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Abstract

Markov Logic Networks (MLNs) are well-suited for express-
ing statistics such as “with high probability a smoker knows
another smoker” but not for expressing statements such as
“there is a smoker who knows most other smokers”, which is
necessary for modeling, e.g. influencers in social networks.
To overcome this shortcoming, we study quantified MLNs
which generalize MLNs by introducing statistical universal
quantifiers, allowing to express also the latter type of statis-
tics in a principled way. Our main technical contribution is to
show that the standard reasoning tasks in quantified MLNs,
maximum a posteriori and marginal inference, can be reduced
to their respective MLN counterparts in polynomial time.

1 Introduction
Markov Logic Networks (MLNs) (Richardson and Domin-
gos 2006) extend first-order logic (FOL) with means to cap-
ture uncertainty. This is intuitively achieved by softening the
meaning of FOL formulas by associating a weight to them,
such that the higher the weight, the higher the probability of
the formula to be satisfied. Indeed, MLNs provide a com-
pact representation of large Markov Networks with repeated
substructures. The FOL component of MLNs makes them
particularly suitable to represent background knowledge of
a wide variety of application domains. As a consequence,
MLNs have been successfully used to model knowledge in
domains such as natural language (Riedel and McCallum
2011; Venugopal et al. 2014), computer vision (Tran and
Davis 2008) and social network analysis (Chen et al. 2013;
Farasat et al. 2015).

The kind of statistical regularities (that hold for a given
problem) encoded by an MLN, directly depends on the type
of quantifiers available in the language. Since MLNs are
based on FOL, they come equipped with the standard FOL
quantifiers ∃ and ∀. However, it has been observed that the
modeling capabilities of these quantifiers might not be ap-
propriate for certain application scenarios that require a kind
of quantification describing, for instance most, few, or at
least k thresholds, for more details see (Farnadi et al. 2017;
Milch et al. 2008) and references therein, and Sec. 8 below.
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In the present paper we investigate Quantified Markov Logic
Networks (QMNLs), the extension of classical MLNs with a
statistical quantifier ∀∗. Indeed, MLNs lack means to de-
scribe certain types of statistics, e.g., the proportion of peo-
ple, that are maximally connected to others. This type of
modeling capabilities might be useful, for instance, in so-
cial network analysis to model influencers. As we shall see,
with the use of the ∀∗ quantifier QMLNs are able to express
this type of statistics.

Formally, this is done as follows: instead of weighted
formulas (ϕ(x1, . . . , xk), w) from MLNs, we use weighted
quantified sentences

(Q1x1, . . . , Qkxk : ϕ(x1, . . . , xk), w),

where the Qi can be arbitrary quantifiers ∃,∀,∀∗, and ϕ is a
classical FOL formula, that is, the only quantifiers in ϕ are
∃,∀. The semantics is given in terms of maximization (∃),
minimization (∀), and expectation (∀∗). While the semantics
of the former ones is as expected, it is important to note that
the semantics for the newly introduced statistical quantifier
∀∗ corresponds to uniform sampling of grounding substitu-
tions of the respective variables. As a consequence, standard
MLNs essentially correspond to the fragment of QMLNs
where all Qi are ∀∗ since in this case, the respective statistic
represents the probability that the formula ϕ(x1, . . . , xk) is
true in a given possible world after grounding the variables
x1, . . . , xk using a randomly sampled substitution.

As a concrete example in QMLNs using the universal sta-
tistical quantifiers ∀∗, we can now measure the proportion
of the population that are smokers and are known by one
particular smoker, who knows most other smokers:

(∃x∀∗y : (smoker(x) ∧ knows(x, y) ∧ smoker(y)), 10).

Besides the mentioned practical reasons, the study of
QMLNs also has a strong theoretical motivation. Let us
recall the relation of MLNs with quantifier-free formulas
and max entropy models constrained by statistics based on
the random substitution semantics (Bacchus et al. 1992;
Schulte et al. 2014). MLNs correspond to the solution of
the maximum entropy relational marginal problem, where
the modeled statistics are of the form (ϕ(x1, . . . , xk), p)
with ϕ(x1, . . . , xk) a quantifier-free FOL formula and p is
the probability that a random tuple (a1, . . . , ak) satisfies
ϕ(a1, . . . , ak) in the model that we learn from (Kuželka et



al. 2018). Given that QMLNs have higher expressive power,
it is interesting to investigate whether a similar correspon-
dence also exists for QMLNs – of course given more ex-
pressive statistics. It is easy to see that previously used tech-
niques lift to restricted QMLNs with quantifier prefix ∀∗.
Here we show that the correspondence also holds for arbi-
trary QMLNs and the respective statistics.

Objective and Contributions The main objective of this
paper is to introduce QMLNs as an extension of MLNs with
means to express more complex statistics, and to develop
technical foundations for these QMLNs. Our main techni-
cal contributions are (i) the establishment of basic prop-
erties of QMNLs, analogous to those existing for standard
MLNs; (ii) a generalization of the random substitution se-
mantics to QMLNs and (iii) a polynomial time translation
from QMLNs to MLNs, yielding a polytime reduction of the
maximum a posteriori and marginal inference in QMLNs
to their respective variant problems in standard MLNs. (iv)
Furthermore, we pinpoint certain implications of extending
MLNs to QMLNs in the context of symmetric weighted first-
order model counting (WFOMC).

Outline of the Paper After providing some preliminar-
ies in Section 2, we introduce the syntax and semantics
of quantified Markov logic networks in Section 3. Then,
in Section 4 basic results on the treatment of negative
weights and weights tending to infinity are provided. We
also present results on the duality of relational marginal
problems and QMLNs. Sections 5 to 6 contain our transla-
tions from QMLNs to MLNs, establishing the polytime re-
ductions described above. Section 7 discusses the relation
between QMLNs restricted to two variables and WFOMC.
Section 8 presents related work and Section 9 conclusions
and future work.

2 Background and Notation
We next provide some basics on First-Order Logic, Markov
Logic Networks and Relational Marginal Problems.

