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The nonlinear elasticity of hyperelastic models for stretch-dominated

cellular structures

Alexander Safar∗ L. Angela Mihai†

August 8, 2018

Abstract

For stretch-dominated cellular structures with arbitrarily oriented cell walls made from a ho-
mogeneous isotropic hyperelastic material, recently, continuum isotropic hyperelastic models were
constructed analytically, at a mesoscopic level, from the microstructural architecture and the mate-
rial properties at the cell level. Here, the nonlinear elastic properties of these models for structures
with neo-Hookean cell components are derived explicitly from the strain-energy function and the
finite deformation of the cell walls. First, the nonlinear shear modulus is calculated under simple
shear superposed on finite uniaxial stretch. Then, the nonlinear Poisson’s ratio is computed under
uniaxial stretch and the nonlinear stretch modulus is obtained from a universal relation involv-
ing the shear modulus as well. The role of the nonlinear shear and stretch moduli is to quantify
stiffening or softening in a material under increasing loads. Volume changes are quantified by the
nonlinear bulk modulus under hydrostatic pressure. Numerical examples are presented to illustrate
the behaviour of the nonlinear elastic parameters under large strains.

Key words: stretch-dominated cellular structures; isotropic hyperelastic models; nonlinear elastic
parameters; multiscale large strains.

1 Introduction

Solid cellular structures are widespread in nature and in an ever increasing number of biomedical
and engineering applications [10, 15, 24, 27, 28, 34, 36, 45, 51]. For example, engineered tissue scaffolds
provide an environment for growth and regeneration of biological cells [9, 14, 16, 18, 19, 41, 44, 52–54],
while natural materials generally incorporate several levels of structural hierarchy, which contribute to
their macroscopic physical properties [22,23,43,50,55]. From the modelling point of view, a sub-level
in the structural hierarchy can be treated either as a substructure with its own geometry, or as a
continuum described by a suitable material model. Advancements in manufacturing techniques is also
enabling the creation of new types of materials with several nested hierarchical levels [2,17,55,56]. Such
structures promise to explore uncharted territory in materials research [23,27,50], while the recursive
nature of their hierarchies brings up questions about self-similar and fractal behaviours [1,2,20,31,43].

When studying cellular structures, the common assumption is that cell walls are linearly elastic
with a geometrically nonlinear behaviour. In this case, if the cell walls bend, then the elastic response
can be determined from the linear-elastic deflection of a beam [27, 28]. However, in many cellular
structures, when loaded, the cell walls stretch axially rather than bend. The dominant mechanical
behaviour is determined by the architecture and depends on whether the cells are open or closed
[11,50]. Stretch-dominated cellular structures, such as octet-truss and body-centred cubic geometries,
for example (see Figure 1), have a higher stiffness-to-weight ratio than bending-dominated ones [11,
12,17,23,28,33,49,50]. In addition, biological and bio-inspired materials are often nonlinearly elastic
under large strains, and a finite elasticity approach is needed to understand them [29,40,48].
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(A)

(B)

Figure 1: Examples of stretch-dominated cellular structures: (A) octet-truss and (B) body-centred
cubic, at the cell level (left) and at the mesoscopic structural level (right), respectively.

Microstructure-based models for a cellular solid with open cells of isotropic linearly-elastic material
were first proposed by Gent & Thomas (1959) [25], where infinitesimal stretches were assumed. In [26],
these models were extended to structures with closed cells containing an ideal gas. For these models,
effective Young’s modulus and Poisson’s ratio under infinitesimal deformations were derived explicitly
from the constitutive equations [5,7]. For cellular structures of nonlinearly elastic material under finite
strain deformations, a phenomenological continuum model was proposed by Blatz & Ko (1962) [8].
This model reduces to the Gent-Thomas model in the small strain limit [4,6]. Later, it was noted in [47]
that Hill’s energy functional of hyperelasticity [30] can be used to describe the simple special case of
structures where the principal stresses are uncoupled, i.e. depend only on the stretch ratio in the
corresponding principal direction. These approaches are based on Ogden-type strain-energy functions
for compressible materials extending the incompressible strain-energy functions defined in [39].

For stretch-dominated structures with open or closed cells made from nonlinear elastic materials,
in [37,38], novel continuum isotropic hyperelastic models, at a mesoscopic level, where the number of
cells was finite and the size of the structure was comparable to the size of the cells, were constructed
analytically from the structural architecture and the material properties at the cell level. For these
structures, the cell walls, which were equal in size and arbitrarily oriented, were under finite triaxial
deformations, while the joints between adjacent walls were not elastically deformed. The elastic
responses at different scales were related by the assumption that, when the structure is subject to a
triaxial stretch, each cell wall deforms also by a triaxial stretch, without bending or buckling, and the
stretches of the structure and of the cell walls were related by a rotation. Possible instability effects
due to cell wall buckling, for example, which could also occur under large deformations, were discussed
in [37].

In this paper, we extend the theoretical investigation of the hyperelastic models for structures
with neo-Hookean cell components introduced in [37, 38], by providing explicit derivations of key
nonlinear elastic parameters under large strains, following the formal definition of these parameters
given in [35]. In this sense, our explicit multiscale nonlinear elastic analysis and the corresponding
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numerical illustrations presented here are new. First, the hyperelastic models are summarised in
Section 2. Then, for each model, in Section 3, the nonlinear shear modulus is formulated explicitly
under simple shear superposed on finite uniaxial stretch. In Section 4, the nonlinear Poisson’s ratio is
defined under uniaxial stretch and the nonlinear stretch modulus is obtained from a universal relation
involving the shear modulus as well. The role of the nonlinear shear and stretch moduli is to quantify
stiffening or softening in a material under increasing loads. Volume changes are quantified by the
nonlinear bulk modulus under hydrostatic pressure in Section 5. The nonlinear elastic behaviour of
the mesoscopic models is illustrated numerically in Section 6 and the numerical results are discussed
in Section 7.

