

ORCA - Online Research @ Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository:https://orca.cardiff.ac.uk/id/eprint/114243/

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:

Andrew, Carrie, Halvorsen, Rune, Heegaard, Einar, Kuyper, Thomas W., Heilmann-Clausen, Jacob, Krisai-Greilhuber, Irmgard, Bässler, Claus, Egli, Simon, Gange, Alan C., Høiland, Klaus, Kirk, Paul M., Senn-Irlet, Beatrice, Boddy, Lynne, Büntgen, Ulf and Kauserud, Håvard 2018. Continental-scale macrofungal assemblage patterns correlate with climate, soil carbon and nitrogen deposition. Journal of Biogeography 45 (8), pp. 1942-1953. 10.1111/jbi.13374

Publishers page: http://dx.doi.org/10.1111/jbi.13374

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.

Journal of Biogeography

 nitrogen deposition Authors: Carrie Andrew, Rune Halvorsen, Einar Heegaard, Thomas W Kuyper, Jacob Heilmar Clausen, Irmgard Krisai-Greilhuber, Claus Bässler, Simon Egli, Alan C Gange, Klaus Høiland, Paul M Kirk, Beatrice Senn-Irlet, Lynne Boddy, Ulf Büntgen, Håvard Kauss Affiliations: CA (corresponding author) (carrie.andrew@wsl.ch), Swiss Federal Research Institute CH-8903 Birmensdorf, Switzerland; (2nd affiliation:) University of Cambridge, Depa of Geography, CB2 3EN, UK; (3rd affiliation:) Section for Genetics and Evolutionary Biology (EVOGENE), University of Oslo, Blindernveien 31, 0316 Oslo, Norway RH (rune.halvorsen@nhm.uio.no), Department of Research and Collections, Natural 	
 Authors: Carrie Andrew, Rune Halvorsen, Einar Heegaard, Thomas W Kuyper, Jacob Heilmar Clausen, Irmgard Krisai-Greilhuber, Claus Bässler, Simon Egli, Alan C Gange, Klaus Høiland, Paul M Kirk, Beatrice Senn-Irlet, Lynne Boddy, Ulf Büntgen, Håvard Kause Affiliations: CA (corresponding author) (carrie andrew@wsl.ch), Swiss Federal Research Institute CH-8903 Birmensdorf, Switzerland; (2nd affiliation:) University of Cambridge, Depa of Geography, CB2 3EN, UK; (3rd affiliation:) Section for Genetics and Evolutionary Biology (EVOGENE), University of Oslo, Blindernveien 31, 0316 Oslo, Norway RH (rune.halvorsen@nhm.uio.no), Department of Research and Collections, Natural 	
 Authors: Carrie Andrew, Rune Halvorsen, Einar Heegaard, Thomas W Kuyper, Jacob Heilmar Clausen, Irmgard Krisai-Greilhuber, Claus Bässler, Simon Egli, Alan C Gange, Klaus Høiland, Paul M Kirk, Beatrice Senn-Irlet, Lynne Boddy, Ulf Büntgen, Håvard Kause Affiliations: CA (corresponding author) (carrie.andrew@wsl.ch), Swiss Federal Research Institute CH-8903 Birmensdorf, Switzerland; (2nd affiliation:) University of Cambridge, Depa of Geography, CB2 3EN, UK; (3rd affiliation:) Section for Genetics and Evolutionary Biology (EVOGENE), University of Oslo, Blindernveien 31, 0316 Oslo, Norway RH (rune.halvorsen@nhm.uio.no), Department of Research and Collections, Natural 	
 Carrie Andrew, Rune Halvorsen, Einar Heegaard, Thomas W Kuyper, Jacob Heilmar Clausen, Irmgard Krisai-Greilhuber, Claus Bässler, Simon Egli, Alan C Gange, Klaus Høiland, Paul M Kirk, Beatrice Senn-Irlet, Lynne Boddy, Ulf Büntgen, Håvard Kause Affiliations: CA (corresponding author) (carrie.andrew@wsl.ch), Swiss Federal Research Institute CH-8903 Birmensdorf, Switzerland; (2nd affiliation:) University of Cambridge, Depa of Geography, CB2 3EN, UK; (3rd affiliation:) Section for Genetics and Evolutionary Biology (EVOGENE), University of Oslo, Blindernveien 31, 0316 Oslo, Norway RH (rune.halvorsen@nhm.uio.no), Department of Research and Collections, Natural 	
 6 Clausen, Irmgard Krisai-Greilhuber, Claus Bässler, Simon Egli, Alan C Gange, Klaus 7 Høiland, Paul M Kirk, Beatrice Senn-Irlet, Lynne Boddy, Ulf Büntgen, Håvard Kause 8 9 Affiliations: 10 CA (corresponding author) (carrie.andrew@wsl.ch), Swiss Federal Research Institute 11 CH-8903 Birmensdorf, Switzerland; (2nd affiliation:) University of Cambridge, Depa 12 of Geography, CB2 3EN, UK; (3rd affiliation:) Section for Genetics and Evolutionary 13 Biology (EVOGENE), University of Oslo, Blindernveien 31, 0316 Oslo, Norway 14 RH (rune.halvorsen@nhm.uio.no), Department of Research and Collections, Natural 	n-
 Høiland, Paul M Kirk, Beatrice Senn-Irlet, Lynne Boddy, Ulf Büntgen, Håvard Kause Affiliations: CA (corresponding author) (carrie.andrew@wsl.ch), Swiss Federal Research Institute CH-8903 Birmensdorf, Switzerland; (2nd affiliation:) University of Cambridge, Depa of Geography, CB2 3EN, UK; (3rd affiliation:) Section for Genetics and Evolutionary Biology (EVOGENE), University of Oslo, Blindernveien 31, 0316 Oslo, Norway RH (rune.halvorsen@nhm.uio.no), Department of Research and Collections, Natural 	\$
 Affiliations: CA (corresponding author) (carrie.andrew@wsl.ch), Swiss Federal Research Institute CH-8903 Birmensdorf, Switzerland; (2nd affiliation:) University of Cambridge, Depa of Geography, CB2 3EN, UK; (3rd affiliation:) Section for Genetics and Evolutionary Biology (EVOGENE), University of Oslo, Blindernveien 31, 0316 Oslo, Norway RH (rune.halvorsen@nhm.uio.no), Department of Research and Collections, Natural 	erud
 9 Affiliations: 10 CA (corresponding author) (carrie.andrew@wsl.ch), Swiss Federal Research Institute 11 CH-8903 Birmensdorf, Switzerland; (2nd affiliation:) University of Cambridge, Depa 12 of Geography, CB2 3EN, UK; (3rd affiliation:) Section for Genetics and Evolutionary 13 Biology (EVOGENE), University of Oslo, Blindernveien 31, 0316 Oslo, Norway 14 RH (rune.halvorsen@nhm.uio.no), Department of Research and Collections, Natural 15 Maxeum, University of Oslo, NO. 218, Oslo, Norway 	
 CA (corresponding author) (carrie.andrew@wsl.ch), Swiss Federal Research Institute CH-8903 Birmensdorf, Switzerland; (2nd affiliation:) University of Cambridge, Depa of Geography, CB2 3EN, UK; (3rd affiliation:) Section for Genetics and Evolutionary Biology (EVOGENE), University of Oslo, Blindernveien 31, 0316 Oslo, Norway RH (rune.halvorsen@nhm.uio.no), Department of Research and Collections, Natural 	
 CH-8903 Birmensdorf, Switzerland; (2nd affiliation:) University of Cambridge, Depa of Geography, CB2 3EN, UK; (3rd affiliation:) Section for Genetics and Evolutionary Biology (EVOGENE), University of Oslo, Blindernveien 31, 0316 Oslo, Norway RH (rune.halvorsen@nhm.uio.no), Department of Research and Collections, Natural 	WSL,
 of Geography, CB2 3EN, UK; (3rd affiliation:) Section for Genetics and Evolutionary Biology (EVOGENE), University of Oslo, Blindernveien 31, 0316 Oslo, Norway RH (<u>rune.halvorsen@nhm.uio.no</u>), Department of Research and Collections, Natural 	rtment
 Biology (EVOGENE), University of Oslo, Blindernveien 31, 0316 Oslo, Norway RH (<u>rune.halvorsen@nhm.uio.no</u>), Department of Research and Collections, Natural 	1
14 RH (<u>rune.halvorsen@nhm.uio.no)</u> , Department of Research and Collections, Natural	
15 Maximum University of Oals NO 0218 Oals Name	History
15 Museum, University of Osio, NO-0318 Osio, Norway	
16 EH (<u>fmroehe@fylkesmannen.no</u>), Forestry and Forest Resources, Norwegian Institut	e of
17 Bioeconomy Research, Fanaflaten 4, N-5244 Fana, Norway	
18 TWK (<u>thom.kuyper@wur.nl</u>), Department of Soil Quality, Wageningen University, I	O Box
19 47, 6700 AA Wageningen, The Netherlands	
20 JHC (jheilmann-clausen@snm.ku.dk), Centre for Macroecology, Evolution and Clim	ate,
21 Natural History Museum of Denmark, University of Copenhagen, DK-2100 Copenha	gen,
22 Denmark	
23 IKG (<u>irmgard.greilhuber@univie.ac.at</u>), Department of Botany and Biodiversity Rese	earch,
24 University of Vienna, A-1030 Vienna, Austria	

2
3
4
5
6
0
/
8
9
10
11
12
13
14
15
16
10
17
18
19
20
21
22
23
24
27
25
26
27
28
29
30
31
32
33
21
24
35
36
37
38
39
40
41
42
43
11
44 45
45
46
47
48
49
50
51
52
52
52
54 57
55
56
57
58
59

1

25 **CB** (Claus, Baessler@npv-bw.bayern.de), Bavarian Forest National Park, Freyunger Str. 2, D-

- 26 94481 Grafenau, Germany; (2nd affiliation:) Technical University of Munich, Chair for
- 27 Terrestrial Ecology, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
- 28 SE (simon.egli@wsl.ch), Swiss Federal Research Institute WSL, CH-8903 Birmensdorf,
- 29 Switzerland
- 30 ACG (a.gange@rhul.ac.uk), School of Biological Sciences, Royal Holloway, University of
- 31 London, Egham, Surrey TW20 0EX, UK
- 32 KH (klaus.hoiland@ibv.uio.no), Section for Genetics and Evolutionary Biology
- 33 (EVOGENE), University of Oslo, Blindernveien 31, 0316 Oslo, Norway
- 34 **PMK** (P.Kirk@kew.org), Mycology Section, Jodrell Laboratory, Royal Botanic Garden,
- 35 Kew. Surrey TW9 3DS. UK
- 36 BSI (beatrice.senn@wsl.ch), Swiss Federal Research Institute WSL, CH-8903 Birmensdorf,
- 37 Switzerland
- 38 LB (BoddyL@cardiff.ac.uk), School of Biosciences, Cardiff University, Sir Martin Evans
- 39 Building, Museum Avenue, Cardiff CF10 3AX, UK
- 40 **UB** (<u>ulf.buentgen@geog.cam.ac.uk</u>), University of Cambridge, Department of Geography,
- 41 CB2 3EN, UK; (second affiliation:) Swiss Federal Research Institute WSL, CH-8903
- 42 Birmensdorf, Switzerland; (third affiliation:) Global Change Research Centre and Masaryk
- 43 University, 613 00 Brno, Czech Republic
- 44 **HK** (havard.kauserud@ibv.uio.no), Section for Genetics and Evolutionary Biology
- 45 (EVOGENE), University of Oslo, Blindernveien 31, 0316 Oslo, Norway
- 46
 - 47 Keywords (6-10): Assemblage, Biogeography, Climate, Ectomycorrhizal, Europe, Fungi,
- Macroecology, Saprotrophic, Temporal change 48
- 49

- 60

1 2 3 4	50	Running-title: Fungal assemblages across Europe
$\begin{array}{c} 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 59\\ 60\\ \end{array}$	50	Running-title: Fungal assemblages across Europe
23 24 25 26 27 28		
22 23 24 25 26 27 28		
30 31 32 33 34 35 36		
37 38 39 40 41 42 43		
44 45 46 47 48 49		
50 51 52 53 54 55		
56 57 58 59 60		

51	Abstract:
52	Aim Macroecological scales of species compositional trends are well documented for a
53	variety of plant and animal groups, but remain sparse for fungi, despite their ecological
54	importance in carbon and nutrient cycling. It is, thus, essential to understand the composition
55	of fungal assemblages across broad geographical scales, and the underlying drivers. Our
56	overall aim was to describe these patterns for fungi across two nutritional modes
57	(saprotrophic and ectomycorrhizal). Furthermore, we aimed to elucidate the temporal
58	component of fruiting patterns and to relate these to soil carbon and nitrogen deposition.
59	Location Central and northern Europe
60	Methods 4.9 million fungal fruit body observations throughout Europe, collected between
61	1970–2010, were analyzed to determine the two main environmental and geographical
62	gradients structuring fungal assemblages for two main nutritional modes, saprotrophic and
63	ectomycorrhizal fungi.
64	Results Two main gradients explaining the geography of compositional patterns were
65	identified, for each nutritional mode. Mean annual temperature (and related collinear,
66	seasonal measures) correlated most strongly with the first gradient for both nutritional modes.
67	Soil organic carbon was the highest correlate of the second compositional gradient for
68	ectomycorrhizal fungi, suspected as an indicator of vegetation- and pH-related covariates. In
69	contrast, nitrogen deposition constituted a second gradient for saprotrophic fungi, likely a
70	proxy for anthropogenic pollution. Compositional gradients and environmental conditions
71	correlated similarly when the data were divided into two time intervals of 1970-1990 and
72	1991–2010. Evidence of compositional temporal change was highest with increasing altitude
73	and latitude.
74	Main conclusions Fungal assemblage patterns demonstrate clear biogeographical patterns
75	that relate the nutritional modes to their main environmental correlates of temperature, soil

organic carbon and nitrogen deposition. With respect to global change impacts, the highest rates of compositional change by time suggest targeting higher latitudes and altitudes for a better understanding of fungal dynamics. We, finally, suggest further examination of the ranges and dispersal abilities of fungi to better assess responses to global change.

to perpeter

80	Biosketch
81	Carrie Andrew has been responsible for preparing the manuscript, and for many of the
82	analyses conducted with, the data utilized here, and as is better described in Andrew et al.
83	2017 (where original data sources and contact / website information are listed). Dr. Andrew
84	was a postdoctoral researcher for the duration of this project. The work presented in this
85	manuscript represents a component of the ClimFun project, an international collaboration that
86	united national-scale fruit body datasets for the purposes of macroecological investigations of
87	fungi in relation to environmental drivers, especially global change components. Author
88	contributions are: HK, CA and EH, conceived the main ideas; CA prepared the data with data
89	access and rights provided via ACG, BSI, CB, IKG, JHC, PMK, SE, and TWK; CA, RH and
90	EH analysed the data; CA led the writing; and all co-authors contributed to wide-range
91	general discussion and interpretation during the project, along with manuscript edits: RH, EH,
92	TWK, JHC, IKG, CB, SE, ACG, KH, PMK, BSI, LB, UB, and HK.
93	
94	Introduction
95	Detecting and understanding broad-scale geographic patterns of organisms is a critically
96	important issue in global change research. Patterns of fungal species assemblage distributions
97	have rarely been considered in macroecology, despite the key contributions that fungi make to
98	ecosystem processes (Heilmann-Clausen, Barron, et al. 2014). There are two major functional
99	guilds of fungi that produce macroscopic fruit bodies, based on nutritional mode (i.e.,
100	saprotrophic fungi that feed on dead organic matter, and ectomycorrhizal fungi that are
101	mutualistic root symbionts), and each is crucial to ecosystem functioning. It is, thus,
102	
	important to identify any differences in their geographic patterns, and changes in these,
103	important to identify any differences in their geographic patterns, and changes in these, especially in relation to global change.

