 of	 fully	 functional	 antigen-specific	 T-cell	

populations	 that	 cannot	 be	 detected	 using	 regular	 pMHC	 tetramer	 staining	

protocols	(Rius	et	al.,	2018).	

	

3.1.3. Candidate	target	proteins	for	breast	cancer	immunotherapy		

	

T-cell	clones	that	are	reactive	to	breast	cancer	antigens	provide	a	valuable	tool	for	

breast	 cancer	 immunotherapy	 research.	 This	 chapter	 describes	 the	 generation	 of	

several	 breast	 cancer	 reactive	 T-cell	 clones,	 with	 specificities	 to	 antigens	 such	 as	

NY-BR-1	and	Cadherin-3/P-cadherin	(CDH3).	

	

3.1.3.1. NY-BR-1	

	

NY-BR-1	transmembrane	protein	is	a	differentiation	antigen	of	the	mammary	gland	

that	is	strongly	expressed	in	the	majority	of	low-grade	breast	cancers	(e.g.	luminal	A	

subtype),	 where	 its	 expression	 directly	 correlates	 with	 estrogen	 receptor	 (ER)	

expression	(Seil	et	al.,	2007,	Theurillat	et	al.,	2007).	RT-PCR	analysis	has	shown	that	

it	is	only	weakly	expressed	in	normal	human	breast,	prostate	and	testis,	and	is	not	

expressed	in	any	other	healthy	tissues	(Jager	et	al.,	2007).	Thus,	it	provides	a	highly	

desirable	and	specific	target	for	breast	cancer	immunotherapy	(Jager	et	al.,	2005).	

In	addition	to	this,	NY-BR-1	has	also	found	to	be	more	frequently	and	more	widely	

expressed	across	all	breast	cancers	(i.e.	82%	of	grade	1,	69%	of	grade	2	and	46%	of	

grade	 3)	 compared	 to	 HER2/neu	 -	 the	 current	 favoured	 target	 for	 breast	 cancer	

immunotherapy	approaches	(Balafoutas	et	al.,	2013,	Theurillat	et	al.,	2007).	
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The	 HLA-A2-restricted	NY-BR-1	 peptide	 used	 to	 generate	 the	 T-cell	 clones	 in	 this	

chapter	(NY-BR-1904-912;	SLSKILDTV)	had	previously	been	identified	in	the	literature,	

using	epitope	prediction	algorithms	to	scan	the	entire	NY-BR-1	protein	sequence	for	

9mer	peptides	predicted	to	bind	HLA-A2.	 In	the	same	study,	this	epitope	was	also	

shown	to	be	endogenously	processed	and	presented	from	the	carboxy-terminal	(–

COOH)	region	of	the	natural	transmembrane	protein	(Wang	et	al.,	2006).	

	

3.1.3.2. Cadherin-3/P-cadherin	(CDH3)	

	

Cadherin-3/P-cadherin	 (CDH3)	 is	 a	 Ca2+-dependent	 cell-cell	 adhesion	

transmembrane	 glycoprotein	 that	 is	 overexpressed	 in	 high-grade	 breast	 cancers	

(i.e.	basal-like/TN),	and	is	frequently	associated	with	poor	patient	prognosis.	RT-PCR	

analysis	has	shown	that	its	expression	is	limited	within	healthy	human	tissue,	with	

only	weak	 expression	 in	 normal	 breast	 and	 ovary, and	no	 expression	 reported	 in	

other	healthy	tissues	(Kumara	et	al.,	2017).	Therefore,	it	provides	a	promising	and	

specific	 target	 for	 T-cell-based	 breast	 cancer	 immunotherapy	 (Albergaria	 et	 al.,	

2011,	Paredes	et	al.,	2007).	The	protein	has	also	been	implicated	as	an	enhancer	of	

tumour	 cell	 migration	 and	 invasion	 in	 many	 other	 cancer	 types	 (e.g.	 prostate,	

pancreatic,	gastric,	and	colorectal),	meaning	that	it	has	the	potential	to	be	applied	

across	immunotherapies	for	a	broad	spectrum	of	cancers	(Imai	et	al.,	2008).	

	

The	HLA-A2-restricted	CDH3	peptide	used	 in	this	chapter	 (CDH3655-663;	FILPVLGAV)	

had	previously	been	identified	in	the	literature,	based	on	its	ability	to	induce	a	HLA-

A2-restricted	T-cell	response	in	HLA-A2.1	(HHD)	transgenic	mice	(Tgm).	In	the	same	

study,	 peptide-specific	 cytotoxic	 T-cells	were	 successfully	 stimulated	 in	 vitro	 from	

the	PBMC	of	 both	 (HLA-A2+)	 healthy	donors	 and	 (HLA-A2+)	 cancer	patients,	 using	

this	peptide.	Moreover,	 it	was	shown	that	 these	CDH3-specific	T-cells	 successfully	

killed	tumour	cell	lines	in	vitro,	and	adoptive	transfer	of	these	cells	in	vivo	inhibited	

growth	of	human	cancer	 cells	 engrafted	 into	nonobese	diabetic/severe	 combined	

immunodeficiency	(NOD/SCID)	mice	(Imai	et	al.,	2008).	
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3.1.3.3. Other	candidate	proteins	

	

Another	potential	target	for	breast	cancer	immunotherapy	that	has	been	utilised	in	

this	 chapter	 is	 Engrailed	 antigen-2	 (EN2).	 EN2	 is	 a	 homeodomain-containing	

transcription	factor	that	is	overexpressed	in	a	small	subset	of	human	breast	cancer	

(Martin	 et	 al.,	 2005).	 Not	 unlike	 CDH3,	 EN2	 has	 also	 been	 implicated	 in	 a	 broad	

range	 of	 other	 cancer	 types	 including	 prostate,	 melanoma,	 and	 ovarian	 cancers	

(McGrath	et	al.,	2013).	Since	EN2	is	mainly	associated	as	an	early	detection	urinary	

biomarker	for	prostate	cancer	(Annels	et	al.,	2014,	Killick	et	al.,	2013,	Morgan	et	al.,	

2011),	this	antigen	will	not	form	the	main	focus	of	this	research.	
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3.2. AIMS	

	

The	overall	aim	of	this	chapter	was	to	generate	several	breast	cancer	reactive	T-cell	

clones	 against	 peptides	 from	 desired	 proteins	 (NY-BR-1	 and	 CDH3),	 which	 could	

subsequently	be	used	in	prophylactic/therapeutic	peptide	vaccine	design	(Chapter	

5	and	Chapter	6).	In	order	to	achieve	this,	two	different	approaches	to	T-cell	clone	

production	 were	 investigated	 and	 assessed;	 (1)	 A	 pre-existing	 method	 involving	

CD8+	T-cell	line	generation,	and	(2)	T-cell	libraries,	which	was	developed	during	this	

study	in	order	to	simplify	the	process	of	generating	clones	and	also	to	maximise	the	

number	of	 clones	produced.	A	 third	approach	 to	T-cell	 clone	generation	was	also	

investigated	using	TILs	from	a	metastatic	melanoma	patient,	but	will	be	discussed	in	

Chapter	4.	
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3.3. RESULTS	

	

3.3.1. 	“T-cell	lines”	approach	successfully	generates	breast	cancer	specific	T-cell	

clones	

	

The	 first	approach	 investigated	 for	 the	production	of	breast	cancer	 reactive	T-cell	

clones	 from	PBMC,	 involved	creating	T-cell	 lines	enriched	 for	desired	T-cells	using	

peptide,	 thus	 relying	on	 the	 intrinsic	 abiliy	 of	 T-cells	 to	undergo	 clonal	 expansion	

following	antigenic	stimulation.	An	overview	of	this	methodology	is	summarised	in	

Figure	3.1.	 In	brief,	CD8+	T-cells	were	isolated	from	PBMC	via	magnetic	separation	

with	 anti-CD8	 microbeads,	 then	 co-incubated	 with	 peptide-pulsed	 and	 irradiated	

autologous	PBMC	or	the	autologous	CD8-	cell	population,	 in	addition	to	anti-CD28	

antibody.	 This	 approach	 already	 offers	 improvements	 over	 basic	 T-cell	 line	

generation,	 whereby	 peptide	 is	 simply	 added	 to	 whole	 PBMC.	 CD8+	 separation	

removes	 unwanted	 cells	 that	 can	 compete	 for	 medium	 components	 and	 also	

regulatory	CD4+	T-cells	(Tregs),	with	the	anti-CD28	antibody	providing	co-stimulatory	

signals	without	the	need	for	autologous	DCs.	Following	two	weeks	of	priming,	T-cell	

lines	 were	 monitored	 functionally	 by	 flow	 cytometry	 (e.g.	 intracellular	 cytokine	

staining	 (ICS)	 (Section	 2.3.2.)	 or	 TNFα	 processing	 inhibitor	 assay	 (TAPI)	 (Section	

2.3.3.)),	 IFNγ	 enzyme-linked	 immunospot	 assay	 (ELISpot)	 (Section	 2.2.3.),	 or	

alternatively	 by	 using	 pMHC	 multimers	 (Section	 2.3.4.).	 For	 low	 frequency	 or	

undetectable	 responses,	 the	 T-cell	 lines	 were	 re-stimulated	 with	 peptide	 pulsed	

autologous	presenting	cells,	as	before.	A	cycle	of	monitoring	and	restimulation	was	

carried	 out	 every	 two	 weeks	 as	 required.	 Once	 significant	 peptide-induced	

enrichment	had	been	observed,	peptide-reactive	T-cells	were	 isolated	 via	 IFNγ	or	

dual	 IFNγ/TNFα	 magnetic	 capture	 method,	 and	 then	 subjected	 to	 single-cell	

cloning.	 Clones	 were	 expanded	 with	 irradiated	 allogeneic	 feeder	 cells	 and	 PHA,	

prior	 to	 clone	 validation	 experiments	 (i.e.	 peptide-dose	 response,	

clonotyping/phenotyping,	pMHC	multimer	staining,	and	cytotoxicity	assays).	For	the	

purpose	of	this	study,	three	peptides	of	interest	were	used	on	eight	healthy	donors,	

and	assessed	for	peptide	reactivity	after	at	least	one	round	of	restimulation.		
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Figure	 3.1:	 T-cell	 line	 approach	methodology.	 (A)	 CD8+	 T-cells	 were	 first	 isolated	 from	 frozen	 or	
fresh	peripheral	blood	mononuclear	cells	(PBMC),	using	positive	selection	with	anti-CD8	microbeads.	
Some	PBMC	is	also	cryopreserved	for	future	restimulations.	(B)	CD8+	T-cells	were	then	stimulated	by	
incubation	 with	 anti-CD28	 antibody	 (2	 μg/ml)	 and	 autologous	 irradiated	 “feeder”	 cells	 (PBMC	 or	
CD8-	 cells)	pulsed	with	 the	desired	peptide.	 (C	 and	D)	After	 two	weeks	 in	 culture,	T-cells	were	 re-
stimulated	with	peptide	pulsed	irradiated	“feeder”	cells,	following	an	*optional	monitoring	step	for	
peptide-reactivity	 via	 intracellular	 cytokine	 staining	 (ICS),	 TNFα	 processing	 inhibitor	 assay	 (TAPI),	
IFNγ	 enzyme-linked	 immunospot	 assay	 (ELISpot),	 or	 peptide-MHC	 (pMHC)	 multimer	 staining.	
Monitoring/restimulation	was	carried	out	every	two	weeks,	as	required.	(E)	Peptide-reactive	T-cells	
were	 then	 isolated	via	 IFNγ	or	dual	 IFNγ/TNFα	magnetic	 capture	method.	 (F)	 Isolated	T-cells	were	
subjected	 to	 single-cell	 cloning,	 followed	 by	 expansion	with	 irradiated	 allogeneic	 feeder	 cells	 and	
PHA	(1	μg/ml).	 (G)	Peptide-dose	response,	clonotyping/phenotyping,	pMHC	multimer	staining,	and	
cytotoxicity	assays	were	all	used	as	part	of	the	clone	validation	process.	
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Two	of	 the	donor	 T-cell	 lines	 gave	 small	 (0.21%)	but	 convincing	 responses	 to	 the	

NY-BR-1	 peptide	 SLSKILDTV904-912	 in	 an	 ICS	 assay,	 with	 an	 example	 line	 shown	 in	

Figure	 3.2A.	 TNFα	 and	 CD107a	 production	 were	 measured	 in	 the	 assay	 as	 an	

indication	of	T-cell	activation.	An	example	of	the	cell	gating	strategies	used	in	this	

work	has	been	depicted	in	Supplementary	Figure	1.	

	

3.3.1.1. NY-BR-1	specific	T-cell	clones	recognise	and	kill	breast	cancer	cell	lines	

	

Using	 the	 T-cell	 line	 methodology	 (described	 in	 Section	 3.3.1.)	 and	 cloning	 by	

limiting	dilution	(single-cell	cloning)	 I	successfully	generated	two	T-cell	clones	that	

were	 reactive	 to	 a	 peptide	 (SLSKILDTV904-912)	 derived	 from	NY-BR-1	 breast	 cancer	

antigen	 (discussed	 in	 Section	 3.1.3.1.).	 The	 two	 clones	 (Lucky6.NY-BR-1.82	 and	

ST64.NY-BR-1.75)	 were	 isolated	 from	 enriched	 NY-BR-1-reactive	 T-cell	 lines	

produced	 from	 different	 healthy	 donors.	 The	 clones	 were	 assigned	 names	 that	

would	 distinguish	 them	 from	 the	 many	 hundreds	 of	 other	 clones	 that	 are	 used	

regularly	within	the	laboratory.	It	took	several	rounds	of	peptide	restimulation	and	

enrichment	 to	 obtain	 Lucky6.NY-BR-1.82,	 hence	 the	 term	 ‘Lucky’,	 with	 the	 clone	

being	number	 ‘6’	of	 those	 that	grew	and	screened	 for	peptide	 reactivity	and,	 the	

CD8	 T-cells	 used	 for	 initial	 priming	 came	 from	donor	 ‘82’.	 For	 ST64.NY-BR-1.75,	 I	

used	my	 initials	 ‘ST’	to	 indicate	who	generated	the	clone,	 it	was	clone	number	64	

during	the	peptide	screening	of	clones	that	grew	and	it	came	from	donor	number	

’75’.	To	ensure	the	NY-BR-1	peptide	specific	clones	I	generated	were	indeed	clonal	I	

had	the	α	and	β	chains	of	the	TCRs	sequenced.	TCR	clonotyping	for	this	study	was	

performed	by	PhD	student	Cristina	Rius,	under	the	supervision	of	Dr	Meriem	Attaf.	

The	clonotyping	data	for	each	clone	 is	shown	 in	Figure	3.2C.	The	clonal	status	for	

both	 Lucky6.NY-BR-1.82	 and	 ST64.NY-BR-1.75	 was	 confirmed	 prior	 to	 every	

functional	 assay	 by	 staining	with	 TRBV6.5	 (Vβ13.1)-FITC	 and	 TRBV6.2	 (Vβ13.2)-PE	

antibodies	 (Table	 2.6.),	 respectively.	 This	 was	 to	 ensure	 that	 no	 cell-cell	

contamination	had	occurred	during	culture.		Sensitivity	of	each	clone	to	the	peptide	

was	determined	via	peptide	dose-response	MIP-1β	enzyme-linked	immunosorbent	

assay	(ELISA).	Both	Lucky6.NY-BR-1.82	and	ST64.NY-BR-1.75	demonstrated	a	typical	

level	of	peptide	sensitivity	for	tumour-reactive	T-cell	clones	(Figure	3.2B),	with		
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Figure	3.2:	Generation	and	characterisation	of	two	NY-BR-1-specific	CD8+	T-cell	clones,	Lucky6.NY-
BR-1.82	(pink)	and	ST64.NY-BR-1.75	(grey),	from	T-cell	lines.	(A)	A	0.21%	enriched	NY-BR-1-reactive	
T-cell	 line	was	first	produced	using	the	“T-cell	 lines”	method	described	in	Figure	3.1.	Monitoring	of	
peptide-reactivity	was	carried	out	via	 intracellular	 cytokine	staining	 (ICS).	Percentage	 (%)	of	TNFα-
producing	and	CD107a-producing	T-cells	 (CD3+/CD8+)	has	been	shown.	“T-cell	only”	was	used	as	a	
negative	 control.	 (B)	 Two	 NY-BR-1-specific	 clones	 (Lucky6.NY-BR-1.82	 and	 ST64.NY-BR-1.75)	 were	
generated	 via	 single-cell	 cloning	 from	 two	 separate	 NY-BR-1-reactive	 T-cell	 lines	 from	 different	
healthy	 HLA-A2+	 donors.	 Sensitivity	 of	 the	 clones	 to	 NY-BR-1904-912	 peptide	 (SLSKILDTV)	 was	
determined	via	dose-response	MIP-1β	enzyme-linked	immunosorbent	assay	(ELISA)	using	T2	cells	as	
antigen	 presenting	 cells	 (APCs).	 All	 values	 represent	 mean	 ±	 standard	 deviation	 (SD).	 n	 =	 3.	 (C)	
Clonotyping	 data	 (V/J	 segments	 and	 CDR3	 sequences)	 has	 been	 shown	 for	 each	 clone.	 Variations	
from	germline	CDR3	amino	acid	sequences	has	been	indicated;	pink	=	insertion,	dot	=	deletion.	
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activation	reaching	baseline	at	10-8	M.	Next,	the	ability	of	each	clone	to	recognise	

breast	cancer	cell	lines	and	T2	cells	pulsed	with	peptide	was	investigated	in	a	TAPI	

assay,	 using	 TNFα	 and	 CD107a	 production	 as	 an	 indication	 of	 activation	 (Figure	

3.3A).	Lucky6.NY-BR-1.82	displayed	the	highest	percentage	of	MDA-MB-231	(basal-

like,	 triple	negative)	 cell	 line	 recognition	 (40.4%)	when	compared	 to	 the	ST64.NY-

BR-1.75	clone	(10.8%).	In	contrast,	a	similar	level	of	recognition	was	seen	for	both	

of	 the	 clones	 against	 a	 second	HLA-A2+	breast	 cancer	 cell	 line,	MCF-7	 (luminal	A;	

16.0%	and	15.5%).	Both	clones	recognised	T2	cells	(naturally	HLA-A2+)	pulsed	with	

the	 respective	 NY-BR-1	 peptide,	 but	 did	 not	 recognise	 the	 unpulsed	 T2	 cells	

(negative	 control).	 These	 findings	 were	 confirmed	 in	 a	 (51Cr)	 chromium-release	

cytotoxicity	 assay,	 which	 investigated	 the	 cytotoxic	 potential	 of	 both	 clones	 at	

multiple	 effector	 T-cell:tumour	 cell	 (E:T)	 ratios.	 To	 establish	 whether	 the	 clones	

were	capable	of	lysing	target	cells,	T2	were	labelled	with	51Cr	and	then	pulsed	with	

the	NY-BR-1	peptide	(10-5	M)	and	incubated	with	each	clone	for	4	h	(Figure	3.3B).		

Both	clones	were	able	 lyse	the	T2	cells	pulsed	with	peptide,	but	not	the	unpulsed	

T2s,	 thus	 confirming	 HLA-A2	 restriction	 and	 their	 cytotoxic	 capability,	 and	 again	

their	peptide	specificity.	Importantly,	specific	lysis	of	HLA-A2+	MDA-MB-231	breast	

cancer	cell	line	(±	IFNγ)	was	also	observed	at	4	h	and	18	h	(Figure	3.3C).	Both	clones	

killed	 IFNy	 treated	 and	 untreated	MDA-MB-231,	with	 good	 levels	 of	 killing	 being	

observed	 after	 18	 h,	 even	 at	 the	 lowest	 E:T	 ratio	 of	 6.25:1	 (specific	 lysis	 ranging	

from	17.4%	to	46.3%).	This	killing	data	was	shown	to	be	consistent	with	 the	TAPI	

results	displayed	in	Figure	3.3A,	as	Lucky6.NY-BR-1.82	displayed	the	highest	overall	

percentage	 of	 MDA-MB-231	 cell	 line	 killing	 when	 compared	 to	 ST64.NY-BR-1.75.	

Furthermore,	IFNγ	treatment	of	the	MDA-MB-231	cell	line	induced	higher	levels	of	

HLA-A2	 expression	 (Supplementary	 Figure	 2),	 which	 could	 explain	 the	 increased	

overall	killing	of	the	IFNγ	treated	cells	by	both	of	the	clones.	

	

Overall,	 NY-BR-1	 T-cell	 clones	 generated	 from	 peptide	 enriched	 lines	 recognised	

and/or	killed	breast	cancer	cell	lines,	thus	confirming	this	epitope	as	a	good	breast	

cancer	 target.	The	T-cell	 line	method	 failed	 to	give	clones	 for	other	breast	cancer	

epitopes	 (Supplementary	 Figure	 3)	 and	 this	 became	 the	 basis	 of	 an	 improved	

method	for	rapidly	identifying	and	cloning	peptide-specific	T-cells.	 	
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Figure	3.3:	Lucky6.NY-BR-1.82	 (pink)	and	ST64.NY-BR-1.75	 (grey)	 recognise	and	kill	breast	cancer	
cell	 lines.	 (A)	 Clone	 recognition	of	 breast	 cancer	 cell	 lines	 (MDA-MB-231	and	MCF-7)	 and	T2	 cells	
pulsed	 with	 NY-BR-1	 peptide	 was	 established	 by	 a	 TNFα	 processing	 inhibitor	 assay	 (TAPI).	
Percentage	 (%)	 of	 TNFα/CD107a-producing	 T-cells	 (CD3+/CD8+)	 has	 been	 shown.	 “T-cell	 only”	was	
used	as	a	negative	control.	T-cells	were	also	screened	against	unpulsed	T2s	(“+	T2”)	in	order	to	rule	
out	non-peptide	 specific	 recognition	of	 T2	 cells.	 (B)	HLA-A2	 restriction	and	peptide-specificity	was	
confirmed	 for	each	clone	 in	a	4	h	 51Cr-release	assay	with	unpulsed	 (negative	 control)	 and	peptide	
pulsed	(10-5	M)	T2	cells,	at	various	T-cell:tumour	cell	(E:T)	ratios.	(C)	An	additional	51Cr-release	assay	
showed	 killing	 of	 an	 HLA-A2+	 breast	 cancer	 cell	 line	 (MDA-MB-231)	 after	 4	 and	 18	 h,	 with	 and	
without	IFNγ	treatment	(100	IU/ml	for	72	h)	to	influence	HLA-A2	expression	(Supplementary	Figure	
2).	All	values	represent	mean	±	standard	deviation	(SD).	n	=	3.	
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3.3.2. 	“T-cell	 library”	 approach	 successfully	 generates	 multiple	 breast	 cancer	

specific	T-cell	clones	

	

Despite	the	success	of	generating	breast	cancer	specific	T-cells	from	standard	T-cell	

lines	 (described	 above),	 this	 approach	 took	 a	 minimum	 of	 4	 months	 (and	 often	

longer)	before	it	generated	enough	of	a	T-cell	clone	for	use	in	experimentation,	and	

was	successful	only	25%	of	the	time	(n	=	8).	In	order	to	optimise	the	process	of	T-

cell	clone	generation,	I	set	out	to	develop	a	simple	and	rapid	library-based	protocol	

that	 could	 be	 used	 for	 the	 efficient	 generation	 of	 T-cell	 clones	 recognising	 any	

peptide	 antigen,	 including	 those	 relevant	 to	 breast	 cancer.	 A	 previous	 study	

reported	 that	 amplification	 of	 T-cells	 using	 CD3/CD28	 beads	 maintains	 T-cell	

clonotypes	 for	 a	 duration	 of	 two	 weeks	 post-expansion,	 thus	 maintaining	 TCR	

diversity	 through	 non-specific	 amplification	 (Neller	 et	 al.,	 2012).	 Neller	 and	

colleagues	 examined	 the	 expansion	 potential	 of	 CD3/CD28	 Dynabeads	 versus	

phytohaemagglutinin	 (PHA),	 by	 analysing	 total	 cell	 numbers	 on	 days	 7	 and	 14	 of	

culture.	They	found	that	the	Dynabeads	were	more	efficient	than	PHA	at	expanding	

adult	 PBMC.	 Moreover,	 the	 group	 assessed	 the	 TCR	 repertoire	 stability	 of	 both	

Dynabead-	 and	 PHA-	 stimulated	 cultures	 by	 staining	 with	 anti-coreceptor	

antibodies,	 a	 panel	 of	 25	 TRBV-specific	 antibodies,	 and	 an	 APC-conjugated	

RAKFKQLL/HLA-B*0801	 (RAK/B8)	 pentamer.	 They	 observed	 that	 the	 Dynabeads	

better	 preserved	 the	 ex	 vivo	 CD4:CD8	 ratio,	 the	 TRBV	 repertoire,	 and	 also	 the	

epitope-specific	T-cell	frequency	of	the	culture.	

