
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/114258/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Kimmig, Angelika , Memory, Alex, Miller, Renee J. and Getoor, Lise 2019. A collective, probabilistic
approach to schema mapping using diverse noisy evidence. IEEE Transactions on Knowledge and Data

Engineering 31 (8) , pp. 1426-1439. 10.1109/TKDE.2018.2865785

Publishers page: http://dx.doi.org/10.1109/TKDE.2018.2865785

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XXXX, NO. XXXX, AUGUST XXXX 1

A Collective, Probabilistic Approach to
Schema Mapping Using Diverse Noisy Evidence

Angelika Kimmig, Alex Memory, Member, IEEE, Renée J. Miller, Member, IEEE,
and Lise Getoor, Member, IEEE

Abstract—We propose a probabilistic approach to the problem of schema mapping. Our approach is declarative, scalable, and
extensible. It builds upon recent results in both schema mapping and probabilistic reasoning and contributes novel techniques in both
fields. We introduce the problem of schema mapping selection, that is, choosing the best mapping from a space of potential mappings,
given both metadata constraints and a data example. As selection has to reason holistically about the inputs and the dependencies
between the chosen mappings, we define a new schema mapping optimization problem which captures interactions between
mappings as well as inconsistencies and incompleteness in the input. We then introduce Collective Mapping Discovery (CMD), our
solution to this problem using state-of-the-art probabilistic reasoning techniques. Our evaluation on a wide range of integration
scenarios, including several real-world domains, demonstrates that CMD effectively combines data and metadata information to infer
highly accurate mappings even with significant levels of noise.

F

1 INTRODUCTION

S CHEMA mappings are collections of complex logical
statements which relate multiple relations across data

sources with different schemas, and thus can be used to
exchange data between these sources. Efficient techniques
for reasoning about the suitability of different schema map-
pings are crucial to manage the massive number, complexity,
and size of data sources. While the metadata and data of
the sources often provide evidence for how to best map
them, this evidence is rarely complete or unambiguous. To
reason effectively about mappings, we thus need techniques
grounded in mapping understanding that can reason about
open-world scenarios using uncertain, imperfect evidence.

We study the problem of mapping selection, that is, of
selecting from a large set of possible mappings, a mapping
that best relates a source and a target schema. We define
the mapping selection problem for the entire language of
st tgds (source-to-target tuple-generating-dependencies; also
known as GLAV mappings) which is arguably the most
commonly used mapping language [1]. We prove that ex-
actly solving this problem is NP-hard already for full st tgds,
i.e., st tgds without existential quantifiers. We then provide
an efficient and highly accurate approximate solution to this
problem based on state-of-the-art probabilistic reasoning.

Historically, approaches to schema mapping discovery
and selection have considered a wide variety of inputs.
Early approaches use metadata (schema constraints) and
attribute correspondences (aka schema matchings) to create
mappings that are consistent with the metadata [2], [3].

• A. Kimmig is with the School of Computer Science and Informatics,
Cardiff University. E-mail: KimmigA@cardiff.ac.uk

• A. Memory is with Department of Computer Science, University of
Maryland. E-mail: memory@cs.umd.edu

• R. Miller is with the College of Computer and Information Science,
Northeastern University. E-mail: miller@northeastern.edu

• L. Getoor is with University of California Santa Cruz.
E-mail: getoor@ucsc.edu

Manuscript received April XX, XXXX; revised August XX, XXXX.

Metadata in the form of query logs has been used to select
mappings that are most consistent with frequently asked
queries [4]. Many different approaches use data to refine
a mapping or to select a mapping from among a set of
schema mappings [5], [6], [7], [8], [9], [10], [11], [12].
Other approaches solicit user feedback to define scores for
each view in a set of candidate views and then select an
optimal set of views based on these scores [13]. All of these
approaches have merit, but are tailored to a specific form
of input evidence, and either work for limited mapping
languages, like views, or assume consistent or complete
input, which is difficult to prepare or find. An exception
to this is the approach by Alexe et al. [12] that considers bad
data examples that are consistent with several (candidate)
mappings or none. They consider how such bad examples
can be turned into good examples that are consistent with a
single, desired mapping.

We define a new mapping selection problem that uses
both data and metadata collectively as input. None of the
evidence is required to be consistent or complete, rather we
find the subset of st tgds that are best supported by the
given evidence as a whole. Metadata can serve as a guide
through a potentially massive set of possible mappings, sug-
gesting mappings that are consistent with schema semantics
(e.g., joining relations on a foreign key). Data can reinforce
metadata evidence. Data can also rule out a mapping that
is consistent with the metadata, but inconsistent with large
parts of the data. Metadata can obviate the need to have two
pristine data instances as input that precisely define a single
best mapping. Furthermore, our framework is declarative
and extensible to new forms of evidence including scores
(such as user-feedback annotations) on the metadata and
data evidence.

Our solution adopts and extends some of the latest tech-
niques from the probabilistic reasoning community. These
techniques are routinely used to combine logical constraints
in relational domains with the ability to handle uncertainty

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XXXX, NO. XXXX, AUGUST XXXX 2

and conflicting information. Building upon work of Gottlob
and Senellart [18], we refine their concepts of validity and
fully explaining to define what it means for a single tuple to
be either an (incomplete) error for a mapping or (partially)
explained by a mapping. Using these notions, we define
our probabilistic optimization problem using probabilistic
soft logic (PSL) [14], a scalable probabilistic programming
language based on weighted logical rules. PSL has been
used successfully for a variety of data and knowledge inte-
gration problems, including knowledge graph identification
[15] and data fusion [16], [17]. It however did not support
the kind of open world reasoning required for mapping
selection, where we need to express constraints over the
existence of elements in a set satisfying certain conditions,
namely, st tgds in the mapping explaining tuples in the data
example, and furthermore, preferences over these elements
are available. We therefore extend PSL with prioritized dis-
junctions, which provide a tractable framework for handling
such existential, weighted constraints, and thereby allow us
to define key features of the mapping selection problem.
To use data and metadata as input, we use the extended
PSL language as a common representation for both. The
data evidence comprises a data example and the metadata
evidence comprises a set of st tgds. By having a com-
mon language for reasoning, we can easily integrate data
and metadata evidence by, for example, reasoning about
whether a data example satisfies metadata evidence such
as part of a mapping.

We refer to our solution as Collective Mapping Discovery
(CMD), because it reasons collectively both about multiple
forms of evidence and over the interactions between dif-
ferent st tgds. CMD advances the state-of-the-art in schema
mapping by using more kinds of evidence and integrating
them at a much finer-grained level of detail than attempted
in the past. In addition, the declarative nature of CMD
makes it easy to extend in a variety of ways.

We perform an extensive empirical validation of our
approach. We use the integration benchmark iBench [18] to
test CMD on a wide variety and large number of mapping
scenarios. We use IQ-METER [19], a multi-criterion eval-
uation measure, to confirm the quality of CMD’s output.
We compare CMD with a baseline approach which uses
only metadata. We show that the accuracy of CMD is more
than 33% above that of a metadata-only approach already
for small data examples. We illustrate the robustness of
our approach by demonstrating that we are able to find
accurate mappings even if a quarter of the data is dirty. We
demonstrate that the approach scales well with the size of
both metadata and data, and effectively selects small, correct
mappings even if dozens of competing candidate mappings
are available for each tuple. In addition, we show that CMD
is effective on several problems with real data.

This paper expands on our earlier work [20], proving
complexity results, and contributing experimental results on
additional real world problems as well as problems with an
order of magnitude greater complexity. Section 2 illustrates
the key challenges with an example. Section 3 introduces the
selection problem for st tgds without existentially quantified
variables, and Section 4 extends this to st tgds. Section 5
introduces our solution using PSL and our extension of
PSL with prioritized disjunctions. We discuss experiments in

proj
topic
mgr

lead

emp

id
name
company

task
title
supervisor
oid

leader
name

org

oid
name

c1

c3

c2

c4

c5

(a) Source (left) and target schema (right) with corresponding
attributes (dotted lines), a spurious correspondence (dashed),
and foreign key constraints (solid lines).

proj
topic mgr lead

BigData 1 2
ML 1 1

emp

id name company

1 Alice SAP
2 Bob IBM
3 Pat MS

task
title supervisor oid

BigData Alice 111
ML Alice 111

(b) Initial data example.
leader
name

Alice
Bob

org

oid name

111 SAP
222 MS

(c) Additional data.

θ0 : proj(t,m, l)∧emp(m,n, c) → ∃ o. task(t,n, o)

θ1 : proj(t,m, l)∧emp(l,n, c) → ∃ o. task(t,n, o)

θ2 : proj(t,m, l)∧emp(m,n, c)→ ∃ o. task(t,n, o)∧org(o, c)

θ3 : proj(t,m, l)∧emp(l,n, c) → ∃ o. task(t,n, o)∧org(o, c)

θ4 : emp(i,n, c) → ∃ o. org(o, c)

θ5 : emp(i,n, c) → leader(n)

θ6 : proj(t,m, l)∧emp(l,n, c) → leader(n)

θ7 : proj(t,m, l)∧emp(m,n, c) → ∃ o. task(t,n, o)∧org(o,n)

θ8 : proj(t,m, l)∧emp(l,n, c) → ∃ o. task(t,n, o)∧org(o,n)

(d) Candidate st tgds. Variables in bold denote exchanged at-
tributes.

Fig. 1: Motivating example; see Section 2 for details.

Section 6 and related work in Section 7.

