
 ORCA – Online Research @ Cardiff

This is a n  Op e n  Acces s  doc u m e n t  dow nloa d e d  fro m  ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry:h t t p s://o rc a.c a r diff.ac.uk/id/ep rin t/11 4 3 9 9/

This  is t h e  a u t ho r’s ve r sion  of a  wo rk  t h a t  w as  s u b mi t t e d  to  / a c c e p t e d  for

p u blica tion.

Cit a tion  for  final p u blish e d  ve r sion:

Leon e nko, Nikolai , Taqq u,  M u r a d  S. a n d  Terdik, Gyorgy H.  2 0 1 8.  Es ti m a tion  of t h e

cova ri a nc e  func tion  of Ga us si a n  iso t ropic  r a n do m  fields  on  s p h e r e s ,  r el a t e d

Ros e n bla t t-typ e  di s t r ibu tions  a n d  t h e  cos mic  va ri a nc e  p ro ble m.  Elec t ro nic Jou r n al  of

S t a ti s tics  1 2  (2) , p p.  3 1 1 4-3 1 4 6.  1 0.1 21 4/18-EJS14 7 3  

P u blish e r s  p a g e:  h t t p://dx.doi.or g/10.12 1 4/18-EJS1 47 3  

Ple a s e  no t e:  

Ch a n g e s  m a d e  a s  a  r e s ul t  of p u blishing  p roc e s s e s  s uc h  a s  copy-e di ting,  for m a t ting

a n d  p a g e  n u m b e r s  m ay  no t  b e  r eflec t e d  in t his  ve r sion.  For  t h e  d efini tive  ve r sion  of

t his  p u blica tion,  ple a s e  r efe r  to  t h e  p u blish e d  sou rc e .  You a r e  a dvis e d  to  cons ul t  t h e

p u blish e r’s ve r sion  if you  wis h  to  ci t e  t his  p a p er.

This  ve r sion  is b eing  m a d e  av ailabl e  in a cco r d a nc e  wi th  p u blish e r  policies.  S e e  

h t t p://o rc a .cf.ac.uk/policies.h t ml for  u s a g e  policies.  Copyrigh t  a n d  m o r al  r i gh t s  for

p u blica tions  m a d e  av ailabl e  in  ORCA a r e  r e t ain e d  by t h e  copyrigh t  hold e r s .



Estimation of the Covariance Function of Gaussian Isotropic
Random Fields on Spheres, related Rosenblatt-type
Distributions and the Cosmic Variance Problem

N. N. Leonenko,
Cardiff School of Mathematics, Cardiff, UK

LeonenkoN@cardiff.ac.uk

M. S. Taqqu
Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, USA

bumastat@gmail.com

Gy. H. Terdik
Faculty of Informatics, University of Debrecen, Debrecen, Hungary

Terdik.Gyorgy@inf.unideb.hu

Abstract

We consider the problem of estimating the covariance function of an isotropic Gaussian
stochastic field on the unit sphere using a single observation at each point of the discretized
sphere. The spatial estimator of the covariance function is expressed in a new form which
provides, on one hand a way to derive the characteristic function of the estimator, and on
the other hand a computationally efficient method to do so. We also describe a methodology
for handling the presence of the cosmic variance which can impair the results. In simulation,
we use the pixelization scheme HEALPix.12

1 Introduction

This paper is about the statistical analysis of a Gaussian isotropic spherical random field T (x)
on the unit sphere S2 = {x ∈ R3 : ‖x‖ = 1} in Euclidean space R3, when only one observation
of the field is available. This perspective is relevant for the analysis of the Cosmic Microwave
Background Radiation (CMBR) discovered by the astronomers Arno Penzias and Robert Wilson
in 1964. It is due to the emission of black body thermal energy originating from the big bang.
The spectral radiation is measured at different angles of observation of the sky, see [65]. It is
apparently almost isotropic.

Our goal is to estimate the covariance function of the random field T (x), x ∈ S2, in a para-
metric setting, given a single observation at each point of the discretized sphere. As application,
using a result of Veillette-Taqqu [61], we present a methodology for handling the problem of
cosmic variance in this framework. The cosmic variance is defined in (28) below. It results
from uncertainty due to the fact that one has only a single observation.

It is well known that the second order structure, i.e., either covariance or spectrum com-
pletely characterize a centered Gaussian random field. Therefore the estimation of these quan-
tities is of primary importance. The estimation of the spectrum is a well-studied subject [41]
[14], [13] and so is the estimation of the covariance. If the estimation is non-parametric then
the cosmic variance, defined in (28), will prevent us in getting a good estimator unless the spec-
trum at low frequencies vanishes, which would be unusual. If we are dealing with a parametric

1AMS 2010 subject classification: Primary 60F05, 85-08.
2Keywords and Phrases: astronomy, cosmic variance, Laplace-Beltrami model, Rosenblatt distribution
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problem, however, that is, if the covariance function depends on some unknown parameters,
then there is a chance of getting a reasonable estimator, see [40] as well. The method would
be as follows. Given observations of the random field T , estimate its covariance function non-
parametrically and then its spectrum. Set the low frequencies to zero. This yields a modified
estimated spectrum. Then estimate the unknown parameters by minimizing the sum of squares
of the difference between the theoretical form of the spectrum and the modified estimated spec-
trum. As indicated below, one can alleviate in this way the cosmic variance problem. On the
other hand the theory underlying the estimation of the parameters of the angular spectrum us-
ing wavelets in a framework of higher frequency asymptotics can be found a number of papers,
see [12], [16], [17], [15][11], [25], [5], [5], [39], see also their references.

Important areas of applications include modeling global atmosphere’s dynamics [7], cosmic
microwave background (CMB) [14], [13], temperature and polarization fluctuations [64] among
others.

The paper is organized as follows. In Section 2, we review some basic notions related to
isotropic random fields, and we describe different models in Section 3. In Section 4 we focus
on the covariance function C (cos γ) which is a function of the angle γ between two points on
the sphere. We estimate this covariance function using empirical covariances Ĉ (cos γ) based
on a single observation at each point of the discretized sphere. The characteristic function of
these empirical covariances is given in terms of cumulants. It turns out that our estimator
follows a Rosenblatt type distribution for each given single angle γ. In Section 5 we focus on
the difference R = Ĉ (cos γ) − C (cos γ). Following results of [61], we obtain the distribution
of R and related properties. In Section 6 we discuss the problem of cosmic variance, namely
the effects of the uncertainty due to the fact that only one realization is observed. To alleviate
this effect one can approximate R by RM which does not involve the low frequencies and for
which the cosmic variance is negligible. We show that RM tends to a Gaussian distribution as
M →∞. In Section 7 we provide simulations using HEALPix which is a high level pixelization
of the sphere S2 and show that M as low as 4 can suffice. Our results can be generalized to
higher dimensions d ≥ 3, by using Gegenbauer (ultraspherical) polynomials (Cαn ) instead of the
Legendre ones (C1/2` = P`).

Theorems 2 and 4 are of particular interest. Theorem 2 provides the characteristic function
of Ĉ (cos γ). It is a theoretical result, but with a clear statistical meaning, since it specifies
the distribution of the empirical covariance. For example, one could estimate the unknown
parameters of the covariance function of a spherical random field using nonlinear regression,
and thus having information about errors is useful when applying the existing methodology.
Such information would also be needed when testing hypothesis on the unknown parameters of
the nonlinear regression. Theorem 4 is important because it gives a normal approximation for
the tail RM .

Section 7 contains a conclusion. An appendix contains examples, a brief description of white
noise analysis on the sphere, the Thorin class and measure and formulae used in the paper.

2 Preliminaries

Let (Ξ,z,P) be a probability space, and S2 =
{
x ∈ R3 : ‖x‖ = 1

}
be the unit sphere centered

at the origin. We consider a real-valued random field T (ω, x) = T (x), ω ∈ Ξ, x ∈ S2, with
ET (x) = 0. This random field is said to be second-order weakly isotropic or (simply) isotropic,
if ET (x)2 < ∞, and ET (x)T (y) =ET (gx)T (gy) for any g ∈ SO (3), x, y ∈ S2, where SO (3)
denotes the three dimensional rotational group under composition. The orthogonal system
on S2 is given by the complex-valued spherical harmonics Y m

` , where ` = 0, 1, 2, . . ., and m =
−`,−`+1, . . .−1, 0, 1, . . . , `−1, `. Their expression is given in (50). The Euler angles (ϑ, ϕ) define
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the position x (ϑ, ϕ) = (sinϑ cosϕ, sinϑ sinϕ, cosϑ) of a point on the sphere with colatitude3

ϑ ∈ [0, π] and longitude ϕ ∈ [0, 2π]. The colatitude measures the north-south position and the
longitude the east-west position. We suppose that T (x) is mean square continuous, and hence
it admits a series expansion ([41]),

T (x) =

∞∑

`=0

∑̀

m=−`

a`mY
m
` (x) , (1)

in terms of the complex-valued spherical harmonics Y m
` , with coefficients given by

a`m =

∫

S2

T (x)Y m∗
` (x) Ω (dx) , (2)

where Ω (dx) = sinϑdϑdϕ is the Lebesgue measure of surface area on S2, and where star denotes
the complex conjugate. The series (1) converges in L2(Ω,R) for all x ∈ S2.

