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Abstract

With a growing number of available datasets especially from satellite remote sensing, there is a1

great opportunity to improve our knowledge of the state of the hydrological processes via data2

assimilation. Observations can be assimilated into numerical models using dynamics and data-3

driven approaches. The present study aims to assess these assimilation frameworks for integrating4

different sets of satellite measurements in a hydrological context. To this end, we implement a tra-5

ditional data assimilation system based on the Square Root Analysis (SQRA) filtering scheme and6

the newly developed data-driven Kalman-Takens technique to update the water components of a7

hydrological model with the Gravity Recovery And Climate Experiment (GRACE) terrestrial water8

storage (TWS), and soil moisture products from the Advanced Microwave Scanning Radiometer -9

Earth Observing System (AMSR-E) and Soil Moisture and Ocean Salinity (SMOS). While SQRA10

relies on a physical model for forecasting, the Kalman-Takens only requires a trajectory of the11

system based on past data. We are particularly interested in testing both methods for assimilating12

different combination of the satellite data. In most of the cases, simultaneous assimilation of the13

satellite data by either standard SQRA or Kalman-Takens achieves the largest improvements in the14

hydrological state, in terms of the agreement with independent in-situ measurements. Furthermore,15

the Kalman-Takens approach performs comparably well to dynamical method at a fraction of the16

computational cost.17
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1. Introduction18

The study of terrestrial water storage (TWS) and different water compartments, such as19

soil moisture, groundwater, and surface water storage, is essential because of their roles in the20

environment, hydroclimate impacts, and human life as a major fresh water resource. In this regard,21

hydrological models provide a unique opportunity to enhance our understandings of hydrological22

processes within land areas. The models have been used to analyze the spatiotemporal variations23

of hydrological components (e.g., Wooldridge and Kalma, 2001; Doll et al., 2003; Huntington,24

2006; Coumou and Rahmstorf, 2012; van Dijk et al., 2013). Nevertheless, there are factors such25

as inaccurate inputs and forcing fields, data deficiencies (e.g., limited ground-based observations),26

and imperfect modeling that impose a degree of uncertainties in models’ simulations (van Dijk et27

al., 2011; Vrugt et al., 2013). High resolution (spatially and temporally) satellite remotely sensed28

observations of different water compartments can be assimilated to improve models performances29

(Schumacher et al., 2016; Khaki et al., 2017a). Accordingly, various approaches have been put30

forward to efficient incorporation of observations into the models (e.g., Bishop et al., 2001; Kalnay,31

2003; Tippett et al., 2003; Sauer, 2004; Evensen, 2004; Dreano et al., 2015).32

Data assimilation provides a framework to integrate models simulations with new observations.33

When a physics-based model is available, data assimilation techniques constrain the model state34

with available observations in order to bring its outputs closer to the data according to their35

uncertainties (Bertino et al., 2003; Hoteit et al., 2012). This approach has been widely implemented36

in hydrological studies (e.g., Reichle et al., 2002; Seo et al., 2003; Vrugt et al., 2005; Weerts and37

El Serafy, 2006; Neal et al., 2009; Giustarini et al., 2011; Khaki et al., 2017a; Tangdamrongsub et38

al., 2018). In other cases, where the physical processes of the studied system are not available or39

perfectly understood, data-driven (or non-parametric) approaches may provide reliable alternatives40

(e.g., Sauer, 2004; Tandeo et al., 2015; Dreano et al., 2015; Hamilton et al., 2016; Lguensat et al.,41

2017). Both dynamical and data-driven modeling approaches have their own advantageous and42

disadvantageous. Traditionally, data assimilation systems were implemented based on a physical43

model, which can lead to a better redistribution of increments between state variables but generally44

requires intensive computations in realistic applications (Tandeo et al., 2015). A data-driven model,45

on the other hand, only relies on data and their associated errors with no or limited knowledge of46

physical processes but computationally can be significantly less demanding.47

2



The main aim of this contribution is to assess the performance of these frameworks for assim-48

ilating different combinations of multiple satellite remote sensing products within a hydrological49

context. For this purpose, we use an ensemble-based sequential technique, the Square Root Anal-50

ysis (SQRA) filtering scheme (Evensen, 2004) from dynamical, a modified version of the recently51

developed data-driven approach, Kalman-Takens filter (Hamilton et al., 2016) from the data-driven52

approach. Khaki et al. (2017a) recently studied the performance of various standard data assimila-53

tion schemes and showed that SQRA is highly capable of assimilating TWS data into a hydrological54

model (see also Schumacher et al., 2016). The method has also been found to outperform other55

existing filters, e.g., addressing the sampling error in covariance matrix, especially for the small-size56

ensembles and an efficient resampling process (see, e.g., Whitaker and Hamill, 2002; Nerger, 2004;57

Hoteit et al., 2015; Khaki et al., 2017a).58

In addition to SQRA filter, a modified version of the recently developed data-driven approach,59

