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Background 

Germline gain-of function (GOF) mutations in PIK3CD, encoding the catalytic p110δ subunit of phosphoinositide 

3-kinase (PI3K), result in hyperactivation of the PI3K–AKT–mechanistic target of rapamycin pathway and 

underlie a novel inborn error of immunity. Affected subjects exhibit perturbed humoral and cellular immunity, 

manifesting as recurrent infections, autoimmunity, hepatosplenomegaly, uncontrolled EBV and/or cytomegalo-

virus infection, and increased incidence of B-cell lymphoproliferation, lymphoma, or both. Mechanisms 

underlying disease pathogenesis remain unknown. 

Objective 

Understanding the cellular and molecular mechanisms underpinning inefficient surveillance of EBV-infected B 

cells is required to understand disease in patients with PIK3CD GOF mutations, identify key molecules required 

for cell-mediated immunity against EBV, and develop immunotherapeutic interventions for the treatment of this 

and other EBV-opathies. 

Methods 

We studied the consequences of PIK3CD GOF mutations on the generation, differentiation, and function of 

CD8+ T cells and natural killer (NK) cells, which are implicated in host defense against infection with herpes 

viruses, including EBV. 
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Results 

PIK3CD GOF total and EBV-specific CD8+ T cells were skewed toward an effector phenotype, with exaggerated 

expression of markers associated with premature immunosenescence/exhaustion and increased susceptibility to 

reactivation-induced cell death. These findings were recapitulated in a novel mouse model of PI3K GOF 

mutations. NK cells in patients with PIK3CD GOF mutations also exhibited perturbed expression of 

differentiation-associated molecules. Both CD8+ T and NK cells had reduced capacity to kill EBV-infected B 

cells. PIK3CD GOF B cells had increased expression of CD48, programmed death ligand 1/2, and CD70. 

Conclusions 

PIK3CD GOF mutations aberrantly induce exhaustion, senescence, or both and impair cytotoxicity of CD8+ T 

and NK cells. These defects might contribute to clinical features of affected subjects, such as impaired immunity 

to herpesviruses and tumor surveillance. 

 

 

 

Phosphoinositide 3-kinase (PI3K) signaling is pivotal in regulating many cellular processes involved in 

lymphocyte biology, including differentiation, proliferation, apoptosis, metabolism, and effector function.1 In 

human subjects PIK3CD encodes the p110δ isoform of the catalytic subunit of PI3K. p110δ is expressed 
predominantly in hematopoietic cells and forms a heterodimer with the p85α regulatory subunit.2, 3 Ligation of 

molecules linked to tyrosine kinase activity, including CD8, T-cell receptor (TCR), and CD28, potentiates 

recruitment and activation of p110δ, resulting in activation of downstream effector molecules. PI3K activation is 
regulated by phosphatase and tensin homolog and SH2 domain-containing inositol 5′-phosphatase, which 

dephosphorylate substrates of p110δ.4, 5 

 
CD8+ T cells require changes in metabolism as a means of regulating their differentiation, proliferative capacity, 

effector function, and memory generation.6, 7 Mechanistic target of rapamycin (mTOR) is a metabolic checkpoint 

kinase activated by PI3K and plays a key role in regulating glycolysis.8, 9  After encounter with specific antigen, 

naive T cells can differentiate into effector cells, culminating in activation of the PI3K-AKT-mTOR pathway and 

a metabolic shift toward glycolysis. Previous studies demonstrated that mice expressing catalytically inactive 

p110δ exhibit defects in TCR signaling.10  Furthermore, CD8+ T-cell responses in these mice to Listeria 

monocytogenes infection11 and their migratory capacity were impaired.12 PI3K-AKT signaling also modulates the 

differentiation, development, and activation of NK cells. In p110δ-deficient mice, as well as in PI3K inhibitor–
treated human cells, attenuated p110δ signaling causes decreased NK cell numbers, terminal 
differentiation, cytokine production, cytotoxicity, and migration.13, 14, 15 

 
The importance of the PI3K-AKT pathway in modulating signals in lymphocytes is highlighted by various 

pathologic conditions that result from aberrant signaling through this pathway.16, 17  To date, more than 100 

subjects with heterozygous mutations in PIK3CDhave been described, with most having the recurrent E1021K 

mutation in the catalytic domain of p110δ. These mutations cause constitutive activation of the PI3K-AKT-

mTOR pathway and are thus gain-of-function (GOF) mutations.18, 19  Affected subjects present with clinical 

features, including recurrent respiratory tract infections, lymphadenopathy, impaired humoral immune responses, 

increased susceptibility to EBV and/or cytomegalovirus (CMV), autoimmunity, and increased incidence of B-

celllymphoproliferation, lymphoma, or both.18, 19, 20, 21 PIK3CD GOF mutations decrease total CD4+ T-cell 

frequencies and numbers of naive CD4+ and CD8+ T cells, with concomitant increases in numbers of effector 

memory CD8+ T cells.17, 18, 19, 20, 21, 22  Numbers of natural killer (NK) cells are also reduced in some 

subjects.17, 18, 19, 20 

 
To understand immune dysregulation and increased susceptibility to EBV-induced disease in patients with 

PIK3CD GOF mutations, we performed in-depth analysis of the differentiation, activation, and function of their 

CD8+ T cells and NK cells. Activating mutations in PIK3CDcause a premature immunosenescent/ exhaustion-
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type phenotype of CD8+ T cells and altered differentiation of NK cells, resulting in impaired cytotoxicity of both 

cell subsets against EBV-infected B cells. These findings provide insight into some of the clinical features of 

PIK3CD GOF mutations, including impaired control of EBV and susceptibility to B-cell lymphoma. 

 

 

METHODS 

Clinical evaluation 

PBMCs were isolated from healthy anonymous blood donors obtained from the Australian Red Cross Service and 

patients with PIK3CD GOF mutations (Table I).19, 23, 24 Viral infection history of healthy donors was unknown. 

Whole blood was collected from Australian-based patients and sent immediately to the Garvan Institute of 

Medical Research. PBMCs were isolated and either analyzed fresh or cryopreserved and stored in liquid nitrogen 

until use. For patients outside of Australia, PBMCs were isolated and cryopreserved as single-cell suspensions as 

above, shipped to the Garvan Institute on dry ice, and then stored in liquid nitrogen until use. This study was 

approved by institutional human research ethics committees at the relevant institutions. 

 

T, B, and NK cell phenotyping 

PBMCs from healthy control subjects and patients with PIK3CD GOF mutations were labeled with mAbs 

against CD3, CD4, CD8, CD20, and CD56. CD8+ T-cell subsets were defined as naive T (TN; CD8+CD4−CCR7+ 

CD45RA+), central memory T (TCM; CD8+CD4−CCR7+CD45RA−), effector memory T (TEM; CD8+CD4−CCR7− 

CD45RA−), and terminally differentiated effector memory T expressing CD45RA (TEMRA; CD8+CD4−CCR7− 

CD45RA+) cells. B cells were defined as CD3−CD20+ cells, and NK cells were defined as CD3−CD56+ cells. 

Typing for HLA-A, HLA-B, and HLA-C was performed by the Australian Red Cross Service. PBMCs from 

patients with PIK3CD GOF mutations and healthy control subjects were stained with 20 μg/mL EBV-specific 

tetramers (Table E1) at 37°C for 20 minutes.25 

 

For phenotyping, cells were further stained with cell-surface and intracellular antibodies (Table E2). For Vβ 
repertoire staining, PBMCs were stained further with the IOTest Beta Mark kit (Beckman Coulter, Brea, Calif), 

according to the manufacturer's instructions. Data were acquired on an LSRII SORP (Becton Dickinson, 

Mountain View, Calif) and analyzed with FlowJo software (TreeStar, Ashland, Ore). Based on Boolean gating 

analysis, coexpression of CD57, KLRG1, and programmed cell death protein 1 (PD-1) was determined by using 

Prism 7 software (GraphPad Software, La Jolla, Calif). 

 

Analysis of CD8+ T-cell functional capacity in vitro 

Sorted TEM (CD8+CD4−CCR7−CD45RA−) and TEMRA(CD8+CD4−CCR7−CD45RA+) CD8+ T cells were cultured in 

96-well round-bottom plates (3 × 104 cells/well) with T-cell expansion and activation (TAE; anti-CD3, anti-

CD28, and anti-CD2 mAb) beads (Miltenyi Biotech, Bergisch Gladbach, Germany). After 5 days, supernatants 

were harvested and assayed for production of IFN-γ, TNF-α, IL-2, granzyme A, and granzyme B by using a 

cytometric bead array (Becton Dickinson, Franklin Lakes, NJ). For cytokineexpression, activated CD8+ T cells 

were restimulated with phorbol 12-myristate 13-acetate (PMA; 100 ng/mL)/ ionomycin (750 ng/mL) for 6 hours, 

with Brefeldin A (10 μg/ml; Sigma-Aldrich, St Louis, Mo), monensin (2 μmol/L; eBioscience, Waltham, Mass), 
and anti-CD107a (Becton Dickinson, Franklin Lakes, NJ) added after 2 hours. Cells were fixed and stained for 

expression of IFN-γ, TNF-α, IL-2 (BD Horizon, Mountain View, Calif), granzyme B (BD PharMingen, San Jose, 

Calif), and perforin (BioLegend, San Diego, Calif). Samples were acquired on an LSRII SORP (Becton 

Dickinson) and analyzed with FlowJo software. 
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Cell proliferation 

PBMCs were labeled with carboxyfluorescein succinimidyl ester (2.5 μmol/L; eBioscience, Carlsbad, Calif) and 
then cultured at 1.2 × 105 cells per well with TAE beads (1 bead per 2 cells) with or without 50 U/mL IL-2 

(Millipore, Darmstadt, Germany) or 5 μg/mL PHA (Sigma-Aldrich) plus 50 U/mL IL-2 for 3 or 5 days. Cells 

were stained with Zombie Aqua Fixable Dye (BioLegend), fixed, and run on the LSR II Fortessa (Becton 

Dickinson). Data were analyzed with FlowJo software. 

