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Graphical abstract 

Laser polishing of various engineered materials such as glass, silica, steel, nickel and 

titanium alloys, has attracted considerable interest in the last 20 years due to its superior 

flexibility, operating speed and capability for localised surface treatment compared to 

conventional mechanical based methods. The paper initially reports results from process 

optimisation experiments aimed at investigating the influence of laser fluence and pulse 

overlap parameters on resulting workpiece surface roughness following laser polishing of 

planar 3D printed stainless steel (SS316L) specimens. A maximum reduction in roughness of 

over 94% (from ~3.8 to ~0.2 µm Sa) was achieved at the optimised settings (fluence of 9 

J/cm2 and overlap factors of 95% and 88-91% along beam scanning and step-over directions 

respectively), shown in Fig. A1. Subsequent analysis using both X-ray photoelectron 

spectroscopy (XPS) and glow discharge optical emission spectroscopy (GDOES) confirmed 

the presence of surface oxide layers (predominantly consisting of Fe and Cr phases) up to a 

depth of ~0.5 µm when laser polishing was performed under normal atmospheric conditions. 

Conversely, formation of oxide layers was negligible when operating in an inert argon gas 

environment. The microhardness of the polished specimens was primarily influenced by the 

input thermal energy, with greater sub-surface hardness (up to ~50-60%) recorded in the 

samples processed with higher energy density. Additionally, all of the polished surfaces were 

free of the scratch marks, pits, holes, lumps and irregularities that were prevalent on the as-

received stainless steel samples. The optimised laser polishing technology was consequently 

implemented for serial finishing of structured 3D printed mesoscale SS316L components. 

This led to substantial reductions in areal Sa and St parameters by 75% (0.489 to 0.126 µm) 

and 90% (17.71 to 1.21 µm) respectively, without compromising the geometrical accuracy of 

the native 3D printed samples, see Fig. A2.  
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50 µm(a) Sa=3.78 µm
(b) 50 µmSa=0.19 µm

 

Fig. A1 Areal surface topographies of: (a) parent material; (b) laser polished areas processed 

with fluence: 9 J/cm2, pulse overlap along X: 95%, pulse overlap along Y: 88%. 

 

 

 

Laser polished regions

(a) 
 (b) Sa= 2.41 µm  

(c) Sa= 0.24 µm
 

Fig. A2 (a) Laser polished regions on Digital Metal structured SS316L parts; (b) as-received 

surface; (c) laser polished surface (area: 287×218 µm). 

 

 

 

Highlights 

 

 Process optimisation for laser polishing novel 3D printed SS316L parts  

 Evaluating the effects of key polishing parameters on SS316L surface roughness 

 Detailed spectroscopic analysis of oxide layer formation due to laser polishing 

 Comparative surface integrity analysis of SS parts polished in air and argon 

  A maximum reduction in roughness of over 94% achieved at optimised polishing settings  
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Abstract 

Laser polishing of various engineered materials such as glass, silica, steel, nickel and 

titanium alloys, has attracted considerable interest in the last 20 years due to its superior 

flexibility, operating speed and capability for localised surface treatment compared to 

conventional mechanical based methods. The paper initially reports results from process 

optimisation experiments aimed at investigating the influence of laser fluence and pulse 

overlap parameters on resulting workpiece surface roughness following laser polishing of 

planar 3D printed stainless steel (SS316L) specimens. A maximum reduction in roughness of 

over 94% (from ~3.8 to ~0.2 µm Sa) was achieved at the optimised settings (fluence of 9 

J/cm2 and overlap factors of 95% and 88-91% along beam scanning and step-over directions 

respectively). Subsequent analysis using both X-ray photoelectron spectroscopy (XPS) and 

glow discharge optical emission spectroscopy (GDOES) confirmed the presence of surface 

oxide layers (predominantly consisting of Fe and Cr phases) up to a depth of ~0.5 µm when 

laser polishing was performed under normal atmospheric conditions. Conversely, formation 

of oxide layers was negligible when operating in an inert argon gas environment. The 

microhardness of the polished specimens was primarily influenced by the input thermal 

energy, with greater sub-surface hardness (up to ~50-60%) recorded in the samples processed 

with higher energy density. Additionally, all of the polished surfaces were free of the scratch 

marks, pits, holes, lumps and irregularities that were prevalent on the as-received stainless 

steel samples. The optimised laser polishing technology was consequently implemented for 

serial finishing of structured 3D printed mesoscale SS316L components. This led to 

substantial reductions in areal Sa and St parameters by 75% (0.489 to 0.126 µm) and 90% 

(17.71 to 1.21 µm) respectively, without compromising the geometrical accuracy of the 

native 3D printed samples.  
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1. Introduction 

Additive manufacturing (AM) or 3D printing is rapidly developing as a viable technology 

for producing complex components as it offers many advantages over conventional 

processing. This includes greater design freedom as well as the capability to efficiently 

produce complex parts with intricate internal and external structures. While there is evidence 

of growing interest and initial utilisation of AM processes in several industries such as the 

automotive, aerospace, opto-electronic and biomedical sectors [1], uptake of this technology 

on a larger production scale remains limited. This is primarily due to shortcomings of current 

AM processes relating to achievable workpiece geometrical accuracy and surface integrity, 

with parts generally suffering from poor surface roughness (typically ranging from ~5 to 15 

µm Ra), stair-step effects on surfaces, balling, adverse residual stresses and low dimensional 

precision [2]. Therefore, post-process operations such as sand blasting, machining, etching, 

electro-polishing or plasma spraying is often employed for AM components to meet 

functional tolerances and surface integrity requirements. Some of these methods however are 

time consuming and not viable particularly for products with complex geometries. A 

potential alternative is laser polishing (LP), which is a flexible, contactless method that can 

be fully automated without the need for dedicated equipment. The technology has been 

continuously developed over the past two decades and successfully employed for improving 

the surface morphologies of components made from various materials such as diamond, 

glass, silica and metals including steel, nickel/titanium alloys and to a somewhat lesser 

extent, aluminium alloys [3]. The present paper details results from experimental trials to 
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evaluate the performance of laser polishing for finishing additively manufactured stainless 

steel surfaces. The effects of varying laser fluence and pulse overlap factors on workpiece 

surface roughness were assessed, followed by an analysis of oxide layer formation, 

microstructure and microhardness after polishing at different fluence levels under 

atmospheric and argon environments.  

 

2. Literature review and research motivation 

2.1. Review of laser polishing research 

Polishing using laser irradiation can be achieved through three different process 

mechanisms, which are large area ablation, localised ablation and re-melting at macro (over 

depths of 20-200 µm) or micro (over depths of 0.5-5 µm) polishing regimes [4]. The majority 

of research on LP however has focussed primarily on the re-melting mechanism due to 

several advantages compared to the ablation based methods, such as greater scope for 

automated operation, shorter machining times, reduced environmental impact and better user 

control of surface roughness and localised processing capability [4].  