2.1 First-Order Logic (FOL)
We give a short review of the function-free fragment of
first-order logic (FOL), considered in this paper. Let C =
{a, b, . . .} be a finite set of constants and V = {x, y, . . .}
an infinite set of variables. A term t is an element in C∪V.
An atom is an expression of the form R(t1, . . . , tn), where
R is a predicate name with arity n and terms ti. As usual,
a FOL-formula ϕ is constructed from atoms using logical
connectives ¬,∧,∨,⇒ and quantifiers ∃ and ∀. We assume
the reader is familiar with the standard notions of quanti-
fied and free variables, and sentence. Given a formula ϕ, a
variable x and a constant a, we use ϕ[x/a] to denote the re-
sult of substituting in ϕ every occurrence of x with a. Let
x = (x1, . . . , xn) and a = (a1, . . . , an) be tuples of vari-
ables and constants, respectively, we write ϕ[x/a] to denote
the application of ϕ[xi/ai] for all 1 ≤ i ≤ n. The grounding
of a formula ϕ(x) over a domain ∆, denoted with gr(ϕ,∆),
is the set of all possible sentences obtained from ϕ by sub-
stituting all its free variables x = (x1, . . . , xk) with any

possible combination of constants from ∆, that is,

gr(ϕ,∆) = {ϕ[x/a] | a ∈ ∆k}.

A vocabulary σ is a finite set of predicate names such
that each predicate name R ∈ σ is associated with an ar-
ity ar(R). Given a vocabulary σ and a domain ∆, a σ-
structure over ∆ is any set ω consisting only of facts of
the form R(a1, . . . , an) such that R ∈ σ, ar(R) = n, and
a1, . . . , an ∈ ∆. We denote with Ω(σ,∆) the set of all σ-
structures over ∆ and refer to the members of Ω(σ,∆) with
possible worlds. Throughout the paper we often do not make
the vocabulary explicit; it is then assumed to be just the set
of predicate names used in the formulas.

The semantics of FOL is defined as usual in the context
of Markov Logic Networks. More precisely, we use only fi-
nite domains ∆ and assume that always C ⊆ ∆. Note that
we refrain from using a many-sorted domain for the sake of
simplicity; all our results lift to that case. Formally, we write
ω |= ϕ when a sentence ϕ is satisfied in a structure ω. Given
a set Φ of sentences, we write ω |= Φ if ω |= ϕ for all
ϕ ∈ Φ.

2.2 Markov Logic Networks (MLNs)
A Markov Logic Network (MLN) is a finite set of weighted
formulas (ϕ,w), where w ∈ R ∪ {+∞} is a weight and
ϕ is a FOL-formula, possibly with free variables. If w =
+∞ then (ϕ,w) is called a hard constraint, otherwise a soft
constraint. As an example, the soft constraint

(smoker(x) ∧ friends(x, y)⇒ smoker(y), 10)

intuitively asserts that having friends who are smokers
makes one more likely to be a smoker as well, given the
weight 10 is positive.

The semantics of MLNs is defined following (Van den
Broeck, Meert, and Darwiche 2014).1 A given MLN Φ =
{(ϕ1, w1), (ϕ2, w2), . . . , (ϕk, wk)} and a domain ∆ de-
scribe a probability distribution pΦ,∆ over Ω(σ,∆). To de-
fine the distribution, let ΦS ⊆ Φ denote the set of soft
constraints in Φ and ΦH denote the set of FOL sentences
ϕ′ obtained from the the hard constraints (ϕ,+∞) ∈ Φ
by adding a prefix of universal quantifiers for all free vari-
ables in ϕ. For instance, if Φ = {(smoker(x),+∞)} then
ΦH = {∀x : smoker(x)}. Now, the distribution is defined
by taking, for every ω ∈ Ω(σ,∆),

pΦ,∆(ω) =

{
1
Z exp

(∑
(ϕ,w)∈ΦS

w ·N(ϕ, ω)
)

ω |= ΦH

0 otherw.

where N(ϕ, ω) is the number of sentences ϕ′ ∈ gr(ϕ,∆)
such that ω |= ϕ′, and Z is a normalization constant.

Reasoning Problems We study the following problems.
Maximum a posteriori (MAP):

• Input: an MLN Φ and a domain ∆

1This slightly differs from the semantics introduced
in (Richardson and Domingos 2006), we discuss it in the
related work section.



• Problem: determine the world ω ∈ Ω(σ,∆) maximizing
pΦ,∆(ω).

Marginal inference (MARG):
• Input: an MLN Φ, a domain ∆ and a FOL sentence ϕ
• Problem: compute the probability PrΦ,∆(ϕ) of ϕ, i.e.

PrΦ,∆(ϕ) = Pω∼pΦ,∆(ω)[ω |= ϕ],

where a subscript d ∼ D refers to sampling d according
to a distribution D.

2.3 Relational Marginal Problems
MLNs containing only quantifier-free FOL formulas can be
seen as solutions to a maximum entropy problem (Kuželka
et al. 2018) constrained by statistics which are based on
the random-substitution semantics (Bacchus et al. 1992;
Schulte et al. 2014). Such statistics are defined as follows.
For a possible world ω ∈ Ω(σ,∆) and a quantifier-free FOL
formula ϕ(x) with k free variables x, the statisticQω(ϕ(x))
of ϕ(x) is defined as

Qω(ϕ(x)) = Ea∼Unif(∆k) [1 (ω |= ϕ[x/a])]

where Unif(∆k) denotes the uniform distribution over ele-
ments of the set ∆k.2

Intuitively, the statisticsQω(ϕ(x)) measures how likely it
is that the formula ϕ(x) is satisfied in ω when a random sub-
stitution of x by domain elements is picked. The statistics
Qω(ϕ(x)) can then be straightforwardly extended to statis-
tics of probability distributions Q[ϕ(x)]. For a distribution
p(ω) over Ω(σ,∆), Q[ϕ(x)] is defined as

Q[ϕ(x)] = Eω [Qω(ϕ(x))] =
∑

ω∈Ω(σ,∆)

p(ω) ·Qω(ϕ(x)).

Now, the maximum entropy relational marginal problem is
defined as follows:
• Input: set of statistics {(ϕ1(x1), q1), . . . , (ϕn(xn), qn)},

domain ∆

• Problem: find a distribution p∗(ω) over Ω(σ,∆) which
has maximum entropy and satisfies the constraints

Q[ϕ1(x1)] = q1, . . . , Q[ϕn(xn)] = qn.