2 MOTIVATING EXAMPLE

Figure 1(a) shows a pair of source and target schemas,
foreign keys (solid lines) and attribute correspondences (or
matches, dotted lines), which we will use as a running
example. The metadata is ambiguous, as it is not clear from
the schemas whether task.supervisor in the target schema is
associated with proj.mgr or proj.lead in the source schema. A
data example in the form of an instance of the source schema

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XXXX, NO. XXXX, AUGUST XXXX 3

(I) and an instance of the target schema (J) can help resolve
such ambiguity. The data example in Figure 1(b), where org
and leader are empty, suggests that supervisors in task tuples
correspond to mgr in the source, not lead. Interactive schema
mapping refinement techniques use data to select among
a set of mappings. They take as input a set of candidate
mappings and use data to interactively guide a user in
selecting a subset that is correct [5], [21], or in correcting a set
of data examples so that a “best fitting” mapping exists [22].
The interactive nature of these solutions permits a user
to decide what mapping is best given metadata and data
evidence. In contrast, we do this reasoning automatically to
find the best fitting mapping.

We consider the problem of combining metadata evi-
dence (in the form of a set of candidate mappings) and
potentially imperfect data evidence (in the form of a data ex-
ample) to select an optimal mapping. More specifically, our
candidate mappings are source-to-target tuple-generating-
dependencies (st tgds).1 These are simple first-order logic
statements relating a source query and a target query. The
candidates may come from a mapping design tool like
Clio [23] or ++Spicy [24], or may have been mined from
a query log [4].

A key challenge in mapping selection is that the num-
ber of possible selections is exponential in the number of
candidate st tgds. Consider the candidates in Figure 1(d),
focusing first on our earlier data example (Figure 1(b)) and
candidates θ0 and θ1. Notice that the data example is valid
for θ0 (meaning (I,J) satisfy the mapping θ0) but is not valid
with respect to θ1, as there is no tuple (BigData, Bob, -) (with
some oid). We call such a missing tuple an error. Errors might
be caused by dirty data. The data example contains a tuple
(BigData, Alice, 111) and this tuple may be dirty (the value
Alice is wrong and should be Bob) causing this error. If the
data is clean, this error tuple would suggest that we should
prefer θ0 over θ1.

Note that θ0 and θ1 both ignore the correspondence be-
tween emp.company and org.name. Mapping θ2 also explains
the data (intuitively), but it explains more, as it creates org
tuples for which we have no data evidence. If we change
our data example to include the org tuples in Figure 1(c),
the data suggests that we should select both θ2 and θ4. The
mapping θ2 alone maps the inner join of the source data
to the target. Mappings θ2 and θ4 together map the right
outer-join.

If we also add the leader tuples in Figure 1(c) to our data
example, θ5 explains all leader tuples. However, θ5 is not
valid with respect to the data, as it also suggests that tuple
(Pat) should appear in leader, but it does not and thus is
an error for θ5. The mapping θ6 addresses this by joining
emp with proj via proj.lead; it both explains and is valid with
respect to the leader example data. Generally, we seek sets
of st tgds that collectively explain the data and are valid
with respect to the data. On that basis, the set {θ2, θ4, θ6} is
a good choice.

Note that our candidates θ0 - θ6 use only correspon-
dences c1-c4 in Figure 1(a). If a matcher incorrectly sug-
gested correspondence c5, then we may get additional can-

1. The term mapping is often used both for a single st tgd and for a
set of st tgds. Here, we use candidate mapping or candidate to refer to a
single st tgd; while mapping generally refers to a set of st tgds.

didate mappings like θ7 or θ8 that use this correspondence.
However, in this example (and in many real examples) a
small data example can eliminate such candidates, as they
are likely not to explain the data or be valid.

This example illustrates many challenges in schema
mapping discovery from metadata and data.
DIRTY OR AMBIGUOUS METADATA. Our goal is to find a
mapping that fits the metadata. In practice, the number of
such mappings can be huge, due to metadata ambiguities
such as 1) multiple foreign key paths between relations;
2) the choice between inner and outer joins; 3) the pres-
ence of bad correspondences. Dirty metadata (for example,
incorrect foreign keys) exacerbates this problem. Data can
help in selecting correct mappings. We tackle the problem
of combining metadata and data evidence to effectively and
efficiently select a mapping, even if the data does not fully
disambiguate all metadata. In our example, we may have
some target tuples that are consistent with a join on mgr
(θ0) and some that are consistent with a join on lead (θ1);
e.g., (ML, Alice, 111) is consistent with both θ0 and θ1. Our
solution will weigh the evidence to find a mapping that is
most consistent with the evidence as a whole.
UNEXPLAINED DATA. We are given example source (I) and
target (J) data and our goal is to find a mapping that
explains the target data. In practice, we rarely have perfect
data examples that only contain target data explained by I .
Indeed, the open nature of st tgds permits the target to have
independent data that was not derived from the source. For
example, suppose there is a target org (333, BM), and the
value BM does not appear in the source. This data may be
correct data (the target has data about the Bank of Montreal
and the source does not) or it may be dirty data (perhaps
the value BM was mistyped and should be IBM). Even if
no candidate explains these tuples, we still want to find the
best mapping. So our optimization should not fail in the
presence of such unexplained tuples. Furthermore, if there is
a mapping that explains all data, we may not choose it if
it is not valid with respect to the data example, or if it is
considerably more complex than one that fails to explain a
few tuples in J .
DATA ERRORS. Our goal is to find a mapping that is valid
for the given data example (I, J). Again, in practice, it is
unrealistic to assume a data example that is perfect in this
way. Hence, we provide a solution that is tolerant of some
errors (for example, some dirty source data or some missing
target data), but seeks to find a set of st tgds for which the
errors are minimized.
UNKNOWN VALUES. Our goal is to find a mapping that
may use existential quantification where appropriate. This
is challenging, as such mappings introduce unknown or
null values in the target. For instance, st tgds θ0 and θ1
both only cover part of target tuple (ML, Alice, 111), as they
cannot “guess” the value of the oid. Still, we need to compare
them to st tgds that may have no existentials and therefore
cover entire target tuples. This problem is made more chal-
lenging as existentials play a critical role in identifier (or
value) invention where the same existential value is used
in multiple tuples to connect data together. It is important
that mappings that correctly connect the data be considered
better than mappings that use different existentials. For
example, we prefer θ2 over the combination of θ0 and θ4,

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XXXX, NO. XXXX, AUGUST XXXX 4

since the data supports the connection θ2 makes between
task and org in the target. This is an important aspect of the
problem that has not been considered by earlier work on
view (also known as full st tgd) selection [13].

To address these challenges, we present a fine-grained,
scalable solution that gives an st tgd credit for each tuple
it can explain or partially explain (in the case of existential
mappings) and aggregates this information to find a set of
st tgds that best explain the data. A set of st tgds is penalized
for each error tuple (the more errors the less valid the
mapping). Hence, we find the set of candidate st tgds that
collectively minimize the number of errors and number of
unexplained tuples, even under contradictory or incomplete
evidence.

3 SELECTION OVER FULL MAPPINGS

We first define mapping selection for full st tgds [1], that is,
st tgds without existentially quantified variables, and extend
our definitions to arbitrary st tgds in Section 4.

3.1 Mapping Selection Inputs

We define our mapping selection problem with respect to a
source schema S and a target schema T, where a schema is a
set of relations. The data evidence consists of a data example,
that is, a pair of instances I of S and J of T. The metadata
evidence consists of a (finite) set C of candidate st tgds. An
st tgd is a logical formula ∀x φ(x) → ∃y ψ(x,y), where φ
is a conjunction of atoms over the relations of S and ψ over
those of T [1]. Here, x and y are sets of logical variables. If y
is empty (no existentials) then the st tgd is a full st tgd [25].

Candidate st tgds can be generated using existing
schema mapping systems. Such systems, both industrial
systems and research systems, generate sets of candidate
mappings and generally let users select or refine these
mappings using a variety of visual interfaces. To generate
candidate mappings, research systems like Clio [23], Hep-
Tox [26], and ++Spicy [24] use schema constraints, while
U-Map [4] uses query logs. By building on these existing
approaches, we focus on candidate mappings that are plau-
sible according to the metadata and the methodology used
in candidate generation rather than all possible mappings.

3.2 Characterizing the Input Quality

Given metadata evidence (S, T, C), our goal is to find a
subset M ⊆ C that best “fits” the data example (I, J).
Let C be the set of all constants in I ∪ J , and N a set of
labeled nulls (disjoint from C). Following Fagin et al. [25],
a homomorphism between instances h : K1 → K2 is a
mapping from C ∪ N to C ∪ N such that: (1) for every
c ∈ C, h(c) = c, and (2) for every R(t) of K1, R(h(t)) is
in K2. A homomorphism h : φ(x) → K is a mapping from
the variables x to C ∪ N such that for every R(x1, . . . , xn)
in φ(x), R(h(x1), . . . , h(xn)) is in K . Let M be a set of
st tgds, then an instance K of T is called a solution for I ,
if (I,K) |= M. An instance K is a universal solution if it
is a solution and if for every other solution K ′, there is a
homomorphism h : K → K ′. Fagin et al. [25] showed how
a universal solution can be computed efficiently using the

chase over M (and such a universal solution is typically
called a canonical universal solution).

Gottlob and Senellart [7] call a mapping M valid for
(I, J) if J is a solution for I underM. Suppose (I, J) 6|=M.
Intuitively, this means J misses tuples that must be in every
solution for I . We call such tuples errors. A ground tuple t
(that is, a tuple containing only constants) is a full error if it
is not in J but in every J ′ such that (I, J ∪ J ′) |=M. If K
is a universal solution forM and I , then t is a full error iff
t ∈ K and t 6∈ J . If (I, J) is valid with respect to M then
there are no full errors.

Example 1: The candidate θ5 in Figure 1(d) is not valid with
respect to the data example in Figure 1(c). However, if we add the
tuple t′ = leader(Pat) to J then θ5 is valid for (I, J ∪ t′). Thus,
(Pat) is a full error, and the only full error. 2

Ideally, all tuples in J should be explained, that is, be
a result of the selected candidate mappings applied to I .
Again following Gottlob and Senellart [7], a mappingM⊆
C and source instance I explain a ground fact t, if t ∈ K for
every K such that (I,K) |=M. A mappingM and I fully
explain J if they explain every tuple in J . A ground tuple
t is explained by M and I iff t is in a universal solution for
M and I , else t is an unexplained tuple. As with validity, we
would like to permit exceptions, that is, a few tuples in J
that are unexplained, meaning J is not fully explained.