Kalman-Takens filter (Hamilton et al., 2016), is applied. Takens method has been used in various60

studies for non-parametric time series predictions (see, e.g., Packard et al., 1980; Takens, 1981;61

Sauer et al., 1991; Sauer, 2004). Hamilton et al. (2016) used this method and developed a new62

model-free filter for data assimilation when the physical model is not available. The Kalman-63

Takens method relies only on observations and a trajectory of the model to build a data-driven64

surrogate of the model dynamics, which is required to forecast the system state at a fraction of the65

computational time. The idea of using the model trajectory has also been used in Tandeo et al.66

(2015) and Lguensat et al. (2017) to simulate the dynamics of complex systems. All these studies67

have shown that the data-driven approach can perform well, sometimes comparable to a standard68

data assimilation.69

Here, for the first time, the application of SQRA and Kalman-Takens are investigated for70

assimilating various observation sets including terrestrial water storage (TWS) derived from the71

Gravity Recovery And Climate Experiment (GRACE), soil moisture products from the Advanced72

Microwave Scanning Radiometer - Earth Observing System (AMSR-E) and Soil Moisture and73

Ocean Salinity (SMOS) into a hydrological model, and their combination. Several studies suggest74

that assimilating these products can successfully constrain the mass balance of hydrological models75

(e.g., Zaitchik et al., 2008; Thomas et al., 2014; Eicker et al., 2014; Reager et al., 2015; Khaki et al.,76

2017a,b; Tian et al., 2017). Different scenarios are tested here to achieve the best estimates of the77

water storage components. This involves using SQRA and the Kalman-Takens filters for integrating78
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TWS and soil moisture observations separately and simultaneously and comparing their impact on79

different water compartments. Two different domains of Murray-Darling and Mississippi basins are80

selected for testing subject to the availability of in-situ measurements for evaluation of the results.81

The rest of the manuscript is organized as follows. Datasets and model are described in Section82

2. The two filtering techniques are presented in Section 3 while Sections 4 and 5 analyze and discuss83

the results, respectively. The study is then concluded in Section 6.84

2. Materials85

2.1. GRACE TWS86

The monthly GRACE spherical harmonic coefficients with their full error information are87

acquired from the ITSG-Grace2014 gravity field model (Mayer-Gurr et al., 2014). Here, we used88

Stokes’ coefficients up to degree and order 90 (approximate spatial resolution of ∼300 by 300 km89

at the equator) covering 2003 to 2013. The following steps have been taken before converting90

the spherical harmonics to TWS. Degrees 1 and 2 are replaced with improved estimates since the91

GRACE-estimates are not very reliable (Cheng and Tapley, 2004; Swenson et al., 2008). The L292

gravity fields are then converted into 5-day 3◦×3◦ TWS fields (suggested by Khaki et al., 2017b,93

for data assimilation purposes) following Wahr et al. (1998). Note that colored/correlated noise94

in products is reduced by the Kernel Fourier Integration (KeFIn) filter proposed by Khaki et al.95

(2018), which also accounts for signal attenuations and leakage effects caused by smoothing. The96

KeFIn filter works through a two-step post-processing algorithm. The first step mitigates the97

measurement noise and the aliasing of unmodelled high-frequency mass variations, and the second98

step contains an efficient kernel to decrease the leakage errors.99

2.2. Soil Moisture100

We use AMSR-E to derive soil moisture products. AMSR-E measures surface brightness101

temperature at twelve channels. This is highly correlated to surface soil moisture content (0-2 cm102

depth) and has been used to produce global data products of surface soil moisture content using103

satellite-based radiometer instruments (Njoku et al., 2003). Daily measurements of surface soil104

moisture from descending passes (see, e.g., De Jeu and Owe, 2003; Su et al., 2013) with a spatial105
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resolution of 0.25◦×0.25◦ covering the period between 2003 and 2011 from the gridded Level-3 land106

surface product (Njoku, 2004) are rescaled to a 5-day 1◦×1◦ for the present study.107

We further use Level 3 CATDS (Centre Aval de Traitement des Donnees SMOS) soil moisture108

data (Jacquette et al., 2010) from ESA’s SMOS Earth Explorer mission. SMOS Microwave Imaging109

Radiometer using Aperture Synthesis (MIRAS) radiometer measures microwave emissions from110

Earth’s surface to map land soil moisture (∼ 0-5 cm depth). Here we use ascending passes of the111

satellite subject to their higher agreement to in-situ measurements (see, e.g., Draper et al., 2009;112

Jackson and Bindlish, 2012). The soil moisture data temporal and spatial resolutions are three days113

and about 50 km, respectively. Similar to AMSR-E, SMOS data are rescaled to a 5-day (2011-2013)114

1◦×1◦ scale.115

An important step is required to prepare soil moisture products for data assimilation and116

to remove the bias between the model simulations and observations. These measurements are117

mainly used to constrain the state variability, and not its absolute values. Several studies have118

applied different methods to rescale soil moisture measurements (see, e.g., Reichle and Koster,119