To motivate the problem, we note that it has been shown
in (Kuželka et al. 2018) that

(i) the solution of the relational marginal prob-
lem is a Markov logic network of the form
{(ϕ1(x1), w1), . . . , (ϕn(xn), wn)} where the weights
wi are obtained from the dual problem of the maximum
entropy relational marginal problem, and

(ii) if the input probabilities q1, . . . , qn are estimated from
data with domain ∆′ with |∆′| = |∆|, then the result of
the maximum entropy relational marginal problem coin-
cides with maximum likelihood estimation, the most com-
mon approach to weight learning in MLNs (Richardson
and Domingos 2006).
2Here, we depart slightly from (Kuželka et al. 2018) in that we

do not require the random substitutions to be injective. However,
the duality of MLNs and relational marginal problems holds as well
in the case of non-injective substitutions.

In a sense, Point (i) can be viewed as the relational gen-
eralization of what has been done in the propositional set-
ting (Singh and Vishnoi 2014). Let us finally remark that
Point (ii) does not hold when |∆| 6= |∆′| which follows
from the results by Shalizi and Rinaldo (2013). Hence, the
relational marginal view is more general from the statistical
point of view; we refer to (Kuželka et al. 2018) for details.

3 Quantified Markov Logic Networks
We introduce the notion of Quantified Markov Logic Net-
works (QMLNs), a generalization of standard MLNs capa-
ble of expressing expectations using “statistical” quantifiers.
In QMLNs, the main ingredients of MLNs – weighted for-
mulas (ϕ,w) with w a weight and ϕ a FOL formula – are
replaced with weighted quantified sentences (α,w).
Definition 1 (Quantified Sentence). A quantified sentence is
a formula α with

α = Q1x1 . . . Qnxn : ϕ(x1, . . . , xn),

where each Qi is a quantifier from {∀,∀∗,∃} and
ϕ(x1, . . . , xn) is a classical first-order formula with free
variables precisely x1, . . . , xn.

Note that every FOL sentence is also a quantified sen-
tence, but conversely a quantified sentence using the quanti-
fier ∀∗ is not a FOL sentence.
Definition 2 (QMLNs). A Quantified Markov Logic Net-
work (QMLN) is a finite set Φ of pairs (α,w) such that α is
a quantified sentence and w ∈ R ∪ {+∞,−∞}.

Before we can give the semantics of QMLNs, we give the
semantics for quantified sentences. Intuitively, given a quan-
tified sentence α and a possible world ω, we measure the
extent to which α is satisfied in ω.
Definition 3 (Sentence Statistics). Let ω ∈ Ω(σ,∆) be a
possible world and α be a quantified sentence. Then the α-
statistic of ω, denoted Qω(α), is defined as follows:
• if α is an FOL sentence, then

Qω(α) = 1 (ω |= α) , (1)

• if α = ∀x : α′(x) is not an FOL sentence, then

Qω(α) = min
a∈∆

Qω(α′[x/a]), (2)

• if α = ∃x : α′(x) is not an FOL sentence, then

Qω(α) = max
a∈∆

Qω(α′[x/a]), (3)

• if α = ∀∗x : α′(x) is not an FOL sentence, then

Qω(α) =
1

|∆|
∑
a∈∆

Qω(α′[x/a]). (4)

Note that the case (1) in the above definition is only applied
when α is a classical FOL formula, that is, when it does not
contain any ∀∗ quantifiers and, as such, it serves as a base
case of the recursive definition. Moreover, the case of the
quantifier ∀∗ in (4) above can be alternatively expressed as

Qω(α) = Ea∼Unif(∆) [Qω(α′[x/a])] (5)



where the expectation is w.r.t. a uniform distribution of a
over ∆. From this we see that the definition of statistics
Qω(α) given by Definition 3 generalizes that of statistics
based on random substitution semantics, cf. Section 2.3.
Remark 1. We can easily check the following property of
sentence statistics. Let α be a sentence and ω ∈ Ω(σ,∆) be
a possible world. If α′ is obtained from α by replacing every
quantifier ∀∗ by its classical counterpart ∀ then

Qω(α) = 1 iff ω |= α′.

As a result of this, we will sometimes abuse notation and
write ω |= α when Qω(α) = 1 even if α is not an FOL
sentence.
Example 1. In classical first-order logic, the sentence

∃x∀y : knows(x, y)

asserts that there is someone who knows everyone else (e.g.
in a social network). If we replace ∀y by ∀∗y, we get a quan-
tified sentence

α = ∃x∀∗y : knows(x, y) (6)

which relaxes the hard constraint. Indeed, its associated
statistic Qω(∃x∀∗y : knows(x, y)) measures the maximal
proportion of people known by a single domain element. In
graph-theoretical terms, this corresponds to the maximum
out-degree of domain elements. Note that we could not di-
rectly express the same statistics in normal MLNs since, us-
ing normal MLNs, we could only express statistics corre-
sponding to the sentence ∀∗x∃y : knows(x, y), which intu-
itively measures the proportion of people who know at least
one person. As we show later in the paper, it is possible to
express MLNs with constraints encoding the same statistics
but in order to do that we will have to enlarge the vocabulary
σ, introducing additional predicates. 4

We now have almost all the ingredients to define the se-
mantics of QMLNs. What remains is to extend the def-
inition of ΦH , i.e. the hard constraints. Given a QMLN
Φ = {(α1, w1), (α2, w2), . . . , (αk, wk)}, we define ΦH
for QMLNs as follows. First, we define Φ+∞

H to be the
set of FOL sentences obtained from weighted sentences
(α,+∞) ∈ Φ by replacing all ∀∗ quantifiers by the clas-
sical ∀ quantifiers. Second, we define Φ−∞H to be the set
of FOL sentences α′ that are obtained from weighted sen-
tences (α,−∞) ∈ Φ where α = Q1x1, . . . , Qnxn :

ϕ(x1, . . . , xn), as α′ = Q̃1x1, . . . , Q̃nxn : ¬ϕ(x1, . . . , xn)

where ∀̃∗ = ∀, ∀̃ = ∃ and ∃̃ = ∀. Finally, we define
ΦH = Φ−∞H ∪ Φ+∞

H .
Next we define the semantics of QMLNs.

Definition 4 (Semantics of QMLNs). Given a QMLN Φ =
{(α1, w1), (α2, w2), . . . , (αk, wk)} and a domain ∆, the
probability of a possible world ω ∈ Ω(σ,∆) is defined as:

pΦ,∆(ω) =

{
1
Z exp

(∑
(α,w)∈ΦS

w ·Qω(α)
)

ω |= ΦH

0 otherwise

where Qω(α) is the α-statistic of ω, and Z is a normaliza-
tion constant.