Example 2: Consider again θ5 of Figure 1(d). For the instance I
of emp shown in (b), θ5 fully explains J (the two leader tuples)
shown in (c). However, if leader also contained leader(Joe), then
θ5 would still be valid, but leader(Joe) is an unexplained tuple.

2

3.3 Collective Selection over Full Mappings

We now define an optimization problem for finding a map-
pingM ⊆ C that best fits our imperfect evidence by jointly
minimizing:

1) the number of unexplained tuples;
2) the number of error tuples; and
3) the size ofM.

The first two are formalized through functions that, for a
candidate set M, compare the given target instance J to
the solution forM and I , i.e., check how many tuples in J
are unexplained (collectively) byM, and how many tuples
resulting from data exchange with each st tgd inM are not
in J . Figure 2 illustrates these different kinds of tuples.

Let KC (respectively, KM and Kθ) be a canonical univer-
sal solution for I and C (respectively,M and θ). We consider
full st tgds so canonical universal solutions are unique. We
define createsfull(θ, t) as follows:

createsfull(θ, t) =

{
1 t ∈ Kθ

0 otherwise
(1)

We then define errorfull(M, t) for a tuple t ∈ KC−J (Figure 2
left side) to be the number of st tgds inM for which t is an
error.

errorfull(M, t) =
∑
θ∈M

(createsfull(θ, t)) (2)

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XXXX, NO. XXXX, AUGUST XXXX 5

KC − J

errorfull(M, t) = 0
(t /∈ KM)

errorfull(M, t) > 0
(KM − J)

(a)

(c)

Eq. (2)

J

explainsfull(M, t) = 1
(KM ∩ J)

explainsfull(M, t) = 0
(KC ∩ J −KM)

explainsfull(M, t) = 0
(unexplainable: J −KC)

(d)

(f)

(g)

Eq. (3)

Fig. 2: Illustration of functions errorfull(·) and explainsfull(·).

Correspondingly, for the tuples in J (Figure 2 right side), we
define the function explainsfull(M, t), which checks whether
such a tuple is explained byM.

explainsfull(M, t) = 1 if t ∈ J ∩KM and 0 otherwise (3)

We call tuples in J − KC that cannot be explained by any
st tgd in C unexplainable tuples (Figure 2(g)).

Finally, we define the size function size(M) to be the
sum of the number of atoms in each θ ∈M.

size(M) =
∑
θ∈M

(number atoms in θ) (4)

This choice of complexity term provides a guard against in-
cluding st tgds with insufficient support from the evidence.
Taking these three criteria together, we formally define the
mapping selection problem for full st tgds as follows.
Given schemas S, T, a data example (I, J), and a set C of
candidate full st tgds

Find argmin
M⊆C

(
∑
t∈J

[1− explainsfull(M, t)]

+
∑

t∈KC−J
[errorfull(M, t)]

+ size(M)) (5)

As we show in Section 3.4, this problem is NP-hard.
Notice the similarity of the mapping selection problem with

the formal framework for schema mapping discovery of
Gottlob and Senellart [7]. They propose a way of repairing
a mapping to (1) explain unexplained tuples and to (2)
make the mapping valid for an invalid data example (in
other words, to account for error tuples). They define an
optimal mapping as one that minimizes a cost function
containing three parts: the size of the mapping; the number
of the repairs needed to account for unexplained tuples; and
the number of repairs needed to account for error tuples.
In contrast, we are counting error and unexplained tuples
rather than using algebraic operators to repair the mapping.
We weight each of these three components equally in our
problem definition. However, our formalization permits
each part to be weighted differently if there is a priori
knowledge of the scenarios.

In terms of Figure 2, our goal is to find anM that jointly
minimizes the number of unexplained but explainable tu-
ples (those in (f)), the number of errors (those in (c)) and

the size of M. Note that every M ⊆ C receives a constant
penalty for unexplainable tuples (the tuples in J −KC (g)).
These tuples can easily be removed for efficiency before
running the optimization.

Note a subtle but important difference in how we treat
errors and unexplained tuples. The definition of errorfull(·)
considers each candidate in M individually, and sums the
number of errors made by each. That is, if two st tgds
θi ∈ M and θj ∈ M both make an error on t, that error
is counted twice. In other words, we seek a mapping where
as few as possible of the st tgds in the mapping make an
error on t. In contrast, we do not require each st tgd in the
mapping to explain all tuples in J , but consider it sufficient
if at least one θ ∈M explains a tuple. Thus, we cannot treat
each θ individually, but we must reason about the setM as
a whole.

3.4 Mapping Selection is NP-hard

The errorfull(·) and size(·) terms of (5) are modular and act
as constraints on the supermodular explainsfull(·) term. Such
minimization tasks are often NP-hard, and we provide proof
that this is also the case for our selection problem.

Theorem 1. The mapping selection problem for full st tgds as
defined in (5) is NP-hard.

Proof. We use a reduction from SET COVER, which is well
known to be NP-complete, and is defined as follows:
Given a finite set U , a finite collection R = {Ri | Ri ⊆
U, 1 ≤ i ≤ k} and a natural number n ≤ k, is there
a set R′ ⊆ R consisting of at most n sets Ri such that⋃
Ri∈R′ Ri = U?

We first consider the decision variant of mapping selec-
tion, which is defined as follows:
Given schemas S, T, a data example (I, J), a set C of
candidate full st tgds, and a natural number m, is there a
selectionM⊆ C with F (M) ≤ m?
where F (M) is the function minimized in (5), i.e.,

F (M) =
∑
t∈J

[1− explainsfull(M, t)]

+
∑

t∈KC−J
[errorfull(M, t)] + size(M) (6)

We construct a mapping selection decision instance from
a SET COVER instance as follows. We set m = 2n, introduce
an auxiliary domain D = {1, . . . ,m+ 1}, and define

S = {Ri/2 | Ri ∈ R}
T = {U/2}
C = {Ri(X,Y)→ U(X,Y) | Ri ∈ R}
J = {U(x, y) | (x, y) ∈ U ×D}
I =

⋃
Ri∈R

{Ri(x, y) | (x, y) ∈ Ri ×D}

We use notation R/k to indicate relation R has arity k. It
is easily verified that this construction is polynomial in the
size of the SET COVER instance. It is easily verified that this
construction is polynomial in the size of the SET COVER
instance. We next show that the answers to SET COVER
and the constructed mapping selection problem coincide.

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XXXX, NO. XXXX, AUGUST XXXX 6

For each Ri, the candidate st tgd θi = Ri(X,Y) →
U(X,Y) has size two, makes no errors (as Ri ⊆ U), and for
each x ∈ Ri explains the tuples U(x, 1), . . . , U(x,m + 1).
We thus have

F (M) =
∑
t∈J

[1− explainsfull(M, t)] + 2 · |M| (7)

= (m+ 1) ·

|U | − | ⋃
θi∈M

Ri|

+ 2 · |M| (8)

A mappingM⊆ C with F (M) ≤ m = 2n thus exists if and
only if |

⋃
θi∈MRi| = |U | and |M| ≤ n, which is exactly the

case where M encodes a covering selection with at most
n sets. Furthermore, if such mappings exist, the optimal
mapping according to (5) is one of them, and a polynomial
time solution for mapping selection with full st tgds can thus
be used to find a candidate solution that can be verified or
rejected in polynomial time to answer SET COVER.

4 SELECTION OVER ST TGDS

We now extend our approach to the complete language of
st tgds with existentially quantified variables, showing how
we assign credit for the shared null values such st tgds intro-
duce. We begin by generalizing our two functions errorfull(·)
and explainsfull(·) to model the partial evidence provided by
st tgds with existentials. We then revisit our optimization
problem using the new, more general functions.

4.1 Incomplete Errors

In contrast to errorfull(·), an error function for arbitrary
st tgds has to take into account incomplete tuples, that is,
tuples with nulls created by a mapping with existentials.

Example 3: The candidate θ1 in Figure 1(d) is not valid with
respect to the data example in Figure 1(b). However, if we add
the tuple t1 =task(BigData, Bob, 123) to J then θ1 is valid
for (I, J ∪ t1). But this specific tuple is not in every J ′ ⊇ J
for which θ1 is valid. Hence, t1 is not a full error. However, a
tuple k1 =task(BigData, Bob, N0) (where N0 is a labeled null
representing any constant) up to the renaming of the null must
be in every such J ′. Furthermore, such a tuple is in Kθ1 , the
canonical universal solution for θ1 over I . 2

Intuitively, for this example, a tuple in KC should be an
error if there is no homomorphism from that tuple to J . This
is sufficient to consider k1 to be an error for the original J
of Figure 1(b), but not an error if we add t1 to J . However,
once an existentially quantified variable is shared between
several atoms, we need a more general definition.

Example 4: The candidate θ3 in Figure 1(d) is not valid with
respect to the extended data example in Figure 1(b)-(c). For it to
be valid, J would have to contain two tuples k1 =task(BigData,
Bob, N0) and k2 =org(N0, IBM) with a shared labeled null
enabling the join on proj.lead. Suppose we add t1 =task(BigData,
Bob, 123) from above to J and t2 =org(333, IBM) to J . If we
just required each tuple in Kθ3 to have a homomorphism to some
tuple in J , then neither would be considered an error, as there
are homomorphisms from k1 to t1 and from k2 to t2. However,
the instance J ∪ t1 ∪ t2 does not correctly connect Bob to IBM.
Hence, we would like to consider both tuples to be errors. 2

KC − J

error(M, t) = 0
(t /∈ KM)

error(M, t) = 0

error(M, t) > 0

(a)

(b)

(c)

KM − J

Eq. (10)

J

explains(M, t) = 1
(KM ∩ J)

explains(M, t)
∈ (0, 1]

explains(M, t) = 0

(d)

(e)

(f)

Eq. (12)

Fig. 3: Illustration of explains(·) and error(·) for selecting
st tgds.