 

Cytotoxic T-cell and NK cell killing assays (including T-cell line and NK lymphokine-activated killer cell 

generation) 

EBV-specific T-cell lines were generated from patient or control PBMCs, as previously described.26, 27   

Cytotoxicity and intracellular cytokine stimulation assays against autologous lymphoblastoid cell lines (LCLs) 

were performed after the third restimulation cycle. Sorted NK cells (CD3−CD56+) were stimulated with 100 

U/mL IL-2 in RPMI 1640/20% FCS, and cytotoxicity against autologous LCLs was assessed on day 10. 

 

NK and cytotoxic T-lymphocyte cytotoxicity was assessed by using a CytoTox 96 Non-Radioactive Cytotoxicity 

Assay (Promega, Madison, Wis), as previously described.19  Briefly, 10,000 target cells (LCLs) were plated at 

various effector/target ratios with NK cells (5:1 or 10:1) or cytotoxic T lymphocytes (2.5:1, 5:1, 7.5:1, or 10:1) in 

U-bottom plates at 37°C. After 4 hours, supernatants were collected and assayed to determine the amount 

of lactate dehydrogenase released on cell lysis by using colorimetry. Percentage cytotoxicity was determined by 

using the following equation from the manufacturer's instructions: 

 

% Cytotoxicity = Experimental value − (Corrected effector spontaneous + Corrected target spontaneous) × 100/ 

 

Corrected target maximum − Corrected target spontaneous. 

Sorting and culture of B cells 

Total B cells (CD20+, >98% purity) were sorted from PBMCs from healthy control subjects or patients with 

PIK3CD GOF mutations by using a FACSAria III (Becton Dickinson). B cells or LCLs were seeded at 

30,000 cells/well in a U-bottom plate and cultured in RPMI 1640/10% FCS or stimulated with 2.5 μg/mL CD40 

ligand (R&D Systems, Minneapolis, Minn) with or without 2.5 μg/mL anti-immunoglobulin. On day 3, cells were 

stained with mAbs to anti-CD48, HLA-DR(BD PharMingen), CD95 (BD Horizon), CD70, HLA-ABC, 

programmed death ligand (PD-L) 1−PE or PD-L2 (eBioscience) and run on an LSRII Fortessa (Becton 

Dickinson). 

Restimulation-induced cell death, RNA extraction, and quantitative PCR analysis 

Restimulation-induced cell death (RICD) was determined, as previously described.28, 29  TEM and TEMRA CD8+  

T cells were sorted (>98% purity) on a FACSAria III and cultured with TAE beads. On day 3, 100 U/mL IL-2  

was added, and cells were maintained for 10 days, replacing IL-2 every 3 days. On day 13, cells were counted and 

seeded with medium alone or medium with 1 μg/mL plate-bound α-CD3 mAb (UCHT1; Biogems, Westlake Village, 

Calif) plus 100 U/mL I-L2 or 20 ng/mL α-CD95 mAb (APO-1-3, Enzo Lifesciences, Farmington, NY) plus 100 

U/mL IL-2. Cells were then cultured overnight and stained with Zombie Live/Dead Fixable Aqua to determine the 

frequency of dead cells.28, 29  To assess Fas ligand (FASLG) mRNA expression, cells were stimulated for 4 hours  

with anti-CD3 plus 100 U/mL IL-2, and total RNA was then extracted. Quantitative polymerase chain reaction was 

performed by using the Light Cycler 480 Probe Master Mix and System (Roche, Mannheim, Germany).  

FASLG(forward: 5′-CAGAAGGAGCTGGCAGAACT-3′; reverse: 5′-TGGCCTATTTGCTTCTCCAA-3′) and 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) primers (forward: 5′-CTCTGCTCCTCCTGTTCGAC-3′; 
reverse: 5′-ACGACCAAATCCGTTGACTC-3′) were obtained from Integrated DNA Technologies (Coralville, 
Iowa). Expression of Fas ligand was determined relative to expression of GAPDH. 
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Murine flow cytometric phenotyping 

Spleens of wild-type or Pik3cdE1020K  GOF mice were harvested, prepared, and stained for flow cytometry, as 

previously described,30 by using the mAbs listed in Table E3  Data were acquired on either the LSRII SORP or 

LSR Fortessa (Becton Dickinson) and analyzed with FlowJo software. All data are representative of 2 or more 

experiments, as indicated. All animal studies were approved by the St Vincent's Animal Ethics Committee. 

 

Murine in vitro cultures 

Sorted Pik3cdE1020K GOF or wild-type naive CD8+ T cells were cultured in flat-bottom 96-well plates coated with 

anti-CD3 (4 μg/mL; BioLegend) in RPMI 1640 (Life Technologies, Grand Island, NY) supplemented with 10% 
FCS (Life Technologies) at 0.5 × 106 cells/mL. After 4 days, cells were stimulated with PMA (50 ng/mL) and 

ionomycin (375 ng/mL) for 6 hours. Brefeldin A (10 μg/mL) was added to each well at 2 hours of culture. Cells 

were then harvested, washed, and stained with Zombie Aqua Viability Dye (BioLegend). CD8+ T cells were 

fixed, permeabilized, and stained with mAbs to anti–TNF-α and anti–IFN-γ and analyzed by using flow 
cytometry. 

Statistical analysis 

For single comparisons of independent groups, a Mann-Whitney test was performed. For multiple comparisons, 

2-way ANOVA or multiple t tests were applied as follows. Analyses were performed with GraphPad Prism 

software. 

 

 

RESULTS 

Patients with PIK3CD GOF mutations present with features of EBV-associated disease 

In this study we investigated 39 patients from 28 families (18 male and 21 female patients) with activating 

mutations in PIK3CD. The E1021K mutation was found in 28 of 39 patients.19, 31  The other mutations identified 

in patients in this study (ie, G124D, N334K, E525K, and E1025G) have been reported previously and confirmed 

to be GOF mutations.19, 23, 24  Patients' ages ranged from 4.5 to 67 years (mean, 20.1 years), with patients 

originating from a variety of ethnicities (Table I). As control subjects, we analysed PBMCs from 38 healthy 

donors whose ages ranged from 10 to 71 years (mean, 38.0 years). Overall, 19 subjects were confirmed to be 

EBV+ by using PCR, whereas 6 subjects were CMV+ (Table I). The 6 CMV+ subjects were also EBV+. Four 

patients had B-celllymphoma (2 EBV+ subjects, Table I). The incidences of EBV/CMV infection/viremia and B-

cell malignancy in this cohort are comparable with that reported previously.20 

 

CD8+ T cells are increased and are enriched as effector memory cells in patients with PIK3CD GOF 

mutations 

To investigate the effect of PIK3CD GOF mutations on cytotoxic lymphocytes, we first determined proportions 

of peripheral blood T-cell populations and subsets. Compared with healthy control subjects, patients with 

PIK3CD GOF mutations had increased frequencies of CD8+ T cells and a corresponding decrease in numbers 

of CD4+ T cells, thereby yielding a significantly inverted CD4/CD8 ratio (Fig 1, A-C). The CD4/CD8 ratio tends 

to increase with age, being approximately 1.5 to 2.0 for 20-year-olds and gradually increasing to 2.5 to 3.0 by 

80 years of age.32 Therefore one explanation for the decreased CD4/CD8 ratio in our cohort could be that 

approximately 60% of patients in our study were aged 20 years or less (Table I). To formally test this, we 

determined the CD4/CD8 ratio for a range of healthy donors and patients with PIK3CD GOF mutations as a 

function of age. As shown in Fig 1, D, a decreased CD4/CD8 ratio was observed consistently for all age groups of 

patients with PIK3CD GOF mutations compared with control subjects, establishing that this parameter was not 

influenced by an enrichment of younger patients in our study cohort versus the healthy control subjects. 

 

CD8+ T cells can be divided into naive and memory subsets based on differential expression of CCR7 and 

CD45RA.33 A population of T cells, termed stem cell memory-like T (TSCM) cells, with self-renewal properties 
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and the capacity to form effector memory cells on antigen encounter, has also been identified. Like naive cells, 

TSCM cells are also CCR7+CD45RA+. However, TSCMcells can be distinguished from naive cells by their 

expression of CD95.34 Thus in our analyses we refer to CD45RA+CCR7+CD8+ T cells as TN/TSCM cells. Applying 

this analysis revealed an expansion of TEM cells (CCR7−CD45RA−) with a corresponding reduction in TN/TSCM 

(mostly naive) cells in patients with PIK3CD GOF mutations compared with healthy control subjects. The 

proportions of TCM (CCR7+CD45RA−) cell and TEMRA (CCR7−CD45RA+) cell subsets in the patients were in the 

normal range (Fig 1, E and F). Similarly, PIK3CD GOF mutations resulted in fewer TN CD4+ cells but 

significantly increased proportions of TCM CD4+ cells (not shown). 

