
Vertical Workflows: Service Orchestration Across Cloud & Edge Resources

Omer Rana1, Manjerhussain Shaikh1, Muhammad Ali2, Ashiq Anjum2, Luiz Bittencourt3

1School of Computer Science & Informatics, Cardiff University, UK
2 University of Derby, UK

3 University of Campinas, Brazil
contact author: ranaof@cardiff.ac.uk

Abstract—Currently devices used for data capture often
differ from those that are used to subsequently carry out
analysis on such data. Many Internet of Things (IoT) ap-
plications today involve data capture from sensors that are
close to the phenomenon being measured, with such data
subsequently being transmitted to Cloud data centers for
analysis and storage. Increasing availability of storage and
processing devices closer to the data capture device, perhaps
over a one-hop network connection or even directly connected
to the IoT device itself, requires more efficient allocation of
processing across such edge devices and data centers. We
refer to these as “vertical workflows” – i.e. workflows which
are enacted across resources that can vary in: (i) type and
behaviour; (ii) processing and storage capacity; (iii) latency and
security profiles. Understanding how a workflow pipeline can
be enacted across these resource types is outlined, motivated
through two scenarios. The overall objective considered is the
completion of the workflow within some deadline constraint,
but with flexibility on where data processing is carried out.

Keywords-Sensor Applications, Cloud Computing, Fog &
Edge Resource Allocation

I. INTRODUCTION

Internet of Things (IoT) is the network of physical objects

that make use of embedded systems to communicate and

sense or interact with their internal states or the external

environment. Although estimates vary according to the sur-

vey being considered, it is generally expected that by the

year 2025, 80 billion devices would be connected, and the

amount of digital data created would reach 180 zettabytes1.

With such increases in the number of devices and data

volumes, it would no longer be sustainable to use cloud

as the centralised server for computing and storage, as it is

estimated that bandwidth is not likely to grow exponentially

to support this increase in demand. Furthermore, many IoT

and edge applications (e.g. autonomous cars) would require

much lower latency than what is offered by a cloud data cen-

ter today to operate efficiently. Fog computing is a paradigm

that extends capabilities of cloud computing to the edge of

the network, thus offering key benefits of cloud computing

such as scalable compute and storage, minus limitations

such as latency constraints. Fog computing provides an

ideal paradigm for supporting real-time applications (such

1https://www.forbes.com/sites/michaelkanellos/2016/03/03/152000-
smart-devices-every-minute-in-2025-idcoutlines-the-future-of-smart-things/

as data stream processing), as such applications have a

shorter resource lifetime and hence require high speed re-

sponse at near-edge servers, reducing communication delay

to few milliseconds, rather than several hundred milliseconds

when using cloud data centers. In addition, the use of fog

computing enables offloading some of the computation-

intensive processing on the user’s device to (one or more)

edge server(s), making application processing less dependent

on device capability. Fog computing paradigm has certain

distinct characteristics such as: (a) low latency data pro-

cessing, (b) location awareness, (c) ability to handle high

data volume, (d) user mobility, and support for (e) network

heterogeneity.

However, Fog resources on their own are not enough

to support application execution, as they may not have

access to data sources or the required computational capacity

to execute all the software components that make up an

application. Understanding what should be executed on Fog

resources compared to the data centre remains an important

challenge, and the basis of this paper. We consider, in

particular, the execution of a pipelined workflow on such

cloud & fog resources. In pipeline processing, a succession

of computational tasks (also called stages) is applied to a

chain of input data elements in some order. Unlike iterative

execution where each data element would have to go through

the entire sequence of tasks before the next data element can

be processed, in pipeline processing the next data element

enters into the pipeline as soon as its predecessor has been

processed by the first stage. Consequently, the overall exe-

cution time of the entire set of data elements is reduced by

this concurrent and overlapped execution (as outlined in [2]).

This type of constrained workflow is particularly important

in applications which need to process a data stream (i.e.

where data is continuously generated from a source). In a

streaming pipeline data is continuously generated with either

fixed or variable frequency, and processing involves applying

one or more operators over a time or sample window of

data (which is also application dependent). The raw data is

often not archived, only the results of the analysis are stored.