	

In	the	case	of	T-cell	libraries,	described	here,	the	amplification	occurred	in	96	round	

bottom	multi-well	plates	with	a	relatively	 limited	number	of	cells	per	well	 (300	to	

1500).	I	used	the	T-cell	libraries	to	obtain	T-cells	specific	for	peptides	derived	from	

viral,	cancer	and	human	self-proteins.	As	antigen	specific	T	cell	frequencies	in	type	I	

diabetic	 patients	 can	 be	 as	 low	 as	 0.01%	 (1:10,000	of	 CD8s)	 (Dolton	 et	 al.,	 2014,	

Kronenberg	et	 al.,	 2012,	 Skowera	et	 al.,	 2008,	 Skowera	et	 al.,	 2015),	 the	physical	

separation	 of	 CD8	 T-cells	 in	 the	 library	 format	 automatically	 enriches	 T-cells	 of	

potential	 interest	by	33.3-fold,	 if	300	cells	are	used	per	well	 for	 the	 initial	 set-up.	

For	cancer-associated	antigens	 it	 is	harder	 to	define	 the	pre-cursor	 frequencies	 in	
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naïve	T-cell	populations	from	healthy	individuals;	the	source	material	for	the	T	cell	

libraries	 used	 for	 this	 study.	 The	 Melan-A	 derived	 peptides	 AAGIGILTV	 and	

EAAGIGILATV	 are	 well	 described	 cancer-associated	 peptides,	 but	 unusual	 with	

respect	to	the	frequency	of	naïve	T-cells	in	healthy	HLA	A2+	individuals,	due	to	the	

lack	of	thymic	expression	of	these	epitopes	and	therefore	appearance	of	Melan-A	

specific	 T-cells	 in	 the	 periphery.	 It	 is	 likely	 that	 T-cells	 specific	 for	 other	 cancer	

peptides	are	not	as	common	as	for	the	Melan-A	peptides,	and	more	likely	to	be	as	

infrequent	as	the	activated	auto-antigen	specific	T-cells	found	in	type	I	diabetes,	or	

even	rarer.	Indeed,	it	took	several	rounds	of	peptide	stimulation	to	enrich	NY-BR-1	

peptide	 specific	 T-cells	 to	 0.2%	 (1:500),	 as	 shown	 in	 Figure	 3.2,	 whereas	 other	

members	of	the	 laboratory	routinely	use	the	same	approach,	with	only	one	 initial	

peptide	 stimulation,	 to	 generate	 Melan-A	 T-cell	 lines	 that	 are	 typically	 1-25%	

positive	 (1:100	 to	 1:4)	 ((Ekeruche-Makinde	 et	 al.,	 2012)	 and	 personal	

communication	 with	 Dr	 Garry	 Dolton	 and	 PhD	 student	 Sarah	 Galloway).	 The	

enrichment	obtained	by	the	library	set-up	was	further	exploited	by	the	250-	to	500-

fold	expansion	 seen	 following	CD3/CD28	bead	 stimulation,	meaning	a	 library-well	

(300	 cells	 per	 well)	 including	 a	 potentially	 interesting	 T-cell	 (n	 =	 1)	 amongst	 the	

polyclonal	 population	 T-cells	 (n	 =	 299)	would	 then	be	 proportionally	 amplified	 to	

250-500	cells,	allowing	functional	assays	to	be	performed.	

	

An	overview	of	 the	 T-cell	 libraries	methodology	 developed	 is	 illustrated	 in	Figure	

3.4.	 Briefly,	 CD4+	 or	 CD8+	 T-cells	 were	 first	 isolated	 from	 PBMC	 via	 magnetic	

separation	 with	 anti-CD4	 or	 anti-CD8	 microbeads,	 and	 then	 amplified	 using	

CD3/CD28	 microbeads	 (Trickett	 and	 Kwan,	 2003)	 in	 a	 96U-well	 library	 format.	

Following	 two	weeks	 in	culture,	T-cell	 libraries	were	screened	 for	desired	peptide	

reactivity	via	ELISpot.	Peptide-reactive	T-cell	wells	were	then	subjected	to	cytokine-

mediated	enrichment,	followed	by	single-cell	cloning	and	clone	validation.		

	

The	 T-cell	 library	 data	presented	 in	 this	 chapter	 has	 been	published	 in	 Journal	 of	

Immunological	 Methods	 under	 the	 title	 “T-cell	 libraries	 allow	 simple	 parallel	

generation	of	multiple	peptide-specific	human	T-cell	clones”	(Theaker	et	al.,	2016).		
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Figure	3.4:	 T-cell	 library	approach	methodology.	 (A)	CD4+	or	CD8+	T-cells	were	 first	 isolated	 from	
frozen	or	fresh	peripheral	blood	mononuclear	cells	(PBMC),	using	positive	selection	with	anti-CD4	or	
anti-CD8	microbeads.	(B)	T-cells	were	then	seeded	into	96	round	bottom	multi-well	plates	(300-1500	
cells	per	well),	and	(C)	incubated	at	a	1:2	cell:bead	ratio	with	CD3/CD28	beads	for	2	weeks.	(D)	IFNγ	
enzyme-linked	 immunospot	 assay	 (ELISpot)	 was	 used	 to	 screen	 the	 libraries	 (±	 peptide)	 for	 the	
presence	 of	 peptide-reactive	 T-cells.	 (E	 and	 F)	 Peptide-reactive	 wells	 were	 then	 identified,	 and	
enriched	 for	 peptide-specific	 T-cells	 using	 either	 IFNγ	 or	 dual	 IFNγ/TNFα	 capture	 method.	 (G)	
Isolated	 T-cells	 were	 subjected	 to	 single-cell	 cloning	 *or	 expanded	 as	 lines.	 (H)	 Peptide-dose	
response,	clonotyping/phenotyping,	pMHC	multimer	staining,	and	cytotoxicity	assays	were	all	used	
as	part	of	the	clone	validation	process.	Figure	adapted	from	(Theaker	et	al.,	2016).	
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A	list	of	all	the	HLA-A2	and	HLA-DR1	restricted	peptides	used	in	this	chapter	can	be	

found	in	Table	2.5.	

	

3.3.2.1. Generation	of	tumour-reactive	CD8+	T-cell	clones	using	T-cell	libraries	

	

Tumour-reactive	 T-cells	 occur	 at	 a	 naturally	 low	 frequency	 within	 the	 peripheral	

blood	due	 to	 (1)	 central	 tolerance	mechanisms	 in	 the	 thymus,	 and	 (2)	 peripheral	

tolerance	 mechanisms	 (e.g.	 Treg),	 which	 occur	 to	 prevent	 the	 presence	 of	

circulating	auto-reactive	T-cells	 (Klein	et	al.,	2014,	Sharpe	and	Mount,	2015).	This	

self-tolerance	 can	 often	 make	 the	 isolation	 of	 these	 rare	 tumour-specific	 T-cells	

extremely	 challenging.	 In	 order	 to	 overcome	 this	 difficulty,	 a	 CD8+	 T-cell	 library	

consisting	 of	 576	 wells	 at	 1000	 cells	 per	 well	 (576,000	 CD8+	 cells	 in	 total)	 was	

generated	 from	 the	 PBMC	of	 a	 healthy	HLA-A2+	 donor.	 The	 library	was	 screened	

using	 IFNγ	 ELISpot	 against	 a	 pool	 of	 five	 HLA-A2-restricted	 tumour	 peptides	 that	

were	 of	 interest	 to	 our	 laboratory;	 (1)	 melanoma-associated	 antigen-3	 (MAGE-

A3)112-120	 (Chinnasamy	et	al.,	2011),	 (2)	MAGE-A3240-248	 (Graff-Dubois	et	al.,	2002),	

(3)	cadherin-3/P-cadherin	(CDH3)655-663	(Imai	et	al.,	2008),	(4)	NY-BR-1904-912	(Wang	

et	al.,	2006),	and	(5)	glycoprotein	100	(gp100)280-288	(Kawakami	et	al.,	1995).	Of	the	

576	wells,	10	were	positive	for	the	peptide	pool	(Figure	3.5A).	These	positive	wells	

were	then	pooled	and	their	peptide	specificity	revealed	as	the	melanoma	antigen,	

gp100280-288	(Figure	3.5B).	The	pooled	cells	were	subjected	to	enrichment	based	on	

IFNγ	production	in	response	to	stimulation	with	peptide	(IFNγ	capture),	followed	by	

single-cell	 cloning.	 A	 gp100-specific	 clone	 was	 produced	 (THEAK.gp100),	 and	 its	

sensitivity	 to	 peptide	 assessed	 by	 a	 dose-response	MIP-1β	 ELISA	 (Figure	 3.5C).	 A	
51Cr-release	 cytotoxicity	 assay	was	 also	 performed	with	 THEAK.gp100,	which	was	

shown	 to	 kill	 26%,	 17%	 and	 13%	 of	 the	 melanoma	 lines	 Mel	 624,	 Mel	 526	 and	

MM909.24,	 respectively	 (Figure	3.5D).	 In	 summary,	 from	one	attempt	and	only	5	

weeks	 of	 culture	 the	 T-cell	 library	 gave	 a	 melanoma	 specific	 clone	 ready	 for	

research.	THEAK.gp100	provided	a	valuable	tool	for	subsequent	experiments	in	our	

laboratory.	 In	 light	of	 this,	a	 second	T-cell	 library	was	 set-up	 in	order	 to	generate	

additional	 tumour-reactive	 clones,	 specifically	 clones	 reactive	 to	 breast	 cancer	

antigens.	
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Figure	 3.5:	 Generation	 and	 characterisation	 of	 a	 melanoma	 reactive	 CD8+	 T-cell	 clone	
(THEAK.gp100)	using	T-cell	libraries.	A	CD8+	T-cell	library,	containing	576	wells	at	1000	cells	per	well,	
was	generated	from	a	healthy	HLA-A2+	donor,	as	described	in	Figure	3.4.	(A)	IFNγ	ELISpot	was	used	
to	screen	the	library	against	a	pool	of	five	HLA-A2-restricted	tumour	peptides	(melanoma-associated	
antigen-3	 (MAGE-A3)112-120,	MAGE-A3240-248,	 cadherin-3/P-cadherin	 (CDH3)655-663,	NY-BR-1904-912,	 and	
glycoprotein	 100	 (gp100)280-288)	 presented	on	 T2	 cells.	 ELISpot	output	of	 10	peptide-reactive	wells	
has	been	shown.	(B)	Peptide-reactive	wells	were	pooled,	and	their	peptide	specificity	determined	by	
ELISpot.	 SFC	per	2.5	 x	 104	 cells	 is	 shown	 for	 each	well,	with	duplicate	well	 SFC	 values	 depicted	 in	
brackets.	IFNγ	capture	method	was	used	to	enrich	the	pooled	T-cells	prior	to	single-cell	cloning.	(C)	
Clone	 THEAK.gp100	 was	 specific	 for	 a	 gp100-derived	 (melanoma-specific)	 peptide	 (YLEPGPVTA280-

288),	and	 (D)	was	 found	to	successfully	kill	multiple	HLA-A2+	melanoma	cell	 lines	at	an	E:T	 ratio	 	of	
10:1	 in	 a	 51Cr-release	 assay.	 All	 values	 represent	 mean	 ±	 standard	 deviation	 (SD).	 n	 =	 3.	 Figure	
adapted	from	(Theaker	et	al.,	2016).	
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A	second	CD8+	T-cell	 library	(288	wells	at	500	cells	per	well)	was	screened	against	

two	 separate	 pools	 of	 HLA-A2-restricted	 tumour	 peptides	 that	were	 of	 particular	

interest	 to	 our	 laboratory;	 Pool	 1:	 prostatic	 acid	 phosphatase-3	 (PAP-3)299-307	

(Harada	et	al.,	2003),	melanoma-associated	antigen-1	(MAGE-A1)278-286	(Pascolo	et	

al.,	 2001),	MAGE-A3112-120,	 prostein31-39	 (Kiessling	 et	 al.,	 2004),	 insulin-like	 growth	

factor	2	mRNA	binding	protein	3	(IMP-3199-207)	(Tomita	et	al.,	2011),	and	CDH3655-663,	

Pool	2:	six	putative	peptides	from	EN2	(EN2-1,	-2,	-3,	-4,	-5,	and	-6)	(Martin	et	al.,	

2005).	 Figure	 3.6A	 graphically	 displays	 the	 14	 peptide-reactive	 wells	 from	 the	

screen	(1/288	for	pool	1,	and	13/288	for	pool	2).	T-cells	 from	these	positive	wells	

were	 subjected	 to	 enrichment	 by	 IFNγ	 capture,	 followed	 by	 single-cell	 cloning.	

Peptide	specificity	of	the	clones	was	then	determined	by	IFNγ	ELISA	(Figure	3.6B).	

Two	different	breast	cancer	specific	clones	were	produced	(GD.FIL.6/30	specific	for	

the	CDH3	peptide	from	Pool	1,	and	GD.RPA.6/2	specific	for	EN2-3	peptide	from	Pool	

2),	 and	 their	 sensitivity	 to	 peptide	 assessed	 by	 a	 dose-response	 MIP-1β	 ELISA	

(Figure	 3.6C).	 Both	 GD.FIL.6/30	 and	 GD.RPA.6/2	 demonstrated	 a	 typical	 level	 of	

peptide	 sensitivity	 for	 tumour-reactive	 T-cell	 clones,	 with	 activation	 reaching	

baseline	at	10-9	M.	GDFIL.6/30	was	also	shown	to	specifically	kill	a	HLA-A2+	breast	

cancer	 cell	 line	 (MCF-7)	 in	 a	 4	 h	 51Cr-release	 assay,	 at	 various	 E:T	 ratios	 (Figure	

3.6D).	 An	 “irrelevant”	 (non-breast	 cancer	 specific)	 T-cell	 clone	 was	 used	 as	 a	

negative	control	in	this	assay.	Clonotyping	data	for	GD.FIL.6/30	clone	has	also	been	

shown	 in	Figure	 3.6E.	 Clonotyping	 results	 for	GD.FIL.6/30	was	 confirmed	prior	 to	

every	 functional	 assay	 by	 staining	with	 TRBV9	 (Vβ1)-FITC	 antibody	 (Table	 2.6),	 in	

order	to	guarantee	that	no	cell-cell	contamination	had	occurred	during	culture.	

	

Collectively,	 these	experiments	 show	 that	 the	procurement	of	 tumour-reactive	 T-

cell	 clones	 using	 our	 T-cell	 library	 method	 is	 not	 hindered	 by	 low	 clonotype	

frequencies	in	peripheral	blood,	and	can	be	done	so	in	a	relatively	rapid	manner	for	

multiple	 peptides.	 Due	 to	 the	 success	 of	 NY-BR-1	 and	 CDH3	 clone	 generation,	

screening	 for	 more	 breast	 cancer	 specific	 T-cells	 was	 suspended,	 and	 the	 next	

phase	 of	 the	 studies	 pursued.	 In	 order	 to	 advance	 the	 T-cell	 library	 method	 for	

publication,	 other	 T-cell	 specificities	 (autoimmunity,	 viral)	 and	 HLA	 restrictions	

(MHC	class	II)	were	explored.	
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Figure	 3.6:	 Generation	 and	 characterisation	 of	 two	 breast	 cancer	 reactive	 CD8+	 T-cell	 clones,	
GD.FIL.6/30	(grey)	and	GD.RPA.6/2	(pink),	using	T-cell	libraries.	(A)	A	CD8+	T-cell	library	(288	wells	
at	500	cells	per	well)	from	a	healthy	HLA-A2+	donor,	was	screened	with	two	separate	pools	of	HLA-
A2-restricted	 tumour	 peptides,	 (Pool	 1:	 prostatic	 acid	 phosphatase-3	 (PAP-3)299-307,	 melanoma-
associated	 antigen-1	 (MAGE-A1)278-286,	 MAGE-A3112-120,	 prostein31-39,	 insulin-like	 growth	 factor	 2	
mRNA	binding	protein	3	(IMP-3199-207),	and	CDH3655-663;	Pool	2:	six	putative	peptides	from	Engrailed	
antigen-2	 (EN2-1,	 -2,	 -3,	 -4,	 -5,	 and	 -6))	 with	 T2	 cells	 as	 APCs.	 14	 peptide-reactive	 wells	 were	
identified.	 (B)	 IFNγ	ELISA	was	used	 to	determine	 the	peptide	 specificity	of	enriched	and	cloned	T-
cells.	Two	breast	cancer	reactive	clones	were	identified:	GD.FIL.6/30	was	specific	for	a	CDH3-derived	
peptide	(FILPVLGAV)	from	Pool	1;	GD.RPA.6/2	was	specific	for	an	EN2-derived	peptide	(EN2-3)	from	
Pool	2.	 (C)	Dose-response	MIP-1β	ELISA	 confirmed	clone	 sensitivity	 to	each	of	 these	peptides.	 (D)	
GD.FIL.6/30	clone	was	tested	for	cytotoxicity	towards	an	HLA-A2+	breast	cancer	cell	line	(MCF-7)	in	a	
4	 h	 51Cr-release	 assay.	 An	 “irrelevant”	 (non-breast	 cancer	 specific)	 T-cell	 clone	 was	 used	 as	 a	
negative	 control.	All	 values	 represent	mean	±	 standard	deviation	 (SD).	n	=	3.	 (E)	Clonotyping	data	
(V/J	segments	and	CDR3	sequences)	has	been	shown	for	GD.FIL.6/30.	Variations	from	germline	CDR3	
amino	 acid	 sequences	 has	 been	 indicated;	 pink	 =	 insertion,	 dot	 =	 deletion.	 Figure	 adapted	 from	
(Theaker	et	al.,	2016).	
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Once	a	T-cell	 library	had	been	established,	 it	was	relatively	simple	to	screen	 it	 for	

reactivity	 towards	 any	 peptide.	 Thus,	 in	 addition	 to	 utilising	 this	 T-cell	 library	

approach	 to	 generate	 CD8+	 tumour-reactive	 T-cell	 clones	 (Section	 3.3.2.1),	

investigations	were	also	carried	out	to	see	if	the	versatility	of	this	method	could	be	

expanded	 to	 generate	 clones	 against	 autoimmune	 (Section	 3.3.2.2)	 and	 viral	

(Section	3.3.2.3)	 targets	that	are	of	 interest	 to	our	 laboratory,	as	well	as	peptide-

specific	CD4+	T-cell	clones	(Section	3.3.2.4).		

	

3.3.2.2. Generation	of	a	type	1	diabetes	(T1D)	reactive	CD8+	T-cell	clone	using	T-cell	

libraries	

	

Along	 with	 the	 challenge	 of	 low	 clonotype	 frequencies	 (discussed	 previously	 in	

Section	3.3.2.1),	another	key	obstacle	in	identifying	and	isolating	peptide-specific	T-

cell	clones	is	limited	cell	availability.	This	is	often	the	case	when	obtaining	samples	

from	patient	donors,	where	ethical	considerations,	in	addition	to	the	nature	of	the	

tissue	being	taken,	can	often	limit	the	size	of	the	sample	that	is	available.	Thus,	in	

order	 to	 demonstrate	 the	 effectiveness	 of	 our	 T-cell	 library	 method	 to	 produce	

peptide-specific	 T-cell	 clones	 from	 even	 the	 smallest	 of	 starting	 cell	 numbers,	 a	

library	consisting	of	only	~100,000	CD8+	T-cells	(96	wells	at	1000	cells	per	well)	was	

generated	 from	 ~1	 x	 106	 PBMCs	 (~1ml	 blood)	 of	 a	 HLA-A2+	 donor	 with	 type	 1	

diabetes	 (T1D).	 The	 library	was	 subsequently	 screened	 in	 an	 IFNγ	 ELISpot	 for	 the	

presence	of	activated	(IFNγ-secreting)	T-cells	in	response	to	stimulation	with	a	pool	

of	 four	 well	 characterised	 T1D	 epitopes	 (preproinsulin	 (PPI)15-24	 (Skowera	 et	 al.,	

2008),	 insulin	β	 chain	 (InsB)10-18	 (Pinkse	et	 al.,	 2005),	 glutamic	 acid	decarboxylase	

(GAD65)114-123	 (Panina-Bordignon	 et	 al.,	 1995),	 and	 islet-specific	 glucose-6-

phosphatase	 catalytic	 subunit-related	 protein	 (IGRP)265-273	 (Jarchum	et	 al.,	 2008)).	

Figure	3.7A	graphically	displays	the	1	peptide-reactive	well	that	was	identified	from	

the	 screen.	 This	 well	 was	 then	 enriched	 by	 IFNγ	 capture,	 followed	 by	 single-cell	

cloning.	It	was	elucidated	that	the	T1D-reactive	clone	(GDInsB4)	was	specific	for	the	

InsB10-18	epitope,	as	shown	via	dose-response	MIP-1β	ELISA	(Figure	3.7B)	and	pMHC	

dextramer	staining	(Figure	3.7C).	Overall,	this	data	indicates	that	by	using	our	highly		
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Figure	3.7:	Generation	of	a	type	1	diabetes	(T1D)	reactive	CD8+	T-cell	clone,	GD.InsB.4,	using	T-cell	
libraries.	 A	 CD8+	 T-cell	 library	 (96	 wells	 at	 1000	 cells	 per	 well)	 was	 established	 from	 an	 HLA-A2+	
donor	with	 type	1	diabetes	 (T1D)	using	 the	T-cell	 library	method	described	 in	Figure	3.4.	 (A)	 IFNγ	
enzyme-linked	immunospot	assay	(ELISpot)	was	used	to	screen	the	library	(±	peptide)	against	a	pool	
of	 four	 HLA-A2-restricted	 T1D-specific	 peptides	 (preproinsulin	 (PPI)15-24,	 insulin	 β	 chain	 (InsB)10-18,	
glutamic	 acid	 decarboxylase	 (GAD65)114-123,	 and	 islet-specific	 glucose-6-phosphatase	 catalytic	
subunit-related	 protein	 (IGRP)265-273).	 T2s	 were	 used	 as	 antigen	 presenting	 cells	 (APCs).	 ELISpot	
output	was	measured	as	spot	forming	cells	(SFC)	per	3.3	x	104	cells,	and	is	shown	here	for	1	peptide-
reactive	well.	IFNγ	capture	method	was	used	to	enrich	the	T-cells	prior	to	single-cell	cloning.	(B)	One	
clone	derived	from	the	 library	 (GD.InsB.4)	was	found	to	be	specific	 for	an	 InsB-derived	peptide,	as	
demonstrated	by	dose-response	MIP-1β	enzyme-linked	immunosorbent	assay	(ELISA),	and	(C)	pMHC	
dextramer	staining.	All	values	represent	mean	±	standard	deviation	(SD).	n	=	3.	Figure	adapted	from	
(Theaker	et	al.,	2016).	
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efficient	T-cell	library	method,	peptide-specific	T-cells	of	interest	can	be	successfully	

isolated	from	(autoimmune)	patient	samples	of	limited	cell	numbers.	

	

3.3.2.3. Generation	of	Zaire	Ebola	virus	(EBOV-Z)	reactive	CD8+	T-cell	clones	using	T-

cell	libraries	

	

In	order	to	further	illustrate	the	usefulness	of	this	method,	we	reasoned	that	T-cell	

libraries	 could	 also	 be	 used	 to	 produce	 peptide-specific	 T-cell	 clones	 from	

vaccinated	donors.	Consequently,	a	CD8+	T-cell	 library	(192	wells	at	1000	cells	per	

well)	 was	 generated	 from	 a	 healthy	 HLA-A2+	 donor,	 who	 had	 previously	 been	

vaccinated	with	a	Zaire	Ebola	virus	(EBOV-Z)	DNA	vaccine,	as	part	of	a	clinical	trial.	

This	library	was	then	screened	via	IFNγ	ELISpot	for	the	presence	of	reactive	T-cells	

against	 a	 pool	 of	 three	 HLA-A2-restricted	 EBOV-Z	 nucleoprotein	 (NP)	 epitopes	

(EBOV-Z-NP150-158,	 EBOV-Z-NP202-210,	 and	 EBOV-Z-NP404-412)	 (Sundar	 et	 al.,	 2007).	

Figure	3.8A	graphically	displays	the	two	peptide-reactive	wells	that	were	identified	

from	 the	 screen.	 T-cells	 from	 these	 two	positive	wells	were	 pooled,	 subjected	 to	

enrichment	 by	 IFNγ	 capture,	 and	 then	 cloned	 to	 the	 single-cell	 level.	 Six	 EBOV-Z-

specific	clones	were	generated,	which	were	all	found	to	be	reactive	to	the	EBOV-Z-

NP150-158	peptide	in	a	MIP-1β	ELISA	(Figure	3.8B).	Peptide-dose	response	curves	for	

three	 representative	 clones	 (ST3.ebola.FLS,	 ST13.ebola.FLS,	 and	 ST17.ebola.FLS)	

have	been	shown	in	Figure	3.8C.	In	summary,	these	data	prove	the	capability	of	this	

T-cell	 library	 method	 to	 effectively	 generate	 viral-specific	 T-cell	 clones	 from	 the	

PBMC	of	a	vaccinated	individual.	