 

CD8+ T cells from patients with PIK3CD GOF mutations are skewed toward a phenotype consistent with 

functional exhaustion and senescence 

CD57 expression can delineate populations of senescent CD8+ T and NK cells.35, 36  Previous reports suggested 

CD8+ T cells in patients with PIK3CDGOF mutations are predominantly of a senescent phenotype, as evidenced 

by increased proportions of CD57+ cells.19, 20, 21, 22   After chronic infection and therefore constant antigen 

stimulation, CD8+ T cells can also adopt a state of exhaustion, which is defined as the progressive and 

hierarchical loss of effector function, a concomitant acquisition of inhibitory or regulatory surface receptors, and 

alterations in cytokine, chemotactic, survival, and metabolic signaling pathways.37, 38 

 

For these reasons, we first performed comprehensive phenotypic analysis of total CD8+ T cells in patients 

with PIK3CD GOF mutations and control subjects. To achieve this, we quantified expression of surface 

molecules associated with CD8+ T-cell activation (CD38, HLA class I, and HLA class II),39, 40differentiation, 

exhaustion (CD95, CD160, KLRG1, and PD-1),38, 41, 42, 43, 44, 45 and senescence (CD57).35, 36   The proportions of 

total PIK3CD GOF CD8+T cells that expressed these molecules were significantly increased compared with those 

in control subjects (Fig 2). 

 

Next, we determined expression of these molecules on CD8+ T cells at distinct stages of differentiation. CD160 

expression did not differ among the CD8+ T-cell subsets examined, whereas expression of CD95 and KLRG1 was 

significantly increased on naive and TCM cells, respectively. In contrast, the other molecules examined were 

detected on significantly greater proportions of TN, TCM, TEM, and TEMRA CD8+ T-cell subsets (Fig 2). Thus the 

increased expression of these markers of differentiation on CD8+ T cells did not simply reflect accumulation of 

TEM cells (Fig 1, E). Rather, these data reveal the general senescent and/or exhausted-type state of most subsets of 

CD8+ T cells in patients with PIK3CDGOF mutations, which is consistent with analyses of much smaller cohorts 

of patients with PIK3CD GOF mutations.19, 22 

 

We also examined expression of 2B4 (CD244) and NKG2D (CD314), molecules implicated in CD8+ T and NK 

cell–mediated control of EBV-infected B cells.26, 46, 47 2B4 is also a marker of CD8+ T-cell exhaustion.37, 38 2B4 

was increased on total T cells because of upregulation on TN, TCM, and TEM CD8+ cells (Fig 2, B). In contrast, 

relative NKG2D expression was only modestly increased on naive CD8+ T cells (Fig 2, J). 

 

In patients with HIV or chronic hepatitis B or C virus infection, coexpression of a suite of regulatory molecules 

on CD8+ T cells correlates with exhaustion and impaired effector function of these cells.38, 41, 44, 48  Therefore we 

investigated coexpression of PD-1, KLRG1, and CD57 on CD8+ T cells from patients with PIK3CD GOF 

mutations and control subjects. Strikingly, a larger frequency of PIK3CD GOF CD8+ T cells coexpressed CD57, 

2B4, and KLRG1 compared with control subjects in which few coexpressed these 3 receptors (Fig 2, K). 

Importantly, the “exhausted-type” phenotype of PIK3CD GOF CD8+ T cells appeared to result directly from 

the genetic mutation rather than pathogen or chronic viral infection because similar phenotypic characteristics of 

CD8+ T cells were observed in patients who were EBV naive or who had mild or chronic EBV viremia. 

 

We also analyzed the Vβ repertoire of the different subsets of CD8+ T cells by determining expression of 

individual TCR Vβ chains through flow cytometry. TCR Vβ repertoires of patients with PIK3CD GOF mutations 

and control subjects were similar. Differences in the most predominant Vβ chain use between subjects likely 
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reflects the diversity of pathogens encountered and the immunogenicity of the antigenic peptides they encode (Fig 

E1).  Collectively, our results indicate that PIK3CD GOF mutations result in sustained and exaggerated activation 

of polyclonal CD8+ T cells, yielding prematurely immunosenescent and exhausted-type CD8+ T cells. 

 

EBV-specific CD8+ T cells are skewed toward a TEM phenotype in patients with PIK3CD GOF mutations 

Next, we investigated whether generation of EBV-specific CD8+ T cells was affected by PIK3CD GOF 

mutations. In 14 subjects in whom HLA class I typing was available, PBMCs from patients and HLA-matched 

control subjects were stained ex vivo with MHC class I peptide tetramers and dextramers to identify EBV-specific 

T cells ( Table E1). Comparable frequencies of EBV-specific CD8+ T cells were detected in patients with 

PIK3CD GOF mutations and healthy HLA-matched control subjects (Fig 3, A). In healthy donors most EBV-

specific CD8+ T cells have a TCM or TEM phenotype (Fig 3, B).49, 50   In contrast, most EBV-specific CD8+ T cells 

in patients with PIK3CD GOF mutations exhibited a TEM phenotype (Fig 3B). Similar to total polyclonal CD8+ T 

cells, expression of CD57, KLRG1, CD160, CD95, CD38, PD-1, 2B4, and NKG2D was increased significantly 

on EBV-specific CD8+ T cells from patients with PIK3CD GOF mutations compared with healthy control 

subjects. Moreover, the vast majority of EBV-specific T cells in patients with PIK3CD GOF mutations 

coexpressed the regulatory receptors 2B4, KLRG1, and/or CD57, whereas in healthy control subjects more than 

60% of EBV-specific T cells lacked expression of these markers. These data suggest that, akin to total PIK3CD 

GOF CD8+ T cells and CD8+ T cells specific for HIV, hepatitis B and hepatitis C virus,38, 41, 48, 51 EBV-

specific PIK3CD GOF T cells acquire a phenotype consistent with premature senescence, exhaustion, or both and 

impaired effector function. 

 

PIK3CD GOF mutations alter the functionality of CD8+ T cells 

To determine the effect of PIK3CD GOF mutations on CD8+ T-cell function, we first assessed proliferation.  Cell 

division, as measured based on carboxyfluorescein succinimidyl ester dilution, after in vitro stimulation with 

PHA/IL-2 or mAbs specific for CD2, CD3, and CD28 with or without IL-2 was unaffected by PIK3CD GOF 

mutations (Fig 4, A and B). Although these data appear to contrast previous studies that observed decreased 

proliferation of PIK3CD GOF T cells in response to CD3/CD28 stimulation, Lucas et al19reported that inclusion 

of anti-CD2 mAbs could overcome defective proliferation of PIK3CD GOF T cells. Thus our data are concordant 

with previously published findings. 

 

Expression of granzymes A, B, and K and perforin, components of the cytolytic machinery, was increased in total 

and EBV-specific (Fig 4, E and F, and Fig E2, B) PIK3CD GOF CD8+ T cells. Proportions of total PIK3CD GOF 

CD8+ T cells expressing IFN-γ or CD107a were increased (Fig 4, G and H) and those expressing IL-2 were 

decreased (Fig 4, I) on ex vivo stimulation with PMA/ionomycin. 

 

To ascertain whether TEM cell expansion was responsible for the observed CD8+T-cell dysfunction in patients 

with PIK3CD GOF mutations, we sorted TEM and TEMRA subsets, stimulated them with anti-CD2/CD3/CD28 

mAbs, and measured cytokine expression and degranulation. A higher proportion of TEM cells from patients 

with PIK3CD GOF mutations expressed IFN-γ and CD107a compared with those from control subjects; however, 
a reduced proportion of these cells expressed IL-2 (Fig E2, C). Expression of granzyme B and perforin were not 

significantly different in activated TEM cells from patients and control subjects (Fig E2, C). In contrast, the 

frequency of IFN-γ–expressing TEMRA cells was reduced by PIK3CD GOF mutations (Fig E2, D). There were 

trends for greater expression of CD107a, granzyme B, and IL-2 in TEMRA cells from patients with PIK3CD GOF 

mutations compared with control subjects, but these differences did not reach statistical significance. Our flow 

cytometric analysis of CD8+ T-cell subsets was confirmed when secretion of effector molecules was determined, 

showing that TEM cells from patients with PIK3CD GOF mutations secreted larger quantities of cytokines and 

cytolytic molecules compared with healthy subjects (Fig E2, C). The phenotypic differences observed in total 

CD8+ T cells was largely observed when examining the TEM compartment, such as significant increases in the 

expression of CD57, PD-1, CD38, 2B4, and HLA class I and II. 

