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Experimental investigation of progressive instability
and collapse of no-tension brickwork pillars

Massimiliano Gei∗ and Diego Misseroni†

July 16, 2018

Abstract

The progressive instability behaviour of compressed dry-stone rectangular pillars
loaded with an eccentric load is assessed experimentally and compared with the
theory. Photoelastic compression tests were designed and executed on polymethyl-
methacrylate brickwork pillars to reveal, i) the load-bearing capacity of the struc-
ture and the load-lateral displacement relation, ii) the effect of the eccentricity in
the stress distribution along the structure, iii) the collapse mode of the system at
high eccentricity. By employing a no-tension material model with linear behaviour
in compression, new analytical, closed-form expressions for deformed shape of the
structure, location of the neutral axis in a generic cross section and axial displace-
ment are provided. The photoelastic stress analysis outcome fully confirms the
analytical predictions for both low and high eccentricity loadings.

Keywords: Masonry, No-tension material, Photoelasticity, Limit load, Buckling, Ec-

centric load.

1 Introduction

The effect of loading eccentricity in masonry pillars and walls has been extensively studied

experimentally in the last thirty years [1, 2, 3, 4, 5, 6]. Almost all research has focused on

compressed brickwork composed of bricks and mortar, a material endowed with a certain

amount of tensile strength. This quantity proved to be a key property to define the load-

bearing capacity of the entire structure. Little is available regarding tests on dry-stone

masonry pillars, for which it is sensible to assume a null tensile strength at the contact
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surfaces between bricks. For this type of problem, a suitable tool to predict the stability

of the pillar is undoubtedly the no-tension material based on the assumption that the

solid does not withstand any tensile stress [7, 8]. Its adoption in structural mechanics,

with linear elastic behaviour in compression, was pioneered by Sahlin [9], Yokel [10],

and Frisch-Fay [11], that were the first to investigate instability of pillars loaded with

an axial eccentric force. Their goal was to formulate a beam-column theory for the

structure accounting for the features of the constitutive model to be expressed through

a second-order differential equation having the displacement of the axis as unknown.

This problem was further studied by De Falco and Lucchesi [12, 13], who also considered

limited compressive strength, and afterwards extended to circular columns by Gurel [14]

and Broseghini et al. [15]. Interestingly, both [13, 15] provided relationships, useful

for design, between limit load and initial eccentricity for rectangular and circular cross

sections, respectively. Extension to nonlinear constitutive behaviour was addressed in

[16, 17], whereas an algebraic formulation of the model based on discretisation of the

pillar into a finite number of elements was proposed in [18].

Starting from the state of the art, this paper provides three main contributions to the

topic:

• validate the theoretical predictions of the limit load for a prismatic brick pillar with

rectangular cross section loaded with an eccentric compressive force (provided in

[9, 10, 11, 12, 13] and based on no-tension material assumptions) performing some

experimental tests on small-scale structures made up of transparent polymethyl-

methacrylate (PMMA) bricks. A photelastic analyser was used to display the stress

distribution in the pillar;

• provide new analytical, closed-form expressions for the deformed shape of the struc-

ture, the location of the neutral axis in a generic cross section and the axial dis-

placement for various loading eccentricities;

• investigate both experimentally and analytically the failure mechanisms of such

pillars and the evolution of the collapse in the case of high eccentricity.

2 Solutions based on the no-tension material model

A compressed dry-stone prismatic pillar made up of a material obeying a no-tension

constitutive model may experience three regimes which depend primarily on the load

eccentricity: i) the pillar is compressed everywhere; ii) each cross section of the structure
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Figure 1: Geometry and notation used in the analysis. The case in which the pillar is partially damaged
is displayed [case iii) in the text]. The generic cross section is sketched on the right-hand side. Letter n
indicates the neutral axis, β = 3w(0)/2 is the height of the compressed part of the cross section at x = 0
and γ denotes the vertical displacement of the load P .

