Mohammed H. Geesi, Hanan A. Mohamed, Bakr F. Abdel-Wahab, Amany S. Hegazy, Benson M. Kariuki and Gamal A. El-Hiti*

Crystal structure of ethyl 4-amino-5-(5-methyl-1-(4-tolyl)-1H-1,2,3triazole-4-carbonyl)-2-(phenylamino)thiophene-3-carboxylate, C₂₄H₂₃N₅O₃S

https://doi.org/10.1515/ncrs-2018-0002 Received February 26, 2018; accepted May 23, 2018; available online June 4, 2018

Abstract

 $C_{24}H_{23}N_5O_3S$, triclinic, *P*1 (no. 2), a = 9.1704(9) Å, b = 10.1253(11) Å, c = 12.2182(14) Å, $\alpha = 83.686(10)^{\circ}$ $\beta = 89.542(9)^{\circ}$, $\gamma = 76.982(9)^{\circ}$, V = 1098.5(2) Å³, Z = 2, $R_{\rm gt}(F) = 0.0551$, $wR_{\rm ref}(F^2) = 0.1510$, T = 296(2) K.

CCDC no.: 1844847

Source of material

The title compound was synthesized from reaction of an equimolar mixture of ethyl 2-cyano-2-(4-hydroxy-4-(5methyl-1-(4-tolyl)-1H-1,2,3-triazol-4-yl)-3-phenylthiazolidin-2-ylidene)acetate, hydroxylamine hydrochloride and anhydrous potassium carbonate in anhydrous ethanol under

*Corresponding author: Gamal A. El-Hiti, Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia, e-mail: gelhiti@ksu.edu.sa

Hanan A. Mohamed and Bakr F. Abdel-Wahab: Department of Chemistry, College of Science and Humanities, Shagra University, Duwadimi, Saudi Arabia; and Applied Organic Chemistry Department, National Research Centre, Dokki, Giza, Egypt Amany S. Hegazy and Benson M. Kariuki: School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK

a Open Access. © 2018 Mohammed H. Geesi et al., published by De Gruyter. 🚾 BY-NC-ND This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Table 1: Data collection and handling.

Crystal:	Needle, yellow
Size:	$0.37 \times 0.21 \times 0.13~\text{mm}$
Wavelength:	Mo Kα radiation (0.71073 Å)
μ:	1.85 mm ⁻¹
Diffractometer, scan mode:	SuperNova φ and ω -scans
θ_{\max} , completeness:	29.99°, >99%
N(hkl) _{measured} , N(hkl) _{unique} , R _{int} :	9769, 5171, 0.032
Criterion for I _{obs} , N(hkl) _{gt} :	$I_{ m obs}$ $>$ 2 σ ($I_{ m obs}$), 3341
N(param) _{refined} :	300
Programs:	CrysAlis ^{Pro} [1], SHELX [2, 3],
	WinGX and Ortep [11]

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²).