	

3.3.2.4. Generation	of	CD4+	T-cell	clones	using	T-cell	libraries	

	

Finally,	to	demonstrate	the	application	of	this	T-cell	libraries	approach	extended	to	

the	generation	of	CD4+	T-cell	clones,	a	CD4+	T-cell	library	(192	wells	at	1000	cells	per	

well)	was	produced	from	a	healthy	HLA-DR*0101+	(HLA-DR1+)	donor,	and	screened	

via	 IFNγ	ELISpot	 for	 specificity	 towards	 two	HLA-DR1-restricted	peptide	pools	 (Flu	

Pool:	 three	 putative	 peptides	 from	 HA	 of	 flu	 (Flu-1,	 -2,	 and	 -3);	 5T4	 Pool:	 five	

putative	peptides	from	5T4	oncofoetal	protein	(5T4-2,	-12,	-20,	-38,	and	-PMS)).	
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Figure	 3.8:	 Generation	 of	 Zaire	 Ebola	 virus	 (EBOV-Z)	 reactive	 CD8+	 T-cell	 clones,	 using	 T-cell	
libraries.	 (A)	A	CD8+	T-cell	 library	 (192	wells	at	1000	cells	per	well)	was	generated	 from	a	healthy	
HLA-A2+	donor	who	had	been	previously	vaccinated	with	a	Zaire	Ebola	virus	(EBOV-Z)	DNA	vaccine.	
The	library	was	screened	by	IFNγ	ELISpot	(±	peptide)	against	a	pool	of	three	HLA-A2-restricted	EBOV-
Z	nucleoprotein	 (NP)	 epitopes	 (EBOV-Z-NP150-158,	 EBOV-Z-NP202-210,	 and	 EBOV-Z-NP404-412).	 T2s	were	
used	as	APCs.	SFC	per	3	x	104	cells	is	shown	for	2	peptide-reactive	wells.	Peptide-reactive	wells	were	
pooled,	enriched	by	dual	 IFNγ/TNFα	capture,	and	subjected	to	single-cell	cloning.	(B)	MIP-1β	ELISA	
was	used	to	determine	the	peptide	specificity	of	the	clones,	all	of	which	were	found	to	be	specific	
for	EBOV-Z-NP150-158.	(C)	Sensitivity	to	peptide	was	confirmed	for	three	of	the	clones	(ST3.ebola.FLS,	
ST13.ebola.FLS,	 and	 ST17.ebola.FLS)	 by	 dose-response	MIP-1β	 ELISA.	 All	 values	 represent	mean	 ±	
standard	deviation	(SD).	n	=	3.	Figure	adapted	from	(Theaker	et	al.,	2016).	
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Figure	3.9A	graphically	displays	the	peptide-reactive	wells	that	were	identified	from	

the	screen	(3/48	for	the	Flu	Pool,	and	9/144	for	the	5T4	Pool).	These	positive	wells	

were	then	enriched	by	IFNγ	capture,	followed	by	expansion	with	PHA	and	irradiated	

allogeneic	 feeder	 cells.	 Several	 “lines”	 were	 produced	 that	 were	 subsequently	

screened	 against	 individual	 peptides	 in	 an	 IFNγ	 ELISpot	 (Figure	 3.9B),	 and	 then	

cloned	 via	 single-cell	 cloning.	 Multiple	 CD4+	 T-cell	 clones	 were	 produced	 that	

possessed	a	variety	of	peptide	specificities,	including	a	panel	of	5T4-reactive	clones.	

Three	 of	 these	 5T4-clones	 (GD.C112.DC,	 GD.D821.DC,	 and	 GD.D104.DC)	 were	

tested	 for	 their	 sensitivity	 to	 their	 corresponding	 epitopes	 in	 a	 MIP-1β	 ELISA	

peptide-dose	 response	 experiment	 (Figure	 3.9C).	 In	 conclusion,	 this	 data	

demonstrates	 the	ability	of	 the	T-cell	 library	strategy	to	not	only	produce	CD8+	T-

cell	clones,	but	also	CD4+	T-cell	clones	with	desired	peptide	specificities. 	 	
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Figure	3.9:	Generation	of	5T4	oncofetal	protein	 reactive	CD4+	T-cell	 clones,	using	T-cell	 libraries.	
(A)	A	CD4+	T-cell	 library	 (192	wells	at	1000	cells	per	well)	was	produced	 from	a	healthy	HLA-DR1+	
donor,	 and	 was	 screened	 by	 IFNγ	 ELISpot	 (±	 peptide)	 against	 two	 pools	 of	 HLA-DR1-restricted	
peptides;	(1)	Influenza	A	(Flu)	Pool:	three	putative	peptides	(Flu-1,	-2,	and	-3)	from	haemagglutinin	
(HA)	 of	 Flu,	 and	 (2)	 5T4	 Pool:	 five	 putative	 peptides	 (5T4-2,	 -12,	 -20,	 -38,	 and	 -PMS)	 from	 5T4	
oncofetal	protein.	T2-DR1s	were	used	as	APCs.	SFC	per	5	x	104	cells	is	shown	for	12	peptide-reactive	
wells.	Peptide-reactive	wells	were	enriched	by	IFNγ	capture,	and	then	expanded	as	individual	lines.	
(B)	Lines	were	tested	for	peptide	specificity	by	IFNγ	ELISpot.	3	lines	were	specific	for	Flu	peptides.	9	
lines	were	specific	for	5T4	peptides,	and	were	subjected	to	single-cell	cloning.	(C)	Peptide	sensitivity	
was	confirmed	for	three	5T4	clones	(GD.C112.DC,	GD.D821.DC,	and	GD.D104.DC)	by	dose-response	
MIP-1β	 ELISA.	 All	 values	 represent	 mean	 ±	 standard	 deviation	 (SD).	 n	 =	 3.	 Figure	 adapted	 from	
(Theaker	et	al.,	2016).	
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3.4. DISCUSSION	

	

Despite	 the	 success	 of	 breast	 cancer	 T-cell	 clone	 development	 using	 the	 more	

conventional	 T-cell	 lines	 approach,	 this	 method	 proved	 to	 be	 particularly	 time-

consuming	 and	 laborious,	 and	 failed	 to	 generate	 T-cell	 clones	more	 times	 than	 it	

succeeded	 (Supplementary	 Figure	 3).	 Therefore,	 in	 this	 chapter,	 I	 successfully	

developed	 an	 efficient	 and	 reproducible	 “T-cell	 library”	 strategy	 that	 allowed	

peptide-specific	human	T-cells	to	be	rapidly	detected	and	isolated	from	polyclonal	

T-cell	populations,	resulting	in	the	successful	generation	of	fully	validated	clones	in	

as	 little	 as	 6	 weeks.	 Generation	 of	 T-cell	 clones	 is	 not	 only	 highly	 desirable	 for	

investigating	 the	 role	 of	 T-cells	 in	 human	 disease,	 but	 is	 also	 advantageous	 for	

producing	 antigen-specific	 TCRs	 (for	 genetic,	 biophysical	 and	 structural	 studies),	

and	 for	 developing	 and	 testing	 therapeutic	 interventions,	 i.e.	 peptide	 vaccines	

(Ekeruche-Makinde	et	al.,	2012).	

	

Previous	library-based	approaches,	with	the	aim	of	studying	T-cell	frequencies,	have	

expanded	T-cells	 using	 irradiated	allogeneic	 feeder	 cells	 in	 combination	with	PHA	

(Campion	et	al.,	2014,	Geiger	et	al.,	2009),	 rather	 than	 the	CD3/CD28	beads	used	

here.	CD3/CD28	beads	have	been	shown	to	better	preserve	 the	TCR	repertoire	 in	

vitro	 by	 maintaining	 the	 dominant	 antigen-specific	 T-cell	 responses,	 as	 well	 as	

preserving	 the	 representation	 of	 TRBV	 families	 within	 the	 expanded	 population	

(Neller	et	al.,	2012).	Nonetheless,	it	is	possible	that	rare	populations	of	T-cells	may	

still	be	lost	during	this	method	of	expansion.	

	

In	 addition	 to	 better	 maintenance	 of	 the	 T-cell	 repertoire,	 the	 T-cell	 library	

approach	used	here	also	circumvents	the	need	for	time-consuming	DC	production,	

ample	donor	material,	and	pMHC	multimer	generation.	Furthermore,	unlike	the	T-

cell	 line	 approach,	 the	 T-cell	 library	 strategy	 also	 benefits	 from	 peptide-

independent	 amplification,	 thus	 lowering	 the	 risk	 of	 T-cell	 exhaustion	 due	 to	

repeated	 exposure	 to	 antigenic	 peptide	 (Wherry	 and	 Kurachi,	 2015b).	 It	 is	worth	

noting	 that	 even	 though	 a	 relatively	 high	 level	 of	 peptide	 was	 used	 in	 these	

experiments	(10-5	and	10-4	M),	in	order	to	ensure	capture	of	all	T-cell	responses,	use	
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of	10-8	and	10-7	M	peptide	also	worked	well.	The	clones	generated	by	this	method	

were	 often	 capable	 of	 recognising	 relatively	 low	 concentrations	 of	 peptide	 in	

titration	 experiments.	 Furthermore,	 the	 generic	 amplification	 of	 T-cells	 using	

CD3/CD28	Dynabeads	 allowed	 cells	 of	 suspected	 low	 clonotype	 frequency	and/or	

cells	from	limited	sample	sizes	to	be	grown	to	sufficient	numbers	compatible	with	

screening.	This	was	demonstrated	by	 the	generation	of	 several	anti-tumour	T-cell	

clones	and	a	T1D-reactive	T-cell	clone,	respectively.	

	

To	conclude,	by	utilising	two	different	approaches	to	T-cell	clone	generation,	I	have	

produced	several	breast	cancer	specific	T-cell	 clones	 that	are	 reactive	 to	different	

breast	 cancer	 epitopes	of	 interest	 (notably	NY-BR-1	 and	CDH3).	 These	 clones	will	

provide	valuable	 tools	 for	 the	 rational	design	of	 immunogenic	peptides	 for	use	 in	

prophylactic	or	therapeutic	breast	cancer	vaccine	development	(Chapters	5	and	6).	

Additional	clones	with	different,	but	desirable,	specificities	have	been	generated	in	

parallel,	with	examples	shown	here	for	autoimmunity	(type	1	diabetes),	 infectious	

disease	(Zaire	Ebola	virus),	and	other	cancer	types	(melanoma).	These	clones	have	

been	used	for	other	research	projects	of	interest	in	our	laboratory.	
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4. Tumour-infiltrating	 lymphocytes	 (TILs)	 as	 an	 enriched	 source	 of	

peptide-specific	T-cells	for	breast	cancer	research	

	

4.1. INTRODUCTION	

	

4.1.1. Tumour-infiltrating	lymphocyte	(TIL)	Therapy	

	

TILs	 are	 a	 heterogeneous	 mixture	 of	 T-cells,	 that	 have	 migrated	 from	 the	

bloodstream	 of	 a	 patient	 into	 a	 tumour.	 TIL	 therapy,	 a	 form	 of	 adoptive	 cell	

transfer,	is	a	promising	new	type	of	personalised	cancer	immunotherapy,	whereby	

TILs	are	extracted	from	the	tumour	of	a	patient,	cultured	and/or	modified	ex	vivo,	

and	 then	 re-infused	 back	 into	 the	 same	 patient	 with	 the	 hope	 of	 inducing	 a	

targeted	 immune	 response	 to	 their	 cancer.	 An	 overview	 of	 TIL	 therapy	 has	 been	

illustrated	in	Figure	4.1.	

	

In	 recent	years,	 rapid	progress	has	been	made	 in	 the	development	of	TIL	 therapy	

protocols	for	the	treatment	of	metastatic	melanoma	patients.	Our	collaborators	at	

the	 Center	 for	 Cancer	 Immune	 Therapy	 (CCIT),	 Herlev	 Hospital	 in	 Copenhagen,	

Denmark,	have	treated	more	than	30	metastatic	melanoma	patients	 (18	yrs	to	70	

yrs)	 in	a	phase	I/II	clinical	trial	(ClinicalTrials.gov	identifier:	NCT00937625),	with	an	

overall	 response	 rate	 to	 TIL	 therapy	 of	 42%	 (Andersen	 et	 al.,	 2016,	 Donia	 et	 al.,	

2013,	Ellebaek	et	al.,	2012).	Previous	work	in	our	laboratory	has	largely	focused	on	

characterising	 the	 T-cell	 responses	 accountable	 for	 the	 tumour	 regression	 and	

improved	survival	seen	in	these	patients.	

	

4.1.2. TILs	in	breast	cancer	

	

It	 is	well	known	that	the	immune	system	provides	a	protective	role	against	cancer	

(Section	 1.2.2.),	 and	 that	 patient	 prognosis	 is	 frequently	 linked	 to	 lymphocyte	

infiltrate.	 In	 the	 context	 of	 breast	 cancer,	 a	 high	 level	 of	 CD8+	 TILs	 has	 been	

associated	with	favourable	prognostic	value	(i.e.	improved	disease-free		
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Figure	4.1:	Overview	of	TIL	 therapy	 in	metastatic	melanoma.	 (A)	A	 tumour	mass	 is	 firstly	excised	
from	the	patient	by	surgical	resection	or	biopsy.	(B)	It	 is	either	digested	into	a	suspension	of	single	
cells	 or	 divided	 into	multiple	 1-3	mm3	 fragments.	 (C)	 	 Cells	 are	 then	 cultured	with	 a	 high	dose	of	
interleukin-2	 (IL-2)	T-cell	growth	factor,	 irradiated	PBMC	(“feeder	cells”),	and	anti-CD3	monoclonal	
antibody	(mAb).	This	encourages	tumour-infiltrating	lymphocyte	(TIL)	overgrowth.	(D)	TILs	are	then	
screened	for	tumour	reactivity,	and	(E)	tumour-specific	TILs	expanded	to	approximately	1010	cells.	(F)	
Post-lymphodepletion	(chemotherapy	alone,	or	chemotherapy	and	total	body	irradiation),	expanded	
TILs	are	re-infused	(intravenously)	back	into	the	patient	with	a	high-dose	of	IL-2,	in	order	to	aid	TIL	
stimulation	in	vivo.	Figure	adapted	from	(Rosenberg	et	al.,	2008).	
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survival/DFS),	 particularly	 in	 high-grade	 basal-like/TN	 and	 HER2	 enriched	 breast	

cancer	subtypes	(Liu	et	al.,	2012,	Loi	et	al.,	2014,	Mahmoud	et	al.,	2011,	Salgado	et	

al.,	 2015a).	 Moreover,	 TILs	 have	 also	 been	 associated	 with	 improved	 treatment	

outcome	 (i.e.	 pathologic	 complete	 response/pCR)	 in	 breast	 cancer	 patients	

receiving	 neoadjuvant	 chemotherapy	 (Denkert	 et	 al.,	 2010,	 Denkert	 et	 al.,	 2014,	

Miyashita	 et	 al.,	 2014,	West	 et	 al.,	 2011,	 Yamaguchi	 et	 al.,	 2012).	 Consequently,	

despite	 their	 largely	 heterogeneous	 nature,	 TILs	 act	 as	 a	 potential	 predictive	

immunological	 biomarker	 in	 breast	 cancer	 (Beausang	 et	 al.,	 2017).	 In	 2014,	 an	

international	 TIL	 working	 group	 produced	 a	 standardised	 methodology	 for	 the	

measurement	 of	 breast	 cancer	 TILs,	 with	 the	 aim	 of	 improving	 uniformity	 and	

reproducibility	in	their	evaluation	as	predictive	biomarkers	(Salgado	et	al.,	2015b).	

	

4.1.3. Bone	marrow	stromal	cell	antigen-2	(BST-2)	as	a	candidate	target	protein	

for	breast	cancer	immunotherapy	research	

	

Bone	 marrow	 stromal	 cell	 antigen-2	 (BST-2;	 also	 known	 as	 tetherin)	 is	 a	 type	 II	

transmembrane	 protein	 that	 is	 associated	with	 increased	 tumour	 size,	

aggressiveness,	 and	metastatic	 potential	 in	 high-grade	 breast	 cancers	 (Mahauad-

Fernandez	et	al.,	2014,	Sayeed	et	al.,	2013).	Specifically,	it	has	been	associated	with	

the	formation	of	bone	metastases	(Cai	et	al.,	2009).	Furthermore,	it	has	also	been	

suggested	 that	BST-2	overexpression	 is	 responsible	 for	 increased	 tumour	 invasion	

and	migration	in	tamoxifen-resistant	breast	cancers	(Yi	et	al.,	2013).	The	BST-222-30	

peptide	 (LLLGIGILVL)	 utilised	 in	 this	 chapter	 had	 previously	 been	 identified	 in	 the	

literature,	 by	 development	 of	 a	 bioinformatics	 approach	 to	 identify	 self-derived	

peptide	 ligands	 recognised	 by	 CD8+	 T-cells	 (web	 tool	 described	 in	 Section	 2.2.6.)	

(Szomolay	et	al.,	2016).	BST-2	has	also	been	associated	with	poor	prognosis	in	many	

other	 cancer	 types,	 including	 skin	 (melanoma),	 esophageal,	 gastric	 and	 colorectal	

cancers	(Mukai	et	al.,	2017,	Yi	et	al.,	2013).	
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4.2. AIMS	

	

With	 fortunate	 access	 to	 clinically-relevant	 TIL	 samples	 from	our	 collaborators	 at	

CCIT,	the	main	aim	of	this	chapter	was	to	utilise	these	TILs	as	a	third	approach	for	

the	 generation	 of	 breast	 cancer	 reactive	 T-cell	 clones.	 The	 rationale	 behind	 this	

being	that	different	cancer	types	share	common	tumour-specific	antigens.	In	order	

to	do	this,	 I	first	aimed	to	dissect	multiple	tumour	T-cell	responses	within	the	TILs	

(by	both	functional	and	clonotypic	analysis),	particularly	focusing	on	breast	cancer	

reactivity.	 Secondly,	 I	 aimed	 to	 investigate	 the	 validity	 of	 BST-2	 as	 a	 target	 for	

breast	cancer	immunotherapy	research,	by	generating	a	BST-2	specific	T-cell	clone	

from	the	TILs,	and	assessing	its	ability	to	recognise	and/or	kill	several	breast	cancer	

cell	 lines.	 The	 generated	 clone	will	 subsequently	 be	 used,	 alongside	 other	 breast	

cancer	specific	T-cell	clones	(produced	in	Chapter	3),	for	prophylactic	or	therapeutic	

peptide	vaccine	design	in	Chapters	5	and	6.	 	
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4.3. RESULTS	

	

4.3.1. Functional	analysis	of	breast	cancer	reactivity	in	melanoma	TILs	

	

I	reasoned	that	TILs	obtained	from	patient	biopses	or	surgical	resection	could	act	as	

an	enriched	source	of	clinically-relevant	peptide-specific	T-cells.	To	investigate	this,	

TILs	 were	 obtained	 from	 an	 HLA-A2+	 metastatic	 melanoma	 patient	 (Patient	 #24;	

Section	2.1.10.)	who	had	successfully	cleared	tumour	following	participation	in	an	

ACT	clinical	trial	at	CCIT	(ClinicalTrials.gov	identifier:	NCT00937625).	The	TIL	infusion	

product	 acquired	 from	 this	 complete	 remission	 patient	 had	 previously	 been	

screened	 in	 our	 laboratory	 against	 a	 panel	 of	 145	 known	 HLA-A2-restricted	

melanoma	antigens,	via	IFNγ	ELISpot	(data	not	shown;	method	described	in	Section	

2.2.3.).	 From	 this	 screen,	 18	 specificities	 were	 found,	 some	 of	 which	 were	 also	

known	to	be	 implicated	 in	breast	cancer.	One	such	breast	cancer	epitope	was	the	

interferon-inducible	antiviral	protein,	BST-2,	whose	role	 in	breast	cancer	has	been	

described	in	Section	4.1.3.	(Tokarev	et	al.,	2009).		

	

In	order	to	further	investigate	the	breast	cancer	reactivity	of	these	TILs,	I	decided	to	

screen	the	TILs	against	several	breast	cancer	cell	lines,	as	well	as	BST-222-30	peptide.	

To	 do	 this,	 TNFα/CD107a-producing	 (CD3+/CD8+)	 T-cells	were	 detected	 in	 a	 TNFα	

processing	inhibitor	assay	(TAPI)	assay	(Section	2.3.3.),	as	an	indicator	of	functional	

TIL	 reactivity	 (Figure	4.2).	 The	 results	 showed	 that	 the	melanoma	patient-derived	

TILs	recognised	multiple	HLA-	A2+	breast	cancer	cell	lines,	particularly	favouring	the	

MDA-MB-231	(basal-like,	TN;	13.0%	reactivity)	cell	 line	over	the	MCF-7	(luminal	A;	

2.5%	reactivity)	and	SK-BR-3	(A2)	(HER2	enriched;	0.7%	reactivity)	cell	lines.	SK-BR-

3(WT)	cells	were	used	as	a	negative	control	in	the	assay	(0.25%	reactivity),	in	order	

to	 confirm	 TIL	 HLA-A2-restriction.	 Reactivity	 towards	 the	 autologous	 tumour	 cell	

line	from	which	the	TILs	were	derived	(MM909.24)	was	used	as	a	positive	control	in	

the	 assay	 (30.1%	 reactivity).	 Furthermore,	 a	 small	 but	 convincing	 population	 of	

CD8+	T-cells	within	the	TILs	(0.36%)	was	seen	to	be	reactive	towards	the	BST-222-30	

peptide,	thus	confirming	previous	observations	of	TIL	BST-2	specificity	seen	within	

our	laboratory.	TIL	reactivity	towards	Melan-A/MART-126-35	peptide	(EAAGIGILTV),	a	
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Figure	 4.2:	 Functional	 analysis	 of	 breast	 cancer	 reactivity	 in	melanoma	 TILs.	Melanoma	 tumour-
infiltrating	 lymphocyte	 (TIL)	 recognition	of	multiple	breast	 cancer	 cell	 lines,	 autologous	melanoma	
tumour	cells	(MM909.24),	and	two	tumour	epitopes	(Melan-A	and	BST-2)	was	established	by	a	TNFα	
processing	inhibitor	assay	(TAPI).	Percentage	(%)	of	TNFα/CD107a-producing	T-cells	(CD3+/CD8+)	has	
been	 shown.	 “TIL	 only”	was	 used	 as	 a	 negative	 control.	Melanoma	 TILs	were	 found	 to	 recognise	
MM909.24,	 as	well	 as	 several	 breast	 cancer	 cell	 lines	 including	MDA-MB-231,	MCF-7,	 and	 SK-BR-
3(A2).	SK-BR-3(WT)	cells	were	used	as	a	negative	control	to	demonstrate	HLA-A2-restriction	of	the	
TILs.	TILs	also	showed	reactivity	 towards	Melan-A26-35	peptide	 (EAAGIGILTV),	a	common	melanoma	
antigen,	and	also	towards	BST-222-30	peptide	(LLLGIGILV),	a	potential	breast	cancer	antigen.	
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common	differentiation	antigen	overexpressed	 in	>90%	of	melanomas	 (Kawakami	

et	al.,	1994b),	was	also	used	as	a	positive	control	(4.82%	reactivity).	

	

4.3.2. Functional	analysis	of	multiple	tumour	reactivity	in	melanoma	TILs	

	

In	addition	to	investigating	breast	cancer	reactivity,	I	next	aimed	to	explore	multiple	

tumour	 reactivities	 within	 the	 melanoma	 TILs.	 As	 before,	 a	 TAPI	 assay	 was	

conducted	 in	 order	 to	measure	 the	%	 of	 TNFα/CD107a-producing	 (CD3+/CD8+)	 T-

cells,	 as	 an	 indicator	 of	 functional	 TIL	 reactivity	 (Figure	 4.3.).	 The	 results	

demonstrated	that	the	melanoma	patient-derived	TILs	were	capable	of	recognising	

several	different	types	of	tumour	cell	lines	including	COLO	205	(colorectal),	HepG2	

(Liver),	NCI-H69	(lung),	LNCaP	(prostate),	MS751	(cervical),	RCC17	(renal)	and	Saos-

2	(bone).	The	highest	level	of	TIL	reactivity	was	observed	when	TILs	were	incubated	

with	MS751	cervical	 cancer	 cell	 line	 (6.14%	 reactivity),	 followed	by	Saos-2	 (3.12%	

reactivity)	 and	 LNCaP	 (2.74%	 reactivity)	 respectively.	 Functional	 TIL	 reactivities	

observed	 towards	 other	 tumour	 types	 were	 convincing,	 but	 had	 TNFα/CD107a-

producing	T-cell	populations	of	below	1%.	

	

4.3.3. Clonotypic	analysis	of	tumour	reactivity	in	melanoma	TILs	

	

Tumour-reactive	(TNFα/CD107a-producing)	CD3+/CD8+	TIL	populations	identified	by	

TAPI	assay	 in	Section	4.3.1.	 and	Section	4.3.2.	were	subsequently	 isolated	by	cell	

sorting	 (method	 described	 in	 Section	 2.3.5.),	 and	 then	 analysed	 for	 clonotypic	

analysis	 (Section	 2.4.).	 In	 order	 to	 investigate	 the	 tumour-reactive	 TCR	 diversity	

within	the	TILs,	T-cell	populations	were	first	analysed	by	their	TCRβ	V	gene	(TRBV)	

usage	 (Figure	 4.4).	 The	 hypervariable	 CDR3	 loop	 of	 the	 TCRβ	 chain	 can	 be	

unambiguously	 identified,	 and	 also	 forms	 a	 principal	 site	 of	 antigen	 contact	

(Freeman	et	al.,	2009).	The	data	showed	that	 for	6	out	of	 the	10	tumour-reactive	

TIL	 populations	 (MM909.24,	 MDA-MB-231,	 MCF-7,	 HepG2,	 NCI-H69,	 MS751),	

TRBV24-1*00	was	the	most	common	V	gene	used.	However,	for	LNCaP	and	RCC17	

reactive	TIL	populations	the	most	common	V	gene	used	was	TRBV6-5*00,	and	for		
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Figure	4.3:	Functional	analysis	of	multiple	tumour	reactivity	in	melanoma	TILs.	Melanoma	tumour-
infiltrating	 lymphocyte	 (TIL)	 recognition	 of	multiple	 tumour	 cell	 lines,	 was	 established	 by	 a	 TNFα	
processing	inhibitor	assay	(TAPI).	Percentage	(%)	of	TNFα/CD107a-producing	T-cells	(CD3+/CD8+)	has	
been	 shown.	 “TIL	 only”	was	 used	 as	 a	 negative	 control.	Melanoma	 TILs	were	 found	 to	 recognise	
several	 tumour	 cell	 lines	 including	 COLO	 205	 (colorectal),	 HepG2	 (Liver),	 NCI-H69	 (lung),	 LNCaP	
(prostate),	MS751	(cervical),	RCC17	(renal)	and	Saos-2	(bone).	