is partially damaged; iii) the pillar is fully compressed in the top part along the longitu-

dinal axis and cracked in the remaining. In particular, in our experimental study we are

interested to cases ii) and iii). The equations governing these problems have been solved

in closed-form for a rectangular cross section [9, 10, 11, 12, 13] and with approximate

methods for a circular cross section [15] for a linear elastic response in compression. In

Fig. 1, the geometry and adopted notation are introduced, in particular, b and D rep-

resent breadth and height of the cross section, respectively, and x the coordinate taken

along the axis of the pillar that coincides with the line of action of the load. Moreover,

as evidenced in the same figure, the compressive stress in the reacting part of a cross

section experiencing cracking takes the form

σ(x, y) =
2

9

Py

bu(x)2
, (1)

where y is the coordinate taken from the neutral axis and u(x) is the distance between

x and the right-hand outer boundary of the cross section.

The structure is clamped at section x = 0 and is free at the top (x = L), where

the compressive load P is applied with a given eccentricity e. Indicating with v(x) the

displacement function of the longitudinal axis, the load-displacement curve P (δ), where
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δ = v(0), can be calculated for all problems listed above by imposing the following

boundary and compatibility conditions

v′(0) = 0, v(L) = e, v(0) = δ. (2)

For a partially cracked pillar, the continuity conditions

v−(x∗) = v+(x∗) = D/6, v′−(x∗) = v′+(x∗) (3)

should be added at the transition coordinate x∗.

On the one hand, in parts of the pillar where the cross sections are fully compressed

and any of these is damaged, the function v(x) obeys the equation

v′′(x) +
P

EJ
v(x) = 0, (4)

where E is the Young’s modulus and J = bD3/12 the second moment of area.

On the other, in parts where the cross sections are partially cracked, the governing

equation can be represented as

v′′(x) +
P

ESn(v(x))
v(x) = 0, (5)

where Sn(v(x)) is the first moment of area of the compressed portion of the cross section

computed with respect to the neutral axis n (Fig. 1).

Interestingly, the solutions in closed form to cases i) – iii) and the determination of

the expression P (δ) for each of them is facilitated by noting that u(x) = D/2− v(x) and

integrating once (4) and (5) to obtain

[v′(x)]2 = − P

EJ
v(x)2 + c (6)

and

[v′(x)]2 =
2

27

PD3

EJ

(
1

D − 2δ
− 1

D − 2v(x)

)
, (7)

respectively, where c is an arbitrary constant; in the latter, the condition (2)1 has been

already exploited as relevant for cases ii) and iii).

Starting from the previous equations, and by noticing that an overbar signifies here

and henceforth non-dimensionalisation with respect to the length D, it is not difficult to

obtain the solutions to problems i) – iii):

• for case i), it turns out that the load-displacement relation P (δ) can be written in

dimensionless form as

L

√
P

EJ
= arccos(ē/δ̄); (8)
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• for a pillar with all cross sections partially cracked [case ii)], the load-displacement

curve can be expressed in dimensionless form as

L

√
P

EJ
= q
√

1− 2 δ̄ T (ē; δ̄), (9)

where q = 3
√

3/(2
√

2) and

T (z; δ̄) =
√

2(1− 2z)(δ̄ − z) + (1− 2 δ̄) arctanh

√2

√
δ̄ − z
1− 2z

 . (10)

The deformed shape of the axis can be represented implicitly as

x(v) = L
T (v̄; δ̄)

T (ē; δ̄)
, (11)

and it is interesting to note that the locus of points in the plane (x,w) corresponding

to the neutral axes can be detected analytically as

x(w) = L
T [(1− w̄)/2; δ̄]

T (ē; δ̄)
. (12)

The height of the compressed part of the foundation cross section (i.e. 3w(0)/2) is

denoted by β;

• for case iii), it can be found that

L

√
P

EJ
= S(1/6; δ̄)− S(ē; δ̄) + q

√
1− 2 δ̄ T (ē; δ̄), (13)

where

S(z; δ̄) = arctan

{
z

[
1

12

(
8

9(1− 2δ̄)
− 1

)
− z2

]−1/2}
. (14)