Processing of stream data can also trigger events that may

subsequently trigger additional actions.

Enacting stream processing operations of this kind has

been investigated extensively in the cloud computing com-

355

2018 IEEE 6th International Conference on Future Internet of Things and Cloud

978-1-5386-7503-8/18/$31.00 ©2018 IEEE
DOI 10.1109/FiCloud.2018.00058

munity, a good survey can be found in Ranjan [6]. This gen-

erally involves buffering a data stream, splitting the stream

into a time/sample window and forwarding this to a cloud-

hosted processing engine (such as Apache Kafka, Samza,

etc). Other efforts have focused on creating specialist data

structures that can improve the performance of continuous

queries that can be applied to a data stream [7]. Amazon

Kinesis provides an alternative approach that first divides a

data stream and subseqently forwards this for analysis to a

lambda function hosted at the nearest data center. Most of

these approaches do not take account of the latency involved

in transferring the data stream to the processing platform,

and only measure performance of processing the stream at

the data center. This can be restrictive for more realistic IoT

applications, as the delay in transferring to the data center

(from the capture point) can be significant. We use two

application scenarios in section II to motivate the enactment

of such workflow pipelines. Each application is analysed

for using a combination of edge and cloud resources, and

in particular how processing can be carried out across a

combination of these two resources.

II. APPLICATION SCENARIOS

We consider two application scenarios that make use of

a stream processing pipeline. Both of these involve use of

IoT resources to capture data, edge/fog resources to perform

initial processing of the data, and a cloud data center for

more computationally intensive jobs.

A. Video Processing

Traditionally video data from data sources (cameras) is

transferred to the cloud where data analysis takes place –

ranging from archiving of the video feed, indexing frames, or

supporting more complex operations such as object detection

& recognition [8], as shown in Figure 1. The traditional

model can suffer from high latency and unpredictable net-

work bandwidth use, as all the data has to be transferred

to the cloud for analytics. Two approaches to video an-

alytics are (i) centralized, and (ii) use of a distributed

architecture [4]. In a centralized approach data from video

cameras are routed to a cloud platform for analysis, whereas

in a distributed architecture part of the analytics can be

performed near the data source and partly on the centralized

cloud. Existing intelligent video analytics (IVS) systems are

mostly based on a centralized approach and assume the

video data to be readily available in proximity to where

analytics takes place. In reality, the video data has to be

moved through several network hops to reach the destination

where it is stored and analyzed. Data transfer and subsequent

processing can incur an initial overhead (based on the size

of data being transferred). This data also has a low-value
density [9], [4] – a term which expresses the usefulness of

the data to support subsequent analysis. The value of a data

Figure 1: Traditional Cloud based Video Stream Analytics

is assessed on a subjective scale, and depends on the domain

and the analytics problem.

The video analytics pipeline is illustrated in Figure 2a

and consists of multiple stages. By default, all of the stages

of the pipeline are executed on the cloud. These stages are

obtained by decomposing the video analytics problem into

parts which could be distributed among resources. As video

data is submitted to the system, the first stage involves load-

ing/decoding of the input data stream and motion detection

(S1), consisting of a number of frames received at different

rates from video sources which are then passed to a motion

detector, where consecutive frames are analysed to detect

any change. Frames with detected motion are subsequently

passed to a frame enhancement stage (S2) where frame is

analysed using image processing algorithms (e.g. histogram

equilization, smoothing and or scaling) as a precursor step to

an object detection stage. The enhanced frames are then fed

to an object detector stage (S3) which involves detecting

the presence of an object in the frame (S3), followed by

an object recognition stage which labels the object (S4).

The edge enhanced pipeline for video analytics is shown

in Figure 2b, video pipeline stages are distributed among

available resources of edge, cloudlet and cloud. The strategy

for stage deployement can directly affect the performance of

the system and depends on resource availability, time taken

by each stage and compute power of each resource deployed.