To address these issues, our error(·) function is based
on homomorphisms from all tuples in KC resulting from
a single chase step. If t is in the result of a chase step
over θ = ∀xφ(x)→ ∃ y ψ(x, y), we call all (target) tuples
resulting from this chase step (including t) the context of
t under θ or contextθ(t).2 We define the following helper
function:

creates(θ, t) =

0 t ∈ KC − J, t 6∈ Kθ

0 t ∈ Kθ − J, ∃h : contextθ(t)→ J

1 t ∈ Kθ − J and no such h exists
(9)

Now forM⊆ C we define the error(·) function as follows.

error(M, t) =
∑
θ∈M

creates(θ, t) (10)

In Figure 3, which extends Figure 2 for selection over st tgds,
error(·) divides KC − J into three parts for given M: the
tuples in (a) are created by no st tgd in M, those in (b)
do not count as errors because homomorphisms exist from
them to J , and the remaining st tgds in (c) count as errors.

Recall that in the canonical universal instance KC nulls
are only shared between tuples generated by a single chase
step. So each incomplete tuple t ∈ KC (containing one
or more nulls) is associated with a single chase step and
st tgd θ. Hence, for such a tuple t, Equation (10) evaluates to
1 if there is no homomorphism from the contextθ(t) to J , i.e.,
t is an error, and 0 otherwise. For a ground tuple tg (with no
nulls), if there is no homomorphism to J (meaning the tuple
is not in J), Equation (10) counts how many candidates
make this error.

4.2 Partially Explained Tuples

We now extend explaining to arbitrary st tgds. More pre-
cisely, we use tuples with labeled nulls coming from st tgds
with existentially quantified variables to partially explain
tuples in the target instance J through homomorphisms.

Example 5: Consider θ1 in Figure 1(d) and tuple
t =task(BigData, Alice, 111) in Figure 1(b). θ1 partially ex-
plains t via a homomorphism from k = task(BigData, Alice, N1)

2. For this to be well-defined, we require that each candidate st tgd
θ is normalized into a set of smaller logically equivalent st tgds where
only atoms that share existentials are retained in a single st tgd [1].

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XXXX, NO. XXXX, AUGUST XXXX 7

to t. In the absence of candidates that fully explain t, we might
include θ1 in our selection. 2

To define partial explanation, we treat nulls that play
a structural role in connecting information like constants.
For a tuple t ∈ J and a candidate θ, we call k ∈ Kθ a
possible explanation for t under θ if there is a homomorphism
h : contextθ(k) → J with h(k) = t. Let E(t, θ) be the set
of all possible explanations for t under θ. We call a labeled
null unique if it appears exactly once in contextθ(k). For
k ∈ E(t, θ), we define null(k) to be the number of unique
nulls in k divided by the arity of k. So null(k) = 0 if k
contains only constants or labeled nulls used at least twice.
Otherwise, null(k) > 0. We say that k explains t to degree
1− null(k), and define the auxiliary function covers(θ, t) for
t ∈ J based on the maximal degree to which t is explained
by any tuple:

covers(θ, t) =

{
maxk∈E(t,θ)(1− null(k)) E(t, θ) 6= ∅
0 E(t, θ) = ∅

(11)

A mapping M ⊆ C explains a tuple t as well as the best
st tgd θ ∈M does.

explains(M, t) = max
θ∈M

covers(θ, t) (12)

Equation (12) can be used to divide J into three parts
(Figure 3) for a given M: those tuples fully (d) or partially
(e) explained through tuples in (b), and those that cannot be
explained byM at all (f).

Using the same size function as for full st tgds, we define
the general mapping selection problem as follows:
Given schemas S, T, a data example (I, J), and a set C of
candidate st tgds

Find argmin
M⊆C

∑
t∈J

[(1− explains(M, t))]

+
∑

t∈KC−J
[error(M, t)]

+ size(M) (13)

The only difference with the case of full st tgds is that we
now use notions of error and explaining suitable for st tgds
with existentially quantified variables. In terms of Figure 3,
we seek a small M that minimizes the error in (c) and
maximizes the degree to which tuples in (d) and (e) are
explained.

If all candidates are full, this optimization coincides with
the one in (5), and so is NP-hard as well (see Section 3.4). In
Section 5, we provide an efficient approximation algorithm
for finding a high quality solutionM.

4.3 Example of Selection over ST TGDs

We extend the running example to illustrate objective (13).
We use a reduced candidate set C′ = {θ1, θ3} (Figure 1(d))
and the data in Figure 1(b)-(c), but omit the leader relation.
A universal solution Kθ1 for I contains the task tuples
(BigData, Bob, Null1) and (ML, Alice, Null2), while a solution
Kθ3 contains the task tuples (BigData, Bob, Null3) and (ML,
Alice, Null4) and the org tuples (Null3, IBM) and (Null4, SAP).

For θ1, creates(·) is 1 for tuple task(BigData, Bob, Null1),
and 0 for all other tuples, and covers(·) is 2/3 for task(ML,

Alice, 111) and 0 otherwise. This is because task(ML, Alice,
Null2) partially explains the latter via a homomorphism
mapping Null2 to 111. Similarly, for θ3, creates(·) is 1
for task(BigData, Bob, Null3) and org(Null3,IBM), but 0 for
task(ML, Alice, Null4) and org(Null4,SAP), which partially ex-
plain task(ML, Alice, 111) and org(111, SAP) to degree 3/3 and
2/2 respectively, via a homomorphism mapping Null4 to 111,
with corresponding values for covers(·). The different sub-
sets of candidate st tgds thus obtain the following values for
the individual parts and the total of objective function (13).

M
∑

1− explains
∑

error size (13)
{} 4 0 0 4
{θ1} 31/3 1 3 71/3
{θ3} 2 2 4 8
{θ1, θ3} 2 3 7 12

The minimal value for the objective is that of the empty
mapping, that is, the complexity term fullfils its role of
guarding against overfitting on too little data here. But we
also see that {θ1} is preferred over {θ3}, which in turn is
preferred over {θ1, θ3}. The reason is that while θ3 covers
more tuples than θ1, it also produces more errors and is
larger. If we add data for at least five more projects X of
the same kind as the ML one, i.e., pairs of tuples proj(X,N,1)
and task(X,Alice,111), the preferred mapping is {θ3}, as the
empty mapping cannot explain the new target tuples, θ1
explains each to degree 2/3, and θ3 fully explains them
(while no mapping introduces additional errors).

5 PROBABILISTIC MAPPING SELECTION

We now introduce Collective Mapping Discovery (CMD),
our efficient solution for schema mapping selection, using
techniques from the field of probabilistic modeling [27] and
statistical relational learning (SRL) [28]. Specifically, CMD
encodes the mapping selection objective (Equation (13)) as a
program in probabilistic soft logic (PSL) [14], and uses PSL
inference to instantiate and solve the optimization problem.
Inference in PSL is highly scalable and efficient, as it avoids
the combinatorial explosion inherent to relational domains
(the relations error(·) and explains(·)) by solving a convex
optimization problem, while providing theoretical guaran-
tees on solution quality with respect to the combinatorial
optimum.

However, like the majority of SRL methods, PSL relies
on a closed world assumption to ensure a well-defined
probability distribution. While we will not entirely remove
this restriction, we introduce prioritized disjunctions, a novel
extension to PSL that allows for existentials over closed
domains (the existence of an st tgd θ, in our case) while
maintaining the convexity of inference, which makes it
possible to encode and efficiently solve model selection
problems such as the mapping selection problem.

5.1 Probabilistic Soft Logic
PSL [14] is a language for defining collective optimization
problems in relational domains. It comes with an efficient
and scalable solver for these problems. The key underlying
idea is to (1) model desirable properties of the solution as
first-order rules, (2) allow random variables to take on soft
values between 0 and 1, rather than Boolean values 0 or 1,

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XXXX, NO. XXXX, AUGUST XXXX 8

and (3) let the system find a truth value assignment to all
ground atoms in the domain that minimizes the sum of the
distance to satisfaction of all ground instances of the rules.

A PSL program is a set of weighted rules:

w : b1(X) ∧ . . . ∧ bn(X)→ h1(X) ∨ . . . ∨ hm(X) (14)

where X is a set of universally-quantified variables, the
bi(X) and hj(X) are atoms over (subsets of) the variables
in X , and w is a non-negative weight corresponding to the
importance of satisfying the groundings of the rule. In first-
order logic, a grounding of such a rule is satisfied if its body
evaluates to false (0) or its head evaluates to true (1). PSL
generalizes this into a rule’s distance to satisfaction, which
is defined as the difference of the truth values of the body
and the head (set to zero if negative), and uses soft truth
values from the interval [0, 1] instead of Boolean ones. It
relaxes the logical connectives using the Lukasiewicz t-norm
and its co-norm, which is exact at the extremes, provides
a consistent mapping for values in-between, and results in
a convex optimization problem. Given an interpretation I
of all ground atoms constructed from the predicates and
constants in the program, the truth values of formulas are
defined as follows.

I(`1 ∧ `2) = max{0, I(`1) + I(`2)− 1}
I(`1 ∨ `2) = min{I(`1) + I(`2), 1}
I(¬l1) = 1− I(`1)

The distance to satisfaction of a ground rule r = body →
head is defined as follows:

dr(I) = max{0, I(body)− I(head)} (15)

Let R be the set of all ground rules obtained by grounding
the program with respect to the given constants. The proba-
bility density function f over I is:

f(I) = 1

Z
exp[−

∑
r∈R

wr(dr(I))] (16)

where wr is the weight of rule r and Z is a normalization
constant. PSL inference finds argmaxI f(I), that is, the
interpretation I that minimizes the sum of the distances
to satisfaction of all ground rules, each multiplied by the
corresponding rule weight. Typically, truth values for some
of the ground atoms are provided as evidence, that is, they
have observed fixed truth values, and we only need to infer
the optimal interpretation of the remaining atoms. PSL finds
an exact optimum using soft truth values, which is then
converted to a high quality discrete solution [14].