Journal of Biogeography

2
2
1
4
5
6
7
8
9
10
11
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
27
25
26
27
28
29
30
31
27
JZ 22
33
34
35
36
37
38
30
40
4U 41
41
42
43
44
45
46
47
т/ ЛQ
40
49
50
51
52
53
54
55
55
20
5/
58
59
60

105	In terms of the known biogeographic patterns of fungi, mycorrhizal fungal species are
106	strongly coupled to their host plants' ranges and climate regions (Tedersoo et al. 2012;
107	Tedersoo, Bahram, Põlme, et al. 2014). Much research has focused on this connection, to the
108	point of extrapolating biotic trends as a means to describe matching, un-surveyed fungal
109	patterns (Soudzilovskaia et al. 2015; Swaty Michael, Deckert & Gehring 2016; Bueno et al.
110	2017). Saprotrophic fungi, also, are often considered in terms of their substrates, and their
111	distribution often reflects the availability and quality of specific substrates, e.g., wood types
112	and leaf litter (Bässler, Müller, Dziock & Brandl 2010; Heilmann-Clausen, Aude, et al. 2014).
113	Gaps still exist in terms of knowledge of their overall distribution patterns, as well as the
114	abiotic processes that likely determine their distributions.
115	
116	The scattered representations of fungal biogeography studies to date have most often
117	extrapolated low but sequence-deep sample intensities (small grain sizes) across large
118	geographical extents, due to the limitations of molecular-based sampling approaches
119	(Unterseher et al. 2011). This 'necessary evil' that leaves gaps in our knowledge of fungal
120	distributions in space and time. The related fungal community gradients, then, are not
121	continuously represented (due to low density of geographical samples) and, instead, capture
122	categorical levels of what are actually continuous patterns of variation.
123	
124	The taxonomic coverage across studies can also limit extrapolations. While sequences are
125	identified to operational taxonomic units approximating species (Meiser, Bálint & Schmitt
126	2014; Taylor et al. 2014), studies have often focused on specific families or genera to benefit

127 phylogenetic knowledge (i.e., Naff, Darcy & Schmidt 2013; Tedersoo, Bahram, Ryberg, et al.

- 128 2014). Other studies have focused on higher-level taxa of bacteria or fungi (Martiny et al.
- 129 2006). Although previous studies have suggested, expectedly, that fungal communities

130 arrange along environmental and geographical gradients, this pattern is yet to be clearly131 investigated.

133	In Europe, extensive fungal fruit body records have been catalogued at the largest
134	spatiotemporal scales currently available (Andrew et al. 2017). While records with
135	comprehensive sampling distributions that span multiple decades make it possible to
136	investigate temporal changes of fungi related to climate, such data sets have so far mainly
137	been used for studying phenology (e.g., Kauserud et al. 2008; Kauserud et al. 2010; Büntgen,
138	Kauserud & Egli 2012; Kauserud et al. 2012; Boddy et al. 2014). The uniform coverage of
139	fungal species data throughout a large part of their geographical extent (Andrew et al. 2017),
140	when aggregated at appropriate spatial resolutions and across decades of time, sets this data
141	source apart from molecular-based data. These data capture the entirety of fungal
142	environmental and geographical gradients more completely than current molecular data, and
143	in this respect, are ideal sources to better understand environmental correlates to fungal
144	biogeography.
144 145	biogeography.
144 145 146	biogeography. It is this large spatiotemporal range of multisource fungal records data collected in varied
144 145 146 147	biogeography. It is this large spatiotemporal range of multisource fungal records data collected in varied manners, combined with booming additions through citizen science projects (e.g., Halme,
144 145 146 147 148	biogeography. It is this large spatiotemporal range of multisource fungal records data collected in varied manners, combined with booming additions through citizen science projects (e.g., Halme, Heilmann-Clausen, Rämä, Kosonen & Kunttu 2012; Heilmann-Clausen, Barron, et al. 2014),
144 145 146 147 148 149	biogeography. It is this large spatiotemporal range of multisource fungal records data collected in varied manners, combined with booming additions through citizen science projects (e.g., Halme, Heilmann-Clausen, Rämä, Kosonen & Kunttu 2012; Heilmann-Clausen, Barron, et al. 2014), that counteracts other limitations of fruit body data. Although the records focus almost
144 145 146 147 148 149 150	biogeography. It is this large spatiotemporal range of multisource fungal records data collected in varied manners, combined with booming additions through citizen science projects (e.g., Halme, Heilmann-Clausen, Rämä, Kosonen & Kunttu 2012; Heilmann-Clausen, Barron, et al. 2014), that counteracts other limitations of fruit body data. Although the records focus almost exclusively on macro-fungi i.e., fungi that form conspicuous fruit bodies, both above and
144 145 146 147 148 149 150 151	biogeography. It is this large spatiotemporal range of multisource fungal records data collected in varied manners, combined with booming additions through citizen science projects (e.g., Halme, Heilmann-Clausen, Rämä, Kosonen & Kunttu 2012; Heilmann-Clausen, Barron, et al. 2014), that counteracts other limitations of fruit body data. Although the records focus almost exclusively on macro-fungi i.e., fungi that form conspicuous fruit bodies, both above and belowground, these include many of the ecologically most significant groups. For example,
 144 145 146 147 148 149 150 151 152 	biogeography. It is this large spatiotemporal range of multisource fungal records data collected in varied manners, combined with booming additions through citizen science projects (e.g., Halme, Heilmann-Clausen, Rämä, Kosonen & Kunttu 2012; Heilmann-Clausen, Barron, et al. 2014), that counteracts other limitations of fruit body data. Although the records focus almost exclusively on macro-fungi i.e., fungi that form conspicuous fruit bodies, both above and belowground, these include many of the ecologically most significant groups. For example, habitat preference in wood-decomposing fungi and the decay they cause are well, if not
 144 145 146 147 148 149 150 151 152 153 	biogeography. It is this large spatiotemporal range of multisource fungal records data collected in varied manners, combined with booming additions through citizen science projects (e.g., Halme, Heilmann-Clausen, Rämä, Kosonen & Kunttu 2012; Heilmann-Clausen, Barron, et al. 2014), that counteracts other limitations of fruit body data. Although the records focus almost exclusively on macro-fungi i.e., fungi that form conspicuous fruit bodies, both above and belowground, these include many of the ecologically most significant groups. For example, habitat preference in wood-decomposing fungi and the decay they cause are well, if not completely, captured with fruit body records (e.g., Heilmann-Clausen et al. 2016). While
 144 145 146 147 148 149 150 151 152 153 154 	biogeography. It is this large spatiotemporal range of multisource fungal records data collected in varied manners, combined with booming additions through citizen science projects (e.g., Halme, Heilmann-Clausen, Rämä, Kosonen & Kunttu 2012; Heilmann-Clausen, Barron, et al. 2014), that counteracts other limitations of fruit body data. Although the records focus almost exclusively on macro-fungi i.e., fungi that form conspicuous fruit bodies, both above and belowground, these include many of the ecologically most significant groups. For example, habitat preference in wood-decomposing fungi and the decay they cause are well, if not completely, captured with fruit body records (e.g., Heilmann-Clausen et al. 2016). While sporadic and ephemeral fruiting patterns of fungi can limit the accuracy of their

Journal of Biogeography

2 3	155	representation, the problem is minimized by compiling data across multiple years and at
4 5	156	broader spatial resolutions than original point observations (Andrew et al. 2017). Finally,
6 7 8	157	presence-only data for fruit bodies are the sole source of large-scale historical-to-
9 10	158	contemporary records in mycology. Thus, fruit body records offer unique ecological
11 12	159	information that may open up new insights into the effects of global change on fungi. Due to
13 14	160	the high spatiotemporal resolution and extent, they serve as a foundation to build upon for
15 16	161	biogeographical and macroecological research in mycology.
17 18 10	162	
19 20 21	163	In this study, we use 4.9 million fruit body occurrences, extracted from a large-scale,
22 23	164	European meta-database with more than 6 million fungal fruit body records (Andrew et al.
24 25	165	2017), to identify the major fungal biogeographic compositional patterns in Europe. For fungi
26 27	166	in two main nutritional modes, saprotrophic and ectomycorrhizal, we first identified the
28 29	167	gradients structuring assemblages and their environmental correlates. We next investigated
30 31	168	differences in fungal compositional patterns between two equal time periods, 1970–1990 and
32 33 34	169	1991–2010, for each nutritional mode. In particular, we searched for geographical regions
35 36	170	with greater compositional change, and for the overall environmental drivers that correlated
37 38	171	with any compositional shift. As most knowledge in the field is untested, we adopted an
39 40	172	inductive, hypothesis-generating approach, i.e., not to formulate specific hypotheses beyond a
41 42	173	general expectation that the climate and environment (e.g., nitrogen deposition) that structures
43 44 45	174	plant and fungal compositions at smaller scales will likely similarly structure macro-scale
45 46 47	175	fungal assemblages. From our results, we generate biogeographical and macroecological
48 49	176	hypotheses related to fungi, and suggest topics for further research.
50 51	177	
52 53	178	Methods
54 55 56 57 58 59	179	Fungal data

2 3	180	This study utilized data from a component of the ClimFun 'meta-database,' a set of unified,
4 5 6	181	multi-source data which originated from many, independent data repositories of fungal
0 7 8	182	fruiting records across Europe (Andrew et al. 2017). The data are comprehensive in temporal
9 10	183	and spatial coverage, extending decades into the past and covering a large geographic range
11 12	184	of Europe. Given the large temporal and spatial coverage of the data, they are a reliable
13 14	185	source for answering questions in macroecology. These data have been shown to be especially
15 16	186	robust to large-scale phenology analyses (Andrew et al. 2018), demonstrating their potential
17 18	187	for biogeographical studies such as here. Earlier bias removal techniques included
19 20 21	188	harmonization of nomenclature, removal of out-of-country records, removal of data with
21 22 23	189	inconsistent or incomplete date records, removal of duplicate records, and other techniques
24 25	190	standard for formatting these types of data formatting. Due to the large amount of records,
26 27	191	these processes did not greatly affect the overall, final amounts (e.g., Andrew et al. 2017).
28 29	192	
30 31	193	National-scale data in the ClimFun meta-database with a substantial amount of records (i.e.,
32 33	194	Austria, Denmark, Germany, Netherlands, Norway, Slovenia, Switzerland, and the United
34 35 36	195	Kingdom) were selected across a timespan from 1970 to 2010, for which data were more
37 38	196	reliable due to less recording bias than earlier time periods, and also was temporally robust,
39 40	197	ensuring stability in climate values (as opposed to interannual weather variability). Species
41 42	198	were restricted to the macroscopic fruit body forming Agaricomycotina (the classes
43 44	199	Agaricomycetes, Tremellomycetes and Dacrymycetes; including fungi with flattened fruit
45 46	200	bodies on wood and soil (corticoid fungi)), as other taxonomic groups comprised very low
47 48 49	201	proportions of the records (Andrew et al. 2017) and, at this spatiotemporal scale, were highly
50 51	202	biased in terms of under-collection and sampling bias. Taxa were assigned to their dominant
52 53	203	nutritional mode based on Rinaldi, Comandini & Kuyper (2008), Tedersoo and Smith (2013),
54 55	204	and with additional species-specific information added through expertise (nutritional mode
56 57		

Journal of Biogeography

205	data compiled 2016 by K. Høiland, University of Oslo, Norway, with additional aid from: B.
206	Senn-Irlet, J. Heilmann-Clausen, A. C. Gange, L. Boddy, S. Egli, T. W. Kuyper, I. Krisai-
207	Greilhuber). The number of records varied between nutritional modes, as did the grid cell
208	representation for each guild (see all results figures to compare between time period amounts
209	and nutritional modes), with greater coverage by saprotrophic fungi.
210	
211	Environmental data
212	Available environmental variables were gridded at the 50×50 km level after connecting the
213	ClimFun records data in earlier steps to open-source metadata at their highest available
214	resolutions (i.e., geographical points), thus gaining the most precision possible in terms of
215	fruiting records and their associated environment. Environmental data were obtained and
216	formatted from each of the following open-data sources: Climate and altitude data were
217	extracted at the 2.5 and 0.5 minute resolution, respectively (equivalent to approximately 4.5
218	and 1 km at the equator), from WorldClim (<u>http://www.worldclim.org</u> ; Hijmans, Cameron,
219	Parra, Jones & Jarvis 2005). GIMMS AVHRR Global NDVI-3g (Normalized Difference
220	Vegetation Index) data with 1/12-degree resolution (approximately 9.5 km at the equator) was
221	extracted from Ecocast (https://ecocast.arc.nasa.gov). The average of annual averages of
222	monthly mean value concatenated climate data composites for the period 1982-2010 was
223	used. NDVI corresponds to the start of spring in northern latitudes and is thus often used as a
224	measure of initial primary productivity (Pettorelli et al. 2005; Nielsen et al. 2012). Percent
225	soil organic carbon was extracted from the OCTOP (Topsoil Organic Carbon Content for
226	Europe) dataset, from the Joint Research Centre - European Soil Data Centre (ESDAC), with
227	1 km original resolution (http://esdac.jrc.ec.europa.eu/content/octop-topsoil-organic-carbon-
228	content-europe). Reduced and oxidised nitrogen deposition data were obtained from
229	Greenhouse Gas Management in European land use systems (GHG Europe) FP7, using 0.25
	205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 221 222 223 224 225 226 227 228 229

1	
2	
3	
1	
-	
د د	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
19 20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
22	
27	
24	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
<u>م</u>	
/ ∕\Ω	
+0 10	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
00	

230	degree (approximately 27-28 km at the equator) NCAR CTM data (http://www.europe-
231	fluxdata.eu/ghg-europe/data/others-data). Finally, land cover was extracted from the
232	European Environment Agency (EEA) Corine Land Cover (CLC) 2006 raster data (version
233	17) with an original 100 m resolution (http://www.eea.europa.eu/data-and-maps/data/corine-
234	land-cover-2006-raster-3). While data with varying spatial resolutions is not ideal, this issue
235	was balanced against utilizing data with the best temporal resolution matching the fungal
236	recordings, as well as the ability to find and extract data for each covariate.
237	
238	To minimize multicollinearity, pairwise Pearson correlation coefficients between all potential
239	environmental covariates were calculated (Appendix S1) and variables with a coefficient
240	below a threshold of 0.60 (absolute value) were retained (cf. Dormann et al. 2013). Total and
241	seasonal precipitation were positively correlated, as were annual, seasonal and ranges in
242	temperature. In the case of temperature, the latter two were positively correlated with easting
243	(longitude) and were thus not retained. Nitrogen deposition (both NH_x , and NO_y) was
244	correlated with northing (negative) and easting (positive). NH_x was selected for further
245	analyses, serving also as a proxy for NOy, with which it was strongly correlated. NDVI was
246	correlated with northing and easting, but was retained as it is a more direct measure of
247	seasonal primary productivity than northing or easting. Thus, nine variables were used in the
248	analyses (Appendix S1; Figure 1): six environmental variables (mean annual temperature,
249	summed annual precipitation, NH _x , soil percent organic carbon, NDVI, and dominating land-
250	cover class) and three geographical variables (northing, easting and altitude). While these
251	selected variables vary along gradients on the broad scales that are addressed in our study, it
252	should be noted that correlative relationships do not imply causal relationships.
253	
254	Data preparation

Page 57 of 98

1

Journal of Biogeography

2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
12	
15	
14	
15	
16	
17	
18	
10	
יג רי	
20	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31	
27	
22	
33	
34	
35	
36	
37	
20	
20	
39	
40	
41	
42	
43	
44	
45	
75 76	
40	
47	
48	
49	
50	
51	
52	
52	
<u>ک</u> ر	
54	
55	
56	
57	
58	
50	
59 60	
υU	

255	Fungal species records per latitude-longitude coordinate were summed within each 50×50
256	km grid extending over Europe and matched to UTM (Universal Transverse Mercator
257	coordinate system; a more geographically accurate projection for both northing and easting
258	bounds) zone 32. Environmental data were extracted for each fungal record (to precise
259	latitude-longitude positions), and were then averaged within each grid cell to match the
260	gridded fungal data. Land cover was recorded as the CLC class with the highest number of
261	fungal records in each grid cell. Values for each environmental variable were originally linked
262	directly to each species record at the most precise spatial resolution possible; thus, the values
263	reported for grid cells are means for all data points found within each cell and not an overall
264	equal-area average across each grid cell. They are optimally predictive of environmental
265	conditions leading to a fruit body presence. Data were originally analysed at three spatial
266	resolutions (50 × 50 km, 20 × 20 km and 10 × 10 km), with the 50 × 50 km resolution the one
267	that best captured large-scale compositional dynamics while being least subject to spatial bias
268	(Araújo, Thuiller, Williams & Reginster 2005). Geographical variables were represented by
269	the value of the grid cell center point.
270	
271	To understand temporal effects on compositional dynamics, for all taxa combined, as well as
272	saprotrophic and ectomycorrhizal taxa separately, the fungal data were analyzed for the whole
273	timespan (1970-2010) as well as for two time periods (split equally into 1970-1990 and
274	1991-2010). To help reduce collector biases in species representation, grid cells (grids) with
275	less than a total of 499 records, summed across all fungal species, were removed from the
276	whole time-period data set. Grids cells with less than a total of 249 records, summed across
277	all fungal species in the earlier time period, were removed, as were those lacking records

across both time periods. The impact of the value chosen for the minimum amount of records 278