In the cracked part of the pillar, the deformed shape of the axis can be represented

implicitly as

x(v) = L
q
√

1− 2 δ̄ T (v̄; δ̄)

S(1/6; δ̄)− S(ē; δ̄) + q
√

1− 2 δ̄ T (1/6; δ̄)
, (15)

while in the undamaged zone, it is

x(v) = L
S(1/6; δ̄)− S(v̄; δ̄) + q

√
1− 2 δ̄ T (1/6; δ̄)

S(1/6; δ̄)− S(ē; δ̄) + q
√

1− 2 δ̄ T (1/6; δ̄)
, (16)

5



and the interface is located at

x∗ = x(D/6) = L
q
√

1− 2 δ̄ T (1/6; δ̄)

S(1/6; δ̄)− S(ē; δ̄) + q
√

1− 2 δ̄ T (1/6; δ̄)
. (17)

In the damaged part, the locus of neutral axes is

x(w) = L
q
√

1− 2 δ̄ T ((1− w̄)/2; δ̄)

S(1/6; δ̄)− S(ē; δ̄) + q
√

1− 2 δ̄ T (1/6; δ̄)
. (18)

The transition between cases i) and iii) occurs for ē = 1/6, for which (9) and (13) coincide.

The deformed shape of the pillar can be easily obtained by applying the translation maps

v → v ±D/2 to expressions (11), (15) and (16) in the relevant domain.

Another piece of information that can be inferred from the model is the strain, say

εx, along the line of action of the force P (i.e. axis x). As the stress herein is σx =

σ(x, 2u(x)) = 4P/[9bu(x)], it turns out that

εx =
8

9

P

Eb (D − 2v(x))
. (19)

For a fully cracked pillar this quantity can be integrated along the axis x to give γ (Fig.

1) as

γ =
2

27

PD3

EJ

∫ L

0

dx

D − 2v(x)
, (20)

an equation that, coupled to eq. (7), can be solved numerically.

For a fully compressed column [case i)], the axial displacement can be easily deter-

mined by superimposing contributions from axial force and bending moment, to yield

γ =
1

12

P

EJ
LD2 +

1

4
δ2
√

P

EJ

[
2L

√
P

EJ
+ sin

(
2L

√
P

EJ

)]
, (21)

where δ is functions of e and P through eq. (8). It is worth noting that when the

foundation cross section is at the limit of cracking (δ = D/6), then (21) provides

γ =
7

72

P

EJ
LD2 +

1

144

√
P

EJ
D2 sin

(
2L

√
P

EJ

)
. (22)

In case iii), the axial displacement can be written as

γ =
2

27

PD3

EJ

∫ x∗

0

dx

D − 2v(x)
+

7

72

P

EJ
(L−x∗)D2 +

1

144

√
P

EJ
D2 sin

(
2(L− x∗)

√
P

EJ

)
.

(23)
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As a conclusion of this section, we report the expression of the stored strain energy

W in a fully cracked pillar whose density ϕ, due to unixial stress state in the whole body,

is simply ϕ(x, y) = σ(x, y)2/(2E). Therefore, the change in energy per unit axis length

is
dW

dx
=

b

2E

∫ 3u(x)

0

σ(x, y)2dy =
2

9

P 2

Ebu(x)
, (24)

while its integration along axis x yields

W =
1

27

P 2D3

EJ

∫ L

0

dx

D − 2v(x)
, (25)

an expression that, in light of eq. (20), can be rewritten as W = Pγ/2 and shows

the validity of the Clapeyron’s theorem in this context. Extension to other cases is

straightforward. An analysis of minimum principles valid for a boundary-value problem

involving an elastic, no-tension material can be found in [8].

3 Photoelastic experimental tests on prismatic rect-

angular dry-stone pillars

Quantitative photoelastic compressive tests were performed on prismatic rectangular

pillars made up of homogeneous PMMA bricks. The goals of the research were several:

i) to check the predictions of load-lateral displacement equilibrium path provided by the

theory, ii) to verify the actual compressive response of each cross section, iii) to look for

possible partialisation by observing the internal stress distribution via photoelasticity and

iv) to study the evolution of the collapse mechanism for loads with a large eccentricity.

