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The Mapping Between Transformed Reaction Time Costs and Models of
Processing in Aging and Cognition

Craig Hedge, Georgina Powell, and Petroc Sumner
Cardiff University

Older adults tend to have slower response times (RTs) than younger adults on cognitive tasks. This makes

the examination of domain-specific deficits in aging difficult, as differences between conditions in raw

RTs (RT costs) typically increase with slower average RTs. Here, we examine the mapping between 2

established approaches to dealing with this confound in the literature. The first is to use transformed RT

costs, with the z-score and proportional transforms both being commonly used. The second is to use

mathematical models of choice RT behavior, such as the drift-diffusion model (Ratcliff, 1978). We

simulated data for younger and older adults from the drift-diffusion model under 4 scenarios: (a) a

domain specific deficit, (b) general slowing, (c) strategic slowing, and (d) a slowing of nondecision

processes. In each scenario we varied the size of the difference between younger and older adults in the

model parameters, and examined corresponding effect sizes and Type I error rates in the raw and

transformed RT costs. The z-score transformation provided better control of Type I error rates than the

raw or proportional costs, though did not fully control for differences in the general slowing and strategic

slowing scenarios. We recommend that RT analyses are ideally supplemented by analyses of error rates

where possible, as these may help to identify the presence of confounds. To facilitate this, it would be

beneficial to include conditions that elicit below ceiling accuracy in tasks.
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It has been well established that elderly people are typically

slower on choice RT tasks compared with younger adults (Anstey,

Dear, Christensen, & Jorm, 2005; Bugg, Zook, DeLosh, Davalos,

& Davis, 2006; Salthouse, 1985, 1996). Further, there is a great

deal of research examining whether older adults show deficits in

specific domains, such as response inhibition or executive func-

tioning, compared with younger adults (e.g., Castel, Balota,

Hutchison, Logan, & Yap, 2007; van der Lubbe & Verleger,

2002). However, there are discrepancies in the literature as to

whether observed effects reflect domain specific deficits, or if

differences can be accounted for by general processing speed

(Verhaeghen, 2011).

In widely used tasks such as the Stroop task (Stroop, 1935) or

task switching, RTs in a baseline condition are subtracted from a

condition that requires additional processing, producing an RT

cost. In within-subject studies, the magnitude of the RT cost is

interpreted as an index of the process of interest, such as the time

taken to resolve conflict or switch task sets. However, such an

interpretation is confounded when comparing groups that differ in

their overall response speed, as RT costs generally increase with

slower RTs (Faust, Balota, Spieler, & Ferraro, 1999).The potential

contamination of task specific effects has led to different methods

being used to control for general slowing in aging, the appropri-

ateness of which have been the subject of much discussion in the

literature (e.g., Cerella, 1991; Faust et al., 1999; Myerson, Adams,

Hale, & Jenkins, 2003; Ratcliff, Spieler, & McKoon, 2000; Salt-

house & Hedden, 2002).

Here, we examine the mapping between two different kinds of

approach—RT transformations and decision models. We focus on

two commonly used RT transformations. The first is to take

proportional RT costs, in which the raw RT cost is divided by the

mean RT in the baseline condition (e.g., Bialystok, Craik, & Luk,

2008; Colcombe, Kramer, Erickson, & Scalf, 2005; de Bruin &

Della Sala, 2018; Gold, Kim, Johnson, Kryscio, & Smith, 2013;

Gratton, Wee, Rykhlevskaia, Leaver, & Fabiani, 2009; Henry et

al., 2015; Kousaie & Phillips, 2012; Lawo & Koch, 2014; Maza-

heri, Roerdink, Duysens, Beek, & Peper, 2016; Truong & Yang,

2014; Weissberger, Wierenga, Bondi, & Gollan, 2012; Yang &

Hasher, 2007; Zhu, Zacks, & Slade, 2010). The second transfor-

mation is the z-score, in which the overall mean RT is subtracted

Craig Hedge, Georgina Powell, and Petroc Sumner, School of Psychol-

ogy, Cardiff University.

This work was supported by the ESRC (ES/K002325/1) and by the

Wellcome Trust (104943/Z/14/Z).

This article has been published under the terms of the Creative Com-

mons Attribution License (http://creativecommons.org/licenses/by/3.0/),

which permits unrestricted use, distribution, and reproduction in any me-

dium, provided the original author and source are credited. Copyright for

this article is retained by the author(s). Author(s) grant(s) the American

Psychological Association the exclusive right to publish the article and

identify itself as the original publisher.

Correspondence concerning this article should be addressed to Craig

Hedge, School of Psychology, Cardiff University, Tower building, Park

Place, Cardiff CF10 3AT, United Kingdom. E-mail: hedgec@cardiff.ac.uk

Psychology and Aging

© 2018 The Author(s) 2018, Vol. 1, No. 999, 000
0882-7974/18/$12.00 http://dx.doi.org/10.1037/pag0000298

1



from each trial RT, and the result divided by the overall SD. The

resultant z-transformed values can then be averaged per condition,

and a cost calculated (e.g., Aschenbrenner & Balota, 2017; Bush,

Hess, & Wolford, 1993; Christ, White, Mandernach, & Keys,

2001; Faust et al., 1999; Hummert, Garstka, O’Brien, Greenwald,

& Mellott, 2002; Madden et al., 2014; Paxton, Barch, Racine, &

Braver, 2008). Analyses of the transformed costs are typically

performed in addition to, or in place of, the analysis of raw RT

costs, to control for group differences in overall RTs. The use of

both methods is not specific to any paradigm or cognitive domain,

nor is it restricted to studies of aging (e.g., Pe, Koval, & Kuppens,

2013; Schmitter-Edgecombe & Langill, 2006; Sumner, Edden,

Bompas, & Singh, 2010; von Bastian, Souza, & Gade, 2016). The

z-score and proportional transformations assume different quanti-

tative relationships between overall RT and the magnitude of the

RT costs, however, these assumptions are rarely explicitly justified

(though see Faust et al., 1999).