 

https://www.sciencedirect.com/topics/immunology-and-microbiology/immunogenicity
https://www.sciencedirect.com/science/article/pii/S0091674918307024?via%3Dihub#figE1
https://www.sciencedirect.com/science/article/pii/S0091674918307024?via%3Dihub#figE1
https://www.sciencedirect.com/topics/immunology-and-microbiology/polyclonal-b-cell-response
https://www.sciencedirect.com/topics/medicine-and-dentistry/ex-vivo
https://www.sciencedirect.com/topics/immunology-and-microbiology/mhc-class-i
https://www.sciencedirect.com/science/article/pii/S0091674918307024?via%3Dihub#tblE1
https://www.sciencedirect.com/science/article/pii/S0091674918307024?via%3Dihub#fig3
https://www.sciencedirect.com/science/article/pii/S0091674918307024?via%3Dihub#fig3
https://www.sciencedirect.com/science/article/pii/S0091674918307024?via%3Dihub#bib49
https://www.sciencedirect.com/science/article/pii/S0091674918307024?via%3Dihub#bib50
https://www.sciencedirect.com/science/article/pii/S0091674918307024?via%3Dihub#fig3
https://www.sciencedirect.com/topics/immunology-and-microbiology/cd38
https://www.sciencedirect.com/topics/immunology-and-microbiology/hepatitis-b
https://www.sciencedirect.com/science/article/pii/S0091674918307024?via%3Dihub#bib38
https://www.sciencedirect.com/science/article/pii/S0091674918307024?via%3Dihub#bib41
https://www.sciencedirect.com/science/article/pii/S0091674918307024?via%3Dihub#bib48
https://www.sciencedirect.com/science/article/pii/S0091674918307024?via%3Dihub#bib51
https://www.sciencedirect.com/topics/medicine-and-dentistry/cell-division
https://www.sciencedirect.com/topics/medicine-and-dentistry/cell-division
https://www.sciencedirect.com/topics/medicine-and-dentistry/carboxyfluorescein-succinimidyl-ester
https://www.sciencedirect.com/topics/medicine-and-dentistry/in-vitro
https://www.sciencedirect.com/topics/immunology-and-microbiology/monoclonal-antibody
https://www.sciencedirect.com/topics/immunology-and-microbiology/cd2
https://www.sciencedirect.com/topics/immunology-and-microbiology/cd3-immunology
https://www.sciencedirect.com/topics/immunology-and-microbiology/cd28
https://www.sciencedirect.com/science/article/pii/S0091674918307024?via%3Dihub#fig4
https://www.sciencedirect.com/science/article/pii/S0091674918307024?via%3Dihub#bib19
https://www.sciencedirect.com/topics/immunology-and-microbiology/granzyme
https://www.sciencedirect.com/topics/immunology-and-microbiology/perforin
https://www.sciencedirect.com/science/article/pii/S0091674918307024?via%3Dihub#fig4
https://www.sciencedirect.com/science/article/pii/S0091674918307024?via%3Dihub#figE2
https://www.sciencedirect.com/topics/immunology-and-microbiology/interferon-gamma
https://www.sciencedirect.com/topics/immunology-and-microbiology/lamp1
https://www.sciencedirect.com/science/article/pii/S0091674918307024?via%3Dihub#fig4
https://www.sciencedirect.com/science/article/pii/S0091674918307024?via%3Dihub#fig4
https://www.sciencedirect.com/topics/immunology-and-microbiology/degranulation
https://www.sciencedirect.com/science/article/pii/S0091674918307024?via%3Dihub#figE2
https://www.sciencedirect.com/topics/immunology-and-microbiology/granzyme-b
https://www.sciencedirect.com/science/article/pii/S0091674918307024?via%3Dihub#figE2
https://www.sciencedirect.com/science/article/pii/S0091674918307024?via%3Dihub#figE2
https://www.sciencedirect.com/science/article/pii/S0091674918307024?via%3Dihub#figE2


Next, we addressed the effect of PIK3CD GOF mutations on CD8+ T cell–mediated immunity to EBV. To test 

this, we generated CD8+ T-cell lines against autologous EBV-transformed B-LCLs. EBV-specific CD8+ T-cell 

lines from patients with PIK3CD GOF mutations exhibited reduced cytotoxicity toward autologous LCLs at 

effector/target ratios of between 5:1 and 10:1 (Fig 4, J and K). Thus PIK3CD GOF CD8+ T cells exhibit 

dysregulated cytokine expression and defective cytotoxic function against EBV-LCLs. 

 

Increased RICD of PIK3CD GOF CD8+ T cells 

RICD is an apoptotic mechanism used to limit effector T-cell expansion, thereby restricting the risk of 

nonspecific damage to the host. Defects in this process have been proposed to contribute to host tissue damage 

and unrestrained T-cell accumulation in patients with X-linked lymphoproliferative disease because of SLAM-

associated protein deficiency.29 RICD is triggered in effector cells by using TCR ligation, which upregulates 

proapoptotic Fas ligand to induce autocrine cell death. Thus Fas ligand expression correlates with RICD 

susceptibility.28, 29  To ascertain whether RICD was affected, TEM and TEMRAcells were sorted from patients 

with PIK3CD GOF mutations and healthy control subjects stimulated with CD2, CD3, and CD28 mAbs, with IL-

2 being added on day 3. Ten days after addition of IL-2, cells were stimulated with either α-CD3 mAb to induce 

RICD or α-CD95 mAb to determine the sensitivity to CD95-mediated apoptosis. Increased RICD was observed in 

TEM, but not TEMRA, cells from patients with PIK3CD GOF mutations compared with corresponding cells from 

control subjects (Fig 4, K). This correlated with greatly increased expression of FASLG in cells from patients 

with PIK3CD GOF TEM mutations relative to control TEM cells (Fig 4, L). There was also greater death of TEM, but 

not TEMRA, cells induced by a suboptimal concentration of anti-CD95 mAbs (Fig 4, M). Collectively, these data 

indicate that PIK3CD GOF mutations render TEMcells more susceptible to apoptosis induced by RICD or 

engagement of CD95. 

 

PIK3CD GOF mutations dysregulate NK cell differentiation and function 

NK cells also play key roles in host defense against viral infection, including herpesviruses; for instance, NK cells 

control EBV in patients with infectious mononucleosis.52, 53   For this reason, we examined the NK cell 

compartment of patients with PIK3CD GOF mutations. NK cell frequencies as a percentage of peripheral blood 

lymphocytes (Fig 5, A) and proportions of CD56bright and CD56dim subsets were unaltered by PIK3CD GOF 

mutations. However, further analysis revealed that expression of CD57, CD158a/g/h, CD16, granzyme B, 

perforin, and HLA class I was significantly increased on both CD56bright  and CD56dim NK cell subsets from 

patients with PIK3CD GOF mutations (Fig 5, A-J). NKG2A was also upregulated on CD56dim and KLRG1 was 

increased on CD56brightPIK3CD GOF NK cells (Fig 5, D and F). In contrast, PIK3CD GOF had no effect on 2B4 

or NKG2D expression. 

 

Lymphokine-activated killer cells were generated from patients and control subjects and then stimulated with 

autologous EBV-LCLs to determine whether NK cell cytotoxic function was affected by PIK3CD GOF mutations 

and altered effector phenotype. PIK3CD GOF lymphokine-activated killer cells exhibit decreased cytotoxicity in 

response to autologous LCLs (Fig 5, K and L). Thus NK cells in patients with PIK3CD GOF mutations exhibit 

dysregulated expression of key regulatory molecules and reduced cytotoxic function. 

 

Altered expression of regulatory ligands on B cells in patients with PIK3CD GOF mutations 

To extend our analysis of defects in pathways controlling cytotoxicity of NK cells and CD8+ T cells, we 

determined expression of ligands of 2B4 (CD48), PD-1 (PD-L1 and PD-L2), and CD27 (CD70), which have been 

shown to be dysregulated on B-cell lymphomas and/or EBV-infected B cells,47, 54, 55 on B cells from patients 

with PIK3CD GOF B mutations. We analyzed primary B cells and LCLs before and after stimulation with CD40 

ligand/anti-immunoglobulin. CD48 and CD70 were upregulated on PIK3CD GOF B cells relative to control B 

cells ex vivo (Fig 6, A). On stimulation, primary B cells upregulated PD-L1, PD-L2, and CD70 (Fig 6, A), with 

significantly higher expression on activated  

 

Heightened expression of CD48, PD-L1, PD-L2, and CD70 was also observed for unstimulated LCLs from 

patients with PIK3CD GOF mutations compared with control LCLs, with further upregulation on PIK3CD GOF 
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LCLs after activation CD40 ligand/anti-immunoglobulin (Fig 6, B). Similar results were obtained when we 

assessed expression of HLA class I, HLA class II, and CD95 on resting and activated primary B cells and LCLs 

from healthy control subjects and patients with PIK3CD GOF mutations (Fig E3, A and B).  Taken together, these 

findings establish that PIK3CD GOF B cells express increased levels of ligands that regulate cytotoxicity of 

CD8+ T cells and NK cells. 