2 Hyperelastic models for stretch-dominated cellular structures

In this section, we summarise the general formulation of the continuum hyperelastic models for stretch-
dominated cellular structures with open or closed cells proposed in [37,38], and specialise these models
to structures with neo-Hookean cell components, which we then analyse in detail in the next sections.

2.1 Geometric assumptions

In open-cell structures, the cell walls consist of the cell edges which form an interconnected network,
while in closed-cell structures, the cell walls contain both the cell edges and the cell faces forming
disconnected cell compartments. For each structure, all the cell edges are equal and thin, with un-
deformed thickness t and length L, such that 0 < k = t/L � 1, and meet at joints of approximate
thickness t (see Figure 2, where the joints were slightly enlarged, emphasising that they have non-zero
volume).

Open-cell structures. For the open-cell structure, we consider the case where all the cell walls
are circular cylinders and the joints are spheres (see Figure 2A) [37]. Taking the unit volume as the
volume of the sphere with radius R = (L+ t)/2 = L(1 + k)/2, which is centred at a joint and contains
half of the length of each cell wall connected to that joint (see Figure 2B), the representative volume
fraction of solid material contained in the cell walls, included in this sphere, is

ρ(o)w =
3k2

(1 + k)3
. (2.1)

Closed-cell structures. For the closed-cell structures, all the cell walls have flat faces and adjacent
cell walls meet along cell edges of length L, while adjacent cell edges meet at spherical joints [38]. In
this case, setting the unit volume as the volume of a sphere with radius R = (L+ t)/2 = L(1 + k)/2,
centred at a joint, the representative volume fraction of solid material contained the cell walls (faces
and edges) included in this sphere, is equal to

ρ(c)w =
3k

(1 + k)2
, (2.2)

while the remaining volume fraction, taken by the cell core, is

ρ(c)c =
1

(1 + k)3
. (2.3)

2.2 Kinematic assumptions

Stretch-dominated open-cell structures. When the structure is deformed homogeneously, with
the principal stretches {αi}i=1,2,3, each cell wall deforms by a triaxial stretch with the principal
stretches {λi}i=1,2,3. Let (e1, e2, e3) be the usual orthonormal vectors for the Cartesian coordinates
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(A) (B)

Figure 2: Stretch-dominated open-cell structure: (A) geometric assumptions, and (B) unit sphere.

in the principal directions in which the structure deforms, and (n1,n2,n3) denote the orthonormal
vectors in the principal direction of a deforming cell wall, satisfying:

n1 =− e1 cos θ cosφ− e2 cos θ sinφ+ e3 sin θ,

n2 =e1 sinφ− e2 cosφ,

n3 =e1 sin θ cosφ+ e2 sin θ sinφ+ e3 cos θ.

(2.4)

For the cell wall, the deformation gradient is the stretch tensor F = diag(λ1, λ2, λ3) and the
Cauchy-Green tensor is equal to C = diag(λ21, λ

2
2, λ

2
3). We denote the principal invariants of the

stretch tensor, F, by

ι1 = λ1 + λ2 + λ3,

ι2 = λ1λ2 + λ2λ3 + λ3λ1,

ι3 = λ1λ2λ3,

(2.5)

and the principal invariants of the Cauchy-Green tensor, C, by

I1 = λ21 + λ22 + λ23,

I2 = λ21λ
2
2 + λ22λ

2
3 + λ23λ

2
1,

I3 = λ21λ
2
2λ

2
3.

(2.6)

From (2.5) and (2.6), we obtain:

I1 = ι21 − 2ι2,

I2 = ι22 − 2ι1ι3,

I3 = ι23.

(2.7)

Assuming that the cell joints do not deform (i.e. the elastic deformation of the joints can be neglected),
if L and l are the lengths of a cell wall before and after the deformation, respectively, and t is the
width of a joint between adjacent walls, we denote by L = L + t = (1 + k)L and l = l + t = l + kL
the corresponding lengths of a cell element comprising a cell wall and a joint (or a cell wall and half
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Figure 3: Stretch-dominated open-cell structure (left and middle), showing the stretching of a cell
element (right).

Figure 4: Cell wall and cell element before and after deformation in a stretch-dominated open-cell
structure.
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of each joint situated at the ends of the wall) before and after the deformation (see Figures 3 and 4).
Then the principal stretches for a cell element are

λi =
λi + k

1 + k
, i = 1, 2, 3, (2.8)

and satisfy:

λ
2
1 =α2

1 cos2 θ cos2 φ+ α2
2 cos2 θ sin2 φ+ α2

3 sin2 θ,

λ
2
2 =α2

1 sin2 φ+ α2
2 cos2 φ,

λ
2
3 =α2

1 sin2 θ cos2 φ+ α2
2 sin2 θ sin2 φ+ α2

3 cos2 θ.