Two different eccentricities e of 8 mm and 2.5 mm were investigated [see Fig. 2(c) and

(d)]. The eccentric load was applied through two steel stinger tips connected to the

testing machine on one side and with the other side duly housed and in contact with the

steel cylinders (3 mm in diameter) inserted in the two ad hoc designed outer bricks of the

pillar, to realize a hinged structural scheme (Fig. 2). The specimen was set within two

thick glasses firmly blocked on a steel frame to ensure deformation only in the bending

plane. We estimated the friction between blocks and glasses to be negligible. The bricks,

of rectangular cross section (D× b) of 30 mm × 10 mm (see Fig. 1), have been produced

by drilling PMMA plates (E = 3.45 GPa, ρ = 1200 kg/m3 and ν = 0.35) with an

engraving machine (Roland EGX-600, accuracy 0.01 mm, manufactured by Roland). For

each eccentricity of the applied load, three different pillar configurations were considered

by changing the height of the block from 10 mm to 7 mm and eventually to 5 mm. In

7
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Figure 2: The experimental setup employed in the photoelastic experiments: (a) two black rigid strips
are used to put bricks in position and to assure their vertical alignment, removed during execution;
(b) the experimental setup at the beginning of the experiment (for an eccentricity of 8 mm); (c) and
(d) details of the hinge constraint at the ends of the pillar for an eccentricity of 8 mm and 2.5 mm,
respectively.

doing so, the tested pillars have total height 2L respectively of 250 mm (25 bricks), 252

mm (36 bricks) and 250 mm (50 bricks). In total, nine complete tests were executed, two

(one) for each brick height for e = 8 mm (e = 2.5 mm). Afterwards, with the purpose to

record the collapse mechanism at high eccentricity (e = 8 mm), three tests, one for each

height of the block (5 mm, 7 mm and 10 mm), were executed.

The load to the structure was applied by imposing a displacement of 4 µm/s on dry-

stone pillars with an ELE Tritest 50 machine (ELE International Ltd) installed inside a

linear and a circular (with quarter-wave plates for 560 nm) polariscope equipped with a

white and sodium vapor light (Tiedemann & Betz). The polariscope was designed and

constructed at the University of Trento [19, 20] and adopted in [21, 22, 23]. In all tests, a

preload of 50 N was applied to prevent the lateral pull out at the beginning of each test

and to increase the friction between blocks. The force data was measured by a TH-KN2D

load cell (RC 20 kN, from Gefran) directly connected to the top stinger tip and recorded

by an acquisition system NI CRio interfaced to a PC by software Labview, ver. 2016

(National Instruments). The load cell was calibrated just before the experiments. Along
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Figure 3: The dimensionless axial load L
√
P/EJ measured as a function of the transverse displacement

δ̄ for bricks having height of 5 mm (blue), 7 mm (green), 10 mm (red) and comparison with the theoretical
predictions (dashed/black line). The subfigure (a) is for an eccentricity of 8 mm [dashed line represents
eq. (9), markers refer to the configurations reported in Fig. 6] while subfigure (b) is for an eccentricity
of 2.5 mm [dashed line represents eq. (8) for δ̄ < 1/6, eq. (13) for δ̄ > 1/6].

the execution of the first nine tests, pictures were taken by a Sony Alpha 6300 camera

to derive the stress distribution and the lateral displacement of the mid cross section of

the pillar. At the same time, movies were taken with a Sony PXW-FS5 video camera

(24 fps). Using the same device, high speed movies (240 fps) were recorded in order to

visualise the collapse mode of the pillar loaded at high eccentricity (see Fig. 8). All the

experiments were performed in the Instabilities Lab at the University of Trento.