 

Mice bearing a PI3K p110δ GOF mutation phenocopy defects in human PIK3CDGOF CD8+ T cells 

Many patients with PIK3CD GOF mutations have chronic or severe herpesvirus infections.19, 20   Thus to confirm 

that the changes we observed in CD8+ T-cell differentiation were cell intrinsic and not secondary to pathogen 

infection, we generated a mouse model. We used CRISPR/Cas9-mediated gene editing to introduce a 

heterozygous glutamic acid (E) to lysine (K) substitution at amino acid number 1020 of the murine PI3K 

p110δ protein. This corresponds to the common E1021K mutation found in approximately 75% of patients 

with PIK3CDGOF mutations. The CD8+ T-cell compartment in the spleens of young (8-12 weeks) and aged 

(33 weeks) Pik3cdE1020K mice recapitulated the phenotype observed in patients with PIK3CD GOF mutations. 

Thus there were significantly reduced proportions of naive and corresponding increased proportions of central 

memory and effector memory CD8+ T cells in Pik3cdE1020K mice compared with littermate control mice (Fig 7, A-

C). These differences were exacerbated with age and also evident in blood (Fig 7, A-C). Functional analysis 

demonstrated increased production of IFN-γ and TNF-α by in vitro cultured naïve Pik3cdE1020KCD8+ T cells 

compared with control cells (Fig 7, D). This initial analysis of our novel in vivo model of human disease caused 

by PI3K p110δ GOF has established that dysregulation of CD8+ T-cell responses occurs independently of 

infection or immunization. 

 

 

DISCUSSION 

Activating mutations in PIK3CD underlie a novel disease of immune dysregulation. The spectrum of clinical 

features in patients with PIK3CD GOF mutations includes recurrent respiratory tract infections, 

lymphadenopathy, autoimmunity, EBV viremia, and B-cell lymphoma, many of which are EBV+.20, 21  Although 

the role and requirements of PI3K signaling in the setting of lymphocyte development, tolerance, and immunity 

have been established from studies of genetically modified mice, the mechanisms contributing to disease in 

patients with PIK3CD GOF mutations remain incompletely defined. Here we have focused on the development 

and effector function of CD8+ T and NK cellswith a view of understanding aspects of immune dysregulation and 

susceptibility to EBV-induced disease. 

 
The immunologic phenotype of patients with PIK3CD GOF mutations includes an expansion of CD8+ T cells 

skewed toward a TEM phenotype and a concomitantly reduced CD4/CD8 ratio.17, 18, 19, 20, 21, 22   We have now 

substantially confirmed and extended these findings in a very large cohort of patients (n = 39) by discovering 

that surface receptors, including CD57, 2B4, CD160, PD-1, KLRG1, and HLA class I, are upregulated on 

CD8+ T-cell subsetsfrom patients with PIK3CD GOF mutations. Furthermore, CD8+ T cells from patients 

with PIK3CD GOF mutations exhibited increased expression of granzyme B and perforin, reduced expression of 

IL-2, increased apoptosis, and impaired cytotoxicity. The phenotype of CD8+ T cells in patients 

with PIK3CDGOF mutations is reminiscent of exhausted or senescent-type CD8+ T cells observed after chronic 

or persistent viral infection in mice56 and human subjects,38, 41, 42, 43, 44, 45, 48, 51, 57  or in patients with other 

monogenic immune dysregulatory conditions, including dedicator of cytokinesis 8 (DOCK8)deficiency58 

and Evan syndrome caused by mutations in tripeptidyl peptidase 2 (TPP2).40 Mouse models of 

persistent lymphocytic choriomeningitis virusinfection have demonstrated that CD8+ T-cell function is 

compromised by ongoing viral stimulation, such that upregulation of inhibitory receptors and altered expression 

of effector cytokines underpins defective behavior of these cells.37 Thus acquisition of an exhausted- or senescent-

type phenotype by CD8+T cells from patients with PIK3CD GOF mutations likely explains their impaired 

cytotoxicity, potentially resulting in reduced immunosurveillance of EBV-infected B cells and increased 

incidence of EBV-associated disease.21 The exhausted or senescent phenotype and function of CD8+ T cells in 

https://www.sciencedirect.com/science/article/pii/S0091674918307024?via%3Dihub#fig6
https://www.sciencedirect.com/science/article/pii/S0091674918307024?via%3Dihub#figE3
https://www.sciencedirect.com/science/article/pii/S0091674918307024?via%3Dihub#bib19
https://www.sciencedirect.com/science/article/pii/S0091674918307024?via%3Dihub#bib20
https://www.sciencedirect.com/topics/medicine-and-dentistry/gene-therapy
https://www.sciencedirect.com/topics/medicine-and-dentistry/glutamic-acid
https://www.sciencedirect.com/topics/medicine-and-dentistry/amino-acid
https://www.sciencedirect.com/topics/medicine-and-dentistry/phosphoinositide-3-kinase
https://www.sciencedirect.com/topics/immunology-and-microbiology/p110-delta
https://www.sciencedirect.com/science/article/pii/S0091674918307024?via%3Dihub#fig7
https://www.sciencedirect.com/science/article/pii/S0091674918307024?via%3Dihub#fig7
https://www.sciencedirect.com/topics/immunology-and-microbiology/tumor-necrosis-factor-alpha
https://www.sciencedirect.com/science/article/pii/S0091674918307024?via%3Dihub#fig7
https://www.sciencedirect.com/topics/medicine-and-dentistry/in-vivo
https://www.sciencedirect.com/topics/immunology-and-microbiology/cell-mediated-immunity
https://www.sciencedirect.com/topics/immunology-and-microbiology/p110-delta
https://www.sciencedirect.com/topics/immunology-and-microbiology/immune-dysregulation
https://www.sciencedirect.com/topics/medicine-and-dentistry/respiratory-tract-infection
https://www.sciencedirect.com/topics/immunology-and-microbiology/lymphadenopathy
https://www.sciencedirect.com/topics/immunology-and-microbiology/autoimmunity
https://www.sciencedirect.com/topics/immunology-and-microbiology/viremia
https://www.sciencedirect.com/topics/immunology-and-microbiology/b-cell
https://www.sciencedirect.com/science/article/pii/S0091674918307024?via%3Dihub#bib20
https://www.sciencedirect.com/science/article/pii/S0091674918307024?via%3Dihub#bib21
https://www.sciencedirect.com/topics/medicine-and-dentistry/phosphoinositide-3-kinase
https://www.sciencedirect.com/topics/immunology-and-microbiology/lymphocyte-development
https://www.sciencedirect.com/topics/medicine-and-dentistry/genetic-engineering
https://www.sciencedirect.com/topics/immunology-and-microbiology/cd8
https://www.sciencedirect.com/topics/medicine-and-dentistry/natural-killer-cell
https://www.sciencedirect.com/science/article/pii/S0091674918307024?via%3Dihub#bib17
https://www.sciencedirect.com/science/article/pii/S0091674918307024?via%3Dihub#bib18
https://www.sciencedirect.com/science/article/pii/S0091674918307024?via%3Dihub#bib19
https://www.sciencedirect.com/science/article/pii/S0091674918307024?via%3Dihub#bib20
https://www.sciencedirect.com/science/article/pii/S0091674918307024?via%3Dihub#bib21
https://www.sciencedirect.com/science/article/pii/S0091674918307024?via%3Dihub#bib22
https://www.sciencedirect.com/topics/medicine-and-dentistry/surface-receptor
https://www.sciencedirect.com/topics/immunology-and-microbiology/b3gat1
https://www.sciencedirect.com/topics/immunology-and-microbiology/cd244
https://www.sciencedirect.com/topics/immunology-and-microbiology/cd160
https://www.sciencedirect.com/topics/immunology-and-microbiology/t-cell-subset
https://www.sciencedirect.com/topics/immunology-and-microbiology/granzyme-b
https://www.sciencedirect.com/topics/immunology-and-microbiology/perforin
https://www.sciencedirect.com/topics/immunology-and-microbiology/apoptosis
https://www.sciencedirect.com/topics/immunology-and-microbiology/cytotoxicity
https://www.sciencedirect.com/science/article/pii/S0091674918307024?via%3Dihub#bib56
https://www.sciencedirect.com/science/article/pii/S0091674918307024?via%3Dihub#bib38
https://www.sciencedirect.com/science/article/pii/S0091674918307024?via%3Dihub#bib41
https://www.sciencedirect.com/science/article/pii/S0091674918307024?via%3Dihub#bib42
https://www.sciencedirect.com/science/article/pii/S0091674918307024?via%3Dihub#bib43
https://www.sciencedirect.com/science/article/pii/S0091674918307024?via%3Dihub#bib44
https://www.sciencedirect.com/science/article/pii/S0091674918307024?via%3Dihub#bib45
https://www.sciencedirect.com/science/article/pii/S0091674918307024?via%3Dihub#bib48
https://www.sciencedirect.com/science/article/pii/S0091674918307024?via%3Dihub#bib51
https://www.sciencedirect.com/science/article/pii/S0091674918307024?via%3Dihub#bib57
https://www.sciencedirect.com/topics/medicine-and-dentistry/cytokinesis
https://www.sciencedirect.com/science/article/pii/S0091674918307024?via%3Dihub#bib58
https://www.sciencedirect.com/topics/medicine-and-dentistry/evans-syndrome
https://www.sciencedirect.com/topics/medicine-and-dentistry/peptidase
https://www.sciencedirect.com/science/article/pii/S0091674918307024?via%3Dihub#bib40
https://www.sciencedirect.com/topics/immunology-and-microbiology/lymphocytic-choriomeningitis-virus
https://www.sciencedirect.com/topics/medicine-and-dentistry/t-cell
https://www.sciencedirect.com/topics/medicine-and-dentistry/cytokines
https://www.sciencedirect.com/science/article/pii/S0091674918307024?via%3Dihub#bib37
https://www.sciencedirect.com/topics/immunology-and-microbiology/immunosurveillance
https://www.sciencedirect.com/science/article/pii/S0091674918307024?via%3Dihub#bib21


patients with chronic infections, such as HIV, CMV, or hepatitis B or C virus, have been proposed to result from 

constant activation by persistent viral antigen.37, 38, 57   It is likely that these parallel features of exhausted- or 

senescent-type CD8+ T cells in patients with PIK3CD GOF mutations results from constitutive PI3K activation in 

these cells, essentially mimicking ongoing signaling through the TCR and costimulatory receptors rather than 

being secondary to recurrent or chronic pathogen infections. This is supported by the consistent exhausted- or 

senescent-type phenotype of CD8+ T cells in EBV-naive subjects, as well as patients with mild and chronic EBV 

viremia, coupled with the finding of a similar CD8+ T-cell phenotype in 

unimmunized/uninfected Pik3cdE1020K mutant mice. 

