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Highlights 

 Genes encoding four distinct functional families of diacylglycerol acyltransferases

(DGAT) enzymes were characterised in the genome of the African oil palm, Elaeis

guineensis and in 12 other oil crop or model/related plants.

 The oil palm genome contains respectively three, two, two and two distinctly

expressed functional copies of the DGAT1, DGAT2, DGAT3 and WS/DGAT genes.

 Comparison of the predicted DGAT sequences was consistent with the E. guineensis

DGAT1 being ER located with its active site facing the lumen while DGAT2,

although also ER located, had a predicted cytosol-facing active site.

 In contrast, DGAT3 and WS/DGAT in E. guineensis are predicted to be soluble,

cytosolic enzymes.

 Evaluation of E. guineensis DGAT gene expression in different tissues and

developmental stages suggests that the four DGAT groups have distinctive

physiological roles and are particularly prominent in developmental processes relating

to reproduction, such as flowering, and in fruit/seed formation especially in the

mesocarp and endosperm tissues.
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Abstract 

The diacylglycerol acyltransferases (DGAT) (diacylglycerol:acyl-CoA acyltransferase, EC 

2.3.1.20) are a key group of enzymes that catalyse the final and usually the most important 

rate-limiting step of triacylglycerol biosynthesis in plants and other organisms. Genes 

encoding four distinct functional families of DGAT enzymes have been characterised in the 

genome of the African oil palm, Elaeis guineensis. The contrasting features of the various 

isoforms within the four families of DGAT genes, namely DGAT1, DGAT2, DGAT3 and 

WS/DGAT are presented both in the oil palm itself and, for comparative purposes, in 12 

other oil crop or model/related plants, namely Arabidopsis thaliana, Brachypodium 

distachyon, Brassica napus, Elaeis oleifera, Glycine max, Gossypium hirsutum, Helianthus 

annuus, Musa acuminata, Oryza sativa, Phoenix dactylifera, Sorghum bicolor, and Zea mays. 

The oil palm genome contains respectively three, two, two and two distinctly expressed 

functional copies of the DGAT1, DGAT2, DGAT3 and WS/DGAT genes. Phylogenetic 

analyses of the four DGAT families showed that the E. guineensis genes tend to cluster with 

sequences from P. dactylifera and M. acuminata rather than with other members of the 

Commelinid monocots group, such as the Poales which include the major cereal crops such 

as rice and maize. Comparison of the predicted DGAT protein sequences with other animal 

and plant DGATs was consistent with the E. guineensis DGAT1 being ER located with its 

active site facing the lumen while DGAT2, although also ER located, had a predicted cytosol-

facing active site. In contrast, DGAT3 and some (but not all) WS/DGAT in E. guineensis are 

predicted to be soluble, cytosolic enzymes. Evaluation of E. guineensis DGAT gene 

expression in different tissues and developmental stages suggests that the four DGAT groups 

have distinctive physiological roles and are particularly prominent in developmental 

processes relating to reproduction, such as flowering, and in fruit/seed formation especially in 

the mesocarp and endosperm tissues.  

 

Key words: diacylglycerol acyltransferase (DGAT); endosperm; kernel; mesocarp; oil palm 

(Elaeis guineensis); triacylglycerol 

 

Introduction 

 

The African oil palm, Elaeis guineensis, is the most important global vegetable oil crop in 

terms of both yield efficiency (tonnes oil/hectare) and overall volume of production [1–3]. 

Oil palm fruits contain two types of storage oil located respectively in the fleshy mesocarp 

tissue of the fruit and the triploid endosperm tissue of the seed kernel. In contrast to many 

prominent temperate oilseed crops, such as soybean and rapeseed, where the storage oil 

accumulates in the embryo, oil storage in palm fruits occurs in non-embryo, maternally-

derived tissues and may therefore be subject to different forms of genetic regulation. 

Moreover, in contrast to the storage role of the seed/kernel oil, the major role of the mesocarp 

oil is as an attractant to potential animal vectors that serve to disseminate ingested seeds. 

Again this distinctive role may result in different evolutionary constraints that could affect 

genetic regulation of mesocarp versus kernel oils.  

 

The mesocarp oil, commonly referred to as palm oil (PO), is mostly made up of 

triacylglycerols (TAGs) containing long-chain C16 and C18 fatty acids (about 44% palmitate, 

39% oleate and 11% linoleate) [4]. In contrast, the seed endosperm oil commonly referred to 
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as palm kernel oil (PKO), is enriched in medium-chain C12 and C14 fatty acids (about 48% 

laurate and 16% myristate). Together these two palm-derived oils account for about 38% of 

global production of commercial vegetable oils [1]. Further information about palm oil has 

been reviewed by Sambanthamurthi et al. (2000) and Murphy (2014). Two key recent 

developments in oil palm research have been the publication of the genome sequence in 2013 

[6] and the compilation of an updated gene model dataset for the species in 2017 [7].    

 

Like the vast majority of plant storage oils, the two types of palm oil are overwhelmingly 

made up of TAGs that are synthesised in the ER and then accumulated as cytosolic lipid 

droplets (LDs) [8]. The overall nature of the pathways involved in TAG biosynthesis in 

plants is well established [9–12], although several new enzymes have recently been 

discovered [10] and the relative contributions of different reactions and the details of their 

regulation have yet to be fully resolved [13]. Central to lipid assembly in oil crops is the 

Kennedy pathway [14] which converts glycerol 3-phosphate in four steps to TAG using acyl-

CoAs as the source of fatty acyl residues. The final reaction in this sequence is catalysed by 

diacylglycerol acyltransferase (DGAT) (diacylglycerol:acyl-CoA acyltransferase, EC 

2.3.1.20).  

 

Numerous studies have pointed to the DGAT reaction being critical for TAG assembly and in 

several cases it has been shown to limit carbon flux from lipid precursors towards TAG 

accumulation [12]. Thus, in Brassica napus, the DGAT substrate, diacylglycerol (DAG), 

accumulates during periods of rapid lipid formation [15,16]. Moreover, DGAT had the lowest 

activity (as measured in vitro) in extracts of developing seeds and DAG levels were the 

highest of all the Kennedy pathway intermediates in seed tissues [17]. In addition, an 

Arabidopsis thaliana mutant (ASI1) with reduced DGAT activity, had a decreased 

TAG/DAG ratio compared to wild type plants [18] while Zou et al. (1999) showed that this 

phenotype was due to a mutant allele of the DGAT1 gene [20]. Furthermore, seed-specific 

over-expression of a DGAT1 gene led to increased oil content in transgenic plants [21]. In B. 

napus cv. Westar, the Kennedy pathway and associated reactions exerted stronger control 

over carbon flux to TAG than did fatty acid provision [22]. Also, the overexpression of 

DGAT1 resulted in lower flux control values for overall TAG assembly [23]. In addition, 

transgenic B. napus plants with an enhanced DGAT1 activity exhibited increased oil 

accumulation in field trials [24], again emphasising the importance of DGAT gene expression 

and enzyme activity for overall oil yields at the level of the crop. 