Evaluating the assumptions of an RT transformation is not a

trivial task, as it requires knowledge of the way in which RTs map

on to the cognitive processes that generate them. For this purpose,

mathematical models of choice RT behavior provide a potentially

valuable reference, as they explicitly specify the relationship be-

tween behavior and the theorized underlying mechanisms. We

used the drift diffusion model (DDM; Ratcliff, 1978; Ratcliff &

Rouder, 1998) to simulate four hypothetical scenarios that could

affect RT costs and/or average RTs, based on parameter values that

have been reported in a study of younger and older adults. These

scenarios correspond to a domain specific deficit, general slowing,

strategic slowing, and a slowing of perceptual-motor (i.e., nonde-

cision) processes. If the RT transformations can be mapped spe-

cifically to domain specific deficits in the DDM, we would expect

them to show group differences only in the domain specific sce-

nario. In other words, we can consider a group difference observed

in the transformed costs in scenarios of general slowing, strategic

slowing and perceptual-motor slowing to be a Type I error (false

positive). To anticipate the results of our simulations, the z-score

transformation showed a lower Type I error rate than the raw and

proportional costs, though it still exceeded the nominal level (5%)

in the presence of general slowing and strategic slowing. Coun-

terintuitively, the proportional costs can even create an apparent

advantage for older adults in the presence of slower RTs that

actually arise from perceptual or motor slowing.

The Drift Diffusion Model

The DDM is one of a group of models developed to account for

both the speed and accuracy of performance on choice RT tasks

(see also Brown & Heathcote, 2008; Carpenter & Williams, 1995;

Usher & McClelland, 2001). These models differ slightly in the

assumptions and construction, but for our current purposes they all

produce similar behavior (cf. Donkin, Brown, Heathcote, &

Wagenmakers, 2011). For comparison, we conduct a simulation

using an alternative model, the Linear Ballistic Accumulator

(Brown & Heathcote, 2008), in supplementary material B.

In a two-choice RT task, the DDM assumes that on each trial a

decision mechanism samples evidence for one or the other option

over time. This continues until a criterion level of evidence is

reached for one of the options, at which point the motor response

is initiated. Researchers are typically interested in three key pa-

rameters. First, drift rate (v) is the average rate at which evidence

is accumulated. This typically varies between conditions, such that

trials in a relatively easy condition would have a higher mean drift

rate compared with a harder condition. The lower drift rate in

harder trials accounts for their slower RTs and typically lower

accuracy rates. The second parameter of interest is boundary

separation (a), which refers to the level of evidence that an indi-

vidual requires for a response. Individuals who are very cautious

will set a high threshold, so they make fewer errors at the expense

of having longer RTs. Where trials are randomly intermixed within

blocks, it is typically assumed that boundary separation does not

differ between conditions. Finally, nondecision time (Ter) is in-

cluded to account for the speed of visual processing and motor

implementation. As with boundary separation, it is typically as-

sumed that nondecision time does not vary between conditions

when they are randomly intermixed.

The drift-diffusion model has now been applied to the study of

aging across a wide range of cognitive domains (McKoon &

Ratcliff, 2013; Ratcliff & McKoon, 2015; Ratcliff, Thapar, Go-

mez, & McKoon, 2004; Ratcliff, Thapar, & McKoon, 2006a,

2006b, 2011; Schuch, 2016; Spaniol, Madden, & Voss, 2006;

Starns & Ratcliff, 2010; Thapar, Ratcliff, & McKoon, 2003). A

consistent finding from this literature is that older adults often

show increased boundary separation, and prolonged nondecision

time. The evidence for differences in drift rates between younger

and older adults is mixed, and varies between tasks (Ratcliff et al.,

2006a; Verhaeghen, 2014), which has been used as an argument

against a global deficit in information processing in older adults.

Four Scenarios Leading to Changes in RTs

Using the framework of the DDM, we can create differences

between two hypothetical individuals (or groups of individuals) in

mean RTs and mean RT costs by varying parameters of the model

that correspond to different sources of slowing. These scenarios

are illustrated in Figure 1. In each case, the individual who pro-

duces slower RTs in one or both conditions is shown in blue, and

the faster individual in red.

The first scenario (Figure 1A) depicts two individuals whose

drift rate in the baseline condition is equivalent, but who differ in

their drift rates in the more difficult condition. This is how a

domain specific deficit would be implemented in the DDM—the

individual portrayed in blue is less able to process the stimulus in

the presence of increased difficulty, distraction, or interference.

The second scenario portrays a global change in information

processing speed in the absence of a domain specific effect. This

can be characterized in the context of the DDM by a decrease in

the drift rates for both conditions while maintaining the same

difference between conditions (see Figure 1B). In the third scenario

(Figure 1C), the blue individual has a greater boundary separation

compared with the red individual, meaning they wait for more

evidence before responding in both conditions (i.e., they are more

cautious). In the final scenario (Figure 1D), the individual in blue

is slower because of a prolonged period of perceptual encoding

before the decision process (a prolonged motor output time would

have the same effect).

