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Highlights 
 

 Maturation increases the stiffness of cardiac tissue when comparing our neonatal data 

to that describing the mature porcine heart. 

 Neonatal tissue exhibits non-linear, anisotropic, and heterogeneous behaviour. 

 The neonatal porcine cardiac tissue is one-half the uniaxial stiffness, one-third the 

biaxial stiffness, and one-fourth the simple shear stiffness, of equivalent mature tissue. 

 The anterior walls are stiffer than the posterior walls, in both ventricles. 
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Abstract 

 

Neonatal heart disorders represent a major clinical challenge, with congenital heart 

disease alone affecting 36,000 new-borns annually within the European Union.  Surgical 

intervention to restore normal function includes the implantation of synthetic and biological 

materials; however, a lack of experimental data describing the mechanical behaviour of 

neonatal cardiac tissue is likely to contribute to the relatively poor short- and long-term 

outcome of these implants.  This study focused on characterising the mechanical behaviour 

of neonatal cardiac tissue using a porcine model, to enhance the understanding of how this 

differs to the equivalent mature tissue.  The biomechanical properties of neonatal porcine 

cardiac tissue were characterised by uniaxial tensile, biaxial tensile, and simple shear 

loading modes, using samples collected from the anterior and posterior walls of the right and 

left ventricles.  Histological images were prepared using Masson’s trichrome staining, to 

enable assessment of the microstructure and correlation with tissue behaviour.  The 

mechanical tests demonstrated that the neonatal cardiac tissue is non–linear, anisotropic, 

viscoelastic and heterogeneous.  Our data provide a baseline describing the biomechanical 

behaviour of immature porcine cardiac tissue.  Comparison with published data also 

indicated that the neonatal porcine cardiac tissue exhibits one-half the stiffness of mature 

porcine tissue in uniaxial extension testing, one-third in biaxial extension testing, and one-

fourth stiffness in simple shear testing; hence, it provides an indication as to the relative 

change in characteristics associated with tissue maturation.  These data may prove valuable 

to researchers investigating neonatal cardiac mechanics.      

  

Keywords: Neonatal porcine hearts, cardiac mechanics, congenital heart diseases, passive 

mechanical behaviour, age-dependent variations.  
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1. Introduction 

 

Congenital heart disease (CHD) annually affects approximately 36,000 new-borns 

within the European Union [1, 2], and describes a series of structural cardiac disorders, 

including ventricular and atrial septal defects.  Multi-physics modelling and the development 

of new synthetic materials are innovative approaches seeking to positively influence the 

clinical outcomes; however, an acute lack of data describing the biomechanical behaviour 

of neonatal cardiac tissue, twinned with the structural changes to the tissue during 

maturating, is potentially limiting the effectiveness of these novel techniques.   

The adult cardiac tissue is known to exhibit highly complex behaviour, including non-

linearity and anisotropy [3-10], as a consequence of its intricate structure [11-15].  Critically, 

ventricular wall functionality differs between the adult and neonate, as the latter can only 

increase the cardiac output by increasing the heart rate (although only limited), whereas the 

adult heart can also increase stroke volume [16, 17].  The neonate heart also has a greater 

fraction of fibrous tissue to contractile tissue, than an adult [16, 17], whilst there is variation 

in the collagen fibril density, and mono-nucleated and bi-nucleated cell concentrations [18-

20].  Increasing age is also associated with changes in the cardiac matrix, and an increase in 

collagen fibril crosslinking and assembly [21].  No experimental data exists to quantify 

neonate tissue, however, meaning simulations adopt and/or scale adult data, incorporating 

an unknown level of error [21-24].   

Computational modelling is increasingly used in adult cardiology to understand the 

behaviour of structural components, enabling the simulation of normal and 

pathophysiological conditions and leading to new interventions [25-31].  A lack of 

appropriate data to describe neonatal tissue limits the widespread use and effectiveness of 

sophisticated techniques, to investigate neonatal-based disorders.  Surgical intervention, 

aiming to restore normal function, includes the implantation of synthetic materials to mimic 

natural tissue behaviour [32-34]; however, the relatively poor short- and long-term 
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outcomes may be partly associated with the scant literature describing neonatal cardiac 

biomechanics.  This lack of knowledge may also be contributing to the relatively limited 

success of biological scaffolds [35, 36]; hence, enhanced knowledge of tissue behaviour to 

achieve more effective designs has the potential to positively influence CHD mortality and 

morbidity [36].  