 

Similar studies with other oil-accumulating plants, such as Cuphea, lupin, soybean and Linum 

species, have supported the notion that DGAT activity is important in determining the overall 

levels of TAG accumulation [12,25]. In general, the rise in DGAT activity during TAG 

accumulation parallels that of other Kennedy pathway enzymes [26]. In contrast, activities of 

enzymes involved in de novo fatty acid biosynthesis do not show such good correlations with 

oil accumulation [27–29] This suggests that TAG assembly is more tightly controlled than 

fatty acid synthesis [12]. In the case of E. guineensis, the regulation of TAG synthesis has 

been studied in detail using callus cultures. The data from control analysis experiments 

showed that flux control is shared between fatty acid synthesis and TAG assembly [30,31]. In 

addition, the contribution of DGAT to TAG assembly was assessed directly by inhibition 

experiments in vitro [32]. Further information about the use of control analysis to give 

quantitative information about lipid biosynthesis in E. guineensis has been described by 

Ramli et al. (2009). 
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The importance of DGAT in contributing to the regulation of oil accumulation in crops has 

led to its use, not only in single-gene, over-expressing transgenic lines [21,23,34], but also in 

plants manipulated for both ‘push’ and ‘pull’ activities. In the former, carbon supply for lipid 

synthesis is increased (push) while, in the latter, DGAT activity, as the final step in TAG 

formation, is raised (pull). For example, overexpression of the transcription factor WRI1 

(WRINKLED1) and of DGAT1 in tobacco seeds led to enhanced TAG accumulation 

compared to that expected by an additive effect [35]. Furthermore, a combination of DGAT 

expression and PGM (phosphoglucomutase) suppression has been used as an example of a 

combined push/pull strategy to boost TAG yields in the important oil crop, soybean [36,37]. 

In addition, a combination of DGAT and LEC2 (LEAFY COTYLEDON 2) gene 

overexpression has been used to increase TAG accumulation in tobacco [38]. The concept of 

using other enzymes in addition to DGAT in order to raise oil yields has also been used to 

increase TAG accumulation in tobacco leaves, which do not normally accumulate high levels 

of TAGs [39]. In this innovative study, carbon flux was increased through both fatty acid 

synthesis (‘push’) and TAG formation (‘pull’), while at the same time TAG-rich lipid 

droplets were stabilised via oleosin over-expression (‘package’) and minimising further 

metabolism by silencing the SDP-1 lipase (‘protect’). This led to an incremental, step-wise 

increase in the ectopic accumulation of TAG to the remarkably high levels of >30% of leaf 

dry weight [39]. 

 

Experimentally measured DGAT activity was first reported by Weiss et al. (1960) and several 

different types of DGAT enzyme have since been described in plants [12,41,42]. As recently 

as 2011 there appeared to be just two DGAT enzymes both in plants and in other eukaryotes, 

namely DGAT1 and DGAT2 [43]. Both DGAT1 and DGAT2 are membrane-bound 

(normally on the ER) enzymes but they are otherwise structurally very distinct from each 

other. It therefore seems likely that these two enzymes originally evolved separately but 

became functionally convergent as they acquired similar types acyltransferase activity 

involving DAG substrates [43], albeit possibly with different roles in ER-based TAG 

formation in different plant tissues. More recently, a third putative DGAT isoform, a soluble 

enzyme termed DGAT3, was discovered and there are preliminary reports that this enzyme 

has DGAT activity and may also participate in a cytosolic pathway of TAG biosynthesis 

[25,44,45]. Finally, a fourth DGAT activity, a bi-functional DGAT/wax ester synthase 

(WS/DGAT) has been described in a wide range of organisms from bacteria to plants  [46]. 

The primary function of WS/DGAT is believed to be the formation of surface wax esters, 

although it has been suggested that this enzyme is also responsible for making small amounts 

of TAG [25,46,47]. Interestingly WS/DGAT is a very diverse protein family with some 

members shown to be soluble in cells while others are membrane-bound [48–50]. As with the 

DGAT1 and DGAT2 genes, both DGAT3 and WS/DGAT have very distinct evolutionary 

pathways and appear to have originated independently of each other [25]. In all of the land 

plant genomes and at least one algal genome analysed to date some or all the four DGAT 

gene families have multiple copies, implying that the duplication events responsible for this 

probably occurred prior to Streptophyte diversification [25,51]. 

 

Genetically speaking, oil accumulation in plant tissues is a complex quantitative trait that 

involves numerous genes. Efforts to increase oil yields in commercially valuable crops, such 

as E. guineensis and oilseeds like soybean, require the identification of the specific genes that 

regulate this highly desirable agronomic trait so that breeders can focus on variation 

involving those key genes [52] in a similar manner to efforts to manipulate the acyl quality of 

the oil [53]. It is becoming increasingly apparent that DGAT activity is pivotal to increasing 
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oil yield in seeds, as demonstrated by the significant increases in TAG accumulation when 

DGAT genes are over-expressed in transgenic plants [12,25,54]. E. guineensis, as the world’s 

most productive edible (and industrial) oil crop, is an important contributor to global food 

security with several studies indicating that demand for the oil will continue to increase 

substantially over the coming decades [2].  

 

This has led to concerns that the forecast increased demand for palm oil might lead to further 

conversion of sensitive tropical habitats to E. guineensis plantations [2]. However, an 

alternative strategy would be to increase oil yields in E. guineensis fruits themselves so that 

more oil can be produced from exisiting smallholder and commercial plantations. This would 

reduce the requirement for the conversion of additional land for E. guineensis cultivation [2]. 

A further challenge is the improvement of oil quality in order to expand markets for palm oil, 

e.g. by reducing the saturate content and increasing oleic acid levels in order to compete more 

effectively with premium edible vegetable oils such as olive and sunflower oils and also to 

reduce free fatty acid levels by inhibiting or removing lipase gene expression in freshly 

picked palm fruits [55]. 