We illustrate the semantics by continuing Example 1.

Example 1 (continued). Consider again the quantified sen-
tence α from Equation (6) in Example 1. If you include the
weighted quantified sentence (α,w) for some w > 0 in a
QMLN, worlds in which there is an individual who knows
most of the people get a higher probability than worlds for
which this is not the case. As a result, worlds that have an
“influencer” (and are thus closer to a social network) are
considered more likely. 4
Definition 5 (Marginal query problem). Let α be a sentence
and pΦ,∆(ω) be the probability distribution over Ω(σ,∆)
induced by the QMLN Φ and domain ∆. The marginal query
problem is to compute the marginal probability defined as:

QΦ,∆[α] = Eω [Qω(α)] =
∑

ω∈Ω(σ,∆)

pΦ,∆(ω) ·Qω(α).

Remark 2. If α is a sentence that does not contain ∀∗ quan-
tifiers and pΦ,∆(ω) is the induced distribution over Ω(σ,∆)
then QΦ,∆[α] = Pω∼pΦ,∆(ω) [ω |= α], that is, it coincides
with the marginal probability of α. Thus, Definition 5 gener-
alizes the classical definition of marginal inference.

4 Initial Observations
The goal of this section is to make some initial observations
about QMLNs, which will be either of independent interest
or exploited in some later proof.

First, it is easy to see that QMLNs generalize MLNs in
the sense that we can view a weighted formula (ϕ,w) as a
quantified sentence with implicit ∀∗-quantification over all
free variables of ϕ. More formally, we have:

Proposition 1. Let Φ0 be an MLN and obtain a
QMLN Φ from Φ0 by replacing every weighted formula
(ϕ(x1, . . . , xn), w) ∈ Φ0 with the weighted quantified sen-
tence (∀∗x1 . . . ∀∗xn : ϕ(x1, . . . , xn), w · |∆|n). Then, for
every ∆ and ω ∈ Ω(σ,∆), we have pΦ0,∆(ω) = pΦ,∆(ω).

4.1 Negation in QMLNs
It is well-known that in classical MLNs it is without loss of
generality to assume positive weights. We show an analo-
gous property of QMLNs.

Definition 6 (Negation). We define the negation neg(α) of
quantified sentences α = Q1x1 . . . Qnxn : ϕ(x1, . . . , xn)
by taking

neg(α) = Q1x1 . . . Qnxn : ¬ϕ(x1, . . . , xn),

where ∃ is ∀, ∀ is ∃, and ∀∗ is ∀∗.
It is easy to check that neg(neg(α)) = α. Next we illustrate
the way negation works in our setting on a concrete example.

Example 2. Let us see what happens if we take the sentence
∃x∀∗y : knows(x, y) from Example 1 and negate it. Using
Definition 6, we obtain

neg (∃x∀∗y : knows(x, y)) = ∀x∀∗y : ¬knows(x, y).



For the statistic Qω (∀x∀∗y : ¬knows(x, y)) we have

Qω (∀x∀∗y : ¬knows(x, y))

= min
t∈∆

1

|∆|
∑
u∈∆

1 (ω |= ¬knows(t, u))

= min
t∈∆

1

|∆|
∑
u∈∆

(1− 1 (ω |= knows(t, u)))

= 1−max
t∈∆

1

|∆|
∑
u∈∆

1 (ω |= knows(t, u))

= 1−Qω(∃x∀∗y : knows(x, y)).

4
In Example 2, the statistic of a negation of a sentence α
turns out to be equal to one minus the statistic of that sen-
tence, which is intuitively desirable. By repeatedly applying
the shown argument, one can show that this holds in general:
Proposition 2. For any sentence α and any possible world
ω ∈ Ω(σ,∆) the following holds:

Qω(neg (α)) = 1−Qω(α).

Next we show that the same distribution represented by
a QMLN Φ can be represented by another QMLN in which
we replace some of the sentences by their negations while
also inverting the signs of their respective weights. To show
that we will need the next lemma.
Lemma 3. Let ∆ be a finite domain and Φ a QMLN. Let
α, β be two sentences and Φα = {(α,w)} ∪ Φ, Φβ =
{(β,w)} ∪ Φ and Φ′β = {(β,−w)} ∪ Φ where w is finite.
Then

1. if Qω(α) = Qω(β) + C∆ for all ω ∈ Ω(σ,∆) for some
constant C∆, then pΦα,∆(ω) = pΦβ ,∆(ω).

2. if Qω(α) = −Qω(β) +C∆ for all ω ∈ Ω(σ,∆) for some
constant C∆, then pΦα,∆(ω) = pΦ′

β ,∆
(ω).

Proof. For the first case, we have

pΦα,∆(ω)

pΦβ ,∆(ω)
=
Zβ
Zα
·

exp
(∑

(α,w)∈Φα
w ·Qω(αi)

)
exp

(∑
(α′,w′)∈Φβ

w′ ·Qω(α′)
)

=
Zβ
Zα

exp (w · C∆)

=

∑
ω′∈Ω(σ,∆) exp

(∑
(α′,w′)∈Φβ

w′ ·Qω′(α′)
)

∑
ω′∈Ω(σ,∆) exp

(∑
(α,w)∈Φα

w ·Qω′(α)
) · ew·C∆

=
1

ew·C∆
· ew·C∆ = 1

The reasoning for the second case,Qω(α) = −Qω(β)+C∆,
is completely analogical.

Proposition 4. Let Φ = {(α1, w1), . . . , (αk, wk)} and
Φ′ = {(neg (α1) ,−w1), . . . , (αk, wk)}. Then, for every do-
main ∆, and every ω ∈ Ω(σ,∆), we have:

pΦ,∆(ω) = pΦ′,∆(ω).

Proof. The proof follows straightforwardly from Lemma 3
above and Proposition 2 for finite weights and from the def-
inition of semantics of QMLNs for infinite weights.

It follows from Proposition 2 and Proposition 4 that we can
focus on QMLNs that have only positive weights. It also
follows that it makes no sense to have a sentence and its
negation in the set of sentences defining an QMLN.