 
PIK3CD GOF mutations result in constitutive hyperactivation of the PI3K-AKT-mTOR pathway, thereby 

promoting aerobic glycolysis.19 Previous studies demonstrated a link between aerobic glycolysis and 

susceptibility to RICD.28 We also found increased susceptibility of CD8+ T cells from patients with PIK3CDGOF 

mutations to RICD. Thus this altered metabolic state might partially cause accelerated T-cell effector generation, 

limited effector function, and increased sensitivity to RICD, culminating in the phenotype of CD8+ T-cell 

dysfunction. Interestingly, susceptibility to RICD was observed for PIK3CD GOF TEM, but not TEMRA, CD8+ T 

cells. This correlated with selectively increased expression of FASLG by PIK3CD GOF TEM cells. Interestingly, 

HIV-specific TEM cells preferentially undergo greater spontaneous and CD95-mediated apoptosis than other 

CD8+ T-cell subsets; this was associated with increased expression of PD-1, CD95, and CD57. 43, 44   Remarkably, 

TEM cells from patients with PIK3CDGOF mutations expressed the highest levels of PD-1, CD95, and CD57 of 

all CD8+ T-cell subsets examined. This phenotype of PIK3CD GOF TEM cells, coupled with preferential induction 

of high levels of FASLG in PIK3CD GOF TEMcells and the requirement for Fas/Fas ligand interactions to regulate 

RICD,29 likely explains increased RICD in these, but not PIK3CD GOF TEMRA, cells. These findings also 

highlight that analysis of immune dysregulatory conditions caused by monogenic mutations can greatly inform 

our knowledge of similar immunopathologies occurring in the general population induced by extrinsic factors, 

such as infectious agents. This further underscores the utility of studying patients with PIK3CD GOF mutations as 

a valuable means of dissecting pathways and mechanisms regulating immunosenescence.21  Our findings, 

combined with those associating aerobic glycolysis with RICD,28 strongly support the utility of inhibitors of the 

PI3K pathway as therapeutic modalities for treating patients with PIK3CD GOF mutations. Indeed, treatment 

with the mTOR inhibitor rapamycin or the recently developed PI3K p110δ inhibitor leniolisib reduced the 

proportions of circulating CD57+ T cells in a short-term trial of patients with PIK3CD GOF mutations (Edwards, 

Tangye, and Uzel).19, 22 

 
Upregulation of molecules, including CD57, KLRG1, CD16, and killer cell immunoglobulin-like receptors (eg, 

CD158a/g/h), as well as the effector molecules granzyme B and perforin, is consistent with maturation of NK 

cells from a CD56bright to a CD56dim phenotype.59  Stepwise reductions in NKG2A and increases in killer cell 

immunoglobulin-like receptor expression have been shown to correlate with NK cell terminal differentiation 

and IFN-γ production.60NK cells were present in normal proportions in patients with PIK3CD GOF mutations, 

with no effect on the distribution of cells between the CD56bright and CD56dim compartments. However, the 

activation status of the NK cells was aberrant, as indicated by increased expression of CD57, CD16, NKG2A, and 

CD158a/g/h and reduced cytotoxicity toward EBV-infected B cells. This dysregulated pattern of receptor 

expression might have an adverse effect on NK cell function in these patients, such as the observed reductions in 

cytotoxicity against EBV-LCLs. Our findings are largely consistent with very recently published findings that 

also reported normal or near-normal proportions of total NK cells, normal proportions of CD56hi and 

CD56dim subsets of NK cells, increased expression of NKG2A on CD56dim NK cells, and impaired cytotoxicity of 

NK cells from patients with PIK3CD GOF mutations.61 Interestingly, we observed increased expression 

of granzymes and perforin by PIK3CD GOF CD8+ T cells and NK cells but impaired cytotoxicity. These 

paradoxical findings can be explained by the recent discovery that NK cells from patients with PIK3CD GOF 

mutations exhibit poor polarization of the lytic machinery to the microtubule organizing center, a requisite step 

for cytotoxic function.61  Thus our phenotypic and functional data suggest that PIK3CD GOF mutations 

compromise the mobilization and polarization of the lytic machinery in cytotoxic lymphocytes, impairing their 

cytotoxic effector function, despite increased expression of cytotoxic mediators. 
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The significance of an altered phenotype of CD8+ T cells, NK cells, and B cells in patients with PIK3CD GOF 

mutations is highlighted by the known functions of several of these receptor/ligand pairs in host defense against 

EBV. 2B4 can act as an inhibitory or activating receptor,46, 47 the outcome of which depends on its level of 

expression and engagement by CD48, as well as signaling through SAP.62 Thus, on one hand, impaired signaling 

through 2B4 caused by SAP deficiency underlies defective cytolytic responses of CD8+ T and NK cells to EBV 

in X-linked lymphoproliferative syndrome,46, 47 whereas on the other hand, overexpression or extensive cross-

linking of 2B4 on cytotoxic cells results in inhibitory signaling.62 Thus a fine balance between inputs through 2B4 

needs to be achieved for 2B4 to function as an activating or inhibitory receptor, particularly with regard to fine-

tuning of the CD8+ T-cell response to antigen. In patients with PIK3CD GOF mutations, 2B4 expression was 

increased on CD8+ T cells, yet SAP expression was normal. Heightened expression of CD48 on primary B cells 

and LCLs from patients with PIK3CD GOF mutations invokes a scenario in which increased cross-linking of 2B4 

on CD8+ T and NK cells would result in inhibitory signaling through this receptor. Modulation of this axis might 

prove useful in conditions in which 2B4 or CD48 expression is increased. Indeed, blockade of 2B4/CD48 

interactions improved the in vitroeffector function of exhausted-type hepatitis B virus-specific CD8+ T cells.51  

Upregulation of PD-1 on CD8+ T cells and PD-1 ligands on B cells in patients with PIK3CD GOF mutations 

revealed additional mechanisms of impaired cytolytic function in patients with PIK3CD GOF mutations, with 

engagement of PD-1 restraining the function of CD8+ T cells.37, 38   This also raises the possibility that PD-1 

blockade, which improves or restores CD8+ T-cell function in mouse models of chronic viral infection,56 might be 

a therapeutic option to treat EBV viremia in patients with this disease. Such a proposition is supported by 

previous data from studies of HIV infection, in which CD8+ T cells acquire an exhausted phenotype similar to 

that observed for patients with PIK3CD GOF mutations.42, 43, 44, 45, 48
     In vitro blockade of PD-1/PD-L1 

interactions with specific mAbs restored proliferation and effector function of CD8+ T cells in HIV+subjects.42, 

44, 45, 48  Remarkably, effector function of these cells was further improved by combined blockade of PD-1 and 

2B4.48   Thus it is plausible that checkpoint inhibitors, which have found such great success in cancer 

immunotherapy, could have application in treating PIK3CD GOF. However, although checkpoint inhibitor–type 

therapies for treating patients with PIK3CDGOF mutations can revert the phenotype and function of exhausted/ 

senescent CD8+ T cells in these subjects, their effects on the proinflammatory functions of immune cells would 

have to be closely monitored. 

 
Overall, CD8+ T cells in patients with PIK3CD GOF mutations, as well as a mouse model of this condition, 

present with features of accelerated differentiation, premature exhaustion, and/or immunosenescence with 

evidence of increased apoptosis and cytotoxic dysfunction accompanied by altered NK cell phenotype and 

defective cytotoxicity toward EBV-infected B cells. These observations parallel the aberrant expression of ligands 

for key regulatory molecules on B cells, highlighting the amenability of the CD48-2B4 and PD-1–PD-

L1/242,45,48,51 axes to immunotherapeutic intervention as an alternative or complement to current therapies, such as 

rapamycin 19, 20 or leniolisib.22   We are now also well placed to use our mouse model as a preclinical screen to test 

the efficacy of such putative therapeutics in restoring defects in CD8+ T-cell development and differentiation 

caused by hyperactive PI3K signaling. 
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PDL1/2 Programmed Death Ligand 1/2 
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Figure 1 
 

 

 
 

 

TEM cell skewing of CD8+ T lymphocytes in patients with PIK3CD GOF mutations. PBMCs from healthy control subjects (n = 33) and 

patients with PIK3CD GOF mutations (n = 33) were labeled with mAbs against CD4, CD8, CCR7, and CD45RA. A, Representative 

histogram plots showing CD8 expression by lymphocytes from control subjects and patients with PIK3CD GOF mutations. B, Frequency 

of CD4+ or CD8+ T cells within the lymphocyte gate in control subjects and patients with PIK3CD GOF mutations. 