 

In order to fulfil the strategy of improving palm oil yield and quality, it is necessary to 

improve our understanding of the regulation of TAG accumulation and especially the role of 

DGAT in the non-seed tissues of E. guineensis fruits, namely the mesocarp, where relatively 

few studies have been performed to date [56–58]. In this study, we describe the genomic 

architecture of the various isoforms within the four classes of DGAT genes in E. guineensis, 

namely DGAT1, DGAT2, DGAT3 and WS/DGAT as compared with 12 other plant species. 

We have also evaluated DGAT gene expression in a range of tissues, including mesocarp, 

seed kernel, and selected vegetative tissues, as well as at different developmental stages.  

 

 

Methods 

 

Identification of Diacylglycerol Acyltransferase genes  

Publicly available sequences from several databases were downloaded for 13 plant species, 

namely A. thaliana, B. distachyon, B. napus, E. guineensis, E. oleifera, G.  max, G. hirsutum, 

H. annuus, M. acuminata, O. sativa, P.  dactylifera, S.  bicolour and Z. mays. Ortholog 

analysis was performed using Orthomcl2.0 [59] using default parameters. A list of curated 

DGAT genes from Arabidopsis was used as a reference to identify DGAT orthologs from the 

Orthomcl data (Supplementary S1 file). To search for other E. guineensis DGAT genes 

especially those which are singletons, a hidden Markov model (HMM) profile was built from 

orthologous amino acid sequences and used as a query for hmmsearch from the HMMER3 

package [60] against our E. guineensis gene models [7]. Sequence similarity searches, using 

BLASTP program [61] against reference sequence protein database (Viridiplantae), were 

performed to identify additional DGAT genes in E. guineensis.  

 

Analysis of derived amino acid sequences and protein domains 

Protein domains were identified using InterPro (http://www.ebi.ac.uk/interpro/), PfamScan 

(http://pfam.xfam.org/search#tabview=tab1) and NCBI CDD (http://www.ncbi.nlm.nih.gov/ 

Structure/cdd/wrpsb.cgi). Motif analyses by selection of up to 20 motifs were performed 

using Motif Multiple En for Motif Elicitation (MEME) [62]. Transmembrane domains were 

predicted by using TM domains plugins Transmembrane Prediction Tool version 0.9 

Geneious version 10.2.3 (http://www.geneious.com, Kearse et al. 2012) for the classification 

of DGAT family members. The lengths of the TMs is 21 - 22 residues. Multiple sequence 
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alignments of the cluster members were performed by MUSCLE [64] and the sequences were 

compared and visualized using Bioedit tools [65]. Protein relationship trees were built using 

Molecular Evolutionary Genetics Analysis (MEGA 7) [66] with Neighbour-joining (NJ) 

methods [67] using Poisson correction method [68] and Maximum Likelihood method based 

on JTT matrix-based model [69] . 

 

 

Localization of DGAT genes in the E. guineensis genome and gene structure analysis 

TBlastN was used to identify the DGAT scaffold sequence from our genome assembly data. 

The Exonerate program (version 2.2.0) [70] with protein2genome model parameters was used 

to find the number of exons and introns and to predict the location of DGAT gene in our 

EG5.1 Genome build [7]. Gene structures between the detected orthologs were generated 

using WebScipio interface version Scipio v1.5 [71,72]. The alignments of gene structures 

were generated and compared with GenePainter [73]. 

 

Expression profiles of DGAT genes in endosperm, mesocarp and vegetative tissues 

RNA seq data from endosperm, mesocarp and vegetative tissues were read mapped to the E. 

guineensis genome P5-build using the Tuxedo suite [74] and linked to our E. guineensis gene 

model [7]. Sequencing of transcriptome libraries was performed using Roche/454 and 

Illumina HiSeq 2000 machines. The complete data sets are publicly available from NCBI 

BioProjects PRJNA201497 and PRJNA245226. For Illumina HiSeq 2000 data, the log10 

FPKM expression profiles of four DGAT gene families were visualized using line graphs 

while heatmaps were generated as outputs for the Roche/454 data. 

 

 

Results and Discussion 

 

DGAT gene copies and phylogenetic analysis 

 

Phylogenetic and amino acid motif analyses corresponding to the four DGAT families as 

retrieved from the genomes of E. guineensis and other plants of interest are shown in Figs. 1, 

2, 3 and 4. Note that we also used two independent phylogenetic methods, namely maximum 

likelihood and maximum parsimony, to confirm the phylogenies shown here (see Additional 

file 1. In the case of DGAT1 (see Fig. 1A) we retrieved three apparently full length 

sequences, one of which (EgDGAT1_2) clustered with an ortholog from date palm 

(PDK30s995161g003) while the other two (EgDGAT1_1 and EgDGAT1_3) formed an 

adjacent but distinct cluster with EgDGAT1_1 additionally forming a sub-branch with nine 

very similar isoforms from E. oleifera. All of these oil and date palm sequences were in a 

larger cluster that additionally included two sequences from banana, M. acuminata. Banana 

and date palm and E. guineensis and E. oleifera are all members of the Commelinid monocots 

group. The Commelinids are an apparently monophyletic taxon that includes many 

commercially important species such as the palms, bananas, ginger and all members of the 

grass family including the major cereal crops such as rice, wheat and maize plus the model 

species B. distachyon. However, more recent molecular evidence has questioned the precise 

place of palms versus grasses in the Commelinid monocots group, not least because while the 

grasses have some of the most rapid recorded rates of molecular change, the palms have some 

of the slowest [75–78]. Interestingly, in Fig 1A the palm and banana sequences clearly cluster 

in a distinct group that is separated from the other members of the Commelinids, which are 

distributed within a large group that includes several non-monocot species such as soybean, 

G. max, and sunflower, H. annuus.  
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In the case of DGAT2 the E. guineensis genome contained two apparently full length 

sequences (EgDGAT2_1 and EgDGAT2_2) that formed a distinct cluster with putative 

banana and date palm orthologs (see Fig. 2A). EgDGAT2_1 was in a sub-branch with three 

sequences from E. oleifera, banana and date palm, while EgDGAT2_2 formed a separate sub-

branch with sequences from E. oleifera and banana only. All seven of the palm/banana 

DGAT2 sequences formed a discrete cluster that was adjacent to but distinct from a cluster of 

Poales sequences that included maize and rice.  