4 Analysis of results and comparison with the theory

The dimensionless load-lateral displacement curves obtained after postprocessing of the

experimental data are reported in Fig. 3 with solid lines, while theoretical predictions

are sketched with black/dashed lines. In order to retrieve the data from the experiments,

the recorded frame sequences described in the previous section were elaborated by a

Mathematica software (ver. 11.2, Wolfram Research, Inc., Champaign, IL, 2017), which

is specifically programmed for this type of experiments. This code is able to capture

the deformed shape of the compressed pillar and also the horizontal displacement δ by

individuating the pixel contrast between the coloured pillar and the black background.

Fig. 3(a) refers to loads applied at the highest eccentricity (ē = 0.2667), so that

all cross sections of the pillar are partially cracked [case ii)]. All tests represented here

reached a structural collapse mode similar to that that will be shown in Fig. 8. The

six markers on the top experimental curve refer to configurations that will be analysed

9
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Figure 5: Dimensionless axial load L
√
P/EJ vs dimensionless vertical displacement γ̄ at failure for

bricks having height of 5 mm (blue), 7 mm (green), 10 mm (red) and comparison with the theoretical
predictions (black/dashed line). (a) e = 8 mm [the dashed line represents eq. (20)]; (b) e = 2.5 mm
[dashed line represents eq. (21) for δ̄ < 1/6, eq. (23) for δ̄ > 1/6].

in Fig. 6. With reference to the theoretical predictions, eq. (9), we note that, on the

one hand, the no-tension model slightly overestimates the actual behaviour of the three

pillars; on the other, the height of the brick seems not a key factor in setting the bearing

properties of the structure as the pair of curves for h = 10 mm lays between the other

two pairs. In all tests here reported, a slight adjustment of the bricks has taken place

about the dimensionless load L
√
P/EJ = 0.1.

Fig. 3(b) is concerned with the lowest eccentricity (ē = 0.0833). Load is applied

within the middle-third of the outer cross sections and the pillars are fully compressed

at the initial stage of the tests. All tests terminated with a local failure of the bottom

outer brick as a result of the large stress concentrated in the small contact area between
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the steel tip and its housing. The three markers correspond to configurations reported

in Fig. 7. The theoretical black/dashed line represents eq. (8) for δ̄ < 1/6 and eq. (13)

for δ̄ > 1/6. The line at δ̄ = 0.1667 marks the theoretical transition between a fully

compressed pillar and the onset of cross-section partialisation. For this set of tests, the

experiments are closer to the model with respect to those displayed in subfigure (a).

Fig. 4 gives an account of the comparison between theory [eq. (12) in black/dashed

lines] and experiments (disk, triangle and square markers) of the height β of the com-

pressed portion of the mid cross section of the pillar for high-eccentricity loading condi-

tions. Data from tests for all the three brick heights were considered. The agreement

between the two approaches is on average very good.

An additional comparison between theory and experiments can be performed for the

axial displacement γ. In Fig. 5, the outcome of the theoretical model (black/dashed

lines) is reported together with values extracted from experiments at failure (coloured

lines). In particular, in order to discount the effect of the high strain field concentrated in

the neighbourhood of the housings of the stingers, these have been calculated measuring,

on the available high resolution pictures, the relative displacement between the interfaces

just adjacent the two outer bricks. For the high-eccentricity case [subfigure (a)], the data

are quite scattered, but the average is in good agreement with the theory. For the low

eccentricity case, the model slightly underestimates the axial displacement.

The distribution of the stress in a high-eccentricity loaded pillar –and for h = 7

mm– revealed by the photoelastic apparatus is reported in Fig. 6. The pictures clearly

highlight the presence of a non-reacting part of the pillar, the high stress localised on

the right-hand edge and the deformed configuration of the sample. The reason for which

the stress is not uniform across the interface between two bricks is due to the residual

stresses that the machining process invariably introduces on the surfaces of each PMMA

component. The location of the neutral axes and the deformed shapes of the pillar

provided by the no-tension model are reported in each snapshot with magenta [eq. (12)]

and white/dashed lines, respectively. The agreement is in general excellent, however

we note that, by approaching the two extremes of the pillars, magenta lines slightly

diverge from the apparent position of the neutral axes as the loads are applied through

concentrated forces and diffuse in the specimen in the bricks adjacent to the outer ones.