We thus aim to systematically quantify the biomechanical properties of neonatal right 

and left ventricles, using an accepted neonatal porcine animal model [37-44].  These 

biomechanical data are consolidated with histological imaging, to provide a comprehensive 

analysis of tissue from the right and left ventricle free walls (RVFW, LVFW).  This study will 

provide baseline data describing the behaviour of neonatal porcine tissue and, through 

comparison to equivalent mature data, will also be able to provide an insight into the effect of 

maturation on tissue behaviour.  Such data may then prove useful to those researchers 

investigating immature cardiac tissue mechanics and the clinicians/bioengineers exploring 

new intervention techniques in congenital heart diseases.   
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2. Materials and methods 

 

2.1. Materials 

Forty-three, one-day-old neonatal porcine hearts (Yorkshire) were acquired from a 

local abattoir house in Mississippi, from donor piglets mass: 2.0 – 2.2kg, length: 0.35 – 

0.48m.  The deceased piglets all appeared fully developed, meaning that they were most 

likely to have died from hypoxia either during or immediately after, farrowing (i.e. birth).  All 

donor's hearts were presumed to be healthy, pending subsequent inspection.  The piglets 

were collected within hours of their death and transported to the Tissue Bioengineering 

Laboratory at the Mississippi State University, stored in ice-cooled boxes at 4oC.  The hearts 

were then promptly dissected out and visually examined for any macroscopic damage or 

disruption, with any that failed this assessment being excluded from further investigation.  

The anterior and posterior aspects of the LVFW and RVFW were then identified (Fig. 1), 

before defining the FSN-coordinate system as the fibre axis (F), defined as the mean-fibre 

direction as observed by the external surface texture; the sheet axis (S), defined as the 

direction transverse to the fibre axis within the layer; the sheet-normal axis (N), defined as 

the direction perpendicular to both the fibres and layers [9, 10, 45].  In this study, the fibre 

axis (F) is described as the ‘mean-fibre direction’ (MFD), and sheet-normal axis (N) as the 

‘cross fibre direction’ (CFD) [10].  Such a method is inherently subjective, though was 

performed in a manner consistent with previous studies [9, 10].   

   

Uniaxial extension testing samples were dissected from twenty hearts.  Ten randomly 

selected hearts had samples of dimensions 20mm (l) x 10mm (w) x 3mm (t) dissected, with 

the longest dimension aligned to the MFD.  The remaining 10 hearts were used to harvest 

samples in the CFD (Fig. 2 (a), (b) & (c)). All 20 samples were then trimmed using a cutting 

punch, achieving a traditional dog-bone shape and a 5mm minimum width.  For biaxial 

extension analysis, five samples (15 x 15 x 3mm) were dissected using a square-shaped 
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cutting punch from the LVFW, and a further five hearts used for RVFW samples (Fig. 2 (d) & 

(e)).  Each sample was dissected such that the presumed MFD and CFD were consistent 

with the x- and y-axes of the cutter.  A similar approach, though smaller cutter (3 x 3 mm), 

was adopted to dissect tissue for shear analysis.  These were collected from the anterior and 

posterior aspects of the LVFW and RVFW, dissected from the equatorial regions of 5 hearts 

(Fig. 2 (f) & (g)).  The final eight hearts were used for histological analysis (Fig.1).  Thirty-two 

cubic samples (5 × 5 x 5 mm) were dissected using a square-shaped cutter from the 

equatorial regions of the anterior and posterior aspects of LVFW and RVFW (Fig. 1).  In this 

instance, a coordinate system was established that ensured consistent orientation of the 

cutter, as this analysis served to quantify the relative fibre alignment.  Hence, the cutter was 

always aligned with the vertical axis of the heart, defined as passing through the apex and 

base. 
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Fig.1. Three-dimensional schematic model of the neonatal porcine heart. (a) Anterior view: 

LVFW = Grey region, RVFW = Yellow region. (b) Posterior view: LVFW = blue region, 

RVFW = pink region.  Squares represent the location of dissecting histological samples (5 × 

5 x 5mm), which were then sectioned in the plane perpendicular to the transmural direction. 

 

 

 

 

 

 

 

 

  

Epicardium 
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(a) Anterior - view (b) Posterior - view 
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Fig. 2. Schematic representation of the samples harvested from the neonatal porcine heart.     

Samples were dissected aligned to the ‘mean fibre direction’ (MFD) and ‘cross fibre 

direction’ (CFD), determined by observing the external features of the organ.  (a) Uniaxial 

CFD samples are dissected from the anterior aspect of the LVFW and RVFW. (b) & (c) 

Uniaxial MFD samples extend from the anterior to posterior aspect of the LVFW and RVFW. 