	

	

	 	



	

115	
	

	

	

Figure	4.4:	Clonotypic	analysis	of	tumour	reactivity	in	melanoma	TILs	–	TCRβ	V	gene	(TRBV)	usage.	
TRBV	 gene	 usage	 of	 TIL	 populations	 recognising	 different	 HLA-A2+	 tumour	 cell	 lines;	 MM909.24	
(skin),	MDA-MB-231	(breast),	MCF-7	(breast),	COLO	205	(colorectal),	HepG2	(Liver),	NCI-H69	(lung),	
LNCaP	 (prostate),	MS751	 (cervical),	 RCC17	 (renal)	 and	 Saos-2	 (bone).	 In	 the	majority	 of	 cell	 lines	
(6/10),	TRBV24-1*00	was	the	most	common	V	gene	used.	
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COLO	 205	 and	 Saos-2	 reactive	 populations	 the	 most	 common	 V	 gene	 used	 was	

TRBV7-6*00	 and	 TRBV7-8*00,	 respectively.	 These	 results	 suggest	 that	 different	

tumours	are	being	recognised	by	different	antigens	via	different	TCRs.	

	

TRBV	 gene	 usage	 analysis	 was	 followed	 by	 assessment	 of	 total	 clonotypes	 (i.e.	

unique	TCRβ	CDR3	amino	acid	sequences)	(Figure	4.5).	To	do	this,	the	10	tumour-

reactive	TIL	populations	were	ranked	according	to	their	total	number	of	clonotypes,	

with	 the	highest	number	at	position	“1”	and	 the	 lowest	number	at	position	“10”.	

Unsurprisingly,	 it	 was	 found	 that	 the	 TIL	 population	 reactive	 to	 autologous	

MM909.24	 cell	 line	 displayed	 the	 highest	 total	 number	 of	 clonotypes	 (87	 unique	

CDR3	 sequences).	 In	 contrast,	 LNCaP	 reactive	 TILs	 displayed	 the	 lowest	 total	

number	 of	 clonotypes	 (29	 unique	 CDR3	 sequences).	 Interestingly,	 3	 of	 the	 top	

ranked	TIL	populations	(MM909.24,	MS751	and	MDA-MB-231)	all	shared	the	same	

top	 5	 clonotypes.	 Indeed,	 many	 other	 CDR3	 sequences	 were	 also	 found	 to	 be	

shared	 amongst	 the	 top	 5	 clonotypes	 of	 the	 different	 tumour-reactive	 TIL	

populations.	

	

In	light	of	these	results,	the	number	of	shared	clonotypes	(with	identical	TCRβ	CDR3	

amino	acid	sequences)	was	next	analysed	between	individual	TIL	populations.	To	do	

this,	 a	 heat	 map	 was	 generated	 that	 illustrated	 the	 number	 of	 shared	 CDR3	

sequences,	 recognising	different	 tumour	cell	 lines	 (Figure	4.6A).	The	data	showed	

that	 most	 clonotypes	 were	 shared	 between	 the	 MM909.24	 and	 MDA-MB-231	

reactive	TIL	populations	(32	identical	CDR3	sequences).	Moreover,	the	second	most	

shared	clonotypes	was	observed	between	 the	MM909.24	and	MS751	 reactive	TIL	

populations	 (30	 identical	 CDR3	 sequences).	 Therefore,	 it	 was	 expected	 that	 the	

third	 most	 shared	 clonotypes	 was	 to	 be	 observed	 between	 MDA-MB-231	 and	

MS751	reactive	TIL	populations	(29	identical	CDR3	sequences).	These	results	were	

consistent	 with	 the	 previous	 functional	 data	 (Figure	 4.2	 and	 Figure	 4.3),	 which	

indicated	that	the	TILs	were	most	responsive	to	the	autologous	MM909.24	cell	line	

(30.1%	reactivity),	 followed	by	MDA-MB-231	(13.0%	reactivity)	and	MS751	(6.14%	

reactivity)	 cell	 lines,	 respectively.	 Thus,	 this	 suggested	 that	 these	 shared	 TCR	

clonotypes	may	have	been	particularly	important	for	high	levels	of	TIL	reactivity		
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Figure	4.5:	Clonotypic	analysis	of	tumour	reactivity	in	melanoma	TILs	-	total	number	of	clonotypes.	
Ranked	pie	charts	(1	=	highest,	10	=	lowest)	displaying	the	total	number	of	clonotypes	(with	unique	
TCRβ	CDR3	amino	acid	sequences)	present	in	TIL	populations	recognising	different	tumour	cell	lines;	
MM909.24	(skin),	MDA-MB-231	(breast),	MCF-7	(breast),	COLO	205	(colorectal),	HepG2	(Liver),	NCI-
H69	 (lung),	 LNCaP	 (prostate),	MS751	 (cervical),	 RCC17	 (renal)	 and	 Saos-2	 (bone).	 Expectedly,	 the	
MM909.24	 reactive	 TIL	 population	 displayed	 the	 highest	 number	 of	 total	 clonotypes	 (87	 unique	
CDR3	sequences),	whereas	the	LNCaP	reactive	TIL	population	displayed	the	lowest	number	of	total	
clonotypes	 (29	 unique	 CDR3	 sequences).	 The	 top	 5	 clonotypes	 responding	 to	 each	 tumour	 have	
been	displayed	in	pink.	Interestingly,	MM909.24,	MS751	and	MDA-MB-231	all	shared	the	same	top	5	
clonotypes.	
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Figure	4.6:	Clonotypic	analysis	of	tumour	reactivity	in	melanoma	TILs	-	shared	clonotypes.	(A)	Heat	
map	displaying	the	number	of	shared	clonotypes	(with	identical	TCRβ	CDR3	amino	acid	sequences)	
amongst	TIL	populations	 recognising	different	 tumour	cell	 lines.	The	most	clonotypes	were	shared	
between	MM909.24	 and	MDA-MB-231	 reactive	 TIL	 populations	 (32	 identical	 CDR3	 sequences)	 (B)	
List	of	5	CDR3	sequences	shared	between	all	10	tumour-reactive	TIL	populations.	



	

119	
	

observed	 towards	 certain	 tumour	 types.	 Remarkably,	 there	 was	 a	 total	 of	 five	

common	 clonotypes	 that	were	 shared	 between	 all	 of	 the	 10	 tumour-reactive	 TIL	

populations	 (Figure	 4.6B).	 In	 fact,	 two	 of	 these	 CDR3	 sequences	

(CATSDRGQGANWDEQFF	 and	 CASSSSDTDTQYF)	 appeared	 in	 9/10	 of	 the	 top	 5	

clonotype	 lists	 displayed	 in	 Figure	 4.5.	 Further	 research	 into	 these	 common	

tumour-reactive	 CDR3	 sequences	 would	 be	 required	 in	 order	 to	 determine	 their	

antigen	specificity.	

	

In	summary,	 the	clonotyping	data	described	above	demonstrated	that	there	were	

many	 clonotypes	 observed	 within	 these	 metastatic	 melanoma	 TILs	 that	 were	

capable	of	 recognising	multiple	 tumour	 cell	 lines,	not	 just	 the	autologous	 tumour	

from	which	 they	were	 derived.	 This	was	 of	 particular	 interest	 to	my	 research,	 as	

there	 was	 convincing	 evidence	 to	 suggest	 that	 the	 TILs	 provided	 an	 abundant	

source	of	peptide-specific	T-cells	 for	breast	cancer	 research.	This	was	exploited	 in	

the	next	section	(Section	4.3.4.)	for	the	generation	of	a	BST-2	specific	T-cell	clone.	

	

4.3.4. Bone	 marrow	 stromal	 cell	 antigen-2	 (BST-2)	 provides	 a	 valid	 target	 for	

breast	cancer	immunotherapy	research	

	

Previous	 functional	 and	 clonotypic	 analysis	 (Section	 4.3.1.	 and	 Section	 4.3.3.)	

provided	 considerable	 evidence	 to	 suggest	 that	 TILs	 obtained	 from	 a	 metastatic	

melanoma	patient	could	act	as	an	enriched	source	of	breast	cancer	specific	T-cells.	

In	 particular,	 convincing	 reactivity	 towards	 BST-2	 breast	 cancer	 antigen	 was	

observed	(Figure	4.2).	In	order	to	generate	a	BST-2	reactive	T-cell	clone,	the	entire	

TIL	 infusion	 product	 was	 subjected	 to	 single-cell	 cloning,	 and	 individual	 clones	

screened	 for	 reactivity	 towards	 BST-222-30	 peptide	 in	 an	 enzyme-linked	

immunosorbent	 assay	 (ELISA;	 Section	 2.2.2.).	 Clone	 ST8.24	 was	 successfully	

identified,	and	expanded	(Section	2.1.9.)	 for	 further	clone	validation	experiments.	

Firstly,	 the	ability	of	ST8.24	to	recognise	T2	antigen	presenting	cells	 (APCs)	pulsed	

with	the	BST-222-30	peptide	was	determined	in	a	TAPI	assay,	using	TNFα	and	CD107a	

production	 as	 an	 indication	 of	 T-cell	 activation	 (Figure	 4.7A).	 It	 was	 found	 that	

98.4%	of	CD3+/CD8+	T-cells	produced	both	TNFα	and	CD107a	in	response	to	T2	cells		
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Figure	 4.7:	 Generation	 and	 characterisation	 of	 a	 BST-2-specific	 CD8+	 T-cell	 clone	 (ST8.24)	 using	
tumour	infiltrating	lymphocytes	(TILs).	A	Bone	Marrow	Stromal	Cell	Antigen	2	(BST-2)-specific	clone	
(ST8.24)	 was	 isolated	 using	 TILs	 from	 a	 metastatic	 melanoma	 patient.	 (A)	 ST8.24	 was	 shown	 to	
recognise	the	BST-2	peptide	(LLLGIGILVL)	when	presented	by	T2	cells	in	a	TNFα	processing	inhibitor	
assay	(TAPI)	assay.	Percentage	(%)	of	TNFα/CD107a-producing	T-cells	(CD3+/CD8+)	has	been	shown.	
“T-cell	only”	was	used	as	a	negative	control.	T-cells	were	also	screened	against	unpulsed	T2s	(“+	T2”)	
in	order	to	rule	out	non-peptide	specific	recognition	of	T2	cells.	(B)	Clone	sensitivity	to	BST-2	peptide	
was	determined	via	dose-response	MIP-1β	enzyme-linked	 immunosorbent	assay	 (ELISA),	using	T2s	
as	 antigen	presenting	 cells	 (APCs).	 ST8.24	demonstrated	 a	 typical	 level	 of	 sensitivity	 for	 a	 tumour	
clone,	 with	 activation	 reaching	 baseline	 at	 10-9	M	 peptide.	 All	 values	 represent	mean	 ±	 standard	
deviation	(SD).	n	=	3.	(C)	Clonotyping	data	(V/J	segments	and	CDR3	sequences)	has	been	shown	for	
ST8.24.	Variations	from	germline	CDR3	amino	acid	sequences	has	been	 indicated;	pink	=	 insertion,	
dot	=	deletion.	
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pulsed	with	BST-222-30	peptide,	whereas	only	6.89%	of	T-cells	were	activated	upon	

exposure	 to	 T2	 cells	 alone	 (“+	 T2”),	 thus	 ruling	 out	 any	 non-peptide	 specific	

recognition	of	T2	cells.	“T-cell	only”	was	also	used	as	a	negative	control	in	the	assay	

(0.023%	 activation).	 Next,	 sensitivity	 of	 the	 clone	 to	 peptide	was	 determined	 via	

peptide	 dose-response	 MIP-1β	 ELISA.	 ST8.24	 demonstrated	 a	 typical	 level	 of	

peptide	sensitivity	 for	a	tumour-reactive	T-cell	clone	(Figure	4.7B),	with	activation	

reaching	baseline	at	10-9	M	peptide.	Sequence	analysis	of	the	ST8.24	TCR	is	shown	

in	Figure	4.7C.	Vβ13.1-FITC	antibody	staining	was	used	prior	to	all	experiments	with	

ST8.24	 to	 confirm	 the	 identity	 of	 the	 clone	 and	 rule	 out	 any	 contamination	with	

another	T-cell		(Table	2.6).	

	

Additionally,	the	ability	of	ST8.24	to	recognise	multiple	breast	cancer	cell	lines	was	

investigated	 in	 a	 TAPI	 assay	 (Figure	 4.8).	 ST8.24	was	 found	 to	 recognise	HLA-A2+	

autologous	tumour	cell	line	(MM909.24;	95.0%	reactivity),	which	acted	as	a	positive	

control	 in	 the	 assay.	 ST8.24	 also	 recognised	 the	 HLA-A2+	 breast	 cancer	 cell	 line	

MDA-MB-231	 (basal-like,	 TN)	 well	 (80.5%	 reactivity)	 and	 responded	 to	 HLA-A2+	

breast	cancer	cell	lines	such	as	MCF-7	(luminal	A;	21.8%	reactivity)	and	SK-BR-3(A2)	

(HER2	 enriched;	 42.4%	 reactivity).	 SK-BR-3(WT)	 cells	 were	 used	 as	 a	 negative	

control	 in	 the	 assay	 (5.93%	 reactivity)	 to	 demonstrate	 clone	 HLA-A2-restriction.	

These	findings	were	found	to	be	relatively	consistent	with	the	level	of	breast	cancer	

cell	line	reactivities	previously	seen	in	the	entire	TIL	infusion	product	(Figure	4.2).	

	

The	above	findings	were	further	confirmed	in	a	(51Cr)	chromium-release	cytotoxicity	

assay,	which	 investigated	 the	 cytotoxic	potential	 of	 ST8.24	at	multiple	 effector	 T-

cell:tumour	cell	(E:T)	ratios.		Specific	killing	of	T2	cells	pulsed	with	the	BST-2	peptide	

(10-5	 M)	 was	 demonstrated	 after	 4	 h	 (Figure	 4.9A),	 thus	 confirming	 HLA-A2	

restriction	and	peptide	specificity	of	the	clone.	Additionally,	specific	lysis	of	HLA-A2+	

MDA-MB-231	breast	cancer	cell	line	(±	IFNγ)	was	observed	at	4	h	and	18	h	(Figure	

4.9B).	ST8.24	killed	both	IFNy	treated	and	untreated	MDA-MB-231,	with	good	levels	

of	 killing	being	observed	after	 18	h,	 even	at	 the	 lowest	 tested	E:T	 ratio	of	 6.25:1	

(untreated:	 37.7%,	 IFNy	 treated:	 41.2%).	 Additional	 support	 for	 clone	 HLA-A2-

restriction	came	from	a	final	51Cr-release	assay	that	demonstrated	HLA-A2-	
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Figure	4.8:	ST8.24	recognises	multiple	breast	cancer	cell	lines.	ST8.24	clone	recognition	of	multiple	
breast	 cancer	 cell	 lines	 and	autologous	melanoma	 tumour	 cells	 (MM909.24)	was	established	by	 a	
TNFα	 processing	 inhibitor	 assay	 (TAPI).	 Percentage	 (%)	 of	 TNFα/CD107a-producing	 T-cells	
(CD3+/CD8+)	 has	 been	 shown.	 “T-cell	 only”	 was	 used	 as	 a	 negative	 control.	 ST8.24	 was	 found	 to	
recognise	MM909.24,	as	well	as	several	breast	cancer	cell	lines	including	MDA-MB-231,	MCF-7,	and	
SK-BR-3(A2).	 SK-BR-3(WT)	 cells	 were	 used	 as	 a	 negative	 control	 to	 demonstrate	 clone	 HLA-A2-
restriction.	
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Figure	4.9:	ST8.24	kills	breast	cancer	cell	lines.	(A)	ST8.24	HLA-A2	restriction	and	peptide-specificity	
was	confirmed	in	a	4	h	51Cr-release	assay	with	unpulsed	(negative	control)	and	peptide	pulsed	(10-5	
M)	 T2	 cells,	 at	 various	 T-cell:tumour	 cell	 (E:T)	 ratios.	 (B)	 An	 additional	 51Cr-release	 assay	 showed	
killing	of	an	HLA-A2+	breast	cancer	cell	line	(MDA-MB-231)	after	4	and	18	h,	with	and	without	IFNγ-
treatment	(100	IU/ml	for	72	h)	to	influence	HLA-A2	expression	(Supplementary	Figure	2).	(C)	Further	
51Cr-release	 data	 demonstrated	 HLA-A2-restricted	 killing	 (after	 4h,	 at	 an	 E:T	 ratio	 of	 25:1)	 of	 a	
naturally	HLA-A2-	breast	cancer	cell	line	(SK-BR-3)	that	was	transduced	to	express	HLA-A2	(A2).	HLA-
A2-restriction	was	confirmed	by	0%	killing	of	the	wild-type	(WT)	SK-BR-3	cell	line	(negative	control).	
All	values	represent	mean	±	standard	deviation	(SD).	n	=	3.	
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restricted	 killing	 of	 a	 naturally	 HLA-A2-	 breast	 cancer	 cell	 line	 (SK-BR-3)	 that	was	

transduced	to	express	HLA-A2	(A2)	(Figure	4.9C).	Approximately	27.0%	specific	lysis	

of	IFNγ	treated	SK-BR-3(A2)	cells	occurred	after4h,	at	an	E:T	ratio	of	25:1.	This	is	in	

contrast	 to	 0%	 killing	 of	 the	WT	 SK-BR-3	 cell	 line,	 which	was	 used	 as	 a	 negative	

control.	

	

Overall,	these	results	suggested	that	BST-2	provides	a	valid	target	for	breast	cancer	

immunotherapy	 research,	 as	 the	 ST8.24	 BST-2	 specific	 T-cell	 clone	 successfully	

recognised	 several	 breast	 cancer	 cell	 lines	 in	 vitro.	 Additionally,	 ST8.24	 was	 also	

capable	 of	 killing	 two	 different	 high-grade	 breast	 cancer	 cell	 lines;	MDA-MB-231	

(basal-like,	TN)	and	SK-BR-3(A2)	(HER2	enriched)	in	vitro.	 	
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4.4. DISCUSSION	

	

In	 this	 chapter,	 I	 have	 successfully	 demonstrated	 that	 TILs	 obtained	 from	 a	

metastatic	 melanoma	 patient	 can	 act	 as	 an	 enriched	 source	 of	 broad-spectrum	

tumour-specific	T-cells,	for	use	in	breast	cancer	immunotherapy	research.	I	chose	to	

make	use	of	the	TILs	from	metastatic	melanoma	Patient	#24,	as	these	TILs	“cured”	

the	patient	who	 is	 now	>	 4	 years	 disease	 free,	 despite	 having	 advanced	 Stage	 IV	

disease	 when	 they	 were	 initially	 treated.	 Thus,	 these	 TILs	 provided	 a	 potential	

source	 of	 clinically	 effective	 T-cells,	 some	 of	 which	 had	 the	 potential	 to	 cross-

recognise	other	 tumour	 types,	 such	as	breast	cancer.	 Indeed,	both	 functional	and	

clonotypic	 analysis	 of	 tumour-reactive	 T-cell	 responses	within	 the	 TILs,	 suggested	

that	TILs	were	not	only	capable	of	recognising	the	autologous	tumour	from	which	

they	were	derived	(MM909.24),	but	also	recognised	nine	other	types	of	tumour	cell	

lines,	 two	 of	 which	 (MDA-MB-231	 and	 MCF-7)	 were	 of	 breast	 cancer	 origin.	

Alongside	MS751	cervical	cancer	cell	line,	MDA-MB-231	breast	cancer	cells	not	only	

generated	 one	 of	 the	 highest	 responses	 from	 these	 TILs	 (Figure	 4.2),	 but	 also	

shared	 the	 greatest	 number	 of	 clonotypes	 with	 the	 highly	 reactive	 MM909.24	

(autologous	tumour)	TIL	population	(Figure	4.6).	Thus,	this	suggested	that	the	TILs	

were	 abundant	 with	 breast	 cancer	 reactive	 T-cells.	 In	 particular,	 a	 small	 but	

convincing	response	to	BST-2	breast	cancer	antigen	was	observed	(Figure	4.2),	thus	

allowing	the	generation	of	a	BST-2	specific	T-cell	clone	(ST8.24).	

	

However,	 it	 is	 worth	 considering	 that	 many	 of	 these	 TIL	 responses	 could	 be	

alloreactive	T-cell	responses	to	HLA(s)	that	the	autologous	MM909.24	doesn’t	share	

with	 the	other	 tumour	 cell	 lines.	Nevertheless,	 since	 there	 are	 shared	 clonotypes	

that	 recognise	 a	broad	 spectrum	of	 tumour	 cell	 types	 (including	MM909.24),	 this	

might	 provide	 evidence	 to	 suggest	 that	 the	 response	 is	 not	 due	 to	 alloreactivity.	

Moreover,	 despite	 the	 success	 of	 producing	 the	 ST8.24	 clone	 from	 these	 TIL,	 the	

study	 of	 melanoma	 TILs	 in	 a	 breast	 cancer	 setting	 is	 potentially	 a	 sub-optimal	

research	approach.	Breast	cancer	TILs	may	have	been	superior	for	the	investigation	

of	clinically-relevant	breast	cancer	reactive	T-cells.	

	



	

126	
	

Breast	Cancer	TIL	research	is	still	very	much	in	 its	 infancy,	and	we	are	unaware	of	

there	 being	 any	 complete	 remission	 patients	 following	 TIL	 therapy	 for	 advanced	

breast	 cancer.	 To	 date,	 advances	 have	 largely	 been	 hindered	 by	 difficulties	

associated	with	 growing	 primary	 human	 breast	 cancer	 cells	 in	 long	 term	 in	 vitro	

culture	(Samoszuk	et	al.,	2005).	This	contrasts	with	the	great	successes	achieved	in	

melanoma	 TIL	 research,	 whereby	 TIL	 isolation	 and	 expansion	 protocols	 are	

becoming	commonplace	(Andersen	et	al.,	2016,	Donia	et	al.,	2013,	Ellebaek	et	al.,	

2012).	In	addition,	melanoma	lesions	are	often	easy	to	access	surgically	(i.e.	to	the	

skin	or	lymph	node),	thus	making	melanoma	TIL	more	readily	available	(Dalerba	et	

al.,	1998).	In	contrast,	primary	breast	cancers	are	often	treated	with	chemotherapy	

prior	 to	 surgical	 removal,	 and	 so	 there	 is	 usually	 less	 tumour	mass	 to	 extract	 TIL	

from	in	the	laboratory.	Moreover,	breast	metastases	are	frequently	in	inaccessible	

places,	 i.e.	brain	or	bone.	Consequently,	 it	was	certainly	worth	exploring	whether	

the	T-cells	that	have	been	effective	 in	clearing	other	cancers	 in	vivo	might	also	be	

useful	for	treatment	of	breast	cancer.	

	

Despite	 these	 current	 limitations,	 previous	 suggestions	 that	 high	 levels	 of	

infiltrating	 CD8+	 T-cells	 into	 breast	 tumours	 is	 associated	 with	 improved	 clinical	

outcomes	 (Section	4.1.2.),	 indicate	 that	 there	might	be	a	promising	 future	 for	TIL	

therapy	in	the	treatment	of	breast	cancer.	In	the	longer	term,	it	is	expected	that	TIL	

therapy	 successes	 for	 other	 tumour	 types	 will	 renew	 enthusiasm	 for	 trying	 such	

approaches	in	breast	cancer	treatment.	It	is	also	likely	that	the	study	of	successful	

TIL	 treatment	 with	 other	 tumours	 might	 generate	 generic	 T-cells,	 of	 the	 sort	

discovered	 here,	 that	 might	 be	 useful	 for	 treating	 many	 types	 of	 cancer.	