Re-melting is initiated when material from surface asperities is redistributed into adjacent 

troughs/valleys to form a molten pool due to surface tension as a laser beam passes over the 

workpiece. This leads to a decrease in peak-to-valley heights of the initial surface asperities 

[3]. A schematic illustrating the re-melting mechanism in LP is given in Fig. 1(a) while its 

effect on surface topography is shown in Fig. 1(b). 

 

 

2.1.1. Laser polishing of non-metallic materials 

Surface treatment of thick (>100 µm) and thin (<100 µm) diamond films (deposited by 

chemical vapour deposition) using LP was introduced in the mid-1990s, with the process 

demonstrating remarkable reduction in polishing times compared to mechanical methods [5, 
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6]. It was reported that mechanical polishing techniques typically required 12 to 28 hours in 

order to achieve optical quality surface finish for 150-400 µm thick diamond films over an 

area of 8×10 mm2, while LP processing time was less than 1 hour for a 5×5 mm2 area [6]. 

However, the average surface roughness (Ra) following LP was of the order of micrometres 

whereas the mechanical based treatment was capable of producing roughnesses in the 

nanometre range. Thus, LP is usually recommended as an initial “rough” polishing operation 

in order to reduce the overall processing time for generating optical quality surfaces.  

Apart from thick/thin diamond films, LP has also been employed for the finishing of 

fused silica/glass parts [7-11]. Bol’shepaev and Katomin [7] reported that workpiece surface 

cracking following LP of fused silica was due to thermal stresses induced by the laser beam 

and consequently recommended pre-heating the workpiece to near annealing temperatures 

(500-600°C) prior to polishing. In order to achieve an acceptable surface finish Wang et al. 

[8] showed that an optimum range of laser energy density (800 to 1100 J/cm2) was required 

for LP of silica, below which no obvious surface modifications occurred whilst higher energy 

densities led to vaporisation and breakdown of SiO2 to SiO. However, in another study by 

Hildebrand et al. [10], it was observed that the final surface roughness was largely influenced 

by the initial roughness and waviness of the as-received workpieces. Heidrich et al. [11] 

proposed a three-step manufacturing route for producing optical components, starting with 

high speed laser ablation followed by LP and finally high precision laser ablation. Spherical, 

aspherical and freeform surfaces were successfully laser polished with comparable roughness 

and waviness to those achieved on planar surfaces. 

 

2.1.2. Laser polishing of steel and cast iron 

Much of the published research concerning LP of ferrous materials has predominantly 

involved tool steels, although several carbon and stainless steel grades have also been 
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investigated. Brinksmeier et al. [12] compared LP and abrasive flow machining against 

conventional abrasive polishing for producing X40Cr13 stainless steel moulds. Despite 

roughness of the laser polished structures being within 400 to 600 nm Ra, the surfaces were 

still found to be short of optical quality standards. Avilés et al. [13, 14] assessed the surface 

integrity and fatigue strength of laser polished AISI 1045 steel specimens performed under 

atmospheric and N2 gas environments. A heat affected zone (HAZ) up to a depth of 100-150 

µm beneath the workpiece surface was evident in both cases but with differences in the 

surface/subsurface characteristics. In particular, the formation of oxide layers, micro-cracks 

and inclusions were observed after laser polishing under normal atmospheric condition while 

a pearlitic to martensitic transformation together with compressive residual stresses up to 200 

MPa in the HAZ was apparent when operating in a N2 environment. Furthermore, the fatigue 

strength of samples processed under an inert gas condition was ~7.5% higher than those 

polished in air [14]. The performance of diode-pumped solid-state and CO2 lasers in 

continuous (CW) mode for LP of DIN 1.2379 (AISI D2) tool steel was evaluated by Ukar et 

al. [15], who also developed a mathematical model to predict the resulting surface roughness 

[16]. While both laser sources achieved comparable reduction in surface roughness (75-80%), 

the solid-state system was found to be more efficient due to its larger beam spot diameter of 2 

mm compared to 1.04 mm for the CO2 laser.  

The effects of process parameters such as energy density [17-19], scanning speed [20] 

and step-over distance [21] on the quality of laser polished surfaces have been studied by 

numerous researchers, with the majority concluding that laser energy density has the 

strongest influence on resulting surface integrity [19]. Laser energy density is typically 

controlled by varying the focal offset distance (FOD) from the workpiece, which 

correspondingly alters the diameter of the beam. Chow et al. [17] investigated laser 

micropolishing (LµP) of AISI H13 steel surfaces at FOD’s of 1.3-2.9 mm. A decrease in 
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surface roughness of up to 39.7% was achieved with a FOD greater than 2.2 mm. Similarly, 

Pfefferkorn et al. [18] showed that beam diameter was a significant factor affecting the 

roughness of pulsed laser polished S7 tool steel parts. 

Comprehensive research has been undertaken on predicting and optimising workpiece 

surface roughness following pulsed laser micro polishing (PLµP) of tool [22, 23] and 

stainless [24] steels. Viscous damping of melt pool oscillations (capillary regime) together 

with Marangoni flows caused by surface tension gradients (thermo-capillary regime) were 

identified as the predominant smoothening mechanisms [24]. Under certain processing 

conditions, some of the polished specimens exhibited open surface cracks (~5 to 10 µm in 

length) due to variations in residual stresses within the re-solidified layers [22]. 

Laser polishing of cast iron has also been assessed however it was found that the free 

graphite elements within the material structure hindered process efficiency due to its high 

melting temperature (~1500 K). However, by performing the LP process in a controlled CO2 

environment, it was possible to eliminate the graphite particles from the surface and hence 

reduce surface roughness by 88% [25]. 

 

2.1.3. Laser polishing of nickel and titanium alloys 

Perry et al. [26] studied the influence of pulse duration and scanning speed when laser 

polishing micro-fabricated nickel specimens. Finite element (FE) and fluid flow simulations 

predicted that smoother surfaces were obtained with longer pulse durations. Corresponding 

experimental validation trials carried out at pulse durations of 300 and 650 ns, reduced the 

average workpiece surface roughness Ra to 66 and 47 nm respectively, from an initial value 

of 95-96 nm. Hafiz et al. [27] evaluated the feasibility of using a picosecond laser for micro-

polishing of Inconel 718 and in particular the effects of laser fluence/energy density. Ablation 

and melting regimes were prevalent when operating at fluence levels of 0.19-0.24 J/cm2 and 
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0.13-0.18 J/cm2 respectively. However a transition zone between ablation and melting was 

also evident that led to inconsistent formation of grooves and slots.  

The application of PLµP for finishing of titanium (Ti) alloys has also been explored [28-

31]. Surface cracking was typically observed when polishing Ti-6Al-4V in air due to 

oxidation but which can be avoided by processing in an Ar controlled environment [28]. 

Similar defects were also reported by Yermachenko et al. [32] when LP VT16 titanium alloy 

in air. A comparative study involving the LµP of Ti-6Al-4V and martensitic tool steel with an 

additional laser beam for pre-heating the workpiece surfaces was detailed by Nüsser et al. 