2004; Kumar et al., 2012). Here, we use cumulative distribution function (CDF) matching for120

rescaling the observations (Reichle and Koster, 2004; Drusch et al., 2005). CDF matching relies121

on the assumption that the difference between observed soil moisture and that of the model is122

stationary and guarantees that the statistical distribution of both time series is the same (Draper123

et al., 2009; Renzullo et al., 2014).124

2.3. W3RA125

Here we use 1◦×1◦ grid-distributed biophysical model of the World-Wide Water Resources126

Assessment (W3RA) for the period of January 2003 to December 2012. W3RA is based on the127

Australian Water Resources Assessment system (AWRA) model, which is provided by the Common-128

wealth Scientific and Industrial Research Organisation (CSIRO) to monitor, represent and forecast129

Australian terrestrial water cycles (http://www.wenfo.org/wald/data-software/). Forcing fields of130

minimum and maximum temperature, downwelling short-wave radiation, and precipitation from131

Princeton University are used in this study (Sheffield et al., 2006, http://hydrology.princeton.edu).132

The model parameters include effective soil parameters, water holding capacity and soil evapora-133

tion, relating greenness and groundwater recession, and saturated area to catchment characteristics134

(van Dijk et al., 2013). Model state in the present study includes the W3RA water storages in the135
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top, shallow, and deep root soil layers, groundwater storage, and surface water storage in a one-136

dimensional system (vertical variability).137

2.4. Water Fluxes138

For the sake of result assessment, water flux observations are also acquired. These include139

precipitation data from TRMM-3B43 products (TRMM, 2011; Huffman et al., 2007), MOD16140

evaporation data from the University of Montana’s Numerical Terradynamic Simulation group (Mu141

et al., 2011), and water discharge data from the Global Runoff Data Centre (GRDC) and United142

States Geological Survey (USGS), and the Australian Bureau of Meteorology under the Water143

Regulations (2008). All these products are rescaled to the same resolution of data assimilation144

observations.145

2.5. In-situ data146

In-situ groundwater and soil moisture measurements are used to examine the results.147

Groundwater measurements are acquired from USGS for the Mississippi Basin and from New148

South Wales Government (NSW) for the Murray-Darling Basin. Specific yields are required to149

convert well-water levels to groundwater storage variations, which are unknown. Thus, follow-150

ing Strassberg et al. (2007), we use an average (0.15) of specific yields range from 0.1 to 0.3 as151

suggested by Gutentag et al. (1984) over the Mississippi basin, and 0.13 specific yield from the152

range between 0.115 and 0.2 as suggested by the Australian Bureau of Meteorology (BOM) and153

Seoane et al. (2013) for the Murray-Darling basin. In-situ soil moisture data are obtained from154

the International Soil Moisture Network and the moisture-monitoring network over the Mississippi155

and Murray-Darling basins, respectively. The distribution of gauge stations over the study areas is156

presented in Figure 1.157

3. Data Assimilation158

The model state (xt−1) which includes top, shallow and deep soil moisture, vegetation, snow,

surface, and groundwater storages is integrated in time through a dynamical model (Eq.1). Except

for groundwater and surface storages, all the other components are simulated with two hydrological

response units (HRU) of tall (deep-rooted vegetation) and short (shallow-rooted vegetation), leading

to 12 state variables (5 × 2 + 2) at each grid cell. Observations at the assimilation time (t) are
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Figure 1: Locations of Murray-Darling (top panel) and Mississippi (bottom panel) basins. A distribution of ground-
water (circle) and soil moisture (triangle) in-situ stations are also displayed.

represented by {yt}Tt=0 ∈ Rny , which are related to the state through a dynamical state-space

system of the form,

{
xt =Mt−1(xt−1) + νt, (1)

yt = Htxt + wt, (2)
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whereM(.) is the model operator and H is the design matrix with the noise processes of ν = {νt}t159

and w = {wt}t (both assumed to be Gaussian), respectively. The assimilation procedure includes160

two step,161

• Forecast step. xt−1 and its error covariance evolve through the time (t), the next assimilation162

step, using the dynamical model (M).163

• Update step. The forecast state (xf
t ) is updated by the observation yt.164

Here, both selected filters, i.e., SQRA and Kalman-Takens, use the same analysis step. The main165

difference between the two methods is that while a dynamics-driven model advances the state166

estimate forward in time for forecasting, a data-driven technique uses a model proxy to compute167

the forecast. This process can be achieved using the non-parametric delay-coordinate approach168

(see details in Section 3.3).169

3.1. The Square Root Analysis (SQRA) Filter170

The SQRA filtering technique (Evensen, 2004) is used to assimilate GRACE TWS and soil171

moisture observation to update the system state. Unlike the standard ensemble Kalman filter,172

SQRA employs a sampling scheme that does not perturb the observations (Burgers et al., 1998;173