Note that studies of the effect of aging in particular cognitive

domains are typically interested in the differences reflected in
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Scenario A. Scenario B most closely reflects what the proportional

and z-score transforms are used to control for.

Simulated Behavioral Costs

Given the four scenarios outlined in Figure 1, we can simulate

data for younger and older adults in two conditions of differing

difficulty to assess the way in which changes in these underlying

parameters affect raw RT costs, transformed RT costs, and error

costs. We did this for a range of effect sizes for the difference

between younger and older adults, to assess whether the size of

confounding effects influenced the effectiveness of the transforms.

In each scenario, we simulated pools of 2,000 younger and older

adults with 10,000 trials per condition, so as to remove the influ-

ence of noise in our estimates. To obtain plausible ranges for a

choice RT task in our simulations, we derived parameters from fits

of the DDM to a lexical-decision task in younger and older adults

by Ratcliff, Thapar, et al., 2004, their Tables 3 and 4) and a

previous simulation article (van Ravenzwaaij & Oberauer, 2009).

These values are representative of those reported across a range of

tasks (Ratcliff, Thapar, Smith, & McKoon, 2005, 2006a). Our

“easy” and “hard” condition drift rates were informed by fitted

drift rates for high and low frequency words.

The values used are shown in Table 1. Group differences were

simulated in each scenario by changing the mean of the relevant

parameter for older adults to reflect five different standardized

effect sizes (Cohen’s d of .2 to 1.4 in intervals of .3, where d �

mean difference/pooled SD).

Note that Cohen’s ds of .2, .5, and .8 are traditionally considered

to be small, medium, and large effect sizes, respectively (Cohen,

1992). We discuss the plausibility of parameter differences of

these magnitudes in the discussion. In each scenario, we simulated

parameter values from a normal distribution with a common SD.

Drift rates for easy and hard trials were generated from a multi-

variate normal distribution (using Matlab’s mvnrnd function),

which generates two normally distributed random variables with

specified means, variances, and covariance. Following van Raven-

zwaaij and Oberauer (2009), we assumed a correlation of .8

between easy and hard drift rates, reflecting the observation that

performance across conditions is typically highly correlated. As a

mean drift rate of 0 would produce chance accuracy, we truncated

Figure 1. Four scenarios in which two individuals could produce different response times (RTs) in the drift

diffusion model. In all cases, the individual that would produce slower RTs is portrayed in blue (Dark grey), and

the faster individual is shown in red (Light grey). (A) Represents the scenario in which most researchers are

typically interested. In this scenario, both individuals produce the same drift rates in the baseline condition (red

and blue dashed lines), but one shows a domain specific deficit, in which the drift rate in the more difficult

condition is lower. (B) Global slowing, reflecting lower mean drift rates in both conditions while maintaining

the same difference between drift rates in both fast and slow individuals (note that the angular difference is

unchanged). (C) A change in boundary separation or strategic slowing. The individual represented by the red line

requires less evidence to make a response, resulting in faster RTs (and more errors). (D) A change in nondecision

time, reflecting a longer period of perceptual encoding in the individual with slower RTs. The decision phase

(boundary separation and drift rates are unchanged. See the online article for the color version of this figure.
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values to a minimum of .1 (at most, this meant replacing 5.4% of

older adult’s hard drift rates in the largest general slowing effect

size scenario). For simplicity, we assumed a common SD (.07) for

both drift rates, as in van Ravenzwaaij and Oberauer. This is

slightly smaller than the pooled SD from Ratcliff, Thapar, et al.’s

(2004) fits, so as to minimize the number of values that needed to

be truncated at the larger effect sizes.

We used a common value for between-trial variability in drift

rates (� � .1) for both groups in all simulations. The mean starting

point of the diffusion process was fixed to a/2 for all simulations.

Starting point variability and nondecision time variability were

fixed at zero. Data were simulated using the DMAT toolbox

(Vandekerckhove & Tuerlinckx, 2008) in Matlab (2014; The

MathWorks Inc., Natick, MA).

The calculation of mean RTs excluded incorrect responses. The

proportional RT cost was calculated as (hard RT-easy RT)/easy

RT. z-score RT costs were calculated by subtracting the mean RT

of all trials from each individual RT, and dividing by the SD of

RTs across all trials. The transformed values were then averaged in

each condition, and a cost calculated from the resultant condition

means. Descriptive statistics for the smallest and largest effect size

are shown in Table 2, while a detailed summary is reported in

supplementary material A. These ranges are similar to those used

in previous discussions of RT transformations (Faust et al., 1999;

Hale, Myerson, Faust, & Fristoe, 1995).

To assess the way in which studies with plausible sample sizes

would be affected by group differences in each scenario and effect

size, we randomly sampled from the pools of simulated partici-

pants to create 5,000 pseudoexperiments with N � 30 per group.

For each pseudo experiment we calculated the mean RT, RT cost,

proportional RT cost, z-score cost and error cost and tested

whether the group difference was significant (p � .05) in an

independent t test. Figure 2 plots the average effect size (younger

vs. older adults) for the behavioral costs in relation to the effect

size of the difference in the underlying parameters in each sce-

nario. If the z-score and proportional RT costs control for the

confounding factors, the lines should be flat in Scenarios B to D.