If the coefficients a`m are independent and for fixed ` are identically distributed then the
covariance function C2 (x1, x2) =ET (x1)T (x2), (ET (x) = 0) depends on the angular distance
γ between x1 and x2 only. This angle γ results from the inner product x1 · x2 = cos γ. The
covariance function depends on this central angle γ between locations and has the form

C2 (x1, x2) = C (cos γ) =
∞∑

`=0

f`
2`+ 1

4π
P` (cos γ) , (3)

where P` denotes the Legendre polynomial, see (49) The coefficient f` in (3) defines the angular
spectrum and satisfies f` ≥ 0, see [41], [66]. We assume finite variance, and since the Legendre
polynomials are bounded, |P` (y)| ≤ 1, and P` (1) = 1, we get

∞∑

`=0

(2`+ 1) f` <∞. (4)

The fact that C2 (x1, x2) = C (cos γ) indicates that C2 (x1, x2) is invariant under the group of
rotations. The random field T (x) said to be linear if a`m are independent and if for fixed
`, they are identically distributed. We work with Gaussian random fields, they happen to be
linear and linear fields are automatically Gaussian, see [6], [58].

From now on we assume

Assumption: T (x) is Gaussian, with finite variance.

We can obtain the angular spectrum f` from the covariance through the relation

f` = 2π

∫ π

0
C (cos γ)P` (cos γ) sin γdγ. (5)

For a given T (x) we have the inversion (2) and a`,−m = (−1)m a∗`m, since the field T (x) is
real-valued and since Y m∗

` = (−1)m Y −m` . The orthogonal random ’measure’ a`m is a triangular
array, we have m = −`,−` + 1 . . . , ` − 1, `, i.e. rows contain 2` + 1, i.i.d Gaussian random
variables a`m with

Ea`m = 0, Ea`ma
∗
kn = f`δ`,kδm,n. (6)

In particular a`m is normal with mean 0 and variance E |a`m|2 = f`.
Characterization, construction, classes and examples of isotropic positive definite functions

on spheres, i.e. covariance functions, is an interesting problem and the interested reader may
consult [23], [28], [63], [36], [35], [26] [29], [22].

3The colatitude is used when the North pole is at 0 degree, and latitude when the equator is at 0 degree. In
this paper we use colatitude.
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Remark 1 A function defined by (3) with the coefficients f` is strictly positive definite if and
only if f` is strictly positive for infinitely many even and infinitely many odd integers `, see [26]
for details.

For instance a class of covariance functions on spheres can originate from covariance functions
of some homogenous and isotropic random fields on Euclidean spaces since the restriction of
the field to the sphere yields an isotropic field on the sphere. In this case consider two locations
x1 and x2 on the sphere with angle γ ∈ [0, π]. Then the distance r = ‖x1 − x2‖ between
them expressed in terms of the angle γ is 2 sin (γ/2), see Figure 1, and the inner product is
x1 · x2 = cos γ, which gives a direct correspondence between the original covariance function
C0 (r), in the Euclidean space and the covariance function

C2 (x1, x2) = C (cos γ) = C0 (2 sin (γ/2)) ,

on the sphere. This holds for any dimension of the Euclidean space. The disadvantage of using
C0 is that it depends on the chordal distance between two points on the sphere instead of the
grand-circle (spherical or geodesic) distance, which is not practical.

One can consider a more natural Laplacian model defined directly on the sphere S2 when
the distance is measured using the grand-circle distance.

Example 1 Laplace-Beltrami model on S2. We consider the stochastic model on the sphere
S2 for an isotropic random field TB on S2, (the index B is for "Beltrami") satisfying the equation

(
4B − c2

)
TB = ∂WB,

in the L2 sense, where ∂WB denotes the white noise with variance σ
2, see the Appendix A for

the definition of ∂WB. The Laplace-Beltrami operator is

4B =
1

sinϑ

∂

∂ϑ

(
sinϑ

∂

∂ϑ

)
+

1

sin2 ϑ

∂2

∂ϕ2
.

A direct calculation leads to the spectrum

f` =
1

(` (`+ 1) + c2)2
, (7)

for TB, and the covariance function

C (cos γ) = σ2

4π

∞∑

`=0

2`+ 1

(` (`+ 1) + c2)2
P` (cos γ) ,

is given by formula (3). This form of covariance function obtained via white-noise-driven
damped diffusion equations for modeling global temperature fields by [43], see also [31]. The
rigorous theory can be developed in the same line as it is done in [32] see again Appendix A for
more details and references.

The methodology described in this paper applies to some more examples, see the Appendix.
.

3 Empirical covariances

We have defined C (cos γ) in (3), and now we suppose that an observation of the field T (x), is
given on the whole unit sphere S2 and ET (x) = 0.
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Consider a location x on the sphere S2 and let an angle γ ∈ [0, π] be given. Consider all
locations yγ with angular distance γ to x, so that x · yγ = cos γ. Locations yγ form a circle
C (x, γ) with center x and radius sin γ, see Figure 1. Now define a rotation g (x, ψ) ∈ SO (3)
which rotates the sphere S2 around x by an angle ψ. The point x being the center will not be
moved but any location yγ on the circle C (x, γ) will be moved to some new location denoted
yγ (x, ψ) = g (x, ψ) ỹγ . The yγ (x, ψ) has the property x · yγ (x, ψ) = cos γ since the rotation
preserves the angular distance between two points.

Figure 1: The sphere S2 with the circle C (x, γ)

The empirical covariance Ĉ (cos γ) for an angular distance γ will be given in two steps. First
we fix a location x and superpose T (x)T (yγ (x, ψ)) dψ/2π over all yγ (x, ψ) on the circle C (x, γ)
by varying ψ, then secondly, we integrate over all x on the sphere S2, yielding

Ĉ (cos γ) =
∫

S2

∫

C(x,γ)
T (x)T (yγ (x, ψ))

dψ

2π

Ω (dx)

4π
. (8)

In practice the data T (x) is discretized, for instance when T (x) measures the Cosmic
Microwave Background anisotropies, the measurements are given on a high resolution pixel
structure called HEALPix of the sphere S2 and therefore (8) can be approximated with high
precision. The calculation of (8) involves summation of products of the data as is the usual
case for covariance estimators. The usual estimator of the covariances used in cosmology, due
to [48], involves estimating the spectrum (through Ea2`m = f`) first, then using (3) next.

We shall use a discretized version of (8) for actual computation of the estimate but formula
(9) in the next Theorem will be used to obtain the distribution of the estimator.

Theorem 1 If T (x) is Gaussian then

Ĉ (cos γ) = 1

4π

∞∑

`=0

(
|â`0|2 + 2

∑̀

m=1

|â`m|2
)
P` (cos γ) , (9)

where â`m are independent and identically distributed normal random variables with

Eâ`m = 0, and E |â`m|2 = f`.
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Proof. We denote the North pole N = (0, 0, 1) since it is at colatitude ϑ = 0 and longitude
ϕ = 0 and since the radius equals 1. For each location x one can find a rotation g such that
x = gN , that is it maps the North pole to x. The inverse g−1 of the rotation g does not change
the angular distance between two points hence g−1x · g−1yγ (x, ψ) = cos γ. The rotation g−1
maps x to the North pole g−1x = N , and the circle C (x, γ) to the circle C (N, γ). The points
on that circle are g−1yγ (x, ψ) = zγ (N,ψ) = (sin γ cosψ, sin γ sinψ, cos γ), ψ ∈ [0, 2π]. Now in
(8), the integral on C (x, γ) becomes an integral from 0 to 2π and the integral on S2 becomes
to the integral on SO (3) according to the Haar measure, see (46), so

Ĉ (cos γ) =
∫

SO(3)

∫ 2π

0
T (gN)T (gzγ (N,ψ))

dψ

2π
dg.

We apply the series expansion (1) to both T (x) = T (gN) and T (gzγ (N,ψ)),

T (gzγ (N,ψ)) =
∞∑

`=0

∑̀

m=−`

â∗`m
∑̀

k=−`

D
(`)∗
k,m (g)Y

k∗
` (zγ (N,ψ)) ,

where â`m = a`m, are calculated in (2), they are independent and identically distributed normal
random variables with

Eâ`m = 0, E |â`m|2 = f`, (10)

and D(`)
k,m denotes the Wigner D-matrix, see (47). We integrate first term by term from 0 to 2π

and get by (50)
∫ 2π

0
Y k∗
` (zγ (N,ψ))

dψ

2π
=

∫ 2π

0
(−1)m

√
2`+ 1

4π

(`− k)!
(`+ k)!

P k` (cos γ) e
−ikψ dψ

2π

= (−1)m
√
2`+ 1

4π

(`− k)!
(`+ k)!

P k` (cos γ)

∫ 2π

0
e−ikψ

dψ

2π
= δ0,kY

k∗
` (zγ (N,ψ)) .

Then we continue the integration using the Haar measure

Ĉ (cos γ) =
∫

SO(3)

∫ 2π

0
T (gN)T (gzγ (N,ψ))

dψ

2π
dg =

∞∑

`,`1=0

√
2`1 + 1

4π

√
2`+ 1

4π
P` (cos γ)

×
`1∑

m1=−`1

∑̀

m=−`

â∗`mâ`1m1

∫

SO(3)
D
(`)∗
0,m (g)D

(`1)
0,m1

(g) dg

=
1

4π

∞∑

`=0

∑̀

m=−`

|â`m|2 P` (cos γ) , (11)

see (46), (48). Notice |â`m|2 = |â`,−m|2, hence (9) follows.
The next Theorem gives the marginal and joint characteristic function of Ĉ (cos γ). See also

[48].