 

 

Compared to DGAT1 and DGAT2, the DGAT3 genes are a much more recently discovered 

family that encodes soluble proteins in plants [25,44,45]. A recent comparative study showed 

that there were either one or two DGAT3 genes in the genomes of a wide range of plants 

ranging from simple marine algae such as Volvox carteri and Ostreococcus lucimarinus to 

major crop species such as soybean and rice [25]. The E. guineensis genome contained two 

clearly distinct DGAT3-like sequences, one of which (EgDGAT3_2) formed a small cluster 

with two isoforms from E. oleifera and one date palm sequence, while the other gene 

(EgDGAT3_1) clustered with a single E. oleifera sequence (see Fig. 3A). All of these 

sequences formed a cluster with two sequences from banana and clearly constituted a 

different grouping from other plant DGAT3 sequences, including those from other monocots 

such as rice and maize plus dicots such as soybean and rapeseed. 

 

 

The WS/DGAT gene family varies considerably in the number of putative, annotated gene 

sequences in different plant species with maize and soybean apparently only having one gene 

copy while cotton has five and A thaliana has no fewer than 11 gene copies [25,47]. The E. 

guineensis genome contained two clearly distinctive WS/DGAT-like sequences, with 

EgWS/DGAT_1 clustering with two isoforms from E. oleifera and one from date palm, while 

EgWS/DGAT_2 clustered in a completely different branch with another E. oleifera isoform 

and date palm sequences (see Fig. 4A). Interestingly, 12 WS/DGAT sequences from 

soyabean cluster together with the EgWS/DGAT_2 sequence. A third sequence, labelled as 

EgWS/DGAT_3 in Fig 4A, was rejected as a potential functional WS/DGAT as only half of 

the full length sequence that was present in the other proteins was present in this putative 

WS/DGAT and we conclude that the E. guineensis genome contains just two WS/DGAT 

genes. Unlike the other three DGAT gene families, the putative WS/DGAT genes shown in 

Fig 4A were not as discretely clustered into palm/banana, Poales and dicot groups and, as 

discussed below, the derived WS/DGAT amino acid sequences of E. guineensis were also 

more divergent from each other. 

 

 

 

Structural and motif analysis of DGAT-like sequences in E. guineensis and other plants 

 

Motif analysis using MEME was used to characterise the derived amino acid sequence 

domains in all four DGAT gene families in E. guineensis and the other 12 analysed plant 

species as shown in Figs. 1B to 4B. Within the 13 plant species that we surveyed, we 

identified ortholog sequences as follows: a total of 39 DGAT1 sequences (21 genes, 18 

isoforms), 39 DGAT2 sequences (26 genes, 13 isoforms), 19 DGAT3 sequences (17 genes, 2 

isoforms) and 97 WS/DGAT sequences (82 genes, 15 isoforms) (Supplementary S1 file). In 

terms of the enzymatic classification, DGAT1 is a member of a eukaryotic ER-located 50-60 
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kDa protein family annotated as ‘Diacylglycerol O-acyltransferase 1’ in UniProt. DGAT2 

belongs to a quite distinct 30-40 kDa eukaryotic ER-located protein family annotated as 

‘Diacylglycerol O-acyltransferase 2’ in UniProt. DGAT3 is soluble 40-50 kDa protein family 

annotated as ‘Diacylglycerol O-acyltransferase 3, cytosolic’ in UniProt and finally 

WS/DGAT is classified as ‘similar to the O-acyltransferase WSD1 group’. For the 

WS/DGAT sequences, the locations of key individual residues such as histidines and longer 

conserved motifs shown in Fig 4B and S2 are similar to those found in other well 

characterised members of the WS/DGAT family, also referred to as WSD in some reports 

[49,50]. In particular the putative active site residues HHxxxDG are absolutely conserved as 

shown in Supplementary Fig. S2D at positions 239-245. We are therefore confident that the 

members of all four DGAT families have been identified in the 13 species that were analysed.  

 

Fig. 1B shows the conserved motifs structures that were identified by MEME analysis in 

EgDGAT1. However, the three motifs LHSAAAAVVVQ, 

EDSSKTSLPSAEDSNTDSGEDSGVDTSSDADTRDRVVDGVDREE, GEEKAG and 

NGEKYDDGAGRAEGQEAGVGV were missing in EgDGAT1_2. The absence of motif 

KGDMSSSCJEIDNMKGPSFKSLVYFMVAP in EgDGAT1_1 also differentiates it from 

EgDGAT1_3 and this motif is also not present in EgDGAT1_2. Although the EgDGAT1 and 

EgDGAT2 sequences are broadly similar to the corresponding genes in date palm, a more 

detailed motif analysis revealed that the date palm protein sequences were missing several 

motifs. For example in DGAT1, PDK_30s995161g003 is missing five motifs towards the C 

terminal part of the sequence while in the case of DGAT2, the date palm sequence 

PDK_30s855921g004 is missing almost half of the N terminal part of the sequence (Fig. 2B).  

 

The data also indicate that there are two types of DGAT3 in E. guineensis. One of the 

DGAT3 sequences (EgDGAT3_2) was very similar to the date palm PDK_30s923651g005 in 

containing the conserved motif EENNYALKLGPECSNTSATTSSSDSCGCCSNSIPVV 

DRPMD, which is absent from EgDGAT3_1 and from two DGAT3 sequences in banana, 

namely GSMUA_Achr2P07940_001 and GSMUA_Achr1P25080_001 (Fig 3B). In Fig 4B, 

motif analysis enabled the identification of two distinct types of E. guineensis WS/DGAT. 

The first, EgWS/DGAT_1, was found to be common to all 12 plant species analysed while 

the other sequence, EgWS/DGAT_2, was only found in six of the plant species, namely E. 

oleifera, G. hirsutum, G. max, H. annuus, M. acuminata, P. dactylifera. A third E. guineensis 

WS/DGAT sequence, shown in Fig 4B as EgWS/DGAT_3, was almost identical to the N-

terminal half of EgWS/DGAT_2 but the C-terminal half of the sequence was missing and this 

may be a truncated pseudogene or a sequencing error.    

 

Our data from the E. guineensis genome and the other comparative plant genomes, as 

generated using Geneious tools and additional plug-ins, show that the predicted amino acid 

sequences of the four major DGAT protein classes differ considerably in both composition 

and their overall length. In particular, the two major types of plant DGATs, both of which are 

predicted to be membrane bound, namely DGAT1 and DGAT2, shared very little amino acid 

sequence similarity [79,80]. While DGAT1 ranged from about 500 - 540 amino acids (aa), 

DGAT2 was much shorter at about 330 aa. Two types of DGAT1 were characterized when 

we compared the three annotated sequences from the latest E. guineensis gene model [7] with 

those described in [81]. Using tblastn searches it was found that EgDGAT1_2 [7] is similar to 

EgDGAT1-1 [81], while EgDGAT1_3 [7] were similar to EgDGAT1-2 [81]. However, 

EgDGAT1_1 only showed 63% identity (339/535; match length 516/516 aa) with 

EgDGAT1-1 for the first hit and 82% (293/357; match length 331/516 aa) for the secondary 

hit to EgDGAT1-2. Multiple sequence alignments (Supplementary Fig. S2A) show an 
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important conserved sequence XHXXX(X)D motif box 1 [82] and putative functional motifs 

were predicted for four EgDGAT by using Prosite database [83] (Additional file 2). It has 

been shown that the His (H) and Asp (D) residues can be replaced with Arg (R) and Glu (E) 

residues in box 1 to give the same function in the cases of plant, mouse and human ortholog 

sequences [21]. 