We also report the percentage of pseudoexperiments in which the

group difference was significant according to this traditional cri-

terion in Table 3. As only Scenario A simulates an underlying

domain-specific deficit, the percentages for Scenarios B to D can

be interpreted as Type I error rates.

In Scenario A, reflecting a domain specific deficit, the effect

size in each of the behavioral costs increases with the underlying

Table 1

Parameters Used to Simulate Data from Drift-Diffusion Model, Derived from Ratcliff, Thapar, et al. (2004)

Scenario Drift rate easy (v1) Drift rate hard (v2) Boundary separation (a) Nondecision time (Ter)

Domain-specific deficit (A) .480 Young: .310 .155 490
Old: .301–.248

General slowing (B) Young: .480 Young: .310 .155 490
Old: .466–.382 Old: .296–.212

Strategic slowing (C) .480 .310 Young: .127 490
Old: .134–.179

Nondecision time (D) .480 .310 .155 Young: 440

Old: 450–510

SDs (all scenarios) .07 .07 .037 50

Note. Individual parameter values in each scenario were generated from a normal distribution with means given in the first four rows and the SDs shown
in the bottom row. Mean parameters that were varied between groups in each scenario are highlighted in bold, with the range shown for older adults. In
Scenarios B, C, and D, the effect between groups in each scenario can be calculated by multiplying the Cohen’s d value by the SD (e.g., .2 � 50 ms for
the smallest effect in nondecision time in Scenario D). For Scenario A, the difference of interest is the group difference in the difference between easy and
hard drift rates. The SD of the difference (easy–hard drift rates) was .044.

Table 2

Mean Reaction Times and Error Rates for Simulated Young and Old Adults

Scenario

Young Old (d � .2) Old (d � 1.4)

Easy Hard Easy Hard Easy Hard

Reaction time (ms)
A: Domain 667 (69) 755 (106) 665 (69) 760 (108) 668 (67) 806 (122)
B: General 667 (71) 755 (108) 670 (72) 767 (111) 705 (90) 829 (139)
C: Strategic 635 (70) 700 (99) 641 (70) 711 (102) 696 (73) 804 (114)
D: Nondecision 617 (71) 704 (107) 629 (71) 719 (109) 688 (72) 779 (112)

Error rates (%)
A: Domain 1 (1) 4 (4) 1 (1) 4 (4) 1 (1) 8 (6)
B: General 1 (1) 4 (4) 1 (1) 5 (5) 2 (2) 11 (7)
C: Strategic 2 (3) 6 (6) 1 (2) 5 (5) 0 (1) 3 (3)
D: Nondecision 1 (2) 4 (4) 1 (1) 4 (4) 1 (1) 4 (4)

Note. SDs given in parentheses. Older adult means are reported for the smallest (d � .2) and largest (d � 1.4)
effect sizes simulated. Means for young adults come from the d � .2 scenarios, though only the parameter
distributions used to simulate older adult data varied across effect sizes.
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manipulation exactly as it should do because all the measures are

expected to capture domain specific deficits. Scenario B reflects

global slowing in older adults. Here, the simulated older adults are

less efficient in processing evidence in both conditions compared

with the simulated younger adults, but have the same relative differ-

ence between conditions. Ideally transformed data should minimize

effects here, so they are not confused with domain specific effects

(Scenario A). All the behavioral costs show some sensitivity to this

general slowing, with increased false positive rates associated with

larger effect sizes. However, while the proportional RT cost shows

little improvement over raw RT costs, the z-score transformation does

decrease the false positive rate in this scenario.

Scenario C reflects differences in boundary separation (response

caution/strategic slowing). The older adult groups have a higher

boundary separation, such that they wait for more evidence before

making a response. In this scenario, younger and older adults have

identical drift rates for easy and hard trials, however, older adults

have larger RT costs because the RT difference scales with higher

levels of response caution (cf. Ratcliff et al., 2000). Critically, the

transformed costs do not correct for this, and the “deficit” is

apparent here too. Further, the strategic slowing in older adults

leads to relatively smaller error costs. Thus, one would draw

different conclusions about the relative ability of younger and

older adults if we were to use RT costs or error costs in this

scenario (see Hedge et al., in press for an extended discussion of

this point). Finally, in Scenario D, the simulated older adults have

a longer nondecision time compared with younger adults. In the

simplest form, nondecision time is a constant that is added to the

RTs for both conditions, so this did not affect the variance of RTs

or the difference between conditions in our simulations. This

means that the absolute RT costs, and error cost are identical in

both groups. The z-score is also insensitive to this change, as the

mean RT is subtracted in the first step of its calculation. However,

dividing the same raw RT cost by a longer baseline RT in older

adults results in an apparent advantage for older adults in the

proportional RT costs in some cases.

Figure 2. Relationship between the effect size in diffusion model parameters manipulated in each scenario

(x-axis) and the effect size observed in the behavioral measures derived from the simulated data (y-axis). Positive

effect sizes on the y-axis indicate larger costs in the older adult group. See Table 1 and Figure 1 for parameters

manipulated in each scenario. The effect sizes are nonzero for all raw and transformed costs in Scenarios B and

C, and for proportional response time (RT) costs in Scenario D. This indicates that they do not control for group

differences in these confounding parameters.
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Though we simulated data from plausible parameter ranges, we

caveat the interpretation of the absolute Type I error rates in that

they are dependent on the “noise” produced by variation in the

other parameters. For example, if drift rates and boundary separa-

tion were held constant across all individuals, variation in scores

would be driven only by nondecision time, and would produce a

larger false positive rate for the proportional RT costs in Scenario

D. Though it is unlikely that such variability would be absent, the

magnitude of it may vary with tasks and samples. The broad

pattern of results is not specific to the DDM; see online supple-

mentary material for simulations with another common decision

model, the linear ballistic accumulator (LBA) model.