Theorem 2 Let γ ∈ [0, π] be given. The empirical covariance function Ĉ (cos γ) in (8) has the
form (9) with characteristic function

ϕ (z) =

∞∏

`=0

1

(1− izf`P` (cos γ) /2π)`+1/2
. (12)

Let γm ∈ [0, π], m = 1, 2, . . . j, be given angles, then the joint characteristic function of
Ĉ (cos γ1) , Ĉ (cos γ2) , . . . , Ĉ (cos γj) is

ϕ ((z1, z2, . . . zj)) =

∞∏

`=0

1
(
1− if`

(∑j
m=1 zmP` (cos γm)

)
/2π

)`+1/2 .
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Proof. Ĉ is unbiased since (11) implies

EĈ (cos γ) = 1

4π

∞∑

`=0

f` (2`+ 1)P` (cos γ)

= C (cos γ) . (13)

Consider the difference

Ĉ (cos γ)− C (cos γ) = 1

4π

∞∑

`=0

∑̀

m=−`

(
|â`m|2 − f`

)
P` (cos γ)

=
1

4π

∞∑

`=0

(
|â`0|2 − f0 + 2

∑̀

m=1

(
|â`m|2 − f`

))
P` (cos γ) , (14)

and notice that the coefficients |â`m|2 − f` are Hermite polynomials of degree 2, see Appendix,
Formulae for details. Let H2 (â`m) denote |â`m|2 − f` = |â`m|2 − E |â`m|2, for simplicity and
rewrite (14) in terms of Hermite polynomials

Ĉ (cos γ)− C (cos γ) = 1

4π

∞∑

`=0

(
H2 (â`0) + 2

∑̀

m=1

H2 (â`m)

)
P` (cos γ) (15)

We now use the cumulants of the Hermite polynomials (see (44) and (45)), in particular the

variance Var
(
Ĉ (cos γ)

)
= Cum2

(
Ĉ (cos γ)− C (cos γ)

)
. In formula (15), all H2 (â`m) are in-

dependent for all ` = 0, 1, 2, . . ., and m = 0, 1, . . . , ` − 1, `. Moreover Cum2 (H2 (â`−m)) =
Cum2 (H2 (â`m)) = f2` , hence we obtain from (15)

Var
(
Ĉ (cos γ)

)
=

1

(4π)2

∞∑

`=0

(
Cum
2
(H2 (â`0)) + 4

∑̀

m=1

Cum
2
(H2 (â`m))

)
P 2` (cos γ)

=
1

(4π)2

∞∑

`=0

(
2f2` + 4

∑̀

m=1

f2`

)
P 2` (cos γ)

=
2

(4π)2

∞∑

`=0

(2`+ 1) f2` P
2
` (cos γ) <∞, (16)

The convergence of (16) follows from (4), i.e. f` < o
(
`−1
)
, and from the fact that P` is bounded

by one for any `. Similarly for general k, we use the higher order cumulants (44) and (45) of
the Hermite polynomials and obtain

Cum
k

(
H2 (â`0) + 2

∑̀

m=1

H2 (â`m)

)
= Cum

k
H2 (â`0) + 2

k
∑̀

m=1

Cum
k

H2 (â`m)

=
(
2k−1 (k − 1)! + `2k (k − 1)!

)
fk` = 2

k−1 (k − 1)! (2`+ 1) fk` .

Hence by (15)

Cum
k

(
Ĉ (cos γ)

)
=
(k − 1)!
(4π)k

∞∑

`=0

2k−1 (2`+ 1) fk` P
k
` (cos γ) (17)

=
(k − 1)!
2 (2π)k

∞∑

`=0

(2`+ 1) fk` P
k
` (cos γ) .
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The cumulant characteristic function of Ĉ (cos γ) follows:

lnϕ (z) =
∞∑

k=1

ik

k!
zk Cum

k

(
Ĉ (cos γ)

)

=
∞∑

k=1

ikzk

2k (2π)k

∞∑

`=0

(2`+ 1) fk` P
k
` (cos γ)

=
∞∑

`=0

(2`+ 1)
∞∑

k=1

ikzk

2k (2π)k
fk` P

k
` (cos γ) . (18)

Now, from the identity
∞∑

k=1

xk

k
= − ln (1− x) , |x| < 1,

we obtain

lnϕ (z) = −1
2

∞∑

`=0

(2`+ 1) ln (1− izf`P` (cos γ) /2π) ,

which leads to

ϕ (z) =

∞∏

`=0

1

(1− izf`P` (cos γ) /2π)`+1/2
.

Consider now the joint cumulant. Using the relation Cum2 (aX, bY ) = abCum2 (X,Y ) and
(17), we get

Cum
2

(
Ĉ (cos γ1) , Ĉ (cos γ2)

)
=

2

(4π)2

∞∑

`=0

(2`+ 1) f2` P` (cos γ1)P` (cos γ2) .

Therefore, with k = k1 + k2,

lnϕ (z1, z2) = Ee
i(z1Ĉ(cos γ1)+z2Ĉ(cos γ2))

∞∑

`=0

(2`+ 1)
∞∑

k1+k2≥1

(k − 1)!ikzk11 zk22
2 (2π)k k1!k2!

fk` P
k1
` (cos γ1)P

k2
` (cos γ2)

=
∞∑

`=0

(2`+ 1)
∞∑

k=1

ikfk`
2k (2π)k

(z1P` (cos γ1) + z2P` (cos γ2))
k

ϕ (z1, z2) =

∞∏

`=0

1

(1− if` (z1P` (cos γ1) + z2P` (cos γ2)) /2π)`+1/2

In general the joint cumulant is given by

Cum
k

(
Ĉ (cos γ1) , Ĉ (cos γ2) , . . . , Ĉ (cos γk)

)
=
(k − 1)!
2 (2π)k

∞∑

`=0

(2`+ 1) fk`

k∏

j=0

P` (cos γj) . (19)

hence the characteristic function is

ϕ (z1, z2, . . . zj) =
∞∏

`=0

1
(
1− if`

(∑j
m=1 zmP` (cos γm)

)
/2π

)`+1/2 .
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4 Distribution of the error

We shall focus here on
R = Ĉ (cos γ)− C (cos γ) . (20)

This is the error we make by using Ĉ (cos γ) instead of C (cos γ). Recall that EĈ (cos γ) = C (cos γ)
by (13).

Theorem 3 The random variable R in (20) can be represented as

R
d
=
1

4π

∞∑

`=0

(2`+ 1) f`P` (cos γ)

(
U2`+1
2`+ 1

− 1
)
. (21)

where
d
= means equality in distribution and where U2`+1/ (2`+ 1) is Gamma distributed with

parameters (2`+ 1) /2 and 2/ (2`+ 1). The characteristic function of R is

ϕ (z) = e−izC(cos γ)
∞∏

`=0

1

(1− izf`P` (cos γ) /2π)`+1/2
(22)

= exp

(
∞∑

k=2

(
iz

2π

)k 1
2k

∞∑

`=0

(2`+ 1) (f`P` (cos γ))
k

)
, (23)

which is a Rosenblatt type characteristic function. It is infinitely divisible and selfdecomposable

ϕ (z) = exp

(∫ ∞

0
[eizx − 1− izx]ν (x) dx

)
,

with Lévy density

ν (x) =
1

2x

∞∑

`=0

(2`+ 1) exp

(
− x

8πf`P` (cos γ)

)
.

Moreover ϕ (z) belongs to the Thorin class T (R), with Thorin measure given by

U(dx) =
1

2

∞∑

`=0

(2`+ 1)δ1/b` (x) ,

where b` = 8πf`P` (cos γ) .

Proof. The characteristic function (22) and (23) of R follows from (18) and (12). Now,
rewrite R given in (14) in the following form

R = Ĉ (cos γ)− C (cos γ) = 1

4π

∞∑

`=0

f`P` (cos γ)

((
|â`0|2
f`

− 1
)
+
∑̀

m=1

(
|â`m|2
f`/2

− 1
))

. (24)

Since â`0 is real therefore |â`0|2 /f` has χ21 distribution 2 |â`m|2 /f` has χ22 distribution and they
are independent. A simple consequence of this is that the random variables

∑̀

m=−`

(
|â`m|2
f`

− 1
)
,

are χ22`+1 − (2`+ 1) distributed and independent. Hence the characteristic function of R can
be expressed as

ϕ (z) = EeizR = exp

(
∞∑

k=2

(
iz

2π

)k 1
2k

∞∑

`=0

(2`+ 1) (f`P` (cos γ))
k

)
.

9



Hence a Rosenblatt type characteristic function [46], [47] shows up, see also [62] and [34].
The expression (24) can be rewritten as

R =
1

4π

∞∑

`=0

(2`+ 1) f`P` (cos γ)

(
U
2`+1

2`+ 1
− 1
)
,

by setting

U2`+1 − (2`+ 1) =
∑̀

m=−`

(
|â`m|2
f`

− 1
)
, (25)

This last expression is χ22`+1 − (2`+ 1), distributed and hence U2`+1/ (2`+ 1) is Gamma dis-
tributed with parameters (2`+ 1) /2 and 2/ (2`+ 1) .

The Veillette-Taqqu [61] result on Lévy—Khintchine representation of variables with a similar
form to R can now be applied. The Veillette-Taqqu’s result concerns a random variable of the
form

∞∑

`=0

λ` (η` − 1) ,

where η` are independent Gamma(r`, 1/r`) random variables. Hence we identify

λ` = (2`+ 1) f`P` (cos γ) /4π, (26)

r` = (2`+ 1) /2,

and
η` = U

2`+1
/ (2`+ 1) .