Sakov and Oke, 2008; Hoteit et al., 2015). This perturbation is required in a standard ensemble174

Kalman Filter (EnKF), which can cause sampling error in the EnKF background covariance matrix,175

especially for the small-size ensembles (Whitaker and Hamill, 2002; Hoteit et al., 2015; Khaki et176

al., 2017a). Given an ensemble of forecast member xi
f , i = 1, . . . , n the update stage in SQRA177

involves first updating the forecast ensemble-mean (x̄f = 1
N

N∑
i=1

xi
f ) as,178

x̄a = x̄f + K(y −Hx̄f ), (3)

with Kalman Gain (K)179

K = Pf (H)T (HPf (H)T + R)−1, (4)
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and180

Pf =
1

N − 1

N∑
i=1

(xi
f − x̄f )(xi

f − x̄f )T , (5)

where ‘f ’ stands for forecast and ‘a’ for analysis. x̄a is the analysis state, and the error covariance181

associated with observations is denoted by R. For each satellite observation set, a different R is182

used. Full error information of the L2 potential coefficients for each month are provided for GRACE183

data (cf. Section 2.1). These products are then converted from the GRACE coefficients to TWS184

errors following Schumacher et al. (2016). Regarding soil moisture observations, R is assumed to185

be diagonal with an error standard deviation of 0.04 (m3m−3) for SMOS (suggested by Leroux186

et al., 2016) and 0.05 (m3m−3) for AMSR-E (suggested by De Jeu et al., 2008). We also assume187

that GRACE data are uncorrelated from both SMOS and AMSR-E observations. An ensemble of188

anomalies, representing the deviation of the analysis ensemble members from the ensemble mean189

(x̄a) is then sampled by,190

Aa = AfV
√

I−ΣTΣΘT , (6)

where Af = [A1
f . . .AN

f ] is the ensemble of forecast anomalies (Ai
f = xi

f − x̄f ), Σ and V are191

obtained from the singular value decomposition (SVD) of Af (Af = UΣVT ), and Θ is a random192

orthogonal matrix for redistributing the ensemble variance (Evensen, 2007; Hoteit et al., 2002).193

These perturbations are then added to the analysis state to form a new ensemble to start the next194

forecasting cycle by integrating the xi
a with the dynamical model to compute the next xi

f (cf.195

Evensen, 2004, 2007; Khaki et al., 2017a).196

3.2. Filter Implementation197

In order to generate the initial ensemble, we perturb the forcing fields according to their198

error characteristics. This is done using a Gaussian multiplicative error of 30% for precipitation,199

an additive Gaussian error of 50Wm−2 for the shortwave radiation, and a Gaussian additive error200

of 2◦C for temperature (Jones et al., 2007; Renzullo et al., 2014). The produced ensemble of201

perturbations of 72 members (suggested by Khaki et al., 2017a) are then integrated with model202

between 2000 and 2003 to generate an ensemble at the beginning of the assimilation period.203

To mitigate for the standard issues related to the rank deficiency and the underestimation of204

the error covariance matrix of ensemble-based Kalman filters, which are due to the limited number205
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of ensemble members and ensemble spread collapse (Anderson , 2001; Houtekamer and Mitchell,206

2001), ensemble inflation with a coefficient factor of 1.12 (as suggested by Anderson , 2001; Khaki207

et al., 2017b) and Local Analysis (LA) scheme (Evensen, 2003; Ott et al., 2004) are applied. LA208

spatially limits the impact of given measurements in the update step to the points located within209

a certain distance (see details in Khaki et al., 2017b).210

3.3. The Kalman-Takens Method211

The Kalman-Takens filter, initially proposed by Hamilton et al. (2016), is applied after a212

few modification. As mentioned, the main different between this filter and SQRA is forecasting213

step while both methods use similar analysis scheme. The Kalman-Takens filter replace model214

equations M with a local proxy f̃ based on data. The method considers delay-coordinate vector215

(to replace the dynamical model for advancing the state forward in time. This delay-coordinate can216

be built using [xo
t,x

o
t−1, . . . ,x

o
t−d], where xo is the training data for reconstructing the system217

and d indicates the number of temporal delays.218

In the original form of the method, it relies on observable yt to create the delay-coordinate219

vector. Here, instead, we use a model trajectory to create the delay-coordinate vector. This is220

motivated by the fact that we are interested in updating the different water storage components221

while GRACE produces the summation of these compartments. We, therefore, assume that a222

trajectory generated by the model is readily available. In the present study the water storage223

components from W3RA, i.e., the open-loop top, shallow and deep soil moisture, vegetation, snow,224

surface, and groundwater are used to create the delay-coordinate vector.225

Using the N nearest neighbors within a set of training data based on a given Euclidean distance,226

the delay-coordinate vectors at t + 1, xo1
t+1,x

o2
t+1, . . . ,x

oN
t+1, can be used to construct the local227

model for predicting xt+1. To this end, a locally constant model following Hamilton et al. (2016)228

is used (see also Hamilton et al., 2017). This model in its most basic form can be assumed as an229

average of the nearest neighbors, e.g.,230

f̃(xt) =

[
xo1

t+1,x
o2
t+1, . . . ,x

oN
t+1

N
,xo

t, . . . ,x
o
t−d+1

]
. (7)