Approaches	using	broadly	tumouricidal	T-cells	that	could	be	applied	to	a	wide	range	

of	 tumours	 would	 be	 expected	 to	 considerably	 lower	 the	 costs	 of	 this	 sort	 of	

cellular	 therapy	 due	 to	 the	 economy	 of	 scale.	 In	 addition,	 knowledge	 of	 which	

antigens	 are	 targeted	 when	 TIL	 therapy	 succeeds	 might	 also	 point	 towards	 the	

types	 of	 T-cell	 responses	 that	 it	 would	 be	 desirable	 to	 induce	 via	 therapeutic	

vaccination	of	the	type	examined	in	Chapters	5	and	6.	
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5. Design	of	potent	epitopes	for	breast	cancer	immunotherapy		

	

5.1. Introduction		

	

5.1.1. Thymic	selection	and	overcoming	immunological	tolerance		

	

The	process	of	thymic	selection,	outlined	in	Section	1.2.1.1,	culls	T-cells	that	react	

strongly	 to	 self-antigens	 in	 order	 to	 prevent	 autoimmune	disease.	 This	 process	 is	

also	thought	to	remove	T-cells	that	bear	TCRs	with	high	affinity	for	ubiquitous	(non-

mutated)	 cancer	 antigens.	 The	 net	 result	 of	 this	 process	 is	 that	 TCRs	 that	 are	

specific	 for	 self-antigens	 bind	with	 over	 5-fold	 lower	 affinity	 than	 those	 that	 are	

raised	against	pathogen-derived	(non-self)	peptides,	and	are	characterised	by	slow	

association	 (kon)	 and	 fast	 dissociation	 (koff)	 rates	 (Aleksic	 et	 al.,	 2012,	 Cole	 et	 al.,	

2007).	 TCR	 affinity	 is	 key	 to	 the	 sensitivity	 of	 T-cells,	 so	 this	 discrepancy	 leaves	

cancer-specific	 T-cells	 at	 a	 distinct	 disadvantage	 when	 compared	 to	 those	 that	

respond	 to	 non-self-antigens	 (Tan	 et	 al.,	 2017,	 Tan	 et	 al.,	 2015).	 The	 lack	 of	 high	

affinity	TCRs	for	cancer-antigens	can	mean	that	it	is	difficult	to	break	immunological	

tolerance	and	raise	a	response	against	TAAs	by	vaccination.	

	

Studies	in	my	laboratory	have	confirmed	that	individual	T-cell	clones	can	recognise	

huge	 numbers	 of	 different	 peptides	 (Sewell,	 2012,	Wooldridge	 et	 al.,	 2012),	 and	

that	 many	 sequences	 recognised	 by	 self-reactive	 T-cells	 can	 act	 as	 substantially	

better	agonists	(Cole	et	al.,	2016).	 In	addition,	my	group	have	previously	explored	

the	use	of	TCR	optimised	peptides	(TOPs)	to	see	whether	such	tools	could	be	used	

for	 favourable	 skew	 of	 the	 repertoire	 of	 T-cells	 (SORT)	 (Ekeruche-Makinde	 et	 al.,	

2012).	 This	 proof-of-concept	 study	 demonstrated	 that	 it	 is	 possible	 to	 design	

altered	 peptide	 ligands	 (APLs),	 which	 have	 enhanced	 abilities	 to	 break	 self-

tolerance	and	 that	 can	also	 select	 for	 superior	 clonotypes	when	compared	 to	 the	

WT	 peptide	 sequence.	 Slansky	 et	 al.	 also	 made	 use	 of	 APLs	 to	 enhance	 the	

expansion	of	T-cells	that	were	specific	for	a	natural	tumour	antigen	(Slansky	et	al.,	

2000).	These	reports	suggest	that	APLs	can	be	used	to	improve	T-cell	priming	during	
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therapeutic	vaccination	 for	cancer.	More	recent	work	has	also	demonstrated	 that	

non-biologic	D-peptide	ligands	can	be	used	in	vaccination	(Miles	et	al.,	2018).	

	

One	of	my	original	 project	 aims	was	 to	design	 immunogenic	APLs	 for	 several	WT	

breast	 cancer	epitopes,	and	 to	determine	whether	 these	more	potent	APLs	could	

be	used	to	generate	improved	responses	to	breast	cancer	antigens. 
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5.2. AIMS		

	

Whilst	 T-cell	 immunotherapy	 has	 great	 potential	 for	 providing	 a	 more	 targeted	

approach	 for	 breast	 cancer	 treatment,	 its	 progress	 is	 currently	 hindered	 by	 the	

shortage	 of	 well-characterised,	 immunogenic	 breast	 cancer	 epitopes	 that	 are	

recognised	by	cytotoxic	T-cells	 in	vivo.	Thus,	the	overall	aim	of	this	chapter	was	to	

exploit	 the	 highly	 cross-reactive	 nature	 of	 T-cells,	 in	 order	 to	 rationally	 design	

optimised	breast	cancer	epitopes	(i.e.	APLs)	that	have	the	ability	to	prime	greater	T-

cell	 responses,	 and	 potentially	 select	 for	 superior	 T-cell	 clonotypes	 in	 vitro.	 T-cell	

clones	that	respond	to	known	HLA-A2-restricted	breast	cancer	epitopes	can	be	used	

to	 design	 immunogenic	 APLs	 that	 bind	 to	 their	 cognate	 TCR	 with	 significantly	

greater	affinity.	Therefore,	I	set	out	to	utilise	the	breast	cancer	reactive	T-cell	clones	

generated	 in	Chapters	3	 and	4	 (GD.FIL.6/30,	 Lucky6.NY-BR-1.82,	ST64.NY-BR-1.75,	

and	ST8.24),	alongside		9mer	or	10mer	positional	scanning	synthetic	combinatorial	

libraries	 (PS-SCLs),	 in	order	 to	 rationally	design	APLs	 for	T-cells	 that	 recognise	 the	

breast	cancer	antigens	CDH3,	NY-BR-1,	and	BST-2.	 	
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5.3. RESULTS	

	

5.3.1. PS-SCLs	can	be	used	for	the	successful	design	of	APLs	

	

The	 interaction	 between	 TCR	 and	 pMHC	 is	 highly	 degenerate,	 with	 a	 single	 TCR	

being	 able	 to	 recognise	 vast	 numbers	of	 peptides	 in	 the	 context	 of	 a	 single	MHC	

molecule	(Sewell,	2012).	This	T-cell	cross-reactivity	can	be	exploited	for	the	rational	

design	of	APLs	 that	 act	 as	 superior	peptides	 for	 cognate	TCRs.	APL	design	 can	be	

achieved	using	PS-SCLs	(Borràs	et	al.,	2002,	Wilson	et	al.,	2004)	in	order	to	screen	T-

cell	clones	 that	are	specific	 for	a	particular	epitope.	PS-SCLs	have	previously	been	

described	 by	 our	 laboratory	 in	 the	 successful	 design	 of	 a	 Melan-A	 peptide	 with	

superior	immunogenic	properties	(Ekeruche-Makinde	et	al.,	2012).	

	

In	 order	 to	 optimise	 the	 interaction	 between	 my	 breast	 cancer	 epitopes	 and	

cognate	 TCRs,	 I	 used	 both	 9mer	 and	 10mer	 PS-SCLs	 to	 screen	 the	 breast	 cancer	

reactive	 T-cell	 clones	 that	 I	 generated	 in	 Chapters	 3	 and	 4	 for	 their	 favoured	 L-

amino	acid	residues.	The	PS-SCLs	were	composed	of	a	series	of	sub-libraries,	which	

each	had	a	fixed	amino	acid	at	a	particular	position	along	the	peptide	backbone.	All	

other	positions	were	then	degenerate,	and	contained	an	equimolar	mixture	of	all	L-

amino	 acids	 (excluding	 cysteine	 to	 limit	 the	 possibility	 for	 disulphide	 bond	

formation).	Schematics	of	both	a	9mer	and	10mer	PS-SCL	have	been	 illustrated	 in	

Figure	2.2.	

	

An	 example	 of	 the	 output	 from	 a	 9mer	 PS-SCL	 screen	 against	 the	 GD.FIL.6/30	

(CDH3-specific)	clone	(generated	in	Section	3.3.2.1.)	has	been	shown	in	Figure	5.1.	

MIP-1β	 ELISA	 was	 used	 to	 quantitatively	 determine	 which	 L-amino	 acid	 residues	

were	 preferred	 by	 the	 GD.FIL.6/30	 TCR	 at	 each	 position	 along	 the	 peptide	

backbone.	 The	 data	 showed	 that	 improvements	 within	 the	 WT	 CDH3	 peptide	

sequence	 could	 primarily	 be	 made	 at	 positions	 3,	 4	 and	 8	 (FILPVLGAV)	 for	 APL	

design.	
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Figure	 5.1:	 9mer	 positional	 scanning	 synthetic	 combinatorial	 library	 (PS-SCL)	 screen	 against	
GD.FIL.6/30	(CDH3-specific)	CD8+	T-cell	clone.	MIP-1β	enzyme-linked	immunosorbent	assay	(ELISA)	
was	 used	 to	 quantitatively	 determine	 which	 L-amino	 acid	 residues	 (shown	 in	 single-letter	 code	
format)	 were	 preferred	 by	 the	 GD.FIL.6/30	 TCR	 at	 each	 position	 along	 the	 peptide	 backbone.	 All	
values	represent	mean	±	standard	deviation	(SD).	n	=	3.	The	WT	amino	acid	residues	at	each	position	
have	 been	 indicated	 in	 pink.	 This	 series	 of	 bar	 graphs	 showed	 that	 improvements	within	 the	WT	
CDH3	 peptide	 sequence	 could	 primarily	 be	made	 at	 positions	 3,	 4	 and	 8	 (FILPVLGAV).	 Position	 2	
(isoleucine/I)	and	position	9	 (valine/V)	are	the	HLA-A2	anchor	positions	 (FILPVLGAV)	 (Parker	et	al.,	
1992).	A	summary	of	these	results	can	be	seen	in	Figure	5.5A.	 	
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Data	obtained	from	all	PS-SCLs	in	this	chapter	was	analysed	using	a	novel	web	tool	

(wsbc.warwick.ac.uk/wsbcToolsWebpage),	 developed	 by	 Dr.	 Barbara	 Szomolay	 at	

Cardiff	 University	 (Szomolay	 et	 al.,	 2016).	 The	 web	 tool	 was	 used	 to	 identify	

potential	APLs	that	could	preferentially	activate	the	cognate	TCR	when	compared	to	

the	WT	peptide.	APLs	were	successfully	designed	for	each	of	my	three	breast	cancer	

antigens	(CDH3,	NY-BR-1,	and	BST-2),	and	were	subsequently	tested	for	their	ability	

to	activate	their	cognate	T-cell	clone	(GD.FIL.6/30,	ST64.NY-BR-1.75,	Lucky6.NY-BR-

1.82,	and	ST8.24)	in	Section	5.3.2.	PS-SCL	screens	for	all	of	the	other	breast	cancer	

reactive	T-cell	clones	have	been	shown	in	Figure	5.2	(ST64.NY-BR-1.75),	Figure	5.3	

(Lucky6.NY-BR-1.82)	and	Figure	5.4	(ST8.24).	

	

5.3.2. APLs	preferentially	activate	T-cell	clones	

	

5.3.2.1. Enhanced	Cadherin-3/P-cadherin	(CDH3)	APLs	

	

CDH3	 APLs	 were	 rationally	 designed	 using	 a	 9mer	 PS-SCL	 screen	 against	 the	

GD.FIL.6/30	T-cell	clone	(Figure	5.1;	summary	box	plot	in	Figure	5.5A).	These	APLs	

were	 subsequently	 tested	 for	 their	 ability	 to	 activate	 the	 cognate	 TCR	 in	 a	

competitive	 peptide	 titration	 against	 the	 CDH3	 WT	 peptide	 (FILPVLGAV)	 (Figure	

5.5B).	Peptide	dose-response	MIP-1β	ELISA	was	used	to	measure	the	sensitivity	of	

GD.FIL.6/30	to	each	of	the	peptides,	 in	terms	of	MIP-1β	release.	A	total	of	5	APLs	

were	 found	 to	 preferentially	 activate	 the	 GD.FIL.6/30	 TCR.	 LogEC50	 values	 were	

calculated	for	each	peptide,	and	then	ranked	accordingly	(1	=	most	immunogenic,	6	

=	 least	 immunogenic)	 (Figure	 5.5C).	 Ranked	 LogEC50	 values	 suggested	 that	

FIDGVQSPA	 peptide	 (LogEC50	 -9.272)	 induced	 the	 greatest	 level	 of	 GD.FIL.6/30	

activation,	 across	 the	 range	of	peptide	 concentrations	 tested	 (10-4	M	 to	10-11	M).	

Amino	acids	that	differed	from	the	WT	sequence	have	been	highlighted	in	pink	and	

underlined.	This	 result	was	consistent	with	 the	 favoured	amino	acids	 identified	at	

each	 position	 in	 the	 PS-SCL	 screen.	 Overall,	 all	 5	 APLs	 were	 shown	 to	 be	 up	 to	

10,000-fold	more	 potent	 than	 the	 respective	 CDH3	WT	peptide,	 at	 activating	 the	

cognate	GD.FIL.6/30	TCR.		
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Figure	 5.2:	 9mer	 positional	 scanning	 synthetic	 combinatorial	 library	 (PS-SCL)	 screen,	 against	
ST64.NY-BR-1.75	(NY-BR-1-specific)	CD8+	T-cell	clone.	MIP-1β	enzyme-linked	immunosorbent	assay	
(ELISA)	 was	 used	 to	 quantitatively	 determine	which	 L-amino	 acid	 residues	 (shown	 in	 single-letter	
code	 format)	 were	 preferred	 by	 the	 ST64.NY-BR-1.75	 TCR	 at	 each	 position	 along	 the	 peptide	
backbone.	All	values	represent	mean	±	standard	deviation	(SD).	n	=	3.	The	WT	amino	acid	residues	at	
each	 position	 have	 been	 indicated	 in	 pink.	 This	 series	 of	 bar	 graphs	 showed	 that	 improvements	
within	 the	WT	 NY-BR-1	 peptide	 sequence	 could	 primarily	 be	 made	 at	 positions	 3,	 5,	 6,	 8	 and	 9	
(SLSKILDTV).	 Position	 2	 (leucine/L)	 and	 position	 9	 (valine/V)	 are	 the	 HLA-A2	 anchor	 positions	
(SLSKILDTV)	(Parker	et	al.,	1992).	A	summary	of	these	results	can	be	seen	in	Figure	5.6A.	 	
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Figure	 5.3:	 9mer	 positional	 scanning	 synthetic	 combinatorial	 library	 (PS-SCL)	 screen,	 against	
Lucky6.NY-BR-1.82	 (NY-BR-1-specific)	 CD8+	 T-cell	 clone.	 MIP-1β	 enzyme-linked	 immunosorbent	
assay	 (ELISA)	was	 used	 to	 quantitatively	 determine	which	 L-amino	 acid	 residues	 (shown	 in	 single-
letter	code	format)	were	preferred	by	the	Lucky6.NY-BR-1.82	TCR	at	each	position	along	the	peptide	
backbone.	All	values	represent	mean	±	standard	deviation	(SD).	n	=	3.	The	WT	amino	acid	residues	at	
each	 position	 have	 been	 indicated	 in	 pink.	 This	 series	 of	 bar	 graphs	 showed	 that	 improvements	
within	 the	 WT	 NY-BR-1	 peptide	 sequence	 could	 primarily	 be	 made	 at	 positions	 1,	 2,	 4,	 and	 5	
(SLSKILDTV).	 Position	 2	 (leucine/L)	 and	 position	 9	 (valine/V)	 are	 the	 HLA-A2	 anchor	 positions	
(SLSKILDTV)	(Parker	et	al.,	1992).	A	summary	of	these	results	can	be	seen	in	Figure	5.7A.	 	
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Figure	 5.4:	 10mer	 positional	 scanning	 synthetic	 combinatorial	 library	 (PS-SCL)	 screen,	 against	
ST8.24	(BST-2-specific)	CD8+	T-cell	clone.	MIP-1β	enzyme-linked	 immunosorbent	assay	(ELISA)	was	
used	to	quantitatively	determine	which	L-amino	acid	residues	 (shown	 in	single-letter	code	format)	
were	preferred	by	the	ST8.24	TCR	at	each	position	along	the	peptide	backbone.	All	values	represent	
mean	 ±	 standard	 deviation	 (SD).	 n	 =	 3.	 The	WT	 amino	 acid	 residues	 at	 each	 position	 have	 been	
indicated	in	pink.	This	series	of	bar	graphs	showed	that	improvements	within	the	WT	BST-2	peptide	
sequence	 could	potentially	be	made	at	 all	 positions	apart	 from	positions	5,	6,	 and	8	 (LLLGIGILVL).	
Position	2	(leucine/L)	and	position	9	(valine/V)	are	the	HLA-A2	anchor	positions	(LLLGIGILVL)	(Parker	
et	 al.,	 1992).	 A	 summary	 of	 these	 results	 can	 be	 seen	 in	 Figure	 5.8A.	 Data	 kindly	 provided	 by	
Valentina	Bianchi	(T-cell	modulation	group,	Cardiff	University).	
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Figure	 5.5:	 Design	 of	 cadherin-3/P-cadherin	 (CDH3)	 APLs	 that	 preferentially	 activate	 the	
GD.FIL.6/30	 T-cell	 clone.	 (A)	 Summary	 box	 plot	 of	 the	 9mer	 PS-SCL	 screen	 of	GD.FIL.6/30	 (CDH3-
specific)	 CD8+	 T-cell	 clone	 (Figure	 5.1).	 Numbers	 1	 to	 9	 indicate	 the	 position	 along	 the	 peptide	
backbone.	The	sequence	at	the	bottom	(FILPVLGAV)	indicates	the	wild-type	(WT)	peptide	sequence.	
The	 size	 and	 colour	 of	 each	 single-letter	 code	 L-amino	 acid	 is	 indicative	 of	 how	 responsive	
GD.FIL.6/30	 was	 to	 each	 sub-library,	 in	 terms	 of	 MIP-1β	 release	 (pg/ml).	 This	 PS-SCL	 data	 was	
analysed	 using	 a	 novel	 web	 tool	 (Section	 2.2.6.)	 in	 order	 to	 decipher	 the	 likelihood	 of	 different	
altered	peptide	ligands	(APLs)	binding	to	the	cognate	TCR.	(B)	Sensitivity	of	GD.FIL.6/30	to	the	CDH3	
WT	 peptide,	 alongside	 the	 top	 5	 ranked	 APLs,	 was	 assessed	 by	 peptide	 dose-response	 MIP-1β	
enzyme-linked	immunosorbent	assay	(ELISA).	All	values	represent	mean	±	standard	deviation	(SD).	n	
=	3.	(C)	LogEC50	values	were	calculated	for	each	peptide	using	the	titrations	in	(B).	Ranked	LogEC50	
values	 (*1	 =	 most	 immunogenic,	 6	 =	 least	 immunogenic)	 suggested	 that	 FIDGVQSPA	 peptide	
(LogEC50	 -9.272)	 induced	 the	greatest	 level	of	GD.FIL.6/30	activation,	 across	 the	 range	of	peptide	
concentrations	 tested	 (10-4	M	 to	 10-11	M).	 Amino	 acids	 that	 differed	 from	 the	WT	 sequence	 have	
been	indicated	(pink,	underlined).	
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5.3.2.2. Enhanced	NY-BR-1	APLs	

	

With	great	success	in	APL	design	already	seen	for	the	CDH3	breast	cancer	epitope	

with	GD.FIL.6/30	T-cell	clone,	 I	next	decided	to	 investigate	whether	APLs	could	be	

identified	 for	 the	 NY-BR-1	 breast	 cancer	 epitope.	 Peptide	 preferences	 of	 the	

ST64.NY-BR-1.75	NY-BR-1	T-cell	clone,	generated	in	Section	3.3.1.1,	were	identified	

using	 a	 9mer	 PS-SCL	 screen	 (Figure	 5.2;	 summary	 box	 plot	 in	 Figure	 5.6A).	 The	

ability	 of	 these	 APLs	 to	 activate	 the	 cognate	 TCR	 was	 subsequently	 tested	 in	 a	

competitive	peptide	 titration	against	 the	NY-BR-1	WT	peptide	 (SLSKILDTV)	 (Figure	

5.6B).	Peptide	dose-response	MIP-1β	ELISA	was	used	to	measure	the	sensitivity	of	

ST64.NY-BR-1.75	to	each	of	the	peptides,	in	terms	of	MIP-1β	release.	Only	1	of	the	

APLs	 was	 found	 to	 preferentially	 activate	 the	 ST64.NY-BR-1.75	 TCR.	 This	 was	

unsurprising,	as	the	PS-SCL	screen	showed	little	scope	for	improvement	within	the	

peptide	 sequence.	 LogEC50	 values	 were	 calculated	 for	 each	 peptide,	 and	 then	

ranked	accordingly	(1	=	most	 immunogenic,	3	=	 least	 immunogenic)	 (Figure	5.6C).	

Ranked	LogEC50	values	suggested	that	SLSKILDHA	peptide	(LogEC50	-7.006)	was	a	

more	 potent	 agonist	 for	 ST64.NY-BR-1.75	 T-cells	 than	 the	 NY-BR-1	 WT	 peptide	

(LogEC50	-5.810).	Overall,	this	NY-BR-1	APL	was	shown	to	be	>	10-fold	more	potent	

than	the	respective	NY-BR-1	WT	peptide,	at	activating	the	cognate	ST64.NY-BR-1.75	

TCR.	 Importantly,	 my	 data	 also	 demonstrated	 that	 ST64.NY-BR-1.75	 did	 not	

recognise	 the	 NY-BR-1.1	 brain	 homologue	 peptide	 (TLSKILVAL;	 LogEC50	 -2.296),	

suggesting	the	importance	of	amino	acids	S	and	D	for	TCR	binding	at	positions	1	and	

7,	 respectively.	 This	was	an	encouraging	 result,	 as	 it	 implied	a	 reduced	possibility	

for	unwanted	in	vivo	off-target	effects.	