279 within grid cells (249) was analysed during model optimization. Similar model results, or less

optimal models, were obtained with number of records per grid cells of less than 4999, 2499, 999, and 249 summed records per grid (half these values for the two-time periods). The influence of rare species was clear in grids when those with only less than 2 summed records were removed (and inappropriate for analysis). The influence of abundantly fruiting species was minimized by collapsing records to single units per geographical location (i.e., record duplications were removed), though our data are populated by rarer to abundantly fruiting taxa; hence the need for studies across fungal tissue and methodological types." Statistical analyses To summarize the main gradient structure of fungal assemblage compositions, Global Non-metric Multidimensional Scaling (GNMDS) and Detrended Correspondence Analysis (DCA) ordinations were obtained in accordance with the multiple parallel ordination approach of van Son and Halvorsen (2014, and references therein), using the vegan (Oksanen et al. 2013) and MASS (Venables and Ripley 2002) packages in R. By this procedure, only ordination axes that are extracted by both methods were accepted as important compositional gradients, thereby ensuring that spurious axes (which may occasionally be produced by any ordination method; Økland 1996) were not subjected to further interpretation. Many combinations of data properties, settings, and options for the methods were explored in the initial phase of the data analyses, including: counts, relative counts and frequencies as measures of species' abundances in the grid cells; combined with the whole- as well as the two-time period datasets; as well as for all, saprotrophic and ectomycorrhizal subsets of fungal communities. GNMDS analyses with count data utilized the Bray-Curtis dissimilarity index while the Jaccard index was used for frequency data. Each of the following settings were applied to the count data, and the first three to relative count and frequency data, during GNMDS analyses: no transformations or standardizations (absolute values were used), geodesic transformation,

Journal of Biogeography

2
2
1
4
5
6
7
8
9
10
11
11
12
13
14
15
16
17
18
19
20
20 21
21
22
23
24
25
26
27
28
20
29
50
31
32
33
34
35
36
37
38
20
22
40
41
42
43
44
45
46
47
48
10
77 50
50
51
52
53
54
55
56
57
58
20
27
60

305	Hellinger standardization, power transformation, and Wisconsin double-standardization. For
306	further interpretation, DCA with power-function transformed count data was selected. The
307	axes of these DCA's were confirmed by GNMDS by calculating pairwise correlation
308	coefficients between the axes. Between the models, axis 1 correlations ranged from 0.74-0.93
309	while axis 2 ranged from 0.23-0.82, with lowest correlation between ectomycorrhizal and
310	saprotrophic groups.
311	
312	Ordination results were visualized by plotting DCA axis scores on the positions of each grid
313	cell. The difference between ordination scores for each of the two axes and for the two time
314	periods was used as the response variable in an analysis of temporal change patterns.
315	Kendall's non-parametric correlation coefficient τ was used to assess the significance of
316	environmental components in explaining community variability as represented by the DCA
317	axes (Supplemental Table 2). Variables that strongly correlated with one or both of the first
318	two DCA axes were fitted to the ordination diagram using linear regression and displayed as
319	either linear-termed fixed effects or cubic smooth splines (Økland 1996; Tenenbaum, De
320	Silva & Langford 2000; Wood 2006; Mahecha, Martínez, Lischeid & Beck 2007; Liu et al.
321	2008). The categorical land cover variable was analysed with the function envfit in vegan and
322	was found always to be significant (data not shown). The function also verified significance
323	of the Kendall's tau correlations for all other variables. Absolute values of $\tau > 0.30$ were
324	considered substantially correlated with a DCA axis while τ values in the interval 0.20–0.30
325	were considered as marginal.

326

The statistical significance of the temporal difference in fungal species composition 327

(originating from one DCA) was assessed by three methods: paired t-tests of the individual 328

329 DCA axes scores; a multivariate paired Hotelling's T-squared test for the axes differences

2		
2 3	330	with respect to time period; and a principal component analysis (PCA) on the matrix of
4 5	331	compositional change. Further PCA analyses with proportions rejected a concern that
6 7	332	compositional change was due to sampling bias between the two time periods. As results were
8 9 10	333	all complementary, DCA score differences were selected to be plotted geographically as a
10 11 12	334	demonstration of compositional change between the time intervals.
13 14	335	
15 16	336	While not emphasized, as our goals concerned determining how the biogeography of fungal
17 18	337	assemblages related to environmental gradients, we did determine the potential that any
19 20 21	338	temporal changes in fungal assemblages were mostly the result of specific species' changes
21 22 23	339	by time (see supplemental material). Indicator species analyses were conducted on the results
23 24 25	340	of the DCA scores for each of the two time intervals, utilizing the difference in scores
26 27	341	between the first and second time periods for the response matrix. The species were divided
28 29	342	into groups by positive, negative or relatively little (no; between -0.1275-0.1275 for
30 31	343	saprotrophic and -0.0625–0.0625 for ectomycorrhizal groups) DCA axis score change
32 33 34	344	between the time periods. The groups were created by separating scores into equal
35 36	345	components of DCA score matching the color coding for figures created. Analysis was
37 38	346	conducted with the indicspecies package. All data formatting and analyses were implemented
39 40	347	in R version 3.2.2.
41 42	348	
43 44	349	Results
45 46	350	The primary gradients of saprotrophic and ectomycorrhizal fungal species assemblages were
47 48	351	both correlated with mean annual temperature (Figures 2a and 3a; Appendix S2); Kendall's τ
49 50 51	352	values were -0.55 for saprotrophic and -0.48 for ectomycorrhizal fungi. The highest
52 53	353	correlations for each group were for temperatures linked to cold-season measures (coldest
54 55 56	354	month or coldest quarter). Grid cells at the geographical and temperature extremes (the
57 58 59		

1	
2 3	355
4 5	356
6 7 8	357
8 9 10	358
11 12	359
13 14	360
15 16	361
17 18	362
19 20	363
21 22 23	364
23 24 25	365
26 27	366
28 29	367
30 31	368
32 33	369
34 35 26	370
30 37 38	371
39 40	372
41 42	373
43 44	374
45 46	375
47 48	376
49 50	377
52 53	378
55 54 55	379
56 57	
58 59	
60	

355	Norwegian and Alp mountain ranges) were similar with high DCA axis 1 scores, most clearly
356	seen for the saprotrophic fungi. In contrast, grid cells from western, coastal and low-lying
357	parts of Europe occurred along the opposite, low-score DCA axis 1 gradient.
358	
359	The second compositional gradient (DCA axis 2) differed between nutritional modes. For
360	saprotrophic assemblages, the gradient reflected patterns related to nitrogen deposition levels
361	($\tau = -0.49$; Figure 2b). DCA axis 2 scores increased from central Europe to coastal areas of
362	the UK and Norway, which matched general nitrogen patterns (Figure 1e). In contrast, the
363	second assemblage gradient for ectomycorrhizal fungi separated assemblages of grid cells
364	from northern to central Europe (Figure 3b) and was correlated with soil organic carbon
365	content ($\tau = 0.36$) (Figure 1c). The entire fungal community reflected similar patterns to the
366	saprotrophic fungi (Appendix S3; Appendix S2) and is thus not discussed further.
367	
368	When separated into two time periods (1970–1990 and 1991–2010), patterns reflected those
369	described for the whole time period. Temperature was again the main correlate along the
370	primary gradient identified for saprotrophic ($\tau = -0.51$) and ectomycorrhizal ($\tau = -0.38$)
371	fungal assemblages (Figure 4), with cold-season temperatures also showing high correlations
372	(Appendix S2). Patterns reflected those described for the whole time period. As with the
373	whole time period, saprotrophic fungal assemblages were separated along a second gradient
374	related to NHx ($\tau = -0.37$), and ectomycorrhizal fungal assemblages along a gradient related
375	to soil organic carbon ($\tau = 0.37$) and mean annual temperature ($\tau = -0.43$).
376	
377	The saprotrophic fungal assemblage gradients correlated with temperature (axis 1) and
378	nitrogen (axis 2). For both of the gradients, the greatest DCA score change was for grid cells
379	situated to the north and at higher altitudes, i.e., in the Norwegian mountain region (Figure 4

2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
17 20	
∠∪ ว1	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
27	
J∠ 22	
22	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
<u>4</u> 5	
46	
40	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	
ノブ	

60

1

380	a, b). For the first, temperature-related gradient, a pattern of change was found in the opposite
381	direction in at least some regions of the Alps mountain range of Switzerland and Austria.
382	There were no robust indicator species for any of the DCA axis change groups in terms of
383	specificity (probability of a group based on a species' presence) and fidelity (probability of
384	finding a species in a group), though many species matched high specificity values (Appendix
385	S4). Nitrogen was similarly strongly correlated with DCA scores along the second gradient
386	(Appendix S2), with areas of lower nitrogen amounts tending to occupy either extreme along
387	the gradient. Areas in central and western Europe exhibited the least amount of temporal
388	change along both gradients. Though the number of grid cells was fewer for ectomycorrhizal
389	fungi, there was a similar trend of greatest temporal differences in assemblages at the highest
390	latitudes and altitudes (Figure 4 c, d). No highly matched indicator species were found for any
391	group, though as with the saprotrophic fungi, many species contained high specificity values
392	but very low fidelity values (Appendix S5).
393	

394 Discussion

395 Assemblage gradients for both saprotrophic and ectomycorrhizal fungi correlated with mean 396 annual temperature (and collinear, cold-season temperature measures), which, as expected, 397 were patterned by geography and altitude. Assemblages with higher mean annual 398 temperatures were more similar to each other than to those at lower temperatures (Figures 2 399 and 3 a, c, e). Most notably, the composition of fungal assemblages in mountainous regions 400 were similar, regardless of whether they were situated in Norway or the Alps region of 401 Switzerland and Austria. If we were able to conduct the same analyses at a more precise 402 spatial scale that could incorporate vegetation data into the models, we expect that, in line 403 with earlier studies, we would find a significant relationship between the fungal and environmental gradients, as identified with respect to fungal composition gradients, with 404

Journal of Biogeography

405	vegetation type (e.g., Tedersoo et al. 2012; Soudzilovskaia et al. 2015; Swaty et al. 2016;
406	Bueno et al. 2017). A clear next challenge is to connect the fungal-environment relationships
407	to the fungal-vegetation relationships, ideally while simultaneously separating direct and
408	indirect effects from each other.
409	
410	The second main assemblage gradient (DCA axis 2) was both different in its pattern and
411	varied in the main environmental correlate between the nutritional modes, though it was
412	relatively uniform in terms of geographic and altitudinal distribution (Figures 2 and 3 b, d, e).
413	The saprotrophs displayed assemblage patterns related to a gradient of N deposition, which
414	itself reflected oceanicity-continentality patterning, and which is a likely proxy for
415	anthropogenic impacts on the environment. The ectomycorrhizal pattern related to soil
416	organic carbon and was less geographically structured, though similar to that found by Gange
417	et al. (2017) in the UK. While our results cannot determine causation, different feeding
418	strategies may explain the correlation of nitrogen with saprotrophic fungal assemblages, and
419	soil organic carbon (SOC) with ectomycorrhizal fungal assemblages (Appendix S2).
420	
421	Ectomycorrhizal fungal roles in carbon sequestration and cycling are increasingly recognized,
422	especially in northern latitude forests (Clemmensen et al. 2013; Averill and Hawkes 2016;
423	Kyaschenko, Clemmensen, Karltun & Lindahl 2017). The high correlation we found between
424	an assemblage composition gradient (the 2 nd DCA axis) and SOC content suggests that
425	ectomycorrhizal fungi not only respond to, but also causally contribute to processes of
426	organic matter accumulation and, hence, carbon sequestration (Figure 1c, f). We effectively
427	captured the distributional gradation of basidiomycete taxa by vegetation type from acidic,
428	carbon-rich northern bogs and fens of the UK, transitioning to ectomycorrhizal dominance in
429	northern and mountainous forests of Scandinavia and the Alps region of Switzerland and

430	Austria, on predominantly mor soils. Those locations can be contrasted with the more
431	continental pasturelands and woodlands containing either less woody plants or forests with
432	different ectomycorrhizal fungal communities and soil types. Soil pH, which is often highly
433	correlated with turnover in fungal community composition (Rineau and Garbaye 2009) and
434	implicated in fungal biogeography (Tedersoo, Bahram, Põlme, et al. 2014), is strongly,
435	negatively correlated with SOC content at a European scale (Bueno et al. 2017). SOC can also
436	be considered as an inverse proxy of pH. This second main compositional gradient signifies
437	the importance of carbon and structurally-bound compounds (and non-measured determinants
438	of soil carbon, e.g., vegetation and soil pH), as well as any consequential potential changes
439	(related to climate or land-use change) to fungi and their ecosystem services.
440	
441	Neither of the two most important ectomycorrhizal compositional gradients were strongly
442	correlated with nitrogen deposition amounts (a correlation of $\tau = -0.23$ was found for the
443	second DCA axis; Appendix S2), which might at a first glance be surprising because effects
444	of N deposition on ectomycorrhizal fungal communities have been well established (Arnolds
445	1991; Lilleskov, Fahey & Lovett 2001; Peter, Ayer & Egli 2001; Avis, McLaughlin,
446	Dentinger & Reich 2003). We suggest two main explanations for this discrepancy of our
447	results with those of others: First, a weaker correlation means that the assemblage gradients
448	were structured more strongly by other factors, i.e., temperature and soil carbon, rather than
449	nitrogen deposition per se. Accordingly, our results are compatible with a considerable effect
450	of nitrogen deposition on fungi, but suggest interactions with carbon sequestration that have
451	also been shown experimentally (de Vries et al. 2009). Alternatively, the second time span
452	(1991–2010) might have reduced visible N impacts on assemblages, as nitrogen pollution
453	especially started to abate from 1994 onwards (van Strien, Boomsluiter, Noordeloos, Verweij
454	& Kuyper 2017). This is in accord with the reduction of N that has recently taken place in the

1	
2	
2 2	
⊿	
-+ 5	
5	
07	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
2J 24	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
10	
40 1	
41	
+∠ ⊿⊃	
45 44	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
50	
50	
20	
27	
ъU	

455	Netherlands, which has caused a marked rebound by once-affected ectomycorrhizal taxa,
456	especially those considered nitrogen-sensitive (nitrophobic) (van Strien et al. 2017). A
457	manipulative experiment testing the abatement of longer-term nitrogen addition similarly
458	demonstrated a re-convergence to greater community similarity with non-nitrogen enriched
459	treatments than those with persistent nitrogen addition (Andrew C. and Avis P., unpublished
460	data). Temporally dynamic environmental variables, when available, would be of further
461	assistance in clarifying responses, as would careful inspection between regions.
462	
463	Interestingly, while saprotrophic fungi typically are less documented and, thus, generally
464	thought to exhibit less sensitivity to nitrogen deposition, the second compositional gradient
465	was highly correlated with nitrogen deposition (Figure 2 b, d, e). Studies of nitrogen addition
466	effects on saprotrophs have, however, pinpointed wood decay fungi as being susceptible
467	(Allison, Hanson & Treseder 2007). Community impacts of elevated nitrogen level have also
468	previously been found (Allison et al. 2009), though muted compared to our own results. The
469	molecular-based approach by those authors, covering a broader taxonomic range (at a far
470	smaller spatial scale), include many more taxa of the Ascomycota which, compared to macro-
471	fungi, are likely to be less susceptible to N. Thus, the focus on Basidiomycota and the
472	inclusion of wood decaying fungi in our macro-fungal data set may explain the more
473	pronounced community response to large-scale N content (Figure 1e). Nitrogen was also
474	significantly correlated with community structure when analysed across the two time intervals
475	(Appendix S2). Our results suggest that saprotrophic macro-fungi are an important group to
476	focus on in terms of nitrogen effects, with certain groups more sensitive than even
477	ectomycorrhizal fungi. The marginal correlation with precipitation ($\tau = 0.27$) should be
478	further explored, as it likely represents a community gradient that reflects a response to
479	oceanic vs. continental climates.