The assumption in Proposition 2.1 of [61] to be checked is

∞∑

`=0

λ2`
r`
=

2

(4π)2

∞∑

`=0

(2`+ 1) f2` P
2
` (cos γ) <∞. (27)

But this holds because this quantity coincides with Var (R) = Var
(
Ĉ (cos γ)

)
given in (16), and

for each γ ∈ [0, π],
∞∑

`=0

(2`+ 1) f2` P
2
` (cos γ) <∞,

see (16). Therefore it follows, (see Veillette-Taqqu, [61], [62], Leonenko et al.[34]) that the
distribution with characteristic function (23) is infinitely divisible:

ϕ (z) = exp

(∫ ∞

0
[eizx − 1− izx]ν (x) dx

)
,

with Lévy density

ν (x) =
1

2x

∞∑

`=0

(2`+ 1) exp

(
− x

8πf`P` (cos γ)

)
.

It is selfdecomposable (see [50], p.95, Corollary 15.11) since its Lévy measure has a density ν
satisfying: ν(x) = h(x)/|x|, x > 0, with h(x) decreasing on (0,∞).

Let ID(R),SD(R) be the classes of infinitely divisible and selfdecomposable distributions corre-
spondingly. We next define the Thorin class on R (see [59], [9], [30], [37]) as follows: We refer
to the product γu as an elementary gamma random variable if u is nonrandom non-zero vector
in R, and γ is a gamma random variable on R+. Then, the Thorin class on R (or the class of
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extended generalized gamma convolutions), denoted by T (R), is defined as the smallest class
of distributions that contains all elementary gamma distributions on R, and is closed under
convolution and weak convergence. It is known that

T (R) ⊂ SD(R) ⊂ ID(R),

and inclusions are strict, [30]. Since any selfdecomposable distribution on R is absolutely con-
tinuous (see, for instance, Example 27.8 of [50]) and is unimodal (by [67], see also Theorem
53.1 of [50]), then, any selfdecomposable distribution has a bounded density function. Thus the
distribution with characteristic function (23) has a bounded unimodal density.
Also (see Leonenko et al.[34] for details ) that the distribution with characteristic function (23)
belongs to the Thorin class T (R), with Thorin measure given by

U(dω) =
1

2

∞∑

l=0

(2l + 1)δ1/b` (ω) ,

where b` is given in the statement of the theorem.�

Remark 2 Theorem 3 shows the similarities and differences between the behavior of the esti-
mation errors of an unknown covariance function for isotropic random field and the results for
stochastic processes or time series, in which only asymptotic distributions are known. Surpris-
ingly in our case we can obtain the explicit distribution, in terms of characteristic function, of
the approximation error and even the rate of convergence.

5 Dealing with the cosmic variance problem

Consider a sample path of the field

T (x) =

∞∑

`=0

∑̀

m=−`

a`mY
m
` (x) .

All information contained in this single sample path about the coefficients f` in the series
expansion of the covariance function C (cos γ), see (3), is expressed through the random variables
a`m. Although a`m can be inverted with high precision for every indices `, m, see (2), for small
‘frequencies’ `, a`m has little information useful for estimation. For instance if ` = 0, f̂0 = |â00|2
is a single value realization of a00 which tells almost nothing about f0 = E |a00|2. If ` is large then
we have â`m, m = −`,−`+1 . . . , `−1, `, i.e. a 2`+1 ’sample’ for estimating f` = Ef̂` = E |â`m|2.
By introducing

f̂` =
1

2`+ 1

(
∑̀

m=−`

|â`m|2
)
,

which has the property

Ef̂` =
1

2`+ 1
(2`+ 1)E |â`m|2 = f`,

and

Var
(
f̂`

)
=

1

(2`+ 1)2

(
Var

∑̀

m=−`

|â`m|2
)

=
1

(2`+ 1)2
(2`+ 1)

(
∑̀

m=−`

Var |â`m|2
)

=
2f2`
2`+ 1

,

11



since â`m is normal with mean 0 and variance f`. We can now define the cosmic variance as

E

(
f` − f̂`
f`

)2
=

2

2`+ 1
, (28)

see [64], p. 138. This quantity does not depend on the actual values of the spectrum and
is decreasing with `. It underlines the uncertainty of statistical methods associated with the
estimation of either the spectrum or the covariance function. Therefore reducing the cosmic
variance is of primary importance.

How to decrease the influence of the cosmic variance? Since the main contribution to that
variance comes from f` with small values of `, we should try to ignore these f` by truncating
the difference R = Ĉ (cos γ)− C (cos γ), given in (20) and (21).

Consider then the case when f` = 0, ` = 0, 1 . . . ,M − 1, in R, see (24), i.e. the remainder

RM =
1

4π

∞∑

`=M

(2`+ 1) f`P` (cos γ)

(
U2`+1
2`+ 1

− 1
)
,

where the sum starts at ` =M . Since RM is associated to the sample path TM (x) defined as

TM (x) = T (x)−
M−1∑

`=0

∑̀

m=−`

â`mY
m
` (x) , (29)

and since â`m are good approximations of the current values which are generating the observed
random field T (x), see (2), (not like the estimation of f`), therefore TM (x) is a good approxi-
mation to the remainder field with f` = 0, ` = 0, 1 . . . ,M − 1, and with covariance function

CM (cos γ) = C (cos γ)−
1

4π

M−1∑

`=0

f` (2`+ 1)P` (cos γ) .

The asymptotic distribution and Berry—Esseen bound for the remainder RM given in the
next Theorem can be obtained as in Theorem 3.1 of [61].

Theorem 4 Let

σ2M =
2

(4π)2

∞∑

`=M

(2`+ 1) f2` P
2
` (cos γ) ,

then RM/σM is asymptotically standard normal distributed as M →∞. In addition there is a
Berry—Esseen bound

sup
x∈R

|P (RM/σM ≤ x)− Φ (x)| ≤ 0.7056κ3,M ,

where Φ is the standard normal CDF, and κ3,M denotes the third cumulant (skewness) of RM

κ3,M =
1

(2π)3 σ3M

∞∑

`=M

(2`+ 1) f3` P
3
` (cos γ) .

Proof. The theorem follows from the Theorem 3.1 of [61], provided one has

∑∞
`=M

λ3
`

r2
`(∑∞

`=M
λ2
`

r`

)3/2 → 0, as M →∞,
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where λ` and r` are defined in (26). Consider

∑∞
`=M

λ3
`

r2
`(∑∞

`=M
λ2
`

r`

)3/2 =
√
2
∑∞

`=M (2`+ 1)
−1/2 (√2`+ 1f`P` (cos γ)

)3
(∑∞

`=M

(√
2`+ 1f`P` (cos γ)

)2)3/2

<

√
2√

2M + 1

∑∞
`=M

(√
2`+ 1f`P` (cos γ)

)3
(∑∞

`=M

(√
2`+ 1f`P` (cos γ)

)2)3/2

The series
∑∞

`=0 (2`+ 1) f
2
` P

2
` (cos γ) converges by (27) hence

∑∞
`=M

(√
2`+ 1f`P` (cos γ)

)2
< 1,

if M sufficiently large, therefore




∑∞
`=M

(√
2`+ 1f`P` (cos γ)

)3
(∑∞

`=M

(√
2`+ 1f`P` (cos γ)

)2)3/2




2/3

≤
∑∞

`=M

(√
2`+ 1f`P` (cos γ)

)2
∑∞

`=M

(√
2`+ 1f`P` (cos γ)

)2 = 1,

where in the nominator we applied the inequality (x+ y)a ≤ xa+ya. valid for any 0 ≤ x, y ≤ 1,
and any 0 < a < 1. Summarizing these we obtain




∑∞
`=M

λ3
`

r2
`(∑∞

`=M
λ2
`

r`

)3/2




2/3

≤
( √

2√
2M + 1

)2/3
→ 0, as M →∞.

Edgeworth expansion for the distribution function of RM is also given in [61] and the as-
sumptions are satisfied in our case as well. We will not include them here. Our simulation and
the numerical example of [61] show that the speed of convergence is really fast and M can be
chosen to be larger than 5, which is satisfactory for cosmology ([64], p. 138) and as we shall see
in the next section our estimator of the covariance function gives very good results even when
M = 4. An earlier attempt in this direction has been made in [8].

6 Simulations

When dealing in practice with random fields, we do not use for Ĉ (cos γ) its expression (8)
or equivalently (9) instead we use a discretization of integral (8), namely (31) below, which
corresponds to the time domain estimator of covariances in time series analysis. We consider a
discretized unit sphere S2. The discretization, called HEALPix (Hierarchical, Equal Area and
iso Latitude Pixelization), is applied. For a detailed description see [27]. This pixelization of
the sphere contains quadrilaterals (pixels), in our case the total number of equal-area spherical
pixels equals to Npix = 49152, with area Ωpix = 4π/Npix, since 4π is the surface of the unit
sphere.