	

5.3.2.3. NY-BR-1	APLs	preferentially	activate	the	Lucky6.NY-BR-1.82	T-cell	clone		

	

Since	only	1	NY-BR-1	APL	was	successfully	found	for	ST64.NY-BR-1.75	T-cell	clone,	I	

decided	 to	 investigate	whether	 additional	NY-BR-1	APLs	 could	 be	 identified	 using	

the	 Lucky6.NY-BR-1.82	T-cell	 clone,	 generated	 in	Section	3.3.1.1.	 Further	NY-BR-1	

APLs	were	 identified	using	a	9mer	PS-SCL	screen	against	the	Lucky6.NY-BR-1.82	T-

cell	clone	(Figure	5.3;	summary	box	plot	in	Figure	5.7A).	The	ability	of	these	APLs	to		 	
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Figure	5.6:	Design	of	NY-BR-1	APLs	 that	preferentially	activate	 the	ST64.NY-BR-1.75	T-cell	 clone.	
(A)	Summary	box	plot	of	the	9mer	PS-SCL	screen	of	ST64.NY-BR-1.75	(NY-BR-1-specific)	CD8+	T-cell	
clone	(Figure	5.2).	Numbers	1	to	9	indicate	the	position	along	the	peptide	backbone.	The	sequence	
at	 the	 bottom	 (SLSKILDTV)	 indicates	 the	wild-type	 (WT)	 peptide	 sequence.	 The	 size	 and	 colour	 of	
each	 single-letter	 code	 L-amino	 acid	 is	 indicative	of	 how	 responsive	 ST64.NY-BR-1.75	was	 to	 each	
sub-library,	in	terms	of	MIP-1β	release	(pg/ml).	This	PS-SCL	data	was	analysed	using	a	novel	web	tool	
(Section	2.2.6.)	in	order	to	decipher	the	likelihood	of	different	altered	peptide	ligands	(APLs)	binding	
to	 the	cognate	TCR.	 (B)	Sensitivity	of	ST64.NY-BR-1.75	to	 the	NY-BR-1	WT	peptide,	 the	 top	ranked	
APL,	 and	 the	 NY-BR-1.1	 brain	 homologue	 peptide	 (TLSKILVAL),	 was	 assessed	 by	 peptide	 dose-
response	MIP-1β	enzyme-linked	immunosorbent	assay	(ELISA).	All	values	represent	mean	±	standard	
deviation	(SD).	n	=	3.	(C)	LogEC50	values	were	calculated	for	each	peptide	using	the	titrations	in	(B).	
Ranked	LogEC50	values	(*1	=	most	immunogenic,	3	=	least	immunogenic)	suggested	that	SLSKILDHA	
peptide	(LogEC50	-7.006)	induced	greater	ST64.NY-BR-1.75	activation	than	the	NY-BR-1	WT	peptide	
(LogEC50	-5.810),	across	the	range	of	peptide	concentrations	tested	(10-4	M	to	10-9	M).	The	data	also	
demonstrated	 that	 ST64.NY-BR-1.75	 did	 not	 recognise	 the	 NY-BR-1.1	 brain	 homologue	 peptide	
(LogEC50	 -2.296).	 Amino	 acids	 that	 differed	 from	 the	 WT	 sequence	 have	 been	 indicated	 (pink,	
underlined).	
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Figure	5.7:	Design	of	NY-BR-1	APLs	that	preferentially	activate	the	Lucky6.NY-BR-1.82	T-cell	clone.	
(A)	Summary	box	plot	of	the	9mer	PS-SCL	screen	of	Lucky6.NY-BR-1.82	(NY-BR-1-specific)	CD8+	T-cell	
clone	(Figure	5.3).	Numbers	1	to	9	indicate	the	position	along	the	peptide	backbone.	The	sequence	
at	 the	 bottom	 (SLSKILDTV)	 indicates	 the	wild-type	 (WT)	 peptide	 sequence.	 The	 size	 and	 colour	 of	
each	single-letter	code	L-amino	acid	is	indicative	of	how	responsive	Lucky6.NY-BR-1.82	was	to	each	
sub-library,	in	terms	of	MIP-1β	release	(pg/ml).	This	PS-SCL	data	was	analysed	using	a	novel	web	tool	
(Section	2.2.6.)	in	order	to	decipher	the	likelihood	of	different	altered	peptide	ligands	(APLs)	binding	
to	 the	 cognate	 TCR.	 (B)	 Sensitivity	 of	 Lucky6.NY-BR-1.82	 to	 the	 NY-BR-1	 WT	 peptide,	 the	 top	 5	
ranked	 APLs,	 and	 the	 NY-BR-1.1	 brain	 homologue	 peptide	 (TLSKILVAL),	 was	 assessed	 by	 peptide	
dose-response	MIP-1β	 enzyme-linked	 immunosorbent	 assay	 (ELISA).	 All	 values	 represent	 mean	 ±	
standard	 deviation	 (SD).	 n	 =	 3.	 (C)	 LogEC50	 values	 were	 calculated	 for	 each	 peptide	 using	 the	
titrations	in	(B).	Ranked	LogEC50	values	(*1	=	most	immunogenic,	7	=	least	immunogenic)	suggested	
that	 FIAGVLDTV	 peptide	 (LogEC50	 -7.997)	 induced	 the	 greatest	 level	 of	 Lucky6.NY-BR-1.82	
activation,	 across	 the	 range	 of	 peptide	 concentrations	 tested	 (10-5	 M	 to	 10-10	 M).	 The	 data	 also	
demonstrated	 that	 Lucky6.NY-BR-1.82	 did	 not	 recognise	 the	 NY-BR-1.1	 brain	 homologue	 peptide	
(LogEC50	 -2.323).	 Amino	 acids	 that	 differed	 from	 the	 WT	 sequence	 have	 been	 indicated	 (pink,	
underlined).	
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activate	the	cognate	TCR	was	subsequently	tested	in	a	competitive	peptide	titration	

against	the	NY-BR-1	WT	peptide	(SLSKILDTV)	 (Figure	5.7B).	Peptide	dose-response	

MIP-1β	ELISA	was	used	to	measure	the	sensitivity	of	Lucky6.NY-BR-1.82	to	each	of	

the	 peptides,	 in	 terms	 of	 MIP-1β	 release.	 Since	 the	 Lucky6.NY-BR-1.82	 PS-SCL	

screen	showed	much	greater	scope	for	improvement	in	the	peptide	sequence	when	

compared	 to	 the	ST64.NY-BR-1.75	PS-SCL	 screen,	a	 total	of	5	APLs	were	 found	 to	

preferentially	 activate	 the	 Lucky6.NY-BR-1.82	 TCR.	 This	 was	 considered	 a	 vast	

improvement	 on	 the	 1	 APL	 designed	 using	 the	 ST64.NY-BR-1.75	 clone.	 LogEC50	

values	 were	 calculated	 for	 each	 peptide,	 and	 then	 ranked	 accordingly	 (1	 =	most	

immunogenic,	 7	 =	 least	 immunogenic)	 (Figure	 5.7C).	 Ranked	 LogEC50	 values	

suggested	that	FIAGVLDTV	peptide	 (LogEC50	-7.997)	 induced	the	greatest	 level	of	

Lucky6.NY-BR-1.82	 activation,	 across	 the	 range	 of	 peptide	 concentrations	 tested	

(10-5	 M	 to	 10-10	 M).	 Overall,	 all	 5	 Lucky6.NY-BR-1.82	 APLs	 were	 shown	 to	 be	

approximately	10-fold	more	potent	 than	 the	 respective	NY-BR-1	WT	peptide,	 and	

thus	did	not	improve	on	the	level	of	potency	previously	seen	with	the	ST64.NY-BR-

1.75	derived	APL.	

	

Based	on	the	design	of	these	APLs,	the	WT	amino	acids	D,T,	and	V	in	positions	7,	8,	

and	9,	respectively,	were	considered	vital	for	peptide	recognition	by	the	Lucky6.NY-

BR-1.82	TCR.	 Therefore,	 it	was	not	 surprising	 that	 the	APL	 found	 for	 ST64.NY-BR-

1.75	 T-cell	 clone,	with	 amino	 acid	 substitutions	 in	 positions	 8	 and	9	 (SLSKILDHA),	

failed	to	activate	Lucky6.NY-BR-1.82	when	tested	in	a	peptide	dose-response	MIP-

1β	ELISA	(Supplementary	Figure	4).	The	different	results	seen	with	Lucky6.NY-BR-

1.82	and	ST64.NY-BR-1.75	 	T-	 cell	 clones	highlighted	how	two	TCRs	 raised	against	

the	 same	 peptide	 are	 capable	 of	 exhibiting	 very	 different	 optimal	 peptide	

preferences.		

	

However,	alanine	scanning	and/or	structural/biophysical	analysis	of	the	pMHC-TCR	

interaction	 would	 be	 required	 to	 confirm	 these	 findings	 (discussed	 further	 in	

Chapter	 7).	 Finally,	 much	 like	 the	 ST64.NY-BR-1.75	 clone,	 the	 data	 also	

demonstrated	 that	 Lucky6.NY-BR-1.82	 did	 not	 recognise	 the	 NY-BR-1.1	 brain	

homologue	peptide	(TLSKILVAL;	LogEC50	-2.323).	
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5.3.2.4. Enhanced	BST-2	APLs	

	

Following	 the	 successful	design	of	 immunogenic	APLs	 for	2	out	of	3	of	my	breast	

cancer	epitopes,	I	next	wanted	to	see	if	it	was	possible	to	identify	APLs	for	the	BST-

2	epitope.	A	similar	approach	was	taken	as	above,	except	that	for	the	design	of	BST-

2	 APLs	 I	 used	 a	 10mer	 PS-SCL	 screen	 against	 the	 ST8.24	 T-cell	 clone	 (Figure	 5.4;	

summary	box	plot	in	Figure	5.8A)	–	a	clone	derived	from	the	HLA-A2-restricted	TILs	

of	 a	metastatic	melanoma	patient,	 as	described	 in	Section	4.3.4.	A	10mer	PS-SCL	

screen	was	used	as,	even	though	individual	T-cells	can	recognise	a	large	number	of	

different	 peptide	 lengths,	 studies	 in	 my	 laboratory	 have	 shown	 that	 TCRs	 often	

exhibit	 a	 preferred	 peptide	 length,	 and	 that	 finding	 agonists	 of	 a	 non-preferred	

length	is	very	unlikely	(Ekeruche-Makinde	et	al.,	2013).	APLs	determined	from	this	

10mer	PS-SCL	were	subsequently	tested	for	their	ability	to	activate	the	cognate	TCR	

in	a	competitive	peptide	titration	against	the	BST-2	WT	peptide	(LLLGIGILVL)	(Figure	

5.8B).	Peptide	dose-response	MIP-1β	ELISA	was	used	to	measure	the	sensitivity	of	

ST8.24	to	each	of	the	peptides,	in	terms	of	MIP-1β	release.	A	total	of	9	APLs	were	

found	to	preferentially	activate	the	ST8.24	TCR.	This	was	unsurprising,	as	the	PS-SCL	

screen	 showed	 that	 there	 was	 vast	 scope	 for	 improvement	 within	 the	 peptide	

sequence.	 LogEC50	 values	 were	 calculated	 for	 each	 peptide,	 and	 then	 ranked	

accordingly	(1	=	most	immunogenic,	10	=	least	immunogenic)	(Figure	5.8C).	Ranked	

LogEC50	values	suggested	that	QTSAIGILPV	peptide	(LogEC50	-8.845)	was	the	most	

potent	agonist	of	ST8.24.	This	result	was	consistent	with	the	favoured	amino	acids	

identified	at	each	position	 in	the	PS-SCL	screen.	Overall,	all	9	APLs	were	shown	to	

be	up	to	100-fold	more	potent	than	the	respective	BST-2	WT	peptide,	at	activating	

the	cognate	ST8.24	TCR.	

	

5.3.2.5. BST-2	APLs	preferentially	activate	the	MEL5	T-cell	clone		

	

With	 access	 to	 an	 additional	 BST-2	 reactive	 T-cell	 clone	 in	 our	 laboratory	 (MEL5)	

(Ekeruche-Makinde	et	al.,	2012),	I	was	interested	to	see	whether	the	9	BST-2	APLs,	

designed	from	the	previous	ST8.24	10mer	PS-SCL	screen	(Figure	5.4),	were	capable		 	
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Figure	5.8:	Design	of	BST-2	APLs	that	preferentially	activate	the	ST8.24	T-cell	clone.	 (A)	Summary	
box	 plot	 of	 the	 10mer	 PS-SCL	 screen	 of	 ST8.24	 (BST-2-specific)	 CD8+	 T-cell	 clone	 (Figure	 5.4).	
Numbers	 1	 to	 10	 indicate	 the	 position	 along	 the	 peptide	 backbone.	 The	 sequence	 at	 the	 bottom	
(LLLGIGILVL)	indicates	the	wild-type	(WT)	peptide	sequence.	The	size	and	colour	of	each	single-letter	
code	L-amino	acid	is	indicative	of	how	responsive	ST8.24	was	to	each	sub-library,	in	terms	of	MIP-1β	
release	 (pg/ml).	 This	PS-SCL	data	was	analysed	using	a	novel	web	 tool	 (Section	2.2.6.)	 in	order	 to	
decipher	 the	 likelihood	of	different	 altered	peptide	 ligands	 (APLs)	binding	 to	 the	 cognate	TCR.	 (B)	
Sensitivity	 of	 ST8.24	 to	 the	 BST-2	WT	 peptide,	 alongside	 the	 top	 9	 ranked	APLs,	was	 assessed	 by	
peptide	 dose-response	 MIP-1β	 enzyme-linked	 immunosorbent	 assay	 (ELISA).	 All	 values	 represent	
mean	±	standard	deviation	(SD).	n	=	3.	(C)	LogEC50	values	were	calculated	for	each	peptide	using	the	
titrations	 in	 (B).	 Ranked	 LogEC50	 values	 (*1	 =	 most	 immunogenic,	 10	 =	 least	 immunogenic)	
suggested	that	QTSAIGILPV	peptide	(LogEC50	-8.845)	induced	the	greatest	level	of	ST8.24	activation,	
across	the	range	of	peptide	concentrations	tested	(10-5	M	to	10-11	M).	Amino	acids	that	differed	from	
the	WT	sequence	have	been	indicated	(pink,	underlined).	
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of	 preferentially	 activating	 another	 BST-2	 specific	 TCR	 derived	 from	 a	 different	

individual.	 In	 contrast	 to	 the	 ST8.24	 clone,	which	was	 derived	 from	 the	 TILs	 of	 a	

cancer	 patient,	 the	 HLA-A2-restricted	MEL5	 T-cell	 clone	 was	 generated	 from	 the	

PBMC	of	a	healthy	donor.	Additionally,	 the	MEL5	TCR	was	 found	 to	be	much	 less	

sensitive	to	the	BST-2	WT	peptide,	when	compared	to	the	ST8.24	clone.		

	

Thus,	 to	determine	whether	 these	APLs	could	be	effective	across	multiple	donors	

(i.e.	generate	a	“public”	response),	 I	examined	how	the	MEL5	clone	responded	to	

the	APLs	selected	using	the	ST8.24	clone	(Figure	5.9A).	Once	again,	peptide	dose-

response	MIP-1β	ELISA	was	used	to	measure	the	sensitivity	of	MEL5	to	each	of	the	

peptides.	 Interestingly,	 all	 9	 APLs	were	 found	 to	 preferentially	 activate	 the	MEL5	

TCR.	LogEC50	values	were	calculated	for	each	peptide,	and	then	ranked	accordingly	

(1	 =	most	 immunogenic,	 10	 =	 least	 immunogenic)	 (Figure	 5.9B).	 Ranked	 LogEC50	

values	 suggested	 that	 ITSGIGVLPV	 peptide	 (LogEC50	 -8.482)	 induced	 the	 greatest	

level	of	MEL5	activation,	across	the	range	of	peptide	concentrations	tested	(10-5	M	

to	10-10	M).	Overall,	all	9	APLs	were	shown	to	be	up	to	100,000-fold	more	potent	

than	the	respective	BST-2	WT	peptide,	at	activating	the	cognate	MEL5	TCR.	
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Figure	5.9:	Design	of	BST-2	APLs	that	preferentially	activate	the	MEL5	T-cell	clone.	10mer	PS-SCL	
data	from	screening	of	ST8.24	(BST-2-specific)	T-cell	clone	(Figure	5.4	and	Figure	5.8A)	was	analysed	
using	 a	 novel	 web	 tool	 (Section	 2.2.6.)	 in	 order	 to	 decipher	 the	 likelihood	 of	 different	 altered	
peptide	ligands	(APLs)	binding	to	the	MEL5	TCR.	(A)	Sensitivity	of	MEL5	to	the	wild-type	(WT)	BST-2	
peptide	(LLLGIGILVL),	alongside	the	top	9	ranked	APLs,	was	assessed	by	peptide	dose-response	MIP-
1β	 enzyme-linked	 immunosorbent	 assay	 (ELISA).	 All	 values	 represent	 mean	 ±	 standard	 deviation	
(SD).	n	=	3.	(B)	LogEC50	values	were	calculated	for	each	peptide	using	the	titrations	in	(A).	Ranked	
LogEC50	 values	 (*1	 =	 most	 immunogenic,	 10	 =	 least	 immunogenic)	 suggested	 that	 ITSGIGVLPV	
peptide	(LogEC50	-8.482)	induced	the	greatest	level	of	MEL5	activation,	across	the	range	of	peptide	
concentrations	 tested	 (10-5	M	 to	 10-10	M).	 Amino	 acids	 that	 differed	 from	 the	WT	 sequence	 have	
been	indicated	(pink,	underlined).	
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5.4. DISCUSSION	

	

In	this	chapter,	I	have	successfully	screened	each	of	the	breast	cancer	reactive	T-cell	

clones	generated	in	Chapters	3	and	4	(GD.FIL.6/30,	Lucky6.NY-BR-1.82,	ST64.NY-BR-

1.75,	and	ST8.24)	against	a	PS-SCL,	in	order	to	rationally	design	immunogenic	APLs	

for	three	key	breast	cancer	antigens	(CDH3,	NY-BR-1,	and	BST-2).	Strikingly,	a	total	

of	 9	APLs	were	 identified	 for	 the	BST-2	 antigen.	 These	BST-2	APLs	were	 not	 only	

found	 to	 be	 up	 to	 100,000-fold	 more	 potent	 than	 the	 corresponding	 BST-2	 WT	

epitope,	but	all	9	of	the	APLs	acted	as	potent	agonists	 for	both	of	the	BST-2	TCRs	

tested	–	one	of	which	was	derived	 from	a	 cancer	patient	 (ST8.24),	 and	 the	other	

derived	 from	a	healthy	 individual	 (MEL5).	Thus,	of	 the	 three	antigens	 I	examined,	

BST-2	appeared	to	have	the	greatest	scope	for	generating	improved	agonists.	

	

By	this	point	I	was	nearing	the	end	of	my	laboratory	studies,	so	I	decided	to	select	

the	BST-2	 system	 for	 further	 testing.	 I	wanted	 to	 see	whether	 it	was	possible	 for	

one	 of	 my	 “public”	 BST-2	 APLs	 to	 induce	 an	 enhanced	 immunogenic	 response,	

when	 compared	 to	 the	 BST-2	 WT	 sequence.	 Since	 the	 ITSGIGVLPV	 APL	 peptide	

ranked	 first	 for	MEL5	 TCR	 activation,	 and	 third	 for	 ST8.24	 TCR	 activation,	 it	 was	

selected	as	 the	most	 immunogenic	peptide,	 and	was	 subsequently	 taken	 forward	

into	preliminary	CD8+	T-cell	priming	experiments,	using	PBMC	from	healthy	HLA-A2+	

individuals	(Chapter	6).	
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6. Preliminary	 experiments	 to	 investigate	 whether	 altered	 peptide	

ligands	 (APLs)	 can	 prime	 improved	 T-cell	 responses	 to	 breast	

cancer	antigens	

	

6.1. Introduction		

	

Previous	 studies	 involving	 the	 generation	 of	 APLs	 have	 failed	 to	 stimulate	 T-cell	

clonotypes	 with	 superior	 effector	 functions	 (Speiser	 et	 al.,	 2008).	 However,	 a	

particular	study	carried	out	by	Speiser	et	al.	assumed	that	changing	the	position	2	

(P2)	primary	MHC	anchor	in	a	Melan	A-derived	peptide,	from	alanine	to	the	more	

preferable	 leucine	 residue,	 would	 not	 interfere	 with	 TCR	 contact.	 My	 group	

subsequently	showed	that	this	assumption	was	incorrect,	and	that	changes	at	MHC	

anchors	 could	alter	 the	way	peptides	 look	 to	 incoming	T-cells.	 (Cole	et	al.,	 2010).	

Indeed,	 the	 poorer	 alanine	 at	 P2	 in	 this	 peptide	 helps	 with	 TCR	 binding,	 as	 the	

cognate	MEL5	TCR	could	lift	the	N-terminus	of	the	peptide	out	of	the	MHC	binding	

groove,	 and	 therefore	 make	 stronger	 bonds	 with	 it	 (Madura	 et	 al.,	 2015).	 Thus,	

there	 are	 known	 dangers	 with	 modifying	 peptides	 for	 vaccination,	 as	 APL	 can	

potentially	 induce	clonotypes	 that	 fail	 to	 respond	 to	natural	 antigen	well	 (i.e.	 the	

WT	peptide	sequence).	Consequently,	it	was	next	necessary	to	assess	the	ability	of	

the	chosen	BST-2	APL	(designed	in	Chapter	5)	to	prime	improved	BST-2	WT	specific	

CD8+	T-cell	responses,	in	multiple	healthy	HLA-A2+	individuals.	
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6.2. AIMS	

	

The	 aim	 of	 this	 chapter	 was	 to	 carry	 out	 preliminary	 experiments	 to	 investigate	

whether	the	BST-2	APL	designed	in	Chapter	5	was	capable	of	priming	improved	T-

cell	 responses	 to	 the	 BST-2	 WT	 antigen	 (i.e.	 natural	 antigen).	 Several	 different	

approaches	were	used	to	measure	the	quality	of	the	primed	CD8+	T-cell	response,	

in	multiple	healthy	HLA-A2+	individuals:	(1)	staining	with	BST-2	WT	pMHC	tetramer	

was	 used	 to	measure	 the	magnitude	of	 the	 primed	 response	 (Section	 6.3.1.);	 (2)	

clonotyping	of	the	tetramer-positive	(BST-2	WT	reactive)	T-cells	was	used	to	assess	

the	 TCR	 diversity	 of	 the	 primed	 response	 (Section	 6.3.2.);	 and	 finally,	 (3)	

preliminary	 studies	 were	 undertaken	 to	 compare	 the	 function	 of	 T-cells	 primed	

with	 the	BST-2	WT	peptide	 (i.e.	natural	antigen)	 to	 the	 function	of	T-cells	primed	

with	the	BST-2	APL,	by	investigating	their	ability	to	kill	tumour	cells.	 	
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6.3. RESULTS	

	

6.3.1. BST-2	APL	primes	a	T-cell	response	of	greater	magnitude	

	

With	the	purpose	of	investigating	the	ability	of	the	chosen	BST-2	APL	(ITSGIGVLPV)	

to	 prime	 improved	 BST-2	WT	 specific	 T-cell	 responses	 in	 vitro,	 CD8+	 T-cells	 from	

four	 (n	 =	 4)	 healthy	 HLA-A2+	 donors	were	 primed	 (priming	 protocol	 described	 in	

Section	2.1.6.)	with	either	the	BST-2	WT	peptide	(LLLGIGILVL),	the	BST-2	APL,	or	an	

equivalent	amount	of	DMSO	(“No	Peptide”	negative	control).	The	primary	method	

for	assessing	the	T-cell	responses	for	each	of	these	three	priming	conditions	was	to	

quantify	 the	magnitude	 of	 the	 response,	 i.e.	 the	 frequency	 of	 antigen-specific	 T-

cells	capable	of	binding	to	the	WT	peptide.	Thus,	to	determine	whether	the	APL	was	

capable	 of	 priming	 a	 greater	 magnitude	 of	 BST-2	 reactive	 CD8+	 T-cells,	 when	

compared	 to	 the	 WT	 peptide,	 primed	 cells	 were	 stained	 with	 BST-2	 WT	 pMHC	

tetramer,	according	the	the	method	described	previously	(Section	2.3.4.).	

	

The	tetramer	staining	results	for	all	four	donors	(A,	B,	C,	and	D)	are	shown	in	Figure	

6.1.	 Dot	 plots	 depicting	 the	 percentage	 of	 tetramer-positive	 (BST-2	WT	 reactive)	

populations	for	each	priming	condition	(No	Peptide,	WT,	and	APL)	have	been	shown	

alongside	 the	 fold	 increase	 compared	 to	 No	 Peptide,	 as	 an	 indication	 of	 the	

magnitude	 of	 T-cell	 expansion	 induced	 by	 the	 WT	 peptide	 and	 APL.	 The	 results	

showed	that	a	small		population	of	BST-2	reactive	CD8+	T-cells	were	already	present	

in	 the	 No	 Peptide	 (DMSO)	 condition	 of	 each	 donor,	 suggesting	 a	 low-level	

background	of	BST-2	 reactive	T-cells	 in	 the	periphery	of	 some	healthy	 individuals.	

However,	when	 compared	 to	 the	WT	 primed	 BST-2	 reactive	 populations,	 this	 No	

Peptide	population	was	considered	a	convincing	negative	control.	It	is	possible	that	

these	pre-existing	BST-2	reactive	T-cells	might	occurr	within	healthy	(non-exposed)	

individuals	due	to	TCR	cross-reactivity	to	environmental	antigens	(Su	et	al.,	2013).	

However,	 further	 investigation	 would	 be	 required	 in	 order	 to	 determine	 exactly	

what	these	T-cells	are.	Most	importantly,	in	all	four	donors	the	BST-2	APL	generated	

a	response	that	was	of	greater	magnitude	than	the	BST-2	WT	peptide.	In	fact,	for		
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Figure	 6.1:	 BST-2	 APL	 (ITSGIGVLPV)	 primes	 a	 BST-2	 reactive	 CD8+	 T-cell	 response	 of	 greater	
magnitude.	 CD8+	 T-cells	 from	 a	 healthy	 HLA-A2+	 donor	 were	 primed	 (Section	 2.1.6.)	 using	
autologous,	 irradiated	 PBMC	pulsed	with	 either	 the	 BST-2	 “WT”	 peptide	 (LLLGIGILVL),	 the	 chosen	
BST-2	“APL”	(ITSGIGVLPV),	or	an	equivalent	amount	of	DMSO	(“No	Peptide”	negative	control).	Cells	
were	then	stained	with	BST-2	WT	pMHC	tetramer	(Section	2.3.4.).	Percentage	of	tetramer	positive	
(BST-2	WT	reactive)	T-cells	has	been	shown	for	each	donor	(A,	B,	C	and	D)	and	priming	condition	(No	
Peptide,	WT,	 and	 APL).	 “Fold	 increase	 from	No	 Peptide”	 has	 been	 shown	 as	 an	 indication	 of	 the	
magnitude	of	each	WT	and	APL	response.	The	APL	was	capable	of	priming	up	to	8	times	more	BST-2	
reactive	CD8+	T-cells	than	the	WT	peptide.	
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Donor	A,	the	APL	primed	8	times	more	BST-2	reactive	CD8+	T-cells(38.3%	tetramer-

positive)	 than	the	WT	peptide	 (4.57%	tetramer-positive),	 thus	confirming	that	 the	

chosen	 APL	 was	 proficient	 in	 activating	 a	 T-cell	 response	 of	 much	 greater	

magnitude	across	several	healthy	donors.	

	

6.3.2. BST-2	APL	primes	a	clonotypically	distinct	T-cell	response	

	

In	addition	to	assessing	the	magnitude	of	the	immune	response,	the	TCR	diversity	

of	each	primed	T-cell	response	was	also	investigated,	in	terms	of	TRBV	gene	usage	

and	 unique/shared	 CDR3	 sequences.	 In	 order	 to	 determine	 whether	 the	 T-cell	

population	primed	by	the	BST-2	APL	was	clonotypically	distinct	from	the	BST-2	WT-

primed	 T-cell	 population,	 cells	 were	 first	 sorted	 (Section	 2.3.6.)	 according	 to	

staining	with	BST-2	WT	pMHC	tetramer	(Section	2.3.4.;	sort	plots	shown	in	Figure	

6.2A,	 Figure	 6.3A,	 and	 Figure	 6.4A).	 Isolated	 tetramer-positive	 T-cell	 populations	

were	then	analysed	to	examine	their	clonotypic	architecture	(Section	2.4.).	Due	to	

constraints	on	cell	numbers	for	sorting,	clonotype	data	was	obtained	for	only	three	

of	the	four	donors	(Donors	A,	B,	and	C).	Likewise,	too	few	cells	were	obtained	for	

the	No	 Peptide	 priming	 condition	 of	 each	 donor	 for	 clonotypic	 analysis,	with	 the	

exception	of	Donor	B.	