(d) & (e) Biaxial (square) samples extended from the anterior to posterior aspects of the 

LVFW and RVFW.  (f) & (g) Simple shear samples were dissected from the equatorial 

region of both the anterior and posterior aspects of the LVFW and RVFW. Scale bar = 12 

mm. 
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2.2. Methods 

The directional anisotropy of the LVFW and RVFW tissue was investigated at 

different deformation states, via four independent protocols.  Biomechanical testing was 

completed within 12h of birth, to produce data from fresh tissue.   

 

2.2.1. Microstructural analysis 

 All 32 samples were fixed in 4% paraformaldehyde for 48h and then in 70% 

glutaraldehyde.  Samples were then processed through a standard histological preparation 

protocol, including being dehydrated in graded alcohol, cleared with xylene and then 

embedded within paraffin wax.  Each block was cut perpendicular to the transmural 

direction, with a 2mm deep section selected for analysis (Fig. 1).  A standard Masson’s 

trichrome staining protocol was performed, with the sections finally mounted with Permount.  

The Masson’s trichrome stain identified muscle fibres in red, and collagen fibres light blue.    

 

2.2.2. Uniaxial extension test

Both ends of the dog-bone-shaped samples were wrapped in emery paper and 

clamped into the stainless steel grips of a uniaxial testing machine (Mach-1; Biosyntech, 

MN).  This produced samples with a dimension of approximately 15mm (l) x 5mm (w) x 3mm 

(t), with five measurements taken with digital callipers.  Each sample was preconditioned 

with 10 cycles at 10% strain, before being loaded to failure at 1.5 mms-1 ramp speed. 

Engineering stress was computed by normalising the applied force to the initial cross-

sectional area, and engineering strain calculated by normalising the displacement to the 

initial gauge length.  Mean peak stress, which describes the stress of failure, was then 

calculated from these data for the MFD and CFD samples.  The last preconditioning cycle 
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was used to quantify the myocardial hysteresis (to account for energy dissipation due to the 

viscoelastic behaviour), dividing the area enclosed by the loading and unloading curves 

(energy dissipation) by the area beneath the loading curve (energy input).  

 

2.2.3. Biaxial extension test 

 Biaxial mechanical properties were investigated using a biaxial testing system, 

described in detail elsewhere [46, 47].  The square samples, which had been dissected with 

the observed MFD and CFD aligned with the x- and y-axes were then mounted onto the 

machine using surgical sutures.  Five thickness measurements were collected at different 

locations, using a digital calliper, to determine an average dimension.  The samples were 

then immersed in 37oC PBS.  Ten preconditioning cycles were performed before the data 

were collected for analyses.  The specimens were stretched by applying a 30 N/m tension in 

the MFD (TMFD) and CFD (TCFD) at 0.5 mms-1.  Tissue deformation was measured via a 

charge-coupled device camera (National Instrument, IMAQ CCD, Austin, TX), tracking the 

relative position of four reference points placed in a 2 × 2 array.  In-house Labview code 

(National Instrument, Version 6, Austin, TX) was used to control the stepper motors and 

record the applied forces and tissue strain. 

 

2.2.4. Simple shear test  

Simple shear tests focussed on the relative shearing and sliding of the myocardial 

tissues.  Simple shear tests involved mounting the tissue in custom-built shear plates which, 

in turn, were mounted in the Mach 1 testing machine (Biosyntech, MN) and submerged in 

PBS at 37°C.  Regional anisotropy was investigated using 3 × 3 x 3 mm cubic specimens 

that had been dissected such that the MFD and CFD were consistent with the x and y-axes.  

Tissue samples were mounted between the two shear plates using minimal cyanoacrylate.  

They were sheared in the FS plane along the MFD and then the NS plane along the CFD, 
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following identification of these planes representing the extremes of shear behaviour in the 

adult porcine LVFW myocardium [9].  The tissue was exposed to positive and negative shear 

at 10% and incrementally increased to a maximum 50%, at a loading rate of 0.02 mms-1.   

 

2.3. Data analysis 

 

2.3.1. Fibre orientation and surface area calculations from histological images 

The Fourier components analysis method quantified the fibre orientation from 

histological images of the 4 heart regions, using the Fiji/Image J (NIH, USA) software and 

the ‘Directionality’ plug-in (https://imagej.net/Directionality) [48].  Data from histological 

images enabled identification of the ‘preferred’ fibre orientation direction (i.e. the histogram 

peak).  This peak was then fitted with a Gaussian function, reporting the preferred fibre 

orientation [49, 50].  A custom MATLAB code was also adopted to quantify the surface area 

ratio of collagen to myocyte fibres, using image thresholding based on RGB (red, green and 

blue) values [51].   