(2.9)

Denoting the principal invariants of the stretch tensor F = diag(λ1, λ2, λ3) by

i1 = λ1 + λ2 + λ3,

i2 = λ1λ2 + λ2λ3 + λ3λ1,

i3 = λ1λ2λ3,

(2.10)

the following relations hold between the stretch invariants (2.5) and (2.10), of the cell wall and of the
cell element, respectively,

ι1 = (1 + k)i1 − 3k,

ι2 = (1 + k)2i2 − 2k(1 + k)i1 + 3k2,

ι3 = (1 + k)3i3 − k(1 + k)2i2 + k2(1 + k)i1 − k3.
(2.11)

Then, by (2.7) and (2.11),

I1 =
[
(1 + k)i1 − 3k

]2 − 2
[
(1 + k)2i2 − 2k(1 + k)i1 + 3k2

]
I2 =

[
(1 + k)2i2 − 2k(1 + k)i1 + 3k2

]2
− 2

[
(1 + k)i1 − 3k

] [
(1 + k)3i3 − k(1 + k)2i2 + k2(1 + k)i1 − k3

]
,

I3 =
[
(1 + k)3i3 − k(1 + k)2i2 + k2(1 + k)i1 − k3

]2
.

(2.12)

For the structure, the principal invariants of the stretch tensor are:

i1 = α1 + α2 + α3,

i2 = α1α2 + α2α3 + α3α1,

i3 = α1α2α3.

(2.13)

Stretch-dominated closed-cell structures. For the closed-cell structures, the kinematic assump-
tions on the cell walls and the cell joints are the same as for the open-cell case. In addition, when
the cells are filled with an isotropic hyperelastic core, it is assumed that the cell core is in full active
contact with the adjacent cell walls throughout the deformation, i.e. there are no gaps between the
walls and the core in a deforming cell.

Remark 2.1 We note that, in order for the kinematic assumptions to be satisfied, and in particular,
that the deformation of the cell walls can be approximated by a triaxial stretch, while the elastic
deformation of the joints may be neglected, it is reasonable to assume that the thickness of the walls, t,
is much smaller than the length of the walls, L, and hence k = t/L is sufficiently small, i.e. 0 < k � 1.
In practice, the upper limit for k, such that the kinematic assumptions are reasonably satisfied, will
depend on both the cell wall material and cell geometry. In particular, under the geometric and
kinematic assumptions decribed above, in [37], numerical examples show that the mesoscopic models
capture the behaviour of cellular structures with a fixed number of cells and increasing wall thickness
more accurately for the structures with thinner walls, where the deformation of the walls is closer to
the triaxial stretch and the joints deform less significantly, as assumed theoretically, than for those
with thicker walls, where the theoretical assumptions fail to be satisfied. In the numerical examples
presented in Section 6 of this paper, we compare numerically the nonlinear material properties of the
mesoscopic models, by taking k ∈ {0.1, 0.2, 0.3} and the cell wall material parameters fixed, or varying
the cell core material parameters while the cell wall material and k = 0.1 are fixed.
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2.3 Constitutive models

First, we recall that, for a homogeneous isotropic hyperelastic material, the following principles hold:
- Material objectivity (frame indifference), which states that the constitutive equation must be

invariant under changes of frame of reference, i.e. the scalar strain-energy function, W = W (F),
depending only on the deformation gradient F, with respect to the reference configuration, is unaffected
by a superimposed rigid-body transformation (which involves a change of position) after deformation,
i.e. W (RTF) = W (F), where R ∈ SO(3) is a proper orthogonal tensor (rotation).

- Material isotropy, which requires that the strain-energy function is unaffected by a superimposed
rigid-body transformation prior to deformation, i.e. W (FQ) = W (F), where Q ∈ SO(3).

Then, assuming that the cell walls are made from a homogeneous isotropic hyperelastic material,
by (2.9), (2.12), and (2.13), the strain-energy function of the cell walls takes the equivalent forms

Ww(I1, I2, I3) =Ww(i1, i2, i3) =Ww(i1, i2, i3). (2.14)

Open-cell model. For the open-cell mesoscopic model, the strain-energy function per unit volume
is defined by taking the mean value of the cell wall energy over the unit sphere [37],

W(o)(i1, i2, i3) = ρ(o)w
2

π

∫ π/2

0

∫ π/2

0
Ww(i1, i2, i3) sin θdθdφ

= ρ(o)w Ww(i1, i2, i3).

(2.15)

The principal components of the corresponding Cauchy stress tensor are

σ
(o)
i = J−1o αi

∂W(o)

∂αi

= J−1o
∂W(o)

∂ (lnαi)
, i = 1, 2, 3,

(2.16)

where Jo = i3 = α1α2α3.

Closed-cell model. For the closed-cell mesoscopic model, the strain-energy function is equal to [38]

W(c)(i1, i2, i3) = ρ(c)w Ww(i1, i2, i3) + ρ(c)c Wc(i1, i2, i3), (2.17)

where Ww(i1, i2, i3) and Wc(i1, i2, i3) are the strain-energy functions for the cell walls and the cell
core, respectively. When the cells are empty, the hyperelastic model defined by (2.17) simplifies to

W(e)(i1, i2, i3) = ρ(c)w Ww(i1, i2, i3). (2.18)

The principal components of the associated Cauchy stress tensor are

σ
(c)
i = J−1c αi

∂W(c)

∂αi

= J−1c
∂W(c)

∂ (lnαi)
, i = 1, 2, 3,

(2.19)

where Jc = i3 = α1α2α3.