	

The	 clonotyping	 results	 for	 the	 first	 donor	 (Donor	A)	 are	 shown	 in	Figure	6.2.	To	

begin,	TCRβ	V	(TRBV)	gene	usage	was	compared	for	each	of	the	priming	conditions	

(Figure	6.2B).	Unsurprisingly,	 there	was	some	overlap	 in	TRBV	usage	between	the	

WT	and	APL	primed	populations.	For	example,	both		priming	conditions	contained	

TRBV6-5*00	 and	 TRBV20-1*00	 T-cell	 populations.	 Each	 priming	 condition	 also	

displayed	unique	TRBV	gene	usage.	For	example,	the	WT	priming	condition	showed	

preferential	 usage	 of	 TRBV28*00	 (19.6%),	 whereas	 the	 APL	 priming	 condition	

showed	preferential	usage	of	TRBV3-1*00	(48.6%).	 In	terms	of	TRBV	diversity,	the	

WT	 primed	 population	 contained	 the	 greatest	 number	 of	 TRBV	 genes	 (34	 total	

TRBV	genes),	when	compared	to	the	APL	primed	population	(23	total	TRBV	genes).	

Next,	 the	 total	 number	 of	 clonotypes	 (i.e.	 unique	 TCRβ	CDR3	 sequences)	 in	 each	

priming	condition	was	analysed	(Figure	6.2C).	The	WT	primed	population	contained	
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Figure	 6.2:	 Donor	 A	 -	 priming	with	 BST-2	 APL	 generates	 a	 T-cell	 response	 that	 is	 clonotypically	
distinct	 from	 T-cells	 primed	with	 BST-2	WT	 peptide.	 CD8+	 T-cells	 from	 a	 healthy	 HLA-A2+	 donor	
were	primed	(Section	2.1.6.)	using	autologous,	irradiated	PBMC	pulsed	with	either	the	BST-2	“WT”	
peptide	 (LLLGIGILVL)	 or	 chosen	 “APL”	 (ITSGIGVLPV).	 (A)	 Cells	 were	 then	 sorted	 (Section	 2.3.6.)	
according	 to	staining	with	BST-2	WT	pMHC	tetramer	 (Section	2.3.4.).	 Isolated	 tetramer-positive	T-
cell	populations	were	then	sent	for	clonotypic	analysis	(Section	2.4.).	(B)	Bar	graph	comparing	TRBV	
gene	usage	between	WT	(grey)	and	APL	(pink)	primed	T-cell	populations.	The	WT	primed	population	
showed	the	greatest	level	of	TRBV	gene	diversity	(34	total	TRBV	genes).	(C)	Pie	charts	comparing	the	
total	number	of	clonotypes	(i.e.	unique	TCRβ	CDR3	sequences)	present	in	WT	and	APL	primed	T-cell	
populations.	The	top	5	clonotypes	for	each	priming	condition	have	been	displayed	in	pink.	The	WT	
primed	population	showed	the	greatest	 level	of	clonotypic	diversity	(159	unique	CDR3	sequences).	
Arrows	have	been	shown	to	display	the	number	of	shared	clonotypes	between	WT	and	APL	primed	
T-cell	populations.	No	clonotypes	were	shared	between	the	WT	and	APL	priming	conditions.	 	
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Figure	 6.3:	 Donor	 B	 -	 priming	with	 BST-2	 APL	 generates	 a	 T-cell	 response	 that	 is	 clonotypically	
distinct	 from	 T-cells	 primed	with	 BST-2	WT	 peptide.	 CD8+	 T-cells	 from	 a	 healthy	 HLA-A2+	 donor	
were	primed	(Section	2.1.6.)	using	autologous,	irradiated	PBMC	pulsed	with	either	the	BST-2	“WT”	
peptide	(LLLGIGILVL),	the	chosen	BST-2	“APL”	(ITSGIGVLPV),	or	an	equivalent	amount	of	DMSO	(“No	
Peptide”	negative	control).	(A)	Cells	were	then	sorted	(Section	2.3.6.)	according	to	staining	with	BST-
2	WT	pMHC	tetramer	(Section	2.3.4.).	 Isolated	tetramer-positive	T-cell	populations	were	then	sent	
for	clonotypic	analysis	(Section	2.4.).	(B)	Bar	graph	comparing	TRBV	gene	usage	between	No	Peptide	
(white),	WT	(grey),	and	APL	(pink)	primed	T-cell	populations.	The	APL	primed	population	showed	the	
greatest	 level	 of	 TRBV	 gene	 diversity	 (39	 total	 TRBV	 genes).	 (C)	 Pie	 charts	 comparing	 the	 total	
number	 of	 clonotypes	 (i.e.	 unique	 TCRβ	 CDR3	 sequences)	 present	 in	 No	 Peptide,	 WT,	 and	 APL	
primed	T-cell	populations.	The	top	5	clonotypes	for	each	priming	condition	have	been	displayed	in	
pink.	The	APL	primed	population	showed	the	greatest	level	of	clonotypic	diversity	(417	unique	CDR3	
sequences).	 Arrows	 have	 been	 shown	 to	 display	 the	 number	 of	 shared	 clonotypes	 between	 No	
Peptide,	 WT,	 and	 APL	 primed	 T-cell	 populations.	 The	 APL	 primed	 population	 shared	 the	 most	
clonotypes	(5	shared	CDR3	sequences)	with	the	No	Peptide	priming	condition.	 	
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Figure	 6.4:	 Donor	 C	 -	 priming	with	 BST-2	 APL	 generates	 a	 T-cell	 response	 that	 is	 clonotypically	
distinct	 from	 T-cells	 primed	with	 BST-2	WT	 peptide.	 CD8+	 T-cells	 from	 a	 healthy	 HLA-A2+	 donor	
were	primed	(Section	2.1.6.)	using	autologous,	irradiated	PBMC	pulsed	with	either	the	BST-2	“WT”	
peptide	 (LLLGIGILVL)	 or	 chosen	 “APL”	 (ITSGIGVLPV).	 (A)	 Cells	 were	 then	 sorted	 (Section	 2.3.6.)	
according	 to	staining	with	BST-2	WT	pMHC	tetramer	 (Section	2.3.4.).	 Isolated	 tetramer-positive	T-
cell	populations	were	then	sent	for	clonotypic	analysis	(Section	2.4.).	(B)	Bar	graph	comparing	TRBV	
gene	usage	between	WT	(grey)	and	APL	(pink)	primed	T-cell	populations.	The	WT	primed	population	
showed	the	greatest	level	of	TRBV	gene	diversity	(38	total	TRBV	genes).	(C)	Pie	charts	comparing	the	
total	number	of	clonotypes	(i.e.	unique	TCRβ	CDR3	sequences)	present	in	WT	and	APL	primed	T-cell	
populations.	The	top	5	clonotypes	for	each	priming	condition	have	been	displayed	in	pink.	The	WT	
primed	population	showed	the	greatest	 level	of	clonotypic	diversity	(149	unique	CDR3	sequences).	
Arrows	have	been	shown	to	display	the	number	of	shared	clonotypes	between	WT	and	APL	primed	
T-cell	populations.	4	clonotypes	were	shared	between	the	WT	and	APL	priming	conditions.	
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the	greatest	number	of	clonotypes	(159	unique	CDR3	sequences),	when	compared	

to	the	APL	primed	population	(83	unique	CDR3	sequences).	Thus,	consistent	with	its	

diverse	TRBV	gene	usage,	the	WT	primed	population	displayed	a	much	greater	level	

of	 clonotypic	 diversity	 than	 the	 APL	 primed	 population	 in	 this	 donor.	 Finally,	 the	

number	of	shared	clonotypes	(with	identical	TCRβ	CDR3	amino	acid	sequences)	was	

analysed	 between	 the	 two	 priming	 conditions.	 Surprisingly,	 no	 clonotypes	 were	

shared	between	the	WT	and	APL	priming	conditions	for	this	donor.	

	

The	clonotyping	results	for	Donor	B	have	been	depicted	in	Figure	6.3.	There	was	a	

sizable	population	of	tetramer	positive	T-cells	in	this	donor	even	in	the	absense	of	

peptide	priming.	This	allowed	this	population	to	be	exmined	too	 in	this	donor.	As	

with	 Donor	 A,	 TRBV	 gene	 usage	 was	 first	 compared	 for	 each	 of	 the	 priming	

conditions	 (Figure	6.3B).	 There	was	 some	overlap	 in	TRBV	usage	between	 the	No	

Peptide,	 WT,	 and	 APL	 primed	 populations.	 For	 example,	 all	 	 priming	 conditions	

contained	TRBV4-3*00	and	TRBV27*00	T-cell	 populations.	 Each	priming	 condition	

also	 displayed	 unique	 TRBV	 gene	 usage.	 For	 example,	 the	WT	 priming	 condition	

showed	 preferential	 usage	 of	 TRBV4-1*00	 (29.9%),	 whereas	 the	 APL	 priming	

condition	 showed	 preferential	 usage	 of	 TRBV28*00	 (12.8%).	 Moreover,	 the	 No	

Peptide	 condition	 favoured	 use	 of	 TRBV6-5*00	 (21.5%).	 Most	 interestingly,	 in	

contrast	 with	 what	 was	 seen	 in	 Donor	 A,	 the	 APL	 primed	 T-cells	 showed	 much	

greater	levels	of	TRBV	gene	diversity	(39	total	TRBV	genes),	when	compared	to	both	

the	 WT	 (29	 total	 TRBV	 genes)	 and	 No	 peptide	 (19	 total	 TRBV	 genes)	 priming	

conditions.	Next,	 the	 total	 number	 of	 clonotypes	 in	 each	 priming	 condition	 was	

analysed	 (Figure	 6.3C).	 The	 data	 showed	 that	 the	 WT	 peptide	 primed	 almost	 3	

times	the	number	of	clonotypes	(96	unique	CDR3	sequences)	that	were	 in	the	No	

Peptide	 condition	 (33	 unique	 CDR3	 sequences).	 Remarkably,	 the	 APL	 activated	

more	 than	 4	 times	 the	 number	 of	 clonotypes	 (417	 unique	 CDR3	 sequences)	 that	

were	primed	by	the	WT	peptide.	Thus,	consistent	with	its	diverse	TRBV	gene	usage,	

the	APL	 primed	population	 displayed	 a	much	 greater	 level	 of	 clonotypic	 diversity	

than	 the	 WT	 primed	 population.	 Lastly,	 the	 number	 of	 shared	 clonotypes	 was	

analysed	between	the	three	priming	conditions.	The	APL	primed	population	shared	

the	 most	 clonotypes	 (5	 shared	 CDR3	 sequences)	 with	 the	 No	 Peptide	 priming	



	

155	
	

condition.	In	contrast,	the	WT	primed	population	shared	only	1	clonotype	with	the	

No	Peptide	priming	condition.	Likewise,	only	1	clonotype	was	shared	between	the	

WT	and	APL	primed	T-cell	populations.	

Finally,	I	clonotyped	the	response	from	Donor	C	Figure	6.4).	As	with	the	other	two	

donors,	TRBV	gene	usage	was	compared	for	each	of	the	priming	conditions	(Figure	

6.4B).	Comparable	to	the	results	seen	with	Donor	A,	both	the	WT	and	APL	priming	

conditions	contained	both	TRBV6-5*00	and	TRBV20-1*00	T-cell	populations.	On	the	

other	 hand,	 each	 priming	 condition	 also	 displayed	 unique	 TRBV	 gene	 usage.	 For	

example,	 the	 WT	 priming	 condition	 showed	 preferential	 usage	 of	 TRBV27*00	

(24.5%),	 whereas	 the	 APL	 priming	 condition	 showed	 preferential	 usage	 of	

TRBV28*00	 (35.4%).	 Interestingly,	 TRBV28*00	 was	 also	 the	 most	 common	 TRBV	

family	 seen	 in	 the	WT	 primed	 population	 of	 Donor	 A,	 as	well	 as	 the	 APL	 primed	

population	of	Donor	B.	Most	remarkably,	in	contrast	with	what	was	seen	in	Donor	B	

(but	consistent	with	Donor	A),	the	WT	primed	population	showed	the	greatest	level	

of	 TRBV	 diversity	 (38	 total	 TRBV	 genes),	 when	 compared	 to	 the	 APL	 primed	

population	 (24	 total	 TRBV	 genes).	Next,	 the	 total	 number	 of	 clonotypes	 in	 each	

priming	condition	was	analysed	(Figure	6.4C).	The	WT	primed	population	contained	

the	greatest	number	of	clonotypes	(149	unique	CDR3	sequences),	when	compared	

to	 the	APL	primed	population	 (79	unique	CDR3	 sequences).	 Therefore,	 consistent	

with	 its	 diverse	 TRBV	 gene	 usage,	 the	 WT	 primed	 population	 displayed	 a	 much	

greater	 level	of	clonotypic	diversity	than	the	APL	primed	population	in	this	donor.	

Lastly,	 the	 number	 of	 shared	 clonotypes	was	 analysed	 between	 the	 two	 priming	

conditions.	A	total	of	4	clonotypes	were	shared	between	the	WT	and	APL	priming	

conditions	for	this	donor.	

	

Collectively,	these	data	showed	that	directed	modifications	within	the	peptide	used	

for	 priming	 can	 significantly	 alter	 the	 TCR	 repertoire	 of	 a	 primed	T-cell	 response.	

Specifically,	it	has	been	shown	here	that	the	rationally	designed	BST-2	APL	peptide	

was	 capable	 of	 inducing	 an	 antigen-specific	 immune	 response	 that	 was	

clonotypically	distinct	from	that	of	the	BST-2	WT	peptide.	
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6.3.3. BST-2	APL	primes	a	T-cell	response	with	greater	tumour-killing	ability	

	

The	 results	 above	 show	 that	 the	 WT	 peptide	 and	 APL	 can	 prime	 T-cells	 with	

different,	but	partially	overlapping,	TCR	repertoires.	However,	 it	 is	possible	that	T-

cells	primed	by	the	APL	might	not	cross-react	well	with	the	natural	epitope,	despite	

staining	well	with	the	BST-2	WT	sequence	tetramer.	It	was	therefore	important	that	

the	ability	of	primed	T-cells	to	kill	tumour	cells	was	assessed.	As	I	was	nearing	the	

end	 of	 my	 laboratory	 studies	 at	 this	 point,	 a	 new	 student	 in	 the	 lab	 (Sarah	

Galloway)	picked	up	where	I	left	off,	and	examined	the	functionality	of	these	BST-2	

APL	primed	T-cells.	Since	Sarah	was	interested	in	BST-2	as	a	potential	target	antigen	

for	 melanoma	 immunotherapy	 (Sigalotti	 et	 al.,	 2010),	 the	 following	 experiments	

were	 set	 up	 to	 establish	 whether	 the	 BST-2	 APL	 primed	 T-cells	 were	 superior	 in	

terms	of	melanoma	cell	killing.	Thus,	to	determine	whether	the	APL	primed	T-cells	

were	 capable	 of	 improved	 tumour	 cell	 killing,	 CD8+	 T-cells	 from	 a	 new	 HLA-A2+	

donor	 were	 primed	 with	 either	 the	 BST-2	 WT	 peptide	 or	 BST-2	 APL	 (priming	

protocol	described	 in	Section	2.1.6.).	As	there	was	not	enough	CD8+	T-cells	 to	set	

up	a	DMSO	(“No	Peptide”	negative	control)	priming	condition,	a	control	 tetramer	

(HLA-A2-ALWGPDPAAA;	preproinsulin15-24)	was	used	for	staining.	Following	2	weeks	

in	culture,	 the	primed	T-cells	were	stained	with	BST-2	WT	pMHC	tetramer	(Figure	

6.5A),	and	fold	increase	from	control	tetramer	determined	(Figure	6.5B),	in	order	to	

assess	 the	 magnitude	 of	 the	 WT	 primed	 and	 APL	 primed	 T-cell	 responses.	

Consistent	with	what	was	seen	in	previous	donors	A	to	D	(Figure	6.1.),	the	APL	was	

capable	of	generating	a	BST-2	reactive	T-cell	response	of	much	greater	magnitude.	

In	fact,	the	APL	primed	6	times	more	BST-2	reactive	CD8+	T-cells	(1.73%	tetramer-

positive)	 than	 the	 WT	 peptide	 (0.28%	 tetramer-positive).	 Thus,	 this	 further	

confirmed	 that	 the	 chosen	 APL	 was	 proficient	 in	 activating	 a	 T-cell	 response	 of	

much	 higher	magnitude.	Next,	 in	 order	 to	 determine	whether	 the	APL	 primed	 T-

cells	 were	 capable	 of	 better	 tumour	 cell	 killing,	 a	 FACS-based	 killing	 assay	

(described	 in	 Section	 2.3.5.)	 was	 performed	 to	 assess	 cytotoxicity	 (Figure	 6.5C).	

Importantly,	 cell	 numbers	were	 adjusted	 in	 the	 assay	 so	 that	 comparisions	were	

made	 using	 a	 similar	 number	 of	 BST-2	 reactive	 T-cells	 for	 both	 the	WT	 and	 APL	

primed	populations.	This	removed	the	affect	of	T-cell	expansion,	and	allowed	an		
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Figure	6.5:	BST-2	APL	primes	a	BST-2	reactive	CD8+	T-cell	 response	capable	of	better	tumour-cell	
killing.	CD8+	 T-cells	 from	a	healthy	HLA-A2+	 donor	were	primed	 (Section	2.1.6.)	 using	 autologous,	
irradiated	PBMC	pulsed	with	either	the	BST-2	“WT”	peptide	(LLLGIGILVL)	or	the	chosen	BST-2	“APL”	
(ITSGIGVLPV).	 (A)	 Cells	 were	 then	 stained	 with	 either	 BST-2	 WT	 pMHC	 tetramer	 or	 a	 control	
tetramer	 (HLA-A2-ALWGPDPAAA;	 preproinsulin15-24)	 (Section	 2.3.4.).	 Percentage	 of	 tetramer	
positive	 (BST-2	WT	reactive)	T-cells	has	been	shown	 for	each	 tetramer	and	priming	condition	 (WT	
and	 APL).	 (B)	 “Fold	 increase	 from	 Control	 Tetramer”	 has	 been	 shown	 as	 an	 indication	 of	 the	
magnitude	of	each	WT	and	APL	response.	The	APL	was	capable	of	priming	up	to	6	times	more	BST-2	
reactive	CD8+	T-cells	than	the	WT	peptide.	(C)	Cells	were	assessed	for	functionality	(cytotoxicity)	in	a	
FACS-based	killing	assay,	using	melanoma	cells.	The	assay	was	adjusted	to	account	for	differences	in	
BST-2	reactive	T-cell	numbers	accordingly,	so	that	the	difference	in	observed	killing	was	a	measure	
of	the	ability	of	T-cells	to	kill	tumour	cells,	and	not	a	measure	of	differences	in	T-cell	numbers.	The	
BST-2	 APL	 primed	 T-cells	were	 capable	 of	much	 greater	melanoma	 cell	 killing	 than	 the	 BST-2	WT	
primed	T-cells.	All	values	represent	mean	±	standard	deviation	(SD).	n	=	3.	Data	kindly	provided	by	
Sarah	Galloway	(T-cell	modulation	group,	Cardiff	University).	
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assessment	purely	on	the	basis	of	the	ability	of	the	T-cells	to	kill	tumour	cells.	The	

results	 showed	 that	 the	 BST-2	 APL	 primed	 T-cells	 were	 capable	 of	 greater	

melanoma	cell	killing	(69.3%)	than	the	BST-2	WT	primed	T-cells	(48.3%).	Therefore,	

this	 suggested	 that	 the	 BST-2	 APL	 primed	 T-cells	 were	 not	 only	 of	 greater	

magnitude,	but	were	also	better	able	to	kill	tumour	cells.	 	
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6.4. DISCUSSION	

	

Previously,	 vaccination	 strategies	 have	 mainly	 focused	 on	 priming	 the	 greatest	

possible	 T-cell	 responses,	 rather	 than	 focusing	 on	 either	 the	 functional	 quality	 of	

the	 response,	 or	 the	 specific	 TCR	 clonotypes	 that	 constitute	 the	 response.	 A	

landmark	study	in	1996,	showed	that	the	cytotoxic	ability	of	the	T-cell	response	was	

every	 bit	 as	 important	 as	 the	 magnitude	 of	 the	 response	 by	 examining	 the	

effectiveness	 of	 T-cell	 clones	 when	 they	 were	 adoptively	 transferred	 to	

immunodeficient	mice	(Alexander-Miller	et	al.,	1996).	Recent	evidence	has	further	

suggested	 that	 the	 tumour-killing	 ability	 of	 T-cell	 clonotypes	 is	 often	 more	

important,	 in	terms	of	vaccine	efficacy,	than	the	general	magnitude	of	the	primed	

T-cell	population	(Appay	et	al.,	2008,	Seder	et	al.,	2008).	Consequently,	I	set	out	to	

examine	 the	 magnitude,	 clonotypes,	 and	 tumour-killing	 capability	 of	 the	 T-cell	

response	induced	by	my	chosen	BST-2	APL	in	comparison	to	the	BST-2	WT	peptide	

(i.e.	natural	antigen).		

	

Overall,	the	BST-2	APL	was	found	to	be	capable	of	generating	a	T-cell	response	to	

the	 natural	 BST-2	 antigen	 in	 healthy	 individuals,	 which	 was	 not	 only	 of	 greater	

magnitude,	 but	 that	 also	 possessed	 greater	 tumour-killing	 abilities,	 and	 that	 also	

contained	 distinct	 TCR	 clonotypes.	 Thus,	 an	 important	 finding	 confirmed	 by	 this	

study	is	that	T-cell	responses	to	self-antigens	are	present	within	healthy	individuals.	

It	 is	 well-known	 that	 naïve	 T-cells	 with	 weak	 TCRs	 that	 see	 self-antigens	 (e.g.	

insulin)	are	 capable	of	escaping	central	 tolerance	and	entering	 the	periphery,	but	

can	still	remain	fully	functional	without	being	detrimental	to	an	individuals’	health	

(Enouz	et	al.,	2012).	

	

However,	since	only	a	few	healthy	donors	were	tested	in	these	preliminary	priming	

experiments,	 an	 increase	 in	donor	number	 (i.e.	 “n”	number)	would	be	needed	 in	

order	 to	 confirm	 these	 results.	 Additional	 priming	 experiments	 using	 PBMC	 from	

breast	cancer	patients	would	also	help	further	determine	the	effectiveness	of	this	

BST-2	APL	as	a	potential	peptide	vaccine	candidate.		
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Additionally,	 since	 T-cells	mediate	 their	 effects	 through	 a	 variety	 of	mechanisms,	

defining	 all	 characteristics	 of	 the	 T-cell	 response	 will	 be	 fundamental	 for	 the	

development	of	an	effective	prophylactic	or	therapeutic	breast	cancer	vaccine.	As	a	

result,	future	work	will	need	to	build	on	the	foundation	that	my	own	studies	have	

provided	 to	 investigate	 the	 functional	 quality	 of	 the	 T-cell	 response,	 in	 terms	 of	

cytokine	 release	 (e.g.	 IFNγ,	 MIP-1β,	 TNFα,	 IL-2),	 as	 well	 as	 the	 production	 of	

degranulation	 markers	 (e.g.	 CD107a).	 For	 example,	 a	 multi-parameter	 ICS	

experiment	 could	be	used	 to	 simultaneously	measure	multiple	 functional	outputs	

as	an	indication	of	T-cell	activity	(Lovelace	and	Maecker,	2011).	Measurement	of	IL-

2	as	a	 functional	output	might	prove	beneficial	 for	 the	 immunological	and	clinical	

assessment	of	 the	chosen	APL	as	a	vaccine.	 IL-2	 is	 responsible	 for	 stimulating	 the	

expansion	of	CD8+	T-cells,	and	is	therefore	associated	with	amplifying	the	effector	

T-cell	 response.	 Not	 only	 this,	 but	 IL-2	 may	 also	 be	 involved	 in	 improving	 the	

memory	capacity	of	CD8+	T	cells,	as	well	as	enhancing	NKT-cell	activity,	which	could	

also	contribute	significantly	towards	the	anti-tumour	immune	defence	induced	by	a	

peptide	 vaccine.	 On	 the	 other	 hand,	 IL-2	 has	 been	 shown	 to	 have	 little	 direct	

effector	 function,	 and	 its	 production	 necessitates	 significantly	 more	 antigenic	

stimulation	 than	 the	production	of	 IFNγ	 -	 the	most	 commonly	used	parameter	 to	

assess	the	quality	of	vaccine-induced	T-cell	responses	(Seder	et	al.,	2008).	

	

Moreover,	 even	 though	 the	 BST-2	 APL	 primed	 CD8+	 T-cells	 were	 shown	 to	 be	

superior	killers	of	melanoma	cells,	it	will	also	be	necessary	to	carry	out	experiments	

to	assess	the	cytotoxic	potential	of	these	T-cells	to	kill	breast	cancer	cells	in	vitro.	In	

particular,	it	would	be	interesting	to	assess	the	ability	of	APL	primed	T-cells,	derived	

from	breast	cancer	patient	PBMC,	to	kill	autologous	(primary)	breast	cancer	cells,	as	

this	would	better	demonstrate	clinical	relevance.	

