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The Mapping Between Transformed Reaction Time Costs and Models of
Processing in Aging and Cognition

Craig Hedge, Georgina Powell, and Petroc Sumner
Cardiff University

Older adults tend to have slower response times (RTs) than younger adults on cognitive tasks. This makes
the examination of domain-specific deficits in aging difficult, as differences between conditions in raw
RTs (RT costs) typically increase with slower average RTs. Here, we examine the mapping between 2
established approaches to dealing with this confound in the literature. The first is to use transformed RT
costs, with the z-score and proportional transforms both being commonly used. The second is to use
mathematical models of choice RT behavior, such as the drift-diffusion model (Ratcliff, 1978). We
simulated data for younger and older adults from the drift-diffusion model under 4 scenarios: (a) a
domain specific deficit, (b) general slowing, (c) strategic slowing, and (d) a slowing of nondecision
processes. In each scenario we varied the size of the difference between younger and older adults in the
model parameters, and examined corresponding effect sizes and Type I error rates in the raw and
transformed RT costs. The z-score transformation provided better control of Type I error rates than the
raw or proportional costs, though did not fully control for differences in the general slowing and strategic
slowing scenarios. We recommend that RT analyses are ideally supplemented by analyses of error rates
where possible, as these may help to identify the presence of confounds. To facilitate this, it would be
beneficial to include conditions that elicit below ceiling accuracy in tasks.

Keywords: aging, reaction times, diffusion model, slowing, proportional RT costs
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It has been well established that elderly people are typically
slower on choice RT tasks compared with younger adults (Anstey,
Dear, Christensen, & Jorm, 2005; Bugg, Zook, DeLosh, Davalos,
& Davis, 2006; Salthouse, 1985, 1996). Further, there is a great
deal of research examining whether older adults show deficits in
specific domains, such as response inhibition or executive func-
tioning, compared with younger adults (e.g., Castel, Balota,
Hutchison, Logan, & Yap, 2007; van der Lubbe & Verleger,
2002). However, there are discrepancies in the literature as to
whether observed effects reflect domain specific deficits, or if
differences can be accounted for by general processing speed
(Verhaeghen, 2011).

In widely used tasks such as the Stroop task (Stroop, 1935) or
task switching, RTs in a baseline condition are subtracted from a
condition that requires additional processing, producing an RT
cost. In within-subject studies, the magnitude of the RT cost is
interpreted as an index of the process of interest, such as the time
taken to resolve conflict or switch task sets. However, such an
interpretation is confounded when comparing groups that differ in
their overall response speed, as RT costs generally increase with
slower RTs (Faust, Balota, Spieler, & Ferraro, 1999).The potential
contamination of task specific effects has led to different methods
being used to control for general slowing in aging, the appropri-
ateness of which have been the subject of much discussion in the
literature (e.g., Cerella, 1991; Faust et al., 1999; Myerson, Adams,
Hale, & Jenkins, 2003; Ratcliff, Spieler, & McKoon, 2000; Salt-
house & Hedden, 2002).

Here, we examine the mapping between two different kinds of
approach—RT transformations and decision models. We focus on
two commonly used RT transformations. The first is to take
proportional RT costs, in which the raw RT cost is divided by the
mean RT in the baseline condition (e.g., Bialystok, Craik, & Luk,
2008; Colcombe, Kramer, Erickson, & Scalf, 2005; de Bruin &
Della Sala, 2018; Gold, Kim, Johnson, Kryscio, & Smith, 2013;
Gratton, Wee, Rykhlevskaia, Leaver, & Fabiani, 2009; Henry et
al., 2015; Kousaie & Phillips, 2012; Lawo & Koch, 2014; Maza-
heri, Roerdink, Duysens, Beek, & Peper, 2016; Truong & Yang,
2014; Weissberger, Wierenga, Bondi, & Gollan, 2012; Yang &
Hasher, 2007; Zhu, Zacks, & Slade, 2010). The second transfor-
mation is the z-score, in which the overall mean RT is subtracted
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from each trial RT, and the result divided by the overall SD. The
resultant z-transformed values can then be averaged per condition,
and a cost calculated (e.g., Aschenbrenner & Balota, 2017; Bush,
Hess, & Wolford, 1993; Christ, White, Mandernach, & Keys,
2001; Faust et al., 1999; Hummert, Garstka, O’Brien, Greenwald,
& Mellott, 2002; Madden et al., 2014; Paxton, Barch, Racine, &
Braver, 2008). Analyses of the transformed costs are typically
performed in addition to, or in place of, the analysis of raw RT
costs, to control for group differences in overall RTs. The use of
both methods is not specific to any paradigm or cognitive domain,
nor is it restricted to studies of aging (e.g., Pe, Koval, & Kuppens,
2013; Schmitter-Edgecombe & Langill, 2006; Sumner, Edden,
Bompas, & Singh, 2010; von Bastian, Souza, & Gade, 2016). The
z-score and proportional transformations assume different quanti-
tative relationships between overall RT and the magnitude of the
RT costs, however, these assumptions are rarely explicitly justified
(though see Faust et al., 1999).