2.4 Hierarchical and self-similar structures

As the strain-energy functions for the isotropic hyperelastic cell wall and cell core materials can be
chosen arbitrarily, the mesoscopic models for open- or closed-cell structures given by (2.15) and (2.17),
respectively, can be applied iteratively to create hierarchical or self-similar structures. In this case,
the cell walls would consist of stretch-dominated architectures with open or closed cells. For a model
to be classified as self-similar, the geometric and kinematic assumptions must hold on multiple levels.
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2.5 The particular case with neo-Hookean cell components

To investigate the nonlinear elastic behaviour of the constitutive models (2.15) and (2.17), we specialise
to the case where the cell wall material is described by the neo-Hookean model

Ww(I1, I2, I3) =
µw
2

(I1 − 3− ln I3) +
λw
2

(
ln I

1/2
3

)2
, (2.20)

with µw and λw positive constants.

Open cells with neo-Hookean cell walls. The strain-energy function for the open-cell model
(2.15) with the cell wall material described by (2.20) is equal to [37]

W(o)(i1, i2, i3) =
µwρ

(o)
w

2

[
(1 + k)2

(
i21 − 2i2

)
− 2k(1 + k)i1 − 3

(
1− k2

)]
− µwρ(o)w ln

[
(1 + k)3i3 − k(1 + k)2i2 + k2(1 + k)i1 − k3

]
+
λwρ

(o)
w

2

{
ln
[
(1 + k)3i3 − k(1 + k)2i2 + k2(1 + k)i1 − k3

]}2
.

(2.21)

The associated principal Cauchy stress components, given by (2.16), are

σ
(o)
i = µwρ

(o)
w (1 + k)

αi
α1α2α3

[
αi(1 + k)− k − 1

αi(1 + k)− k

]
+ λwρ

(o)
w (1 + k)

αi
α1α2α3

ln
[
(1 + k)3i3 − k(1 + k)2i2 + k2(1 + k)i1 − k3

]
αi(1 + k)− k

, i = 1, 2, 3.

(2.22)

Closed cells with neo-Hookean components. For the closed-cell structures, if the cells are filled,
we also assume that the cell core is characterised by the neo-Hookean model

Wc(I1, I2, I3) =
µc
2

(I1 − 3− ln I3) +
λc
2

(
ln I

1/2
3

)2
, (2.23)

with µc, λc positive constants. Then, the strain-energy function for the closed-cell model (2.17) takes
the form [38]

W(c)(i1, i2, i3) =
µwρ

(c)
w

2

[
(1 + k)2

(
i21 − 2i2

)
− 2k(1 + k)i1 − 3

(
1− k2

)]
− µwρ(c)w ln

[
(1 + k)3i3 − k(1 + k)2i2 + k2(1 + k)i1 − k3

]
+
λwρ

(c)
w

2

{
ln
[
(1 + k)3i3 − k(1 + k)2i2 + k2(1 + k)i1 − k3

]}2
+ ρ(c)c

[
µc
2

(
i21 − 2i2 − 3− 2 ln i3

)
+
λc
2

(ln i3)
2

]
.

(2.24)

The associated principal Cauchy stresses, given by (2.19), are

σ
(c)
i = µwρ

(c)
w (1 + k)

αi
α1α2α3

[
αi(1 + k)− k − 1

αi(1 + k)− k

]
+ λwρ

(c)
w (1 + k)

αi
α1α2α3

ln
[
(1 + k)3i3 − k(1 + k)2i2 + k2(1 + k)i1 − k3

]
αi(1 + k)− k

+
ρ
(c)
c

α1α2α3

[
µc
(
α2
i − 1

)
+ λc ln i3

]
, i = 1, 2, 3.

(2.25)
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3 Shear modulus

In this section, we provide explicit derivations of the nonlinear shear moduli for the mesoscopic models
(2.21) and (2.24) under large strains, following the formal definitions given in [35]. For the values of
these parameters under infinitesimal deformations, we refer also to [37] and [38]. We consider the
following multiaxial homogeneous deformation [21,46], consisting of simple shear superposed on finite
uniaxial stretch (see Figure 5) [13,35,42],

x1 = α(a)X1 + γaX3,

x2 = α(a)X2,

x3 = aX3,

(3.1)

where (X1, X2, X3) and (x1, x2, x3) are the Cartesian coordinates for the Lagrangian (reference) and
the Eulerian (current) configuration, respectively, and a and γ are positive constants.

Figure 5: Cuboid (left) deformed by uniaxial stretch (middle) followed by simple shear (right).

For this deformation, the principal stretches {αi}i=1,2,3 satisfy

α2
1 =

α(a)2 + a2
(
1 + γ2

)
+

√
[α(a)2 + a2 (1 + γ2)]2 − 4a2α(a)2

2
,

α2
2 =

α(a)2 + a2
(
1 + γ2

)
−
√

[α(a)2 + a2 (1 + γ2)]2 − 4a2α(a)2

2
,

α2
3 = α(a)2.

(3.2)

Then, J = α1α2α3 = aα(a)2.
For both compressible and incompressible materials, a nonlinear shear modulus is defined in [35]

as

µ(a, γ) =
σ1 − σ2
α2
1 − α2

2

, (3.3)

where {σi}i=1,2,3 are the principal components of the Cauchy stress tensor associated with the defor-
mation (3.1).

Remark 3.1 Note that the nonlinear shear modulus given by (3.3) is positive if the Baker-Ericksen
(BE) inequalities hold. These inequalities state that the greater principal Cauchy stress occurs in the
direction of the greater principal stretch, i.e.