 

In all of the analysed plant genomes the predicted DGAT2 proteins were over 200 aa shorter 

than DGAT1 at ~330 aa. There were two E. guineensis DGAT2 sequences, EgDGAT2_1  

and EgDGAT2_2 and these were 99% and 55% identical to the previously reported 

sequences from [81], respectively. In parallel, the EgDGAT2 transcript (XM_010933834), 

which was isolated from mesocarp tissues, was compared with EgDGAT2_1 and this 

indicated that the start codon for EgDGAT2_1 might be located after 35bp. In Fig. 2B, 

EgDGAT2_2 is missing most of a conserved motif located towards the C terminus. Similarity 

search against RefSeq showed 52% similarity with A. thaliana AT3G51520 and 55% with G. 

max DGAT2D (LOC100784657). Sequence conservation is shown in alignment of 33 

orthologous sequences in Supplementary Fig. S2B. 

 

Apart from the ubiquitous occurrence of DGAT1 and DGAT2 in plants, two other DGAT-

related genes have been described, namely the soluble DGAT3 and the soluble 

multifunctional WS/DGAT [25,44,45]. The putative DGAT3 orthologs from A. thaliana, 

(At1g48300) and from A. hypogaea [44], were compared with the two E. guineensis DGAT3 

sequences. Similar to DGAT2, DGAT3 proteins have predicted lengths of 340 - 360 aa but 

their amino acid sequences are otherwise very different (Fig. 3B). Of the two E. guineensis 
DGAT3 sequences, EgDGAT3_1 and EgDGAT3_2 had respectively 36% and 39% amino 

acid identical to A. thaliana At1g48300. Based on the sequence alignment data, EgDGAT3_2 

had 33% identity and an overall 339 aa match length with the predicted peanut DGAT3 

(AAX62735.1) although the alignment contained relatively high portion of gaps (21%). The 

data in Supplementary Fig. S2C demonstrate the uniqueness of DGAT3 sequences in all 

species. As reported by [25], DGAT3 was found be present as either one or two gene copies 

in all of their analysed plant species. From Orthomcl analysis, we deduced that there was 

only one copy of the DGAT3 gene in grasses such as rice, maize and Brachypodium, but two 

gene copies in E. guineensis and banana as well as in the selected dicots including soybean, 

cotton and rapeseed (Fig. 3B). 

 

In plants, a bi-functional DGAT/wax ester synthase (WS/DGAT) was identified in 

Arabidopsis by Li et al. (2008). Although the primary function of this enzyme is believed to 

be the formation of surface wax esters, it has been suggested that it is also responsible for 

making small amounts of TAG [25]. In our ortholog analysis, it is interesting to note that the 

sequence of EgWS/DGAT_1 was relatively dissimilar to EgWS/DGAT_2. In view of the 

doubts about the functionality of the EgWS/DGAT_3 sequence (see above), similarity 

searches using blastp against Reference proteins database (refseq_protein) were performed to 

further validate this sequence. The results showed that sequence is 99% identical to the N-

terminal half of Genbank accession XP_010935670 (EgWS/DGAT_2). Several analyses were 

then performed for both sequences to verify these results and the data suggest that 

EgWS/DGAT_3 is not a full-length functional DGAT3 as it is missing key motifs and that an 

update is required of the P5 gene model annotation [7]. For a full alignment of orthologs of 

the WS/DGAT family, see Supplementary Fig. S2D.  

 

 

Topology and active site analysis 
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We used Geneious version 10.2.3 to estimate the number of putative transmembrane domains 

(TM) in DGAT proteins in all 13 analysed plant species as shown in Supplementary Fig. 

S3A. Note that we also ran several other algorithms such as TMpred, TopPred and TMHMM 

with varying degrees of consistency, but overall the Geneious package was found to give the 

most consistent predictions and gave similar results to those found previously with non-plant 

DGAT sequences, as discussed below. We found that for each DGAT family the number of 

TM can vary considerably even within a single species. There are two major likely 

explanations for this variation. Firstly the original genomic data and gene models/annotations 

upon which the derived amino acid sequences are based can vary in quality and reliability 

between the different plant species. This may give rise to partially erroneous or incomplete 

sequences that affect the predicted TM score. A second possibility is that in a given plant 

genome there may be several similar copies of a particular DGAT gene but that these have 

subsequently diverged structurally and/or functionally, e.g. so that they now have different 

substrate preferences and/or subcellular locations. In such cases the number of TM domains 

might differ but the proteins remain members of the particular DGAT family.  

 

For DGAT1, the number of TM domains in all of the plant species varied between four and 

ten (Supplementary Fig. S3B). However, the most common pattern was for a cluster of four 

TM towards the N-terminus, with one or two in the centre, and three close to the C-terminus. 

The three E. guineensis DGAT1 isoforms followed this most common distribution in having 

eight putative TM domains with a 4-1-3 distribution at similar locations in the protein 

sequence. For an ER-located protein, this distribution of TM domains would give rise to a 

molecule with a large (100- to 150-residue) cytosolic N-terminal domain, plus two smaller 

(50- to 100-residue) centrally located cytosolic and ER luminal domains. This is similar to 

the predicted topological orientation of mammalian DGAT1 proteins, which also have a 

putative C-terminal proximate ER-luminal domain as well as 7-9 TM domains [42,84]. 