[33] . Although the dual beam approach was detrimental for the tool steel due to increased 

formation of martensite, improved surface finish (36% lower roughness) was observed for the 

Ti-6Al-4V material due to the extended melt duration. In another study by Kumstel and 

Kirsch [34], LP processing time was found to be lower for Ti-6Al-4V (7 s/cm2) compared to 

Inconel 718 (10 s/cm2) and tool steel (60 s/cm2). Although the LP of Ti is most effective 

when performed in air (in terms of reduction in roughness), localised molten globules and 

oxidation zones are generally present on the polished surfaces. Therefore, the use of an 

assisted inert gas medium is crucial when processing Ti alloys and preferably delivered at 

optimised pressures [35]. 

 

2.1.4. Laser polishing of AM components  

Remos-Grez and Bourell [36] investigated the use of non-tactile LP process for surface 

finishing of free-form selective laser sintered (SLS) iron-copper parts with a particular focus 

on assessing two melting regimes, surface shallow melting (SSM) and surface over melting 

(SOM), which has a significant influence on final surface integrity. The former was 

characterised by fast melting and re-solidification of surface asperities that produced a 

smoother finish, while SOM resulted in a deeper melting of a layer below the surface valleys 
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and a higher roughness when LP was carried out with elevated laser energy density. Another 

study carried out by Lamikiz et al. [37] on the LP of SLS parts (made of 60% sintered AISI 

420 stainless steel and 40% infiltrated bronze) at different laser energy densities and beam 

scanning speeds showed that an 80% reduction in surface roughness from 7.5 to ~1.2 µm Ra 

was possible when operating at optimised process conditions. As for parts manufactured via 

selective laser melting (SLM), several publications have concluded that a LP step after each 

intermediate layer (20-30 µm thickness) or following deposition of the final layer can be 

beneficial for improving component surface integrity [2, 38-40]. This includes increased 

workpiece microhardness and material density/sealed the surface porosities together with 

microstructure refinement leading to improved micro-machinability. Marimuthu et al. [41] 

developed a computational fluid dynamics (CFD) based numerical model to understand the 

melt pool dynamics during LP with laser energy, beam scanning speed and focal offset 

distance as the variable parameters and its associated influence on resulting surface 

roughness. Input thermal energy was identified as the key process parameter affecting melt 

pool convection, and thereby controlling the resulting surface quality. A higher energy 

density resulted in increased melt pool velocity that subsequently deteriorated the final 

surface finish. Conversely, a low melt pool velocity aided in achieving wider polished track 

width, thereby improving the surface quality. Experiments utilising optimised process 

parameters for LP of SLM fabricated Ti-6Al-4V parts demonstrated an improvement in 

surface roughness from 10.2 to 2.4 μm [41]. Likewise, work on LP of laser clad SS316L 

specimens also revealed a substantial reduction in surface roughness of up to 96%, from 21 to 

0.79 μm Sa [42].  

Important LP investigations with their key process variables are listed in Table 1. They 

were used in defining the LP requirements in this research and also for identifying the LP 

processing window that was investigated.  
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2.2. Research motivation  

As the melting temperature of metal powders is exceeded in laser/electron beam based 

AM processes, the fabricated parts typically suffer from adverse residual stresses and poor 

fatigue properties. The design of a suitable support structure is also a pre-requisite for 

successful SLM or electron beam melting (EBM) applications. To address some of these 

limitations, a novel 3D printing technology for metallic materials commercially known as 

Digital Metal® (DM), was developed [43]. This two stage process requires “green” parts to be 

initially produced in a metal powder bed by a precision layer by layer ink-jet printing 

followed by a secondary sintering step, as shown in Fig. 2. The technology is capable of 

producing complex SS316L parts having up to 97% density and which is independent of the 

printing orientation [43]. In addition, contrary to the SLS or SLM fabricated components, 

there is no distortion of the green parts or induced residual stress as printing is carried out at 

room temperature. While traditional AM techniques typically produce parts with Ra in the 

range of 5-7 μm, and sometimes as high as 10-30 μm [44], DM manufactured components 

exhibit relatively lower surface roughness, typically in the order of ~ 3 to 4 μm Ra. Despite 

this, micro/mesoscale components produced with DM technology still require post-process 

operations to obtain the necessary functional surface quality/integrity. Unlike SLS/SLM 

parts, there is little or no published work regarding the effects of LP on intricate surfaces 

generated using the DM process. Hence the focus and motivation of the present research was 

to investigate the influence of key LP operating parameters and process environment on the 

surface integrity of DM printed stainless steel workpieces as well as an in-depth 

spectroscopic analysis of oxide layer formation.  
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3. Experimental work  

3.1. Design of experiments for LP parameter optimisation  

The initial laser polishing parameter optimisation experiments were carried out on planar, 

cube shaped stainless steel (SS316L) specimens produced using the DM process. Table 2 

details the nominal composition of the printed workpiece material, which has a melting 

temperature of 1538°C [45]. All of the LP trials were conducted on a laser micromachining 

system utilising a MOPA-based Yb-doped fibre nanosecond (ns) laser source with a 

maximum average power of 50 W and wavelength (λ) of 1064 nm. The system was equipped 

with a 100 mm telecentric lens, a 3D scanhead (RhoThor RTA) mounted on a Z-axis stage 

with a maximum linear speed of 2.5 m/s and a stack of four stages (2 rotary and 2 linear) for 

positioning of workpieces within the machine’s working envelop. Average laser power (P) 

and pulse duration (t) were kept constant at 37.2 W and 220 ns respectively with a single 

polishing pass carried out in normal atmospheric conditions for all tests. A full factorial 

experiment involving a total of 75 tests without any blocking or replication was performed to 

investigate the effect of varying laser fluence (energy density) together with the pulse overlap 

along the scanning direction/machine X-axis (determined by the scanning speed and pulse 

frequency) and step-over direction/machine Y-axis (determined by the hatching pitch) on 

workpiece surface roughness. The LP parameter levels for each of the variable parameters are 

detailed in Table 3. Analysis of variance (ANOVA) was used to identify the significant 

factors and interactions. A preliminary study was undertaken to identify the suitable ranges of 

energy density and X and Y pulse overlaps [46].  

The fluence and pulse overlap values were calculated using Eqn. 1 to 5. The Rayleigh 

length (ZR) was initially determined from Eqn. 1 followed by the Gaussian beam radius (wz) 

using Eqn. 2: 
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w0 - beam radius at the focal plane (29.5 µm, measured with a beam profiler) 
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where,  

v - beam scanning speed along X, varied between 900 to 5500 mm/s; 

f - pulse frequency, varied between 30000 to 50000 Hz; 

D - beam spot diameter at the focal plane (59 µm, measured with a beam profiler); 

p - hatching pitch/step-over, varied between 3 to 11 µm. 