4.2 Limit w →∞
In the seminal paper on Markov logic networks (Richard-
son and Domingos 2006) it was shown that if the weights
of formulas of an MLN tend to infinity at the same pace,
in the limit the MLN will define a uniform distribution
over models of the classical first-order logic theory con-
sisting of the MLN’s rules. More precisely, let us denote
with Φ̂ the first-order logic sentence obtained from a given
Φ = {(ϕ1, w), . . . , (ϕn, w)} by taking the conjunction of all
formulas of the shape ∀x1, . . . , xk : ϕi(x1, . . . , xk) where
x1, . . . , xk are precisely the free variables in ϕi. Then the
possible worlds that have non-zero probability for w → ∞
are precisely the models of Φ̂. The next proposition gener-
alizes this by establishing that an analogical property also
holds for QMLNs.
Proposition 5. Let ∆ be a finite domain and Φ(w) =
{(α1, w), . . . , (αn, w)} be a QMLN where every weight
is w, and let Φ̂ denote the FOL sentence obtained from
α1 ∧ . . . ∧ αn by replacing every occurrence of ∀∗ by ∀.
If Φ̂ has a model in Ω(σ,∆), then, for every ω ∈ Ω(σ,∆),
we have

lim
w→∞

pΦ(w),∆(ω) =

{
0 if ω 6|= Φ̂,

1

|{ω∈Ω(σ,∆)|ω|=Φ̂}|
if ω |= Φ̂.

Proof. Let τ(ω) =
∑

(αi,w)∈Φ w ·Qω(αi). We have, for all
worlds ω′, ω′′ ∈ Ω(σ,∆): if Qω′(α) = 1 for all (α,w) ∈
Φ and Qω′′(β) < 1 for some (β,w) ∈ Φ, then there is a
positive real number ε such that

τ(ω′)−τ(ω′′)

w
=

∑
(αi,w)∈Φ

Qω′(αi)−
∑

(αi,w)∈Φ

Qω′′(αi) ≥ ε

It is easy to notice that τ(ω′) − τ(ω′′) → ∞ for w → ∞.
Hence also

pΦ(w),∆(ω′)

pΦ(w),∆(ω′′)
→∞, for w →∞

Since, by Remark 1 above, for all α, Qω(α) = 1 iff ω |= α′

where α′ is obtained by replacing all ∀∗ quantifiers in α by
∀, the proposition holds.

4.3 Relational Marginal Problems and QMLNs
From the discussion in Section 2.3 and Point (5) in Def-
inition 3, it follows that standard MLNs containing only
quantifier-free FOL formulas are solutions of maximum
entropy relational marginal problems constrained by sen-
tence statistics of sentences that contain only ∀∗ quantifiers.
Hence, a natural question is whether the same also holds for



relational marginal problems constrained by the more gen-
eral sentence statistics given by Definition 3 which do con-
tain statistical quantifiers ∀∗ as well as classical quantifiers
∀ and ∃. In the rest of the section we sketch the argument
showing that the answer to this question is positive.

We use (α, q) to denote the constraint Q[α] = q, where
α is a quantified sentence and q is a probability. Let ∆ be
a finite domain and C = {(α1, q1), . . . , (αk, qk)} be a set
of constraints that the sought distribution must satisfy. We
require some auxiliary notation. We define the sets

CH = {α | (α, 1) ∈ C} ∪ {neg (α) | (α, 0) ∈ C},
CS = {(α,w) | (α,w) ∈ C and 0 < w < 1}.

We further define a set Ω of worlds by taking

Ω = {ω ∈ Ω(σ,∆) |
∧
α∈CH

Qω(α) = 1}.

The motivation behind this is that, in any probability distri-
bution p(ω) satisfying all constraints C, every possible world
not in Ω must have probability 0. We have to treat this sepa-
rately from the rest of the constraints.3

In order to solve the relational marginal problem, we in-
troduce a variable Pω for every world ω ∈ Ω, intuitively
representing the probability of ω. The optimization problem
representing the maximum entropy relational marginal prob-
lem is then given by the objective function

max
{Pω|ω∈Ω}

∑
ω∈Ω

Pω log
1

Pω

subject to the following constraints:

∀(αi, qi) ∈ CS :
∑
ω∈Ω

Qω(αi) · Pω = qi

∀ω ∈ Ω : Pω ≥ 0,
∑
ω∈Ω

Pω = 1

Assuming4 that there exists a feasible solution of the opti-
mization problem such that Pω > 0 for all ω ∈ Ω, and
using standard techniques from convex optimization (Boyd
and Vandenberghe 2004; Singh and Vishnoi 2014), specifi-
cally the construction of Lagrangian dual problems and the
use of Slater’s condition, we arrive at the solution

Pω =
1

Z
exp

 ∑
(αi,wi)∈CS

wi ·Qω(αi)

 (7)

where Z is a normalization constant and the weights wi are
obtained as solutions of the optimization problem (the dual
of the maximum entropy relational marginal problem) which
is to maximize the following expression:∑
(αi,qi)∈CS

wiqi− log

∑
ω∈Ω

exp

 ∑
(αi,qi)∈CS

wi ·Qω(αi)


3If we just plugged the constraints from CH into the optimiza-

tion problem, Slater’s condition (Boyd and Vandenberghe 2004)
would not hold and we could not establish the duality based on it.

4If this condition is not satisfied we have to add additional hard
formulas that explicitly rule out the worlds that have zero probabil-
ity in every solution satisfying the given marginal constraints.

As the main result of this section, we have verified that the
maximum entropy relational entropy problem for QMLNs
has a similar significance as in classical MLNs. In particular,
both Points (i) and (ii) from Section 2.3 are satisfied as well
for QMLNs, that is, QMLNs are also solutions of max en-
tropy relational problems constrained by sentence statistics
and the result of the latter agrees with maximum likelihood
estimation when the input probabilities stem from a domain
of the same size.

5 A Translation for MAP-Inference
In this section we describe a translation from arbitrary quan-
tified MLNs to quantified MLNs that contain the statistical
quantifiers ∀∗ only as a leading prefix. We have already seen
in Proposition 1 that the latter QMLNs correspond essen-
tially to standard MLNs. Since the translation can be per-
formed in polynomial time, the given translation establishes
a polynomial time reduction of MAP in QMLNs to MAP in
MLNs.