The z Transformation and General Slowing

Our observation that the z-score RT cost does not fully control

the Type I error rate in the general slowing scenario conflicts with

the findings of Faust et al. (1999). It also may appear counterin-

tuitive given the observation that the DDM produces an approxi-

mately linear relationship between the mean and SD of RTs with

changes in drift rate (Wagenmakers & Brown, 2007; Wagenmak-

ers, Grasman, & Molenaar, 2005). To understand this discrepancy,

we conducted an additional simulation based on the parameter

ranges used in our general slowing scenario. We simulated data for

a single individual at each parameter combination, with 500,000

trials each in easy and hard conditions. As in our general slowing

scenario, we varied the drift rates for both easy and hard conditions

while keeping the difference between conditions fixed at .17. In

Figure 3A, we plot the relationship between drift rate (x-axis) and

the mean RT (left y-axis) and SD of RTs (right y-axis) for three

levels of boundary separation. In Figure 3B we plot the relation-

ship between drift rates (now averaged over easy and hard condi-

tions) and both the raw RT cost and z-score cost. See supplemen-

tary material D for additional information.

First, note in Figure 3A that the mean (solid lines) and SD

(dashed lines) of RTs change at different rates depending on both

drift rate and boundary separation (see also Ratcliff et al., 2000).

In our general slowing simulations, we used mean drift rates of .48

and .466 (SD � .07) for the easy condition in our younger and

older (d � .02) adults, respectively. Examining the bottom right

corner of Figure 3A, the slopes are relatively shallow in this range,

indicating little change in the mean and SD of RTs at high drift

rates. In contrast, the slopes are relatively steep in the range of drift

rates used for the hard condition (.31 and .296 for younger and

older adults, respectively). The result of this is that some older

adults would produce similar RTs to young adults in the easy

condition but produce relatively slower and more variable RTs in

the hard condition. The z-score transformation does not correct for

this, as its intended aim is to correct for slower RTs in both

conditions and leave the within-subject effect intact. This behavior

can be clearly seen in the right side of Figure 3B, where the z-score

costs (dashed lines) show a steep change at higher average drift

rates. At lower average drift rates, where behavior in the easy

condition is also be affected, the z-score cost shows better control

for general slowing.

Note that though drift rates in the range of .5 are at the high end

of what is typically observed in fits to empirical data, they are

based on previous aging studies (Ratcliff, Thapar, et al., 2004; see

also Ratcliff, Thapar, & McKoon, 2006b). The patterns we observe

Table 3

Percentage of Significant (p � .05) t-Tests from 5,000 Simulated Experiments

Scenario Effect size Mean RT RT cost Proportional cost z-score cost Mean error Error cost

A: Domain specific deficit .2 2.8 | 2.1 6.8 | .8 7.9 | .6 10.2 | .2 3.3 | 1.4 5.2 | .9
.5 3.5 | 1.9 16.5 | .2 20 | .2 24.9 | 0 11.1 | .1 17.2 | .1
.8 9.1 | .3 46.3 | 0 52 | 0 70.3 | 0 27.8 | 0 46.9 | 0

1.1 11.5 | .4 64 | 0 71.6 | 0 89.9 | 0 38.6 | 0 64.2 | 0
1.4 19.1 | .1 81 | 0 87 | 0 97.2 | 0 58 | 0 83.2 | 0

B: General slowing .2 4.6 | 1.3 8.3 | .5 8.7 | .4 7.9 | .5 11.2 | .3 12.9 | .2
.5 6.9 | .7 12.8 | .2 12 | .2 8 | .4 23.3 | .1 27.5 | .1
.8 22.8 | .1 29.8 | 0 27.6 | .1 10.6 | .4 58.6 | 0 65.6 | 0

1.1 54 | 0 54.7 | 0 47.2 | 0 16.2 | .2 80.1 | 0 86.5 | 0
1.4 59.8 | 0 60.9 | 0 52.9 | 0 15.5 | .2 96.2 | 0 98.9 | 0

C: Strategic slowing .2 5.3 | .8 5 | .6 4.7 | .8 3.4 | 1.6 .7 | 5.9 .9 | 6.1

.5 16.3 | .2 15.8 | .1 14.4 | .2 7.8 | .6 .1 | 18.2 .1 | 13.1

.8 52.3 | 0 44.6 | 0 40.9 | 0 26.1 | 0 0 | 41.2 0 | 24

1.1 87.8 | 0 74.1 | 0 65.1 | 0 35.7 | 0 0 | 62.1 0 | 37

1.4 95.6 | 0 87.5 | 0 81.4 | 0 61.5 | 0 0 | 83.9 0 | 60.2

D: Nondecision time .2 8.5 | .6 3.5 | 1.7 2.6 | 2.1 3.6 | 1.5 2.3 | 2.2 2.8 | 2.2
.5 15.7 | .2 1.9 | 2.5 1.1 | 4.7 2 | 2.8 1.4 | 3.3 1.3 | 3.6
.8 43.5 | 0 3.3 | 1.9 1.1 | 4.4 3.2 | 2 2.6 | 2.1 3 | 1.7