Atom	x	у	Z	U _{iso} */U _{eq}
C1	0.1586(3)	-0.1973(3)	0.5590(3)	0.0885(9)
H1A	0.117670	-0.240273	0.504099	0.133
H1B	0.241182	-0.261384	0.596358	0.133
H1C	0.082841	-0.167440	0.611197	0.133
H1D	0.176792	-0.205792	0.637004	0.133
H1E	0.053280	-0.184680	0.544744	0.133
H1F	0.211621	-0.278625	0.529906	0.133
C2	0.2120(3)	-0.0766(3)	0.5048(2)	0.0643(7)
С3	0.2024(3)	-0.0452(3)	0.3915(2)	0.0692(7)
H3	0.159406	-0.098227	0.349584	0.083
C4	0.2544(3)	0.0619(3)	0.3393(2)	0.0616(6)
H4	0.245519	0.081672	0.263131	0.074
C5	0.3197(2)	0.1395(3)	0.40043(18)	0.0538(6)
C6	0.3314(3)	0.1108(3)	0.51376(19)	0.0627(6)
H6	0.376190	0.162912	0.555366	0.075
C7	0.2761(3)	0.0043(3)	0.5643(2)	0.0668(7)
H7	0.282234	-0.013530	0.640638	0.080
C8	0.4566(2)	0.4286(3)	0.28995(18)	0.0542(6)
С9	0.3712(2)	0.3756(3)	0.36957(17)	0.0538(6)
C10	0.2778(3)	0.4372(3)	0.4594(2)	0.0682(7)
H10A	0.196194	0.392898	0.473156	0.102
H10B	0.238963	0.532683	0.437652	0.102
H10C	0.337917	0.425725	0.525161	0.102
C11	0.4792(2)	0.5688(3)	0.27327(18)	0.0557(6)
C12	0.5619(2)	0.6132(3)	0.18264(18)	0.0523(6)
C13	0.5799(2)	0.7468(3)	0.15920(18)	0.0517(6)
C14	0.6680(2)	0.7656(2)	0.06442(17)	0.0490(5)
C15	0.7184(2)	0.6425(2)	0.01817(17)	0.0491(5)
C16	0.7118(2)	0.8890(3)	0.02047(19)	0.0533(6)

Mohammed H. Geesi: Chemistry Department, College of Sciences and Humanities Studies, Prince Sattam bin Abdulaziz University, P.O. Box 83, Al-Kharij 11942, Saudi Arabia

Table 2 (continued)

Atom	x	у	Z	U _{iso} */U _{eq}
C17	0.7086(3)	1.1197(3)	0.0473(2)	0.0644(7)
H17A	0.632652	1.198032	0.064235	0.077
H17B	0.726857	1.130091	-0.031099	0.077
C18	0.8490(3)	1.1136(3)	0.1097(2)	0.0778(8)
H18A	0.831615	1.099620	0.187221	0.117
H18B	0.880319	1.197818	0.092837	0.117
H18C	0.925835	1.039572	0.089198	0.117
C19	0.8743(2)	0.5255(3)	-0.12913(18)	0.0526(6)
C20	0.8436(3)	0.3976(3)	-0.1163(2)	0.0673(7)
H20	0.772925	0.378557	-0.065559	0.081
C21	0.9173(3)	0.2974(3)	-0.1785(2)	0.0792(8)
H21	0.897219	0.210909	-0.168209	0.095
C22	1.0195(3)	0.3244(3)	-0.2550(2)	0.0783(8)
H22	1.069031	0.256887	-0.296611	0.094
C23	1.0481(3)	0.4525(4)	-0.2696(2)	0.0756(8)
H23	1.116341	0.472029	-0.322156	0.091
C24	0.9774(3)	0.5513(3)	-0.2078(2)	0.0638(7)
H24	0.998551	0.637401	-0.218484	0.077
N1	0.38313(19)	0.2453(2)	0.34652(14)	0.0545(5)
N2	0.4711(2)	0.2189(2)	0.25693(16)	0.0622(5)
N3	0.5141(2)	0.3305(2)	0.22421(16)	0.0607(5)
N4	0.5175(2)	0.8463(2)	0.22077(16)	0.0643(6)
H4A	0.464554	0.828679	0.276588	0.077
H4B	0.530521	0.927610	0.204329	0.077
N5	0.80860(19)	0.6336(2)	-0.06973(14)	0.0546(5)
H5	0.830101	0.709702	-0.094230	0.066
01	0.4214(2)	0.64891(19)	0.34080(14)	0.0713(5)
02	0.79200(18)	0.89881(18)	-0.05869(13)	0.0640(5)
03	0.65593(18)	0.99586(18)	0.07665(14)	0.0653(5)
S1	0.65561(6)	0.50883(6)	0.08608(5)	0.05279(19)

reflux for 4 h. The mixture was allowed to cool to room temperature and poured into ice-water. The solid obtained was collected by filtration, dried and recrystallized from DMF to give pale-yellow crystals (Mp. 211–212 °C; lit. Mp. 210 °C [4]) of the title compound (68%).