5.2 Mapping Selection in PSL

We now encode the mapping selection problem as a PSL
program. We introduce three observed predicates that en-
code tuple membership in the target instance J and the
covers(·) and creates(·) functions defined in Section 4, re-
spectively, and one predicate in whose truth values denote
membership of candidate st tgds in the selection, and thus
need to be inferred by PSL. A given data example (I, J)
and set of candidate st tgds C will introduce a constant for
every tuple in KC ∪ J and for every candidate in C. We

use the logical variable F for st tgds, and T for tuples. The
CMD program consists of the following rules:

size(F) : in(F)→ ⊥ (17)
1 : J(T)→ ∃F. covers(F, T) ∧ in(F) (18)
1 : in(F) ∧ creates(F, T)→ J(T) (19)

Rule (17) implements the size penalty by stating that we
prefer not to include an st tgd in the selected set: its
weighted distance to satisfaction is size(f) · (I(in(f)) − 0),
and thus minimal if in(f) is false. Rule (18) states that if a
tuple is in J , there should be an st tgd in the set that covers
that tuple, thus implementing the explains(·) term. Note
that the existential quantifier is not supported by PSL; we
describe how we extend PSL and implement this efficiently
in the next subsection. Rule (19) states that if an st tgd
creates a tuple, that tuple should be in J , or conversely, if
a tuple is not in J (and thus in KC − J), no st tgd in the
selected set should create it. This implements the error(·)
penalty. The advantage of this approach is that it reasons
about the interactions between tuples and st tgds in a fine-
grained manner. In Section 5.4 we show the rules combine
to implement the mapping selection objective (13).

5.3 Prioritized Disjunction Rules

In first-order logic (with finite domains), formulas with exis-
tential quantifiers, such as Rule (18) above, can be rewritten
by expanding the existential quantifier into a disjunction
over all groundings of its variables; however, in the context
of PSL, the resulting disjunction of conjunctions in the head
of a rule is expensive and non-convex to optimize in general.
We therefore show how to efficiently handle a practically
important subclass of such rules through a novel rewriting
approach. We call these rules prioritized disjunction rules, as
they implement a choice among groundings of an existen-
tially quantified variable using observed soft truth values to
express preferences or priorities over the alternatives (in the
case of Rule (18), over st tgds to be selected). A prioritized
disjunction rule is a rule:

w : b(X)→ ∃Y. ho(Y,X) ∧ hi(Y) (20)

where b(X) is a conjunction of atoms, ho(Y,X) is an ob-
served atom and hi(Y) is an atom whose value will be
inferred. In our case, see (18), b(X) is J(T), ho(Y,X) is
covers(F, T), and hi(Y) is in(F). The observed truth values
of the ho(Y,X) atoms reflect how good a grounding of Y
is for a grounding of X , as the truth value of the head
will be higher when assigning high truth values to hi(Y)
with high ho(Y,X). To efficiently support this comparison
of alternatives, we introduce a k-prioritization for some nat-
ural number k, restricting the truth values of ho(Y,X) to
{0/k, ..., k/k} only. This allows us to rewrite each prioritized
disjunction rule into a collection of rules, where we first
expand the existential quantifier in the usual way, and then
introduce a rule for each priority level.

Consider first the Boolean case, i.e., k = 1. In this case,
every disjunct ho(Y,X) ∧ hi(Y) is either false or equivalent
to hi(Y). Since ho(Y,X) is observed, for every grounding
y of Y , we can either drop the entire disjunct if ho(y,X) is
false or drop ho(y,X) if it is true, leaving only hi(y) in the

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XXXX, NO. XXXX, AUGUST XXXX 9

disjunctive head. This leaves us with a standard PSL rule
with a (possibly empty) disjunction of hi atoms in the head.

For arbitrary k, we generalize this by grouping the head
elements based on the priorities. For each grounding b(x)
of the rule body b(X), we create one ground rule for every
j = 1, .., k of the following form:

w/k : b(x)→
∨

ho(x,y)≥j/k

hi(y)

That is, we have a set of rules with identical bodies whose
heads are progressively more general disjunctions of hi
atoms.

w/k : b(x)→
∨

ho(x,y)∈{k/k}

hi(y)

w/k : b(x)→
∨

ho(x,y)∈{k/k,(k − 1)/k}

hi(y)

...
w/k : b(x)→

∨
ho(x,y)∈{k/k,(k − 1)/k,...,1/k}

hi(y)

To understand the idea behind this transformation, assume
for the moment that all hi(y) have fixed, Boolean truth
values, and let m/k be the highest value ho(x, y) takes for
this x and any y with hi(y) = 1, i.e.,

m/k = max
{y|hi(y)=1}

ho(x, y)

Then, the rules for j = 1, ..,m are satisfied (because their
head evaluates to 1), and the ones for j = (m + 1), .., k
are not satisfied (because their head evaluates to 0). More
precisely, their distance to satisfaction is the truth value of
b(x), and each of these thus contributes w/k · I(b(x)) to the
overall distance to satisfaction, which for this set of ground
rules is

(k−m)·w/k·I(b(x)) = w·
(
1− max

{y|hi(y)=1}
ho(x, y)

)
·I(b(x))

If b is observed, e.g., I(b(x)) = 1 as in the case of (18), this
expression depends purely on the maximum value of ho.

Example 6: Consider a single grounding of Rule (18) for
t =org(111, SAP) in J from Figure 1(c) and the candidates θ3
and θ4 from Figure 1(d). The expanded ground rule is

1 : > → covers(θ3, t) ∧ in(θ3) ∨ covers(θ4, t) ∧ in(θ4)

Predicate org has arity two, so we get a 2-prioritization with
possible values covers(F, t) ∈ {0/2, 1/2, 2/2}. Using values
covers(θ3, t) = 2/2 and covers(θ4, t) = 1/2, we replace the initial
ground rule with

1/2 : > → in(θ3) ∨ in(θ4)
1/2 : > → in(θ3)

which completes the rewriting from a rule with existential quan-
tification to a set of regular PSL rules. 2

To summarize, we have shown an efficient transforma-
tion of a PSL rule with existentials over disjunctions of
conjunctions in the head into a (compact) set of regular PSL
rules using prioritized disjunctions. Furthermore, the soft-
truth value semantics of the disjunction is the maximum

over the disjuncts — which we will show to be a useful
choice. While this extension was motivated by the mapping
selection problem, we expect it to also be useful in other
scenarios that involve choices between variable numbers of
alternatives.

5.4 Objective Equivalence

Recall from Equation (13) that our goal is to minimize∑
t∈J

[1−max
θ∈M

covers(θ, t)] (21)

+
∑

t∈KC−J

[∑
θ∈M

creates(θ, t)

]
(22)

+
∑
θ∈M

size(θ) (23)

We now demonstrate that, for Boolean values of the in(θ)
atoms, this is exactly the objective used by our PSL program.

We get a grounding of Rule (17) for every st tgd θ ∈ C:

size(θ) : in(θ)→ ⊥ (24)

For θ ∈ M, this rule has distance to satisfaction 1, and 0
otherwise. Thus, each θ ∈ M adds size(θ) to PSL’s distance
to satisfaction, so those rules together correspond to (23).
The error Rule (19) is trivially satisfied for tuples in J (and
any st tgd). Thus, we only need to consider the groundings
for t ∈ KC − J and θ ∈ C:

1 : in(θ) ∧ creates(θ, t)→ ⊥ (25)

Such a ground rule has distance to satisfaction creates(θ, t)−
0 = creates(θ, t). Recall from Equation (9) that this can
only be non-zero for t ∈ Kθ − J . The PSL sum thus adds
1 · creates(θ, t) for every θ ∈ M and t ∈ Kθ − J , which
equals (22). Rule (18) is trivially satisfied for t 6∈ J , and for
every t ∈ J results in a partially ground rule

1 : > → ∃F. covers(F, t) ∧ in(F) (26)

To complete the grounding, we apply PSL’s prioritized
disjunction rules. Recall (cf. Section 4.2) that the covers(·)
function takes on values according to the null function,
which is the number of unique nulls divided by the arity of
a tuple. Therefore, we know there are values {0/k, . . . , k/k}
for covers(F, t) where k is the arity of the tuple t. Thus we
get for each t ∈ J a set of k ground rules, the ith of which is

1/k : > →
∨

θ∈C,covers(θ,t)≥i/k

in(θ) (27)

We know that for every t ∈ J , the associated groundings
collectively contribute a distance to satisfaction of

1− 1 ·max
θ∈M

covers(θ, t)

due to prioritized disjunction rules rewriting, which
equals (21). Thus, the CMD program optimizes Equa-
tion (13).

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XXXX, NO. XXXX, AUGUST XXXX 10

5.5 Collective Mapping Discovery

To summarize, given data example (I, J) and candidates C,
CMD does the following two steps.

1) Compute truth values of evidence from (I, J) and C
2) Perform PSL inference on the CMD program and

evidence and return the corresponding mapping

Step 1 (data preparation) performs data exchange to deter-
mine the tuples in KC , and computes the truth values
of the |C| × |KC − J | many creates(·) atoms (based on
Equation (9)) and of the |C| × |J | many covers(·) atoms
(based on Equation (11)). While finding a discrete solution
to the optimization problem defined by the CMD program
and evidence is NP-hard, Step 2 (CMD optimization) provides
an extremely scalable approximate solution with theoretical
quality guarantees.