Evaluating the assumptions of an RT transformation is not a
trivial task, as it requires knowledge of the way in which RTs map
on to the cognitive processes that generate them. For this purpose,
mathematical models of choice RT behavior provide a potentially
valuable reference, as they explicitly specify the relationship be-
tween behavior and the theorized underlying mechanisms. We
used the drift diffusion model (DDM; Ratcliff, 1978; Ratcliff &
Rouder, 1998) to simulate four hypothetical scenarios that could
affect RT costs and/or average RTs, based on parameter values that
have been reported in a study of younger and older adults. These
scenarios correspond to a domain specific deficit, general slowing,
strategic slowing, and a slowing of perceptual-motor (i.e., nonde-
cision) processes. If the RT transformations can be mapped spe-
cifically to domain specific deficits in the DDM, we would expect
them to show group differences only in the domain specific sce-
nario. In other words, we can consider a group difference observed
in the transformed costs in scenarios of general slowing, strategic
slowing and perceptual-motor slowing to be a Type I error (false
positive). To anticipate the results of our simulations, the z-score
transformation showed a lower Type I error rate than the raw and
proportional costs, though it still exceeded the nominal level (5%)
in the presence of general slowing and strategic slowing. Coun-
terintuitively, the proportional costs can even create an apparent
advantage for older adults in the presence of slower RTs that
actually arise from perceptual or motor slowing.

The Drift Diffusion Model

The DDM is one of a group of models developed to account for
both the speed and accuracy of performance on choice RT tasks
(see also Brown & Heathcote, 2008; Carpenter & Williams, 1995;
Usher & McClelland, 2001). These models differ slightly in the
assumptions and construction, but for our current purposes they all
produce similar behavior (cf. Donkin, Brown, Heathcote, &
Wagenmakers, 2011). For comparison, we conduct a simulation
using an alternative model, the Linear Ballistic Accumulator
(Brown & Heathcote, 2008), in supplementary material B.

In a two-choice RT task, the DDM assumes that on each trial a
decision mechanism samples evidence for one or the other option
over time. This continues until a criterion level of evidence is
reached for one of the options, at which point the motor response
is initiated. Researchers are typically interested in three key pa-

rameters. First, drift rate (v) is the average rate at which evidence
is accumulated. This typically varies between conditions, such that
trials in a relatively easy condition would have a higher mean drift
rate compared with a harder condition. The lower drift rate in
harder trials accounts for their slower RTs and typically lower
accuracy rates. The second parameter of interest is boundary
separation (a), which refers to the level of evidence that an indi-
vidual requires for a response. Individuals who are very cautious
will set a high threshold, so they make fewer errors at the expense
of having longer RTs. Where trials are randomly intermixed within
blocks, it is typically assumed that boundary separation does not
differ between conditions. Finally, nondecision time (Ter) is in-
cluded to account for the speed of visual processing and motor
implementation. As with boundary separation, it is typically as-
sumed that nondecision time does not vary between conditions
when they are randomly intermixed.

The drift-diffusion model has now been applied to the study of
aging across a wide range of cognitive domains (McKoon &
Ratcliff, 2013; Ratcliff & McKoon, 2015; Ratcliff, Thapar, Go-
mez, & McKoon, 2004; Ratcliff, Thapar, & McKoon, 2006a,
2006b, 2011; Schuch, 2016; Spaniol, Madden, & Voss, 2006;
Starns & Ratcliff, 2010; Thapar, Ratcliff, & McKoon, 2003). A
consistent finding from this literature is that older adults often
show increased boundary separation, and prolonged nondecision
time. The evidence for differences in drift rates between younger
and older adults is mixed, and varies between tasks (Ratcliff et al.,
2006a; Verhaeghen, 2014), which has been used as an argument
against a global deficit in information processing in older adults.

Four Scenarios Leading to Changes in RTs

Using the framework of the DDM, we can create differences
between two hypothetical individuals (or groups of individuals) in
mean RTs and mean RT costs by varying parameters of the model
that correspond to different sources of slowing. These scenarios
are illustrated in Figure 1. In each case, the individual who pro-
duces slower RTs in one or both conditions is shown in blue, and
the faster individual in red.

The first scenario (Figure 1A) depicts two individuals whose
drift rate in the baseline condition is equivalent, but who differ in
their drift rates in the more difficult condition. This is how a
domain specific deficit would be implemented in the DDM—the
individual portrayed in blue is less able to process the stimulus in
the presence of increased difficulty, distraction, or interference.
The second scenario portrays a global change in information
processing speed in the absence of a domain specific effect. This
can be characterized in the context of the DDM by a decrease in
the drift rates for both conditions while maintaining the same
difference between conditions (see Figure 1B). In the third scenario
(Figure 1C), the blue individual has a greater boundary separation
compared with the red individual, meaning they wait for more
evidence before responding in both conditions (i.e., they are more
cautious). In the final scenario (Figure 1D), the individual in blue
is slower because of a prolonged period of perceptual encoding
before the decision process (a prolonged motor output time would
have the same effect).

Note that studies of the effect of aging in particular cognitive
domains are typically interested in the differences reflected in
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Scenario A. Scenario B most closely reflects what the proportional
and z-score transforms are used to control for.