2 3	480	
4 5	481	Fun
6 7	482	mag
o 9 10	483	dran
11 12	484	asse
13 14	485	(Hal
15 16	486	tem
17 18	487	asse
19 20	488	dista
21 22 23	489	(Fig
24 25	490	by la
26 27	491	the i
28 29	492	strue
30 31	493	affe
32 33	494	mou
34 35 36	495	biot
37 38	496	asse
39 40	497	resp
41 42	498	
43 44	499	Grea
45 46	500	evid
47 48 40	501	(Fig
50 51	502	fung
52 53	503	rapi
54 55	504	pher
56 57		

1

481	Fungal assemblage composition varied with time, but only in certain regions and with a
482	magnitude that varied in relation to the environmental covariates (Figure 4). The more
483	dramatic temperature range shift by elevation (compared to latitude), and consequent
484	assemblage change, appears to match the distributional patterns of plant species ranges
485	(Halbritter, Alexander, Edwards & Billeter 2013) and mirrors bioclimatic zonation related to
486	temperature (annual temperature, length of growing season). Our results indicate that fungal
487	assemblages in European mountain ranges are more similar, across large geographic
488	distances, than with those of the lowlands. This may be due to similarities in land-cover type
489	(Figure 1f), hosts or climatic factors themselves. Elevation structured communities differently
490	by latitude, for both saprotrophic and ectomycorrhizal fungi, supporting the suggestion that
491	the indirect effects of latitude and altitude cannot be assumed similar even if both are
492	structured by temperature (Halbritter et al. 2013; Grytnes et al. 2014), which also directly
493	affects organisms. Other factors can contribute independently to differences between each
494	mountain range, e.g., slope steepness, precipitation (Engler et al. 2011), and components of
495	biotic interactions (Pellissier et al. 2013), and could explain some of the discrepancies in
496	assemblage gradient changes. Relating dispersal to range shifts would also help clarify
497	responses (Siefert, Lesser & Fridley 2015).
498	

Greater change in assemblages occurred with saprotrophic than ectomycorrhizal fungi, evidenced by a wider range in the difference of DCA axes scores between time periods (Figure 4). More marked temporal-based changes in phenological responses by saprotrophic fungi have also consistently been found, suggesting that these fungi may respond more rapidly than ectomycorrhizal fungi, and in a variety of ways, i.e., by compositional as well as phenological changes (Kauserud et al. 2012; Andrew et al. 2018). It would be of ecological Page 67 of 98

1

Journal of Biogeography

2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
21	
24	
25	
26	
27	
28	
29	
30	
31	
21	
32	
33	
34	
35	
36	
37	
38	
20	
10	
40	
41	
42	
43	
44	
45	
46	
17	
47	
48	
49	
50	
51	
52	
53	
51	
54	
22	
56	
57	
58	
59	
60	

505	interest to quantify the extent to which the latter is a direct cause of the former. The degree to
506	which greater saprotrophic temporal change is related to management practices, forest stand
507	succession, or other global change components also requires further study (Bässler et al.
508	2010; Nordén et al. 2013; Heilmann-Clausen, Aude, et al. 2014). The effects of management
509	might require, however, a more precise scale resolution than that used in the current, broad-
510	scale study.

511

512 Our results may serve as a platform for further macroecological research on fungi. For 513 example, the abiotic and biotic components of the most clearly defining biogeographical 514 gradients should be further examined, especially in relation to global change. We suggest 515 priority be given to biogeographical relationships of variables that act upon fungi in a direct 516 way, i.e., temperature and moisture, given how they non-additively structured fungal assemblages, especially in terms of latitude and altitude. As mentioned earlier, it is imperative 517 518 to better connect fungi, plants and the environment, as science currently relies too often on 519 two-way relationships rather than a network approach capable of addressing all three main 520 components. Similarly, we must understand how fungal ranges, at large scales, are distributed 521 relative to one another as well as with respect to their hosts and/or substrates. Finally, as we 522 report on macro-fungal fruit bodies (as a proxy for understanding fungal assemblage patterns 523 overall), a primary role of which are related to reproduction and dispersal of fungi, we suggest 524 that adding in information on long-distance dispersal abilities – be it via spores, vegetative 525 structures, host or animal vectors – will help clarify the potential for movement of fungi into 526 new and changing habitats. These suggestions all lead to consideration of the potential for 527 further change of fungal communities under future global change scenarios, and what the 528 ecological relevance might then be.

529	Acknowledgements
-----	------------------

530	Two sources are acknowledged for financial support: The Research Council of Norway,
531	project "Climate change impacts on the fungal ecosystem component (ClimFun)" (11 of 38
532	months), and the Swiss National Science Foundation, project "Linking European Fungal
533	Ecology with Climate Variability" (11 months). Drs. Dag Endresen, Vegar Bakkestuen, and
534	Anders Nielsen we thank for open-source data acquisition. As always, our appreciation to
535	employees and volunteers that over the years collected, managed and provided rights to the
536	fungal data: the Austrian Mycological Society and Wolfgang Dämon; the Swiss national
537	database (www.swissfungi.ch) and Peter Jakob; Deutsche Gesellschaft für Mykologie
538	(German Mycological Society) and Dr. Martin Schmidt; The Danish Fungal Atlas project and
539	Tobias Frøslev, Thomas Læssøe, Jens. H. Petersen and Jan Vesterholt; the Netherlands
540	Mycological Society (NMV) and A. van den Berg; the Mycological Herbarium at the Natural
541	History Museum (University of Oslo); the Slovenian Forestry Institute, the Central database
542	of fungi in Slovenia, the Slovenian Mycological Association, and Dr. Nikica Ogris;
543	www.fieldmycology.net for support sources of the UK national database. We also
544	acknowledge critical and constructive comments of the editor and three anonymous
545	reviewers.
546	
547	Data availability: All fungal and associated meta-data are provided as used for analyses in this
548	study and are gridded at the 50 \times 50 km resolution. Please see the included information on
549	original sources of data, or else the methods and acknowledgments sections of this
550	manuscript.

2 3	551	References
4 5	552	Allison, S.D., Hanson, C.A. & Treseder, K.K. (2007). Nitrogen fertilization reduces diversity
6 7 0	553	and alters community structure of active fungi in boreal ecosystems. Soil Biology and
o 9 10	554	Biochemistry, 39, 1878-1887.
11 12	555	
13 14	556	Allison, S.D., LeBauer, D.S., Ofrecio, M.R., Reyes, R., Ta, A.M. & Tran, T.M. (2009). Low
15 16	557	levels of nitrogen addition stimulate decomposition by boreal forest fungi. Soil Biology and
17 18	558	Biochemistry, 41, 293-302.
19 20 21	559	
21 22 23	560	Andrew, C., Heegaard, E., Kirk, P.M., Bässler, C., Heilmann-Clausen, J., Krisai-Greilhuber,
24 25	561	I., Kauserud, H. (2017). Big data integration: Pan-European fungal species observations
26 27	562	assembly that addresses contemporary questions in ecology and global change biology.
28 29	563	Fungal Biology Reviews, 31, 88-98.
30 31	564	
32 33	565	Andrew, C., Heegaard, C., Gange, A.C., Senn-Irlet, B., Egli, S., Kirk, P.M., Boddy, L.
34 35 36	566	(2018). Congruency in fungal phenology patterns across dataset sources and scales. Fungal
37 38	567	Ecology, 32, 9-17.
39 40	568	
41 42	569	Araújo, M.B., Thuiller, W., Williams, P.H., & Reginster, I. (2005). Downscaling European
43 44	570	species atlas distributions to a finer resolution: implications for conservation planning. Global
45 46	571	Ecology and Biogeography, 14, 17-30.
47 48 40	572	
49 50 51	573	Arnolds, E.E.F. (1991). Decline of ectomycorrhizal fungi in Europe. Agriculture, Ecosystems
52 53	574	& Environment, 35, 209-244.
54 55	575	
56 57		
58 59		
60		

576	Averill, C., & Hawkes, C.V. (2016). Ectomycorrhizal fungi slow soil carbon cycling. <i>Ecology</i>
577	Letters, 19, 937-947.
578	
579	Avis, P.G., McLaughlin, D.J., Dentinger, B.C., & Reich, P.B. (2003). Long-term increase in
580	nitrogen supply alters above-and below-ground ectomycorrhizal communities and increases
581	the dominance of Russula spp. in a temperate oak savanna. New Phytologist, 160, 239-253.
582	
583	Boddy, L., Büntgen, U., Egli, S., Gange, A.C., Heegaard, E., Kirk, P.M., Kauserud, H.
584	(2014). Climate variation effects on fungal fruiting. Fungal Ecology, 10, 20-33.
585	
586	Bueno, C.G., Moora, M., Gerz, M., Davison, J., Öpik, M., Pärtel, M., Zobel, M. (2017).
587	Plant mycorrhizal status, but not type, shifts with latitude and elevation in Europe. Global
588	Ecology and Biogeography, 26, 690-699.
589	
590	Bässler, C., Müller, J., Dziock, F., & Brandl, R. (2010). Effects of resource availability and
591	climate on the diversity of wood-decaying fungi. Journal of Ecology, 98, 822-832.
592	
593	Büntgen, U., Kauserud, H., & Egli, S. (2012). Linking climate variability to mushroom
594	productivity and phenology. Frontiers in Ecology and the Environment, 10, 14-19.
595	
596	Clemmensen, K.E., Bahr, A., Ovaskainen, O., Dahlberg, A., Ekblad, A., Wallander, H.,
597	Lindahl, B.D. (2013). Roots and associated fungi drive long-term carbon sequestration in
598	boreal forest. Science, 339, 1615-1618.
599	

3	600	de Vries, W., Solberg, S., Dobbertin, M., Sterba, H., Laubhann, D., Van Oijen, M., Reinds,
4 5	601	G.J. (2009). The impact of nitrogen deposition on carbon sequestration by European forests
0 7 8	602	and heathlands. Forest Ecology and Management, 258, 1814-1823.
o 9 10	603	
11 12	604	Dormann, C.F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Münkemüller, T.
13 14	605	(2013). Collinearity: a review of methods to deal with it and a simulation study evaluating
15 16 17	606	their performance. <i>Ecography</i> , 36, 27-46.
17	607	
20 21	608	Engler, R., Randin, C.F., Thuiller, W., Dullinger, S., Zimmermann, N.E., Araújo, M.B.,
22 23	609	Choler, P. (2011). 21st century climate change threatens mountain flora unequally across
24 25	610	Europe. Global Change Biology, 17, 2330-2341.
26 27	611	
28 29	612	Gange, A.C., Heegaard, E., Boddy, L., Andrew, C., Kirk, P., Halvorsen, R., Kauserud, H.
30 31 32	613	(2017). Trait-dependent distributional shifts in fruiting of common British fungi. <i>Ecography</i> .
33 34	614	40, doi: 10.1111/ecog.03233
35 36	615	
37 38	616	Grytnes, J.A., Kapfer, J., Jurasinski, G., Birks, H.H., Henriksen, H., Klanderud, K., Birks,
39 40	617	H.J.B. (2014). Identifying the driving factors behind observed elevational range shifts on
41 42	618	European mountains. Global Ecology and Biogeography, 23, 876-884.
43 44	619	
45 46 47	620	Halbritter, A.H., Alexander, J.M., Edwards, P.J., & Billeter, R. (2013). How comparable are
48 49	621	species distributions along elevational and latitudinal climate gradients? Global Ecology and
50 51	622	Biogeography, 22, 1228-1237.
52 53	623	
54 55		
56		
57 58		

624	Halme, P., Heilmann-Clausen, J., Rämä, T., Kosonen, T., & Kunttu, P. (2012). Monitoring
625	fungal biodiversity-towards an integrated approach. Fungal Ecology, 5, 750-758.
626	
627	Heilmann-Clausen, J., Barron, E.S., Boddy, L., Dahlberg, A., Griffith, G.W., Nordén, J.,
628	Halme, P. (2014). A fungal perspective on conservation biology. Conservation Biology, 29,
629	61-68.
630	
631	Heilmann-Clausen, J., Aude, E., Dort, K., Christensen, M., Piltaver, A., Veerkamp, M.,
632	Òdor, P. (2014). Communities of wood-inhabiting bryophytes and fungi on dead beech logs
633	in Europe-reflecting substrate quality or shaped by climate and forest conditions? Journal of
634	<i>Biogeography</i> , 41, 2269-2282.
635	
636	Heilmann-Clausen, J., Maruyama, P.K., Bruun, H.H., Dimitrov, D., Læssøe, T., Frøslev,
637	T.G., & Dalsgaard, B. (2016). Citizen science data reveal ecological, historical and
638	evolutionary factors shaping interactions between woody hosts and wood-inhabiting fungi.
639	New Phytologist, 212, 1072-1082.
640	
641	Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., & Jarvis, A. (2005). Very high
642	resolution interpolated climate surfaces for global land areas. International journal of
643	<i>Climatology</i> , 25, 1965-1978.
644	
645	Kauserud, H., Stige, L.C., Vik, J.O., Økland, R.H., Høiland, K., & Stenseth, N.C. (2008).
646	Mushroom fruiting and climate change. Proceedings of the National Academy of
647	Sciences, 105, 3811-3814.
648	

Journal of Biogeography

2 3	649	Kauserud, H., Heegaard, E., Semenov, M.A., Boddy, L., Halvorsen, R., Stige, L.C.,
4 5 6	650	Stenseth, N.C. (2010). Climate change and spring-fruiting fungi. Proceedings of the Royal
6 7 0	651	Society of London B: Biological Sciences, 277, 1169-1177.
o 9 10	652	
11 12	653	Kauserud, H., Heegaard, E., Büntgen, U., Halvorsen, R., Egli, S., Senn-Irlet, Høiland, K.
13 14	654	(2012). Warming-induced shift in European mushroom fruiting phenology. Proceedings of
15 16	655	the National Academy of Sciences, 109, 14488-14493.
17 18	656	
19 20 21	657	Kyaschenko, J., Clemmensen, K.E., Karltun, E., & Lindahl, B.D. (2017). Below-ground
22 23	658	organic matter accumulation along a boreal forest fertility gradient relates to guild interaction
24 25	659	within fungal communities. Ecology Letters, 20, 1546–1555
26 27	660	
28 29	661	Lilleskov, E.A., Fahey, T.J., & Lovett, G.M. (2001). Ectomycorrhizal fungal aboveground
30 31	662	community change over an atmospheric nitrogen deposition gradient. Ecological
32 33 34	663	Applications, 11, 397-410.
35 36	664	
37 38	665	Liu, H.Y., Økland, T., Halvorsen, R., Gao, J.X., Liu, Q.R., Eilertsen, O., & Bratli, H. (2008).
39 40	666	Gradient analyses of forests ground vegetation and its relationships to environmental
41 42	667	variables in five subtropical forest areas, S and SW China. Sommerfeltia, 32, 1e196.
43 44	668	
45 46	669	Mahecha, M.D., Martínez, A., Lischeid, G., & Beck, E. (2007). Nonlinear dimensionality
47 48 49	670	reduction: alternative ordination approaches for extracting and visualizing biodiversity
50 51	671	patterns in tropical montane forest vegetation data. Ecological Informatics, 2, 138e149.
52 53	672	
54 55		
56 57		
58		

673	Martiny, J.B.H., Bohannan, B.J., Brown, J.H., Colwell, R.K., Fuhrman, J.A., Green, J.L.,
674	Staley, J.T. (2006). Microbial biogeography: putting microorganisms on the map. Nature
675	Reviews Microbiology, 4, 102-112.
676	
677	Meiser, A., Bálint, M., & Schmitt, I. (2014). Meta-analysis of deep-sequenced fungal
678	communities indicates limited taxon sharing between studies and the presence of
679	biogeographic patterns. New Phytologist, 201, 623-635.
680	
681	Naff, C.S., Darcy, J.L., & Schmidt, S.K. (2013). Phylogeny and biogeography of an
682	uncultured clade of snow chytrids. Environmental Microbiology, 15, 2672-2680.
683	
684	Nielsen, A., Yoccoz, N.G., Steinheim, G., Storvik, G.O., Rekdal, Y., Angeloff, M.,
685	Mysterud, A. (2012). Are responses of herbivores to environmental variability spatially
686	consistent in alpine ecosystems?. Global Change Biology, 18, 3050-3062.
687	
688	Nordén, J., Penttilä, R., Siitonen, J., Tomppo, E., & Ovaskainen, O. (2013). Specialist species
689	of wood-inhabiting fungi struggle while generalists thrive in fragmented boreal forests.
690	Journal of Ecology, 101, 701-712.
691	
692	Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O'Hara, R.B.,
693	Simpson, G.L., Solymos, P., Stevens, M.H.H., & Wagner, H. (2013). Vegan: Community
694	Ecology Package. R Package Version 2.0-9. http://CRAN.R-project.org/ package1/4vegan.
695	