6 EVALUATION

We experimentally evaluate CMD on a variety of scenarios,
both synthetic and real world, showing that it robustly
handles ambiguous and dirty metadata as well as dirty
tuples in the data example, and scales well with the size
of both metadata and data. We also demonstrate that our
prioritized disjunction rules enable efficient inference for
complex mapping scenarios. We ran our experiments on an
Intel Xeon with 24 x 2.67GHz CPU and 128GB RAM. Our
implementation of CMD and instructions for reproducing
all experiments can be found online.3

6.1 Scenario Generation

Each of our scenarios consists of a data example (I, J)
for a pair of schemas S and T and a set C of candidate
st tgds, which form the input for CMD, and a gold standard
mapping MG used to assess the quality of the solution.
Scenario generation uses the following steps:

1) We generate schemas S and T, correspondences, the
initial data example (I, JG), and a gold standard
mapping MG that is valid and fully explaining
for (I, JG) using the metadata generator iBench [18]
and data generator ToxGene [29].

2) To create dirty metadata, we generate additional
foreign key constraints and correspondences.

3) We use the implementation of the Clio [3] algorithm
provided by ++Spicy [24] to generate the set of can-
didates C from the schemas, foreign key constraints
and correspondences generated in previous steps,
that is, based on metadata only.

4) We generate J starting from JG, introducing errors
and unexplained tuples with respect toMG.

The rest of this subsection provides more details on this
process, and Table 1 lists the parameters controlling it. All
experimental parameters are for scenario generation; we set
their defaults and ranges to produce realistic scenarios.
STEP 1. iBench uses transformation primitives to create real-
istic complex mapping scenarios. We chose a representative

3. http://projects.linqs.org/project/cmd

TABLE 1: Overview of main experimental parameters.

Parameter Range Default
πInvocations 1 - 10 2
πTuplesPerTable 10 - 100 50
πFKPerc 0 - 10% 0%
πCorresp 0 - 100% 0%
πErrors 0 - 30% 0%
πExplainable 0 - 100% 0%

set of seven primitives4. One invocation of this set creates
a total of eight source and ten target relations, and seven
st tgds inMG. Three of those are full, the other four all con-
tain existentials used once or twice and include existentials
that are shared between relations. To create larger scenarios,
we invoke the set πInvocations times. We set the size of I to
πTuplesPerTable per relation.
STEP 2. To obtain candidate st tgds with wrong join paths,
we use iBench to add randomly created foreign keys to
πFKPerc% of the target relations. To obtain candidate st tgds
making wrong connections between the schemas, we intro-
duce additional correspondences as follows. We randomly
select πCorresp% of the target relations. For every selected
target relation T , we randomly select a source relation S
from those of the iBench primitive invocations not involv-
ing T (so Clio [23] can generateMG as part of C). For each
attribute of T , we introduce a correspondence to a randomly
selected attribute of S.
STEP 4. We restrict data instance modifications to errors and
explainable tuples with respect to MG, as unexplainable
tuples can be removed prior to optimization (cf. Section 3.3).
In our scenarios, MG ⊆ C, and thus KG ⊆ KC . So each
tuple in KC is either generated by both MG and C−MG,
only by MG (i.e., an error tuple if deleted from J), or
only by C−MG (i.e., a new explainable tuple if added to
J). As tuples in KC may have nulls, we take into account
homomorphisms when determining which of these cases
applies to a given tuple. We randomly select a set JNew
containing πExplainable% of the potential new explainable
tuples, and a set JErr containing πErrors% of the potential
error tuples, and set J = JG ∪ JNew \ JErr.

6.2 Evaluation of Solution Quality
We assess quality by comparing the mapping M ⊆ C
selected by CMD to (1) the correct mappingMG produced
by iBench and (2) the set C of all candidates produced by
Clio, which serves as our metadata-only baseline. Since Clio
does not use data, we are not confounding in our experi-
ments how CMD uses data with other proposed approaches.
Directly comparing mappings is a hard problem, so we
follow the standard in the literature which is to compare
the data exchange solutions produced by the mappings [30].

4. CP copies a source relation to the target, changing its name. ADD
copies a source relation and adds attributes; DL does the same, but
removes attributes instead; and ADL adds and removes attributes to
the same relation. The number that are added or removed are controlled
by range parameters, which we set to (2,4). ME copies two relations,
after joining them, to form a target relation. VP copies a source relation
to form two, joined, target relations. VNM is the same as VP but
introduces an additional target relation to form a N-to-M relationship
between the other target relations.

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XXXX, NO. XXXX, AUGUST XXXX 11

0 25 50 75 100
πCorresp

0
6

8
10

π
F

K
P

er
c

1 0.94 0.88 0.83 0.78

0.97 0.91 0.87 0.81 0.78

0.98 0.92 0.84 0.79 0.76

0.96 0.87 0.84 0.8 0.74

Fig. 4: Mapping quality (IQ-Score) for the Clio baseline with
ambiguous metadata. CMD always reaches IQ-Score 1.

We use the core data exchange algorithm of ++Spicy [24]
to obtain KM and KC . The gold standard instance KG

for MG is the original target instance J obtained from
iBench in the first step. We compare these instances using
the IQ-METER [19] quality measure. IQ-METER measures
the ability of a mapping to generate correct tuples as well
as correct relational structures via labeled nulls or invented
values, so it is appropriate as an evaluation measure for
our mappings which contain existentials. It calculates recall
and precision of tuples and recall and precision of joins. The
distance between mappings is then defined as one minus the
harmonic mean of these four measures; for full details, see
Mecca et al [31]. We directly use the harmonic mean, which
we call IQ-score(K1,K2) ∈ [0, 1], where higher is better.

6.3 CMD Accuracy over Ambiguous Metadata

We begin by assessing the ability of CMD to handle am-
biguous or dirty metadata and still identify a good mapping
from the set of candidates. We increase the number of candi-
date st tgds by increasing the πFKPerc parameter from 0 to
10 percent and the πCorresp parameter from 0 to 100 percent.
We use five scenarios per parameter setting, with an average
of 800 source and 1000 target tuples. CMD always found the
correct mapping, i.e., it resolved all metadata ambiguities
based on the data example. In contrast, for Clio, which uses
metadata only, the IQ-scores decreased with more imprecise
evidence, as shown in Figure 4.

6.4 CMD Accuracy over Dirty Data

Our second experiment investigates the effect of imperfect
data on mapping quality. We vary the percentage πErrors of
added errors from 0 to 30% in steps of five, and the percent-
age πExplainable of additional explainable tuples from 0 to
100% in steps of 25. We set πCorresp = 100% to maximize
the number of potential explainable but undesired tuples.
We consider five scenarios in each case, with 800 source
tuples and 1000 tuples in the initial target instance J . The
numbers of additional tuples obtained range from zero to
300 for errors and from zero to 1800 for explainable tuples.

In Figure 5, we plot IQ-score as we vary πErrors and
πExplainable . Generally, as the number of errors increases,
i.e., more correct tuples are missing from the target instance,
the quality of the mapping selected by CMD decreases,
as there is less incentive to include candidates that would

0 5 10 15 20 25 30
πErrors

0
25

50
75

10
0

π
E

x
pl

a
in

a
bl

e

1 0.97 0.59 0.36 0.089 0 0

1 0.87 0.54 0.18 0 0 0

0.91 0.76 0.62 0.49 0.29 0.084 0

0.78 0.71 0.71 0.66 0.66 0.54 0.4

0.78 0.73 0.71 0.7 0.7 0.69 0.66

Fig. 5: Mapping quality (IQ-Score) for CMD with dirty data.

correctly explain such tuples, which results in lower IQ-
score due to lower recall. Adding explainable tuples also
generally decreases the quality of the mapping, as they
provide incentives to include additional st tgds that, while
explaining those dirty tuples, generally decrease precision
and thus IQ-score. However, in the presence of significant
numbers of errors, explainable tuples increase mapping
quality. This happens whenever explainable tuples cause
CMD to select st tgds in C−MG that are similar to MG,
e.g., omitting a target join on an existential variable, and
when selecting those st tgds is preferred over the empty
mapping. For scenarios with over one quarter additional
explainable tuples, and even in the presence of a few (less
than 10%) errors, CMD routinely finds mappings with high
IQ-scores. This confirms that the fine-grained optimization
score handles increasing noise levels gracefully.

6.5 Performance of CMD

The next set of experiments evaluates the performance of
our approach along several dimensions. We focus on opti-
mization time, i.e., the time to find an optimal mapping after
data preparation is completed. Data preparation (determin-
ing which tuples are errors or unexplained for each st tgd in
C) is slow, taking up to 150 minutes in our largest scenarios;
it would be easy to optimize this time, however that is not
a focus of our current work.
DATA SIZE. We vary πTuplesPerTable from 10 to 100 in steps
of 10 tuples to obtain data examples of increasing size for
our default schema size of 36 relations. We generate five
scenarios for each setting. Figure 6(a) plots the average
optimization time in CMD and average time to generate C
(the Clio baseline). CMD optimization times are comparable
to Clio times even though we optimize over relatively large
(3600 tuple) data examples.
SCHEMA SIZE. We vary πInvocations from 1 to 10 to increase
the sizes of the schemas (and thus the number of candidate
st tgds that are plausible for the schemas), which results
in source and target schemas with 18 to 180 relations total.
The largest scenario involved 150 candidate st tgds, or over
1045 possible mappings. We set πTuplesPerTable = 50, thus
obtaining data examples with 900 to 9000 tuples. We use
five scenarios per setting and, as before, plot average CMD
optimization time and average time to run Clio (Figure 6(b)).
Again, CMD optimization times are comparable to those of
Clio, but for increasing schema size, the latter increases more
quickly.

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XXXX, NO. XXXX, AUGUST XXXX 12

360 1080 1800 2520 3240

tuples in (I, J)

0

10

20
se

co
nd

s

(a)

36 72 108 144 180
total relations in S and T

0

50

se
co

nd
s

(b)

10 30 50 70
maximum PD-head size

2.5

5.0

7.5

se
co

nd
s

(c)

Fig. 6: Optimization time of CMD w.r.t. (a) size of data example, (b) schema sizes, and (c) maximal number of candidates
explaining the same tuple. In (a) and (b), the dashed line is for the Clio baseline. In (c), πSchemaSize is 20 (top), 10 (middle)
or 5 (bottom).