 

3.2. Surface characterisation 

Oxide layer formation on specimen surfaces during LP under air, argon and nitrogen 

gas environments was initially assessed. However, preliminary trials revealed that Ar was 

more efficient than N2 at improving workpiece roughness and minimising surface oxidation. 

Therefore, only Ar was used in subsequent mainstream trials. The LP trials in argon were 
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conducted in a cylindrical aluminium chamber measuring 100 × 100 × 60 mm. The chamber 

was fitted with a toughened glass top lid that was transparent to the near infra red (NIR) laser 

beam while the Ar gas was delivered at a flow rate of 14 L/min and pressure of 8 bar.  

Both qualitative and quantitative assessment of surface oxidation of the specimens 

polished in air and Ar were carried out using various techniques including X-ray energy 

dispersive spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS) and glow discharge 

optical omission spectroscopy (GDOES). In order to confirm the presence of oxygen on the 

polished surfaces, EDX was carried out using an Oxford Inca 300 system coupled to a JEOL 

6060 scanning electron microscope (SEM). This was followed by XPS measurements 

performed using a Kratos Ultra DLD fitted with a monochromated Al k alpha source emitting 

X-rays at 1486.7 eV in order to quantify the percentage of elements oxidised in the surface 

and sub-surface of the LP specimens. For a wide scan, the source operated at 75 W and the 

detector was set to sweep between 1100 and 0 eV with a 1 eV step size and pass energy of 

160 eV. Region scans were undertaken simultaneously with the source running at 200 W, the 

detector sweeping at a step size of 0.1 eV and pass energy of 20 eV. All measurements were 

conducted at a pressure of 5×10-9 mbar. In order to remove the carbon from the samples’ top 

layers, Ar ions were sputtered over an area of 4×4 mm2 for 27 min with 4 kV and an emission 

current of 8 mA. To evaluate the depth of the oxide layers, GDOES analysis was further 

carried out on a SPECTRUMA ANALYTIK GmbH system (model number GDA650HR), 

with argon as the plasma excitation source and a chamber gas pressure of 250 Pa. A power of 

10 W was used in a pulsed radiation frequency (RF) mode with a frequency of 2.2 kHz, on-

duty ratio of 30% and spot diameter of 2.5 mm.   

The presence of thermodynamically stable phases in SS316L at ambient temperature 

and following LP was evaluated using Thermo-Calc software. Relevant thermodynamic 

properties were calculated using information from databases for the selected materials, which 
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was primarily TCFE7 covering various steel alloys, together with TCOX5 and SSUB5 for 

other elements present in the workpiece [48]. The results for the formation of oxide 

compounds obtained with Thermo-Calc software were verified against X-ray diffraction 

(XRD) data obtained using a Siemens D5000 diffractometer with a Cu target (wavelength,  

= 54 picometre). The samples were continuously scanned with the detector rotating from 12° 

to 100°, at a step size of 0.05° and time per step of 0.2 s. The data was subsequently analysed 

with the EVA software and the peaks were identified by comparing the results to standard 

databases (JCP) within the software. 

An Alicona G5 InfiniteFocus system employing ‘Focus Variation’ (FV) technology was 

utilised to perform 3D surface topography evaluation of the as-received and laser polished 

DM parts. A 50X optical magnification with lateral and vertical resolutions of 1.5 µm and 40 

nm respectively were used for all measurements. The captured data was assessed in terms of 

areal surface parameters encompassing Sa (arithmetic mean deviation of the surface), St (total 

height of the surface) and Sz (10-point height of the surface) together with surface defects. 

High resolution / magnification micrographs of the LP surfaces were also recorded using the 

SEM. 

As laser processes involve surface melting and re-solidification, formation of a heat 

affected zone (HAZ) is expected and thus in order to control the material behaviour, 

microhardness assessment of the LP surfaces was carried out. The samples’ cross-sections 

were hot mounted in edge retentive bakelite, further ground and polished using SiC paper on 

a Buehler grinder-polisher. The microhardness measurements of the specimens (depth 

profile) were conducted on a Mitutoyo HM-124 microhardness tester with a load of 25 g and 

indent time of 15 s. The average value of ten measurements, each taken at 10 µm intervals 

from the polished surface until the bulk hardness achieved, was calculated and plotted. The 

centre point of the indents was kept at a minimum distance of 30 µm from each other in order 
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to minimise the influence of previous indents on the new reading. The SS316L samples were 

subsequently immersion etched in Glyceregia solution (15 mL glycerol, 10 mL HCl and 5 

mL HNO3) for 5 to 10 mins, with corresponding microstructural analysis performed using a 

Leica optical microscope and SEM. 

 

3.3. Laser polishing of 3D printed structured SS316L parts 

Laser polishing of structured DM SS316L parts having as-received roughness levels of 

2.4-3.0 µm Sa were carried out utilising the optimised LP settings. The component design is 

shown in Fig. 3. Equivalent settings were also employed for the LP of semi-polished / 

intermediately polished (deburring by vibratory polisher, followed by manual polishing) SS 

aesthetic parts with a base roughness of Sa=~0.43-0.49 µm. As with the planar workpieces, 

the resulting surface roughness of the structured DM parts following LP were analysed using 

FV technology. 

 

4. Results and discussion 

4.1. Optimisation of LP parameters  

 

The main effect plots of laser fluence and pulse overlap factors along X and Y on 

workpiece Sa, St and Sz are shown in Fig. 4. Mean Sa, St and Sz improved with the increase of 

energy density from 5 to 9 J/cm2 and also with the increase of both OPx and OPy from 82% to 

95%. The interaction plots for Ed and OPx and Ed and OPy are shown in Fig. 5(a) and 5(b) 

respectively. As it can be seen in the figure, mean Sa remained almost unchanged at the 

highest OPx and OPy levels irrespective of the fluence levels. With the reduction in the 

overlapping ratio, mean Sa typically decreased with the increase of laser energy density. The 

interaction plot between OPx and OPy in Fig. 5(c) showed that OPy should be set in the range 

from 88 to 91% if a 95% OPx is utilised in order to achieve the best areal surface roughness. 



 18 

The interaction plots for Ed, OPx and OPy with regard to St and Sz are detailed in Figs. 6 and 7 

respectively. Typically, the trends are similar to that for Sa in Fig. 5 and the best surface 

finish was achieved with a fluence of 9 J/cm2 and overlap factors between 88-91% for both X 

and Y. An ANOVA for Sa including two-way interactions between the factors was carried out 

with the results given in Table 4. The OPx parameter had the highest influence on surface 

roughness with a percentage contribution ratio (PCR) of 49.89. This was followed by the 

combined effect of Ed and OPx (PCR=12.53) and the sole effect of fluence (PCR=12.2). The 

contributions of OPy and the interaction between OPx and OPy to the average surface 

roughness were comparable, i.e. PCRs of 9.28 and 8.36, respectively. Although all factors 

and their interactions were statistically significant at 5% level, pulse overlap along the beam 

scanning direction (X) was found to be the most important contributing factor in improving 

the surface quality. This can be explained with the bigger overlapping range considered in the 

factorial design.   