Stages are classified as i) basic stages and ii) machine

learning stages. As shown in Figure 2 basic stages 1 and 2

are deployed on the edge nodes and machine learning stages

3 and stage 4 on cloudlet and cloud respectively. As an edge

device can be resource constrainted, only the basic stages

are deployed here. Filtering of low-value density data can

occur at stages 2 & 3, i.e. frames that do not contain motion/

object can be discarded at these stages, limiting the size of

data that needs to be trasferred to to the centralized cloud –

saving bandwidth, storage and computational resources.

Several challenges have to be overcome to implement the

video analytics pipeline on real hardware, such as identifying

stages which should be hosted close to the data source

and those on the cloud. Each stage takes a certain time

to process, depending on the computational complexity of

356

Figure 2: Video Analytics Pipeline

the stage and the resource on which it is executed. If data

production rate exceeds processing capacity, then additional

data has to be buffered at each resource. However, if the

waiting time exceeds a threshold, the next resource in the

pipeline may sit idle waiting for data to arrive. To overcome

this and to maximize the use of resources, each resource is

assigned a deadline to process the data in its current buffer,

after which it sends the remaining data to the next stage in

the pipeline. Since the stages are being distributed on over a

network, they may suffer from network issues, that is stage

3 executing before stage 2. To overcome this, a mechanism

to serialize the execution of stages has to be developed.

Experimental setup to distribute the pipeline stages over

physical resources was realized using software defined net-

working (SDN) in a Simulator. Four different configura-

tions of SDN were used: i) Cloud only (CO); ii) Edge-

Cloud (EC); ii) Edge-Cloudlet-Cloud (ECC); and iii) Edge-

Cloudlet-Cloud-Filter (ECCF), to test the performance of the

system. Stages S1-S4 as shown in Figure 2 were deployed

among available resources in each of the configuration. In

CO configuration all stages were deployed on the cloud, in

EC case, stages 1 and 2 were deployed on Edge and stages

3 and 4 on the cloud. In ECC case, stages 1 and 2 were

deployed on edge, stage 3 on cloudlet and stage 4 on the

cloud. In ECCF stages were deployed as in ECC case but

here we also filter streams based on object detection, streams

with no objects are discarded at the cloudlet. For each of

these configuration, we consider time to process 10K, 50K

and 100K video frames (jobs). Results in Figure 3 show that

the time to process 10K jobs in all of the configurations

are equivalent, however as more streams are produced the

different configurations start to diverge. To process 100K

jobs, CO configuration takes ≈ 700mins, where as all of

the other configurations take less time. In ECC case, time

to process 100K jobs is ≈ 400mins, i.e. ECC case is

more efficient for processing 100K jobs compared to CO

configuration. In ECCF case which is essentially the same

as ECC but with an object filter at the cloudlet node, we

can see further reduction in time to process 100k jobs, due

Figure 3: Processing time of 10K, 50K, 100K video stream-

ing jobs – experiment infrastructure described in [4]

to a reduction in the size of data that needs to be analysed.

B. Smart Traffic Management

The second scenario we consider involves supporting

traffic management taking account of sensor data that has

been acquired in real time. A traffic management scenario

is used to illustrate how different types of fixed and mobile

input sensors may be used as road side units (making use of

“dedicated short range communication” (DSRC)) to detect

traffic conditions, which subsequently regulate the flow of

traffic. Autonomous Vehicles involve communication with

such road side units and an in-vehicle diagnostics gateway

that have transceivers and transponders. These units are used

to acquire the necessary traffic information, such as instance

time, speed and the location of the vehicle. This data is

then used to approximate the Start of Congestion (SoC) and

Travel Time (TT) of vehicles.