Interestingly, although hydropathy plots of the murine DGAT1 protein strongly predicted 

eight TM domains, topological studies were consistent with only three TM domains, although 

the end result was still a protein with a cytosolic N-terminal and a large C-terminal domain 

that included the putative active site as discussed below [85]. As with mammalian DGAT1 

proteins, the three E. guineensis DGAT1 isoforms each contain a putative C-terminal 

proximate ER-luminal loop domain that includes the probable binding sites for the two 

enzyme substrates. These are (i) an acyl binding site, which includes the motif [FYxDWWN] 

that is highly conserved between DGATs and acyl-CoA cholesterol acyltransferase enzymes 

(in E. guineensis FGDREFYRDWWNAKT) and (ii) the putative diacylglycerol binding 

motif [HKWCIRHFYKP] that is also found in protein kinases C and diacylglycerol kinases 

(in E. guineensis NMPVHRWNIRHVY) [84]. In E. guineensis DGAT1 these two substrate 

binding domains are located directly adjacent to one another in the region of residues 445 to 

480, which is predicted to be part of a larger non-cytosolic, i.e. ER luminal, domain as 

described above and depicted graphically in Supplementary Fig. S4. This is consistent with 

experimental studies showing that DGAT1 and DGAT2 are ER-bound membrane proteins in 

both plants and animals [79,86] and that DGAT1 from rapeseed has a cytosol-facing N-

terminal region [87]. 

Although DGAT2 is also a DAG-active acyltransferase, like DGAT1, it is part of a quite 

separate, evolutionarily conserved, gene family that is highly expressed in tissues that 

synthesise and accumulate large amounts of TAG. In animals this includes adipose tissue, 

liver, small intestine, and mammary gland while in plants it mainly includes embryo and 

endosperm of oil-rich seeds and mesocarp of oil-rich fruits [86,88]. The wider family of 
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acyltransferases to which DGAT2 belongs includes monoacylglycerol acyltransferases 

(MGAT) 1–3 and wax synthases 1 and 2, all of which contain a highly conserved four-amino-

acid sequence, HPHG, that is part of the larger so-called MBOAT motif of this protein 

superfamily [42,86,89]. Mutagenesis of amino acids within this sequence, and in particular 

the two histidine residues, markedly impaired the catalytic function of DGAT2 and suggested 

that this region is part of the active site [90].  DGAT2 sequences in animals and plants also 

contains several other highly conserved regions but their functional importance has yet to be 

determined [42]. Our analysis predicted two TM domains in EgDGAT2_1 and three in 

EgDGAT2_2, although the N-terminal proximate TM domain in EgDGAT2_2 was less 

confidently supported so both isoforms may contain just two TM domains (Supplementary 

Fig. S3B). This is similar to another report that the E. guineensis DGAT2 labelled as 

XM_010933834 contains two transmembrane domains [57] and is consistent with data from 

other organisms [42]. In nearly all cases the plant DGAT2 sequences that we analysed were 

predicted to have a short cytosolic N terminal domain followed by two TM domains and a 

large (>250 aa) cytosolic C terminal domain that included the conserved HPHG active site 

motif, which is similar to the topology found in murine DGAT2 [90].  

These analyses, both here and elsewhere, of the ER-bound DGAT1 and DGAT2 proteins are 

consistent with the predicted topological structures shown in Supplementary Fig. S4 where 

DGAT1 has a luminal active site domain whereas in DGAT2 the active site is cytosolic, as 

also discussed by [86]. These different topologies are probably significant for the biological 

roles of DGAT1 and DGAT2. Hence it has been suggested that DGAT2 with its cytosol-

facing active site is principally involved in bulk TAG formation as cytosolic lipid droplets – 

the so-called ‘overt’ activity – while DGAT1 has a different role, possibly in recycling 

exogenous TAG via the so-called ‘latent’ luminal activity as found in animals [86,91–93]. 

This is also consistent with the finding that recombinant tung tree DGAT1 and DGAT2 

proteins expressed in tobacco cell lines localised to distinct punctate regions of the ER and 

are therefore likely to be located in different ER subdomains [79]. In contrast to DGAT1 and 

DGAT2, our analysis of E. guineensis and other plant DGAT3 and WS/DGAT gene products 

did not provide convincing evidence for the presence of TM domain sequences in most cases 

(Supplementary Figs. S3A and S3B). Only two out of 19 analysed DGAT3 sequences 

contained a single putative TM region located close to the C-terminus and well away from 

the predicted active site region. The situation for WS/DGAT was more complex, which is not 

surprising given the highly variable amino acid sequence compositions of this protein family 

in both plants and animals. Out of 97 plant sequences that we analysed, 52 were predicted to 

be cytosolic proteins with no TM domains while 31 were predicted to have one TM domain 

and 14 were predicted to have two TM domains (Supplementary Fig. S3A). Interestingly, 

however, regardless of whether each WS/DGAT has 0, 1 or 2 TM domains, the protein was 

still predicted to have a large cytosolic N-terminal region that included a highly conserved 

putative active site motif, HHXLGDG (Supplementary Fig. S2D). Therefore our data are 

consistent with previous reports that DGAT3 and WS/DGAT are soluble, cytosol-facing or 

cytosol-located proteins [25,44,45]. 

 

Gene Structure Analysis  

 

The number and locations of introns and exons in the four DGAT gene families were 

predicted using Webscipio (Supplementary S1 file) and (Supplementary Fig. S5). By 

mapping the gene structure and aligning protein sequences of the closest related orthologs in 

the same clade we can derive additional useful information on conserved regions in the genes 
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and their encoded proteins. Fig. 5 shows the result of mapping protein alignments to gene 

structures in the four different DGAT groups. DGAT1 is a relatively long gene sequence and 

has 20 predicted exons which are relatively well conserved between E. guineensis and its 

close relatives. Hences, comparisons between the DGAT1 families show that EgDGAT1_2 is 

similar to an ortholog in date palm while EgDGAT1_1 and EgDGAT1_3 is more related to 

one in banana. There is a high possibility that DGAT1 from date palm is not full length as 

there is a missing of exon at 3’ end of the sequence. The major difference between the two 

types/copies of EgDGAT2 is the presence of a gap in first and last exons of EgDGAT2_2 due 

to the different number of exons between EgDGAT2_1 and EgDGAT2_2. The number of 

exons varied between 5 and 9 exons as described by [25] although we found that the number 

was always 9 in E. guineensis and its relatives (Fig5B).  

 

The difference between two EgDGAT3 with the closely related species is that date palm has 

a unique intron at the beginning of the sequence while one of the banana sequences 

(GSMUA_Achr1P25080_001) has one at the 3’ end. For EgWS/DGAT, it is important to 

split the mapping alignment of EgWS/DGAT_1, EgWS/DGAT_2 and EgWS/DGAT_3 due 

to separation of these genes into two major clades. Interestingly, E. guineensis 
EgWS/DGAT_1 has two very long introns, i.e. intron one (2844 bp) and intron five (1497 

bp). For EgWS/DGAT_2, we mapped the sequence to an EG5.1 chromosome, as we 

identified it as full length in the latest E. guineensis gene model (unpublished data). In Fig. 