Simulated Behavioral Costs

Given the four scenarios outlined in Figure 1, we can simulate
data for younger and older adults in two conditions of differing
difficulty to assess the way in which changes in these underlying
parameters affect raw RT costs, transformed RT costs, and error
costs. We did this for a range of effect sizes for the difference
between younger and older adults, to assess whether the size of
confounding effects influenced the effectiveness of the transforms.
In each scenario, we simulated pools of 2,000 younger and older
adults with 10,000 trials per condition, so as to remove the influ-
ence of noise in our estimates. To obtain plausible ranges for a
choice RT task in our simulations, we derived parameters from fits
of the DDM to a lexical-decision task in younger and older adults
by Ratcliff, Thapar, et al., 2004, their Tables 3 and 4) and a
previous simulation article (van Ravenzwaaij & Oberauer, 2009).
These values are representative of those reported across a range of
tasks (Ratcliff, Thapar, Smith, & McKoon, 2005, 2006a). Our

“easy” and “hard” condition drift rates were informed by fitted
drift rates for high and low frequency words.

The values used are shown in Table 1. Group differences were
simulated in each scenario by changing the mean of the relevant
parameter for older adults to reflect five different standardized
effect sizes (Cohen’s d of .2 to 1.4 in intervals of .3, where d �
mean difference/pooled SD).

Note that Cohen’s ds of .2, .5, and .8 are traditionally considered
to be small, medium, and large effect sizes, respectively (Cohen,
1992). We discuss the plausibility of parameter differences of
these magnitudes in the discussion. In each scenario, we simulated
parameter values from a normal distribution with a common SD.
Drift rates for easy and hard trials were generated from a multi-
variate normal distribution (using Matlab’s mvnrnd function),
which generates two normally distributed random variables with
specified means, variances, and covariance. Following van Raven-
zwaaij and Oberauer (2009), we assumed a correlation of .8
between easy and hard drift rates, reflecting the observation that
performance across conditions is typically highly correlated. As a
mean drift rate of 0 would produce chance accuracy, we truncated

Figure 1. Four scenarios in which two individuals could produce different response times (RTs) in the drift
diffusion model. In all cases, the individual that would produce slower RTs is portrayed in blue (Dark grey), and
the faster individual is shown in red (Light grey). (A) Represents the scenario in which most researchers are
typically interested. In this scenario, both individuals produce the same drift rates in the baseline condition (red
and blue dashed lines), but one shows a domain specific deficit, in which the drift rate in the more difficult
condition is lower. (B) Global slowing, reflecting lower mean drift rates in both conditions while maintaining
the same difference between drift rates in both fast and slow individuals (note that the angular difference is
unchanged). (C) A change in boundary separation or strategic slowing. The individual represented by the red line
requires less evidence to make a response, resulting in faster RTs (and more errors). (D) A change in nondecision
time, reflecting a longer period of perceptual encoding in the individual with slower RTs. The decision phase
(boundary separation and drift rates are unchanged. See the online article for the color version of this figure.

3TRANSFORMED REACTION TIME COSTS IN AGING



values to a minimum of .1 (at most, this meant replacing 5.4% of
older adult’s hard drift rates in the largest general slowing effect
size scenario). For simplicity, we assumed a common SD (.07) for
both drift rates, as in van Ravenzwaaij and Oberauer. This is
slightly smaller than the pooled SD from Ratcliff, Thapar, et al.’s
(2004) fits, so as to minimize the number of values that needed to
be truncated at the larger effect sizes.

We used a common value for between-trial variability in drift
rates (� � .1) for both groups in all simulations. The mean starting
point of the diffusion process was fixed to a/2 for all simulations.
Starting point variability and nondecision time variability were
fixed at zero. Data were simulated using the DMAT toolbox
(Vandekerckhove & Tuerlinckx, 2008) in Matlab (2014; The
MathWorks Inc., Natick, MA).

The calculation of mean RTs excluded incorrect responses. The
proportional RT cost was calculated as (hard RT-easy RT)/easy
RT. z-score RT costs were calculated by subtracting the mean RT
of all trials from each individual RT, and dividing by the SD of
RTs across all trials. The transformed values were then averaged in
each condition, and a cost calculated from the resultant condition
means. Descriptive statistics for the smallest and largest effect size
are shown in Table 2, while a detailed summary is reported in

supplementary material A. These ranges are similar to those used
in previous discussions of RT transformations (Faust et al., 1999;
Hale, Myerson, Faust, & Fristoe, 1995).

To assess the way in which studies with plausible sample sizes
would be affected by group differences in each scenario and effect
size, we randomly sampled from the pools of simulated partici-
pants to create 5,000 pseudoexperiments with N � 30 per group.
For each pseudo experiment we calculated the mean RT, RT cost,
proportional RT cost, z-score cost and error cost and tested
whether the group difference was significant (p � .05) in an
independent t test. Figure 2 plots the average effect size (younger
vs. older adults) for the behavioral costs in relation to the effect
size of the difference in the underlying parameters in each sce-
nario. If the z-score and proportional RT costs control for the
confounding factors, the lines should be flat in Scenarios B to D.
We also report the percentage of pseudoexperiments in which the
group difference was significant according to this traditional cri-
terion in Table 3. As only Scenario A simulates an underlying
domain-specific deficit, the percentages for Scenarios B to D can
be interpreted as Type I error rates.