In traditional IoT based smart traffic management, sensors

send input parameter readings to a Cloud node which offers

large compute and storage capability but incurs a higher

latency. Using data that could be delayed in transit, con-

trol actuators may be responding to sensor readings which

are a few seconds old, and traffic conditions may have

changed. Hence fog computing offers a low latency traffic

management solution which can respond to traffic events in

time to control flow of traffic, avoid hazards and accidents,

and deliver better experience to drivers. Our proposed fog

computing based traffic management system makes use

of the following key components, illustrated in Figure 4:

(i) Input Sensors which detect traffic events and trigger

computation on respective traffic analytics modules such as

a Client and Traffic Density module on the fog device.

In the first instance, we consider a single sensor “PPL”.

Such sensors are installed on roads at a predefined, fixed

distance from each other. Each sensor continuously records

all traffic parameters. If the sensor detects any predefined

event, then the sensor will send the data to a fog device

357

for analysis. Some examples of input sensors are vehicle

& density detection, flow monitoring & congestion, wind

vane, and incident detection (ii) Global Display Actuators
receive updated instructions from a controller or a router

fog device and adjusts the associated parameter values

such as speed, lane closure signs, automated road or lane

barriers, vehicle route displays etc; (iii) Controller Fog
device provides compute, storage and network capability,

and receives input from sensors and sends updated con-

trol instructions to an actuator. Controller Fog device is

responsible for maintaining and managing local state, but

they are also connected to a router fog device to support

edgeward placement if necessary; (iv) Router Fog device
is a network router connected to the controller fog device

to channel data using a variety of different communication

protocols. Such devices can enable co-existence of multiple

communication channels, using IEEE 802.11p, Bluetooth,

Wifi-Direct, etc, enabling switching between these channels

based on network availability/quality and congestion. A

router fog device may also have specialist computational

capability to support the controller fog device; (v) Cloud
device represents the data center and it is also responsible

for maintaining global application state. In the edgeward

placement strategy, application modules are deployed close

to the sensors and actuators at the network edge. However,

a network edge device may not have the computational

capability to host all operators required by the application. In

such a case, an attempt is made to place remaining operators

on an available fog device. In the cloud-only placement, all

application modules are executed in the cloud, indicating

that the sense-process-actuate loop will be implemented by

having sensors send input data to the cloud for processing,

aligning with strategies used in the iFogSim simulator [12].

Figure 4: Traffic Management: Integrating Fog & Cloud

Application state, in this instance, indicates how an input

and output is processed and may be local or global. In

a local state input sensor and control actuators are both

connected to the same controller device and this controller

serves as the fog device. Alternatively, global state involves

the control actuators being connected to a different controller

fog device than the controller device to which the sensor is

connected. In such a case, a cloud device (connector module)

is used to support communication. Figure 4 illustrates the

workflow pipeline showing how this state information is

exchanged between the components that make up the traffic

management system.

Both the video processing and traffic management system

have parallels: (i) the data analysis pipleline comprises of

a number of stages, and it is often preferred to undertake

initial processing close to data generation – left hand side

of Figure 4; (ii) processing is dependent on the device being

considered and its current capacity and availability (i.e. fog

controller or router). If fog resources are unavailable, a

cloud data center is made use of; (iii) both scenarios involve

processing of dynamically generated, real time data, that

must be processed within some deadline constraints. The

latency of data transfer is therefore significant and influences

how pipeline stages get mapped to particular resources in the

system (e.g. fog or cloud).

C. Simulation

The traffic management scenario has been simulated using

iFogSim through three specific modules: (i) Client, (ii) Traf-

fic Density and (iii) Connector modules. The Client module

takes a PPL tuple from the sensor, performs computation

as a fog device and then passes SELF STATE UPDATE

tuple to the display control actuator. The client module takes

SENSOR tuple as input and passes it to the traffic density

module and is the most critical module which co-ordinates

between sensors, actuators and manages local state. The

Traffic Density module takes a SENSOR tuple from client

and passes the computed DENSITY to the Client Module

running on the controller fog device. Traffic Density module

runs on the router fog device and is invoked during an

edgeward placement strategy, when the controller fog device

is unavailable. The Connector module takes a LANE STATE

tuple from traffic density module running on the router fog

device and passes GLOBAL TRAFFIC STATE tuple to the

client module running on the controller fog devices, which in

turn passes GLOBAL STATE UPDATE to a display. Table I

identifies the parameters used to set up the simulation.