Figure 8 shows representative 3D topographies of an as-received sample together with LP 

surfaces obtained using various process settings. Tiny lumps on the LP surface in Fig. 8(b) 

suggest that minuscule ablation together with surface re-melting might have taken place when 

the overlapping was 95% in both X and Y directions. This could be explained with high 

accumulated thermal energy generated at these processing conditions. With the reduction of 

OPy to 85%, surface finish improved by approximately 96% compared to the parent material 

(Sa reduced from 3.78 to 0.14 µm), however step-over marks were visible as depicted in Fig. 

8(c). Further reduction of OPx and OPy led to the formation of pits/holes on the surfaces as 

shown Fig. 8(d), as well as a higher surface roughness of 1.73 µm Sa, which indicates lower 

heat absorption and consequently insufficient melting of the material.  

Areal topographies of LP stainless steel surfaces with fluence of 9 J/cm2 together with 

varying OPx and OPy are shown in Fig. 9. Several lumps and redeposited material are visible 
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in Fig. 9(a), which suggests a combination of ablation and surface overmelting (SOM) 

occurred at the highest LP process settings (Ed: 9 J/cm2, OPx and OPy of 95%), due to a 

greater amount of accumulated thermal energy in the material. This is also reflected in the 

higher roughness of 0.35 µm Sa. The LP regime changed to surface shallow melting (SSM) 

when the overlapping factor along the hatching direction was reduced to 88%, which led to a 

reduction of Sa to 0.19 µm as shown in Fig. 9(b). However, further reductions in both OPx 

and OPy resulted in step-over marks and a lower heat accumulation, and ultimately an 

increase of Sa to 0.55 µm, as illustrated in Fig. 9(c). Thus, it can be inferred that surface 

shallow melting is preferable to achieve the best results in terms of surface quality. The 

optimum / recommended LP parameters for the DM SS316L workpieces identified in this 

research are a laser fluence of 9 J/cm2 together with an overlap factor of 91-95% for both the 

scanning and step-over directions. However, if OPx is set at its highest level, OPy should be 

reduced to 88-91% in order to avoid exceeding the ablation threshold and SOM.  

 
 

4.2. Surface characterisation 

The resulting surfaces of the DM SS316L workpiece, laser polished under Ar gas 

environment at different fluence levels (9 - 20 J/cm2), are shown in Fig. 10. The pulse 

overlaps along X and Y were kept constant at 95% and 91% respectively based on the 

optimisation results in Section 4.1. The corresponding SEM micrographs of surface 

topography outlined in Fig. 11 clearly show that both ablation and SOM occurred when 

operating at the highest level of fluence (20 J/cm2) in argon. The cauliflower-like globular 

surface morphology suggests that excessive heating and subsequent cooling took place with a 

high gradient. Similar laser-material interaction was observed in trials with Ed down to 16 

J/cm2, but which switched to surface re-melting/SSM when Ed was below 13 J/cm2. The 

visual appearance of the processed surfaces also changed from black/dark brown to shinny 
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metallic with the decrease of fluence from 20 to 9 J/cm2. Furthermore, Fig. 11(c) shows the 

presence of entrapped gas bubbles and pores on the surface, which were absent on specimens 

polished in air using equivalent laser settings, see Fig. 11(d).  

As all of the specimens polished in air exhibited black or dark brown surfaces it was 

inferred that this happened due to oxidation, which was similarly reported in the literature [1, 

28, 35]. An EDX area mapping (Fig. 12(b)) and line scan (Fig. 12(c)) at the junction of a LP 

region and parent DM SS316L surface proved that surface oxidation took place, where the 

oxygen content was 26.3 wt% in the processed area compared to only 0.8 wt% in the base 

material. The results of EDX spot analysis are provided in Table 5. 

The XPS analysis carried out on the LP surfaces under atmospheric and Ar conditions 

showed that the outermost layer was contaminated with carbon. This was evidently reduced 

after ion etching the specimens for 27 min up to a depth of ~22 nm. Similar observation was 

reported by Vaithilingam et al. [1] when LP SLM Ti-6Al-4V parts. The presence of oxygen 

was also confirmed by this analysis. In addition, the XPS analysis revealed that the 

percentages of oxidised iron and chromium decreased at the sputtered depth of 22 nm and 

similarly with the reduction in energy density for the specimens polished in Ar. In contrast, 

all specimens polished in air exhibited 100% oxidation of Fe, Cr, Ni and Mo at the surface 

irrespective of the fluence settings. Following ion etching, only a part of the Fe and Ni oxides 

were removed, leaving the Cr and Mo phases completely oxidised. The results are 

summarised in Table 6 while the XPS spectra for Fe and Cr at the depth of 22 nm of the 

sample LP in Ar are provided in Fig. 13. 

In order to validate results from the microscopy and spectroscopy analyses, four 

additional specimens were laser polished under atmospheric and argon conditions to assess 

process repeatability with respect to achievable surface roughness/quality, and to ascertain 

the thickness of the oxide layer using depth profile GDOES analysis. The images of the LP 
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surfaces shown in Fig. 14 were consistent with results obtained previously. The surface 

processed in air (S1) at Ed=20 J/cm2 was black/dark brown, while those polished (S2a and 

S2b) at a reduced energy density of 9 J/cm2 were light brown and the one treated in Ar 

environment (S3) exhibited silvery/shinny metallic surface. The combined ablation/SOM 

regime in S1 led to an increase of Sa, ranging from 5.9 to 6.4 µm, in comparison to the as-

received specimen (3.2 µm Sa), whereas the SSM regime for S2a and S2b rendered a 

reduction in roughness by approximately 82-92% (Sa varied from 0.23 to 0.52 µm). The S3 

specimen also showed similar decrease in Sa by 90-92% with values ranging between 0.25 to 

0.29 µm. Representative Alicona images of LP surfaces are shown in Fig. 15. Hence, it can 

be inferred that the LP domain were properly identified and the process proved to be highly 

repetitive on DM SS316L workpieces. 

The high surface roughness of S1 prevented the use of GDOES analysis which was only 

performed on the samples polished at Ed of 9 J/cm2 (S2a and S3). Figure 16 clearly shows a 

difference in the oxygen profiles obtained between the specimens polished in air and argon. 

While the former exhibited an oxide layer with a depth of up to ~0.4-0.5 µm (Fig. 16(a)), the 

presence of oxygen was minimal in the latter case (Fig. 16(b)). It was further revealed that 

there was a segregation of Fe and Cr phases up to ~0.4 µm depth of the S2a specimen with an 

iron rich oxide in the outer sub-surface layer; however this phenomenon was not observed in 

the S3 specimen. Hence, it can be inferred that the Fe and Cr phases were predominantly 

oxidised when LP was carried out in air [49]. Similar observations were reported by Betz et 

al. [50], where the oxidation process of SS304 stainless steel was investigated at various 

temperatures. It was suggested that the formation of a Fe rich oxide outer layer was due to 

faster FeO formation compared to that of Cr2O3 and other Fe oxides. Trigwell and Selvaduray 

[51] also studied the oxide surface layer of SS316L after welding and concluded that the 
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discoloured region was composed of a Fe rich oxide and attributed its formation to the rapid 

growth kinetics of iron oxide. 