Fig. 7 deals with low-eccentricity loadings. The loads of the three pictures in subfigure

(a), one for each of the brick heights, correspond to those of the markers reported in Fig.

3(b). In comparison with the previous figure, here the stresses are much higher as revealed

by the intensity of the colour fringes. The pillar in picture no. 1 is fully compressed,

11



P = 800N P = 900N P = 1000N P = 1060N P = 1100N P = 1160N

1 2 3 4 5 6

Figure 6: Stress distribution revealed by photoelastic investigations for a pillar made up of 36, 7 mm
height bricks and loaded with an eccentricity of 8 mm. The coloured part in each picture corresponds to
the stressed part of the pillar. Locations of neutral axes predicted by the theory, eq. (12), are sketched
with magenta/continuous lines. Starting from the left, loads of the pictures correspond, respectively, to
L
√
P/EJ = 0.406, 0.431, 0.454, 0.467, 0.476, 0.489 [see markers in Fig. 3(a); the same figure also shows

to which experiment the pictures are referred to]. The white/dashed lines represent the deformed shape
of the pillar as predicted by the theory (see Section 2).

as predicted by the theory, while the other two display an inner part where the cross

sections are partially unstressed. The corresponding location of the neutral axes is also

here pinpointed by the magenta solid lines whose analytical expression is now eq. (18),

whereas white/dashed curves detect the current configurations envisaged by the theory.

Subfigure (b) is a snapshot taken at failure of the pillar with h = 7 mm. The breakage

of the bottom outer brick induces a decompression wave that propagates upward along

the structure.
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P = 4646N P = 5420N P = 5366N(a) (b)

0
.
1

0
0

.
1

2

Figure 7: Stress distribution revealed by photoelastic investigations for pillars loaded with an eccen-
tricity of 2.5 mm. The coloured part in each picture corresponds to the stressed part of the pillar.
(a) Locations of neutral axes in the central part of the pillar predicted by the theory, eq. (18), are
sketched with magenta/continuous lines. Starting from the left, the pictures correspond, respectively, to
h = 5, 7, 10 mm, with loads given by L

√
P/EJ = 0.978, 1.065, 1.051 [see markers in Fig. 3(b)]. The

white/dashed lines represent the deformed shape of the pillar as predicted by the theory (see Section 2).
(b) Picture taken just after the failure of the bottom outer brick.

5 Collapse mode

The collapse mode of one of the pillar with bricks 5 mm in height, loaded at high eccen-

tricity, is shown in Fig. 8. In the sequence, the pre-collapse state is represented in the

left-hand frame at 0 ms, subjected to the load P = 870 N. By examining in detail this

picture, we have estimated that the maximum stress and the height 3u of the compressed

part of the mid cross section are approximately 24.7 MPa and 7.05 mm, respectively. The

collapse is associated with the loss of equilibrium of the structure and is not due to the

crushing of any brick of the pillar. At this stage, the mid cross section acts as a hinge. In

the second picture from the left (4.16 ms), equilibrium of the pillar is lost as the action

13



16.64 ms12.48 ms8.32 ms4.16 ms0 ms 20.80 ms

17.43 mm3.44 mm 33.47 mm 50.01 mm 65.76 mm

Figure 8: A sequence of snapshots (taken from a high-speed movie, 240 fps) showing the collapse mode
of masonry pillar for the case of an eccentricity of 8 mm and bricks 5 mm in height. The collapse load
is P = 870 N. In each snapshot, the position of the centre of mass of the central brick with respect to
the frame at 0 ms is reported.

line of the load falls outside its contour. Therefore, collapse has just started. The picture

at 8.32 ms sets the moment when the central brick loses contact with the two adjacent

elements. From this point on, it approximately moves at a constant average speed of 3.87

m/s (this value can be computed by using the distances of the centre of mass indicated

in the figure). This speed, denoted by vb, can be estimated by imposing conservation of

energy in at least two different ways.