III. RESULTS

We evaluate the benefit of using an edgeward placement

of services within the Smart Traffic scenario based on two

criteria: (i) latency benefits; (ii) cost/revenue benefits.

A. Latency Measurements

The smart traffic pipeline is executed multiple times by

varying properties of components within the fog and cloud

components. Two scenarios are created – a cloud only and

358

Table I: Traffic Management Scenario. TupleCPU is in

MIPS, and TupeNW (network) in Mbps

Figure 5: Impact of latency on application execution –

latency (x-axis) in seconds; loop delay (y-axis) in seconds

fog (hybrid, i.e. fog & cloud) to understand the impact

of latency on the pipeline execution time (referred to as

loop delay). Figure 5 provides a performance comparison

between these different placement strategies.

Hybrid/fog-only and cloud-only nodes react differently to

the same incremental change in latency. While we observe

a gradual increase in latency in both scenarios, for a 500s

latency, the loop delay in figure 5) for hybrid or fog only

increases by 61.25 times, while loop delays for cloud only

increase by 9.84 times. Hence as latency changes, fog

computing may lose its benefit of low-latency, and faster

processing over cloud infrastructure.

We also consider the impact of modifying the bandwidth

on the overall execution time of the application and the size

of data (number of tuples) that can be exchanged and pro-

cessed. As outlined in table II, as bandwidth increases, the

loop delay reduces (as expected), allowing higher number

of tuples to be processed by density and sensors modules.

For this simulation, we have considered a hybrid-scenario

instead of fog or cloud only, as such changes do not directly

impact cloud based systems.

We also investigate the impact of changing processing

capacity (in terms of MIPS rating of CPUs on the devices)

on the overall loop delay and the cost of using a cloud data

center. We created three scenarios: cloud-only, hybrid and

fog-only. To create the fog only scenario we disabled the

connector module manually and reduced MIPS values. From

Table II: Impact of bandwidth on delay & data size (tuples)

exchanged.

Table III: Impact of MIPs change & Cost. Delay refers to

the execution time (loop delay)

table III we can observe that the loop delay for a hybrid

model increases steadily with a decrease in MIPS. The loop

delay values for hybrid models are similar to loop delay

values for fog only models, when MIPS values are decreased

from 2800 to 2600. This can be attributed to all processing

taking place on fog devices only (even in the hybrid model).

We further observe that the loop delay peaks at a MIPS value

of 2600 and then reduces as processing moves to the cloud.

B. Revenue

We investigate the impact of varying: MIPS, memory and

bandwidth on potential revenue generated by fog nodes.

The total revenue is the sum of revenues for compute,

memory and network resources consumed by users making

use of fog nodes. Our cost analysis is based on energy

consumption using the UK 2017 tariff, where fixed, non-

commercial, per unit cost of 14.31 pence for Kwh is used.

We have limited the cost to energy consumption and have

excluded all other costs such as rentals, network charges,

etc. All capital expenditure (CAPEX) costs such as hardware

purchases and any other procurements have been excluded in

this analysis. In table IV, we determine energy consumption,

MIPS, memory and bandwidth at different energy unit tariff

(first column). Total cost is calculated by multiplying energy

consumption with per unit rate of energy, i.e. 14.31p. Total

revenue in the last column is a sum of revenue for MIPS,

memory and bandwidth, and is influenced by unit rate

change. In tables IV and V the break-even point when

considering a cost based model with a per unit rate of

0.67p/kWh is provided.

In a user based revenue model, the number of subscribers

needed to meet the revenue threshold is computed by varying

359

Table IV: Revenue analysis at different unit energy costs

Table V: Cost/revenue breakeven analysis

the number of areas and number of controllers per area. In

this simulation revenue is computed using MIPS, memory

and bandwidth, for a different number of users and a fixed

unit rate of 0.40p/Kwh. Energy consumption is computed

for different number of users and the total cost is calculated

as a product of energy consumption and per unit charge

for energy usage (excluding hardware costs, rentals, network

usages etc).