1.1 68.1 | 0 2.6 | 1.7 .6 | 6.7 2.9 | 1.8 3.2 | 1.7 4.2 | 1.5
1.4 88.3 | 0 3.4 | 1.3 .6 | 7.7 2.8 | 2.1 2.6 | 1.8 3 | 1.9

Note. Values to the left of the vertical bars are the percentage of pseudo-experiments in which older adults showed significantly slower RTs or larger costs
(i.e. worse performance). Values to the right of the vertical bars are the percentage of experiments in which younger adults showed significantly slower
RTs or larger costs. Values in bold highlight cases in which simulated older adults typically produced relatively lower costs or lower error rates. If the
transformed costs control the Type 1 error rate, then the total proportion of significant effects should be approximately 5% in Scenarios B–D.

6 HEDGE, POWELL, AND SUMNER



in Figure 3 are also consistent with the observation that the DDM

produces an approximately linear relationship between the mean

and SD of RTs (e.g., Wagenmakers & Brown, 2007). In Figure 3A,

it can be seen that one generally increases with the other (see also

supplementary material D). However, the relationship between the

model parameters and the simulated behavior is nonlinear.

Discussion

To summarize, if we use accumulation models as a reference

framework, none of the raw or transformed behavioral measures

uniquely identifies domain specific deficits. The z-score cost

showed lower Type I error rates than both the raw and proportional

RT costs in the scenarios of general slowing (B) and strategic

slowing (C), though they still notably exceeded the nominal rate

(15.5 and 61.5%, respectively, at the largest effect sizes). The

z-score costs were unaffected by changes in nondecision time (D).

Proportional RT costs show relatively little advantage over raw RT

costs, and group differences in processing could be reduced or

even reversed by differences in nondecision time.

Transformed RT costs have been used prominently in the aging

literature to examine whether older adults show deficits in specific

cognitive mechanisms in the presence of general slowing (e.g.,

Colcombe et al., 2005; Gold et al., 2013; Gratton et al., 2009;

Henry et al., 2015; Lawo & Koch, 2014; Truong & Yang, 2014;

Yang & Hasher, 2007; Zhu et al., 2010). Researchers in a given

cognitive domain may wish to remain neutral with respect to

quantitative models of choice RT per se, however, an underlying

quantitative relationship is implicitly assumed by these transfor-

mations. Examining the relationship between the transformed costs

and a widely used framework of choice RT allows us to critically

evaluate the different scaling assumptions made by the transfor-

mations, as well as identify where conclusions may converge or

diverge between the two approaches. The results of our simula-

tions indicate that using the z-score transformation is preferable to

using raw RT costs or proportional costs, as recommended by

Faust et al. (1999). However, z-score costs still show increased

Type I error rates in our scenarios of general slowing and strategic

slowing.

Plausibility of Scenarios

The scenarios that we describe are not atypical—increases in

boundary separation and nondecision time in older adults have

been reported in numerous studies that have applied the DDM, and

similar explanations have been suggested outside of the context of

a specific model (Basowitz & Korchin, 1957; McKoon & Ratcliff,

2013; Ratcliff & McKoon, 2015; Ratcliff, Thapar, et al., 2004;

Ratcliff et al., 2006a, 2006b, 2011; Schuch, 2016; Spaniol et al.,

2006; Starns & Ratcliff, 2010; Strayer & Kramer, 1994; Thapar et

al., 2003). The extent to which these factors fully account for

observed slowing in older adults is the subject of some debate

(Myerson, Adams, et al., 2003; Verhaeghen, 2014), though their

presence in some form is less controversial. A detailed evaluation

of the evidence for general slowing, and for domain-specific

deficits, can be seen in these and other reviews (e.g., Verhaeghen,

2011). Here, we focus on the interpretation of the metrics them-

selves.

Our simulations show that the rates of Type I errors in the

behavioral costs are dependent on the size of the effect in the

Figure 3. (A) The relationship between the mean response time (RT; left y-axis; solid lines) and SD of RTs

(right y-axis; dashed lines) simulated from the diffusion model at varying levels of boundary separation (a;

different color lines) and drift rates (x-axis). There is a nonlinear relationship between drift rate and both the

mean and SD of RTs. However, the relationship between the mean and SD themselves is approximately linear

(see supplementary material D). (B) The relationship between average drift rates and both RT costs (solid lines)

and z-score costs (dashed lines). Average drift rates refer to the average from easy and hard conditions, with a

difference between conditions of .17. On the right side of the plot it can be seen that there is a sharp change in

the z-score cost at high average drift rates. This occurs because a change in drift rate has relatively little effect

on behavior in the easy condition at high values. See main text and supplementary material D for details.
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underlying parameters. Notably, the upper end of effect sizes we

simulated (d � 1.4) exceeds the level traditionally considered to

be a “large” effect (d � 0.8). A consideration then is the extent to

which the confounding effects (Scenarios B–D) are plausibly large

enough in real samples that they are likely to contaminate tradi-

tionally used measures. We can evaluate this by examining previ-

ously reported fits of the DDM to younger and older adult data

across multiple tasks (Ratcliff et al., 2006a, their Table 3; Ratcliff,

Thapar, & McKoon, 2010, their Tables 2 and 3). Ratcliff et al.