The integral for fixed angle γ

Ĉ (cos γ) =
∫

S2

∫

C(x,γ)
T (x)T (xγ (ϕ, x))

dϕ

2π

Ω (dx)

4π
,

is discretized, as follows
∫

C(x,γ)
T (x)T (xγ (ϕ, x))

dϕ

2π
∼ 1

nx

(
T (x)− T

) ∑

x·xj=cos γ

(
T (xj)− T

)
, (30)
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where xj denote locations of pixel centers, T = (1/Npix)
∑

x T (x), is the mean and nx is the
number of all possible pairs of x and xj , such that x ·xj = cos γ. Hence the covariance estimator
is

Ĉ (cos γ) = 1

Npix

∑

i

1

nxi

∑

j;xi·xj=cos γ

(
T (xi)− T

) (
T (xj)− T

)
, (31)

Since γ is the angular distance and for a given location x all the locations with angular distance
γ constitute a circle, in practice instead of a circle we considered a ring with a very narrow
belt so that (30) contains all the pixel centers from this belt. The reason is that the pixel
structure provides some specific angular distances only and we collect all the pixel centers
having angular distance close enough to γ. One may consult with [4], [33] for properties of the
above approximation.

From now on we shall scale the covariance function such that C (cos 0) = C (1) = 1 resulting
in the correlation function. We do so because the parameter estimation requires that there be a
unique correspondence between the model and its parameters. Thus no multiplicative constant
will appear in the parameter estimation.

For simulation purposes, following (1), we generated a truncated field

T(K) (x) =

K∑

`=0

∑̀

m=−`

a`mY
m
` (x) , (32)

where K = 42 , and a`m, ` = 0, 1, 2, . . . ,K, m = 0,±1,±2, . . . ,±`, complex-valued Gaussian
random numbers a`m, Ea`m = 0, Ea`ma

∗
kn = f`δ`,kδm,n, such that a`,−m = (−1)m a∗`m. The

spectrum f`, ` = 0, 1, 2, . . . ,K, is calculated using the Laplace-Beltrami model (Example 1),
with parameters σ2 = 2, c = 2. We get f` by applying (7).

For all pixel centers xi on the sphere we generated the field T(K) (xi), i = 1, 2, . . . , Npix using
(32).

Now we consider the covariance function of the model with the values of f` truncated up to
L,

C(L) (cos γ) =
L∑

`=0

2`+ 1

4π
f`P` (cos γ) , γ ∈ [0, π] , (33)

and we are going to estimate C(L) (cos γ) using T(K) (x). The correspondence between the

function C(L) (cos γ) and the spectrum {f`}L0 is given by the integral

f` = 2π

∫ π

0
C(L) (cos γ)P` (cos γ) sin γdγ

= 2π

1∫

−1

C(L) (y)P` (y) dy. (34)

The exact value of that integral can be calculated via the Gauss-Legendre quadrature, as follows

f` = 2π

L+1∑

i=1

wiC(L) (yi)P` (yi) , (35)

where the nodes y1, . . . , yL+1 are the roots of the Legendre polynomial PL+1(x), while w1, . . . , wL+1
are the corresponding weights of the formula. In this case the quadrature is exact for polyno-
mials up to order 2L + 1, [44], [56]. Note that the order (highest degree of the polynomial) of
C(L) (y)P` (y) is not larger then 2L, for any `.

Given real data, L is not known, one chooses L and L+ 1 angles γ1, . . . , γL+1, with L large
enough so as to ensure that the estimator Ĉ (cos γ) in (31) provides good results. The number
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of terms in the second summation of (31) depends on the angular distance and if this number
of terms is too small, one may end up with a bad estimate for C (cos γ). The number L can
therefore be considered as a bandwidth in this estimation. We used here angles γ1, . . . , γL+1
corresponding to the roots of the Legendre polynomial PL+1(x). Here we set L = 42.

After estimating the covariance function C(L) (cos γi) = C(L) (yi) via (31), one can then
estimate the spectrum f` by

f̂` = 2π
L+1∑

i=1

wiĈ (yi)P` (yi) , (36)

namely, by replacing C(L) in (35) by Ĉ (yi) obtained by using (31).
The Laplace-Beltrami model with given σ2 depends on an unknown parameter c, see Ex-

ample 1 and has spectrum f` (c) given in (7). We estimated the parameter c in two steps.
First we used the estimated covariance function Ĉ (cos γ) in (31) to estimate the spectra f̂`

by (36). Then we fitted f` = f` (c) to f̂`, ` = 1, 2, . . . , L = 42, by the nonlinear least squares
method, i.e. minimizing the

42∑

`=1

(
f` (c)− f̂`

)2
, (37)

and derived the estimate ĉ.
Secondly, we obtained ĉM with M = 4, in order to reduce the cosmic variance. To do so we

estimate â`m from T(K) (x) and remove the corresponding terms by

T(K,4) (x) = T(K) (x)−
4∑

`=0

∑̀

m=−`

â`mY
m
` (x) .

We get a new model where a`m = 0, ` = 0, 1, 2, 3, m = 0,±1,±2, . . . ,±`, without modifying
the other a`m. This yields the sample path with spectrum f` (c) = 0, ` = 0, 1, 2, 3. Now
we re-estimated the correlations Ĉ (cos γk) in (31) replacing the field T by T(K,4). We obtain
a far better estimate of c because the cosmic variance has been reduced, setting its values
corresponding to ` = 0, 1, 2, 3, to zero. To get ĉM , we repeated the least squares estimation
by setting f` = 0, for ` = 0, 1, 2, 3, and f` = f` (ĉM ), for ` = M,M + 1, . . . , 42. Putting the
estimated value ĉM in (7) we get new values f` (ĉM ), ` = 0, 1, 2, . . . , L. We use them in (33) to
obtain a new estimated Ĉ (cos γ).

We did 100 iterations. In each iteration we computed ĉ and ĉM , then f̂` using (7) and
then the corresponding estimated covariance curve using (33). The results then were averaged
including the covariance curves. Note that the displayed Figures 2, 3, 4 have different vertical
scales.

The true value of c was 2 and the average of ĉ over 100 iterations was 1.1866 with standard
deviation 0.5329, while the average of ĉM was 1.8063 with standard deviation 1.3672. The
average of ĉM is closer to the true value then the average of ĉ though variance.

The plot in Figure 2 contains from top to bottom the following covariance functions obtained
as follows:

(a) estimated using (33) with ĉ,

(b) estimated using (33) with ĉM ,

(c) theoretical using (33) with c = 2,

(d) estimated using (31).
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Note that the curve (b) using ĉM is the closest to the theoretical one (c). 4

The plot in Figure 3 shows the theoretical covariance function (continuous blue line with
asterisks, computed from the spectrum (7) of the Laplace-Beltrami model using (33)), the
average of the 100 estimations of the covariances Ĉ (cos γk) (red dashed line with circles), upper
and lower 95% confidence intervals (red dashed line with asterisks), each of the 100 estimations
Ĉ (cos γk) (black points). It is seen that even the average of 100 estimations is not a good
estimate of the covariance function mainly because of the cosmic variance. We obtain better
results using ĉ as seen in Figure 4.

We conclude from Figure 4 that using the model T(K,4) (x) with reduced cosmic variance
gives good estimates for the corresponding correlation function. As a consequence the updated
estimate of the original covariance function by ĉM provides a better estimator not only for the
covariance function but for the spectrum as well. Figure 2 yields the same conclusion.

Figure 2: Correlation functions from top to bottom: (a) using (33) with ĉ ; (b) using (33) with
ĉM ; (c) theoretical using (33); (d) estimated using (31).

Remark 3 Figure 2 is unsurprising: It is intuitive that the covariance curve based on the
correct model with a good parameter estimate is closer than a non-parametric alternative. In a
sense here the message is more about the comparison of using ĉ vs. ĉM . Note that a comparison
of Figures 3 and 4 yields information on the quality of the estimators ĉ vs. ĉM . In both cases,
different models (with different covariance functions) are assumed and the Figures show that it
is easier to estimate the covariance function if low frequencies of the spectrum are zero.

4Removing the sample mean from the data in (30) results in ramoing a00Y 0
0 . Hence the estimated covariance

function does not contains f0, that is f̂0 = 0. It is true that a00Y 0
0 is random and not a constant, since a00

is Gaussian, but for real data we have only a single realization which means that we have a single value of a
Gaussian variable. Thus, after estimating ĉ we added f0 (ĉ) to (33). In other words we proceeded as in the
estimation of ĉM but for M = 0.
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Figure 3: Listed from the middle (cos γ = 0), from top to bottom: theoretical (33) with c = 2;
upper confidence curve, estimated (31), lower confidence curve. The vertical dots are the results
of the individual simulations from 1 to 100.

17



Figure 4: Estimation of the correlation function when f` = 0, ` = 0, 1, 2, 3. The estimated (31)
is closed to the theoretical. The vertical dots are the results of the individual simulations from
1 to 100.

18



7 Conclusion

We considered the problem of estimating the covariance function of an isotropic field on the
sphere, at a fixed time as is the case of CMB data for instance. We derived the distributional
properties of the nonparametric estimator of the covariance function.

The problem of estimating either the correlation function or the spectrum for the CMB data
has a wide literature [18]. Most of the methods considered, like Pseudo-C` estimators, NRML
(maximum-likelihood using Newton—Raphson algorithm), QML (quadratic ML) hybrid estima-
tor, suffer from cosmic variance. The paper [19] considers estimates of the correlation function
based on methods used in [18] paying attention to the cosmic variance as well. The aim of those
investigations include checking Gaussianity, isotropy, modeling using six-parameter inflationary
CDM cosmology etc. There is a common agreement that "the analytic approximations at low
multipoles are useless for any quantitative application such as parameter estimation" ([18]).
One of our aims was to reduce the cosmic variance in parametric models.