Once the local proxy f̃ is generated, the forecasting step can be carried out to estimate xf . After-231

wards, the analysis step of SQRA is applied to reach xa. Note that different values for the number232
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of neighbors N and delays d were considered and their results are compared against in-situ measure-233

ment. Different scenarios are considered regarding the number of neighbors N (i.e., 2–40) and also234

the number of delays d (i.e., 1–25). It is found that increasing the number of neighbors can improve235

the approximation of training data for a particular point to a certain extent (due to the existing236

spatial correlations). However, selecting N too large can cause a rapid growth of errors, which is237

related to the effect of over-smoothing the training step. This is different for delays d, where much238

larger errors are present for smaller values that underestimate temporal variabilities in the data.239

Accordingly, we set N = 14 and d = 11 as they lead to the best assimilation performances.240

Figure 2 presents a summary of the data integration framework for the dynamics- and data-241

driven approaches. Different experimental scenarios in terms of methodology and assimilated ob-242

servations are examined. Table 1 outlines the conducted experiments, indicating, in particular, the243

assimilated observations types and the model used for each case.244

Figure 2: A schematic illustration of the implemented data assimilation frameworks and data used.
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Table 1: A summary of the applied data assimilation scenarios. Note that all water storages includes top soil, shallow
soil, deep soil water, snow, vegetation, surface, and groundwater storages.

Assimilation
case

Filtering
technique

Observation
type

State vector Updated states

Case 1 SQRA GRACE
TWS

All water storages Storages summation

Case 2 SQRA AMSR-E +
SMOS

Only soil storages
(top, shallow,
deep)

Scaling top soil layer (by field
capacity value)

Case 3 SQRA Joint obser-
vations

All water storages Storages summation by ob-
served TWS + Scaling top soil
layer by observed soil mea-
surements

Case 4 Kalman-
Takens

GRACE
TWS

All water storages Storages summation

Case 5 Kalman-
Takens

AMSR-E +
SMOS

Only soil storages
(top, shallow,
deep)

Scaling top soil layer (by field
capacity value)

Case 6 Kalman-
Takens

Joint obser-
vations

All water storages Storages summation by ob-
served TWS + Scaling top soil
layer by observed soil mea-
surements

4. Results245

In this section, we first analyze the results of different data assimilation methods and246

scenarios on the forecast estimates. This allows examining how each case incorporates different247

observations and how these effects are reflected in forecast state variables. It is worth mentioning248

that this is not a result validation process and the purpose of this analysis is to show the capability249

of different scenarios for forecast improving based on assimilated observation. We later evaluate250

the final results by comparing them against the reference fields. Figure 3a and Figure 3b plot251

correlations between the estimated TWS by each filtering method and GRACE TWS over Murray-252

Darling and Mississippi basins, respectively. Correlations between the filters estimates and observed253

soil moistures (from satellites) are also depicted respectively in Figure 3c and Figure 3d for the254

Murray-Darling and Mississippi basins. Note that the correlation values are calculated for all grid255

points within the basins (at 95% confidence interval) and their averages at forecast steps for each256

case is presented in Figure 3.257

The minimum correlation values are found for the open-loop run while all the other cases258

demonstrate higher correlations. Comparable performances are achieved by SQRA and Kalman-259
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Figure 3: Average correlations between observable variables and assimilated data sets for each case and open-loop
at forecast steps. (a) and (b) indicate the correlations between estimated and observed TWS over Murray-Darling
and Mississippi basins, respectively. The correlations between estimated top layer soil moisture and observations
(SMOS+AMSR-E) are displayed in (c) for Murray-Darling basin and (d) for Mississippi basin.

Takens methods. This is clear from the close correlations for cases 1 and 4, cases 2 and 5, and260

cases 3 and 6, regardless of whether GRACE TWS only, soil moisture measurements only, or both261

of them are assimilated. Based on Figure 3, one can see that both SQRA and Kalman-Takens262

that assimilate GRACE TWS and satellite soil moisture data simultaneously, i.e., case 3 and case263