2 3	696	Pellissier, L., Pinto-Figueroa, E., Niculita-Hirzel, H., Moora, M., Villard, L., Goudet, J.,
4 5	697	Guisan, A. (2013). Plant species distributions along environmental gradients: do belowground
6 7	698	interactions with fungi matter? Frontiers in Plant Science, 4, 500.
8 9 10	699	
11 12	700	Peter, M., Ayer, F., & Egli, S. (2001). Nitrogen addition in a Norway spruce stand altered
13 14	701	macromycete sporocarp production and below-ground ectomycorrhizal species composition.
15 16 17	702	New Phytologist, 149, 311-325.
17 18 19	703	
20 21	704	Pettorelli, N., Vik, J.O., Mysterud, A., Gaillard, J.M., Tucker, C.J., & Stenseth, N.C. (2005).
22 23	705	Using the satellite-derived NDVI to assess ecological responses to environmental
24 25	706	change. Trends in Ecology & Evolution, 20, 503-510.
26 27	707	
28 29	708	Rinaldi, A.C., Comandini, O., & Kuyper, T.W. (2008). Ectomycorrhizal fungal diversity:
30 31	709	seperating the wheat from the chaff. Fungal Diversity, 33, 1-45.
32 33	710	
34 35 36	711	Rineau, F., & Garbaye, J. (2009). Effects of liming on ectomycorrhizal community structure
37 38	712	in relation to soil horizons and tree hosts. Fungal Ecology, 2, 103-109.
39 40	713	
41 42	714	Siefert, A., Lesser, M.R., & Fridley, J.D. (2015). How do climate and dispersal traits limit
43 44	715	ranges of tree species along latitudinal and elevational gradients? Global Ecology and
45 46	716	<i>Biogeography</i> , 24, 581-593.
47 48	717	
49 50 51	718	Soudzilovskaia, N.A., Douma, J.C., Akhmetzhanova, A.A., Bodegom, P.M., Cornwell, W.K.,
52 53 54 55	719	Moens, E.J., Cornelissen, J.H. (2015). Global patterns of plant root colonization intensity
50 57 58 59		

720	by mycorrhizal fungi explained by climate and soil chemistry. Global Ecology and
721	<i>Biogeography</i> , 24, 371-382.
722	
723	Swaty, R., Michael, H.M., Deckert, R., & Gehring, C.A. (2016). Mapping the potential
724	mycorrhizal associations of the conterminous United States of America. Fungal Ecology, 24,
725	139-147.
726	
727	Taylor, D.L., Hollingsworth, T.N., McFarland, J.W., Lennon, N.J., Nusbaum, C., & Ruess,
728	R.W. (2014). A first comprehensive census of fungi in soil reveals both hyperdiversity and
729	fine-scale niche partitioning. Ecological Monographs, 84, 3-20.
730	
731	Tedersoo, L., Bahram, M., Toots, M., Diedhiou, A.G., Henkel, T.W., Kjøller, R., Polme, S.
732	(2012). Towards global patterns in the diversity and community structure of ectomycorrhizal
733	fungi. <i>Molecular Ecology</i> , 21, 4160-4170.
734	
735	Tedersoo, L., & Smith, M.E. (2013). Lineages of ectomycorrhizal fungi revisited: foraging
736	strategies and novel lineages revealed by sequences from belowground. Fungal Biology
737	Reviews, 27, 83-99.
738	
739	Tedersoo, L., Bahram, M., Ryberg, M., Otsing, E., Kõljalg, U., & Abarenkov, K. (2014).
740	Global biogeography of the ectomycorrhizal/sebacina lineage (Fungi, Sebacinales) as
741	revealed from comparative phylogenetic analyses. Molecular Ecology, 23, 4168-4183.
742	
743	Tedersoo, L., Bahram, M., Põlme, S., Kõljalg, U., Yorou, N.S., Wijesundera, R,
744	Abarenkov, K. (2014). Global diversity and geography of soil fungi. Science, 346, 1256688.

Journal of Biogeography

1		
2 3	745	
4 5	746	Tenenbaum, J.B., De Silva, V., & Langford, J.C. (2000). A global geometric framework for
6 7	747	nonlinear dimensionality reduction. Science, 290, 2319e2323.
8 9 10	748	
10 11 12	749	Unterseher, M., Jumpponen, A.R.I., Oepik, M., Tedersoo, L., Moora, M., Dormann, C.F., &
12 13 14	750	Schnittler, M. (2011). Species abundance distributions and richness estimations in fungal
15 16	751	metagenomics-lessons learned from community ecology. Molecular Ecology, 20, 275-285.
17 18	752	
19 20	753	van Son T.C., & Halvorsen R. (2014). Multiple parallel ordinations: the importance of choice
21 22	754	of ordination method and weighting of species abundance data. Sommerfeltia, 37, 1-37.
23 24 25	755	
25 26 27	756	van Strien, A.J., Boomsluiter, M., Noordeloos, M.E., Verweij, R.J., & Kuyper, T.W. (2017).
28 29	757	Woodland ectomycorrhizal fungi benefit from large-scale reduction of nitrogen deposition in
30 31	758	the Netherlands. Journal of Applied Ecology, 55, 290-298.
32 33	759	
34 35	760	Venables, W.N., & Ripley, B.D. (2002). Modern Applied Statistics with S, fourth ed.
36 37 28	761	Springer, New York.
38 39 40	762	
40 41 42	762	Wood S.N. (2006). Generalized Additive Models on Introduction with P. Chanmann
43 44	764	and Hell London
45 46	765	
47 48	705	
49 50	766	Økland, R.H. (1996). Are ordination and constrained ordination alternative or complementary
51 52	767	strategies in general ecological studies? <i>Journal of Vegetation Science</i> , 7, 289e292.
53 54		
55 56		
57 58		
59 60		
59 60		

768	Figures legends
769	Figure 1: Environmental covariate gridded maps displaying mean values, by geo-coordinates
770	linked to amount of fruit body records, for (a) mean annual temperature (degrees C), (b)
771	averaged total precipitation per year (mm), (c) mean percent soil organic carbon, (d) mean
772	NDVI, where lower values are less productive, (e) mean ammonia(-um) levels, NHx (kg N m
773	2 s ⁻¹ * 10 ⁻¹²), (f) land cover class (CLC 1), and (g) mean altitude (msl).
774	
775	Figure 2: Gradients in the composition of saprotrophic fungal communities, their
776	biogeographical distributions, and environmental correlates. Compositional similarities are
777	represented by DCA axis 1 (a, c) and axis 2 (b, d) gradients mapped onto 50x50 km grids.
778	Shading reflects DCA axis gradients, centered at zero (white), with darker values at either
779	extreme. DCA plots (e) demonstrate the influence of mean annual temperature, altitude and
780	nitrogen (NHx), all of which were highly correlated with either of the DCA axes.
781	
782	Figure 3: Gradients in the composition of ectomycorrhizal fungal communities, their
783	biogeographical distributions, and environmental correlates. Compositional similarities are
784	represented by DCA axis 1 (a, c) and axis 2 (b, d) gradients mapped onto 50×50 km grids.
785	Shading reflects DCA axis gradients, centered at zero (white), with darker values at either
786	extreme. DCA plots (e) demonstrate the influence of mean annual temperature, altitude and
787	percent soil organic carbon, all of which were highly correlated with either of the DCA axes.
788	
789	Figure 4: Saprotrophic (a, b) and ectomycorrhizal (c, d) fungal community differences
790	between two time periods (1970-1990 vs. 1991-2010). The temporal differences of
791	communities by the two main DCA gradients $(t_2 - t_1)$ are shown mapped. All point shadings

1 2		
3	792	are centered at zero (coloured white), with shading reflecting DCA axis gradients of darker
5	793	values at either extreme.
6 7		
8 9		
10 11		
12		
13 14		
15 16		
17		
18		
20 21		
22 23		
24		
26		
27 28		
29 30		
31 32		
33		
34 35		
36 37		
38 39		
40 41		
42		
43 44		
45 46		
47 48		
49		
50 51		
52 53		
54 55		
56 57		
57 58		
59 60		

Environmental covariate gridded maps displaying mean values, by geo-coordinates linked to amount of fruit body records, for (a) mean annual temperature (degrees C), (b) averaged total precipitation per year (mm), (c) mean percent soil organic carbon, (d) mean NDVI, where lower values are less productive, (e) mean ammonia(-um) levels, NHx (kg N m-2 s-1 * 10-12), (f) land cover class (CLC 1), and (g) mean altitude (msl).

243x155mm (160 x 160 DPI)

Gradients in the composition of saprotrophic fungal communities, their biogeographical distributions, and environmental correlates. Compositional similarities are represented by DCA axis 1 (a, c) and axis 2 (b, d) gradients mapped onto 50x50 km grids. Shading reflects DCA axis gradients, centered at zero (white), with darker values at either extreme. DCA plots (e) demonstrate the influence of mean annual temperature, altitude and nitrogen (NHx), all of which were highly correlated with either of the DCA axes.

400x509mm (72 x 72 DPI)

b)

8000

DCA 2

-12

Gradients in the composition of ectomycorrhizal fungal communities, their biogeographical distributions, and environmental correlates. Compositional similarities are represented by DCA axis 1 (a, c) and axis 2 (b, d) gradients mapped onto 50 × 50 km grids. Shading reflects DCA axis gradients, centered at zero (white), with darker values at either extreme. DCA plots (e) demonstrate the influence of mean annual temperature, altitude and percent soil organic carbon, all of which were highly correlated with either of the DCA axes.

400x509mm (72 x 72 DPI)

Saprotrophic (a, b) and ectomycorrhizal (c, d) fungal community differences between two time periods (1970-1990 vs. 1991-2010). The temporal differences of communities by the two main DCA gradients (t2 – t1) are shown mapped. All point shadings are centered at zero (coloured white), with shading reflecting DCA axis gradients of darker values at either extreme.

400x510mm (72 x 72 DPI)

1 Continental-scale macro-fungal assemblage patterns correlate with climate, soil carbon and

2 nitrogen deposition

4 Carrie Andrew, Rune Halvorsen, Einar Heegaard, Thomas W Kuyper, Jacob Heilmann-

5 Clausen, Irmgard Krisai-Greilhuber, Claus Bässler, Simon Egli, Alan C Gange, Klaus

6 Høiland, Paul M Kirk, Beatrice Senn-Irlet, Lynne Boddy, Ulf Büntgen, Håvard Kauserud

Appendix S1: Correlation plots describing collinearity between environmental variables for those selected as (a) the main variables in analyses as well as (b) all those available. The correlation values are provided in the bottom left part of the graph, while pictorial representations are found in the upper right part of the graph. Red shadings denote a positive correlation, while blue shadings denote a negative correlation. The more linear the relationships, i.e., the more the correlation approaches 1, the more linear the symbols. The less linear the relationship, i.e., the more the correlation approaches 0, the more circular the symbol shape.

1		
2 3	1	Continental-scale macro-fungal assemblage patterns correlate with climate, soil carbon and
4 5	2	nitrogen deposition
6 7 9	3	
9 10	4	Carrie Andrew, Rune Halvorsen, Einar Heegaard, Thomas W Kuyper, Jacob Heilmann-
11 12	5	Clausen, Irmgard Krisai-Greilhuber, Claus Bässler, Simon Egli, Alan C Gange, Klaus
13 14	6	Høiland, Paul M Kirk, Beatrice Senn-Irlet, Lynne Boddy, Ulf Büntgen, Håvard Kauserud
15 16	7	
17 18 10	8	Appendix S2: Kendall tau correlations of geographical and environmental covariates with
20 21	9	DCA axes 1, 2 and 3 for all final models: assemblages of the whole time period and divided
22 23	10	into two time periods; all fungi, saprotrophic taxa only, and ectomycorrhizal taxa only.
24 25	11	Values above 0.30 are in bold and those above 0.40 are shaded, signifying significantly
26 27	12	correlated variables. The main investigated environmental correlates are in black, with
28 29 30	13	medium-grey shading for additional, collinear variables. Finally, further additional
30 31 32	14	WorldClim data variables that were not analysed any further (due to collinearity) are shaded
33 34	15	the lightest-grey.
35		
36		
3/		
30		
40		
41		
42		
43		
44		
45		
46		
47 78		
49		
50		
51		
52		
53		
54 55		
55 56		
57		
58		
59		
60		

(worksheet 'AllWholeTime')

	Axis 1	Axis 2	Axis 3	Variable	Axis 1	Axis 2	Axis 3
Northing (grid center point)	-0.07	0.43	-0.08	prec1	-0.08	0.40	-0.17
Easting (grid center point)	0.41	-0.39	0.26	prec2	0.04	0.29	-0.16
Altitude	0.50	-0.07	0.02	prec3	0.01	0.30	-0.16
Temperature (annual mean)	-0.57	-0.16	-0.16	prec4	0.14	0.12	-0.13
Precipitation (annual)	0.15	0.25	-0.12	prec5	0.24	-0.06	-0.03
NHx	-0.12	-0.47	0.19	prec6	0.38	-0.16	0.09
Soil Organic Carbon	0.08	0.23	0.06	prec7	0.43	-0.05	0.13
NDVI	-0.08	-0.20	-0.05	prec8	0.34	0.12	-0.02
Temperature (mean diurnal range)	0.23	-0.42	0.15	prec9	0.16	0.34	-0.14
Isothermality (diurnal/annual ranges)	-0.37	0.14	-0.18	prec10	0.05	0.42	-0.19
Temperature (seasonality)	0.45	-0.46	0.22	prec11	0.01	0.38	-0.22
Temperature (maximum of warmest month)	-0.03	-0.59	0.05	prec12	-0.05	0.37	-0.16
Temperature (minimum of coldest month)	-0.68	0.20	-0.27	tmax1	-0.66	0.20	-0.28
emperature range (max. warmest month - min. coldest month)	0.45	-0.49	0.23	tmax2	-0.61	0.07	-0.29
Temperature (mean wettest quarter)	0.07	-0.53	0.18	tmax3	-0.45	-0.15	-0.23
Temperature (mean driest quarter)	-0.49	0.33	-0.30	tmax4	-0.20	-0.39	-0.06
Temperature (mean of warmest quarter)	-0.15	-0.52	0.03	tmax5	-0.12	-0.53	0.06
Temperature (mean of coldest quarter)	-0.69	0.18	-0.27	tmax6	-0.07	-0.57	0.06
Precipitation (of wettest month)	0.27	0.21	-0.10	tmax7	-0.03	-0.59	0.04
Precipitation (of driest month)	0.04	0.24	-0.14	tmax8	-0.08	-0.58	0.07
Precipitation seasonality coefficient of variation	0.37	0.04	0.00	tmax9	-0.18	-0.52	0.04
Precipitation (of wettest quarter)	0.25	0.22	-0.11	tmax10	-0.45	-0.30	-0.08
Precipitation (of driest quarter)	0.05	0.24	-0.14	tmax11	-0.71	0.08	-0.24
Precipitation (of warmest quarter)	0.39	-0.02	0.06	tmax12	-0.68	0.20	-0.27
Precipitation (of coldest quarter)	-0.03	0.34	-0.17	tmin1	-0.68	0.21	-0.27
NOy	-0.01	-0.55	0.26	tmin2	-0.67	0.16	-0.27
				tmin3	-0.68	0.10	-0.25
				tmin4	-0.60	-0.09	-0.19
				tmin5	-0.38	-0.29	-0.07
				tmin6	-0.29	-0.30	-0.06
				tmin7	-0.27	-0.31	-0.06
				tmin8	-0.30	-0.28	-0.05
				tmin9	-0.45	-0.14	-0.11
				tmin10	-0.60	0.02	-0.17
				tmin11	-0.72	0.11	-0.19
				tmin12	-0.70	0.22	-0.25

Journal of Biogeography

(worksheet 'SaproWholeTime')