Each symbol corresponds to an individual donor or patient; the horizontal barrepresents the mean. C and D, Ratio of CD4+ to CD8+ T cells 

in all control subjects and patients with PIK3CD GOF mutations (Fig 1, C) or control subjects and patients with PIK3CD GOF mutations 

according to age (Fig 1, D). E and F, TN/TSCM (CCR7+CD45RA+), TCM (CCR7+CD45RA−), TEM (CCR7−CD45RA−), and 

TEMRA (CCR7−CD45RA+) CD8+ T cells were identified. Fig 1, E, Representative fluorescence-activated cell sorting plots of CD45RA- and 

CCR7-expressing populations in CD8+ T cells from control subjects and patients with PIK3CD GOF mutations. Fig 1, F, Frequency of 

TN/TSCM, TCM, TEM, and TEMRA CD8+ T cells in control subjects and patients with PIK3CD GOF mutations. Statistics were performed by 

using the t test with the Mann-Whitney test (Fig 1, B and C) or 2-way ANOVA (Fig 1, F). ***P < .01 and ****P < .0001. 
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Figure 2 
 

 

 
 

 

CD8+ T cells in patients with PIK3CD GOF mutations acquire an exhausted-type phenotype. PBMCs from healthy control subjects and 

patients with PIK3CD GOF mutations were labeled with mAbsagainst CD8, CD45RA, CCR7, CD57, 2B4, NKG2D, CD95, KLRG1, PD-

1, CD38, HLA class I (HLA-ABC), and HLA class II (HLA-DR). A-J, Total CD8+ T cells, as well as TN/TSCM (CCR7+CD45RA+), 

TCM(CCR7+CD45RA−), TEM (CCR7−CD45RA−), and TEMRA (CCR7−CD45RA+) subsets, were delineated, and the frequency of each 

population expressing CD57 (Fig 2, A), CD95 (Fig 2, B), CD160 (Fig 2, C), or KLRG1 (Fig 2, D); relative expression of PD-1 (Fig 2, E); 

percentage of CD38+ cells (Fig 2, F); relative expression of HLA class I (Fig 2, G) and HLA class II (Fig 2, H); percentage of 2B4+ cells 

(Fig 2, I); and relative expression of NKG2D (Fig 2, J) were determined. Relative expression is depicted as the fold change in mean 

fluorescence intensity compared with either total or naive CD8+ T cells from healthy subjects. Values (n) in each panel represent numbers 

of healthy control subjects and patients with PIK3CD GOF mutations examined for each indicated surface marker. K, Coexpression of 

CD57, KLRG1, and 2B4 on CD8+ T cells. Statistics were performed by using 2-way ANOVA. *P < .05, **P < .01, ***P < .001, and 

****P < .0001. 
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Figure 3 

 

 

 

 

EBV-specific CD8+ T cells exhibit perturbed expression of regulatory molecules in patients with PIK3CD GOF mutations. A and B, 

PBMCs from patients with PIK3CD GOF mutations (n = 14) and HLA-matched control subjects (n = 14) were incubated with specific 

EBV–peptide–MHC class I tetramer complexes (Table E1) together with mAbs against CD8, CD45RA, CCR7, CD57, 2B4, CD160, 

NKG2D, CD95, KLRG1, PD-1, or CD38. Fig 3, A, Frequency of EBV-specific CD8+ T cells in healthy subjects and patients with 

PIK3CD GOF mutations. Fig 3, B, Distribution of EBV tetramer-positive CD8+ T cells in TN/TSCM, TCM, TEM, and TEMRA CD8+ T-

cell populations in healthy control subjects and patients with PIK3CD GOF mutations. Statistics were performed by using 2-way 

ANOVA. C-J, Frequency of EBV-specific CD8+ T cells expressing CD57 (Fig 3, C), CD95 (Fig 3, D), CD160 (Fig 3, E), and KLRG1 (Fig 

3, F); relative expression of PD-1 (Fig 3, G); percentage expressing CD38 (Fig 3, H) and 2B4 (Fig 3, I); and relative expression of NKG2D 

(Fig 3, J) on EBV-specific CD8+ T cells from patients with PIK3CD GOF mutations and control subjects were determined. Relative 

expression is depicted as fold change compared with mean fluorescence intensity of EBV-specific CD8+ T cells from healthy donors. 

Statistics were performed by using t tests with Mann-Whitney tests. K, Coexpression of CD57, KLRG1, and 2B4 in EBV-specific CD8+ T 

cells. Statistics were performed by using 2-way ANOVA. *P < .05, **P < .01, ***P < .001, and ****P < .0001. 
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Figure 4 
 

 
 

Altered functionality of CD8+ T cells and enhanced restimulation-induced cell death of TEM CD8+ T cells from patients with PIK3CD GOF 

mutations. A and B, PBMCs from healthy donors (n = 3-5) or patients with PIK3CD GOF mutations (n = 3-6) were labeled with 

carboxyfluorescein succinimidyl esterand stimulated in vitro in the absence (nil) or presence of mAbs specific for CD2, CD3, and CD28 

with or without IL-2 or PHA/IL-2. Proliferation was determined after 3 (Fig 4, A) or 5 (Fig 4, B) days by calculating the percentage of 

CD8+ T cells that have undergone 2 or more divisions. Values represent means ± SEMs. C and D, PBMCs from patients with PIK3CD 

GOF mutations (n = 5-8) and healthy control subjects (n = 5-8) were stained directly ex vivo with mAbs to CD8, CCR7, CD45RA, 

granzyme B, and perforin. Frequency of CD8+ T cells expressing granzyme B (Fig 4, C) or perforin (Fig 4, D). Statistics were performed 

by using 2-way ANOVA. E and F, Frequency of EBV tetramer-positive CD8+ T cells expressing granzyme B (Fig 4, E) or perforin (Fig 

4, F; n = 5). G-I, PBMCs from healthy control subjects (n = 6) and patients with PIK3CD GOF mutations (n = 6) were stimulated for 

14 hours in the absence or presence of PMA/ionomycin with Brefeldin A and monensin. Percentage cells expressing IFN-γ (Fig 4, G), 

CD107a (Fig 4, H), or IL-2 (Fig 4, I) were determined. Statistics were performed by using t tests with Mann-Whitney tests. J and K, 

Percentage lysis of autologous LCLs by EBV-specific CD8+ T cells from healthy control subjects and patients with PIK3CD GOF 

mutations. Each graph depicts data from experiments using cells from 2 different patients and control subject run in triplicates. Statistics 

were performed by using 2-way ANOVA. *P < .05, **P < .01, and ***P < .001. L-N, Sorted TEM and TEMRA cells from healthy donors and 

patients with PIK3CD GOF mutations (n = 3) were stimulated with anti-CD2/CD3/CD28 mAbs and IL-2 for 10 days. Cells were then 

restimulated with plate-bound α-CD3 mAb to induce RICD or α-CD95 mAb for 24 hours, and cell death was assessed by staining with 

Zombie dye. Fig 4, L, Percentage death of TEM and TEMRA cells stimulated with α-CD3. Fig 4, M, FASLG expression 4 hours after α-CD3 

mAb stimulation of sorted and activated TEM and TEMRA cell populations from patients with PIK3CD GOF mutations. Values represent 

mean ± SEM mRNA levels of PIK3CD GOF TEMand TEMRA cell populations relative to that expressed by corresponding cells from healthy 

control subjects (normalized to 1, as indicated by dotted line). Fig 4, N, Percentage death of TEM and TEMRA cells in response to 20 ng/mL 

α-CD95 mAb. Statistics were performed by using 2-way ANOVA. *P < .05. 
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Figure 5 
 

 

 
 

Impaired cytotoxicity of NK cells from patients with PIK3CD GOF mutations against EBV-B cell targets. A-J, PBMCs from healthy 

donors (n = 4-5) and patients with PIK3CD GOF mutations (n = 4-5) were labeled with mAbs against CD3, CD56, CD57, CD158a/g/h, 

CD16, HLA class I, NKp44, granzyme B, perforin, NKG2A (CD159a) and KLRG1. Fig 5, A, Frequency of NK cells (CD3−CD56+) in 

healthy control subjects and patients with PIK3CD GOF mutations. Frequency of CD56bright and CD56dim NK cells expressing CD57 (Fig 

5, B) and CD158a/g/h (Fig 5, C) is shown. Relative expression of CD16 (Fig 5, D), HLA class I (HLA-ABC; Fig 5, E), NKp44 (Fig 5, F), 

granzyme B (Fig 5, G), perforin (Fig 5, H), frequency of NKG2A (CD159a; Fig 5, I); and relative expression of KLRG1 on CD56bright and 