In Scenario A, reflecting a domain specific deficit, the effect
size in each of the behavioral costs increases with the underlying

Table 1
Parameters Used to Simulate Data from Drift-Diffusion Model, Derived from Ratcliff, Thapar, et al. (2004)

Scenario Drift rate easy (v1) Drift rate hard (v2) Boundary separation (a) Nondecision time (Ter)

Domain-specific deficit (A) .480 Young: .310 .155 490
Old: .301–.248

General slowing (B) Young: .480 Young: .310 .155 490
Old: .466–.382 Old: .296–.212

Strategic slowing (C) .480 .310 Young: .127 490
Old: .134–.179

Nondecision time (D) .480 .310 .155 Young: 440
Old: 450–510

SDs (all scenarios) .07 .07 .037 50

Note. Individual parameter values in each scenario were generated from a normal distribution with means given in the first four rows and the SDs shown
in the bottom row. Mean parameters that were varied between groups in each scenario are highlighted in bold, with the range shown for older adults. In
Scenarios B, C, and D, the effect between groups in each scenario can be calculated by multiplying the Cohen’s d value by the SD (e.g., .2 � 50 ms for
the smallest effect in nondecision time in Scenario D). For Scenario A, the difference of interest is the group difference in the difference between easy and
hard drift rates. The SD of the difference (easy–hard drift rates) was .044.

Table 2
Mean Reaction Times and Error Rates for Simulated Young and Old Adults

Scenario

Young Old (d � .2) Old (d � 1.4)

Easy Hard Easy Hard Easy Hard

Reaction time (ms)
A: Domain 667 (69) 755 (106) 665 (69) 760 (108) 668 (67) 806 (122)
B: General 667 (71) 755 (108) 670 (72) 767 (111) 705 (90) 829 (139)
C: Strategic 635 (70) 700 (99) 641 (70) 711 (102) 696 (73) 804 (114)
D: Nondecision 617 (71) 704 (107) 629 (71) 719 (109) 688 (72) 779 (112)

Error rates (%)
A: Domain 1 (1) 4 (4) 1 (1) 4 (4) 1 (1) 8 (6)
B: General 1 (1) 4 (4) 1 (1) 5 (5) 2 (2) 11 (7)
C: Strategic 2 (3) 6 (6) 1 (2) 5 (5) 0 (1) 3 (3)
D: Nondecision 1 (2) 4 (4) 1 (1) 4 (4) 1 (1) 4 (4)

Note. SDs given in parentheses. Older adult means are reported for the smallest (d � .2) and largest (d � 1.4)
effect sizes simulated. Means for young adults come from the d � .2 scenarios, though only the parameter
distributions used to simulate older adult data varied across effect sizes.
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manipulation exactly as it should do because all the measures are
expected to capture domain specific deficits. Scenario B reflects
global slowing in older adults. Here, the simulated older adults are
less efficient in processing evidence in both conditions compared
with the simulated younger adults, but have the same relative differ-
ence between conditions. Ideally transformed data should minimize
effects here, so they are not confused with domain specific effects
(Scenario A). All the behavioral costs show some sensitivity to this
general slowing, with increased false positive rates associated with
larger effect sizes. However, while the proportional RT cost shows
little improvement over raw RT costs, the z-score transformation does
decrease the false positive rate in this scenario.

Scenario C reflects differences in boundary separation (response
caution/strategic slowing). The older adult groups have a higher
boundary separation, such that they wait for more evidence before
making a response. In this scenario, younger and older adults have
identical drift rates for easy and hard trials, however, older adults
have larger RT costs because the RT difference scales with higher

levels of response caution (cf. Ratcliff et al., 2000). Critically, the
transformed costs do not correct for this, and the “deficit” is
apparent here too. Further, the strategic slowing in older adults
leads to relatively smaller error costs. Thus, one would draw
different conclusions about the relative ability of younger and
older adults if we were to use RT costs or error costs in this
scenario (see Hedge et al., in press for an extended discussion of
this point). Finally, in Scenario D, the simulated older adults have
a longer nondecision time compared with younger adults. In the
simplest form, nondecision time is a constant that is added to the
RTs for both conditions, so this did not affect the variance of RTs
or the difference between conditions in our simulations. This
means that the absolute RT costs, and error cost are identical in
both groups. The z-score is also insensitive to this change, as the
mean RT is subtracted in the first step of its calculation. However,
dividing the same raw RT cost by a longer baseline RT in older
adults results in an apparent advantage for older adults in the
proportional RT costs in some cases.

Figure 2. Relationship between the effect size in diffusion model parameters manipulated in each scenario
(x-axis) and the effect size observed in the behavioral measures derived from the simulated data (y-axis). Positive
effect sizes on the y-axis indicate larger costs in the older adult group. See Table 1 and Figure 1 for parameters
manipulated in each scenario. The effect sizes are nonzero for all raw and transformed costs in Scenarios B and
C, and for proportional response time (RT) costs in Scenario D. This indicates that they do not control for group
differences in these confounding parameters.
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Though we simulated data from plausible parameter ranges, we
caveat the interpretation of the absolute Type I error rates in that
they are dependent on the “noise” produced by variation in the
other parameters. For example, if drift rates and boundary separa-
tion were held constant across all individuals, variation in scores
would be driven only by nondecision time, and would produce a
larger false positive rate for the proportional RT costs in Scenario
D. Though it is unlikely that such variability would be absent, the
magnitude of it may vary with tasks and samples. The broad
pattern of results is not specific to the DDM; see online supple-
mentary material for simulations with another common decision
model, the linear ballistic accumulator (LBA) model.