		Axis 1	Axis 2	Axis 3	Variable	Axis 1	Axis 2	Axis 3	l
Northing (grid center point)		-0.14	0.34	-0.43	prec1	-0.12	0.43	-0.12	
Easting (grid center point)		0.41	-0.43	0.15	prec2	0.00	0.32	0.03	
Altitude		0.48	-0.05	0.22	prec3	-0.03	0.33	-0.01	
Temperature (annual mean)		-0.55	-0.10	0.16	prec4	0.12	0.15	0.19	
Precipitation (annual)		0.13	0.27	0.02	prec5	0.25	-0.04	0.28	
NHx		-0.04	-0.49	0.16	prec6	0.41	-0.16	0.23	
Soil Organic Carbon		0.13	0.16	-0.16	prec7	0.44	-0.09	0.10	
NDVI		-0.02	-0.14	0.21	prec8	0.34	0.10	0.08	
Temperature (mean diurnal range)		0.29	-0.39	0.31	prec9	0.13	0.36	-0.08	
Isothermality (diurnal/annual ranges)		-0.36	0.21	0.05	prec10	0.00	0.45	-0.18	
Temperature (seasonality)		0.48	-0.50	0.16	prec11	-0.04	0.43	-0.13	
Temperature (maximum of warmest month)		0.02	-0.56	0.32	prec12	-0.08	0.41	-0.11	1
Temperature (minimum of coldest month)		-0.69	0.25	-0.04	tmax1	-0.67	0.28	-0.04	1
Femperature range (max. warmest month - min. coldest mon	nth)	0.49	-0.50	0.18	tmax2	-0.62	0.16	0.07	1
Temperature (mean wettest quarter)		0.14	-0.58	0.24	tmax3	-0.44	-0.08	0.25	1
Temperature (mean driest quarter)	_	-0.54	0.35	-0.10	tmax4	-0.14	-0.35	0.33	
Temperature (mean of warmest quarter)		-0.09	-0.50	0.26	tmax5	-0.05	-0.52	0.30	
Temperature (mean of coldest quarter)	_	-0.70	0.25	-0.03	tmax6	0.00	-0.55	0.29	-
Precipitation (of wettest month)	_	0.26	0.20	0.03	tmax7	0.03	-0.56	0.32	
Precipitation (of driest month)		0.02	0.27	0.07	tmax8	-0.02	-0.56	0.30	
Precipitation seasonality coefficient of variation	_	0.36	-0.03	-0.04	tmax0	-0.12	-0.30	0.30	
Precipitation (of wettest quarter)	_	0.24	0.21	0.03	tmax10	-0.12	-0.24	0.23	1
Provipitation (of drivet quarter)		0.24	0.21	0.05	tmax10	0.71	0.17	0.02	-
Precipitation (of unrest quarter)		0.02	0.27	0.03	tmax12	-0.71	0.17	0.02	-
Precipitation (of valuest quarter)		0.40	-0.03	0.15	tmin1	-0.07	0.20	-0.05	-
NOv		-0.07	0.50	-0.05	tinin1	-0.00	0.27	-0.03	-
NOy		0.07	-0.57	0.19	tinin2	-0.00	0.21	0.00	-
					tmin4	-0.00	0.10	0.04	-
					tmin5	-0.50	-0.03	0.13	-
					tinins	-0.35	-0.24	0.12	-
					tmino tmin7	-0.24	-0.27	0.11	-
					tmin/	-0.23	-0.27	0.10	-
					tmin8	-0.27	-0.25	0.09	-
					tmin9	-0.43	-0.09	0.03	-
					tmin10	-0.59	0.08	-0.06	
					tmin11	-0.71	0.16	-0.05	-
					tmin12	-0.68	0.28	-0.11	

22 (worksheet 'EctoWholeTime')

, uninoite	Axis 1	Axis 2	Axis 3	Variable	Axis 1	Axis 2	Axis 3
Northing (grid center point)	-0.32	0.33	-0.26	prec1	-0.06	0.06	0.13
Easting (grid center point)	0.36	-0.05	-0.01	prec2	0.12	0.00	0.24
Altitude	0.60	-0.04	0.27	prec3	0.08	0.02	0.22
Temperature (annual mean)	-0.48	-0.29	-0.18	prec4	0.29	-0.10	0.28
Precipitation (annual)	0.25	0.03	0.23	prec5	0.39	-0.12	0.30
NHx	-0.10	-0.23	0.01	prec6	0.47	-0.07	0.27
Soil Organic Carbon	0.11	0.36	0.13	prec7	0.47	0.03	0.24
NDVI	0.00	-0.19	0.06	prec8	0.42	0.07	0.27
Temperature (mean diurnal range)	0.32	-0.19	0.13	prec9	0.22	0.11	0.15
Isothermality (diurnal/annual ranges)	-0.24	-0.06	0.08	prec10	0.07	0.12	0.04
Temperature (seasonality)	0.42	-0.06	-0.01	prec11	0.06	0.05	0.08
Temperature (maximum of warmest month)	0.05	-0.35	-0.07	prec12	-0.02	0.04	0.12
Temperature (minimum of coldest month)	-0.60	-0.11	-0.11	tmax1	-0.57	-0.13	-0.14
Cemperature range (max. warmest month - min. coldest month)	0.47	-0.08	0.04	tmax2	-0.47	-0.21	-0.10
Temperature (mean wettest quarter)	0.11	-0.17	-0.01	tmax3	-0.30	-0.33	-0.09
Temperature (mean driest quarter)	-0.50	-0.03	-0.11	tmax4	-0.08	-0.36	-0.07
Temperature (mean of warmest quarter)	-0.09	-0.34	-0.15	tmax5	-0.05	-0.33	-0.07
Temperature (mean of coldest quarter)	-0.60	-0.13	-0.13	tmax6	0.00	-0.33	-0.10
Precipitation (of wettest month)	0.39	0.05	0.21	tmax7	0.06	-0.35	-0.07
Precipitation (of driest month)	0.14	-0.03	0.26	tmax8	-0.01	-0.35	-0.09
Precipitation seasonality coefficient of variation	0.38	0.13	0.02	tmax9	-0.09	-0.38	-0.07
Precipitation (of wettest quarter)	0.37	0.05	0.22	tmax10	-0.36	-0.35	-0.15
Precipitation (of driest quarter)	0.13	-0.02	0.26	tmax11	-0.59	-0.20	-0.16
Precipitation (of warmest quarter)	0.46	0.01	0.27	tmax12	-0.59	-0.12	-0.15
Precipitation (of coldest quarter)	0.01	0.02	0.17	tmin1	-0.61	-0.10	-0.12
NOy	0.01	-0.18	0.08	tmin2	-0.58	-0.14	-0.10
				tmin3	-0.57	-0.15	-0.09
				tmin4	-0.50	-0.25	-0.16
				tmin5	-0.34	-0.30	-0.24
				tmin6	-0.24	-0.28	-0.26
				tmin7	-0.23	-0.27	-0.26
				tmin8	-0.27	-0.25	-0.25
				tmin9	-0.42	-0.22	-0.22
				tmin10	-0.57	-0.15	-0.22
				tmin11	-0.67	-0.12	-0.17
				tmin12	-0.64	-0.09	-0.18

(worksheet 'EctoTwoTimePeriods')

	Variable	Axis 1	Axis 2	Axis 3	Variable	Axis 1	Axis 2	Axis 3	J
	Northing (grid center point)	-0.51	0.06	0.13	prec1	-0.12	0.02	0.13	1
	Easting (grid center point)	0.41	0.08	-0.12	prec2	0.14	0.07	0.06	1
	Altitude	0.69	0.16	-0.07	prec3	0.07	0.06	0.10	
	Temperature (annual mean)	-0.38	-0.43	0.12	prec4	0.41	0.06	0.02	
	Precipitation (annual)	0.27	0.12	0.05	prec5	0.53	0.13	-0.04	
	NHx	-0.08	-0.01	-0.19	prec6	0.54	0.18	-0.09	
	Soil Organic Carbon	0.04	0.37	0.13	prec7	0.44	0.22	-0.11	
	NDVI	0.19	0.01	0.04	prec8	0.45	0.23	-0.05	
	Temperature (mean diurnal range)	0.48	0.05	-0.08	prec9	0.19	0.10	0.05	
	Isothermality (diurnal/annual ranges)	-0.24	-0.09	0.12	prec10	0.02	-0.02	0.12	
	Temperature (seasonality)	0.45	0.11	-0.12	prec11	0.03	-0.02	0.12	
	Temperature (maximum of warmest month)	0.26	-0.16	-0.03	prec12	-0.04	0.02	0.14	-
	Temperature (minimum of coldest month)	-0.54	-0.27	0.14	tmax1	-0.48	-0.30	0.14	-
-	Temperature range (max. warmest month - min. coldest month)	0.52	0.10	-0.13	tmax2	-0.38	-0.36	0.14	
	Temperature (mean wettest quarter)	0.17	0.01	-0.12	tmax3	-0.16	-0.41	0.12	
	Temperature (mean driest quarter)	-0.51	-0.19	0.20	tmax4	0.14	-0.23	0.04	
	Temperature (mean of warmest quarter)	0.08	-0.25	-0.02	tmax5	0.14	-0.16	-0.02	
	Temperature (mean of coldest quarter)	-0.52	-0.31	0.15	tmax6	0.18	-0.16	-0.02	
-	Precipitation (of wettest month)	0.44	0.15	-0.01	tmax /	0.27	-0.16	-0.03	
	Precipitation (of driest month)	0.17	0.10	0.04	tmaxo	0.18	-0.18	-0.02	
	Precipitation (of wattast quarter)	0.40	0.10	-0.09	tmax10	0.08	-0.24	-0.02	-
	Precipitation (of driest quarter)	0.14	0.14	0.00	tmax10	-0.28	-0.43	0.03	-
	Precipitation (of warmest quarter)	0.14	0.07	-0.09	tmax12	-0.40	-0.30	0.12	-
	Precipitation (of coldest quarter)	-0.02	0.03	0.12	tmin1	-0.51	-0.26	0.13	-
	NOv	-0.02	0.05	-0.13	tmin2	-0.51	-0.29	0.12	-
					tmin3	-0.50	-0.31	0.16	-
					tmin4	-0.42	-0.41	0.12	1
-					tmin5	-0.27	-0.42	0.05	
					tmin6	-0.14	-0.37	0.03	
					tmin7	-0.14	-0.34	0.01	
					tmin8	-0.22	-0.34	0.03	
					tmin9	-0.42	-0.35	0.06	
					tmin10	-0.56	-0.30	0.07	
					tmin11	-0.62	-0.30	0.11	
6					tmin12	-0.58	-0.29	0.14	l
7									
27									

(worksheet 'SaproTwoTimePeriods')

	Axis 1	Axis 2	Axis 3	Variable	Axis 1	Axis 2	Axis 3
Northing (grid center point)	-0.27	0.18	-0.45	prec1	-0.18	0.27	-0.28
Easting (grid center point)	0.46	-0.32	0.37	prec2	0.00	0.22	-0.09
Altitude	0.55	0.08	0.14	prec3	-0.05	0.23	-0.13
Temperature (annual mean)	-0.51	-0.02	0.11	prec4	0.19	0.15	0.11
Precipitation (annual)	0.14	0.15	-0.05	prec5	0.34	-0.03	0.24
NHx	-0.04	-0.37	0.28	prec6	0.48	-0.15	0.26
Soil Organic Carbon	0.21	0.01	-0.22	prec7	0.45	-0.18	0.16
NDVI	0.11	-0.03	0.13	prec8	0.40	0.00	0.05
Temperature (mean diurnal range)	0.43	-0.24	0.37	prec9	0.15	0.22	-0.19
Isothermality (diurnal/annual ranges)	-0.36	0.22	-0.16	prec10	-0.02	0.31	-0.29
Temperature (seasonality)	0.55	-0.31	0.33	prec11	-0.06	0.29	-0.25
Temperature (maximum of warmest month)	0.15	-0.34	0.49	prec12	-0.12	0.25	-0.23
Temperature (minimum of coldest month)	-0.67	0.17	-0.15	tmax1	-0.64	0.22	-0.16
emperature range (max. warmest month - min. coldest month)	0.58	-0.30	0.33	tmax2	-0.58	0.17	-0.07
Temperature (mean wettest quarter)	0.21	-0.47	0.40	tmax3	-0.36	0.04	0.15
Temperature (mean driest quarter)	-0.57	0.24	-0.25	tmax4	0.00	-0.20	0.39
Temperature (mean of warmest quarter)	0.00	-0.34	0.45	tmax5	0.07	-0.37	0.47
Temperature (mean of coldest quarter)	-0.66	0.18	-0.14	tmax6	0.12	-0.36	0.47
Precipitation (of wettest month)	0.32	0.12	0.00	tmax7	0.16	-0.33	0.49
Precipitation (of driest month)	0.02	0.20	-0.06	tmax8	0.09	-0.37	0.49
Precipitation seasonality coefficient of variation	0.41	-0.06	0.08	tmax9	-0.03	-0.32	0.43
Precipitation (of wettest quarter)	0.30	0.13	0.00	tmax10	-0.40	-0.13	0.20
Precipitation (of driest quarter)	0.01	0.19	-0.07	tmax11	-0.64	0.13	-0.07
Precipitation (of warmest quarter)	0.45	-0.12	0.16	tmax12	-0.65	0.21	-0.16
Precipitation (of coldest quarter)	-0.12	0.24	-0.19	tmin1	-0.67	0.18	-0.16
NOy	0.05	-0.47	0.34	tmin2	-0.66	0.14	-0.12
				tmin3	-0.65	0.12	-0.07
				tmin4	-0.56	0.03	0.07
				tmin5	-0.33	-0.16	0.21
				tmin6	-0.20	-0.16	0.24
				tmin7	-0.18	-0.17	0.23
				tmin8	-0.25	-0.18	0.22
				tmin9	-0.47	-0.04	0.06
				tmin10	-0.61	0.05	-0.07
				tmin11	-0.70	0.09	-0.09
				tmin12	-0.67	0.19	-0.17

Continental-scale macro-fungal assemblage patterns correlate with climate, soil carbon and

- nitrogen deposition

Carrie Andrew, Rune Halvorsen, Einar Heegaard, Thomas W Kuyper, Jacob Heilmann-

5 Clausen, Irmgard Krisai-Greilhuber, Claus Bässler, Simon Egli, Alan C Gange, Klaus

6 Høiland, Paul M Kirk, Beatrice Senn-Irlet, Lynne Boddy, Ulf Büntgen, Håvard Kauserud

Appendix S3: Compositional gradients and biogeographic distributions of entire fungal
communities (saprotrophic and ectomycorrhizal combined). Compositional similarities are
represented by DCA axis 1 (a) and axis 2 (b) gradients mapped onto 50x50 km grids. Shading
reflects DCA axis gradients, centered at zero (white), with darker values at either extreme. A

- 13 DCA plot (c) demonstrates the influence of mean annual temperature, altitude, and nitrogen
 - 14 (NHx) on fungal community gradients.

to perpetient

1	
2	
3	15
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34 25	
35	
30 27	
27 20	
30	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

2	
3	
4	
5	
6 7	
/ 8	
9	
10	
11	
12	
13	
14	
15	
10	
18	
19	
20	
21	
22	
23	
24	
25	
20	
28	
29	
30	
31	
32	
33 24	
34	
36	
37	
38	
39	
40	
41	
42	
43	
45	
46	
47	
48	
49	
50 E 1	
51	
53	
54	
55	
56	
57	
58	
59	

1

Continental-scale macro-fungal assemblage patterns correlate with climate, soil carbon and
 nitrogen deposition

3

4 Carrie Andrew, Rune Halvorsen, Einar Heegaard, Thomas W Kuyper, Jacob Heilmann-

5 Clausen, Irmgard Krisai-Greilhuber, Claus Bässler, Simon Egli, Alan C Gange, Klaus

6 Høiland, Paul M Kirk, Beatrice Senn-Irlet, Lynne Boddy, Ulf Büntgen, Håvard Kauserud

7

8 Appendix S4: Output of saprotrophic indicator species analyses by fungal groups responding

9 with positive (pos), relatively little (no), or negative (neg) change in DCA axis score(s)

10 between the earlier (1970-1990) and later (1991-2010) time periods. The first and second

11 worksheet ('DCA1', 'DCA2') are analyses conducted separately for each DCA axis. The third

12 worksheet ('DCA1and2') conducts the analyses for the two DCA axes together. The keys for

13 separation of DCA axis changes into groups is found in the first two worksheets.