CD56dim NK (Fig 5, J) cells from healthy control subjects and patients with PIK3CD GOF mutations are shown. Relative expression is 

presented as fold change over mean fluorescence intensity of CD56bright NK cells from healthy subjects. K and L, Percentage lysis of 

autologous LCLs by lymphokine-activated killer cells from patients with PIK3CD GOF mutations and healthy control subjects. Data are 

means ± SDs of experiments run in triplicates. Statistics were performed by using 2-way ANOVA. *P < .05, **P < .01, ***P < .001, and 

****P < .0001. 
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Figure 6 

 

 

 

Modified ligand expression on B cells from patients with PIK3CD GOF mutations. A and B, Total peripheral blood B cells (Fig 6, A) or 

LCLs (Fig 6, B) from healthy subjects or patients with PIK3CD GOF mutations were either stained immediately (left-hand plots) or 

stimulated in the absence (nil) or presence of CD40 ligand (CD40L)/α-immunoglobulin (right-hand plots); after 3 days, cells were stained 

with mAbsto CD48, PD-L1, PD-L2, or CD70. Graphs depict fold change of mean fluorescence intensity of the indicated molecules on 

primary B cells or LCLs from patients with PIK3CD GOF mutations relative to unstimulated B cells or LCLs from healthy control 

subjects. Statistics were performed by using 2-way ANOVA. *P < .05, **P < .01, ***P < .001, and ****P < .0001. 
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Figure 7 

 

 

 

Pik3cdE1020K mice exhibit phenotypic and functional defects in CD8+ T cells independent of infection. A-C, Spleens or blood from wild-

type (WT) and Pik3cdE1021K mice at various ages were stained to identify different CD8+ T-cell populations. Flow plots show representative 

staining of CD8+ T cells from 8 to 12 weeks (WT, n = 10; Pik3cd,E1021K n = 13; Fig 7, A) or 33-week-old mice (spleens, n = 11; blood, 

n = 6; Fig 7, B). Fig 7, C, Percentages of CD4+ T cells with a TN (CD44loCD62Lhi), TCM (CD44hiCD62Lhi), or TEM (CD44hiCD62Llo) 

phenotype are shown in graphs (plots show means ± SEMs). D, Naive CD8+ T cells were sorted from spleens of WT or Pik3cdE1021K mice 

and cultured for 4 days with anti-CD3 and anti-CD28. Cells were then restimulated with PMA/ionomycin and IFN-γ and TNF-α production 

assessed (plots show means ± SEMs, n = 4-5). Significant differences were determined by using multiple t tests or 2-way ANOVA. 

*P < .05, ***P < .001, and ****P < .0001. 
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Figure E1 

 

 

 

Vβ use of T-cell subsets from patients with PIK3CD GOF mutations. Samples from healthy donors (n = 5) and patients with PIK3CD GOF 

mutations (n = 2) were stained with Vβ mAbs in conjunction with mAbs to CD8, CD45RA, and CCR7 to determine the breadth of Vβ use 
by CD8+ T-cell subsets in patients compared with control subjects: A, TN (CCR7+CD45RA+); B, TCM (CCR7+CD45RA−); C, 

TEM(CCR7−CD45RA−); and D, TEMRA (CCR7−CD45RA+). 
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Figure E2 

 

 

 

Altered cytokine production by TEM and TEMRA cells from patients with PIK3CD GOF mutations. Aand B, Frequencies of total 

(Fig E2, A) or EBV-specific (Fig E2, B) CD8+ T cells expressing granzymeA or granzyme K from healthy control subjects and patients 

with PIK3CD GOF mutations. Statistics were performed by using 2-way ANOVA (Fig E2, A) or a t test and Mann-Whitney test  

(Fig E2, B). C and D, Sorted TEM or TEMRA CD8+ T cells were stimulated with anti-CD2, CD3, and CD28 mAbs. On day 5, cells were 

stimulated with PMA/ionomycin in the presence of Brefeldin A and monensin. Proportions of TEM(Fig E2, C) or TEMRA (Fig E2, D) 

cells expressing or secreting IFN-γ, IL-2, CD107a, granzyme B or perforin, or TNF was then determined. Statistics were determined by 

using a t test with the Mann-Whitney test. *P < .05 and **P < .01. 
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Figure E3 

 

 

 

Expression of MHC and CD95 on primary B cells and LCLs in patients with PIK3CD GOF mutations. Peripheral blood B cells (A) or 

LCLs (B) were stained with mAbs to HLA class I (HLA-ABC), HLA class II (HLA-DR), or CD95 either ex vivo or after in vitro culture in 

the absence (nil) or presence of CD40L plus α-immunoglobulin. Ex vivo B cells were identified as CD20+ cells. Expression of the indicated 

ligands was calculated relative to the mean fluorescence of control B cells or LCLs (normalized to 1.0). Statistics were performed by using 

a t test with the Mann-Whitney test or 2-way ANOVA. *P < .05, **P < .01, ***P < .001, and ****P < .0001. 
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Table 1 

Demographic of subjexts given a diagnosis of PIL3CD GOF mutations 

 

 



 

 

Table E1 

Peptide-MHC tetramers to identify EBV-sepecfic CD8* T cells 

 

HLA type Epitope sequence Protein origin Patients investigated 

A∗0201 GLCTLVAML BMLF-1280-288 11, 12, 14, 15, 19, 20 

A∗11∗ AVFDFKSDAK EBNA-3B246-253 7 

B∗0702 RPPIFIRRL EBNA-3A247-255 3, 5, 6 

B∗0801 FLRGRAYGL EBNA-3A325-333 2, 9 

B∗0801 RAKFKQLL BZLF-1190-197 2, 9 

B∗27 RRIYDLIEL EBNA-3C258-266 8 

 

*Immudex Copenhagen Denmark 
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Table E2 

mAbs used for lymphocyte pehotyping 

 

Target Fluorochrome Clone Supplier 

CD3 BV786 UCHT1 BD Horizon 

CD4 BUV395 SK3 (Leu3a) BD Horizon 

CD4 BUV737 SK3 (Leu3a) BD Horizon 

CD8 APC-Cy7 RPA-T8 BioLegend 

CD8 BUV395 RPA-T8 BD Horizon 

CD16 APC-Cy7 3G8 BioLegend 

CD20 PB 2H7 BioLegend 

CD38 FITC HB7 eBioscience 

CD45RA PerCP-Cy5.5 HI100 eBioscience 

CD45RA BV605 HI100 BD Horizon 

CD48 FITC Tu145 BD PharMingen 

CD56 BV605 HCD56 BioLegend 

CD57 FITC NK-1 BD PharMingen 

CD70 APC 113-16 BioLegend 

CD95 PE-CF594 DX2 BD Horizon 

CD158a/g/h PerCP-Cy5.5 HP-MA4 eBioscience 

CD160 PE BY55 BioLegend 

CCR7 FITC 150503 R&D Systems 

CCR7 PE Cy7 G043H7 BioLegend 

2B4(CD244) PE eBioC1.7 eBioscience 

Granzyme B AF700 GB11 BD PharMingen 

HLA ABC APC–Fire 750 W6/32 BioLegend 

HLA DR PE-Cy7 G46-6 BD PharMingen 

KLRG1 APC REA261 Miltenyi Biotech 

NKG2A (CD94) PerCP-Cy5.5 DX22 BioLegend 

NKG2D PerCP-eFLuor710 1D11 eBioscience 

NKp44 PE-Cy7 p44-8 BioLegend 

PD-1 Biotin eBioJ105 eBioscience 

Perforin PE-Cy7 B-D48 BioLegend 

SA BV711 BV711 
 

BD Horizon 

 

AF, Alexa Fluor;  

APC, allophycocyanin;  

BV, Brilliant Violet;  

FITC, fluorescein isothiocyanate;  

PB, Pacific Blue;  

PE, phycoerythrin;  

PerCP, peridinin-chlorophyll-protein complex.  
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Table E3 

mAbs used for muring lymphocyte phenotyping 

 

 

Target Fluorochrome Clone Supplier 

CD3 PerCP-Cy5.5 17A2 BD Horizon 

CD4 APC–eFluor 780 RM4-5 eBioscience 

CD8 PB 53-6.7 BD Horizon 

IFN-γ PE-Cy7 XMG1.2 BD Horizon 

TNF-α PE MP6-XT22 BioLegend 

CD62L APC MEL-14 BD Horizon 

CD62L BV605 MEL-14 BioLegend 

CD62L FITC MEL-14 eBioscience 

CD44 FITC IM7 BD Horizon 

CD44 BV605 IM7 BD Horizon 

CD45R/B220 FITC RA3-6B2 BD Horizon 

CD45R/B220 BV786 RA3-6B2 BD Horizon 

CD25 PE PC61 BD Horizon 

CD25 APC PC61 eBioscience 

 

 

 

AF, Alexa Fluor;  

APC, allophycocyanin;  

BV, Brilliant Violet;  

FITC, fluorescein isothiocyanate;  

PB, Pacific Blue;  

PE, phycoerythrin;  

PerCP, peridinin-chlorophyll-protein complex. 
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