COMPLEXITY. We vary the maximal number πPDSize of
candidate st tgds that explain each target tuple, which
corresponds to the number of head atoms in prioritized
disjunction rules. This is the main parameter determining
the complexity of optimization. Our custom-made scenarios
use a single primitive, and their complexity is controlled
through two parameters, the arity πArity and the schema
size πSchemaSize . The source has πSchemaSize relations of
arity πArity , the target πSchemaSize · πArity relations of arity
at most πArity . The gold standard mapping has πSchemaSize

st tgds, and the number of potential candidates increases
quadratically with both πSchemaSize and πArity . We set
πTuplesPerTable = 25.

We consider all combinations of πSchemaSize ∈
{5, 10, 20} and πArity ∈ {5, 10, 20}, and vary πPDSize from
10 to 70 in steps of 20. We use one scenario for each
combination. In Figure 6(c), we plot the optimization time
for each value of πSchemaSize , aggregating over πArity . In
all scenarios, the mapping selected by CMD has perfect
IQ-score. This result shows that optimization with priori-
tized disjunction rules is efficient even with 70 candidates
explaining the same tuples, an order of magnitude higher
than seen in our other tests.

6.6 CMD on Real Metadata and Data
The previous results show the power of CMD on benchmark
datasets. Next we consider several real world scenarios.
AMALGAM. We first consider the well-known Amalgam
benchmark [32], using schema A1 as source and A3 as
target. To construct a data example, we select a small subset
of the data in A1. We use ideal correspondences, so this
problem tests whether CMD selects st tgds with correct
joins from the candidates generated by Clio. The final
evaluation contains 18 relations and 2,502 tuples. For this
scenario, CMD achieves IQ-score .99 and optimization time
was under a minute. NEUROSCIENCE. We map Allen Brain
Atlas (ABA), Kyoto Encyclopedia of Genes and Genomes
(KEGG), Pharmacogenomics Knowledgebase (PharmGKB),
and UniProt (Universal Protein resource) schemas to the
Semantic MediaWiki Linked Data Environment (SMW-LDE)
Ontology [33], [34]. ABA has one relation and 15 tuples;
KEGG has four relations and 56 tuples; PharmGKB has four
relations and 142 tuples; and UniProt has one relation and 15
tuples. The common target schema has 31 relations and 54
foreign keys. As with Amalgam, we construct data examples

from the source instances and we use ideal correspondences.
The CMD mappings for ABA, PharmGKB and UniProt
achieved perfect IQ-scores. For KEGG, CMD got a score of
.93.

CMD achieved a lower score on KEGG because it se-
lected some candidates that reused labeled nulls for some at-
tributes where the gold standard exchanged variables from
the source. Our current scoring function cannot distinguish
these, but could easily be adapted to do so.

7 RELATED WORK

USING METADATA. Using metadata information to guide
schema mapping discovery has a long tradition. The names
of schema elements (such as attributes) can be used to
suggest attribute correspondences (the well-known schema
matching problem) and the Clio project showed how the
schemas and constraints can be used to infer mappings [2],
[3]. HepTox [26] and ++Spicy [24] have extended this to
richer forms of metadata (including equality-generating-
dependencies). In addition, the role of data in resolving
ambiguity or incompleteness in the metadata evidence has
long been recognized, both in matching [35] and in schema
mapping, where the Data Viewer [21] and Muse [5] systems
use source and target data interactively to help a user under-
stand, refine or correct automatically generated mappings.
Most systems that combine evidence from metadata and
data, do so heuristically and may fail to suggest a good
mapping under inconsistent evidence.
USING DATA EXAMPLES. A complementary approach that
uses data only is often called example-driven schema-
mapping design [36]. An example that is closest to ours
casts schema mapping discovery from data as a formal
(and fully automated) learning problem [7]. Given a single
data example (I, J) find a mapping M that is valid and
fully explaining (and of minimal size) for (I, J). Even for
full st tgds finding optimal mappings in this framework
is DP-hard [7]. Using this framework, ten Cate et al. [11]
consider the restricted class of mappings with a single atom
(relation) in the head and in the body. They provide a greedy
approximation algorithm that is guaranteed to find near
optimal (valid and fully explaining) mappings of this type,
but do not discuss experimental results.

In contrast, we do not require the mapping to be valid or
fully explaining, rather we define an optimization problem
that finds an optimal set of st tgds that minimizes errors (the

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XXXX, NO. XXXX, AUGUST XXXX 13

invalidity of a mapping) and unexplained tuples. Although
the number of errors can, in theory, be exponential in
the size of the mappings (as pointed out by Gottlob and
Senellart [7]), we manage this complexity by using a set
of candidate st tgds derived from real mapping discovery
systems and by using an efficient approximation framework
(PSL) to reason over these alternative mappings. We also
provide a novel principled way of combining evidence from
mappings that contain existentials (and hence only partially
explain tuples).
MULTIPLE EXAMPLES. The Eirene system returns the most
general mapping that fits a set of data examples, if one
exists, and otherwise guides a user in refining her data
(not the mapping) to identify tuples that are causing the
failure [22].

This is in contrast to Muse and the Data Viewer systems
that interactively pick data to help a user refine a mapping.
Alexe et al. [12] have also studied when a mapping can
be uniquely characterized by a set of data examples. This
problem has also been cast as a learning problem, where a
user labels a series of examples as positive or negative [37].
Finally, Sarma et al. [38] consider how to learn views (or full
GAV mappings) from data alone.
RELATED SELECTION PROBLEMS. Belhajjame et al. [13] use
feedback from users on exchange solutions to estimate the
precision and recall of views. They present view selection
as an optimization problem that maximizes either precision
(which is maximal for valid mappings) or recall (which
is maximal for fully explaining mappings), without taking
mapping size into account. While Belhajjame et al. [13] do
not provide runtimes for their approach, they use a very
powerful, general purpose search algorithm [39] designed
for constrained optimization problems. In contrast, our
mapping selection problem, though NP-hard, is of a form
for which PSL efficiently finds a high quality solution. Other
work finds the top-k best matchings [40], while CMD finds
only the best mapping. It is an open problem how to extend
our optimization to top-k mappings.

While our approach relies on a potentially noisy data
example (I, J) to select among mappings, Belhajjame et
al. [13] rely on potentially noisy feedback from a user, who
annotates target tuples in a query answer as expected (with
respect to an implicit J) or unexpected, or provides addi-
tional expected tuples. User feedback has also been used in
active learning scenarios in the context of data integration,
e.g., to select consistent sets of attribute-attribute matches
among many datasources [41], or to select join associations
in the context of keyword-search based data integration [42].
While those settings are quite different from the one we
consider here, extending CMD with active learning to in-
corporate additional feedback is an interesting direction for
future work.

Similarly, the source selection problem [43] has been
modeled as a problem of finding a set of sources that
minimize the cost of data integration while maximizing the
gain (a score that is similar to recall). Dong et al. [43] use
the greedy randomized adaptive search procedure meta-
heuristic to solve the source selection problem, a heuristic
which unlike PSL does not provide any approximation
guarantees on the solution.

PROBABILISTIC REASONING. Statistical relational tech-
niques have been applied to a variety of data and knowl-
edge integration problems. Perhaps closest to our approach
is the use of Markov Logic [44] for ontology alignment [45]
and ontological mapping construction [46]. However, we
consider more expressive mappings than either of those
approaches. Furthermore, by using PSL, we can easily inte-
grate partial evidence from st tgds with existential quantifi-
cation through soft truth values. More importantly, in con-
trast to Markov Logic, PSL avoids the hard combinatorial
optimization problem and instead provides scalable infer-
ence with guarantees on solution quality. This advantage
has proven crucial also for applications of PSL in knowledge
graph identification [15] and data fusion [16], [17].

8 CONCLUSION

We introduce Collective Mapping Discovery (CMD), a new
approach to schema mapping selection that finds a set of
st tgds that best explains the data in the sources being
integrated. We use both metadata and data as evidence
to resolve ambiguities and incompleteness in the sources,
allowing some inconsistencies and choosing a small set of
mappings that work collectively to explain the data. To
solve this problem, we use and extend probabilistic soft
logic (PSL), casting the problem as efficient joint probabilis-
tic inference. The declarative nature of the PSL program
makes it easy to extend CMD to include additional forms
of evidence and constraints, coming from the domain, from
user feedback, or other sources. In future work, we plan
to explore weight learning techniques and investigate their
impact in different problem settings.

Acknowledgments: AK has been supported by the Re-
search Foundation Flanders (FWO). RJM is supported
by NSERC, and LG by the National Science Foundation
[IIS1218488]. The authors thank Boris Glavic, Patricia Aro-
cena, Gianni Mecca, Donatello Santoro, and Radu Ciucanu
for valuable help with iBench and ++Spicy; and Craig
Knoblock for the Neuroscience problem set.

REFERENCES

[1] B. ten Cate and P. G. Kolaitis, “Structural characterizations of
schema-mapping languages,” Commun. ACM, vol. 53, no. 1, pp.
101–110, 2010.

[2] R. J. Miller, L. M. Haas, and M. Hernández, “Schema Mapping as
Query Discovery,” in VLDB, 2000.

[3] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernández, and R. Fagin,
“Translating Web Data,” in VLDB, 2002.

[4] H. Elmeleegy, A. K. Elmagarmid, and J. Lee, “Leveraging query
logs for schema mapping generation in U-MAP,” in SIGMOD,
2011.

[5] B. Alexe, L. Chiticariu, R. J. Miller, and W.-C. Tan, “Muse: Mapping
understanding and design by example,” in ICDE, 2008.

[6] B. ten Cate, P. G. Kolaitis, and W.-C. Tan, “Schema mappings and
data examples,” in EDBT, 2013.