 

2.3.2. Uniaxial and biaxial tensile tests 

 Engineering stresses in MFD (     ) and CFD (     ) are calculated as the ratio of the 

applied force and the initial cross-sectional area.  Strains in the MFD (ε1) and CFD (ε2) are 

computed as the ratio of the displacement and the initial gauge length. 

      
  

  
 ,          

  

   
                    (1) 

    
  

  
            

  

  
    

Where: (  ,   ) are the displacements; (        are the initial gauge lengths.  
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2.3.3. Simple shear test 

 Shear stress (τ) is the ratio of the shear force   and the shear area       ; hence, 

this calculation represents the relative in-plane displacement of two parallel layers of this 

cubic specimen.  The amount of shear ᵞ ranges from 0.1 – 0.5 in increments of 0.1, whilst 

the separation distance (side length) for the cubic specimen was L ~ 3 mm.  

  
  

 
 ,       

          (2) 

Where:    represents the shear displacement. 

 

 

2.3.4. Statistical analysis 

 All values are reported as the mean ± standard deviation (SD), where a p-value less 

than 0.05 was considered as statistically significant. One-way analysis of variances 

(ANOVA) was performed along with Tukey HSD post hoc test to quantify the statistical 

significance of the anterior and posterior aspects of both ventricles.  All statistical analyses 

were conducted in SPSS 20.0. 
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3. Results  

 

3.1. Microstructural analysis 

 Representative images from the microscopic examination are presented showing the 

overall fibre orientation in the anterior and posterior aspects of the LVFW and RVFW (Fig. 

3).  These samples were collected aligned to the vertical axis of the heart (defined as 

passing through the apex and base).  The images indicate that the fibre direction in the 

anterior LVFW are more aligned to the horizontal, and posterior the vertical axes, 

respectively.  Indeed, the alignment of fibres with either the horizontal or vertical appears 

stronger in the LVFW than the RVFW.  The Fourier component analysis quantifies these 

alignments and confirms that the fibres in the anterior and posterior LVFW are more aligned 

to the horizontal and vertical axes of the heart.  Conversely, fibres in the anterior and 

posterior RVFW are aligned nearer diagonally (Table 1), though the former has less 

intercellular space (Figs. 3 (c) & (d)).  The ratio of collagen to myocyte fibres was highest in 

the LVFW posterior, and lowest in the RVFW anterior, regions (Table 2).  The average in-

plane (x, y) principal (preferred) fibre orientation of the LVFW and RVFW are stated in Table 

1. 

 



14 
 

 
 
 
 
 
 
 

  

Anterior wall 

 

 

Posterior wall 

LV
FW

 

  

R
V

FW
 

 

 

 

Fig. 3. Masson’s trichrome staining images of the neonatal porcine heart sectioned from 

the plane perpendicular to the transmural direction and viewed at × 40 magnification. (a) 

LVFW anterior, demonstrating circumferentially aligned fibres. (b) LVFW posterior, 

describing longitudinally aligned fibres. The RVFW anterior (c) and posterior (d) aspects 

demonstrated almost symmetrical fibre alignment, with the former having greater 

concentration and alignment of muscle fibres as reported in Table.2. Principal or preferred 

fibre angles are detailed in Table.1.  Scale bar = 50µm.   

 

 
 
 

a b 

c d 
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Heart regions 

 
Preferred fibre 

orientation  µ (º)      
 

(SD) 
Coefficient of 

determination    
(SD) 

 
LVFW (A) 

 
4.19 

 
(0.6) 

 
0.96 

 
(0.4) 

 
LVFW (P) 

 
-60.98 

 
(0.7) 

 
0.98 

 
(0.6) 

 

RVFW (A) -40.77 (0.2) 0.98 (0.7) 

RVFW (P) -44.01 (0.4) 0.98 (0.6) 

 
Table 1 
 
The average in-plane (x, y) principal fibre orientation parameter and coefficient of 

determination    ‘goodness of fit’ for RVFW and LVFW in the anterior (n = 16) and 

posterior (n = 16) aspects.  Histological specimens were examined in the plane 

perpendicular to the transmural direction, using Fourier components analysis method (n = 

32). 