First method: analysis of the central brick. One possibility [Fig. 9(a)] is to

equate the strain energy (Wb) stored in the brick in the static configuration on the verge

of the collapse (frame at 0 ms) to the kinetic energy (Kb = mbv
2
b/2) owned by the brick

itself after the structure is completely disarranged (the mass of the brick mb is equal to

1.763 g). The quantity Wb can be evaluated in two ways: a) through eq. (24), in which

case

Wb = 2P 2h/(9Ebu), (26)

and b) by means of the Clapeyron’s theorem applied to the single brick, through the

expression Wb = Pη, where η is half of the shortening of the part of axis x belonging to

the brick and estimated as η = 0.012 mm from the data obtained from the picture. Both

yield Wb = 10.44 · 10−3 J and the match between energies leads to vb ≈ 3.44 m/s.

Second method: analysis of the whole pillar. The second method that is

proposed assumes that the collapse is modelled through a typical structural ‘three-hinge’

mechanism [Fig. 9(b)], where each half of the structure displays a linear velocity (and

displacement) field v(ξ) that vanishes at the two outer hinges and whose expression
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Figure 9: Schematics for methods to estimate the speed vb of the central brick after collapse of a pillar
loaded with a force with high eccentricity. (a) Stress state and displacement field in the central brick on
the verge of the collapse; (b) three-hinge type velocity distribution for the estimate of the kinetic energy
in the second method.

is v(ξ) = vb ξ/L (0 ≤ ξ ≤ L). The total strain energy (Wp) in the pillar pictured

in the frame at 0 ms is then converted to the kinetic energy Kp associated with the

mechanism. The former can be estimated summing up all contributions of the type (26),

namely Wp = 2P 2h/(9Eb)
∑48

k=1 1/uk(x), where the actual uk(x) can be assumed from

the picture at the required position along the structure and the two outer bricks have

been excluded. This method to compute Wp is to be preferred to that based on eq. (25)

as with the former it is possible to account for the effective data extracted from the

snapshots and have an estimate of the strain energy as close as possible to the actual

value. In this way, the strain energy turned out to be Wp = 0.340 J. The kinetic energy

is Kp = µ
∫ L

0
v2b ξ

2/L2dξ, where µ is the mass density per unit axis length that in our

case is µ = mb/h = 0.345 kg/m. After integration, Kp = µv2bL/3. As L = 125 mm, the

equality Wp = Kp yields vb ≈ 4.86 m/s.

6 Concluding remarks

The progressive instability behaviour of compressed dry-stone prismatic rectangular pil-

lars made up of PMMA bricks of various heights and loaded with eccentric loads was

assessed experimentally with a photoelastic apparatus. The experimental results were

compared with the predictions obtained by the no-tension material model for which the
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columns are assumed linearly elastic in compression, but are incapable, due to the ab-

sence of the mortar, to withstand any tensile stress. While recalling the main closed-form

results of the theory (i.e. load-lateral displacement curve, deformed shape of the axis of

the beam-column, location of the interface between cracked and undamaged portions of

the pillar), new analytical solutions for the position of the neutral axis in a generic cross

section of the damaged part of the pillar and for the axial displacement of the structure

were attained. With the latter, the validity of the Clapeyron’s theorem was verified.

Comparing the experimental outcomes with the theory, we conclude that the no-

tension material model captures very well the observed behaviour of the tested pillars

for both low and high eccentricity loadings. In fact, while it slightly overestimates the

global load-bearing capacity, it provides an accurate prediction of the deformed shape of

the pillar and of the position of neutral axes in the damaged part of the structure.

Eventually, the collapse of the pillars subjected to a high-eccentric load was studied

analytically and compared with the experiments. The snapshots taken by a high-speed

camera clearly show the evolution of the three-hinge failure mechanisms. The speeds of

the central brick computed by using two energetic approaches still based on the no-tension

model were in good agreement with the value determined experimentally.
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