(2006a) tested young adults, 60–74 year olds, and 75–85 year olds

on numerosity discrimination, letter discrimination, brightness dis-

crimination, and recognition memory tasks. Ratcliff et al. (2010)

used numerosity discrimination, lexical decision, and recognition

memory tasks with young adults, 60–74, and 75–90 year olds. We

calculated the effect size for each parameter/condition in the two

articles, and report the average effect sizes for each parameter in

Table 4. The average effect sizes for boundary separation and

nondecision time are in the upper range of, or they exceed, those

used in our simulations. For drift rates, group differences are

smaller and inconsistent, with older adults sometimes showing

higher values (better performance) in individual tasks.

We focus on the consequences for the interpretation of z-score

costs, as these showed the lowest false positive rates in our

simulations. We could infer from Table 4 that differences in

average drift rates are less likely to be problematic because they

tend not to be large. This is not true across all domains, however.

For example, Ratcliff, Thapar, and McKoon (2011) show small

and large age related declines in drift rates for item recognition and

associative recognition, respectively. The large age differences

commonly observed in boundary separation are potentially more

problematic for interpretations of the z-score cost.

Though we simulated the effects of changing each parameter in

isolation here, we emphasize that individuals and groups may vary

on multiple underlying dimensions. This is not to say that the

scenarios we outline are not dissociable, as drift rates, boundary

separation and nondecision time typically show low or inconsistent

correlations between each other (Ratcliff & McKoon, 2015; Rat-

cliff et al., 2010, 2011). Nevertheless, some combinations of the

scenarios we outline could be particularly problematic for inter-

preting the underlying source(s) of slowing. In supplementary

material C, we examine illustrative cases where older adults differ

from young adults in both strategic slowing and either a domain

specific deficit or general slowing. This makes the data patterns

difficult to interpret, as strategic slowing increases group differ-

ences in RT costs while having the opposite effect on error costs.

Relation to Previous Work

We are not the first to question the utility of proportional RT

costs, or other methods for controlling for confounding factors

when examining processing speed in aging. Faust and colleagues

(Faust et al., 1999) evaluated both proportional RT costs and

z-scores in the context of their rate-amount model, which predicts

individuals’ RTs in a given condition on the basis of a relation

between the amount of processing required in a condition and the

individual’s processing speed. Faust et al. note that a conceptual

similarity between their model and the accumulation of evidence

to a boundary in models such as the DDM. However, unlike the

DDM, the rate and amount model is a model of behavior at the

group level, in that it describes the relationship between an indi-

vidual’s RTs in one condition to their average, and to that of others

in the group. When the assumptions of their model were met, Faust

et al. show that z-scores are an appropriate transformation to

control for processing speed differences. In our simulations, the

z-score transformation reduced (but did not eliminate) the rate of

false positives in the general slowing and strategic slowing sce-

narios, with the latter producing larger effects. The observation

that the z-score transformation does not control for differences in

boundary separation is not at odds with Faust et al.’s (1999)

conclusions, in that they assume that variation in the amount of

processing required within a task is determined by the difficulty of

the condition, not individual differences in strategy.

Regarding general slowing, the discrepancy between our results

and Faust et al.’s (1999) may reflect the different assumptions and

approaches to data generation Faust et al. simulated data by sam-

pling means and SDs of RTs in accordance with the relationship

predicted by the rate-amount model. In other words, “slowing”

was implemented as a change in behavior. In contrast, we imple-

mented slowing as a change in drift rate; a model parameter

theorized to represent the efficiency of the underlying processing.

Critically, a change in the latent model parameter does not always

correspond to an equivalent change in behavior. In our simula-

tions, a decrease in drift rates in both conditions in a hypothetical

older adult relative to a younger adult could manifest in behavior

only in the more difficult condition. In a situation where data are

produced by a diffusion process and the parameters fall within a

certain range, the z-score transformation may provide better con-

trol over Type I error rates than we observe (note that Faust et al.

make additional assumptions about the group level structure of the

data that we do not make here; see also Leite, Ratcliff, & White,

2007; Myerson, Hale, Zheng, Jenkins, & Widaman, 2003; Ratcliff,

et al., 2000). However, the previous data on which we based our

simulations (Ratcliff, Thapar, et al., 2004; see also Ratcliff et al.,

2006a) suggest that ranges may go beyond those where Type I

errors are kept below the nominal rate.

We emphasize that it is not our position that any single analyt-

ical approach or model is correct; we do not know the generating

model for data from human participants. Rather, by illustrating

where conclusions drawn from one approach may not be robust to

another analytical approach or theoretical perspective, our aim is to

highlight the value of triangulating a range of approaches within

and between studies (Munafò & Davey Smith, 2018; Salthouse &

Hedden, 2002).