Experimental details

All hydrogen atoms were placed in calculated positions and refined using a riding model. Difference Fourier calculation indicated disorder in the tolyl methyl group and the group was refined with two positions rotated by 60° from each other (AFIX 123 instruction in SHELXL [3]) The other methyl groups (AFIX 137) were allowed to rotate about the C-C bond and U_{iso} values for all methyl groups were set to $1.5U_{eq}$ (C). The U_{iso} values for the amine (AFIX 93), methylene (AFIX 23), aromatic hydrogens (AFIX 43) were set to $1.2U_{eq}$ (C, N).

Comment

Thiophene derivatives have been used as building blocks in drugs since they show various pharmacological activities such as antibacterial, anti-inflammatory, anticancer, and antiviral [5–7] properties. Compounds containing the 1,2,3-triazole moiety have also shown a variety of biological activities [8–10].

The asymmetric unit consists of one molecule. The methyltriazole-carbonyl-aminothiophene-carboxylate group (**A**) is planar with a maximum deviation of 0.124(2) Å from the least squares plane. With a twist of just $8.3(1)^\circ$, the phenylamine group is also almost co-planar with **A**, whereas the angle is $48.0(1)^\circ$ for the tolyl group. The ethoxy group also deviates from the plane with a C18-C17-O3-C16 torsion angle of $86.4(3)^\circ$. In the crystal, the molecules pack in layers parallel to (101). For adjacent layers, the planes through **A** and the phenylamine groups are separated by about 3.65 Å.

Acknowledgements: The project was supported by King Saud University, Deanship of Scientific Research, Research Chairs.

References

- 1. CrysAlis^{PRO}. Agilent Technologies, Yarnton, England (2014).
- Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.
- Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Cryst. C71 (2015) 3–8.
- Mohamed, H. A.; Abdel-Wahab, B. F.; El-Hiti, G. A.: synthesis of some novel thiophene and thiazole derivatives and their antimicrobial evaluation. Heterocycles **94** (2017) 716–726.
- Gramec, D.; Mašič, L. P.; Dolenc, M. S.: Bioactivation potential of thiophene-containing drugs. Chem. Res. Toxicol. 27 (2014) 1344–1358.
- Pillai, A. D.; Rathod, P. D.; Xavier, F. P.; Padh, H.; Sudarsanam, V.; Vasu, K. K.: Tetra substituted thiophenes as anti-inflammatory agents: exploitation of analogue-based drug design. Bioorg. Med. Chem. **13** (2005) 6685–6692.
- Ghorab, M. M.; Bashandy, M. S.; Alsaid, M. S.: Novel thiophene derivatives with sulfonamide, isoxazole, benzothiazole, quinoline and anthracene moieties as potential anticancer agents. Acta Pharm. 64 (2014) 419–431.
- Shaikh, M. H.; Subhedar, D. D.; Nawale, L.; Sarkar, D.; Khan, F. A. K.; Sangshetti, J. N.; Shingate, B. B.: 1,2,3-Triazole derivatives as antitubercular agents: synthesis, biological evaluation and molecular docking study. MedChemComm 6 (2015) 1104–1116.
- 9. Pokhodylo, N.; Shyyka, O.; Matiychuk, V.: Synthesis of 1,2,3triazole derivatives and evaluation of their anticancer activity. Sci. Pharm. **81** (2013) 663–676.
- Slámová, K.; Marhol, P.; Bezouska, K.; Lindkvist, L.; Hansen, S. G.; Kren, V.; Jensen, H. H.: Synthesis and biological activity of glycosyl-1H-1,2,3-triazoles. Bioorg. Med. Chem. Lett. 20 (2010) 4263–4265.
- 11. Farrugia, L. J.: *WinGX* and *ORTEP* for Windows: an update. J. Appl. Crystallogr. **45** (2012) 849–854.