The z Transformation and General Slowing

Our observation that the z-score RT cost does not fully control
the Type I error rate in the general slowing scenario conflicts with
the findings of Faust et al. (1999). It also may appear counterin-
tuitive given the observation that the DDM produces an approxi-
mately linear relationship between the mean and SD of RTs with
changes in drift rate (Wagenmakers & Brown, 2007; Wagenmak-
ers, Grasman, & Molenaar, 2005). To understand this discrepancy,
we conducted an additional simulation based on the parameter
ranges used in our general slowing scenario. We simulated data for
a single individual at each parameter combination, with 500,000
trials each in easy and hard conditions. As in our general slowing
scenario, we varied the drift rates for both easy and hard conditions
while keeping the difference between conditions fixed at .17. In
Figure 3A, we plot the relationship between drift rate (x-axis) and
the mean RT (left y-axis) and SD of RTs (right y-axis) for three

levels of boundary separation. In Figure 3B we plot the relation-
ship between drift rates (now averaged over easy and hard condi-
tions) and both the raw RT cost and z-score cost. See supplemen-
tary material D for additional information.

First, note in Figure 3A that the mean (solid lines) and SD
(dashed lines) of RTs change at different rates depending on both
drift rate and boundary separation (see also Ratcliff et al., 2000).
In our general slowing simulations, we used mean drift rates of .48
and .466 (SD � .07) for the easy condition in our younger and
older (d � .02) adults, respectively. Examining the bottom right
corner of Figure 3A, the slopes are relatively shallow in this range,
indicating little change in the mean and SD of RTs at high drift
rates. In contrast, the slopes are relatively steep in the range of drift
rates used for the hard condition (.31 and .296 for younger and
older adults, respectively). The result of this is that some older
adults would produce similar RTs to young adults in the easy
condition but produce relatively slower and more variable RTs in
the hard condition. The z-score transformation does not correct for
this, as its intended aim is to correct for slower RTs in both
conditions and leave the within-subject effect intact. This behavior
can be clearly seen in the right side of Figure 3B, where the z-score
costs (dashed lines) show a steep change at higher average drift
rates. At lower average drift rates, where behavior in the easy
condition is also be affected, the z-score cost shows better control
for general slowing.

Note that though drift rates in the range of .5 are at the high end
of what is typically observed in fits to empirical data, they are
based on previous aging studies (Ratcliff, Thapar, et al., 2004; see
also Ratcliff, Thapar, & McKoon, 2006b). The patterns we observe

Table 3
Percentage of Significant (p � .05) t-Tests from 5,000 Simulated Experiments

Scenario Effect size Mean RT RT cost Proportional cost z-score cost Mean error Error cost

A: Domain specific deficit .2 2.8 | 2.1 6.8 | .8 7.9 | .6 10.2 | .2 3.3 | 1.4 5.2 | .9
.5 3.5 | 1.9 16.5 | .2 20 | .2 24.9 | 0 11.1 | .1 17.2 | .1
.8 9.1 | .3 46.3 | 0 52 | 0 70.3 | 0 27.8 | 0 46.9 | 0

1.1 11.5 | .4 64 | 0 71.6 | 0 89.9 | 0 38.6 | 0 64.2 | 0
1.4 19.1 | .1 81 | 0 87 | 0 97.2 | 0 58 | 0 83.2 | 0

B: General slowing .2 4.6 | 1.3 8.3 | .5 8.7 | .4 7.9 | .5 11.2 | .3 12.9 | .2
.5 6.9 | .7 12.8 | .2 12 | .2 8 | .4 23.3 | .1 27.5 | .1
.8 22.8 | .1 29.8 | 0 27.6 | .1 10.6 | .4 58.6 | 0 65.6 | 0

1.1 54 | 0 54.7 | 0 47.2 | 0 16.2 | .2 80.1 | 0 86.5 | 0
1.4 59.8 | 0 60.9 | 0 52.9 | 0 15.5 | .2 96.2 | 0 98.9 | 0

C: Strategic slowing .2 5.3 | .8 5 | .6 4.7 | .8 3.4 | 1.6 .7 | 5.9 .9 | 6.1
.5 16.3 | .2 15.8 | .1 14.4 | .2 7.8 | .6 .1 | 18.2 .1 | 13.1
.8 52.3 | 0 44.6 | 0 40.9 | 0 26.1 | 0 0 | 41.2 0 | 24

1.1 87.8 | 0 74.1 | 0 65.1 | 0 35.7 | 0 0 | 62.1 0 | 37
1.4 95.6 | 0 87.5 | 0 81.4 | 0 61.5 | 0 0 | 83.9 0 | 60.2

D: Nondecision time .2 8.5 | .6 3.5 | 1.7 2.6 | 2.1 3.6 | 1.5 2.3 | 2.2 2.8 | 2.2
.5 15.7 | .2 1.9 | 2.5 1.1 | 4.7 2 | 2.8 1.4 | 3.3 1.3 | 3.6
.8 43.5 | 0 3.3 | 1.9 1.1 | 4.4 3.2 | 2 2.6 | 2.1 3 | 1.7