Overview. The given quantified MLN is translated by pro-
cessing the weighted sentences one by one. More specifi-
cally, we show how to eliminate a single classical quantifier
that appears before a block of ∀∗’s in the quantifier prefix of
the quantified sentence. By exhaustively applying this elim-
ination, we end up with a set of weighted sentences where
all ∀∗ quantifiers appear in a prefix block of ∀∗’s.

For the description of the elimination, let us suppose that
(α,w) is a weighted sentence with α defined as follows

Q1x1 . . . Qkxk∀∗xk+1 . . . ∀∗xk+l : ψ(x1, . . . , xk+l)

where Qi ∈ {∃,∀,∀∗} for 1 ≤ i ≤ k − 1, Qk ∈
{∃,∀} and ψ(x1, . . . , xk+l) is a formula with free variables
x1, . . . , xk+l; recall that the formula ψ(x1, . . . , xk+l) may
also contain variables bound by quantifiers ∃ and ∀ but not
by ∀∗. The quantified sentence (α,w) is transformed into
a set of hard constraints, that is, weighted sentences of the
shape (ϕ,∞) with ϕ a FOL sentence, and a single weighted
sentence (α′, w′) with w′ = |∆| · w and α′ being

Q1x1 . . . Qk−1xk−1∀∗xk . . . ∀∗xk+l : ψ′(x1, . . . , xk+l)

for some formula ψ′ to be defined below. Observe that the
effect of the step is to turn quantifier Qk into ∀∗.

Eliminating Qkxk In order to simplify notation in the
description of the elimination step, we will abbreviate
(x1, . . . , xk−1) with x and (xk+1, . . . , xk+l) with z, and
write, e.g., ψ(a, a,b) instead of ψ[x/a, xk/a, z/b]. We de-
scribe how to replace Qkxk by ∀∗xk. By Proposition 4, we
can assume without loss of generality thatQk is in fact ∃. By
the semantics, the variable xk maximizes the sentence statis-
tics for the variables z over all possible choices of a ∈ ∆.
Our main idea is to simulate the computation of the sentence
statistic in the MLN itself. For this purpose, we introduce a



fresh5 k-ary predicate name max, set

ψ′(x, xk, z) = max(x, xk) ∧ ψ(x, xk, z),

and appropriately define max using hard constraints. More
formally, let us denote with Witψ,ω(a, a) the set of all as-
signments of z to values b such that ψ(a, a,b) is satisfied in
world ω, that is,

Witψ,ω(a, a) = {b ∈ ∆l | ω |= ψ(a, a,b)}.

Our goal is to enforce that, in every world ω, max satisfies
the following property (∗):
(∗) for every choice a = (a1, . . . , ak−1) of values for x,

there is precisely one a∗ such that ω |= max(a, a∗),
and moreover, this a∗ satisfies

|Witψ,ω(a, a)| ≤ |Witψ,ω(a, a∗)| (8)

for all a ∈ ∆.
Indeed, property (∗) formalizes the mentioned semantics for
the sentence statistic for ∃. For enforcing it, observe that the
inequality (8) is satisfied iff there is an injective mapping
from the set on the left-hand side, Witψ,ω(a, a), to the set
on the right-hand side, Witψ,ω(a, a∗). We exploit this obser-
vation as follows. First define a collection of linear orders on
domain elements, one linear order �a for each assignment
of a tuple a of domain elements to the variables in x. We
represent the order �a by the predicates leq(a, ·, ·). The lin-
ear orders are enforced by hard constraints. More precisely,
we ensure that one such linear order exists for any assign-
ment of domain elements to variables in x by adding hard
constraints for axiomatizing antisymmetry, transitivity, and
totality, respectively:

∀x∀y, z : leq(x, y, z) ∧ leq(x, z, y)⇒ y = z, (9)
∀x∀x, y, z : leq(x, x, y) ∧ leq(x, y, z)⇒ leq(x, x, z),

(10)
∀x∀x, y : leq(x, x, y) ∨ leq(x, y, x). (11)

Next, we connect the linear order construction with the idea
of injective mappings described above. This is done via an-
other fresh predicate name fn which encodes the required
mapping. Intuitively, in fn(a, a, a′,b,b′), a refers to the
current assignment to x, constants a, a′ refer to the ele-
ments we are interested in for xk, and the function maps
b ∈ Witψ,ω(a, a) to b′ ∈ Witψ,ω(a, a′). We add the fol-
lowing hard constraints:

∀x∀y, y′∀z : leq(x, y, y′) ∧ ψ(x, y, z)

⇒ (∃z′ : ψ(x, y′, z′) ∧ fn(x, y, y′, z, z′)) ,

∀x∀y, y′, z, z′, z′′ : fn(x, y, y′, z, z′) ∧ fn(x, y, y′, z, z′′)

⇒ z′ = z′′,

∀x∀y, y′, z, z′, z′′ : fn(x, y, y′, z, z′) ∧ fn(x, y, y′, z′′, z′)

⇒ z = z′′.

5In general, we need to introduce fresh predicates names for
every transformed (αi, wi) separately, e.g. maxαi etc. For brevity,
we do not show this explicitly in the text.

The first two sentences enforce that, if a �a a
′, then there

exists a mapping from Witψ,ω(a, a) to Witψ,ω(a, a′). Injec-
tivity of the mapping is ensured by the third sentence.

In order to define the predicate max, we add the following
hard constraints:

∀x∃y : max(x, y),

∀x, y, y′ : max(x, y) ∧ leq(x, y, y′)⇒ y = y′.

Correctness We have given some intuition above, but let
us provide some more details. First, it is not hard to see that
the added hard constraints ensure that max indeed satisfies
the desired property (∗).

Now, let ∆ be an arbitrary domain, ω∗ be the most prob-
able world of the QMLN Φ over domain ∆, and let Φ′

be obtained from Φ by the application of a single quanti-
fier elimination step. Further, denote with σ′ ⊇ σ the ex-
tended vocabulary. We call a world ω′ ∈ Ω(σ′,∆) an ex-
tension of ω ∈ Ω(σ,∆) if for every R ∈ σ of arity k
and all a1, . . . , ak ∈ ∆, we have ω′ |= R(a1, . . . , ak) iff
ω |= R(a1, . . . , ak). It is easy to see that our construction
ensures that, in fact, every world in Ω(σ′,∆) is the exten-
sion of a (unique!) world in Ω(σ,∆), and conversely, every
world in Ω(σ,∆) has an extension in Ω(σ′,∆). Moreover,
the sentence statistics for α and its replacement α′ relate as
follows:
Lemma 6. Let ω′ be an extension of ω. Then

Qω′(α′) =
1

|∆|
Qω(α).