6, exhibit the highest correlations over the Murray-Darling and Mississippi basins. This can be264

seen for both sets of observations, i.e., GRACE TWS and soil moisture measurements. In cases265

where only one data is assimilated, e.g., cases 1, 2, 4, and 5, the largest correlation is generally266

achieved between the observables and assimilated observations. For example, as it is expected, a267

larger correlation between GRACE TWS and TWS estimates from SQRA and Kalman-Takens are268

achieved when GRACE data is assimilated compared to the cases when satellite soil moisture is269

assimilated. Similarly, the correlation between the estimated and observed soil moisture fields are270

the largest for cases 2 and 5 over both basins. Interestingly, the results show that assimilating even271

only one of the observation data sets, e.g., either GRACE TWS or soil moisture products, can also272
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improve the correlations for non-observable variables. This demonstrates the efficient impacts of273

data assimilation on all state variables.274

The achieved correlation improvement, however, is largest for the simultaneous assimilation275

cases, where both GRACE TWS and soil moisture products are assimilated. This suggests that276

simultaneous data assimilation can lead to better forecasts. From Figure 3, the simultaneous assim-277

ilation in cases 3 and 6, lead to larger correlations between the filters estimates of soil moisture and278

TWS, and the observations over both basins compared to the case only one observation is assimi-279

lated. In general, in most of the simultaneous assimilation cases, SQRA performs better compared280

to the Kalman-Takens filter. Nevertheless, the correlation values show that this is a marginal281

superiority for TWS correlations while in soil moisture correlation over the Murray-Darling the282

Kalman-Takens filter reaches larger correlation values. To better analyze the impact of data assim-283

ilation, results of these two simultaneous assimilation cases over Murray-Darling and Mississippi284

basins are plotted in Figure 4. Both cases successfully reduce the misfits between the estimates and285

GRACE TWS as well as soil moisture observations for both basins. Major improvements can also be286

seen compared to open-loop time series. This figure along with Figure 3 illustrate that assimilating287

both observation sets can better balance the effects of observations between all state variables. It288

is particularly of interest to see that the computationally less demanding Kalman-Takens performs289

closely to the dynamical method, and even better in some cases.290

To better show how each method can reduce the misfits between observations and state variables,291

two extreme events including an above average precipitation, mainly caused by El Niño Southern292

Oscillation (ENSO; see, e.g., Boening et al., 2012; Forootan et al., 2016) for the period of 2010–293

2012 over the Murray-Darling basin and the El Niño events in 2010 over the Mississippi basin294

(e.g., Munoz and Dee, 2004) are selected. This experiment is undertaken to monitor each case295

performance for reflecting the above events in the system. Average TWS estimates from each case296

are compared with GRACE TWS in Figure 5, where the first row shows precipitation and GRACE297

TWS time series while the second row demonstrates differences between assimilated observations298

and filter estimates. It can be seen that least errors are calculated for simultaneous assimilation299

using SQRA and to a lesser degree simultaneous assimilation by the Kalman-Takens method. This300

shows that both methods perform well in reducing the discrepancy between model and observations301

in such extreme anomalies. GRACE data assimilation using SQRA and Kalman-Takens appear to302

be more successful to capture these events that satellite soil moisture only assimilation.303
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Figure 4: Soil moisture and TWS variation time series of simultaneous data assimilations using SQRA and Kalman-
Takens over Murray-Darling and Mississippi basins. The figure also contains average time series of open-loop and
observations.

4.1. Groundwater evaluation304

To assess the results of each data assimilation scenario, independent groundwater in-situ305

measurements are used. Estimated groundwater in-situ measurements are spatially interpolated306

to the location of model grid points using the nearest neighbor (the closest four grid values) to307
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Figure 5: First row: average rainfall and GRACE TWS variations over the Murray-Darling (left panel) and Mississippi
(right panel) basins. Note that rainfall bar plots are shifted (-100mm) for a better presentation. Second row: the
differences between GRACE TWS and TWS estimated by each data assimilation case, as well as the open-loop run
for the corresponding basins.

compare with groundwater time series by each method. Error time series, as a difference between308

in-situ and estimated groundwater values, are then calculated. For every station, we compute the309

Root-Mean-Squared Error (RMSE), standard deviation (STD) and also the correlation between in-310

situ measurements and filters results. Figure 6 displays the results corresponding all assimilation311

cases over the Murray-Darling and Mississippi basins. One can see that the simultaneous data312

assimilation using both filtering schemes perform closely and better than other cases. The least313

RMSE values are achieved from SQRA and Kalman-Takens. After these, assimilating only GRACE314

TWS using SQRA, and to a lesser degree the Kalman-Takens filter, obtain smaller RMSE and STD315

values. This figure further demonstrates the capability of Kalman-Takens for assimilating multiple316

observation data sets, leading to comparable results to the traditional data assimilation system.317

Detailed results of all tested cases are presented in Table 2. Note that a significance test for the318

correlation coefficients is applied using t-distribution. The estimated t-value and the distribution319

at 0.05 significant level are used to calculate p-value. The correlations with p-values that lie under320
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5% are assumed to be significant.321

Figure 6: Comparison between different data assimilation cases over the Murray-Darling and Mississippi basins.
Groundwater estimates by filters are compared with in-situ measurements to calculate RMSE and STD.