(σi − σj) (αi − αj) > 0 if αi 6= αj , i, j = 1, 2, 3, (3.4)

with “≥” replacing the strict inequality “>” if any two principal stretches are equal [3, 32].
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When a → 1, i.e. for simple shear superposed on infinitesimal axial stretch, the nonlinear shear
modulus given by (3.3) converges to the nonlinear shear modulus for simple shear,

µ̂(γ) = lim
a→1

µ(a, γ), (3.5)

and the principal stretches satisfy

α̂2
1 = 1 +

γ2 + γ
√
γ2 + 4

2
= α2,

α̂2
2 = 1 +

γ2 − γ
√
γ2 + 4

2
= α−2,

α̂2
3 = 1.

Similarly, when γ → 0, i.e. for infinitesimal shear superposed on finite axial stretch, the nonlinear
shear modulus, given by (3.3), converges to

µ̃(a) = lim
γ→0

µ(a, γ). (3.6)

If a→ 1 and γ → 0, then these shear moduli converge to the linear shear modulus of the infinites-
imal theory, i.e.

µ = lim
a→1

lim
γ→0

µ(a, γ)

= lim
γ→0

µ̂(γ)

= lim
a→1

µ̃(a).

(3.7)

Open-cell model. For the open-cell constitutive model (2.21), the nonlinear shear modulus (3.3) is

µ(o)(a, γ) =
µwρ

(o)
w (1 + k)

α1α2α3 (α1 + α2)

[
(α1 + α2) (1 + k)− k +

k

[α1(1 + k)− k] [α2(1 + k)− k]

]
− λwρ

(o)
w k(1 + k)

α1α2α3 (α1 + α2)

ln[α1(1 + k)− k] + ln[α2(1 + k)− k] + ln[α3(1 + k)− k]

[α1(1 + k)− k] [α2(1 + k)− k]
.

(3.8)

When a→ 1, the nonlinear shear modulus given by (3.5) is equal to

µ̂(o)(γ) = lim
a→1

µ(o)(a, γ), (3.9)

and if γ → 0, then the nonlinear shear modulus defined by (3.6) is

µ̃(o)(a) = lim
γ→0

µ(o)(a, γ). (3.10)

In the linear elastic limit [37], a→ 1 and γ → 0, by (2.1), these shear moduli converge to

µ(o) = lim
a→1

lim
γ→0

µ(o)(a, γ)

= µwρ
(o)
w (1 + k)2

= µw
3k2

1 + k
.

(3.11)

Closed-cell model. Similarly, for the closed-cell model (2.24), the nonlinear shear modulus (3.3) is
equal to

µ(c)(a, γ) =
µwρ

(c)
w (1 + k)

α1α2α3 (α1 + α2)

[
(α1 + α2) (1 + k)− k +

k

[α1(1 + k)− k] [α2(1 + k)− k]

]
− λwρ

(c)
w k(1 + k)

α1α2α3 (α1 + α2)

ln[α1(1 + k)− k] + ln[α2(1 + k)− k] + ln[α3(1 + k)− k]

[α1(1 + k)− k] [α2(1 + k)− k]

+
µcρ

(c)
c

α1α2α3
.

(3.12)
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When a→ 1, the nonlinear shear modulus (3.5) is

µ̂(c)(γ) = lim
a→1

µ(c)(a, γ), (3.13)

and if γ → 0, then the nonlinear shear modulus (3.6) is

µ̃(c)(a) = lim
γ→0

µ(c)(a, γ). (3.14)

In the linear elastic limit [38], a→ 1 and γ → 0, by (2.2) and (2.3), these moduli converge to

µ(c) = lim
a→1

lim
γ→0

µ(c)(a, γ)

= µwρ
(c)
w (1 + k)2 + µcρ

(c)
c

= 3kµw + µc
1

(1 + k)3
.

(3.15)

When the closed cells are empty, by setting ρ
(c)
c = 0 in (3.12), (3.13), (3.14), and (3.15), respectively,

we obtain the corresponding nonlinear shear moduli, µ(e), µ̂(e), µ̃(e), and µ(e).

4 Stretch modulus and Poisson function

Next, for the mesoscopic models (2.21) and (2.24), we derive explicitly the corresponding nonlinear
stretch modulus and Poisson function under large strain, following the formal definition of these non-
linear elastic parameters and their universal relation given in [35]. For the values of these parameters
under infinitesimal deformations, see also [37] and [38]. We focus on the simple extension (or contrac-
tion) diag(α1, α2, α3), with α3 = a > 1 (a < 1 for contraction) and α1 = α2 = α(a) (as in Figure 5
middle), for which the associated Cauchy stress tensor is equal to σ = diag (0, 0, N), with N > 0 for
uniaxial tension (N < 0 for uniaxial compression).

Remark 4.1 We recall that, for a hyperelastic body subject to uniaxial tension (or compression), the
deformation is a simple extension (contraction) in the direction of the tensile (compressive) force if
and only if the BE inequalities (3.4) hold [3, 32]. By [38], if the BE inequalities are valid for the cell
wall material, then these inequalities are valid also for the open- and closed-cell models.

The nonlinear Poisson’s ratio, defined in terms of the logarithmic (or Hencky, or true) strain, is
equal to the following Poisson function [4, 35]

ν(a) = − lnα(a)

ln a
. (4.1)

Then, the nonlinear stretch modulus satisfies the following universal relation [35],

E(a) = µ̃(a)
a2 − a−2ν(a)

(1 + ν(a)) ln a

(
1 + ν(a) + aν ′(a) ln a

)
, (4.2)

where µ̃(a) and ν(a) are given by (3.6) and (4.1), respectively, and ν ′(a) = dν(a)/da is the derivative
of ν(a) with respect to a.