 
Collagen / 

myocyte 

 LV (A) (SD)  LV (P) (SD)  RV (A) (SD)  RV (P) (SD) 

Transmural 

- plane 

 0.10 (0.5)  0.20 (0.6)  0.03 (0.3)  0.08 (0.4) 

 
Table 2 
 
The average surface area ratio of collagen to myocyte for RVFW and LVFW in the anterior 

(n = 16) and posterior (n = 16) aspects. Histological specimens were examined in the 

plane perpendicular to the transmural direction, using custom MATLAB code. 
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3.2. Uniaxial extension behaviour 

  The mean uniaxial behaviour of the LVFW and RVFW in extension is presented in 

Fig. 4 (a), with the data describing a non–linear, anisotropic, viscoelastic (hysteresis – 

formation) response in all regions.  Ten preconditioning cycles were performed, with both the 

LVFW and RVFW demonstrating the greatest change in behaviour during the first two cycles 

(Fig. 4 (b) & (c)).  It is evident from Figs. 4 (a), (d), (e) & (f) that the MFD was stiffer than the 

CFD in the strain range 0 to ~ 0.20, but that the CFD becomes stiffer than the MFD after ~ 

0.20 for both ventricles.  The RVFW is consistently the stiffer of the two ventricles. The 

energy dissipation and failure stresses are reported in Tables. 3 & 4. The data in Figs. 4 (a) 

– (f) demonstrate similar trends, though there is a significant difference between the RVFW 

and LVFW peak stresses (p = 0.001) and between MFD and CFD (p = 0.0001).  
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Fig. 4. (a)  Average ‘uniaxial behaviour’ of LVFW & RVFW until failure (n = 5). (b) – (c) 

Uniaxial cyclic behaviour of LVFW and RVFW in CFD. (d)  Representing passive ‘uniaxial 

(e)
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behaviour’ of LVFW until failure. Mean curves of the LVFW (e) and RVFW (f) (n = 5).  

Standard deviation indicated by error bars. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 

Hysteresis area 

 
  

Heart regions  (SD) CFD (SD) 
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MFD 

 
 

LVFW 
 

91 
 

(112) 
 

80 
 

(82) 

 
RVFW 

 
54 

 
(108) 

 
43 

 
(93) 

 

 

Table 3 

Average hysteresis area (J/  ) of neonatal porcine LVFW and RVFW for uniaxial testing at 

20% strain in MFD and CFD.       

 

 

 

 

 

 

 

 

 

 

 

 

Heart regions 
 

MFD 

 
(SD) CFD (SD) 

 
LVFW 

 
5.84 

 
(0.4) 

 
5.95 

 
(0.4) 

 
RVFW 

 

4.69 
 

(1.4) 
 

8.22 

 
(1.8) 

 

 

Table 4 

Average failure stress values (KPa) for neonatal LVFW and RVFW for uniaxial testing; the 

specimens were stretched until failure. Mean ± SD stress values are plotted in Figs. 4 (e) 

and 4 (f). 

3.3. Biaxial extension behaviour 



20 
 

  The biaxial mechanical representatives (Engineering stress vs stretch) were 

investigated at 30 Nm-1: 30 Nm-1 tension ranges (Fig. 5).  RVFW and LVFW possess non–

linear, anisotropic and viscoelastic (hysteresis formation) mechanical responses (Figs. 5 (a) – 

(b)).  The RVFW is stiffer, whilst the LVFW demonstrates greater viscoelasticity.  The MFD 

exhibits stiffer behaviour and greater viscoelasticity in both ventricles, than the CFD (Figs. 5 

(a) – (d)).  The LVFW exhibits mechanical cross-coupling between the MFD and CFD as 

demonstrated in Fig. 5(a).  The energy dissipation and peak Engineering stresses are 

presented in Tables. 5 & 6.  A significant difference exists between the RVFW and LVFW 

peak Engineering stresses in MFD (p = 0.0001) and CFD (p = 0.0001). 
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Fig. 5. (a) The average biaxial behaviour of LVFW, with negative strain indicating possible 

in-plane mechanical cross-coupling between the MFD-CFD (n = 5). (b) Average biaxial 

behaviour of RVFW (n = 5).  Mean ‘biaxial’ curves of the (c) LVFW and (d) RVFW (n = 5).  

Error bars describe the standard deviation. 
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Hysteresis area 

 
  

Heart regions 
 

MFD 

 
(SD) CFD (SD) 

 
LVFW 

 
51 

 
(121) 

 
19 

 
(76) 

 
RVFW 

 
48 

 
(128) 

 
23 

 
(67) 

 

 

Table 5 

Average hysteresis area (J/  ) of neonatal porcine LVFW and RVFW for biaxial testing at 

(30:30) N / m in MFD and CFD. 