5E, we show that PDK_30s1002811g004 is similar to EgWS/DGAT_2 with conservation of 

almost all exons and introns. The only difference is that the date palm sequences have an 

additional intron (Intron 5).  More information about the number of intron and exon in DGAT 

family is shown in Supplementary S1 file. 

 

 

 

Chromosomal location of DGAT genes in E. guineensis 

 

The diploid E. guineensis genome is made up of 16 chromosome pairs which for the purpose 

of sequencing assemblies are referred to as pseudochromosomes. A total of eight E. 

guineensis DGAT genes were mapped onto the 16 pseudochromosomes of the EG5.1 

assembly in order to identify the precise location of these genes. A schematic diagram of the 

gene positions is given in Fig. 6. More detail information about the exact locations of these 

genes is given in Supplementary S1 file. DGAT1 genes were present in three different 

chromosomes, of which EgDGAT1_1 and EgDGAT1_2 generated hits at three chromosomes 

(3, 6 and 7), while EgDGAT1_3 only hit to chromosomes 6 and 7 (EgChr 6 and 7). To 

further reveal which EgDGAT1 sequences were associated with which chromosomes, a 

mapping analysis was used to check the size of exons and introns between the three 

EgDGAT1 sequences on the three chromosomes. From this analysis it was concluded that 

DGAT1 has probably undergone several duplication events. In particular, for EgDGAT1_1 

there is a duplication between EgChr3 and EgChr7 with scores of 2, 483 and 2, 095 

respectively. Therefore, although the three EgDGAT1 genes are only present in three 

chromosomal loci, some of these loci probably contain two tandemly and segmentally 

duplicated gene sequences. In particular EgDGAT1_2 appears to be segmentally duplicated 

on EgChr6 and EgChr7 while EgDGAT1_3 is duplicated in EgChr6 and EgChr7. From the 

MyPalmviewer Gbrowse website (http://gbrowse.mpob.gov.my/fgb2/gbrowse/Eg5_1/), 

additional evidence showed these genes were mapped at the same location with Arabidopsis 

(AT2G19450.1) on chromosomes 3, 6 and 7. A summary of the size (bp) exon and intron is 

illustrated in Supplementary Fig. S6. 
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In the case of DGAT2, the two genes hit to two different chromosomes where EgDGAT2_1 

is on chromosome 10 and EgDGAT2_2 is on chromosome 4. Therefore in this case there is a 

single gene at each locus. For DGAT3, EgDGAT3_1 was located on EgChr2 while 

EgDGAT3_2 hit to EG_Un_random5. Finally, EgWS/DGAT_1 is present on EgChr6 while 

EgWS/DGAT_2 and the likely pseudogene, EgWS/DGAT_3, are both located on EgChr12, 

possibly due to a former tandem duplication event.  

 

 

 

Transcript quantification and differential expression analysis 

 

Quantitative analysis of the expression of eight DGAT genes during the development of 

endosperm and mesocarp tissues is shown in Figs. 7A and B. It is noteworthy that the 

patterns of gene expression of the various DGAT isoforms are completely different in these 

two fruit tissues. In particular, the expression levels of all DGAT genes are much less 

variable in the maternal mesocarp tissue compared with the triploid endosperm tissue that 

makes up the bulk of the seed kernel in E. guineensis. The three genes that are most highly 

upregulated in the endosperm are EgDGAT1_1, EgDGAT3_1 and EgWS/DGAT_1. 

Interestingly in the endosperm tissue, the expression levels increase after 12 weeks after 

anthesis (WAA) for EgDGAT1_1, EgDGAT2_1, EgDGAT3_1 and EgWS/DGAT_1. 

EgDGAT1_2 showed higher expression in endosperm but lower expression in the mesocarp, 

while the pattern was opposite for EgDGAT3_2. Also, while EgDGAT1_3 was highly 

expressed in both tissues, the opposite was found for EgDGAT2_2. Up-regulation of 

EgDGAT1_1 in endosperm and mesocarp at time point 12WAA and 15WAA respectively 

suggested the involvement of this particular isoform during oil accumulation [5]. 

 

The important role that DGAT1 plays in plant TAG synthesis has been demonstrated by over-

expression studies [21,23,24] and by mutations in the DGAT1 gene [19]. Structural features 

in DGAT1 that lead to increased activity and enhanced oil yields when expressed in crops 

have been reported recently by [54]. These studies have expanded the previous research by 

the same group and also observations of amino acid substitutions in maize DGAT by [94]. 

Within E. guineensis fruits its is the kernel located endosperm tissue that is mainly involved 

in the formation of medium chain fatty acids (i.e. lauric and myristic) [95,96]. It has been 

reported that expression levels of DGAT1 and DGAT2 are higher in seed compared to 

mesocarp tissues [42,97]. Our endosperm transcriptome data for EgDGAT2_1 showed a 

similar pattern to EgDGAT1_3. This trend is similar to that reported in castor bean [98]. 

Hence, at 15WAA the E. guineensis EgDGAT2_1 was more highly expressed compared to 

all three EgDGAT1 isoforms. DGAT2 was first reported by [99] and may have a different 

expression profile to DGAT1 in some plants where it has been associated with the synthesis 

of TAGs with a unusual fatty acid compositions, such as in castor bean or tung tree 

[79,98,100,101]. DGAT2 transcripts are also found at relatively high levels in olive [102] and 

palm fruits [56,58]. Not surprisingly, in view of their quite distinct amino acid sequences, 

DGAT1 and DGAT2 have been reported to have different substrate selectivities [79,103–

105] and this may account for their preferential use in different plants where different fatty 

acids are stored in TAGs.  

 

In Fig. 7C a heatmap analysis shows the expression pattern for the E. guineensis DGAT2, 

DGAT3 and WS/DGAT families within 22 transcriptome libraries. No EgDGAT1 profiles 

are shown in the heatmap because of insufficient transcriptome data coverage but the 
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sequences are partially mapped to the genome. The results in Fig 7C suggest that for 

EgDGAT2_1, the major expression occurs in Mesocarp_1 (10WAA Mesocarp (DxP)) tissue. 

The expression profile for both EgDGAT3 is active in almost all transcriptome libraries. 