An isothermal section of the Fe-Cr-O system at 1461°C (theoretical melting temperature 

of SS316L) was determined by using the Thermo-Calc software, that indicated the formation 

of stable spinel phases (general formula AB2O4 where A and B are the divalent and trivalent 

metal ions, respectively) at high temperatures. This was further confirmed with the XRD 

analysis (Fig. 17) that showed the presence of spinel phases, Fe3O4 and FeCr2O4 in the 

spectra while the black triangles represent FCC structure of austenitic stainless steel. 

Formation of spinel phases during high temperature oxidation of SS316L in air plasma was 

also reported by Vesel et al. [52]. Additionally, the outer surface layer of the LP specimen 

processed in argon was more crystalline compared to that of the samples processed in air. A 

sharp peak in the XRD spectra of S3 in Fig. 18 supports this observation.  

Figure 19(a) displays microhardness depth profiles of laser polished specimens in air and 

argon environments. The sample polished with higher energy density typically exhibited 

greater sub-surface microhardness (of up to ~50-60%) until a depth of ~90-100 μm than those 

processed with lower thermal energy. The average hardness of S1 was between 280-290 

HK0.025 within 50 μm from the top layer with the maximum value reaching up to ~318 

HK0.025, whereas that of the other three specimens (polished at 9 J/cm2) generally varied 

between 210-255 HK0.025 within 50 μm depth. The data is also supported by the 

representative microhardness indentation marks on the cross-sections of S1 and S2a, shown 

in Fig. 19(b), that exhibit greater long axis dimensions up to a depth of 90-100 μm in the 

latter specimen resulting in lower hardness values than S1. The increase in microhardness in 

S1 compared to S2a, S2b and S3 was due to the greater sub-surface hardening effect caused 

by the higher energy input in this specimen [13]. Kruth et al. [2] also observed increase in 

hardness values following laser re-melting with higher laser power (i.e. greater thermal load) 
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when LP of SLMed stainless steel parts. The sub-surface microhardness of the samples LP at 

lower fluence (S2a, S2b and S3) were still higher than the bulk hardness (~170 HK0.025), 

which was a result of the reduction in porosity and a more densified sub-surface following 

LP. Kruth et al. [2] and Lamikiz et al. [37] also reported an increase in hardness and 

densification at the re-melted zone. The current investigation however did not reveal any 

apparent change in sub-surface microhardness due to variation in process environment (air or 

argon). From Fig. 19(a), the depth of affected layer was estimated as ~90-100 μm at which 

the bulk hardness (~170 HK0.025) was achieved for all specimens. This was also supported by 

the un-etched cross-sectional micrographs of S1 and S3 (Fig. 20), where sub-surface layer 

contamination and a higher porosity were observed up to a depth of 90-100 µm in the former 

specimen (Fig. 20(a) and 20(b)) while a dense sub-surface morphology with minimal porosity 

was seen in the latter sample (Fig. 20(c) and 20(d)). The observation clearly reveals that a 

combination of ablation and SOM were the dominant laser material interaction regime when 

performing LP with a higher energy density. Conversely, all other LP specimens processed 

with lower fluence settings exhibited SSM as the dominant process regime as indicated by the 

smooth top surface layers. Similar results were also observed on the etched specimens. While 

the S1 sub-surface was evidently rougher with visible oxides, lumps, holes, pits and 

irregularities (Fig. 21(a)), the S3 sample was comparatively smoother with virtually no sign 

of oxide layers (Fig. 21(b)). Following the argument on the estimated depth of the affected 

layer, shown in Fig. 19, the same can also be assessed from Fig. 21(a), where no 

distinguishable grain structures were observed up to a depth of ~100 µm. Nevertheless, the 

bulk microstructure of all samples exhibited an austenitic phase with twin grain boundaries 

together with the presence of a secondary sigma phase (δ-ferrite). 
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4.3. Laser polishing of 3D printed structured SS316L parts  

The identified LP domain in Section 4.1 was employed to process complex surfaces on 

DM SS316L parts as shown in Fig. 22(a), with an initial roughness of Sa=2.4 μm. The LP 

surfaces exhibited approximately 90% reduction in Sa, down to 0.25 μm, similar to the results 

in Sections 4.1 and 4.2, together with a decrease in St and Sz from 38.2 and 33.9 μm to 2.3 

and 2.14 μm, respectively. The stair-step effect, which is an inherent issue in 3D printed 

parts, was also minimised following the LP operation as shown in Figs. 22(b) and 22(c). 

Furthermore, the roughness of the polished surfaces was isotropic (similar roughness values 

in all directions), which suggests improvements in the fatigue life of the parts due to the 

minimised risk of crack nucleation [37]. 

The same LP settings were also applied for processing of semi-polished free form 

surfaces on aesthetic parts with roughness in the range of 0.4 to 0.5 μm. The Sa of the LP 

surfaces varied from 0.12 to 0.23 μm, which represented a roughness reduction of 50 to 75%, 

whereas St decreased by approximately 80-90%, from initial values of 9.77 to 17.71 μm to 1.5 

to 2.3 μm after LP. Figure 23(a) shows the 3D topography of an intermediately polished 

surface whereas Figs. 23(b) and 23(c) depict the LP regions. Thus, the level of improvement 

depends on the initial as-received surface roughness, in particular the effectiveness of the LP 

process is enhanced with increase of the initial surface roughness [37]. The process was also 

proven to be applicable for surface functionalisation of miniaturised parts for mass 

production. A 10 x 10 mm2 area was laser polished using the optimum processing setting in 

only 16 s.  

 

5. Conclusions  

 The study investigated the influence of main laser polishing parameters and process 

environment on the surface integrity of 3D printed stainless steel components. Energy 
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density and pulse overlap along the beam scanning direction were the most influential 

factors in improving the surface quality. A lower accumulated thermal energy resulted in 

insufficient melting while that beyond the optimised value led to ablation and surface 

over-melting of material. A maximum reduction in areal surface roughness of over 94% 

was achieved at the optimised LP settings with surfaces typically exhibiting isotropic 

roughness together with no signs of substantial scratch marks, pits, holes, lumps and 

irregularities as compared to the as-received samples. The optimised laser parameters were 

also successfully implemented for polishing DM SS316L structured parts as well as semi-

polished stainless steel aesthetic components. The effectiveness of the LP operation 

however was largely dependant on the initial surface roughness of the workpiece; the 

higher was the initial roughness, the greater was the reduction in Sa. 

 The colour intensity of the LP surfaces was found to be directly related to the amount / 

depth of the surface oxidation. The Fe and Cr were predominantly oxidised to form Fe3O4 

and FeCr2O4 mixed spinel phases. Use of argon shielding significantly reduced the 

oxidation and thus is recommended if oxidation must be avoided following LP operations. 