Theorems 2, 3 and 4 are connected. They describe and quantify the distribution of errors
between the empirical covariance and the theoretical covariance function of spherical random
fields. Theorem 4 is of interest in statistical inference since it quantifies the errors of approxi-
mation after truncation. It is known that the cosmic variance prevents us to getting a good
estimator mainly because of the problem of estimating the spectrum f` at low frequencies,
` = 0, 1, . . . ,M − 1, say. Since the cosmic variance affects mainly the spectral coefficients f`
at low values of `, we ignore these f` setting them to 0. We then reestimate the covariance
function and use it to estimate the unknown parameters of our parametric model, for example,
the parameter c in the Laplace-Beltrami model.

The steps described above change the model, but this modified model now provides better
estimates of the covariance hence, better estimation of the spectrum and the unknown parame-
ters. Using these estimated parameters we estimate f` for a low ` as well.

We carried out simulations for a Laplace-Beltrami model. In practice when a set of obser-
vations is given, we have to decide how to choose the level of truncation which we denoted by
L. The truncation parameter L depends on the number of observations and is connected to the
number of angles γ where C (cos γ) will be estimated. We used the Gauss-Legendre quadrature
for calculating the spectrum from the covariance and vice versa. It involves L + 1 angles, ac-
tually the roots of the Legendre polynomial PL+1(x). We chose the method of nonlinear least
squares for estimation of the parameters c from the estimated spectra f` (c). Other methods
like weighted least squares, MCMC and likelihood and noisy data are the subject of further
investigations.
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8 Appendix

A Examples

The following are examples of homogenous and isotropic random field T0 (x), x ∈ R3 restricted
to the sphere S2. Then the covariance function C (r) of the stochastic field T (x) on the sphere
S2 equals the covariance function C0 (r) of the original field T0 restricted to the sphere. At the
same time the power spectrum f` of the field T (x) is defined by the power spectrum of the field
T0 (x) through a formula (38) called Poisson formula, see [55], VII. 2.

Example 2 For an homogeneous isotropic random field on R3 we have the spectral represen-
tation

C0 (r) =
∫ ∞

0
j0 (λr) Φ (dλ) ,

of the covariance function, where Φ (dλ) is some spectral measure, see [66], and where jm is
the Spherical Bessel function of the first kind, j0 (r) = sin r/r, see [2]. If we consider two
locations x1 and x2 on the sphere S2 with angle γ ∈ [0, π], then we obtain the covariance
function C (cos γ) = C0 (2 sin (γ/2)) on the sphere S2 with spectrum

f` = 2π
2

∫ ∞

0
J2`+1/2 (λ)

1

λ
Φ (dλ) , (38)

where J`+1/2 denotes the Bessel function of the first kind, see [2]. More generally, in case of

Rd, d ≥ 3,
C0 (r) =

∫ ∞

0
j(d−3)/2 (λr) Φ (dλ) ,

and the corresponding spectrum on the sphere is

f` = c2d

∫ ∞

0
J2`+(d−2)/2 (λ)

1

λd−2
Φ (dλ) .

Example 3 Laplace model restricted to the sphere. The following covariance function
corresponds to an homogeneous isotropic random field T on Rd satisfying the equation

(
4− c2

)ν
T = ∂W, (39)

in the L2 sense, where 4 =
∑d

k=1
∂2

∂x2
k

, denotes the Laplace operator on Rd, d ≥ 3, and ∂W

is the white noise in Rd. The covariance function of spherical random field T (x), x ∈ Sd−1,
restriction of the homogeneous isotropic random field T (x), x ∈ Rd, into the sphere Sd−1 ={
x ∈ Rd; ‖x‖ = 1

}
, is of the form

C (cos γ) = σ2

(2π)
d
2
+1 22ν−1Γ (2ν)

(
2 sin (γ/2)

|c|

)2ν− d
2

K2ν− d
2

(2 |c| sin (γ/2)) , (40)

where Kν is the modified Bessel (Hankel) function of the second kind. Here 2ν − d
2 > 0, is

the smoothness parameter which controls the continuity, and c controls the regularity [20], [54].
Note Kν (r) ∼ Γ (ν) (r/2)−ν /2 if r → 0. The correlation function on the sphere Sd−1 is

ρ (cos γ) =
(2 |c| sin (γ/2))2ν−

d
2

22ν−
d
2
−1Γ

(
2ν − d

2

)K2ν− d
2

(2 |c| sin (γ/2)) .

The corresponding spectrum on S2 is

f` = 2π

∫ π

0
C (cos γ)P` (cos γ) sin γdγ.
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Note that C (cos γ) belongs to the Matérn Class of Covariance Functions [42], [51]. Also in [32]
one can find a proof of the form of the covariance function of Matern class from the fractional
Helmholtz equation based on the theory of generalized random fields [21]. In particular for ν = 1,
d = 3, we have

C (cos γ) = 1

(2π)3/2

√
sin (γ/2)

2 |c| K1/2 (2 |c| sin (γ/2)) .

with spectrum

f` =

∫ ∞

0
J2`+1/2 (λ)

λ

(λ2 + c2)2
dλ.

Since K1/2 (r) =
√
π/2re−r, we have

C (cos γ) = 1

8π |c|e
−2|c| sin(γ/2).

and the spectrum is

f` =
1

4 |c|

∫ π

0
e−2|c| sin(γ/2)P` (cos γ) sin γdγ.

The preceding example treated an homogeneous isotropic random field on Rd and then
specialized it to the sphere. Another possible construction of covariance functions is based on
the following. The covariance function C2 (x1 · x2) in (3) is strictly positive definite if all f` are
≥ 0, and only finitely many of them are zero ([53], [52] ). Therefore if the series (3) is finite
and only finitely many f` = 0, then one can construct a Gaussian field with covariance function
C (cos γ) which is nonnegative definite, see Remark 1 also. In the case where finitely many
f` > 0, then C (cos γ) is still nonnegative definite but will not be necessarily strictly positive.

Example 4 The generating function of the Legendre polynomial P` is

∞∑

`=0

P` (y) z
` =

(
1− 2yz + z2

)−1/2
, y ∈ (−1, 1) , |z| < 1. (41)

Let z be a fixed value (0 < z < 1)„ σ2 > 0, put y = cos γ and

f` =
4π

2`+ 1
z`,

then f` > 0, for all ` and from (3) follows that

C (cos γ) = σ2√
1− 2z cos γ + z2

,

is a covariance function. Similarly, using Gegenbauer polynomials C
(d−2)/2
` instead of P` in

(41), for any dimension d > 2 we have a covariance function on Sd−1

C (cos γ) = σ2

(1− 2z cos γ + z2)(d−2)/2
,

if 0 < z < 1, (see [66]). Since it is positive definite it can be considered as a covariance function
on S2, in this case the spectrum f` is not given by some explicit formula. Some more examples
of this type can be constructed applying formulae of series of Legendre polynomials with positive
coefficients.
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There is an other application of series of Legendre polynomials in probability theory, namely
in directional statistics. A probability density of a rotational symmetric distribution on the
sphere has a series expansion in terms of Legendre polynomials, see [45], [38]. Now if the
coefficients (actually the characteristic function of the distribution) of the series expansion are
positive then the same function may also serve as a covariance function. The following example
is one of the basic density on the sphere.

Example 5 The Fisher probability density function f on the sphere (see [45], [38], [10], [63])
is defined by

f (cos γ) =
κ

4π sinh (κ)
exp (κ cos γ) , κ > 0,

This probability density function can be considered as a covariance function. It has the series
expansion

f (cos γ) =
κ

sinh (κ)

∞∑

`=0

2`+ 1

4π

√
π

2κ
I`+1/2 (κ)P` (cos γ) ,

where
√

π
2κI`+1/2 (κ) is the modified spherical Bessel function of the first kind, [2]. Hence

C (cos γ) = σ2f (cos γ) ,

is a covariance function with spectrum

f` = σ2
κ

sinh (κ)

√
π

2κ
I`+1/2 (κ) = σ2

I`+1/2 (κ)

I1/2 (κ)
.

Note sinh (κ) /κ =
√

π
2κI1/2 (κ). We have I`+1/2 (κ) > 0, for all ` see [1] §10.25(ii), 10.25.2,

therefore f` is a valid spectrum with strictly positive covariance function, see Remark 1.

The variance σ2 in these examples corresponds usually to some additional noise fields on
top of the homogeneous isotropic field considered here. Since it is a multiplicative constant, it
will not influence our results and therefore we will set σ2 = 1 from now on.

B White noise analysis on the sphere

Here we outline a way to make precise the derivation of the spectrum given in Example
1. Details will appear in a forthcoming paper. Recall the notations x ∈ S2, x (ϑ, ϕ) =
(sinϑ cosϕ, sinϑ sinϕ, cosϑ), Ω (dx) = sinϑdϑdϕ.

Definition 5 Let WB = {WB (f) , f ∈ L2 (S2,Ω (dx))} , be a generalized random field on the
sphere S2 ⊂ R3. Then, WB defines a white noise process on the sphere if

〈f.g〉L2(S2,Ω(dx)) = 〈WB (f) ,WB (g)〉L2(Ω,A,P) .

Thus, the induced white noise measure ∂WB satisfies

E∂WB (x) ∂WB

(
x′
)
= δ

(
x− x′

)
Ω (dx)

Now consider L2 (S2,Ω (dx)), and the space H (WB), subspace of L2 (Ω,A,P) defined as the
closed span in L2 (Ω,A,P) of {WB (f) , f ∈ L2 (S2,Ω (dx))}. The following isometry

I : L2 (S2,Ω (dx))→ H (WB) ; I (f)→WB (f) ,∀f ∈ L2 (S2,Ω (dx))

holds between the spaces L2 (S2,Ω (dx)), and the space H (WB), with

〈f.g〉L2(S2,Ω(dx)) = 〈WB (f) ,WB (g)〉L2(Ω,A,P) .