We note that, for the neo-Hookean models (2.20) and (2.23), the nonlinear Poisson’s ratio given by
(4.1) is not constant under finite axial stretch (see Appendix 7 for a proof). We denote by νw(a) and
Ew(a) the nonlinear Poisson function and stretch modulus for the cell wall, respectively, and similarly,
by νc(a) and Ec(a) the nonlinear Poisson function and stretch modulus for the cell core, respectively.
The corresponding linear elastic limits are as follows:

νw = lim
a→1

νw(a)

=
λw

2 (µw + λw)
,

Ew = lim
a→1

Ew(a)

= 2µw(1 + νw),

(4.3)
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and

νc = lim
a→1

νc(a)

=
λc

2 (µc + λc)
,

Ec = lim
a→1

Ec(a)

= 2µc(1 + νc).

(4.4)

Open-cell model. For the open-cell mesoscopic model (2.21) under the deformation diag(α1, α2, α3),
such that α3 = a and α1 = α2 = α(a) in the Cartesian directions (e1, e2, e3), we assume that some of
the cell walls are aligned with these Cartesian directions. Then, their deformation is diag(λ1, λ2, λ3),

where λ3 = a(1 + k) − k, λ1 = λ2 = λ(a) = λ
−νw(λ3)
3 = [a(1 + k) − k]−νw(a(1+k)−k), and α(a) =

(λ(a) + k)/(1 + k). In this case, the nonlinear Poisson’s ratio, defined by (4.1), is equal to

ν(o)(a) = −
ln
{

[a(1 + k)− k]−νw(a(1+k)−k) + k
}
− ln(1 + k)

ln a
. (4.5)

In the linear elastic limit [37], the Poisson function given by (4.5) converges to

ν(o) = lim
a→1

ν(o)(a)

= νw.
(4.6)

The corresponding nonlinear stretch modulus satisfies the following relation similar to (4.2),

E(o)(a) = µ̃(o)(a)
a2 − a−2ν(o)(a)

(1 + ν(o)(a)) ln a

(
1 + ν(o)(a) + a(ν(o))′(a) ln a

)
, (4.7)

with µ̃(o)(a) given by (3.10). In the linear elastic limit [37], the nonlinear stretch modulus defined by
(4.7) converges to

E
(o)

= lim
a→1

E(o)(a)

= Ewρ
(o)
w (1 + k)2

= Ew
3k2

1 + k
.

(4.8)

Closed-cell model. Similarly, for the closed-cell model (2.24), if the cells are empty or the Poisson’s
ratios for the cell walls and the cell core are equal, i.e. νw = νc, then the Poisson function and stretch
modulus are, respectively,

ν(c)(a) = −
ln
{

[a(1 + k)− k]−νw(a(1+k)−k) + k
}
− ln(1 + k)

ln a
(4.9)

and

E(c)(a) = µ̃(c)(a)
a2 − a−2ν(c)(a)

(1 + ν(c)(a)) ln a

(
1 + ν(c)(a) + a(ν(c))′(a) ln a

)
, (4.10)

with µ̃(c)(a) given by (3.14). In the linear elastic limit [38],

ν(c) = lim
a→1

ν(c)(a)

= νw
(4.11)

and

E
(c)

= lim
a→1

E(c)(a)

= Ewρ
(c)
w (1 + k)2 + Ecρ

(c)
c

= 3kEw + Ec
1

(1 + k)3
.

(4.12)
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5 Bulk modulus

In addition, volume changes in the isotropic hyperelastic models (2.21) and (2.24) can be quantified
by the following nonlinear bulk modulus [35], defined under the equitriaxial stretch diag(α1, α2, α3),
with α1 = α2 = α3 = a > 0 (see Figure 6),

κ =
1

3

∂ (σ1 + σ2 + σ3)

∂(J − 1)
, (5.1)

where {σi}i=1,2,3 are the principal Cauchy stresses and J = α1α2α3 = a3.

Figure 6: Cube deformed by hydrostatic compression.

Remark 5.1 For a compressible isotropic material, the fact that the volume of the material is de-
creased by hydrostatic compression and increased by hydrostatic tension is expressed by the the pressure-
compression (PC) inequalities stating that each principal stress is a tension or a compression if the
corresponding principal stretch is an extension or a contraction, i.e. σi (αi − 1) > 0, i = 1, 2, 3 [48,
p. 155]. Physically, either or both of the following mean versions of the PC conditions are more
realistic,

σ1 (α1 − 1) + σ2 (α2 − 1) + σ3 (α3 − 1) > 0, (5.2)

or

σ1

(
1− 1

α1

)
+ σ2

(
1− 1

α2

)
+ σ3

(
1− 1

α3

)
> 0, (5.3)

if not all principal stretches are equal to 1. By [38], if the PC inequalities hold for the cell wall material,
then these inequalities hold also for the open- and closed-cell models.

As J quantifies the relative change of volume from the reference to the current configuration,
assuming that J is close to 1 (i.e. for small or incremental volume changes), and setting σ1 = σ2 =
σ3 = σ, the nonlinear bulk modulus (5.1) simplifies as follows,

κ = lim
J→1

σ

J − 1
. (5.4)
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For the neo-Hookean models (2.20) and (2.23), the respective bulk moduli given by (5.4) are constant
and equal to

κw =
2µw + 3λw

3
,

κc =
2µc + 3λc

3
.