1.1 68.1 | 0 2.6 | 1.7 .6 | 6.7 2.9 | 1.8 3.2 | 1.7 4.2 | 1.5
1.4 88.3 | 0 3.4 | 1.3 .6 | 7.7 2.8 | 2.1 2.6 | 1.8 3 | 1.9

Note. Values to the left of the vertical bars are the percentage of pseudo-experiments in which older adults showed significantly slower RTs or larger costs
(i.e. worse performance). Values to the right of the vertical bars are the percentage of experiments in which younger adults showed significantly slower
RTs or larger costs. Values in bold highlight cases in which simulated older adults typically produced relatively lower costs or lower error rates. If the
transformed costs control the Type 1 error rate, then the total proportion of significant effects should be approximately 5% in Scenarios B–D.
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in Figure 3 are also consistent with the observation that the DDM
produces an approximately linear relationship between the mean
and SD of RTs (e.g., Wagenmakers & Brown, 2007). In Figure 3A,
it can be seen that one generally increases with the other (see also
supplementary material D). However, the relationship between the
model parameters and the simulated behavior is nonlinear.

Discussion

To summarize, if we use accumulation models as a reference
framework, none of the raw or transformed behavioral measures
uniquely identifies domain specific deficits. The z-score cost
showed lower Type I error rates than both the raw and proportional
RT costs in the scenarios of general slowing (B) and strategic
slowing (C), though they still notably exceeded the nominal rate
(15.5 and 61.5%, respectively, at the largest effect sizes). The
z-score costs were unaffected by changes in nondecision time (D).
Proportional RT costs show relatively little advantage over raw RT
costs, and group differences in processing could be reduced or
even reversed by differences in nondecision time.

Transformed RT costs have been used prominently in the aging
literature to examine whether older adults show deficits in specific
cognitive mechanisms in the presence of general slowing (e.g.,
Colcombe et al., 2005; Gold et al., 2013; Gratton et al., 2009;
Henry et al., 2015; Lawo & Koch, 2014; Truong & Yang, 2014;
Yang & Hasher, 2007; Zhu et al., 2010). Researchers in a given
cognitive domain may wish to remain neutral with respect to
quantitative models of choice RT per se, however, an underlying
quantitative relationship is implicitly assumed by these transfor-
mations. Examining the relationship between the transformed costs

and a widely used framework of choice RT allows us to critically
evaluate the different scaling assumptions made by the transfor-
mations, as well as identify where conclusions may converge or
diverge between the two approaches. The results of our simula-
tions indicate that using the z-score transformation is preferable to
using raw RT costs or proportional costs, as recommended by
Faust et al. (1999). However, z-score costs still show increased
Type I error rates in our scenarios of general slowing and strategic
slowing.

Plausibility of Scenarios

The scenarios that we describe are not atypical—increases in
boundary separation and nondecision time in older adults have
been reported in numerous studies that have applied the DDM, and
similar explanations have been suggested outside of the context of
a specific model (Basowitz & Korchin, 1957; McKoon & Ratcliff,
2013; Ratcliff & McKoon, 2015; Ratcliff, Thapar, et al., 2004;
Ratcliff et al., 2006a, 2006b, 2011; Schuch, 2016; Spaniol et al.,
2006; Starns & Ratcliff, 2010; Strayer & Kramer, 1994; Thapar et
al., 2003). The extent to which these factors fully account for
observed slowing in older adults is the subject of some debate
(Myerson, Adams, et al., 2003; Verhaeghen, 2014), though their
presence in some form is less controversial. A detailed evaluation
of the evidence for general slowing, and for domain-specific
deficits, can be seen in these and other reviews (e.g., Verhaeghen,
2011). Here, we focus on the interpretation of the metrics them-
selves.

Our simulations show that the rates of Type I errors in the
behavioral costs are dependent on the size of the effect in the

Figure 3. (A) The relationship between the mean response time (RT; left y-axis; solid lines) and SD of RTs
(right y-axis; dashed lines) simulated from the diffusion model at varying levels of boundary separation (a;
different color lines) and drift rates (x-axis). There is a nonlinear relationship between drift rate and both the
mean and SD of RTs. However, the relationship between the mean and SD themselves is approximately linear
(see supplementary material D). (B) The relationship between average drift rates and both RT costs (solid lines)
and z-score costs (dashed lines). Average drift rates refer to the average from easy and hard conditions, with a
difference between conditions of .17. On the right side of the plot it can be seen that there is a sharp change in
the z-score cost at high average drift rates. This occurs because a change in drift rate has relatively little effect
on behavior in the easy condition at high values. See main text and supplementary material D for details.
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underlying parameters. Notably, the upper end of effect sizes we
simulated (d � 1.4) exceeds the level traditionally considered to
be a “large” effect (d � 0.8). A consideration then is the extent to
which the confounding effects (Scenarios B–D) are plausibly large
enough in real samples that they are likely to contaminate tradi-
tionally used measures. We can evaluate this by examining previ-
ously reported fits of the DDM to younger and older adult data
across multiple tasks (Ratcliff et al., 2006a, their Table 3; Ratcliff,
Thapar, & McKoon, 2010, their Tables 2 and 3). Ratcliff et al.
(2006a) tested young adults, 60–74 year olds, and 75–85 year olds
on numerosity discrimination, letter discrimination, brightness dis-
crimination, and recognition memory tasks. Ratcliff et al. (2010)
used numerosity discrimination, lexical decision, and recognition
memory tasks with young adults, 60–74, and 75–90 year olds. We
calculated the effect size for each parameter/condition in the two
articles, and report the average effect sizes for each parameter in
Table 4. The average effect sizes for boundary separation and
nondecision time are in the upper range of, or they exceed, those
used in our simulations. For drift rates, group differences are
smaller and inconsistent, with older adults sometimes showing
higher values (better performance) in individual tasks.