We observe (from table VI) that the values for parameters

including energy consumption, MIPS, memory and band-

width increase steadily with incremental changes in number

of users. As the unit rate is fixed at 0.40, revenues are

only impacted by the number of users, and device efficiency

would also significantly affect the break-even point (fig-

ure 6). Hence a device with a lower energy consumption

would likely reach the break-even point faster than other

less efficient devices.

As discussed above, we considered three critical param-

eters to characterise performance of fog nodes: latency,

MIPS and bandwidth, and associate these with application

Table VI: Changes with user numbers

Figure 6: Cost vs. revenue analysis

properties: tuple volume, loop delay and cost of execution.

For cost of execution we have only considered cloud-based

execution and assumed that the fog devices are owned and

controlled directly by a user (i.e. fog device do not have

any cost of execution). Overall, our analysis shows that:

(i) latency directly impacts loop delay hence increase in

latency will increase loop delays. With an increase in latency

the ratio of cloud to fog loop delay reduces, which means

that impact of latency on fog devices is significantly higher

than those on cloud nodes. If a computing environment does

360

not change, then the cloud to fog ratio approaches 1:1,

at which stage, fog computing loses its advantage of low

latency; (ii) bandwidth inversely impacts loop delay hence

a decrease in bandwidth results in increase in loop delay.

Bandwidth also directly impacts tuple volume that can be

processed, which means that a decrease in bandwidth results

in a lower volume of tuples that can be processed by fog

nodes, leading to a queueing of tuples, which in turn can

result in an increase in latency; (iii) a decrease in MIPS

rating of fog nodes inversely impacts processing capacity,

resulting in an increase in loop delay for fog devices. We

have adjusted MIPS only in fog devices to assess impact

of different computing capability, and we assume that the

cloud has infinite resources – hence we can exclude impact

of MIPS change in cloud. However as fog devices migrate

processing to cloud resources, this would result in users

experiencing higher latency.

These experiments can be used as a basis for resource

planning for executing pipeline workflows. A system devel-

oper can assess likely impact on performance (loop delay) by

changing device capacity (MIPs rating) and available mem-

ory, and assessing potential impact of bandwidth change.

IV. RELATED WORK

Enacting workflow across cloud resources has received

significant attention in both scientific and business applica-

tions. Generally, this involves splitting an application into

a number of sub-components/ stages, and submitting each

stage to one or more cloud system(s). However, enactment

across an infrastructure that combines IoT, edge and cloud

systems remains limited. Two key challenges may be con-

sidered in this context: (i) how services within a workflow

can be distributed across edge and cloud resources, and how

the subsequent allocation can be adapted [1]; (ii) how data

can be staged across workflow stages to improve overall

execution time. Our focus in this work is particularly on (i).

Bonomi et al. [5] introduce a layered model combining

application execution across IoT and (potentially multiple)

cloud providers. They describe the requirement for a fog

computing framework to utilize multiple communication

links and protocols, depending on how data is exchanged

between the different layers (i.e. cloud to fog, fog to IoT,

etc). Dastjerdi et al. [10] present a reference architecture

for fog computing which follows a very similar structure.

The reference architecture involves serving IoT requests

using locally available resources at fog nodes, rather than

at a centralised cloud data center. This is achieved using a

Software-Defined Resource Management middleware, which

provides coordination between different resources that make

up the fog layer. A key focus in both of these efforts is

the need to orchestrate resource allocation across fog and

cloud resources, and preventing each layer acting in an

autonomous manner. In the same way, Vaquero et al. [11]

consider both centralized and decentralized architectures to

realise fog nodes, introducing the notion of “edge cloud”

made up of multiple IoT devices. Mach and Becvar [13]

identify this as the “Fog Service Placement Problem”, in-

vestigating offloading of services from the client’s device to

the cloud or edge resources. They assume all services are

identical, and therefore do not take account of additional

capacity made available at a cloud data center.