22



Thus, the Reproducing Kernel Hilbert space (RKHS) of the generalized random field W can
be isometrically identified with the space L2 (S2,Ω (dx)). This corresponds to the notion of white
noise in Hilbert spaces (e.g., in the sense of generalized functions, see [24]). In the Gaussian
case, we have the Wiener measure on the sphere, as an example of generalized Gaussian white
noise on the sphere.

Following the line of the papers [3], [32] one can obtain the angular spectrum in Example
1, by using the theory of generalized random fields, see [24], and also some ideas are already
introduced in [21].We can construct fractional generalized random fields in the sphere, following
the methodology of the papers [32] [49], by using the covariance factorization which follows from
the Karhunen-Loéve representation. Using the isomorphism between the fractional Sobolev
spaces related to the sphere [21] and the corresponding RKHSs of the fractional generalized
spherical random fields, which is equivalent to the existence of the dual random field, one can
define the solution to the fractional elliptic pseudo-differential equation on the sphere in a weak
sense. Moreover, under some conditions on the non-local fractional order pseudo-differential
equations, using embedding of fractional Sobolev spaces into the Hölder space related to the
sphere [21], one can define the solution in the strong sense, by using the following integral
representation valid in the mean square sense of generalized random fields on the sphere:

T (f) =
m.s.

∫

S2

f (x)T (x) Ω (dx) ,

where T (x) is an ordinary random field on the sphere.

C Thorin class and measure

We next define the Thorin class on R (see [59]; [9], [30]) as follows: We refer to γx as an
elementary gamma random variable if x is nonrandom non-zero vector in R, and γ is a gamma
random variable on R+. Then, the Thorin class on R (or the class of extended generalized
gamma convolutions), denoted by T (R), is defined as the smallest class of distributions that
contains all elementary gamma distributions on R, and is closed under convolution and weak
convergence. It is known that T (R) ⊂ SD(R) ⊂ ID(R), and inclusions are strict. Since any
selfdecomposable distribution on R is absolutely continuous (see, for instance, Example 27.8
in [50]) and is unimodal (by[67]; see also Theorem 53.1 in [50]), then, any selfdecomposable
distribution has a bounded density function.

If a probability distribution function F belongs to T (R), then, its characteristic function
has the form (see [59], [9])

φ(θ) = exp

(
iθa− bθ2

2
−
∫

R

[
log

(
1− iθ

u

)
+

iuθ

1 + u2

]
U(du)

)
, (42)

where a ∈ R, b ≥ 0, and U(du) is a non-decreasing measure on R\{0}, called Thorin measure,
such that

U(0) = 0,

∫ 1

−1
|log |u||U(du) <∞,

∫ −1

−∞

1

u2
U(du) +

∫ ∞

1

1

u2
U(du) <∞.

The Lévy density of a distribution from the Thorin class is such that

|u|q(u) =





∫∞
0 exp(−yu)U(dy), u > 0

∫∞
0 exp(yu)U(dy), u < 0,

(43)

where U(du) is the Thorin measure. In other words, the Lévy density is of the form h(|u|)/|u|,
where h(|u|) = h0(r), r ≥ 0, is a completely monotone function over (0,∞).
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D Some Formulae

We list here some formulae used in the paper.

1. Let Z = X + iY be a complex Gaussian variate, then by definition X and Y are real
independent Gaussian random variables with VarX = VarY . If VarZ = σ2, then VarX =
σ2/2. Put EZ = 0. The Hermite polynomial of degree 2 of two complex Gaussian
variables Z1 and Z2, say, is defined by H2 (Z1, Z2) = Z1Z2

∗ − cov (Z1, Z2). Let H2 (Z)
denote H2 (Z,Z) for simplicity, i.e. H2 (Z) = |Z|2 − σ2 = X2 − σ2/2 + Y 2 − σ2/2 =
H2 (X)+H2 (Y ), in other words H2 (Z) is the sum of two independent real valued Hermite
polynomial of degree 2. The variance of H2 (Z) is obtained as the sum of variances
VarH2 (X) + VarH2 (Y ) = 4σ

4/4 = σ4. We have the higher order cumulants of Hermite
polynomials (see [57], 1.4.3, Example 10), as follows,

Cum
k
(H2 (Z)) = Cum

k
(H2 (X) +H2 (Y ))

= 2 ∗ 2k−1 (k − 1)!
(
σ2/2

)k
= (k − 1)!σ2k. (44)

In case Z is real-valued we have

Cum
k
(H2 (Y )) = 2

k−1 (k − 1)!σ2k. (45)

2. Integral using Haar measure

1

4π

∫

S2

U (x) Ω (dx) =

∫

SO(3)
U (gN) dg, (46)

where Ω (dx) = sinϑdϑdϕ is the Lebesgue element of the surface area on S2 and

dg = sinϑdϑdϕdγ/8π2

is the Haar measure. [55] I.4.14.

3. Wigner D-matrix. For a rotation g ∈ SO (3), let Λ (g)Y m
` (x) = Y m

`

(
g−1x

)
, then

Λ (g)Y m
` (x) =

∑̀

k=−`

D
(`)
k,m (g)Y

k
` (x) , (47)

and ∫

SO(3)
D
(`1)∗
m1,k1

D
(`2)
m2,k2

dg = δ`1,`2δm1,m2
δk1,k2

1

2`1 + 1
. (48)

see [60], 4.11.1.

4. Standardized Legendre polynomial P0 (x) = 1,

P` (x) =
1

2``!

d`
(
x2 − 1

)`

dx`
, x ∈ [−1, 1] , (49)

P` (1) = 1.

5. Orthonormal spherical harmonics with complex values Y m
` (ϑ, ϕ), ` = 0, 1, 2, . . ., m =

−`,−` + 1, . . . − 1, 0, 1, . . . , ` − 1, ` of degree ` and order m (rank ` and projection m).
They satisfy ∫ π

0
dϑ

∫ 2π

0
dϕY m

` (ϑ, ϕ)Y m′

`′ (ϑ, ϕ)∗ = δ`,`′δm,m′ ,
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and are defined as

Y m
` (ϑ, ϕ) = (−1)m

√
2`+ 1

4π

(`−m)!
(`+m)!

Pm` (cosϑ) e
imϕ, ϕ ∈ [0, 2π] , ϑ ∈ [0, π] , (50)

where Pm` is the associated normalized Legendre function of the first kind (Gegenbauer
polynomial at particular indices) of degree ` and order m, defined by

Pm` (x) = (−1)m
(
1− x2

)m/2 dmP` (x)
dxm

,

P−m` (x) = (−1)m Γ (`−m+ 1)
Γ (`+m+ 1)

Pm` (x) .

Note that P` = P 0` . We have Y
m
` (ϑ, ϕ)∗ = (−1)m Y −m` (ϑ, ϕ). In particular

Y 0` (ϑ, ϕ) =

√
2`+ 1

4π
P` (cosϑ) ,

Y m
` (N) = δm,0

√
2`+ 1

4π
.

References

[1] NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.17 of
2017-12-22. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F.
Boisvert, C. W. Clark, B. R. Miller and B. V. Saunders, eds.

[2] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables. Dover Publications Inc., New York, 1992. Reprint of
the 1972 edition.

[3] V. V. Anh, N. N. Leonenko, and M. D. Ruiz-Medina. Space-time fractional stochastic
equations on regular bounded open domain. Fractional Calculus and Applied Analysis,
19(5):1161—1199, 2016.

[4] K. Atkinson and W. Han. Spherical Harmonics and Approximations on the Unit Sphere:
an Introduction, volume 2044. Springer, 2012.

[5] P. Baldi, G. Kerkyacharian, D. Marinucci, and D. Picard. Adaptive density estimation for
directional data using needlets. The Annals of Statistics, 37(6A):3362—3395, 2009.

[6] P. Baldi and D. Marinucci. Some characterizations of the spherical harmonics coefficients
for isotropic random fields. Statistics & Probability Letters, 77:490—496, 2007.

[7] R. Balgovind, A. Dalcher, M. Ghil, and E. Kalnay. A stochastic-dynamic model for the
spatial structure of forecast error statistics. Monthly Weather Review, 111(4):701—722,
1983.

[8] Á. Baran and Gy. Terdik. Power spectrum estimation of spherical random fields based on
covariances. Annales Mathematicae et Informaticae, 44:15—22, 2015.

[9] O. E. Barndorff-Nielsen, M. Maejima, and K. Sato. Some classes of multivariate infinitely
divisible distributions admitting stochastic integral representations. Bernoulli, 12(1):1—33,
2006.

[10] E. Breitenberger. Analogues of the normal distribution on the circle and the sphere. Bio-
metrika, 50:81—88, 1963.

25



[11] P. Cabella and D. Marinucci. Statistical challenges in the analysis of cosmic microwave
background radiation. The Annals of Applied Statistics, 3(1):61—95, 2009.

[12] V. Cammarota and D. Marinucci. On the limiting behaviour of needlets polyspectra.
Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, 51(3):1159—1189, 2015.

[13] Planck Collaboration, N. Aghanim, M. Arnaud, M. Ashdown, J. Aumont, C. Baccigalupi,
A. J. Banday, R. B. Barreiro, J. G. Bartlett, N. Bartolo, E. Battaner, and et al. (214 more).
Planck 2015 results. XI. CMB power spectra, likelihoods, and robustness of parameters.
Astronomy & Astrophysics, 2015.