	

Finally,	 structural	 and	 biophysical	 studies	 investigating	 the	 interaction	 between	

pMHC	 (WT	 and	 APL)	 and	 TCR	 would	 also	 facilitate	 the	 development	 of	 a	 more	

effective	peptide	vaccine.	This	point	has	been	discussed	further	in	Section	7.2.	
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6.4.1. Improvements	for	the	assessment	of	primed	T-cell	responses	

	

The	 preliminary	 priming	 experiments	 described	 in	 this	 chapter	 show	 promise	 for	

the	 use	 of	 this	 BST-2	 APL	 in	 future	 breast	 cancer	 vaccine	 development.	

Nevertheless,	 there	 is	 still	 a	 requirement	 for	 a	 detailed	 set	 of	 criteria	 to	 fully	

determine	the	effectiveness	of	immune	responses	in	cancer	vaccine	design	(Sheikh	

et	 al.,	 2016).	 Thus,	 some	 limitations	 of	 the	 methods	 used	 in	 these	 preliminary	

experiments	have	been	discussed	below.	

	

6.4.1.1. Magnitude	

	

Staining	with	BST-2	WT	pMHC	tetramer	successfully	determined	the	magnitude	of	

each	 T-cell	 response	 towards	 the	 natural	 antigen.	 However,	 use	 of	 a	 “boosted”	

tetramer	staining	protocol,	described	previously	(Dolton	et	al.,	2015,	Tungatt	et	al.,	

2015),	may	have	improved	the	ability	to	identify	T-cells	bearing	low	affinity	TCRs	for	

the	BST-2	WT	antigen.	

	

6.4.1.2. Tumour-killing	ability	

	

A	FACS-based	killing	assay	successfully	demonstrated	that	the	BST-2	APL	primed	T-

cells	were	functionally	superior	to	those	primed	by	the	BST-2	WT	peptide.	However,	

since	this	cytotoxicity	assay	was	performed	with	one	individual,	and	on	one	tumour	

cell	 line,	 further	 experiments	 will	 be	 required	 in	 order	 to	 assess	 whether	 these	

preliminary	 results	 are	 applicable	 across	 several	 donors	 and	 tumour	 types	 (i.e.	

breast	cancer).		

	

6.4.1.3. Clonotypic	Profiles	

	

Primed	BST-2	WT	reactive	T-cell	populations	were	assessed	at	the	clonotypic	level.	

It	was	 found	 that	 the	APL	 generated	 an	 antigen-specific	 T-cell	 response	 that	was	

clonotypically	 distinct	 to	 that	 generated	 by	 the	WT	 peptide,	 in	 all	 of	 the	 donors	

tested.	 Formerly,	 greater	 levels	 of	 TCR	 sequence	 diversity	 have	 been	 associated	
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with	 improved	 immune	 responses	 to	 tumour.	 However,	 recent	 evidence	 has	

suggested	that	there	has	been	great	focus	on	TCR	clonotypes	as	biomarkers,	rather	

than	on	their	clinical	implications	(Laydon	et	al.,	2015).	Therefore,	further	work	will	

be	 required	 to	 investigate	 the	 clinical	 significance	 of	 the	 dominant	 and/or	

persistent	 TRBV	 genes	 (e.g.	 TRBV28*00)	 and	 CDR3	 sequences	 that	 have	 been	

identified	in	the	WT	and	APL	primed	populations	for	each	donor.	

	

Moreover,	in	this	chapter	I	have	investigated	clonotypes	that	are	primed	by	the	APL	

and	 that	 bind	 to	 the	 BST	 WT	 tetramer.	 Nonetheless,	 it	 is	 possible	 that	 the	 APL	

induces	other	clonotypes	that	do	not	cross-react	with	the	WT	peptide	in	this	way.	

They	best	way	to	investigate	this	would	be	to	stain	the	APL	primed	T-cells	with	both	

WT	and	APL	tetramer	 in	 future	experiments.	From	this,	 it	would	be	 interesting	 to	

see	if	more	cells	are	stained	with	the	latter,	and	whether	the	APL	tetramer	sorted	

cells	have	distinct	clonotypes	from	the	cells	that	bind	to,	and	are	sorted	with,	the	

WT	tetramer.	

	

Lastly,	 staining	 of	 the	 peptide-primed	 T-cell	 populations	 with	 a	 panel	 of	

commercially	 available	 TRBV	 antibodies	 may	 have	 proven	 valuable	 in	 confirming	

the	clonotyping	results.	However,	clonotyping	remains	the	most	complete	method	

of	TRBV	analysis,	as	the	TRBV	antibodies	only	cover	approximately	half	of	the	total	

TRBV	repertoire.	Additionally,	T-cells	may	share	the	same	TRBV	(e.g.	Lucky6.NY-BR-

1.75	and	ST8.24),	but	may	have	different	CDR3	sequences.	Thus,	it	is	not	possible	to	

distinguish	between	different	peptide	specificities	using	TRBV	antibody	staining.	
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7. DISCUSSION	

	

7.1. Summary	

	

The	 work	 presented	 in	 my	 thesis	 focused	 on	 the	 development	 of	 an	 effective	

peptide	vaccine	for	the	prophylactic	and/or	therapeutic	treatment	of	breast	cancer.	

In	Chapter	3,	 I	successfully	developed	an	efficient	and	reproducible	“T-cell	 library”	

strategy	 for	 the	 rapid	detection	and	 isolation	of	breast	 cancer	 specific	 (CDH3	and	

NY-BR-1	 reactive)	 T-cell	 clones	 from	 the	 peripheral	 blood	 of	 healthy	 donors.	 This	

approach	was	shown	to	be	significantly	more	successful	at	generating	T-cell	clones	

than	 more	 conventional	 approaches.	 Additionally,	 in	 Chapter	 4,	 I	 proceeded	 to	

investigate	the	breast	cancer	reactivity	of	human	TILs,	as	well	as	generate	a	further	

T-cell	 clone	 against	 BST-2	 breast	 cancer	 antigen	 from	 TILs.	 These	 breast	 cancer	

reactive	 clones	 provided	 valuable	 tools	 for	my	 subsequent	 research	 into	 peptide	

vaccine	design	(Chapters	5	and	6).	

	

In	 Chapter	 5,	 I	 utilised	 the	 breast	 cancer	 specific	 T-cell	 clones	 (developed	 in	

Chapters	3	 and	4),	 alongside	PS-SCLs	 (Borràs	 et	 al.,	 2002,	Wilson	 et	 al.,	 2004),	 in	

order	to	design	APLs	for	my	three	key	breast	cancer	antigens	(CDH3,	NY-BR-1,	and	

BST-2).	 The	 focus	 in	 this	 chapter	 was	 placed	 on	 increasing	 the	 levels	 of	 TCR	

triggering	 by	 improving	 the	 interaction	 between	 peptide	 and	 TCR,	 rather	 than	

improving	 peptide	 binding	 to	 MHC	 –	 another	 approach	 to	 enhance	 peptide	

vaccines.	As	discussed	previously,	alteration	of	MHC	anchor	residues	may	result	in	

little	or	no	 improvement	on	peptide	stability	 in	the	MHC	cleft	(Miles	et	al.,	2011).	

Besides,	 it	 is	 known	 that	 MHC	 binding	 strength	 has	 minimal	 effect	 on	

immunogenicity	(Assarsson	et	al.,	2007).	In	fact,	my	laboratory	has	shown	that	MHC	

anchor	residue-modified	peptides	can	alter	TCR	binding	in	unpredictable	ways	(Cole	

et	 al.,	 2010).	 	 Such	 differences	 have	 been	 shown	 to	 have	 important	 clinical	

relevance	 as	 the	 T-cells	 primed	 in	 response	 to	 the	 APL	 may	 not	 cross-react	 and	

recognise	 the	 intended	 target	antigen	 (Speiser	et	al.,	2008).	The	APLs	designed	 in	

this	chapter	were	shown	to	be	superior	for	activating	T-cells	bearing	a	cognate	TCR,	
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when	 compared	 to	 the	 corresponding	 WT	 peptide,	 and	 thus	 paved	 the	 way	 for	

preliminary	“proof-of-concept”	priming	experiments	in	Chapter	6.	

	

Finally,	 in	Chapter	6,	 I	carried	out	preliminary	experiments	to	 investigate	whether	

the	 chosen	 BST-2	 APL	 was	 capable	 of	 priming	 superior	 CD8+	 T-cell	 responses	 in	

healthy	individuals.	Overall,	the	BST-2	APL	was	found	to	be	capable	of	generating	a	

T-cell	 response	 that	 was	 not	 only	 of	 greater	magnitude,	 but	 also	 that	 possessed	

greater	 tumour	 killing	 abilities,	 and	 that	 also	 contained	 distinct	 TCR	 clonotypes.	

Additional	work	will	 be	 required	 in	 order	 to	 further	 validate	 the	 results	 of	 these	

preliminary	experiments,	as	discussed	in	Section	6.4.	
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7.2. Impact	of	this	research	

	

Throughout	this	thesis	I	have	successfully	developed	and	utilised	novel	techniques,	

in	 order	 to	 identify	 enhanced	 APLs	 that	 are	 capable	 of	 overcoming	 the	 issue	 of	

immunological	tolerance	in	breast	cancer	immunotherapy	research.	In	particular,	 I	

have	 developed	 a	 simple,	 but	 effective	 T-cell	 library	 technique	 that	 is	 vastly	

superior	at	generating	T-cell	clones	for	breast	cancer	research,	compared	to	more	

conventional	 approaches	 (e.g.	 peptide-pulsed	 DCs,	 anti-costimulatory	mAbs)	 that	

have	been	described	within	 the	 literature	 (Ho	et	al.,	2006,	Gauduin,	2006).	 	T-cell	

libraries	 allow	 the	 rapid,	 parallel	 generation	 of	 multiple	 peptide-specific	 T-cell	

clones,	even	those	of	low	clonotype	frequency	(i.e.	tumour-specific	T-cells),	without	

the	 need	 for	 ample	 amounts	 of	 donor	 material,	 or	 access	 to	 expensive	 pMHC	

multimers	or	autologous	DCs	(Theaker	et	al.,	2016).	Access	to	readily	available	T-cell	

clones	 against	 an	 endless	 number	 of	 peptide	 antigens,	 could	 help	 “fast-track”	

breast	 cancer	 immunotherapy	 research	 by	 providing	 valuable	 tools	 to	 investigate	

the	viability	of	TAAs	for	use	in	vaccines,	or	indeed	for	expanding	tumour-specific	TIL	

populations	for	adoptive	cell	transfer	in	patients	within	the	clinic.	Additionally,	my	

T-cell	 libraries	 paper	 has	 already	 been	 referenced	 by	 others	 using	 similar	

approaches	 to	 map	 T-cell	 specificities	 (Martin	 et	 al.,	 2018).	 Since	 finishing	 my	

studies,	 the	 T-cell	 libraries	 method	 has	 also	 been	 successfully	 utilised	 by	 others	

within	my	 laboratory,	 in	order	to	map	new	epitopes	and	also	to	 isolate	rare	γδ	T-

cell	clones.	

	

Moreover,	during	my	research,	I	also	utilised	PS-SCLs	(Borràs	et	al.,	2002,	Wilson	et	

al.,	2004)	alongside	a	novel	web	tool	 (Szomolay	et	al.,	2016b),	 in	order	 to	predict	

superior	 (TCR-optimised)	 APLs	 that	 are	 capable	 of	 priming	 enhanced	 T-cell	

responses,	 better	 at	 recognising	 and	 killing	 tumour	 on	 a	 “per	 cell”	 basis.	 This	

rational	and	elegant	approach	to	peptide	design	could	greatly	 improve	on	existing	

breast	 cancer	 vaccines	 in	 the	 clinic	 (e.g.	 NeuVax	 HER2	 peptide	 vaccine)	 that	 are	

currently	making	use	of	sub-optimal	WT	peptides.	
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A	 new	 student	 in	 the	 Sewell	 group,	 Sarah	 Galloway,	 has	 already	 extended	 my	

findings	 by	 showing	 that	 some	 APL	 can	 induce	 larger	 and	 more	 potent	 T-cell	

responses	than	the	natural	antigen	in	15	of	15	donors	tested	to	date.	This	approach	

has	also	worked	for	peptide	antigens	found	on	the	surface	of	melanoma	cells	and	

was	 used	 to	 induce	 strong	 ex	 vivo	 responses	 to	 autologous	 tumour	 from	patient	

PBMC.	 This	 work,	 on	 which	 I	 am	 a	 co-author,	 is	 currently	 being	 prepared	 for	

submission.	 In	 another	 approach,	 my	 group	 have	 recently	 showed	 that	 even	

unnatural	chemistries	(D-amino	acids)	can	activate	T-cells	and	be	used	as	a	vaccine	

(Miles	 et	 al.,	 2018).	 Although	 just	 a	 beginning,	 these	 studies	 offer	 optimism	 that	

arrays	 of	 combinatorial	 chemistry	 can	 be	 used	 to	 generate	 ligands	 that	 are	

improved	for	breaking	self-tolerance.	I	am	hopeful	that	the	studies	I	have	initiated	

during	my	PhD	will	be	extended	to	result	in	the	use	of	APL	in	cancer	vaccination	in	

the	near	future.	
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7.3. Future	work	

	

Future	work	will	need	to	be	carried	out	into	the	structural	interaction	between	TCR	

and	 cognate	 pMHC.	 X-ray	 crystallographic	 studies	 would	 enable	 me	 to	 further	

understand	why	 the	 chosen	BST-2	APL	 is	 favoured	over	 the	BST-2	WT	peptide	by	

the	cognate	ST8.24	TCR.	Progress	has	already	been	made	in	my	laboratory	to	refold	

and	crystallise	the	ST8.24	TCR,	as	well	as	its	corresponding	pMHCs.	L-alanine	scans	

would	also	help	to	confirm	the	contribution	of	specific	amino	acid	residues	to	this	

pMHC-TCR	 interaction	 (Morrison	 and	 Weiss,	 2001).	 In	 addition	 to	 carrying	 out	

structural	 analysis	 (Garcia	 et	 al.,	 2009),	 other	 characteristics	 of	 the	 TCR-pMHC	

interaction	 could	 also	 be	 analysed,	 including	 kinetic	 on	 (kon)	 and	 off	 (koff)	 rates,	

affinity,	 and	 thermodynamics	 (Aleksic	 et	 al.,	 2012,	 Bridgeman	 et	 al.,	 2012,	

Krogsgaard	et	al.,	2003,	Willcox	et	al.,	1999).	
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7.4. Future	perspectives	in	breast	cancer	vaccines	

	

In	 this	 thesis,	 I	 have	 shown	 that	 it	 is	 possible	 to	 generate	 large	 populations	 of	

tumour-reactive	CD8+	T-cells	from	the	PBMC	of	healthy	individuals,	by	priming	with	

a	superior	APL	in	a	peptide-based	vaccination	strategy.	Despite	this,	cancer	vaccines	

have	faced	many	difficulties	over	the	years,	with	clinical	trial	response	rates	proving	

historically	 low	 (Emens,	 2012,	 Melero	 et	 al.,	 2014).	 This	 could	 be	 due	 to	 three	

reasons;	 (1)	 the	 peptide	 vaccine	 is	 only	 engaging	 one	 type	 of	 immune	 effector	

mechanism	 (i.e.	CD8+	T-cells),	however,	 the	 successes	 seen	with	T-cell	 checkpoint	

blockade	have	largely	been	attributed	to	CD8+	T-cells;	(2)	vaccine-induced	immune	

effector	cells	are	being	suppressed	by	the	tumour	microenvironment;	or	(3)	the	few	

targets	 that	 have	 been	 worked	 with	 to	 date	 were	 suboptimal.	 Thus,	 the	 future	

development	 of	 an	 effective	 peptide	 vaccine	 for	 breast	 cancer	 will	 ultimately	

depend	upon	the	ability	to	recruit	multiple	components	of	the	immune	system	(e.g.	

CD8+	 and	 CD4+	 T-cells,	 innate	 immune	 effectors,	 antibody-secreting	 B-cells),	

overcome	 mechanisms	 of	 immunosuppression	 within	 the	 complex	 tumour	

microenvironment,	and	target	the	most	effective	epitopes.	

	

Consequently,	even	with	the	availability	of	a	suitable	TAA	(or	combination	of	TAAs)	

and	an	optimised	delivery	system,	it	is	possible	for	a	peptide	vaccine	to	fail,	due	to	

inadequate	 anti-tumour	 immune	 responses	 and/or	 mechanisms	 of	 immune	

evasion.	Thus,	 selection	of	an	appropriate	adjuvant	will	prove	crucial	 for	boosting	

the	anti-tumour	response	of	peptide	vaccines,	however	a	careful	balance	must	be	

made	between	vaccine	efficacy	and	patient	safety	(Reed	et	al.,	2013).	Moreover,	it	

is	 clear	 that	 future	 peptide	 vaccines	 might	 benefit	 if	 used	 in	 combination	 with	

immune	checkpoint	inhibitors	(Section	1.2.5.),	in	order	to	prevent	the	tumour	from	

escaping	 immune	 surveillance	 (Joyce	 and	 Fearon,	 2015,	 Rabinovich	 et	 al.,	 2007).	

Examples	 of	 tumour	 escape	 mechanisms	 include	 expression	 of	 T-cell	 inhibitory	

molecules	 (e.g.	 PDL1/PDL2	 or	 CD80/CD86)	 and/or	 down-regulation	 of	 MHC	

molecules	on	the	tumour	cell	surface.	Furthermore,	an	increase	in	Treg	activity	can	

also	reduce	the	effectiveness	of	anti-tumour	T-cell	 immunity.	An	example	of	an	 in	

vivo	study	showing	enhanced	potency	of	a	multi-peptide	breast	cancer	vaccine	by	
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use	with	 an	 anti-PD1	monoclonal	 antibody	has	been	described	 in	 (Karyampudi	 et	

al.,	2014).	
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7.5. Concluding	remarks	

	

With	a	predicted	3.2	million	new	cases	of	breast	cancer	being	diagnosed	per	year,	

by	2050,	there	is	an	ever	increasing	need	to	find	new	therapies,	and	decrease	the	

worldwide	 burden	 of	 this	 terrible	 disease	 (Hortobagyi	 et	 al.,	 2005).	 Cancer	

immunotherapy	was	 crowned	 Science’s	 “Breakthrough	 of	 the	 year”	 in	 2013,	 and	

today	 it	 has	 become	 a	 clinically	 validated	 treatment	 for	 many	 cancers,	 including	

melanoma.	 Undeniably,	 cancer	 immunotherapy	 is	 now	 recognised	 as	 the	 biggest	

advancement	 in	 cancer	 treatment	 since	 chemotherapy,	 and	 is	 already	 a	 first	 line	

treatment	for	several	cancers	in	the	United	States.	

	

Over	 the	 next	 few	 years,	 lessons	 learnt	 from	 other	 cancers	 can	 be	 applied	 to	

generate	effective	 immunotherapies	for	breast	cancer,	 including	peptide	vaccines.	

Due	 to	 the	 complex	 and	 heterogeneous	 nature	 of	 breast	 cancer,	 future	 peptide	

vaccines	will	need	to	 target	multiple	antigens	 in	order	 to	prevent	antigen	escape,	

and	 consequent	 tumour	 relapse.	 The	 efforts	 from	my	 research	 into	 superior	 APL	

generation	 will	 hopefully	 aid	 in	 the	 development	 of	 an	 effective	 multi-peptide	

vaccine	 that	 could	 potentially	 target	 multiple	 breast	 cancer	 subtypes.	 However,	

future	multi-peptide	vaccines	will	need	to	be	carefully	designed	in	order	to	prevent	

unwanted	off-target	 effects	 and	 ensure	 patient	 safety.	Not	 only	 this,	 but	 peptide	

vaccines	 will	 also	 need	 to	 be	 used	 as	 combination	 treatments	 with	 other	

immunotherapies	 (i.e.	 checkpoint	 blockade	 antibodies),	 in	 order	 to	 ensure	

enhanced	efficacy.		

	

Current	immunotherapies,	such	as	the	use	of	chimeric	antigen	receptors	(CARs)	 in	

autologous	T-cells	(CAR-T-cell	therapy;	(Gill	et	al.,	2016)),	have	shown	great	efficacy	

for	some	cancers,	however	 these	treatments	currently	cost	$400,000	to	$500,000	

per	 patient	 (icr.ac.uk	 5).	 Future	 developments,	 by	 adopting	 an	 ‘off-the-shelf’	

strategy	using	pre-prepared	(allogeneic)	T-cells,	may	halve	this	cost,	but	it	will	still	

remain	significant.	If	effective	cancer	vaccines	can	be	developed,	then	they	will	be	

substantially	cheaper	and	easier	to	deliver.	Indeed,	it	may	prove	simple	to	protect	

individuals	deemed	to	be	a	risk	of	cancer	by	prophylactic	vaccination	and	thereby



	

171	
	

prevent	disease.	The	cost	and	ease	of	cancer	vaccination	make	it	a	very	attractive	

prospect	 for	 future	 development.	 Hopefully,	 future	 research	 will	 identify	 key	

epitopes	 that	 allow	 cancer	 clearance,	 as	 well	 as	 robust	 procedures	 for	 inducing	

effective	responses	to	these	targets.	

	

In	 summary,	 recent	 developments	 with	 T-cell	 checkpoint	 inhibitors,	 tumour	

infiltrating	 lymphocyte	 therapy,	 and	 adoptive	 transfer	 of	 T-cells	 bearing	

recombinant	TCRs	or	CARs	have	proven	that	the	human	immune	system	can	clear	

even	 well-established,	 late-stage	 cancers.	 Current	 therapeutic	 approaches	 are	

either	systemic	and	associated	with	wide-ranging	autoimmune	side-effects	(e.g.	T-

cell	checkpoint	blockade),	or	are	too	expensive	for	use	in	most	populations	(cellular	

therapies).	 The	 development	 of	 specific,	 effective	 cancer	 vaccines	 should	 allow	

cancer	 clearance	 with	 minimal	 off-target	 effects.	 The	 next	 challenge	 faced	 by	

tumour	 immunologists	 and	 clinicians	 will	 be	 in	 the	 development	 of	 personalised	

peptide	vaccines,	 in	order	 to	 specifically	 tailor	each	 immunotherapy	 treatment	 to	

individual	patients,	and	significantly	improve	the	clinical	outcome	of	breast	cancer	

in	the	future	(Noguchi	et	al.,	2013,	Sasada	et	al.,	2014,	Takahashi	et	al.,	2014).	“If	

we	 all	 act	 now,	by	 2050	everyone	who	develops	breast	 cancer	will	 live”	 –	Breast	

Cancer	Now.	
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8. SUPPLEMENTARY	FIGURES	

	

	

	

Supplementary	 Figure	 1:	 Example	 gating	 strategy.	 Lymphocytes	 were	 first	 gated	 on	 live/CD3+	 T-
cells,	followed	by	gating	on	the	CD8+	T-cell	subset	(68.3%).	CD4+	T-cells	(12.1%)	were	excluded	from	
analysis.	
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Supplementary	Figure	2:	HLA-A2	expression	of	tumour	lines	(±	IFNγ).	HLA-A2-FITC	staining	of	MDA-
MB-231	 and	 SK-BR-2	 (A2)	 breast	 cancer	 cell	 lines	 (±	 IFNγ).	Mediumn	 fluorescence	 intensity	 (MFI)	
values	have	been	shown	in	the	top	right-hand	corner	of	each	histogram.	Treatment	with	100	IU/ml	
IFNγ	for	72	h	significantly	increases	HLA-A2	expression	in	both	tumour	cell	lines.	
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Supplementary	Figure	3:	Limitations	of	the	T-cell	lines	approach.	Shown	here	are	several	examples,	
from	 different	 donors,	 of	 where	 the	 T-cell	 lines	 approach	 failed	 to	 successfully	 produce	 enriched	
peptide-specific	T-cell	lines	(fail	frequency		=	75%,	n	=	8).	(A)	T-cell	lines	from	Donors	A,	B	and	C	were	
all	monitored	using	TNFα	processing	 inhibitor	assay	 (TAPI).	 (B)	T-cell	 lines	 from	Donors	D,	E	and	F	
were	 all	 monitored	 using	 intracellular	 cytokine	 staining	 (ICS).	 Percentage	 (%)	 of	 TNFα/CD107a-
producing	T-cells	(CD3+/CD8+)	has	been	shown.	T-cells	“Alone”	was	used	as	a	negative	control.	
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Supplementary	 Figure	 4:	 Lucky6.NY-BR-1.82	 reactivity	 towards	 ST64.NY-BR-1.75	 APL.	 (A)	
Sensitivity	 of	 Lucky6.NY-BR-1.82	 T-cell	 clone	 to	 the	 NY-BR-1	 WT	 peptide	 and	 a	 NY-BR-1	 APL	
(SLSKILDHA)	 designed	 using	 the	 ST64.NY-BR-1.75	 T-cell	 clone	 and	 9mer	 PS-SCL	 screen	 (Figure	 5.2	
and	 Figure	 5.6A).	 (B)	 LogEC50	 values	were	 calculated	 for	 each	 peptide	 using	 the	 titrations	 in	 (A).	
Lucky6.NY-BR-1.82	 T-cell	 clone	was	 not	 activated	 by	 the	 APL	 designed	 using	 the	 ST64.NY-BR-1.75	
clone.	
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