V. CHALLENGES

Given the application scenarios and their use of fog/egde

computing capabilities, we identify a number of challenges

that need to be considered for the future. These are cate-

gorised into two areas: (i) technical; (ii) economic.

Challenges – Technical:
• Security and data privacy is often identified as a benefit

of using edge computing. However understanding what

security operations to perform on edge resources to

extend what is available within a data center needs to

be more explicitly identifed. Similarly, keeping edge

devices secure now becomes a concern for a user,

requiring frequent checks on the type of firmware avail-

able on the device. Given the potential heterogeneity of

edge devices, this challenge is likely to become more

significant.

• Preserving data privacy would mean that a user can

limit the type and range of data they share with a

data center. This however necessitates suitable compu-

tational and storage capability to be available at edge

nodes.

• Understanding how an application can be structured as

a workflow pipeline is also a challenge. To make more

effective use of the underlying fog and cloud infras-

tructure, it is also important to enable pipeline stages to

migrate across different parts of the infrastructure. This

is a key premise of “osmotic computing” [1], which

identifies the use of container-hosted microservices that

can be moved from fog devices to cloud data center

(and vice versa). Understanding what services can be

developed that enable multiple versions to co-exist, i.e.

a service that can be deployed within a data center

on a large-scale system and another that is a resource

constrained (approximate) version of this service which

could be deployed at the edge.

Challenges – Economic: Understanding suitable business

and economic models that will encourage deployment of fog

nodes remains a challenge. A key question that underpins

this is a better understanding of who should manage and

coordinate a fog-based infrastructure, i.e. should these be

existing cloud and data center operators, telecomm. vendors

& network operators interested in making use of their

existing investments in mobile systems, or a new type of

company that acts as a broker between these two? Much of

this is also dependent on the potential number of applications

that can make more effective use of edge infrastructure.

361

Should such an infrastructure be vendor specific or neutral

– i.e. does each operator primarily extend their existing

system to the network edge, or is there a need to consider

more interoperation within these systems (similar the use of

mobile data usage today)? Given this context, we identify the

following challenges in deploying and managing fog nodes:
(i) Fog node operators should enable hosting of services

on their infrastructure. Understanding the incentives for

undertaking this remain to be clarified. For instance, would

fog operators be telecomm. providers who offer mobile

network infrastrucuture or cloud data center operators?
(ii) Alternatively, should cloud operators (e.g. Amazon

AWS) form alliances with fog operators? Alternatively,

should cloud operators manage their own telecomms. infras-

tructure in close proximity to users to enable deployment of

fog nodes. This is similar to existing efforts in Content Dis-

tributed Networks (e.g. Akamai and Amazon CloudFront),

where a server ensemble is used to process user requests in

proximity to user/data location.

VI. CONCLUSION

Internet of Things devices and applications that generate

and consume data are scattered over the edge of the network.

Thus, IoT can benefit from data processing at the edge, but

the centralised cloud data centres also play a role due to their

large computational capacity. The combination of processing

at the edge, e.g. with fog computing, and in the cloud work

on symbiosis to deliver better quality of service to IoT as

well as to improve infrastructure utilisation.
In this paper we discussed how fog and cloud com-

puting can be used to process vertical workflows, which

have jobs that are suitable to run at the edge and in the

cloud in a pipelined fashion. Two case studies were used

to illustrate how this kind of workflow can be modelled

and run in such a hybrid infrastructure. A smart traffic

scenario was evaluated in terms of latency and cost/revenue

benefits, suggesting that fog-cloud hybrid infrastructure is

indeed suitable to run vertical workflows. Moreover, a set

of challenges were identified, and discussed, illustrating

many research opportunities in fog-cloud scenario for IoT.

Enacting workflows in this manner implies availability of

services which can be enacted on either edge or cloud

resources. Depending on availability, background workload

profile of a resource and QoS requirement of an application,

it is possible therefore to migrate a service from a cloud data

center to an edge resource (and vice versa). Understanding

what can be migrated and when is another research challenge

identified in this work.