Table 4

Average Effect Sizes (Cohen’s d) for Group Differences in Four

Tasks Reported in Ratcliff et al. (2006a) and Three Tasks in

Ratcliff et al. (2010)

Parameter

Young adults
vs. 60–74
year olds

Young adults
vs. 75–90
year olds

Drift rate (v) �.00 �.26
Boundary separation (a) .98 1.55
Nondecision time (Ter) 1.73 1.81

Note. Effect sizes for each parameter are averaged across studies, tasks
and conditions. Positive effect sizes reflect higher values in older adults.
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Recommendations

Theorists have previously recommended the use of RT trans-

formations, in particular the z-score, on the basis that they provide

greater control over Type I error rates when used in conjunction

with the analysis of raw RTs (Faust et al., 1999). Our findings do

not contradict this advice; we observed lower Type I error rates

when using the z-score relative to examining raw RT costs. How-

ever, our observation of elevated (�5%) Type I error rates when

using the z-score in some scenarios is a reminder that researchers

should also seek convergence from other methods, such as those

that incorporate accuracy (Ratcliff et al., 2000; Salthouse & Hed-

den, 2002). This is not to suggest that every study should conform

to a particular design that allows for a range of analytical methods

to be applied. We focus on approaches that incorporate accuracy

because they are easily applied to many existing tasks, and because

of the broad literature that links ability in a given cognitive domain

to both speed and accuracy (that is not limited to sequential

sampling models; Pachella, 1974; Salthouse & Hedden, 2002;

Wickelgren, 1977).

It naturally follows from our framing of different hypothetical

sources of slowing in the context of the DDM that fitting the model

itself is one such method that could be used to supplement anal-

yses. In particular, freely available software packages are available

to fit a hierarchical Bayesian implementation of the model

(Wiecki, Sofer, & Frank, 2013). Hierarchical methods assume that

individuals are sampled from one or more populations, and simul-

taneously estimate parameters at the group and individual level.

This is a benefit where the number of trials per subject is relatively

low, as may be the case in aging research, as the group level

information can inform the individual estimates. There are other

software packages available (Vandekerckhove & Tuerlinckx,

2008; Voss & Voss, 2007; Wagenmakers, van der Mass, & Gras-

man, 2007), and other choice RT models available (e.g., the LBA;

Brown & Heathcote, 2008). Our simulations using the LBA in

supplementary material B produce similar results to those in the

main text, and conclusions about psychological processes are

generally thought to not depend on the choice of model (Donkin et

al., 2011; Ratcliff et al., 2005).

Though not a substitute for quantitative analysis, our simula-

tions also point toward heuristics that can be used to identify

confounds. For example, if older adults show increased RT costs

and z-score costs relative to younger adults, but decreased or

similar error costs, then this would point toward an influence of

strategic slowing. A general slowing scenario could lead to lower

accuracy in the baseline condition, though this may be particularly

difficult to detect in real data (see below). We make the assump-

tion here that RT, or processing speed, and accuracy are not

independent. This view is not dependent on the framework of

sequential sampling models (cf. Salthouse & Hedden, 2002; Wick-

elgren, 1977), though an advantage of the models is that the

relationship is specified. Many alternative methods entail the sep-

arate analysis of RTs and accuracy, which leaves the researcher to

gauge the relative importance of an effect (or the absence of one)

in each in a given dataset (Salthouse & Hedden, 2002).

However, there may be tasks or data for which a model such as

the DDM is not applicable, or researchers may simply not wish to

commit to an interpretation within a specific framework. Salthouse

and Hedden (2002) discuss a variety of approaches that can be

used to examine the consistency of interpretations, for example,

the use of composite scores (cf. Vandierendonck, 2017), the gen-

eration of speed–accuracy trade-off functions, and the use of

response deadlines tasks. A notable consideration for all of these

techniques is that it is often the intention of researchers (or par-

ticipants) to avoid large numbers of errors in performance. In the

context of the DDM, this could be seen as participants adopting a

level of response caution that minimizes errors irrespective of their

drift rates. This has the consequence of making within-subject

effects in accuracy difficult to detect, while producing large RT

effects, as seen in Scenario C (see also Ratcliff et al., 2000;

Wickelgren, 1977). This is difficult to address solely through

analysis methods, and it is also difficult to fit choice RT models to

data where no errors are made. Flawless accuracy in all conditions

may reflect a relatively extreme scenario, however. As noted,

errors are not completely absent in data sets where RT transfor-

mations have previously been considered (Hale et al., 1995).

Finally, choice RT tasks often consist of multiple conditions

and/or multiple response options, whereas we focus on binary

choice performance in two conditions here. Most of the issues we

discuss extend to more complex tasks, and analysis methods can be

extended to accommodate them. Extensions of the different choice

RT models been proposed that accommodate tasks with multiple

response options (for an overview, see Tsetsos, Usher, & McClel-

land, 2011). In the case of accumulator models such as the LBA,

each response option is simply assigned a unique accumulator, so

hypothetically there is no constraint on the number of response

options that can be modeled. Alternatively, in cases where no

systematic difference between response options is expected, some

theorists have suggested that the regular DDM could be fit to data

where responses are collapsed to be coded simply as correct or

incorrect (Voss, Nagler, & Lerche, 2013). The same concerns

about RT scaling effects, and the value of incorporating accuracy

into analyses, carry across to these extensions.

To conclude, there is understandable appeal of easy-to-calculate

metrics for studying group differences in RTs, however, theorists

have emphasized caution in applying these and other methods

blindly (Faust et al., 1999; Ratcliff et al., 2000; Ratcliff, Spieler, &

McKoon, 2004; Verhaeghen, 2014). A specific relationship be-

tween RT costs and overall response speed is (often implicitly)

assumed by different transformations, and quantitative models of

choice RT provide a useful reference for those scaling assump-

tions. We recommend against the use of proportional RT costs.

The z-score costs provide improved control over Type I errors

relative to the analysis of raw RTs, though it is sensitive to

confounds, and should ideally be interpreted in conjunction with

analyses of errors where possible.
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