Proof. To see this, let a be some assignment to x and let
a∗ ∈ ∆ be the element that exists by Property (∗). We have
Qω′(∀∗z : ψ′(a, a∗, z)) = Qω(∀∗z : ψ(a, a∗, z)) and, for all
a 6= a∗, Qω′(∀∗z : ψ′(a, a, z)) = 0 since ω′ 6|= max(a, a)
for such a. By the semantics, we obtain

Qω′(∀∗xkz : ψ′(a, xk, z)) =
1

|∆|
Qω(∃xk∀∗z : ψ(a, xk, z))

The statement from the Lemma follows from the fact that the
constant factor 1/|∆| distributes over min,max and expec-
tation in the definition of the semantics of ∀,∃, and ∀∗.

The definition of the updated weight w′ = |∆| · w now
implies that there is a constant c such that pΦ′,∆(ω′) =
c · pΦ,∆(ω) for all ω ∈ Ω(σ,∆) and all extensions ω′ ∈
Ω(σ′,∆) thereof. This establishes the correctness of the re-
duction.
Theorem 7. If ω′ is an extension of ω, then ω′ is a most
probable world in pΦ′,∆ iff ω is a most probable world in
pΦ,∆.

6 A Translation for Marginal Inference
The translation given in the previous section does not quite
work for marginal inference. Note that for MAP inference,
it is enough if all extensions of any possible world of the
original problem have the same weight. It is not a problem
if there are multiple extensions of the same world or if dif-
ferent worlds have different numbers of extensions (as long



as they have the same weight). A single world sometimes
has multiple extensions because the linear order leq and the
functions represented by fn are not uniquely defined. How-
ever, for marginal inference, this is no longer acceptable. We
have to ensure that any two worlds will have the same num-
ber of extensions.

We fix these problems by further restricting the functions
encoded by fn and the order encoded by leq. More specifi-
cally, our goal is to add another set of hard constraints such
that
(∗∗) every world ω ∈ Ω(σ,∆) has the same number of ex-

tensions ω′ ∈ Ω(σ′,∆).
To realize that, we exploit again the idea of the linear order.
More specifically, we add a fresh binary predicate name ≤
and enforce that it is a linear order on ∆ by using hard con-
straints such as those in Equations (9)–(11). Based on≤, we
break all possible ties that might occur in the definition of
max, leq, fn, in the sense that for a fixed choice of≤, there is
exactly one choice of max, leq, fn. First, we enforce that fn
has the right domain:

∀x∀x, y∀z, z′ : fn(x, x, y, z, z′)

⇒ (ψ(x, x, z) ∧ ψ(x, y, z′))

For breaking ties in leq, we add the following constraint stat-
ing that, if leq(x, x, y) holds and the function encoded by fn
is also surjective at given points x, x, y, then x ≤ y:

∀x∀x, y :
(

leq(x, x, y) ∧(
∀z′.ψ(x, y, z′)⇒ ∃z.fn(x, x, y, z, z′)

))
⇒ x ≤ y

Next we enforce that fn preserves the order ≤ by including
the constraint

∀x∀x, y∀z1, z
′
1, z2, z

′
2 :(

z1 ≤∗ z2 ∧ fn(x, x, y, z1, z
′
1) ∧ fn(x, x, y, z2, z

′
2)
)

⇒ z′1 ≤∗ z′2
where the order ≤∗ is defined – using straightforward con-
straints – as the (unique) lexicographic extension of≤ to the
arity of z. For instance, consider the sets {1, 2} and {1, 2, 3}.
Assuming 1 ≤ 2 ≤ 3, this constraint excludes, among oth-
ers, the function that maps 1 to 3 and 2 to 1, because ≤ is
not preserved: 1 ≤ 2, but 3 6≤ 1.

Finally, note that it can still be the case that two worlds
have different number of extensions because each of the
functions represented by fn is order-preserving w.r.t. ≤∗ and
has a uniquely defined domain but, apart form that, does not
have to satisfy any other constraints. For instance the num-
ber of such functions from {1, 2, 3} to {1, 2, 3, 4} and the
number of such functions from {1, 2, 3} to {1, 2, 3, 4, 5} are
different. We address this by requiring that the functions rep-
resented by fn map every element to the smallest element
possible:

∀x∀x, y∀z1, z
′
1 : fn(x, x, y, z1, z

′
1)

⇒ (∀z′2.ψ(x, y, z′2) ∧ z′2 ≤∗ z′1 ⇒ ∃z2.fn(x, x, y, z2, z
′
2))

Correctness Let Φ′′ be the result of adding the described
constraints to Φ′. Based on the given intuitions, one can eas-
ily show that Property (∗∗) is satisfied. Since there are |∆|!
possible choices for ≤, we get that

pΦ′′,∆(ω′) =
1

|∆|!
pΦ,∆(ω),

for any extension ω′ of ω. Since ω′ |= ϕ iff ω |= ϕ for any
given sentence ϕ over σ, we obtain the desired result:
Theorem 8. For every FOL sentence ϕ, we have

Pω∼pΦ,∆
(ϕ) = Pω∼pΦ′′,∆(ϕ).

An important question is whether the result from Theorem 8
can be extended to computing a marginal query QΦ,∆[α] for
a quantified sentence α. The answer to this question is posi-
tive. We next outline how this is done. Let Φ be the MLN
resulting from applying the translation above to a given
QMLN. We distinguish two cases.
(i) If α contains only ∀∗ quantifiers as a leading prefix of
the block of quantifiers, we can borrow techniques from
(Van Haaren et al. 2016). In particular, we need to create the
partition of the groundings αϑ of α; specifically, groundings
of the variables bound by ∀∗, such that the probability of any
two groundings αϑ and αϑ′ in the same equivalence class of
this partition is equal, i.e. Pω∼pΦ,∆(αϑ) = Pω∼pΦ′′,∆(αϑ′).
This partitioning can be achieved using preemptive shatter-
ing (Poole, Bacchus, and Kisynski 2011). Once we have
the partitioning, we can compute the marginal probability
Pω∼pΦ,∆

(αϑ) for one representative αϑi from each partition
class Pi. Finally, we can compute QΦ,∆[α] as follows:

QΦ,∆[α] =
1

|
⋃
Pi∈P Pi|

∑
P∈Pi

Pω∼pΦ,∆
(αϑi) · |Pi|

(ii) If α contains an arbitrary quantifier prefix, we first need
to convert it to the form assumed above, that is, we apply the
transformation described in this section to obtain a sentence
α′ that contains ∀∗ quantifiers only as a prefix while also
generating several additional hard constraints, which we in-
clude in Φ. We can then use the procedure outlined in (i)
above to compute QΦ,∆[α].