We focus on the consequences for the interpretation of z-score
costs, as these showed the lowest false positive rates in our
simulations. We could infer from Table 4 that differences in
average drift rates are less likely to be problematic because they
tend not to be large. This is not true across all domains, however.
For example, Ratcliff, Thapar, and McKoon (2011) show small
and large age related declines in drift rates for item recognition and
associative recognition, respectively. The large age differences
commonly observed in boundary separation are potentially more
problematic for interpretations of the z-score cost.

Though we simulated the effects of changing each parameter in
isolation here, we emphasize that individuals and groups may vary
on multiple underlying dimensions. This is not to say that the
scenarios we outline are not dissociable, as drift rates, boundary
separation and nondecision time typically show low or inconsistent
correlations between each other (Ratcliff & McKoon, 2015; Rat-
cliff et al., 2010, 2011). Nevertheless, some combinations of the
scenarios we outline could be particularly problematic for inter-
preting the underlying source(s) of slowing. In supplementary
material C, we examine illustrative cases where older adults differ
from young adults in both strategic slowing and either a domain
specific deficit or general slowing. This makes the data patterns
difficult to interpret, as strategic slowing increases group differ-
ences in RT costs while having the opposite effect on error costs.

Relation to Previous Work

We are not the first to question the utility of proportional RT
costs, or other methods for controlling for confounding factors
when examining processing speed in aging. Faust and colleagues
(Faust et al., 1999) evaluated both proportional RT costs and
z-scores in the context of their rate-amount model, which predicts
individuals’ RTs in a given condition on the basis of a relation
between the amount of processing required in a condition and the
individual’s processing speed. Faust et al. note that a conceptual
similarity between their model and the accumulation of evidence
to a boundary in models such as the DDM. However, unlike the
DDM, the rate and amount model is a model of behavior at the
group level, in that it describes the relationship between an indi-
vidual’s RTs in one condition to their average, and to that of others
in the group. When the assumptions of their model were met, Faust
et al. show that z-scores are an appropriate transformation to
control for processing speed differences. In our simulations, the
z-score transformation reduced (but did not eliminate) the rate of
false positives in the general slowing and strategic slowing sce-
narios, with the latter producing larger effects. The observation
that the z-score transformation does not control for differences in
boundary separation is not at odds with Faust et al.’s (1999)
conclusions, in that they assume that variation in the amount of
processing required within a task is determined by the difficulty of
the condition, not individual differences in strategy.

Regarding general slowing, the discrepancy between our results
and Faust et al.’s (1999) may reflect the different assumptions and
approaches to data generation Faust et al. simulated data by sam-
pling means and SDs of RTs in accordance with the relationship
predicted by the rate-amount model. In other words, “slowing”
was implemented as a change in behavior. In contrast, we imple-
mented slowing as a change in drift rate; a model parameter
theorized to represent the efficiency of the underlying processing.
Critically, a change in the latent model parameter does not always
correspond to an equivalent change in behavior. In our simula-
tions, a decrease in drift rates in both conditions in a hypothetical
older adult relative to a younger adult could manifest in behavior
only in the more difficult condition. In a situation where data are
produced by a diffusion process and the parameters fall within a
certain range, the z-score transformation may provide better con-
trol over Type I error rates than we observe (note that Faust et al.
make additional assumptions about the group level structure of the
data that we do not make here; see also Leite, Ratcliff, & White,
2007; Myerson, Hale, Zheng, Jenkins, & Widaman, 2003; Ratcliff,
et al., 2000). However, the previous data on which we based our
simulations (Ratcliff, Thapar, et al., 2004; see also Ratcliff et al.,
2006a) suggest that ranges may go beyond those where Type I
errors are kept below the nominal rate.

We emphasize that it is not our position that any single analyt-
ical approach or model is correct; we do not know the generating
model for data from human participants. Rather, by illustrating
where conclusions drawn from one approach may not be robust to
another analytical approach or theoretical perspective, our aim is to
highlight the value of triangulating a range of approaches within
and between studies (Munafò & Davey Smith, 2018; Salthouse &
Hedden, 2002).

Table 4
Average Effect Sizes (Cohen’s d) for Group Differences in Four
Tasks Reported in Ratcliff et al. (2006a) and Three Tasks in
Ratcliff et al. (2010)

Parameter

Young adults
vs. 60–74
year olds

Young adults
vs. 75–90
year olds

Drift rate (v) �.00 �.26
Boundary separation (a) .98 1.55
Nondecision time (Ter) 1.73 1.81

Note. Effect sizes for each parameter are averaged across studies, tasks
and conditions. Positive effect sizes reflect higher values in older adults.
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Recommendations

Theorists have previously recommended the use of RT trans-
formations, in particular the z-score, on the basis that they provide
greater control over Type I error rates when used in conjunction
with the analysis of raw RTs (Faust et al., 1999). Our findings do
not contradict this advice; we observed lower Type I error rates
when using the z-score relative to examining raw RT costs. How-
ever, our observation of elevated (�5%) Type I error rates when
using the z-score in some scenarios is a reminder that researchers
should also seek convergence from other methods, such as those
that incorporate accuracy (Ratcliff et al., 2000; Salthouse & Hed-
den, 2002). This is not to suggest that every study should conform
to a particular design that allows for a range of analytical methods
to be applied. We focus on approaches that incorporate accuracy
because they are easily applied to many existing tasks, and because
of the broad literature that links ability in a given cognitive domain
to both speed and accuracy (that is not limited to sequential
sampling models; Pachella, 1974; Salthouse & Hedden, 2002;
Wickelgren, 1977).