Acknowledgements: Bittencourt’s contribution was par-

tially funded by the European Commission H2020 pro-

gramme, grant no. 688941 (FUTEBOL), as well from the

Brazilian Ministry of Science, Technology, Innovation, and

Communication (MCTIC) through Brazilian National Re-

search and Educational Network (RNP) and CTIC. LFB

would like to thank CNPq and CAPES for the financial

support.

REFERENCES

[1] M. Villari, M. Fazio, S. Dustdar, O. Rana and R. Ranjan,
“Osmotic Computing: A New Paradigm for Edge/Cloud In-
tegration,” in IEEE Cloud Computing, vol. 3, no. 6, pp. 76-83,
2016. doi:10.1109/MCC.2016.124

[2] R. Tolosana-Calasanz, J. A. Banares, O. F. Rana, “Autonomic
streaming pipeline for scientific workflows.” Concurrency and
Computation: Practice and Experience 23(16): 1868-1892
(2011). John Wiley.

[3] A. Cuzzocrea, G.Fortino and O. Rana, “Managing Data and
Processes in Cloud-Enabled Large-Scale Sensor Networks:
State-of-the-Art and Future Research Directions”, DPMSS
workshop alongside CCGrid 2013, Delft, The Netherlands, pp
583-588, IEEE Computer Society Press.

[4] M. Ali, A. Anjum, M. Yaseen, A. Zamani, D. Balouek-
Thomert, O. F. Rana, and M. Parashar, “Edge enhanced deep
learning system for large-scale video stream analytics.” Proc.
IEEE 2nd Int. Conf. on Fog and Edge Computing (ICFEC),
Washington DC, USA, 1-3 May 2018.

[5] F. Bonomi, R. Milito, P. Natarajan, J. Zhu, “Fog computing: a
platform for internet of things and analytics.” In: Big data and
internet of things: a roadmap for smart environments. Studies
in computational intelligence 546: 169186. Springer, 2014.

[6] R. Ranjan, “Streaming Big Data Processing in Datacenter
Clouds.” IEEE Cloud Computing 1(1): 78-83 (2014)

[7] Ze Deng, Xiaomin Wu, Lizhe Wang, Xiaodao Chen, Rajiv
Ranjan, Albert Y. Zomaya, Dan Chen, “Parallel Processing
of Dynamic Continuous Queries over Streaming Data Flows.”
IEEE Trans. on Parallel Distrib. Syst. 26(3): 834-846 (2015)

[8] C. Regazzoni, A. Cavallaro, Y. Wu, J. Konrad, and A. Ham-
papur, “Video analytics for surveillance: Theory and practice
[from the guest editors],” IEEE Signal Processing Magazine,
vol. 27, no. 5, pp. 1617, 2010.

[9] A. Gandomi, M. Haider, “Beyond the hype: Big data concepts,
methods, and analytics”, Int. Journal of Information Manage-
ment Volume 35, Issue 2, April 2015, pp 137-144. Elsevier.

[10] A. Dastjerdi, H. Gupta, R. Calheiros, S. Ghosh, R. Buyya,
“Fog computing: principles, architectures, and applications.”
In: Internet of things: principles and paradigms, chap. 4,
Morgan Kaufmann, 2014

[11] L. Vaquero, L. Rodero-Merino, “Finding your way in the
Fog: Towards a Comprehensive Definition of Fog Computing.”,
ACM SIGCOMM Comput Commun Rev 44(5):2732, 2014.

[12] H. Gupta, A. V. Dastjerdi, S. K. Ghosh, R. Buyya, “iFogSim:
A Toolkit for Modeling and Simulation of Resource Man-
agement Techniques in Internet of Things, Edge and Fog
Computing Environments”. Available at: https://arxiv.org/abs/
1606.02007, June 2016.

[13] P. Mach and Z. Becvar, “Mobile Edge Computing: A Survey
on Architecture & Computation Offloading”, IEEE Comms.
Surveys Tutorials 19,3, pp 1628–1656, 2017.

362