 

 

 

 

 

 

 

 

 

 

Heart regions 
 

MFD 

 
(SD) CFD (SD) 

 
LVFW 

 
6.97 

 
(0.9) 

 
6.77 

 
(0.9) 

 
RVFW 

 
8.11 

 
(2.3) 

 
7.67 

 
(1.8) 

 

 

Table 6 

Average peak Engineering stress values (KPa) for neonatal porcine LVFW and RVFW for 

biaxial testing at (30:30) N / m in MFD and CFD. Mean ± SD stress values are plotted in figs. 

5 (c) and 5 (d). 
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3.4. Simple shear behaviour 

Hysteresis formation (energy dissipation) is prominently evident throughout the cyclic 

shearing behaviour, with both ventricles demonstrating increased shear (Fig. 6).  The 

anterior walls appear stiffer with greater energy dissipation than the posterior walls of both 

ventricles, whilst the MFD is stiffer than the CFD (Fig. 7 (a) – (b)).  The RVFW exhibits 

asymmetrical behaviour, possessing greater stiffness in the positive direction anteriorly and 

negative direction posteriorly.  Conversely, both aspects of the LVFW exhibit consistent 

behaviour in both directions (Fig. 6). The energy dissipation and peak shear stresses are 

described in Tables. 7, 8 & 9.  The influence of fibre direction is described in (Figs. 7 (a) – 

(f)), whilst variations in tissue behaviour are identified statistically via a one-way ANOVA and 

Tukey HSD post hoc test (Table. 10). 
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Fig.6. Demonstrating passive ‘simple shear’ behaviour of the anterior and posterior aspects 

of the LVFW & RVFW in the MFD and CFD, at increments of 0.3 (blue curve), 0.4 (orange 

curve) and 0.5 (black curve).  The positive y-axis represents the positive direction of 

myocardial shearing. (a) LVFW – anterior. (b) LVFW – posterior. (c) RVFW – anterior. (d) 

RVFW – posterior.   
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Fig. 7. ‘Mean simple shear behaviour’ of anterior and posterior aspect of the LVFW (a) and 

the RVFW (b), in the MFD and CFD at increments of 0.1, 0.2, 0.3, 0.4 & 0.5 (n = 5).  LVFW 

anterior (c) and posterior (d) in MFD and CFD, at an increment of 0.5.   RVFW anterior (e) 

and posterior (f) in MFD and CFD at an increment of 0.5.  (g) Column plots indicate mean 

hysteresis areas in the anterior and posterior aspect of LVFW & RVFW, for MFD and CFD at 

an increment of 0.5 (n = 5).  Error bars represent standard deviation. 
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Table 7 

Average hysteresis area (J/  ) of neonatal porcine LVFW and RVFW in anteroposterior 

directions for simple shear testing at 0.5 increments in MFD and CFD. Mean ± SD energy 

dissipation values are plotted in Fig. 7 (g). 

 

 

 

 

 

 

 

  
 

Hysteresis area 

 
  

Heart regions 
 

MFD 

 
(SD) CFD (SD) 

 
LVFW (A) 

 
306 

 
(104) 

 
260 

 
(86) 

 
LVFW (P) 

 
201 

 
(17) 

 
187 

 
(59) 

 

RVFW (A) 387 (87) 244 (159) 

RVFW (P) 208 (117) 174 (41) 

 

 

 

 

     

LVFW 

(A) 

    

     

LVFW 

(P) 
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RVFW 

(A) 

    

    

RVFW 

(P) 

  

Increments 
 

MFD (SD) CFD (SD) 
 

MFD (SD) CFD (SD) 

0.3 
 

0.99 (0.2) 0.82 (0.3) 
 

0.56 (0.3) 0.45 (0.4) 

0.4 
 

2.19 (0.3) 1.69 (0.3) 
 

1.36 (0.4) 0.85 (0.4) 

0.5 
 

4.62 (0.4) 3.38 (0.5) 
 

3.22 (0.4) 1.84 (0.5) 

 

Table 9 

Average peak shear stress values (KPa) for the neonatal RVFW in the anterior (A) and 

posterior (P) aspects for simple shear testing at 0.3, 0.4, 0.5 increments in MFD and CFD 

modes. Mean ± SD stress values are plotted in Figs. 7 (e) and 7 (f). 