(5.5)

Open-cell model. For the open-cell model (2.21), expressing the principal components of the
Cauchy stress tensor as

σ
(o)
i =

µwρ
(o)
w (1 + k)

J
2/3
o

[
J1/3
o (1 + k)− k − 1

J
1/3
o (1 + k)− k

]

+
λwρ

(o)
w (1 + k)

J
2/3
o

ln
[
(1 + k)3Jo − 3k(1 + k)2J

2/3
o + 3k2(1 + k)J

1/3
o − k3

]
J
1/3
o (1 + k)− k

, i = 1, 2, 3,

(5.6)

where Jo = a3, and the nonlinear bulk modulus given by (5.4) takes on the form

κ(o) = lim
Jo→1

{
µwρ

(o)
w (1 + k)

J
2/3
o (Jo − 1)

[
J1/3
o (1 + k)− k − 1

J
1/3
o (1 + k)− k

]

+
λwρ

(o)
w (1 + k)

J
2/3
o (Jo − 1)

ln
[
(1 + k)3Jo − 3k(1 + k)2J

2/3
o + 3k2(1 + k)J

1/3
o − k3

]
J
1/3
o (1 + k)− k


= κwρ

(o)
w (1 + k)2

= κw
3k2

1 + k
.

(5.7)

Closed-cell model. Similarly, for the closed-cell model (2.24), the nonlinear bulk modulus defined
by (5.4) is equal to

κ(c) = lim
Jc→1

{
µwρ

(c)
w (1 + k)

J
2/3
c (Jc − 1)

[
J1/3
c (1 + k)− k − 1

J
1/3
c (1 + k)− k

]

+
λwρ

(c)
w (1 + k)

J
2/3
c (Jc − 1)

ln
[
(1 + k)3Jc − 3k(1 + k)2J

2/3
c + 3k2(1 + k)J

1/3
c − k3

]
J
1/3
c (1 + k)− k

+
ρ
(c)
c

Jc

(
µc
J
2/3
c − 1

Jc − 1
+ λc

ln Jc
Jc − 1

)}
= κwρ

(c)
w (1 + k)2 + κcρ

(c)
c

= 3kκw + κc
1

(1 + k)3
.

(5.8)

Hence, for the open- and the closed-cell models with neo-Hookean cell walls, the nonlinear bulk moduli
given by (5.7) and (5.8), respectively, are constant.

6 Examples

For the isotropic hyperelastic models (2.21) and (2.24), we illustrate the nonlinear elastic behaviour
under the studied deformations as follows:

- In Figure 7, for the open-cell models, defined by (2.21), with varying thickness to length ratio of
the cell wall, k ∈ {0.1, 0.2, 0.3}, and fixed cell wall material parameters, µw = 1 and νw = 0.49, we
plot: (A) the nonlinear shear modulus µ̂(o)(γ), given by (3.9), evaluated under varying simple shear,
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(A) (B)

Figure 7: Open-cell models (2.21) with varying thickness to length ratio of cell wall, k ∈ {0.1, 0.2, 0.3},
and fixed µw = 1, νw = 0.49, showing: (A) nonlinear shear modulus µ̂(o)(γ) of (3.9), evaluated under
varying simple shear (0 < γ < 0.5) superposed on infinitesimal stretch, and (B) nonlinear shear
modulus µ̃(o)(a) of (3.10), evaluated under infinitesimal shear superposed on varying compression or
tension (0.75 < a < 1.25).

(A) (B)

Figure 8: Open-cell model (2.21) with varying thickness to length ratio of cell wall, k ∈ {0.1, 0.2, 0.3},
and fixed µw = 1, νw = 0.49, showing: (A) nonlinear stretch modulus E(o)(a) of (4.7), and (B)
nonlinear Poisson’s ratio ν(o)(a) of (4.5), both evaluated under varying compression or tension (0.75 <
a < 1.25).
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(A) (B)

Figure 9: Closed-cell model (2.24) with varying shear modulus of cell core, µc ∈ {0.01, 0.05, 0.1} and
fixed µw = 1, νw = νc = 0.49, and k = 0.1, showing: (A) nonlinear shear modulus µ̂(c)(γ) of (3.13),
evaluated under varying simple shear (0 < γ < 0.5) superposed on infinitesimal stretch, and (B)
nonlinear shear modulus µ̃(c)(a) of (3.14), evaluated under infinitesimal shear superposed on varying
compression or tension (0.75 < a < 1.25).

(A) (B)

Figure 10: Closed-cell model (2.24) with varying shear modulus of cell core, µc ∈ {0.01, 0.05, 0.1} and
fixed µw = 1, νw = νc = 0.49, and k = 0.1, showing: (A) nonlinear stretch modulus E(c)(a) of (4.10),
and (B) nonlinear Poisson’s ratio ν(c)(a) of (4.9), both evaluated under varying compression or tension
(0.75 < a < 1.25).
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with 0 < γ < 0.5, superposed on infinitesimal axial stretch, and (B) the nonlinear shear modulus
µ̃(o)(a), given by (3.10), evaluated under infinitesimal shear superposed on varying compression or
tension, with 0.75 < a < 1.25.

- In Figure 8, for the open-cell models (2.21), with varying thickness to length ratio of the cell wall,
k ∈ {0.1, 0.2, 0.3}, and fixed material parameters, µw = 1 and νw = 0.49, we show: (A) the nonlinear
stretch modulus E(o)(a), given by (4.7), and (B) the nonlinear Poisson’s ratio ν(o)(a), given by (4.5),
both evaluated under varying compression or tension, with 0.75 < a < 1.25.