However, laser-induced oxidation is desirable in certain applications (such as oxidation of 

titanium to form titanium oxides) and is one of the most reliable methods due to its 

controllability and selectivity. The technology utilises colour marking on the surfaces, 

achieved through generating oxide films of different thicknesses corresponding to specific 

laser parameter settings. 

 Cross-sectional microstructure of LP specimens processed with higher laser energy 

density revealed a combination of ablation and SOM as the dominant laser material 

interaction regimes. This resulted in a sub-surface layer with a greater amount of porosity. 

Conversely, LP samples processed with a reduced fluence exhibited SSM as the primary 

polishing regime that led to a dense sub-surface area within approximately 100 µm depth 



 26 

and minimal porosity. Sub-surface microhardness of the specimens polished with higher 

energy density was typically greater (of up to ~50-60%) up to a depth of ~90-100 μm 

compared to those processed at lower fluence settings. This was due to the larger thermal 

input and consequent more intense sub-surface hardening of the material. The 

microhardness of the specimens polished at a reduced fluence was still higher, up to a 

depth of ~100 μm, than the bulk value. This was a result of the reduction in porosity and a 

more densified sub-surface layer. Laser polishing in argon environment however did not 

show any change in microhardness compared to those processed in air but with equivalent 

fluence. The increase in hardness following LP can improve the wear resistance of the 

surface, while densification of sub-surface due to re-melting would eliminate any pores 

that are inherent to the parts fabricated via AM processes, thereby demonstrating the laser 

polishing technology beneficial to the applications where fully dense outer shell of the AM 

components is crucial. 
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(a)
 

(b)
 

Fig. 1 (a) Schematic view of the re-melting mechanism, and (b) effect of laser irradiation on 

surface asperities [3] 
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Fig. 2 Process diagram showing the Digital Metal® technology [43] 
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Fig. 3 CAD model of the DM SS316L part with overall dimensions of 10 × 10 × 10 mm  
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Fig. 4 Main effect plots for specimen roughness; (a) Sa, (b) St and (c) Sz 
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Fig. 5 Interaction plots of fluence and pulse overlap factors for Sa  
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Fig. 6 Interaction plots of fluence and pulse overlap factors for St 
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Fig. 7 Interaction plots of fluence and pulse overlap factors for Sz 
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50 µm(a) Sa=3.78 µm 50 µm(b) Sa=0.23 µm

50 µm(c) Sa=0.14 µm 50 µm(d)

Pits/holes

Sa=1.73 µm
 

Fig. 8 Areal surface topographies of: (a) parent material; (b) LP areas processed at Ed: 5 

J/cm2, OPx: 95%, OPy: 95%; (c) Ed: 5 J/cm2, OPx: 95%, OPy: 85%, (d) Ed: 5 J/cm2, OPx: 82%, 

OPy: 85%. 
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(a) 50 µm

Lumps

Sa=0.35 µm
 

(b) 50 µmSa=0.19 µm
 

(c) 50 µmSa=0.55 µm
 

Fig. 9 Areal surface topographies of LP areas processed with: (a) Ed: 9 J/cm2, OPx: 95%, OPy: 

95%; (b) Ed: 9 J/cm2, OPx: 95%, OPy: 88%; (c) Ed: 9 J/cm2, OPx: 82%, OPy: 85%. 
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Fig. 10 Laser polished SS cube under Ar gas environment at different fluence levels 
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Fig. 11 Scanning electron micrographs of LP surfaces at fluence of: (a) 20 J/cm2; (b) 16 

J/cm2; (c) 9 J/cm2 under Ar environment; and (d) 9 J/cm2 in air. 
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Fig. 12 (a) SEM micrograph of a junction between LP area and base material; (b) EDX area 

mapping; (c) EDX line scan. 
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Fig. 13 XPS spectra of (a) Fe, (b) Cr at the depth of 22 nm of the specimen LP in argon 
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(a)

(b)

(c)

(d)

S1: LP in air, 

Ed=20 J/cm2

S2a: LP in air, 

Ed=9 J/cm2

S2b: LP in air, 

Ed=9 J/cm2

S3: LP in Ar, 

Ed=9 J/cm2

5 mm
 

 

Fig. 14 Images of SS cubes S1, S2a and S2b laser polished in air at fluence of (a) 20 J/cm2, 

(b)-(c) 9 J/cm2 and (d) S3 in argon at 9 J/cm2 
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(a) Sa= 0.23 µm
    

(b) Sa= 0.25 µm
 

 

Fig. 15 Laser polished surfaces in: (a) air (sample S2a); (b) argon (sample S3),  

(area: 325×325 µm). 
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Fig. 16 GDOES analysis for specimens polished in: (a) air; (b) argon environment. 
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Fig. 17 X-ray diffraction spectra of the S2a specimen showing the presence of spinel phases 
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Fig. 18 X-ray diffraction spectra of the LP specimens processed in air and argon 
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Fig. 19 (a) Microhardness depth profiles of LP specimens in air and argon, (b) representative 

microhardness indentations on samples S1 and S2a 
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Affected layer with porosity
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Fig. 20 Optical micrographs of un-etched cross-sections of LP specimens: (a) & (b) in air at 

Ed=20 J/cm2; (c) & (d) in argon at Ed=9 J/cm2. 
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Fig. 21 Microstructure of laser polished specimens: (a) S1; (b) S3. 
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Laser polished regions

(a) 
 (b) Sa= 2.41 µm  

(c) Sa= 0.24 µm
 

Fig. 22(a) LP regions on DM SS316L parts; (b) as-received DM surface; (c) LP surface, 

(area: 287×218 µm). 
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St= 17.71 µm
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Fig. 23(a) Intermediately polished surface of aesthetic part, (b) and (c) laser polished 

surfaces, (area: 287×218 µm). 
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Table 1: Key publications on laser polishing of various engineered materials 

 

References Year Workpiece 

material 

Laser type Pulsed/ 

conti-

nuous 

Laser 

power  

(W) 

Laser spot 

diameter 

(mm) 

Energy 

density 

(J/cm2) 

Laser scan 

speed 

(mm/s) 

Scan 

spacing/ 

step-over 

(mm) 

[5] Gu et al. 1997 CVD diamond 

films 

Nd-YAG   0.1  0.1 0.05 

[6] Pimenov et al. 1999 CVD diamond 

plates 

Cu-vapour 

laser (λ=510 

nm), ArF 

excimer laser 

(λ=193 nm) 

Pulsed   Cu-vapour 

laser - 2.2, 

6.5 

Excimer 

laser - 98 

  

[7] Bol’shepaev 

and Katomin 

1997 Fused silica CO2 CW 25-100     

[8] Wang et al. 2003 Silica slotted rods CO2 CW 5.8-40 0.2-1.0  5-10 0.05-0.8 

[10] Hildebrand et 

al.  