It naturally follows from our framing of different hypothetical
sources of slowing in the context of the DDM that fitting the model
itself is one such method that could be used to supplement anal-
yses. In particular, freely available software packages are available
to fit a hierarchical Bayesian implementation of the model
(Wiecki, Sofer, & Frank, 2013). Hierarchical methods assume that
individuals are sampled from one or more populations, and simul-
taneously estimate parameters at the group and individual level.
This is a benefit where the number of trials per subject is relatively
low, as may be the case in aging research, as the group level
information can inform the individual estimates. There are other
software packages available (Vandekerckhove & Tuerlinckx,
2008; Voss & Voss, 2007; Wagenmakers, van der Mass, & Gras-
man, 2007), and other choice RT models available (e.g., the LBA;
Brown & Heathcote, 2008). Our simulations using the LBA in
supplementary material B produce similar results to those in the
main text, and conclusions about psychological processes are
generally thought to not depend on the choice of model (Donkin et
al., 2011; Ratcliff et al., 2005).

Though not a substitute for quantitative analysis, our simula-
tions also point toward heuristics that can be used to identify
confounds. For example, if older adults show increased RT costs
and z-score costs relative to younger adults, but decreased or
similar error costs, then this would point toward an influence of
strategic slowing. A general slowing scenario could lead to lower
accuracy in the baseline condition, though this may be particularly
difficult to detect in real data (see below). We make the assump-
tion here that RT, or processing speed, and accuracy are not
independent. This view is not dependent on the framework of
sequential sampling models (cf. Salthouse & Hedden, 2002; Wick-
elgren, 1977), though an advantage of the models is that the
relationship is specified. Many alternative methods entail the sep-
arate analysis of RTs and accuracy, which leaves the researcher to
gauge the relative importance of an effect (or the absence of one)
in each in a given dataset (Salthouse & Hedden, 2002).

However, there may be tasks or data for which a model such as
the DDM is not applicable, or researchers may simply not wish to
commit to an interpretation within a specific framework. Salthouse
and Hedden (2002) discuss a variety of approaches that can be

used to examine the consistency of interpretations, for example,
the use of composite scores (cf. Vandierendonck, 2017), the gen-
eration of speed–accuracy trade-off functions, and the use of
response deadlines tasks. A notable consideration for all of these
techniques is that it is often the intention of researchers (or par-
ticipants) to avoid large numbers of errors in performance. In the
context of the DDM, this could be seen as participants adopting a
level of response caution that minimizes errors irrespective of their
drift rates. This has the consequence of making within-subject
effects in accuracy difficult to detect, while producing large RT
effects, as seen in Scenario C (see also Ratcliff et al., 2000;
Wickelgren, 1977). This is difficult to address solely through
analysis methods, and it is also difficult to fit choice RT models to
data where no errors are made. Flawless accuracy in all conditions
may reflect a relatively extreme scenario, however. As noted,
errors are not completely absent in data sets where RT transfor-
mations have previously been considered (Hale et al., 1995).

Finally, choice RT tasks often consist of multiple conditions
and/or multiple response options, whereas we focus on binary
choice performance in two conditions here. Most of the issues we
discuss extend to more complex tasks, and analysis methods can be
extended to accommodate them. Extensions of the different choice
RT models been proposed that accommodate tasks with multiple
response options (for an overview, see Tsetsos, Usher, & McClel-
land, 2011). In the case of accumulator models such as the LBA,
each response option is simply assigned a unique accumulator, so
hypothetically there is no constraint on the number of response
options that can be modeled. Alternatively, in cases where no
systematic difference between response options is expected, some
theorists have suggested that the regular DDM could be fit to data
where responses are collapsed to be coded simply as correct or
incorrect (Voss, Nagler, & Lerche, 2013). The same concerns
about RT scaling effects, and the value of incorporating accuracy
into analyses, carry across to these extensions.

To conclude, there is understandable appeal of easy-to-calculate
metrics for studying group differences in RTs, however, theorists
have emphasized caution in applying these and other methods
blindly (Faust et al., 1999; Ratcliff et al., 2000; Ratcliff, Spieler, &
McKoon, 2004; Verhaeghen, 2014). A specific relationship be-
tween RT costs and overall response speed is (often implicitly)
assumed by different transformations, and quantitative models of
choice RT provide a useful reference for those scaling assump-
tions. We recommend against the use of proportional RT costs.
The z-score costs provide improved control over Type I errors
relative to the analysis of raw RTs, though it is sensitive to
confounds, and should ideally be interpreted in conjunction with
analyses of errors where possible.
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