7 On QMLNs Restricted to Two Variables
It has been shown that marginal inference for MLNs can
often be reduced to symmetric weighted first-order model
counting (WFOMC), see e.g. (Beame et al. 2015). In this
context of particular importance is the two-variable frag-
ment of FOL (FO2), since for FO2 symmetric WFOMC can
be solved in polynomial time data complexity, that is, when
the formula is considered fixed and the only input is the
domain ∆ (Van den Broeck 2011; Van den Broeck, Meert,
and Darwiche 2014; Beame et al. 2015). Given the fact that
MLNs containing formulae with up two variables (2-MLNs)
can be encoded as WFOMC for FO2, 2-MLNs are domain
liftable. Hence, a natural question to ask is whether the same
holds for quantified MLNs.

Let us first remark that the reduction described in Sec-
tion 6 does not preserve the quantifier rank. Indeed, consider



the example formula ∃x∀∗y : knows(x, y). It is originally an
FO2 formula, but the elimination step introduces a quater-
nary predicate name fn and the constraints for this predicate
require using four variables. As a consequence, we cannot
‘reuse’ the results on WFOMC for FO2 and thus attain do-
main liftability for 2-QMLNs. Moreover, our reduction ex-
plicitly introduces transitivity axioms while there are only a
few known very restricted cases where WFOMC is domain
liftable in the presence of transitivity (Kazemi et al. 2016).

In the light of recent results by Kuusisto and Lutz (2018)
on WFOMC for an extension of FO2 with counting quan-
tifiers, it is not very surprising that a straightforward trans-
lation preserving the quantifier rank from QMLNs to MLNs
seems not possible. To see this, note that to compute the sen-
tence statistic, we need to take into account the out-degree
of domain elements, where the out-degree of an element is
the number of elements that are related to it, cf. Example 1.
Indeed, (Kuusisto and Lutz 2018) put quite some technical
effort, relying on sophisticated model-theoretic techniques
and combinatorics, to show that WFOMC for FO2 with one
functional axiom6 is polynomial time in data complexity.
The complexity of WFOMC for FO2 with many functional
axioms or more generally, with arbitrary counting quanti-
fiers remains a challenging open problem. This gives an in-
sight on the difficulty of studying the computational com-
plexity of reasoning in QMLNs restricted to two variables,
making it a research challenge by itself, which we plan to
address in the future. In particular, we will investigate the
exact connection between 2-QMLNs and WFOMC for ex-
tensions of FO2 with some means for counting.

8 Related Work
Classical FOL quantifiers (∀,∃) were already considered
in the original work on Markov Logic Networks (Richard-
son and Domingos 2006), albeit without a rigorous defini-
tion. A precise treatment of FOL quantifiers was carried out
later on in (Van den Broeck, Meert, and Darwiche 2014;
Van den Broeck and Suciu 2017). In particular, Van den
Broeck, Meert, and Darwiche (2014) show how to remove
existential quantifiers while preserving marginal inference
results. In all these works, however, MLNs with quantifiers
were defined in a way that is equivalent to QMLNs with a
prefix of ∀∗ quantifiers. As a consequence, it is not possible
to directly represent statistics (features in MLN parlance)
that correspond to sentences in which ∀ or ∃ precedes ∀∗ in
the quantifier block.

There has been also some work on other types of aggre-
gation. For example, some works considered explicit con-
structs for counting in relational models (Milch et al. 2008;
Jain, Barthels, and Beetz 2010). In another research effort,
Lowd and Domingos (2007) introduced recursive random
fields that are capable of emulating certain forms of more
complex aggregation. However, recursive random fields do
not seem capable of even representing statistics such as
∃x∀∗y : knows(x, y). Finally, Beltagy and Erk (2015) stud-
ied the effect of the domain closure assumption on the se-

6Intuitively, enforcing out-degree 1 for a particular binary rela-
tion, that is, elements are related with at most one element.

mantics of probabilistic logic when existential quantifiers
are allowed.

In the context of probabilistic soft logic (PSL), Farnadi
et al. (2017) recently introduced soft quantifiers based on
quantifiers from fuzzy logic. However, their approach strictly
applies to fuzzy logic. In particular, in PSL random variables
e.g. smokes(Alice), may acquire non-Boolean truth values.

Another stream of research that is related to our work is
the study of the effect of domain size and its extrapolation on
the probability distributions encoded using various relational
learning systems (Poole et al. 2014; Kazemi et al. 2014;
Kuželka et al. 2018). However, none of these works studied
the interplay of statistical and classical quantifiers.

There has been also some related work within KR re-
search, e.g. about statistical reasoning in description log-
ics (Peñaloza and Potyka 2017; Lutz and Schröder 2010).

9 Discussion and Future Work
In this paper, we have investigated the extension QMLNs of
MLNs with statistical quantifiers, allowing to express e.g.
measures on the proportion of domain elements fulfilling
certain property. We developed some key foundations by es-
tablishing a relation between MLNs and QMLNs. In particu-
lar, we provided a polytime reduction of the standard reason-
ing tasks MAP and MARG in QMLNs to their counterpart
in MLNs. Furthermore, we also showed how to generalize
the random substitution semantics to QMLNs.

As for future work, it might be interesting to develop
more direct approaches to MAP and MARG in QMLNs.
Indeed, even if the developed translations provide polytime
reductions of reasoning in QMLNs to reasoning in MLNs
(and overall, a good understanding of the relation between
QMLNs and MLNs), they do not yield an immediate prac-
tical approach since the introduction of new predicates with
greater arity is required. Another interesting aspect of future
work is to investigate the statistical properties of QMLNs.
For MLNs with quantifier-free formulas, Kuželka et al.
(2018) derived bounds on expected errors of the statistics’
estimates. However, obtaining similar bounds for the more
general statistics considered here seems considerably more
difficult because of the minimization and maximization that
are involved in them.
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