[14] Planck Collaboration, N. Aghanim, C. A. Caplan, and P. R. A. et al. (94 more) Ade. Planck
2013 results. XXIII. Isotropy and statistics of the CMB. Astronomy & Astrophysics, 2015.

[15] C. Durastanti, X. Lan, and D. Marinucci. Needlet-whittle estimates on the unit sphere.
Electronic Journal of Statistics, 7:597—646, 2013.

[16] C. Durastanti, X. Lan, and D. Marinucci. Gaussian semiparametric estimates on the unit
sphere. Bernoulli, 20(1):28—77, 2014.

[17] C. Durastanti, D. Marinucci, and G. Peccati. Normal approximations for wavelet coef-
ficients on spherical poisson fields. Journal of Mathematical Analysis and Applications,
409(1):212—227, 2014.

[18] G Efstathiou. Myths and truths concerning estimation of power spectra: the case for
a hybrid estimator. Monthly Notices of the Royal Astronomical Society, 349(2):603—626,
2004.

[19] G. Efstathiou, Y-Z. Ma, and D. Hanson. Large-angle correlations in the cosmic microwave
background. Monthly Notices of the Royal Astronomical Society, 407(4):2530—2542, 2010.

[20] C. Gaetan and X. Guyon. Spatial Statistics and Modeling, volume 81 of Springer Series in
Statistics. Springer Science+Business Media, 2010.

[21] R. N. Gantner, L. Herrmann, and C. Schwab. Quasi—monte carlo integration for affine-
parametric, elliptic pdes: Local supports and product weights. SIAM Journal on Numerical
Analysis, 56(1):111—135, 2018.

[22] G. Gaspari and S. E. Cohn. Construction of correlation functions in two and three dimen-
sions. Quarterly Journal of the Royal Meteorological Society, 125(554):723—757, 1999.

[23] A. E. Gelfand, P. Diggle, P. Guttorp, and M. Fuentes, editors. Handbook of Spatial Statis-
tics. Chapman & Hall/CRC press, 2010.

[24] I. M. Gelfand and N. Ya. Vilenkin. Generalized functions. Vol. 4, Applications of harmonic
analysis, volume 4. AMS Chelsea Publishing, Providence, RI, 2016. xiv+384 pp, 2016.
Translated from the 1961 Russian original [MR0146653] by Amiel Feinstein. Reprint of the
1964 English translation.

[25] D. Geller, X. Lan, and D. Marinucci. Spin needlets spectral estimation. Electronic Journal
of Statistics, 3:1497—1530, 2009.

[26] T. Gneiting. Strictly and non-strictly positive definite functions on spheres. Bernoulli,
19(4):1327—1349, 2013.

[27] K. M. Gorski, E. Hivon, A. J. Banday, B. D. Wandelt, M. Hansen, F. K .and Reinecke, and
M. Bartelmann. HEALPix a framework for high-resolution discretization and fast analysis
of data distributed on the sphere. The Astrophysical Journal, 622(2):759, 2005.

26



[28] J. Guinness and M. Fuentes. Isotropic covariance functions on spheres: Some properties
and modeling considerations. Journal of Multivariate Analysis, 143:143—152, 2016.

[29] C. Huang, H. Zhang, and S. M. Robeson. On the validity of commonly used covariance
and variogram functions on the sphere. Mathematical Geosciences, 43(6):721—733, 2011.

[30] L. F. James, B. Roynette, and M. Yor. Generalized gamma convolutions, Dirichlet means,
Thorin measures, with explicit examples. Probab. Surv., 5:346—415, 2008.

[31] J. Jeong, M. Jun, and M. G. Genton. Spherical process models for global spatial statistics.
Statistical Science, 32(4):501—513, 2017.

[32] M Ya. Kelbert, N. N. Leonenko, and M. D. Ruiz-Medina. Fractional random fields associ-
ated with stochastic fractional heat equations. Advances in Applied Probability, 31(1):108—
133, 2005.

[33] A. Lang and C. Schwab. Isotropic gaussian random fields on the sphere: Regularity, fast
simulation and stochastic partial differential equations. The Annals of Applied Probability,
25(6):3047—3094, 2015.

[34] N. N. Leonenko, M. D. Ruiz-Medina, and M. S. Taqqu. Rosenblatt distribution subordi-
nated to gaussian random fields with long-range dependence. Stoch. Anal. Appl., 35(1):144—
177, 2017.

[35] C. Ma. Stationary and isotropic vector random fields on spheres. Mathematical Geosciences,
44(6):765—778, 2012.

[36] C. Ma. Isotropic covariance matrix polynomials on spheres. Stochastic Analysis and Ap-
plications, 34(4):679—706, 2016.

[37] M. Maejima and C. A. Tudor. On the distribution of the Rosenblatt process. Statistics &
Probability Letters, 83(6):1490—1495, 2013.

[38] K. V. Mardia and P. E. Jupp. Directional Statistics, volume 494. John Wiley & Sons, 2009.

[39] D. Marinucci. High-resolution asymptotics for the angular bispectrum of spherical random
fields. Ann. Statist., 34:1—41, 2006.

[40] D. Marinucci. A central limit theorem and higher order results for the angular bispectrum.
Probability Theory and Related Fields, 141:389—409, 2008. 10.1007/s00440-007-0088-8.

[41] D. Marinucci and G. Peccati. Random Fields on the Sphere, volume 389 of London Math-
ematical Society, Lecture Notes Series. Cambridge University Press, Cambridge, 2011.

[42] B. Matern. Spatial Variation, volume 36 of Lecture Notes in Statistics. Springer-Verlag,
New York, 2nd ed., 1986.

[43] G. R.. North, J. Wang, and M. . Genton. Correlation models for temperature fields. Journal
of Climate, 24(22):5850—5862, 2011.

[44] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes:
The art of scientific computing, volume 2. Cambridge University Press London, 1987.

[45] S. Rao Jammalamadaka and A. SenGupta. Topics in Circular Statistics, volume 5. World
Scientific, 2001.

[46] M. Rosenblatt. Independence and dependence. In Proc. 4th Berkeley Sympos. Math. Statist.
and Prob., Vol. II, pages 431—443. Univ. California Press, Berkeley, Calif., 1961.

27



[47] M. Rosenblatt. Some limit theorems for partial sums of quadratic forms in stationary
Gaussian variables. Z. Wahrsch. Verw. Gebiete, 49(2):125—132, 1979.

[48] R. Roy. Estimation of the covariance function of a homogeneous process on the sphere.
The Annals of Statistics, pages 780—785, 1973.

[49] M. D. Ruiz-Medina, J. M. Angulo, and V. V. Anh. Spatial and spatiotemporal karhunen-
loève-type representations on fractal domains. Stochastic Analysis and Applications,
24(1):195—219, 2006.

[50] K. Sato. Lévy Processes and Infinitely Divisible Distributions, volume 68 of Cambridge
Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999. Trans-
lated from the 1990 Japanese original, Revised by the author.

[51] O. Schabenberger and C. A. Gotway. Statistical Methods for Spatial Data Analysis. CRC
Press, 2005.

[52] I. J. Schoenberg. Positive definite functions on spheres. Duke Math. J., 9:96—108, 1942.

[53] M. Schreiner. On a new condition for strictly positive definite functions on spheres. Pro-
ceedings of the American Mathematical Society, 125:531—539, 1997.

[54] M. Sherman. Spatial Statistics and Spatio-Temporal Data: Covariance Functions and Di-
rectional Properties . Wiley Series in Probability and Statistics. John Wiley & Sons, Ltd,
2011.

[55] E. M. Stein and G. Weiss. Introduction to Fourier analysis on Euclidean spaces. Princeton
University Press, Princeton, N.J., 1971. Princeton Mathematical Series, No. 32.

[56] I. Szapudi, S. Prunet, D. Pogosyan, A. S Szalay, and J R. Bond. Fast cosmic mi-
crowave background analyses via correlation functions. The Astrophysical Journal Letters,
548(2):L115, 2001.

[57] Gy. Terdik. Bilinear Stochastic Models and Related Problems of Nonlinear Time Se-
ries Analysis; A Frequency Domain Approach, volume 142 of Lecture Notes in Statistics.
Springer Verlag, New York, 1999.

[58] Gy. Terdik. Angular spectra for non-Gaussian isotropic fields. Braz. J. Probab. Stat.,
29(4):833—865, 2015.

[59] O. Thorin. An extension of the notion of a generalized γ-convolution. Scandinavian Actu-
arial Journal, 1978(3):141—149, 1978.

[60] D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii. Quantum Theory of Angular
Momentum. World Scientific Press, 1988.

[61] M. S. Veillette and M. S. Taqqu. Berry—Esseen and Edgeworth approximations for the nor-
malized tail of an infinite sum of independent weighted gamma random variables. Stochastic
Processes and their Applications, 122(3):885—909, 2012.

[62] M. S. Veillette and M. S. Taqqu. Properties and numerical evaluation of the Rosenblatt
distribution. Bernoulli, 19(3):982—1005, 2013.

[63] A. Weaver and P. Courtier. Correlation modelling on the sphere using a generalized dif-
fusion equation. Quarterly Journal of the Royal Meteorological Society, 127:1815—1846,
2001.

[64] S. Weinberg. Cosmology. Oxford University Press, 2008.

28



[65] Wikipedia. https : //en.wikipedia.org/wiki/Cosmic_microwave_background, 2017.
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