2011 Quartz glass CO2 CW 490-830   15-25  

[11] Heidrich et al. 2014 Glass CO2 CW 1500 max 0.45    

[12] Brinksmeier 

et al. 

2004 X40Cr13 stainless 

steel moulds 

Nd-YAG  50-100 0.2  1.33-8.33  

[13] Avilés et al. 2011 AISI 1045 carbon 

steel 

Diode laser CW 150.19-

506.68 

0.9 (top 

hat) 

166-560 100.5 0.2 
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[15] Ukar et al. 2010 DIN 1.2379 (AISI 

D2) tool steel 

Diode laser, 

CO2 laser 

CW Diode - 

250-1300 

CO2 - 800-

1600 

Diode - 2 

CO2 - 1.04 

 Diode - 

23.33-40,  

CO2 - 16.67-

23.33 

 

[20] Guo et al.  2012 AISI O1 tool steel Nd:YAG Pulsed  1.26 10.03-

80.24 

1.67-8.33  

[21] Hafiz et al. 2012 AISI H13 tool 

steel 

Nd:YAG CW 300 1.0 3500 10 0.025, 

0.05, 0.1, 

0.2 

[18] Pfefferkorn et 

al. 

2014 AISI S7 tool steel Fibre laser Pulsed 5.5-80 0.03-0.197  100 0.0025-

0.04 

[22] Morrow et al. 2014 AISI S7 tool steel Fibre laser Pulsed 200 max 0.03-0.2 0.637-8.15   

[23] Wang et al. 2015 AISI S7 tool steel Fibre laser Pulsed 5.49 0.03  100 0.01 

[19] Chang et al. 2016  SKD61 (AISI 

H13) tool steel 

Yb-doped 

fibre laser 

Pulsed 80-200   200-400  

[24] Vadali et al. 2012 SS316L stainless 

steel 

Fibre laser Pulsed 50 max 0.03  1500 max  

[25] Ukar et al. 2013 GGG70L cast iron Fibre laser  100-250 0.1  100-300  

[26] Perry et al. 2009 Nickel Nd:YAG Pulsed 250 max 0.05, 0.11  1, 67  

[27] Hafiz et al. 2014 Inconel 718 MOPA ps 

laser 

Pulsed 12 0.0314-

0.0451 

0.13-0.24 20  
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[28] Perry et al. 2009 Ti-6Al-4V Nd:YAG Pulsed 250 max 0.05, 0.07  35, 40 0.025 

[29] Vadali et al. 2012 Ti-6Al-4V Nd:YAG, 

fibre lasers 

Pulsed 250 max, 

200 max 

  1500 max  

[31] Pfefferkorn et 

al. 

2013 Ti-6Al-4V Fibre laser Pulsed 2.55, 3.38 0.0375, 

0.0424 

 192, 224  

[33] Nüsser et al. 2013 Ti-6Al-4V Nd:YAG Pulsed 50 0.25  1000 0.03 

[35] Giorleo et al. 2015 Titanium Nd:YVO4 Pulsed 2.55 0.06  5500  

[36] Remos-Grez 

and Bourell 

2004 Selective laser 

sintered parts 

CO2 CW 225-565 0.4 116-850 101-850  

[37] Lamikiz et al. 2007 Selective laser 

sintered AISI 420 

stainless steel 

(60%) infiltrated 

with bronze (40%) 

CO2 CW 600-1200 0.54-1.3 1385-

16667 

13.33-33.33 0.7-1.5 

[2] Kruth et al.  2009 Selective laser 

melted (SLM) 

SS316L  

Nd:YAG 

(λ=1064 nm) 

CW 61-105 0.08-0.2  50-800 0.02 

[38] Yasa et al.  2011 SLM SS316L parts Diode-

pumped 

Nd:YAG 

(λ=1064 nm) 

CW 60-105 0.08-0.18  50-800 0.01-

0.125 
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[41] Marimuthu et 

al. 

2015 SLM Ti-6Al-4V 

components 

Fibre laser 

(λ=1070-1090 

nm) 

CW 50-200 0.5  3.33-40 0.25 

[1] Vaithilingam 

et al. 

2016 SLM Ti-6Al-4V 

components 

Fibre laser 

(λ=1070 nm) 

Pulsed 200    0.1 

[42] Rosa et al. 2015 Laser clad SS316L  Fibre laser  210 0.8 525 50  
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Table 2: Nominal composition of Digital Metal® SS316L grade stainless steel [45] 

Elements Cr Ni Mn Mo S C Si P Cu Fe 

Wt% 16.5 10.4 1.36 2.09 0.007 0.025 0.58 0.02 0.1 Bal. 
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Table 3: Variable LP parameters and their corresponding levels 

Process variables Levels 

Fluence/Energy density (J/cm2) 5 7 9 

Pulse overlap factor along X (%) 82 85 88 91 95 

Pulse overlap factor along Y (%) 82 85 88 91 95 
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Table 4: Analysis of variance for Sa  

 

Source Degrees of 

freedom 

Sum of 

squares 

Mean 

squares 

F-

calculated 

PCR 

Ed 2 1.77 0.88 46.24* 12.20 

OPx 4 7.23 1.81 94.54* 49.89 

OPy 4 1.34 0.34 17.59* 9.28 

Ed×OPx 8 1.81 0.23 11.87* 12.53 

Ed×OPy 8 0.51 0.06 3.34* 3.52 

OPx×OPy 16 1.21 0.08 3.96* 8.36 

Error 32 0.61 0.02  4.22 

Total 74 14.48   100 

* Statistically significant at 95% confidence level 
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Table 5: EDX spot analysis of LP and parent surfaces 

Elements Fe Cr Ni O C Mo Si 

Spot 1 in Fig. 12(a) 46.8 18.2 4.8 26.3 2.9 0.5 0.3 

Spot 2 in Fig. 12(a) 65.2 17.6 10.6 0.8 2.9 2.1 0.4 
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Table 6: Percentages of Fe, Cr and Ni oxides in the specimens LP in Ar and air 

Ed 

(J/cm2) 

LP in argon LP in air 

Fe 2p % oxidised Cr 2p % oxidised Fe 2p % oxidised Cr 2p % oxidised Ni 2p % oxidised 

Surface 

After 

ion 

etching 

Surface 

After 

ion 

etching 

Surface 

After 

ion 

etching 

Surface 

After 

ion 

etching 

Surface 

After 

ion 

etching 

20 94.85 60.00 100.00 80.29 100.00 100.00 100.00 100.00 100.00 66.63 

19 92.04 54.67 100.00 65.38 100.00 100.00 100.00 100.00 100.00 63.32 

18 91.98 54.37 95.98 63.10 100.00 99.05 100.00 100.00 100.00 58.83 

16 90.52 54.03 95.03 62.30 100.00 98.96 100.00 100.00 100.00 58.60 

13 68.38 53.81 84.14 52.66 100.00 97.30 100.00 100.00 100.00 57.40 

9 67.48 51.89 74.45 50.88 100.00 96.24 100.00 100.00 100.00 55.24 

 

 