Results in Table 2 demonstrates improved estimates after assimilation for all the cases in com-322

parison to the open-loop, 28% RMSE reduction and 37% correlations (on average). The best323

performance is achieved from case 3 (simultaneous assimilation using dynamics method) for the324

Murray-Darling basin and from case 6 (simultaneous assimilation using Kalman-Takens) for the325

Mississippi basin. In most of the cases, more RMSE reductions are obtained over the Mississippi326

basin, especially using Kalman-Takens. The better performance of Kalman-Takens in cases 4 and 6327

in comparison to the cases 1 and 3 within the Mississippi basin could be attributed to model errors328

that can degrade the performance of the parametric approach that relies on the model algorithms.329

GRACE TWS suggests larger effects on RMSE reduction than satellite soil moisture products.330

Simultaneous assimilation using either SQRA or Kalman-Takens results in the least RMSEs. Over331

Murray-Darling, assimilation of GRACE TWS only leads to better results in comparison to assimi-332

lating only soil moisture measurements. This, however, is different for the Mississippi basin, where333

assimilating only soil moisture observations in case 2 provides better results. On the other hand,334

Kalman-Takens leads slightly to better results when assimilating GRACE TWS.335
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Table 2: Summary of statistical values derived from implemented methods using the groundwater in-situ measure-
ments. For each method the RMSE average and its range (±XX) at the 95% confidence interval is presented. The
improvements in the analysis state RMSE estimates are calculated using the in-situ measurements in comparison to
the forecast states and open-loop run.

Murray-Darling basin Mississippi basin RMSE Reduction (%)

Method RMSE (mm) Correlation RMSE (mm) Correlation Murray-Darling Mississippi

Case 1 26.90±6.32 0.78 28.54±8.26 0.72 36.42 38.66

Case 2 40.72±7.29 0.75 48.08±8.18 0.68 3.76 7.56

Case 3 24.85±5.74 0.80 35.51±5.84 0.78 41.27 43.48

Case 4 28.68±7.18 0.76 26.72±7.36 0.76 32.21 41.56

Case 5 40.09±8.92 0.74 50.29±7.50 0.71 5.25 4.04

Case 6 25.78±5.46 0.82 24.11±5.44 0.81 39.07 45.71

Overall, based on Table 2, simultaneous data assimilation gives the best groundwater estimates336

with larger correlations and less RMSE with respect to the in-situ groundwater measurements.337

The Kalman-Takens results are not only close to those of SQRA but also in some cases show338

larger improvements. More importantly, the Kalman-Takens method is found to be less demanding339

computationally, i.e., ∼ 6 times faster for the study period, compared to SQRA. Knowing that340

both methods exploit similar analysis scheme, the main reason for such superiority refers to faster341

forecasting in the Kalman-Takens filter, which is based on a local approximation (using the proxy342

model) and requires much less computation than a physics-based model.343

4.2. Soil moisture evaluation344

We further examine the assimilation results by comparing the soil moisture estimates with345

independent in-situ measurements. Here, we only investigate the correlation between the estimate346

and in-situ data because converting the assimilation outputs (as column water storage measured in347

mm) into volumetric units similar to the in-situ soil moisture measurements is likely to introduce a348

bias (Renzullo et al., 2014). Estimated soil moisture at the model top layer is compared with 0-8 cm349

measurements over the Murray-Darling basin and 0-10 cm over the Mississippi basin. We also use350

0-30 cm and 0-50 cm measurements over the Murray-Darling and Mississippi basins, respectively,351

to examine the summation of the model top, shallow and a portion of deep-root soil layers. Lastly,352

0-90 cm (for Murray-Darling) and 0-100 cm (for Mississippi) soil measurements are compared with353

the summation of the model top, shallow, and deep soil moisture layers. Similar to groundwater354

assessment, estimated soil moisture time series are spatially interpolated at the locations of the in-355
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situ measurements using the nearest neighbor. The correlation is then calculated between estimated356

and in-situ time series and the results are demonstrated in Figure 7.357

Figure 7: Average correlations between soil moisture estimated by each applied case and the open-loop run with
in-situ measurements at different layers.

It is clear from Figure 7 that assimilating observations, especially GRACE TWS, mainly affect358

deep soil moisture layers and improve their estimates. The least improvement can be seen for the359

model top layer. Improvements with respect to the open-loop are achieved in all scenarios. These360

improvements, however, are different for each filtering method. Overall, assimilating only soil361

moisture measurements (as in cases 2 and 5) achieves better results in comparison to GRACE only362

assimilation (as in cases 1 and 4) over top layers. Simultaneous data assimilation using either SQRA363

or Kalman-Takens achieves the largest correlations to the in-situ measurements for all layers. This364

demonstrates the benefit of assimilating multiple data sets. Again, comparable results are obtained365

from both filtering schemes.366

4.3. Water fluxes assessment367

Comparison between estimated water storage changes, ∆s, and water fluxes, namely precip-368

itation p, evaporation e, discharge q, is assumed here. These components are related to each other369
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in reality through the water balance equation (i.e., ∆s = p− e− q). The correlation between the370

estimated ∆s from all assimilation cases and each flux observation is calculated over the Murray-371