 

 

 

 

 

Increments 
 

MFD (SD) CFD (SD) 
 

MFD (SD) CFD (SD) 

0.3 
 

0.84 (0.2) 0.57 (0.3) 
 

0.55 (0.2) 0.67 (0.2) 

0.4 
 

1.82 (0.3) 1.15 (0.4) 
 

1.14 (0.3) 1.22 (0.4) 

0.5 
 

3.60 (0.4) 2.10 (0.5) 
 

2.53 (0.4) 2.25 (0.5) 

Table 8 

Average peak shear stress values (KPa) for the neonatal LVFW in the anterior (A) and 

posterior (P) aspects for simple shear testing at 0.3, 0.4, 0.5 increments in MFD and CFD 

modes. Mean ± SD stress values are plotted in Figs. 7 (c) and 7 (d). 
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Table 10 

Statistical analysis (One way ANOVA along with Tukey HSD post hoc test) data for RVFW 

and LVFW in the anterior (A) and posterior (P) aspects represent: (1) LVFW (anterior & 

posterior) for MFD – CFD; (2) RVFW (anterior & posterior) for MFD – CFD; (3) LVFW (A) 

and RVFW (A) for MFD – CFD; and (4) LVFW (P) and RVFW (P) for MFD – CFD 

respectively. P – Value less than 0.05 considered statistically significant. 

 
     LVFW    

(A) 

  
    LVFW 

(P) 

  
    RVFW 

(A) 

  
     RVFW 

(P) 

Configurations MFD CFD  MFD CFD  MFD CFD  MFD 

1 0.0001 0.0001  0.0001 0.0001  - -  - 

2 - -  - -  0.0001 0.0001  0.0001 

3 0.0001 0.0001  - -  0.002 0.01  - 

4 - -  0.86 0.86  - -  0.12 
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4. Discussion 

This study has identified non–linear, anisotropic, viscoelastic and heterogeneous 

mechanical behaviour of neonatal porcine ventricle tissue.  These overall characteristics are 

consistent with those of other soft tissues [52-56].  

Uniaxial extension testing to failure was performed following ten preconditioning 

cycles (Figs. 4 (b) & (c)), a method consistent with that reported elsewhere [4, 5, 7, 57-62]. 

Uniaxial testing for failure of the immature tissue was performed and revealed that the MFD 

was stiffer and more viscoelastic than the CFD (Figs. 4 (a)).  Such a viscoelastic response is 

common in soft tissues and is due to the fluid-structure interaction within the elaborate 

microstructure of the cardiac samples [63-65].  At low strains, the myocardial mechanical 

response appears governed solely by cardiomyocytes.  As the tissue was extended beyond 

20% however, the CFD became stiffer than the MFD in both ventricles (Fig. 4 (a)).  This 

phenomenon has previously been attributed to the perimysial collagen, which provides some 

reinforcement of the tissue as it approaches its extensibility limit.  This apparent coupling 

between the cardiomyocytes and collagen fibrils appears to contribute to the mechanical 

strength of the myocardium [66-68].   A similar function of this collagen was previously 
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reported in the adventitia of arteries [69-71].  The similar trends of the MFD and CFD 

uniaxial plots (Fig. 4(a)) demonstrate their similar anisotropic behaviour.  Comparison with 

equivalent mature data indicates this variation is relatively small, probably due to the 

relatively few collagen fibril crosslinks, which are known to increase with age [3, 19].  

Uniaxial testing also demonstrated that the LVFW had greater extensibility and 

viscoelasticity, though lower stiffness, than the RVFW (Figs. 4(a), (b) & (c)).  This is 

surprising given that the LVFW has a greater proportion of collagen.  Our observation, of a 

greater ratio of collagen to myocyte fibres in the LVFW, is consistent with previous reports of 

higher collagen content preserving wall thickness during diastole and systole [51, 72-74] 

(Table 2).  Since a higher collagen content would typically be associated with greater 

stiffness in mature tissues, the less stiff behaviour observed here might be related to the 

collagen state in a 1-day neonatal heart.  This is different to the intuitive mechanical 

contribution of collagen typical in mature tissues.  It is noted that the uniaxial (LVFW – MFD) 

stiffness of neonatal porcine data reported here (23 kPa) is approximately one-half that of 

the equivalent mature porcine tissue (47 kPa) [75].  

The RVFW demonstrated greater stiffness relative to the LVFW during biaxial testing 

which may, in part at least, be explained by the greater proportion of muscle fibres to the 

immature collagen than the LVFW (Fig. 5 & Table. 2).  This is also the likely reason for the 

greater LVFW viscoelasticity, and the RVFW’s greater anisotropy, which is consistent with 

previous data [6].  Both ventricles demonstrated that the MFD was nearly twice as 

viscoelastic as the CFD (Table 5).  Figure 5 (a) (Engineering stress vs stretch) demonstrated 

slight negative strain in the MFD and CFD.  Similar, though stronger, trends have previously 

been reported in adult mammalian heart tissue [76] and was associated with a dense 

network of fine collagen fibrils linking the cardiomyocytes and large collagen fibrils.  This 

mechanical coupling may contribute to maintaining the myocardial mechanical stiffness [10, 