EgDGAT3_1 was highly expressed in Early_fruit_1 (Tenera floret before anthesis (BA)), 

Kernel_2 (15WAA Kernel (DxP)) and Shoot_1 (Shoot apex of Normal DxP clone). Based on 

the profiles showed in Fig 7B, EgDGAT3_2 was more highly expressed in mesocarp than 

other DGATs. There is a possibility that EgDGAT3 has a similar function to EgDGAT1 and 

is maybe involved in the TAG biosynthesis. In addition, [106] showed that the expression 

pattern of DGAT3 in Arabidopsis was similar to that for DGAT1 during seed development, 

although DGAT3 expression was higher during late maturation. Even though we found the 

presence of two full-length WS/DGATgenes in E. guineensis, only EgWS/DGAT_1 

expression was detected in endosperm and mesocarp. The expression in endosperm was 

detected after 12WAA. Furthermore, this multifunctional / diverse function protein was 

highly expressed in two very different tissues, namely Pollen_2 (Pollen Pisifera (Fertile)) and 

Root_2 (Dura root). Gene expression was also observed in inflorescence and shoot tissues, 

which correlates well with the profiles reported by [47].  

 

In conclusion, we present an updated and more detailed account of the DGAT gene families 

in E. guineensis that is based on the most recent gene model [7] and includes the 

characterization of two isoforms in each of the four DGAT gene families. Hence a total of 

eight functional DGAT sequences was identified using a comparative genomics approach. 

We have also compared the gene structure of E. guineensis DGATs with those of the closely 

related species M. acuminata, P. dactylifera. The activity of oil palm DGAT gene families 

was measured in detail by transcriptome profiling in various key tissues and developmental 

stages. Trascriptonal analysis shows that the oil palm genome contains several copies of each 

of the four DGAT gene families which are subject to differential regulation in different 

tissues and developmental stages, not only during fruit development but also during other 

important physiological processes such as vegetative growth and flower development.  
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Fig 1. Phylogenetic tree and motif analysis of three E. guineensis DGAT1 sequences with 

orthologs from 12 species. (A) DGAT1 phylogenetic tree (Different coloured boxes are used 

to distinguish between monocots (orange box) and dicots (green box)) (B) Conserved motifs 

distribution identified using MEME (Represented by coloured boxes). Species abbreviations: 

Ath: A. thaliana, Bdi: B. distachyon, Bna: B. napus, Pdi: P. dactylifera, Eo: E. oleifera, Gh: 

G. hirsutum, Gm: G. max, Ha: H. annuus, Mac: M. acuminata, Eg: E. guineensis, Osa: O. 

sativa, Sbi: S. bicolor, Zm: Z. mays. 
 

Fig 2. Phylogenetic tree and motif analysis of two E. guineensis DGAT2 sequences with 

orthologs from 12 species (A) DGAT2 phylogenetic tree (Different coloured boxes are used 

to distinguish between monocots (orange box) and dicots (green box)), (B) Conserved motifs 

distribution identified using MEME (Represented by coloured boxes). Species abbreviations: 

Ath: A. thaliana, Bdi: B. distachyon, Bna: B. napus, Pdi: P. dactylifera, Eo: E. oleifera, Gh: 

G. hirsutum, Gm: G. max, Ha: H. annuus, Mac: M. acuminata, Eg: E. guineensis, Osa: O. 

sativa, Sbi: S. bicolor, Zm: Z. mays. 
 

Fig 3. Phylogenetic tree and motif analysis of two E. guineensis DGAT3 sequences with 

orthologs from 12 species. (A) DGAT3 phylogenetic tree (Different coloured boxes are used 

to distinguish between monocots (orange box) and dicots (green box)). (B) Conserved motifs 

distribution identified using MEME (Represented by coloured boxes). Species abbreviations: 

Ath: A. thaliana, Bdi: B. distachyon, Bna: B. napus, Pdi: P. dactylifera, Eo: E. oleifera, Gh: 

G. hirsutum, Gm: G. max, Ha: H. annuus, Mac: M. acuminata, Eg: E. guineensis, Osa: O. 

sativa, Sbi: S. bicolor, Zm: Z. mays. 
 

Fig 4. Phylogenetic tree and motif analysis of E. guineensis WS/DGAT sequences with 

orthologs from 12 species. (A) WS/DGAT phylogenetic tree (Different coloured boxes are 

used to distinguish between monocots (orange box) and dicots (green box)). (B) Conserved 

motifs distribution identified using MEME (Represented by coloured boxes). Species 

abbreviations: Ath: A. thaliana, Bdi: B. distachyon, Bna: B. napus, Pdi: P. dactylifera, Eo: E. 

oleifera, Gh: G. hirsutum, Gm: G. max, Ha: H. annuus, Mac: M. acuminata, Eg: E. 

guineensis, Osa: O. sativa, Sbi: S. bicolor, Zm: Z. mays. 
 

Fig 5 Structural alignment of DGAT genes between E. guineensis and the two closely related 

species, banana and date palm. (A) DGAT1, (B) DGAT2, (C) DGAT3, (D & E) WS/DGAT. 

Introns are shown as purple boxes while orange boxes indicate exons. 
 

Fig 6 Schematic view of DGAT gene locations on the 16 pseudochromosomes of E. 

guineensis. 

 

Fig 7 Expression profile of the DGAT gene family in different E. guineensis tissue types. (A) 

DGAT expression profile in endosperm and (B) mesocarp for different points in weeks after 

anthesis (WAA). (C) Heatmap of expressed in 22 E. guineensis transcriptome libraries. 

Tissue library: Early_fruit_1 (Tenera floret before anthesis (BA)), Early_fruit_2 (Tenera 
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floret/fruit after anthesis (AA)), Early_fruit_3 (Dura floret before anthesis (BA)), 

Early_fruit_4 (Dura floret/fruit after anthesis (AA)), Pollen_1 (Pollen Pisifera (Sterile)), 

Pollen_2 (Pollen Pisifera (Fertile)), Inflorescence_1 (Female flower of Normal DxP clone 

(2.5cm)), Inflorescence_2 (Female flower of abnormal DxP clone (2cm)), Inflorescence_3 

(Female flower of Normal DxP clone (20cm)), Inflorescence_4 (Female flower of abnormal 

DxP clone (19cm)), Kernel_1 (10WAA Kernel (DxP)), Kernel_2 (15WAA Kernel (DxP)), 

Mesocarp_1 (10WAA Mesocarp (DxP)), Mesocarp_2 (15WAA Mesocarp (DxP)), Leaf_1 

(Spear Leaf Dura), Leaf_2 (Spear Leaf Pisifera), Leaf_3 (F17 Leaf Pisifera), Root_1 (Root 

whitish  roots from seedling palms (DxP)), Root_2 (Dura root), Root_3 (Pisifera root), 

Shoot_1 (Shoot apex of Normal DxP clone), Shoot_2 (Shoot apex of abnormal DxP clone) 
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