- In Figure 9, for the closed-cell models, given by (2.24), with varying shear modulus of the cell
core, µc ∈ {0.01, 0.05, 0.1}, and fixed cell wall parameters, µw = 1, νw = νc = 0.49, and k = 0.1, we
plot: (A) the nonlinear shear modulus µ̂(c)(γ), given by (3.13), evaluated under varying simple shear,
with 0 < γ < 0.5, superposed on infinitesimal stretch, and (B) the nonlinear shear modulus µ̃(c)(a),
given by (3.14), evaluated under infinitesimal shear superposed on varying compression or tension,
with 0.75 < a < 1.25.

- In Figure 10, for the closed-cell models (2.24), with varying shear modulus of the cell core,
µc ∈ {0.01, 0.05, 0.1}, and fixed cell wall parameters, µw = 1, νw = νc = 0.49, and k = 0.1, we show:
(A) the nonlinear stretch modulus E(c)(a), defined by (4.10), and (B) the nonlinear Poisson’s ratio
ν(c)(a), defined by (4.9), both evaluated under varying compression or tension, with 0.75 < a < 1.25.

7 Discussion

For stretch-dominated cellular structures with open or closed cells made from an arbitrary homoge-
neous isotropic hyperelastic material, continuum isotropic hyperleastic models at a mesoscopic level
were constructed analytically in [37,38]. To gain further insight into the nonlinear elastic behaviour of
these models, here, we specialised to the case with neo-Hookean cell components, and derived explic-
itly the nonlinear shear, stretch, and bulk moduli and Poisson function defined in [35]. Our computed
examples show that, for the open-cell model:

- Under simple shear superposed on infinitesimal stretch, the nonlinear shear modulus increases
slightly (or remains almost constant) as the shear parameter satisfying 0 < γ < 0.5 increases (Fig-
ure 7A).

- Under infinitesimal shear superposed on finite axial stretch, the nonlinear shear modulus decreases
(or remains almost) constant as the stretch ratio satisfying 0.75 < a < 1.25 increases, i.e. the shear
modulus increases in compression and decreases in tension (Figure 7B).

- Under increasing finite axial stretch, the nonlinear stretch modulus increases, while the Poisson
function decreases (Figure 8).

- As the thickness to length ratio of the cell wall, k, increases, the nonlinear shear and stretch pa-
rameters increase, while the nonlinear Poisson’s ratio decreases in tension and increases in compression
(figures 7 and 8).

Analogous properties were found for the closed-cell model with empty cells (results not shown).
In addition, when the closed cells are filled with an elastic core that has the same Poisson’s ratio as
the cell walls:

- The nonlinear shear and stretch moduli increase as the shear modulus of the cell core, µc, increases
(figures 9 and 10A).

- When the Poisson’s ratios for the cell wall and for the different cell core materials are equal, the
nonlinear Poisson’s ratio for the closed-cell model does not change with the cell core (Figure 10B).

For the mesoscopic hyperelastic models investigated here, the nonlinear elastic parameters were
predicted analytically from the material and geometric parameters at the cell level, which were pro-
vided a priori. Conversely, hyperelastic models with specific nonlinear elastic properties may be
designed by selecting suitable material and geometric properties of the components.

Similar constitutive models can be derived and analysed computationally for stretch-dominated
hierarchical and self-similar structures. These models can be useful in deformation decomposition
or multiple scale procedures, where a cellular structure is represented first as a continuum material
deforming under finite homogeneous strain. The design of such models and their nonlinear elastic
analysis remains to be explored.
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Appendix A

In this appendix, we prove that the nonlinear Poisson’s ratio defined by (4.1) is not constant for an
elastic body characterised by the generalised neo-Hookean model

W(α1, α2, α3) =
µ

2

[
α2
1 + α2

2 + α2
3 − 3− ln(α2

1α
2
2α

2
3)
]

+
λ

2
[ln(α1α2α3)]

2 , (7.1)

where µ > 0 and λ > 0 are constants.

Proof: Under simple tension or compression, diag(α1, α2, α3), with α3 = a > 0 and α1 = α2 = α(a),
the associated Cauchy stress tensor is equal to σ = diag (0, 0, N), where N 6= 0 and the diagonal
components satisfy

σi = J−1αi
∂W
∂αi

, i = 1, 2, 3, (7.2)

with J = α1α2α3. For the constitutive model (7.1), under the given deformation, (7.2) reduces to

1

α2
1α3

[
µ(α2

1 − 1) + λ ln
(
α2
1α3

)]
= 0,

1

α2
1α3

[
µ(α2

3 − 1) + λ ln
(
α2
1α3

)]
= N.

(7.3)

Equivalently, by subtracting the first from the second equation in (7.3), we obtain

µ(α2
1 − 1) + λ ln

(
α2
1α3

)
= 0,

µ(α2
3 − α2

1)

α2
1α3

= N.
(7.4)

Next, using the definition of the Poisson function given by (4.1), if α3 = a, then α1 = α
−ν(a)
3 , and

(7.4) takes on the form

µ(a−2ν(a) − 1) + λ (1− 2ν(a)) ln a = 0,

µ(a2 − a−2ν(a))
a1−2ν(a)

= N.
(7.5)

Assuming constant Poisson function, ν(a) = ν = λ/(2(µ + λ)), then λ = 2µν/(1 − 2ν) and (7.5)
reduces to

a−2ν + 2ν ln a = 1,

µ(a2 − a−2ν)

a1−2ν
= N.

(7.6)

Noting that the first equation in (7.6) has the unique solution a = 1, we conclude that only under
infinitesimal strain the Poisson function can be constant, but not under large strains.
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