66].  The mechanical trends between MFD and CFD exhibited in Figs. 5 (a) & (b), is 

consistent with data from some canine studies [4, 5], though other adult studies report the 
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MFD as being approximately twice as stiff than CFD  [10, 60, 77].  The neonatal porcine 

LVFW (140 kPa) has the approximately one-third stiffness of equivalent adult porcine (400 

kPa) in the MFD [78].  Biaxial extension tends to demonstrate greater stiffness than the 

uniaxial extension in MFD, with the RVFW exhibiting peak Engineering stress almost double 

the uniaxial data (Tables 4 and 6).  Similarly, biaxial tests show greater anisotropy between 

MFD and CFD than equivalent uniaxial tests (Figs. 4 & 5), as a consequence of the 

collagen/muscle fibre crosslinking mechanism. 

The RVFW is the stiffest tissue in simple shear, with the MFD stiffer than the CFD.  

Strain softening was briefly observed, perhaps caused by a disruption of perimysial collagen 

during cyclic shearing, as a consequence of excessive shearing between adjacent 

myocardial muscle layers [79-81].  The anterior walls were stiffest with greater energy 

dissipation, which is again consistent with the relative microstructures (Fig. 3 and Table 2).  

The greater magnitude of energy dissipation achieved versus biaxial tests (Tables 5 & 7) 

would appear indicative of the importance of shearing within the heart wall.  This attribute is 

believed to be as a consequence of the relatively high water content of myocardium (~ 80% 

wet weight) and affected by the muscle presence [64].  The anterior and posterior LVFWs 

demonstrate similar mechanical trends in the positive and negative directions.  The anterior 

RVFW exhibits a stiffer response in the positive direction, whilst the posterior RVFW has 

greater stiffness in the negative direction (Fig. 6).  Fibre orientation analysis revealed 

orthogonal alignment of the LVFW muscle fibres, with fibres from the anterior region aligned 

horizontally and posterior fibres vertically (Figs. 3 (a) & (b), and Table 1).  Conversely, the 

fibres in the anterior and posterior RVFW were aligned nearer diagonally, with the former 

possessing greater concentration with less intercellular space, which may in part contribute 

to the RVFWs asymmetric shear behaviour (Table 2 & Fig. 3).  The principal or preferred 

fibre angles were calculated using Fourier component image analysis (Table 1).  The 

stiffness of LVFW adult porcine data has previously been reported at 50% strain as ~ 28 kPa 

(MFD) and ~ 5 kPa (CFD) [9].  Compared to the equivalent data reported here for neonatal 
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porcine tissue (i.e. ~ 7.2 kPa (MFD) and ~ 4.2 kPa (CFD) at 50% strain), indicates that the 

neonatal tissue is approximately one-fourth the stiffness of mature tissue in the MFD.  

Comparing the stress-strain plots of this shear data, to the above uniaxial data, highlights a 

similar stress after which the MFD tissue from both ventricles stiffens dramatically (Figs. 4 

(a) and 7 (c), (d), (e), (f)).  This is consistent with the trend previously reported in adult 

porcine cardiac tissue [9].   

 

 

 

4.1. Limitations 

 Whilst the above results provide a valuable insight into neonatal cardiac tissue 

behaviour, it is acknowledged that an animal-based laboratory study differs from human, 

physiological reality.  The porcine model was adopted as the adult organ is commonly used 

to simulate human performance, given their relatively similar structure and dimensions; 

however, there are still differences that will limit the applicability of these data.  Whilst the 

controlled environment of a laboratory has significant advantages when investigating tissue 

characteristics, the need to dissect samples does create artificial boundary conditions and 

release residual stresses, which may alter performance.  Common protocols were followed 

to ensure the tissues remained hydrated and in a condition similar to their in vivo physiology.  
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5. Conclusion  

A series of mechanical tests have been performed to characterise the behaviour of 

LVFW and RVFW from the neonatal porcine tissue.  A strong correlation is reported between 

microstructure and mechanical function, whilst the tissue was found to exhibit non–linear, 

anisotropic, viscoelastic (hysteresis formation) and heterogeneous behaviour.  The neonatal 

tissue is also identified as exhibiting one-half the stiffness of mature porcine tissue in uniaxial 

testing, one-third in biaxial testing, and one-fourth stiffness in simple shear testing.  Hence, 

these data provide both a baseline describing the biomechanical behaviour of immature 

porcine cardiac tissue and an indication as to the relative change in characteristics 

associated with tissue maturation.  This may prove valuable to researchers investigating 

cardiac mechanics.      
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