[7] G. Gottlob and P. Senellart, “Schema mapping discovery from data
instances,” Journal of the ACM (JACM), vol. 57, no. 2, p. 6, 2010.

[8] L. Qian, M. J. Cafarella, and H. Jagadish, “Sample-driven schema
mapping,” in SIGMOD, 2012.

[9] A. Bonifati, G. Mecca, A. Pappalardo, S. Raunich, and G. Summa,
“Schema mapping verification: the spicy way,” in EDBT, 2008.

[10] B. Alexe, B. ten Cate, P. G. Kolaitis, and W.-C. Tan, “Designing and
refining schema mappings via data examples,” in SIGMOD, 2011.

[11] B. ten Cate, P. G. Kolaitis, K. Qian, and W.-C. Tan, “Approximation
algorithms for schema-mapping discovery from data examples,”
in AMW, 2015.

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XXXX, NO. XXXX, AUGUST XXXX 14

[12] B. Alexe, B. ten Cate, P. G. Kolaitis, and W.-C. Tan, “Characterizing
schema mappings via data examples,” ACM Trans. Database Syst.,
vol. 36, no. 4, p. 23, 2011.

[13] K. Belhajjame, N. W. Paton, S. Embury, A. A. Fernandes, and
C. Hedeler, “Incrementally improving dataspaces based on user
feedback,” Information Systems, 2013.

[14] S. H. Bach, M. Broecheler, B. Huang, and L. Getoor, “Hinge-
loss markov random fields and probabilistic soft logic,”
ArXiv:1505.04406 [cs.LG], 2015.

[15] J. Pujara, H. Miao, L. Getoor, and W. Cohen, “Knowledge graph
identification,” in ISWC, 2013.

[16] S. Fakhraei, B. Huang, L. Raschid, and L. Getoor, “Network-based
drug-target interaction prediction with probabilistic soft logic,”
IEEE/ACM Trans. Comput. Biology Bioinform., vol. 11, no. 5, pp. 775–
787, 2014.

[17] P. Kouki, S. Fakhraei, J. Foulds, M. Eirinaki, and L. Getoor, “Hy-
PER: A flexible and extensible probabilistic framework for hybrid
recommender systems,” in RecSys, 2015.

[18] P. C. Arocena, B. Glavic, R. Ciucanu, and R. J. Miller, “The iBench
Integration Metadata Generator,” PVLDB, vol. 9, no. 3, pp. 108–
119, 2015.

[19] G. Mecca, P. Papotti, and D. Santoro, “IQ-METER - an evaluation
tool for data-transformation systems,” in ICDE, 2014.

[20] A. Kimmig, A. Memory, R. J. Miller, and L. Getoor, “A collective,
probabilistic approach to schema mapping,” in ICDE, 2017.

[21] L.-L. Yan, R. J. Miller, L. Haas, and R. Fagin, “Data-Driven Un-
derstanding and Refinement of Schema Mappings,” in SIGMOD,
2001.

[22] B. Alexe, B. ten Cate, P. G. Kolaitis, and W.-C. Tan, “EIRENE:
Interactive design and refinement of schema mappings via data
examples,” PVLDB, vol. 4, no. 12, pp. 1414–1417, 2011.

[23] R. Fagin, L. M. Haas, M. A. Hernández, R. J. Miller, L. Popa,
and Y. Velegrakis, “Clio: Schema Mapping Creation and Data
Exchange,” in Conceptual Modeling: Foundations and Applications -
Essays in Honor of John Mylopoulos, 2009, pp. 198–236.

[24] B. Marnette, G. Mecca, P. Papotti, S. Raunich, and D. Santoro,
“++Spicy: an OpenSource Tool for Second-Generation Schema
Mapping and Data Exchange,” PVLDB, vol. 4, no. 12, pp. 1438–
1441, 2011.

[25] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa, “Data exchange:
semantics and query answering,” Theor. Comput. Sci., vol. 336,
no. 1, pp. 89–124, 2005.

[26] A. Bonifati, E. Q. Chang, T. Ho, V. S. Lakshmanan, and R. Pot-
tinger, “HePToX: Marrying XML and Heterogeneity in Your P2P
Databases,” in VLDB, 2005.

[27] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles
and Techniques. MIT Press, 2009.

[28] L. Getoor and B. Taskar, Eds., An Introduction to Statistical Relational
Learning. MIT Press, 2007.

[29] D. Barbosa, A. O. Mendelzon, J. Keenleyside, and K. A. Lyons,
“Toxgene: a template-based data generator for XML,” in SIGMOD,
2002.

[30] Z. Bellahsene, A. Bonifati, F. Duchateau, and Y. Velegrakis, “On
evaluating schema matching and mapping,” in Schema matching
and mapping. Springer, 2011, pp. 253–291.

[31] G. Mecca, P. Papotti, S. Raunich, and D. Santoro, “What is the IQ
of your data transformation system?” in ACM CIKM, 2012, pp.
872–881.

[32] R. J. Miller, D. Fisla, M. Huang, D. Kymlicka, F. Ku, and V. Lee,
“The Amalgam Schema and Data Integration Test Suite,” 2001,
www.cs.toronto.edu/∼miller/amalgam.

[33] C. Becker, C. Bizer, M. Erdmann, and M. Greaves, “Extending
SMW+ with a linked data integration framework,” in ISWC, 2011.

[34] C. Knoblock, P. Szekely, J. Ambite, A. Goel, S. Gupta, K. Lerman,
M. Muslea, M. Taheriyan, and P. Mallick, “Semi-automatically
mapping structured sources into the semantic web,” in ESWC,
2012.

[35] J. Kang and J. F. Naughton, “On schema matching with opaque
column names and data values,” in SIGMOD, 2003.

[36] B. ten Cate, P. G. Kolaitis, and W. C. Tan, “Schema mappings and
data examples,” in EDBT, 2013.

[37] B. ten Cate, V. Dalmau, and P. G. Kolaitis, “Learning schema
mappings,” ACM Trans. Database Syst., vol. 38, no. 4, p. 28, 2013.

[38] A. D. Sarma, A. G. Parameswaran, H. Garcia-Molina, and
J. Widom, “Synthesizing view definitions from data,” in ICDT,
2010.

[39] C. Audet and J. E. Dennis Jr., “Mesh adaptive direct search
algorithms for constrained optimization,” SIAM Journal on Opti-
mization, vol. 17, no. 1, pp. 188–217, 2006.

[40] A. Gal, “Managing uncertainty in schema matching with top-k
schema mappings,” Journal on Data Semantics VI: Special Issue on
Emergent Semantics, pp. 90–114, 2006.

[41] N. Q. V. Hung, N. T. Tam, Z. Miklós, K. Aberer, A. Gal, and
M. Weidlich, “Pay-as-you-go reconciliation in schema matching
networks,” in ICDE, 2014.

[42] Z. Yan, N. Zheng, Z. G. Ives, P. P. Talukdar, and C. Yu, “Actively
soliciting feedback for query answers in keyword search-based
data integration,” PVLDB, vol. 6, no. 3, pp. 205–216, 2013.

[43] X. L. Dong, B. Saha, and D. Srivastava, “Less is more: Selecting
sources wisely for integration,” PVLDB, vol. 6, no. 2, pp. 37–48,
2012.

[44] M. Richardson and P. Domingos, “Markov logic networks,” Ma-
chine Learning, vol. 62, no. 1-2, pp. 107–136, 2006.

[45] M. Niepert, C. Meilicke, and H. Stuckenschmidt, “A probabilistic-
logical framework for ontology matching,” in AAAI, 2010.

[46] C. Zhang, R. Hoffmann, and D. S. Weld, “Ontological smoothing
for relation extraction with minimal supervision,” in AAAI, 2012.

Angelika Kimmig is a lecturer in the School of Computer Science and
Informatics at Cardiff University. Her research interests include symbolic
AI, reasoning under uncertainty, machine learning, logic programming,
and especially combinations thereof such as probabilistic programming
and statistical relational learning. She received her PhD in Computer
Science from KU Leuven and her Diplom in Computer Science from the
Albert-Ludwigs-Universität Freiburg.

Alex Memory is a student in the Department of Computer Science at
University of Maryland and a research scientist at Leidos. His research
interests include machine learning, data integration and anomaly detec-
tion. He received his BS in Computer Engineering from North Carolina
State University and MS in Applied Math from Johns Hopkins University.

Renée J. Miller is a University Distinguished Professor of Computer
Science at Northeastern University. She is a Fellow of the Royal So-
ciety of Canada, Canada’s National Academy of Scienc. She received
the US Presidential Early Career Award for Scientists and Engineers
(PECASE), the highest honor bestowed by the United States govern-
ment on outstanding scientists and engineers beginning their careers.
She received an NSF CAREER Award and the Ontario Premier’s Re-
search Excellence Award. She formerly held the Bell Canada Chair
of Information Systems at the University of Toronto and is a fellow of
the ACM. She and her co-authors (Fagin, Kolaitis and Popa) received
the (10 Year) ICDT Test-of-Time Award for their influential 2003 paper
establishing the foundations of data exchange. She is Editor-in-Chief of
VLDB Journal and was formerly president of the VLDB Foundation. She
received her PhD in Computer Science from the University of Wisconsin,
Madison and bachelor’s degrees in Mathematics and Cognitive Science
from MIT.

Lise Getoor is a professor in the Computer Science Department at
the University of California, Santa Cruz. Her research areas include
machine learning, data integration and reasoning under uncertainty,
with an emphasis on graph and network data. She is a Fellow of the
Association for Artificial Intelligence, an elected board member of the
International Machine Learning Society, serves on the board of the
Computing Research Association (CRA), and was co-chair for ICML
2011. She is a recipient of an NSF Career Award and eleven best paper
and best student paper awards. She received her PhD from Stanford
University in 2001, her MS from UC Berkeley, and her BS from UC Santa
Barbara, and was a professor in the Computer Science Department at
the University of Maryland, College Park from 2001-2013.