14 (worksheet 'DCA1')

> summary(Indval DCA1, indvalcomp=TRUE)	***	Gro	oup 1	= p	os D	CA1 change;	0.1275 ≤	×								
	***	Gro	oup 2	= n	o DC	Al change;	-0.1275 <	x < 0.1275								
Multilevel pattern analysis	***	Gro	oup 3	= n	eg D	CA1 change;	× ≤ -0.1	275								
		"The	e ind	icat	or v	alue index	is the pro	duct of two	components	, called 'A	and 'B'.					
Arrociation function: IndVal g	++						1		1							
Circificance lawel (clobe): 0.05		-			1.5.1	in malled	hha lamanid	inited on t			-1					
Significance level (alpha): 0.05	**		. omp or	ienc		15 carred	the spect	icity of	posicive pi	ediccive v	arue or un	s species a	5 all illuica	icor or che	Site group	-
				It 1	s tr	ie probabil	ity that th	e surveyed	site belong	s to the ta	irget site o	roup given	the fact t	hat the spe	cies has be	en tound
Total number of species: 3532	**			If t	he :	species has	a value of	1.00, this	means it o	ccurs in si	ites belongi	ng to that	group only			
Selected number of species: 50	**															
Number of species associated to 1 group: 49	**	C	ompor	ent	'B'	is called	the 'fideli	ty' or 'set	sitivity' a	of the spec	ies as indi	rator of th	e target si	te group		
Number of energies energiated to 2 groups 1				Y & 2				ing the sec		nites bala		:+		Jecop.		
Number of species associated to 2 groups. 1				10 1	. 5 LI	e probabil	ity of find	ing the spe	cies in the	SILES DELL	nging co ci	ie site gio	up.			
	**	-		If t	he s	species has	a value le	ss than 1.0	0, this mea	ns not all	sites belor	ging to th	at group in	clude the s	pecies. Onl	y the
List of species associated to each combination:	**				pr	oportion re	ported inc	lude that s	pecies.							
	**															
Group 1 Arps 41																
droup i gapat 41				-	-											-
A B Stat p.value					_											
Hymenochaete carpatica 0.6223 0.7778 0.696 0.002 **																
luteus brunneoradiatus 0.9437 0.3333 0.561 0.001 ***																
lavaria versatilis 0.9274.0.3333.0.556.0.002 **																
0 9074 0 3333 0 547 0 003 **		_		-	-											
100000 primus 0.0074 0.0003 0.007 0.0003 **	\rightarrow	-		-	-											
Intoloma carneogriseum 0.6958 0.3333 0.482 0.017 *	\rightarrow	+	\rightarrow	_	-				-		-			-		
Perenniporia japonica 1.0000 0.2222 0.471 0.002 **																
Volvariella cinerascens 1.0000 0.2222 0.471 0.003 **																
alerina sahleri 0.9359 0.2222 0.456 0.006 **																
Marian shruptibulbur 0.6147.0.3333.0.452.0.010 **		-			-			-	-						-	1
Ngurreus usruperbuibus 0.0147 0.3333 0.433 0.010 **	-++	-		-	-											+
Trametes quercina 0.8391 0.2222 0.432 0.015 *	_	-		_	_											
Resupinatus conspersus 0.8223 0.2222 0.427 0.014 *																
Lentinellus inolens 0.8041 0.2222 0.423 0.025 *																
Tectella patellaris 0.7818 0.2222 0.417 0.019 *																
				-	-											-
75110Cybe turricola 0.7778 0.2222 0.416 0.016 *				-	_											
Agrocybe attenuata 1.0000 0.1111 0.333 0.039 *																
Asterostroma medium 1.0000 0.1111 0.333 0.039 *																
Botryobasidium arachnoideum 1.0000 0.1111 0.333 0.039 * 🧹																
Ceriporia rhodella 1 0000 0 1111 0 333 0 037 *																
ceriporta inderia 1.0000 0.1111 0.333 0.037					-											
Chiorophyllum molybdites 1.0000 0.1111 0.333 0.037 *		_	_	_	_											
Clavaria_sphagnicola 1.0000 0.1111 0.333 0.039 *																
Cystolepiota eriophora 1.0000 0.1111 0.333 0.039 *																
Fibricium subceraceum 1 0000 0 1111 0 333 0 039 *																
C-111																
Salereila conocephala 1.0000 0.1111 0.555 0.057 -		-			-											
Aycenella variispora 1.0000 0.1111 0.333 0.039 *			_	_	_											
Panaeolus_cyanescens 1.0000 0.1111 0.333 0.035 *																
Phlebia sordida 1.0000 0.1111 0.333 0.039 *																
Pholiota nameko 1 0000 0 1111 0 333 0 039 *																
Prilocube moderts 1 0000 0 1111 0 333 0 039 *				-	-											
rsilocybe_modesca 1.0000 0.1111 0.333 0.039 -		-		-	_											-
Resupinatus striatulus 1.0000 0.1111 0.333 0.032 *																
Sarcodontia_setosa 1.0000 0.1111 0.333 0.037 *																
Stropharia umbonatescens 1.0000 0.1111 0.333 0.039 *																
Tephrocybe raphapoleps 1 0000 0 1111 0 333 0 039 *		-														
Turbula		-						-								-
ryphula_colallina 1.0000 0.1111 0.333 0.039 *	\rightarrow	+														+
Galerina discreta 0.9826 0.1111 0.330 0.032 *																
Kuehneromyces_vernalis 0.9826 0.1111 0.330 0.022 *																
Agrocybe farinacea 0.9741 0.1111 0.329 0.032 *																
Trichantum biforme 0.9606.0.1111.0.327 0.020 *		-			1			-			-			-	-	1
huminulaniania alberallar 0.4752.0.2222.0.227 0.028 *	\rightarrow	-		-												+
Auriculariopsis_albomellea 0.4753 0.2222 0.325 0.026 *	\rightarrow	\rightarrow	\rightarrow	_					-							
Arrhenia subglobispora 0.9494 0.1111 0.325 0.030 *																
Deconica micropora 0.9260 0.1111 0.321 0.016 *																
Oudemansiella ephippium 0.9037 0.1111 0.317 0 027 *		-														
	-++	-		-	-											
	\rightarrow	+	+	-	-											
Group 3 #sps. 8																
A B stat p.value																
Stypella legonii 1.0000 0.1774 0.421 0.018 *																
Frechispore dimitics 0.9861.0.1613.0.399 0.002 *		-														
	\rightarrow	-		-	-									-	-	+
Basidiodendron spinosum 0.9646 0.1613 0.394 0.033 *	\rightarrow	_		_	_											-
Skeletocutis_brevispora 0.9703 0.1290 0.354 0.035 *																
laviporus citrinellus 0.9287 0.1290 0.346 0.038 *																
Radulomyces rickii 0.9424 0.1129 0.326 0.039 *																
Intoloma 0.9356.0.1129.0.325 0.020 *	\rightarrow	-		-	-									-	-	+
0.5330 0.1125 0.325 0.029 *	\rightarrow	-		-	-									-	-	
Lepiota_kuehneri 0.9271 0.1129 0.324 0.046 *																
Group 1+3 #sps. 1																
A D stat p value		-												-	-	1
A B Stat p.vatue	\rightarrow	-		-	-									-	-	+
Nycoacia_notnoragi 0.9608 0.2254 0.465 0.029 *		_		_	_			-								-

CZ

17 (worksheet 'DCA2)

> summary(Indval DCA2, indvalcomp=TRUE)	***	Group	1 =	pos	DCA2 ch	inge; 0.1062	5 ≦ x								
	***	Group	2 =	no D	CA2 cha	ige; -0.1062	5 < x < 0.108	25							
Multilevel pattern analysis	***	Group	3 =	neg	DCA2 ch	inge; x 5 -0	.10625								
		H-m1 -	11			1 1 11	1			1					
Nerroistics functions Yeddyn) -		ine in	IGLO	1001	varue r	idex 15 the p	LOUGCE OF LWC	componentes	, carred ,	C allu B.					
Significance level (alpha): 0.05		Com	oner	+ 13	i ir cai	lad the !rne	ificity! or	Inoritive n	adictive v	alua! of th	a species a	s an indica	tor of the	rite group	
bightiteunce tever (appia): 0.05	**	Comp	T+	ist	the prob	ability that	the surveyed	site belong	s to the t	arget site	roup given	the fact t	bat the sne	cies bas be	en found
Total number of species: 3532	**		If	the	species	has a value	of 1.00, this	s means it c	ccurs in s	ites belong	ing to that	group only			
Selected number of species: 55	**		-								1				
Number of species associated to 1 group: 40		Comp	onen	t 'B	' is cal	led the 'fide	lity' or 'se	nsitivity' d	of the spec	ies as indi	cator of th	e target si	te group.		
Number of species associated to 2 groups: 15	**		It	is t	he prob	ability of fi	nding the spe	ecies in the	sites bel	onging to th	ne site gro	up.			
	**		If	the	species	has a value	less than 1.0	00, this mea	ns not all	sites belo	iging to the	at group in	clude the :	species. Only	y the
List of species associated to each combination:	**			F	roporti	on reported i	nclude that s	pecies.							
	**														
Group 1 #sps. 1															
A B stat p.value			_												
Pholiota pudica 0.9326 0.0641 0.245 0.037 *			_												
		_	-		_										
Group 3 #sps. 39		_	-		_										
A B stat p.value			-				_								
Skeletocutis Brevispora 0.92715 0.25926 0.490 0.001			-				_								
SAMPLELOCULIS DIGUTTUIATA U.8//64 U.20926 U.4// 0.001 **			-		-										
Amplocustis lapponica 1 00000 0 19519 0 430 0 001 **	*	++	-		-		-	1	1	-	-	1			
Athelia sibirica 1.00000 0.18519 0.430 0.001 **		++	-				_								
Clavaria flavipes 0.89455 0.18519 0.407 0.001 **	*		-					1	1		1	1			
Junghuhnia collabens 0.96491 0.14815 0.378 0.001 **	*							1	1		1	1			
Xanthoporus_syringae 0.87424 0.14815 0.360 0.003 **	-														
Entoloma carneogriseum 0.67159 0.18519 0.353 0.010 **															
Entoloma 0.80745 0.14815 0.346 0.004 **															
Athelia subovata 1.00000 0.11111 0.333 0.002 **															
Hapalopilus ochraceolateritius 1.00000 0.11111 0.333 0.004 **	-				_		_								
Lepista regularis 1.00000 0.11111 0.333 0.001 **	*								-						
Entoloma scabropellis 0.72446 0.14815 0.328 0.014 *															
Fayodia campanella 0.95238 0.11111 0.325 0.005 **		++	-												
Lepista multirormis 0.91549 0.11111 0.319 0.004 **			-				-							-	
Antroqueila pailasii 0.90909 0.11111 0.318 0.001 ** Postia lateritia 0.90909 0.11111 0.318 0.001 **		++	-				_								
Introdialla pallarcanz 0.000325 0.11111 0.318 0.005			-		-										
Sistotrema raduloides 0.86379.0.11111.0.313 0.008 **		++	+		-		-	1	1	-	1	1	1		
Flaviporus americanus 0.83333 0.11111 0.304 0.008 **			-												
Lentinellus inclens 0.71429 0.11111 0 282 0 027 *			-												
Resupinatus conspersus 0.67445 0.11111 0.274 0.038 *								1	1		1	1			
Anomoporia_bombycina 1.00000 0.07407 0.272 0.013 *											1	1			
Cabalodontia cretacea 1.00000 0.07407 0.272 0.015 *															
Clavaria_pullei 1.00000 0.07407 0.272 0.008 **															
Gloeocystidiellum convolvens 1.00000 0.07407 0.272 0.014 *															
Perenniporia_japonica 1.00000 0.07407 0.272 0.012 *															
Pycnoporellus_alboluteus 1.00000 0.07407 0.272 0.011 *															
Uncobasidium luteolum 1.00000 0.07407 0.272 0.014 *			_												
Gloeophyllum_protractum 0.96154 0.07407 0.267 0.021 *			_												
skeletocutis_aipocremea 0.90909 0.07407 0.259 0.020 *	+		-				-		-	-			-	-	
antrodia albohruppes 0.8657 0.07407 0.256 0.018 *	+	++	-												
Odopticium romellii 0.95559.0.07407.0.252.0.022 *	+	++	-				-	-		-			-		
Hyphodontia efibulata 0.85246.0.07407.0.251 0.036 *		++	-		1		-	-	1	-	-	1			
Laurilia sulcata 0.84507 0.07407 0.250 0.026 *		++	-				-	1	1	-	1	1			
Phlebia griseoflavescens 0.80082 0.07407 0.244 0.039 *			-					1	1		1	1			
Lentaria epichnoa 0.77458 0.07407 0.240 0.042 *			-					1	1		1	1			
Group 1+2 #sps. 10															
A B stat p.value															
Hyphoderma_setigerum 1.0000 0.7887 0.888 0.001 ***															
Botryobasidium_subcoronatum 0.9949 0.7746 0.878 0.001 ***			1		_										
Cinereomyces_lindbladii 0.9837 0.6526 0.801 0.003 **								-							
Sistotrema_brinkmannii 0.9845 0.6479 0.799 0.001 ***					-				-	-		-			
Marasmiellus vaillantii 0.9664 0.6526 0.794 0.002 **	\rightarrow	++	_												
ciitocype diatreta 0.9891 0.5915 0.765 0.001 ***	+		-		-				-	-	-		-	-	
Crepidotus epibruus 1 0000 0 5305 0 728 0 000 **			-												
Hyphodoptia radula 0.9470.0.5023.0.690.0.008 **	+	++	-		-					-			-		
Agrocybe rivulosa 0.9368 0.2535 0.487 0.043 *			-		-										
		++	+		-		_			-				-	
Group 1+3 #sps. 3			-								1	1			
A B stat p.value															
Mycena_strobilicola 0.91694 0.20952 0.438 0.013 *															
Pluteus_primus 0.92470 0.10476 0.311 0.047 *															
Agaricus_abruptibulbus 0.94235 0.09524 0.300 0.037 *															
Group 2+3 #sps. 2															
A B stat p.value															
Humidicutis_calyptriformis 0.9122 0.3827 0.591 0.001 ***															
Clavaria_fumosa 0.9174 0.3704 0.583 0.009 **							_								

20 (worksheet 'DCA1and2')