Darling and Mississippi basins. The average correlation values are presented in Figure 8. Larger372

correlations are obtained for assimilation cases compared to the open-loop run results. Smaller373

improvements are achieved from the assimilation of only soil moisture measurements in comparison374

to the GRACE, as well as simultaneous data assimilation. Similar to the previous results, it can be375

concluded that GRACE TWS has larger impacts on state estimates during data assimilation than376

satellite soil moisture measurements, which basically update only the model top layer soil moisture377

component.378

Figure 8: Average correlations between water storage changes, ∆s, estimated by each applied case and the open-loop
run with water flux observations.

Between flux observations, it is found that, in general, larger correlations are achieved between379

∆s and p, which is due to the larger influences of rainfall on water storage variations over the380

basins. SQRA reaches higher correlation values to q over both basins. In terms of p and e, on the381

other hand, the Kalman-Takens filter obtains larger correlations over the Mississippi basin. It can382

also be seen that larger correlation of ∆s to p, generally leads to larger correlation to e in different383

cases (e.g., simultaneous assimilation using SQRA and Kalman-Takens). From Figure 8, it is also384

clear that GRACE only data assimilation has better influences on the Murray-Darling basin, close385

to the simultaneous assimilation results. These results confirm previous outcomes that the Kalman-386

Takens filter performs well during assimilation comparable to the standard data assimilation using387

SQRA.388
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5. Discussion389

The results of Section 4 suggest that in all cases, assimilation improves groundwater esti-390

mates in comparison to the open-loop (∼ 38% RMSE reduction). Simultaneous data assimilations,391

i.e., simultaneous assimilations of observations using dynamical method (case 3) and the Kalman-392

Takens (case 6) lead to the largest RMSE reductions of 41.27% with 39.07%, respectively. This is in393

agreement with the founding of previous literature (see, e.g., Montzka et al., 2012; Renzullo et al.,394

2014; Zobitz et al., 2014; Tian et al., 2017), which suggested that better results can be achieved by395

assimilating multi-satellite products when properly accounting for the measurement errors. Larger396

impacts on results are found for assimilating GRACE compared to satellite soil moisture obser-397

vations. This, in particular, is evident by monitoring data assimilation results against in-situ soil398

moisture networks with the Murray-Darling and Mississippi basins. More pronounced improve-399

ments (12% on average) are obtained in the deep soil moisture layers, where GRACE TWS has the400

larger impacts on state estimates. Approximately 31% improvements in groundwater estimations401

are obtained from GRACE TWS only (in cases 1 and 4) as compared to soil moisture assimilation402

in cases 2 and 5 regardless of the filtering method. A similar impact was also suggested by Khaki403

et al. (2017a). Overall, close performances are observed from the dynamical and data-driven ap-404

proaches. Interestingly, the Kalman-Takens outperforms SQRA filter in some cases, e.g., 2.23%405

more RMSE reduction over the Mississippi basin. Hamilton et al. (2016) explained that in cases406

where the model is subjected to larger errors, the Kalman-Takens could provide better forecasts.407

We further find that the Kalman-Takens is much less computationally demanding (∼ 6 times faster)408

compared to the standard SQRA implementation, which can be very important especially in cases409

with high spatio-temporal resolutions.410

6. Conclusion411

Assimilation of multi-mission satellite products can be achieved using model-based and412

data-driven techniques. We assimilate the Gravity Recovery And Climate Experiment (GRACE)413

terrestrial water storage (TWS) and soil moisture products from the Advanced Microwave Scanning414

Radiometer - Earth Observing System (AMSR-E) and Soil Moisture and Ocean Salinity (SMOS)415

using the Square Root Analysis (SQRA) and data-driven Kalman-Takens techniques to assess416

their performances. Independent groundwater and soil moisture in-situ measurements are used to417
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examine the data assimilation results over the Murray-Darling and Mississippi basins. Our results418

indicate that in most of the cases, simultaneously assimilation of observations using either SQRA or419

Kalman-Takens provides the best results with respect to in-situ measurements. These variants can420

also better distribute the effects of observations between all state compartments such as different421

soil layers and groundwater. This is shown by the better agreement between assimilation results422

corresponding to cases 3 and 6 and both groundwater and soil moisture in-situ measurements.423

More improvements in both water components estimates are obtained within Mississippi basin,424

particularly using Kalman-Takens. This could be attributed to the larger model errors, which have425

larger impacts on the parametric method that uses model dynamics. It can be concluded that the426

Kalman-Takens can perform better for the cases the model is subject to error. In general, the427

performances of the data-driven Kalman-Takens approach are comparable to those of the standard428

SQRA. This study suggests that the data-driven filtering technique can be a capable alternative429

for the traditional data assimilation.430
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