> summary(Indval_DCAlandZ, indvalcomp=TRUE) Multilevel pattern analysis															
Multilevel pattern analysis			oroup	1 = p	os DCA1,	, pos DCA	A2 change								
Muitiievei pattern analysis			Group	2 = p	DS DCA1	, neg DCJ	A∠ change	-	-	-					
		***	Group	3 = p	os DCAL	, no DCA:	2 change								
		***	Group	4 = n	o DCA1,	pos DCA2	2 change								
		***	Group	5 = n	o DCA1,	neg DCA2	2 change								
Association function: IndVal.g			Group	6 = n	o DCA1,	no DCA2	change								
Significance level (alpha): 0.05			Group	7 = n	er DCal	DOT DC	h2 change								
			C	· - ·	0022	. 203 203	N2 shares		-					-	
			aroup	0 = 10	eg DUAL,	, neg bui	Az change								-
Total number of species: 3532		***	Group	9 = n	eg DCA1	, no DCA:	2 change								
Selected number of species: 36															
Number of species associated to 1 group: 36		** "	The in	dicat	or valu	e index :	is the pro	duct of two	components	, called 'A	' and 'B'.				
Number of species associated to 2 groups: 0		**							-						
Number of operation approximated to 2 groups: 0			Carro		151.44		he terri	Gaibul an	In a site in a set		lust of the			shap of the	
Number of species associated to 3 groups: 0		**	Comp	onenc	A 15	carred t	ine speci	LICICY OF	posicive pi	redictive v	arde or che	s species a	15 all illuic	acor or the	Site grou
Number of species associated to 4 groups: 0		**		It 1	s the p	robabili	ty that th	le surveyed	site belong	is to the ta	irget site g	roup given	the fact t	that the spe	ecies has b
Number of species associated to 5 groups: 0		**		If t	he spec	ies has	a value of	1.00, this	s means it c	occurs in si	tes belongi	ng to that	group only	у.	
Number of species associated to 6 groups: 0		**													
Number of species associated to 7 groups: 0		**	Comp	opent	'B' is	called t	the 'fidel	ity' or 'se	nsitivity'	of the spec	ies as indic	ator of th	e target s	ite group	
Number of operation approximated to 9 prospect 0				74.2				ling the sec		ites bele		:+		jroup.	
Number of species associated to a groups. o		**		10 1	s the p	LODADIII	cy of find	ing the spi	ecies in the	sites beit	nging co ci	ie site gro	up.		
		**		11 t	.ne spec	ies nas	a value 10	ess than 1.0	UU, this mea	ins not all	sites beion	ging to th	at group 1	nciude the s	species. U
List of species associated to each combination	on:	**			propo	rtion rep	ported inc	lude that s	species.						
		**													
Group 1 #sps. 7															
A D	, unlue				+			1	-				1	-	-
A B Stat p	0.044 +		++	+++	++-										
Amyiocystis Lapponica 0.9088 0.3077 0.529	u.U44 *							-	-	-			-	-	-
Athelia sibirica 0.7292 0.3077 0.474	0.046 *														
Anomoporia bombycina 1.0000 0.1538 0.392	0.021 *														
Clavaria pullei 1.0000 0.1538 0 392	0.019 *														
Purpersonal and a second secon	0.022 *				++-			1	1	1	1		1	1	1
rychoporeiids aiboiuteus 1.0000 0.1538 0.392	0.023 *			+++				-	-	-			-	-	-
Uncobasidium luteolum 1.0000 0.1538 0.392	0.018 *														
Gloeophyllum protractum 0.9122 0.1538 0.375	0.049 *														
Group 7 #sps 4					+										
aroup / #apa. 4			+ +	+++	+										
A B stat p.v	/aiue			++	++-										
Perenniporia japonica 1.0000 0.2857 0.535 (0.022 *														_
Galerina discreta 0.9787 0.1429 0.374 (0.047 *														
Agrocybe farinacea 0.9683 0.1429 0.372 (0.047 *														
Arrhenia subglobispora 0 9386 0 1429 0 366 (0.047 *							1							
					++-			1		1			1	-	
				++-	++			-	-	-	-		-	-	-
Group 8 #sps. 5									_						
A B stat p.	.value														
Deconica micropora 0.9819 1.0000 0.991	0.001 ***														
Aptrodiella leucoxaptha 0 9286 1 0000 0 964	0.020 *														
Musees incidentia 0.0240 1.0000 0.964	0.021 *				++-			1		1			1	-	
Nycena juniperina 0.9242 1.0000 0.961	0.021 *			++-	++			-	-	-	-		-	-	-
Mucroneiia flava 0.8861 1.0000 0.941	0.002 **								_						-
Entoloma_callichroum 0.8726 1.0000 0.934	0.032 *														
Group 9 #sps. 20															
A A A A A A A A A A A A A A A A A A A	at m walne	++	++					1	-	1			1	-	-
A B 512	se p.varue		++		++-										
ceriporia rnodella 1.0000 1.00	10 0.008 **														
Gaiereiia_conocephala 1.0000 1.00	10 0.008 **														-
Sarcodontia setosa 1.0000 1.0000 1.00	0.008 **														
Kuehneromyces_vernalis 0.9940 1.0000 0.99	97 0.002 **														
Delicatula cuspidata 0.9907 1.0000 0.99	95 0.005 **														
mainbankur bifarra 0.0000 0.00	0.002.**							1	1	1	1		1	1	1
Company	0.002 **	++	++	++	++-				+						
oymnopus_exsculptus 0.9821 1.0000 0.99	91 U.UUS **														
Maireina maxima 0.9727 1.0000 0.98	86 0.011 *														
Oudemansiella ephippium 0.9690 1.0000 0.98	84 0.003 **														
Hymenochaete mougeotii 0.9649 1 0000 0 96	32 0.009 **														
Cliberthe director 0 0216 2 0000 0 00					++-			1		1			1	-	
CIICOCYDE GICOIOF 0.9310 1.0000 0.96	0.018 *		-	++	++-			-	-	-			-	-	
ciitocype_infundibuliformis 0.9242 1.0000 0.96	oi U.U16 *				\rightarrow			1	-	-			-	-	
Hygrocybe_murinacea 0.9167 1.0000 0.95	57 0.014 *														
Crepidotus brunneoroseus 0.9016 1.0000 0.95	50 0.015 *														
Trametes guercina 0.8948 1 0000 0 94	46 0.015 *														
V-1	25 0.010 *				++-					-			1	-	
voivaileila cinerascens 0.8/50 1.0000 0.9	. 0.018		-	+ +	++-					-				-	-
Fiuteus_insidiosus 0.8747 1.0000 0.93	30 0.006 **				+										-
Pholiota_pudica 0.8730 1.0000 0.93	34 0.028 *														
Melanoleuca subsejuncta 0.8594 1.0000 0.92	27 0.023 *														
Clavaria versatilis 0.8228 1.0000 0.90	17 0.028 *									-			1		-
	. 0.020 -		-	++	++-					-					-
Melanoleuca_subsejuncta 0.8594 1.0000 0.92 Clavaria_versatilis 0.8228 1.0000 0.90	0.023 * 07 0.028 *								5						

4	
4	
5	
6	
7	
/	
8	
9	
1	0
1	1
1	1
1	2
1	3
1	4
1	5
1	ر ء
1	6
1	7
1	8
1	õ
1	7
2	0
2	1
2	2
2	2
2	3
2	4
2	5
2	6
2	-
2	/
2	8
2	9
2	n
2	-
3	1
3	2
3	3
2	1
5	4
3	5
3	6
3	7
2	, 0
2	0
3	9
4	0
4	1
1	ว
4	∠ 2
4	3
4	4
4	5
л Л	6
4	0
4	7
4	8
4	9
-T -	~
5	U
5	1
5	2
5	3
5	ر ۸
5	4
5	5
5	6
5	7
	1

Continental-scale macro-fungal assemblage patterns correlate with climate, soil carbon and nitrogen deposition

Carrie Andrew, Rune Halvorsen, Einar Heegaard, Thomas W Kuyper, Jacob Heilmann-

Clausen, Irmgard Krisai-Greilhuber, Claus Bässler, Simon Egli, Alan C Gange, Klaus

Høiland, Paul M Kirk, Beatrice Senn-Irlet, Lynne Boddy, Ulf Büntgen, Håvard Kauserud

Appendix S5: Output of ectomycorrhizal indicator species analyses by fungal groups

responding with positive (pos), relatively little (no), or negative (neg) change in DCA axis

score(s) between the earlier (1970-1990) and later (1991-2010) time periods. The first and

second worksheet ('DCA1', 'DCA2') are analyses conducted separately for each DCA axis.

The third worksheet ('DCA1and2') conducts the analyses for the two DCA axes together. The

keys for separation of DCA axis changes into groups is found in the first two worksheets.

(worksheet 'DCA1')

worksheet 'DCA1')														
summary/Indval DCal indvalcomp=TPHE)	*** 0		nor DCA1 chan	ce: 0.045 <	J									
Summity (Travat Dort) Travatcomp-Trob)	### Group 2 = no DCAl change; -0.045 < x < 0.045													
Multilevel pattern analysis	### G	### Group 3 = neg DCA1 change; x ≤ -0.045												
					1									
	## "TI	he indica	tor value ind	ex is the pro	duct of two	components	called 'A	and 'B'.						
Association function: IndVal.g	**													
Significance level (alpha): 0.05	**	Component	'A' is calle	ed the 'specif	ficity' or '	positive pr	edictive va	lue' of the	species a	s an indica	tor of the	site group.		
	**	It	is the probab	ility that th	e surveyed	site belong	s to the ta	rget site o	roup given	the fact t	hat the spe	cies has be	en found.	
Total number of species: 2013	**	If	the species h	as a value of	1.00, this	means it o	ccurs in si	tes belongi	ng to that	group only				
Selected number of species: 9	**													
Number of species associated to 1 group: 5	**	Component	B' is calle	ed the 'fideli	ity' or 'sen	sitivity' d	of the speci	es as indi	ator of th	e target si	te group.			
Number of species associated to 2 groups: 4	**	It	is the probab	ility of find	ing the spe	cies in the	sites belo	nging to th	e site gro	up.				
	**	If	the species h	as a value le	ss than 1.0	0, this mea	ns not all	sites belor	ging to th	at group in	clude the s	pecies. Onl	y the	
List of species associated to each combination:	**		proportion	reported inc	lude that sp	pecies.								
	**													
Group 1 #sps. 1														
A B stat p.value														
Cortinarius camptoros 0.82174 0.07317 0.245 0.046 *														
Group 2 #sps. 1														
A B stat p.value														
Russula pseudoromellii 1.0000 0.1029 0.321 0.005 **														
Group 3 #sps. 3														
A B stat p.value														
Amanita betulae 1.00000 0.06349 0.252 0.035 *														
Cortinarius humolens 1.00000 0.06349 0.252 0.016 *														
Sarcodon lundellii 1.00000 0.06349 0.252 0.049 *														
Group 1+2 #sps. 1														
A B stat p.value					-									
Sebacina grisea 0.9173 0.4128 0.615 0.003 **					-									
Group 2+3 #sps. 3														
A B stat p.value														
Russula luteotacta 0.9914 0.5496 0.738 0.002 **														
Russula_subtoetens 0.9867 0.5496 0.736 0.001 ***														
Phellodon niger 0.9063 0.5191 0.686 0.005 **														

18 (worksheet 'DCA2')

> summary	(Indval DCA	2, indvalcomp=T	RUE)		***	Group	1 =	pos	DCA2 change;	0.0625 ≤	×							
					***	Group	2 =	no D	CA2 change;	-0.0625 <	x < 0.0625							
Multilev	1 pattern	analysis				Group	3 =	neg	DCA2 change:	x ≤ -0.0	625							
						1		ΤŤ	1									
						The i	ndic	ator	value index	is the pro	duct of two	components	called 5	and 'B'				
Associat:	ion functio	n: IndVal.g			**		1				1	1						
Signific	ance level	(alpha): 0.05			**	Com	poner	it 'A	' is called	the 'speci:	ficity' or	positive p	redictive v	alue' of th	e species a	s an indic.	ator of the	site qr
					**		It	is t	he probabil	ity that th	e surveyed	site belon	gs to the t	arget site	group given	the fact t	hat the spe	cies ha
Total nur	aber of spe	cies: 2013			**		If	the	species has	a value of	1.00, this	means it	occurs in s	ites belong	ing to that	group only	· ·	
Selected	number of	species: 7			**													
Number of	f species a	ssociated to 1	group: 6		**	Com	poner	nt 'B	' is called	the 'fidel:	ity' or 'se	nsitivity'	of the spec	ies as indi	cator of th	he target s	ite group.	
Number of	f species a	ssociated to 2	groups: 1		**		It	is t	he probabil	ity of find	ling the spe	cies in th	e sites bel	onging to t	he site gro	up.		
					**		If	the	species has	a value le	ess than 1.0	0, this me	ans not all	sites belo	nging to th	at group in	clude the :	species.
List of :	species ass	ociated to each	combination:		**			F	proportion re	eported inc	lude that s	pecies.						
					**													
Group 1	#sps. 1																	
		A	. B stat	p.value														
Neoboletur	_pseudosul	phureus 1.00000	0.07407 0.272	0.045 *														
Group 3	#sps. 5																	
		A	B stat p	.value														
Tomentella	_atroareni	color 0.67244 0	.13636 0.303	0.042 *														
Cortinari	us_aquilanu	s 1.00000 0	0.09091 0.302	0.015 *														
Tomentello	psis_pusil	la 1.00000 0	0.09091 0.302	0.018 *														
Russula_ir	inocua	0.94848 0	0.09091 0.294	0.015 *														
Hebeloma_e	eburneum	0.87588 0	0.09091 0.282	0.036 *														
Group 1+2	2 #sps. 1																	
		A B	s stat p.value															

20 (worksheet 'DCA1and2')

> summary(Indval DCAland2, indvalcomp=TRUE)	### Group 1	= pos DCA	1, pos DCA2 change									
	### Group 2	= pos DCA	1, neg DCA2 change									
Multilevel pattern analysis	### Group 3	= pos DCA	1, no DCA2 change									
	### Group 4	= no DCA1	, pos DCA2 change									
	### Group 5	= no DCA1	, neg DCA2 change									
Association function: IndVal.g	### Group 6	= no DCA1	, no DCA2 change									
Significance level (alpha): 0.05	### Group 7	= neg DCA	1, pos DCA2 change									
	### Group 8	= neg DCA	1, neg DCA2 change									
Total number of species: 2013	### Group 9	= neg DCA	1, no DCA2 change									
Selected number of species: 25												
Number of species associated to 1 group: 25	## "The indi	cator val	ue index is the pr	oduct of two	components	, called 'J	and 'B'.					
Number of species associated to 2 groups: 0	**											
Number of species associated to 3 groups: 0	## Compon	ent 'A' i	s called the 'sner	ficity' or	'nositive p	redictive w	alue' of th	species a	s an indica	tor of the	site group	
Number of species associated to 4 groups: 0	**	t is the	probability that t	he surveyed	site belong	is to the t	arget site o	roup given	the fact t	hat the spe	cies has be	en found
Number of species associated to 5 groups: 0	**	f the suc	cier har a value c	£ 1 00 +bi	means it o	cours in s	iter belong	ng to that	group only			
Number of species associated to 6 groups: 0	**		into a varae e	1.00, 0011		CCULD IN 5	Lees berong.	ing co citat	group only			
Number of species associated to 7 groups. 0	44 Common	ant this is		ind on the		-6 +1						
Number of species associated to 7 groups: 0	## Composi	ent B 1	s carren the file.	dien the se	isitivity (or the spec	ies as indi	acor or ch	ie carget si	lice group.		
Number of species associated to a groups: o	**	IC IS LINE	probability of fill	uning the spi	scres in the	: SILES DEL	onging to ti	e site gro		1 1 11		
		IT the spe	cies nas a value i	ess than 1.0	JU, this mea	ins not all	Sites Deio	iging to th	at group in	ciude the s	species. Uni	y the
List of species associated to each combination:	F F	prop	ortion reported in	ciude that s	pecies.							
	**											
Group 1 #sps. 24										-		
A B stat p.value												
Cortinarius aquilanus 1.0000 0.5000 0.707 0.001 ***												
Paxillus validus 0.7941 0.5000 0.630 0.001 ***												
Paxillus obscurisporus 0.7343 0.5000 0.606 0.005 **												
Cortinarius collinitoides 1.0000 0.2500 0.500 0.022 *												
Cortinarius violaceipes 1.0000 0.2500 0.500 0.022 *												
Descolea antarctica 1.0000 0.2500 0.500 0.028 *												
Hebeloma vesterholtii 1.0000 0.2500 0.500 0.022 *												
Tretomyces lutescens 1.0000 0.2500 0.500 0.028 *												
Hebeloma album 0.9444 0.2500 0.486 0.011 *												
Cortinarius pseudosalor 0.8889 0.2500 0.471 0.012 *												
Cortinarius variiformis 0.8706 0.2500 0.467 0.015 *												
Cortinarius rhizophorus 0.8621 0.2500 0.464 0.031 *												
Hebeloma quercetorum 0.8095 0.2500 0.450 0.007 **												
Cortinarius lilacinovelatus 0.8065 0.2500 0.449 0.046 *												
Cortinarius americanus 0.8003 0.2500 0.447 0.028 *												
Cortinarius multiformium 0.7931 0.2500 0.445 0.027 *												
Lactarius terenopus 0.7887 0.2500 0.444 0.030 *												
Cortinarius lepistoides 0.7576 0.2500 0.435 0.041 *												
Inocybe melanopoda 0.7368 0.2500 0.429 0.038 *												
Cortinarius tiliaceus 0.7164 0.2500 0.423 0.024 *												
Cortinarius selandicus 0.6757 0.2500 0.411 0.041 *												
Tricholoma inocyboides 0.6667 0.2500 0.408 0.031 *												
Sebacina laciniata 0.6588 0.2500 0.406 0.039 *										1		
Bamaria kriegisteineri 0.6538.0.2500.0.404.0.040 *												
					-							
Group 7 tens 1				-	1	-	-		1	-	-	
h D stat n value				-	-	-	-		-	-		
M B Stat p.value				-					-			
Tomencerropsis pusiria 1.0 0.2 0.447 0.042 *				-					-	-		
[_		1				1		