
ORIGINAL ARTICLE Reproductive endocrinology

Human anogenital distance:
an update on fetal smoke-exposure
and integration of the perinatal
literature on sex differences
Paul A. Fowler1,*, Panagiotis Filis1, Siladitya Bhattacharya2,
Bruno le Bizec3, Jean-Philippe Antignac3, Marie-Line Morvan3,
Amanda J. Drake4, Ugo Soffientini5, and Peter J. O’Shaughnessy5

1Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK 2Institute of Applied Health Sciences,
University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK 3USC INRA 1329 Laboratoire d’Etude des Résidus et Contaminants dans
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studyquestion: Do sex and maternal smoking effects on human fetal anogenital distance (AGD) persist in a larger study and how do these
data integrate with the wider literature on perinatal human AGD, especially with respect to sex differences?

summary answer: Second trimester sex differences in AGD are broadly consistent with neonatal and infant measures of AGD and ma-
ternal cigarette smoking is associated with a temporary increase in male AGD in the absence of changes in circulating testosterone.

what is known already: AGD is a biomarker of fetal androgen exposure, a reduced AGD in males being associated with cryptorchid-
ism, hypospadias and reduced penile length. Normative fetal AGD data remain partial and windows of sensitivityof human fetal AGD to disruption
are not known.

study design, size, duration: The effects of fetal sex and maternal cigarette smoking on the second trimester (11–21 weeks of
gestation) human fetal AGD were studied, along with measurement of testosterone and testicular transcripts associated with apoptosis and
proliferation.

participants/materials, setting methods: AGD, measured from the centre of the anus to the posterior/caudal root of
penis/clitoris (AGDapp) was determined in 56 female and 70 male morphologically normal fetuses. These data were integrated with current lit-
erature on perinatal AGD in humans.

main results and the role of chance: At 11–13 weeks of gestation male fetal AGDapp was 61% (P , 0.001) longer than in
females, increasing to 70% at 17–21 weeks. This sexual dimorphism was independent of growth characteristics (fetal weight, length, gonad
weight). We confirmed that at 14–16 weeks of gestation male fetal AGDapp was increased 28% (P , 0.05) by in utero cigarette smoke ex-
posure. Testosterone levels were not affected by smoking. To develop normative data, our findings have been integrated with available data
from in vivo ultrasound scans and neonatal studies. Inter-study variations in male/female AGD differences lead to the conclusion that nor-
malization and standardization approaches should be developed to enable confidence in comparing data from different perinatal AGD
studies.

limitations, reasons for caution: Sex differences, and a smoking-dependent increase in male fetal AGD at 14–16 weeks,
identified in a preliminary study, were confirmed with a larger number of fetuses. However, human fetal AGD should, be re-assessed once
much larger numbers of fetuses have been studied and this should be integrated with more detailed analysis of maternal lifestyle. Direct study
of human fetal genital tissues is required for further mechanistic insights.
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wider implications of the findings: Fetal exposure to cigarette smoke chemicals is known to lead to reduced fertility in men
and women. Integration of our data into the perinatal human AGD literature shows that more work needs to be done to enable reliable inter-
study comparisons.
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Introduction
It is known that anogenital distance (AGD) reflects in utero masculiniza-
tion (Dean and Sharpe, 2013) and in newborn humans AGD is very
clearly sexually dimorphic. AGD is being used increasingly as a bio-
indicator of fetal androgen exposure in humans and, in particular, to es-
timate the consequences of adverse in utero exposure (e.g. Swan et al.,
2005; Kristensen et al., 2011; Mendiola et al., 2011; Castano-Vinyals
et al., 2012; Eisenberg et al., 2012; Hsieh et al., 2012; Barrett et al.,
2013; Jain and Singal, 2013; Papadopoulou et al., 2013b; Vafeiadi et al.,
2013; Mira-Escolano et al., 2014a, b; Thankamony et al., 2014; Adibi
et al., 2015; Bornehag et al., 2015; Swan et al., 2015). There is, for
example, increasing evidence for a strong link between AGD and repro-
ductive health in men (Eisenberg et al., 2011) and women (Mendiola
et al., 2012). There has also been considerable interest in AGD with
respect to its gestational correlates, including aspects of fetal/neonatal
growth and maternal characteristics (Salazar-Martinez et al., 2004;
Sathyanarayana et al., 2010; Papadopoulou et al., 2013a; Barrett et al.,
2014). An understanding of normal fetal AGD development in the
human is clearly critical, therefore, in order to assess fully the importance
and biomedical utility of this parameter (Salazar-Martinez et al., 2004).

We previously published a study that measured AGD in a population
of 83 electively terminated, normally progressing human fetuses (11–21
weeks of gestation) (Fowleret al., 2011b). That studyshowed that AGD is
already clearly sexually dimorphic at 11–13 weeks of gestation and that
maternal smoking is associated with significantly increased male fetal
AGD at 14–16 weeks of gestation. The effect of maternal smoking was
surprising given the clear links between maternal cigarette smoking,
altered reproductive development and subfertility in adulthood (Jensen
et al., 2007; Ramlau-Hansen et al., 2007; Werler, 2007; Fowler et al.,
2008). Thedata reported in (Fowleret al., 2011b) must be considered pre-
liminary, however, in terms of the sample number and there has also been
further work reported which extends our knowledge of AGD in humans
during the third trimester and up to 24 months post-natally (Thankamony
et al., 2009; Gilboa et al., 2014). For these reasons, we have extended our
initial study to increase the number of second trimester human fetuses and
have attempted to integrate these data into the published literature in
order to generate a more complete understanding of changes in human
AGD during the fetal and neonatal period.

Materials and Methods

Study population
The collection of fetal material (detailed in O’Shaughnessy et al., 2007)
was approved by the NHS Grampian Research Ethics Committees (REC

04/S0802/21). Women seeking elective, medical terminations of pregnancy
were recruited with full written, informed, consent by nurses working inde-
pendently at Aberdeen Pregnancy Counselling Service. There was no change
in patient treatment or care associated with recruitment to the study and
women were able to withdraw from the study at any point. Fetal normality
was determined atultrasound scan 2–9 days prior to the termination of preg-
nancy. Women bearing abnormal fetuses were not consented for study. Only
fetuses from normally progressing pregnancies, from women over 16 years of
age with a good understanding of English and between 11 and 21 weeks of
gestation, were collected. Fetuses were transported to the laboratory
within 30 min of delivery, weighed, crown-rump length (CRL) recorded
and sexed (Fowler et al., 2008). Morphologically abnormal fetuses were
not included in the study. One gonad was fixed overnight in neutral-buffered
formaldehyde, transferred to 70% ethanol and processed for histology.
Haematoxylin and eosin-stained gonadal sections were examined to
confirm gonadal sex and gross normality.

Plasma cotinine and testosterone
measurement
Cotinine, a metabolite of nicotine and a marker of smoking, was determined
in fetal plasma, obtained by cardiac puncture ex vivo, using a semi-quantitative
commercial assay (Cozart Plc, Abingdon, Kent, UK). Values between 0
and 12 ng cotinine/ml were considered negative (Fowler et al., 2008). In
28 male foetuses, plasma testosterone concentration levels were deter-
mined by gas chromatography coupled to tandem mass spectrometry
(GC-MS/MS) using the isotope dilution quantification method (Courant
et al., 2007, 2010). For testosterone assay, the fetuses were carefully
balanced (n ¼ 14 controls and 14 smoke-exposed fetuses) with matched
fetal age (15.3+ 2.0 versus 15.4+1.9 weeks of gestation, P ¼ 0.907), ma-
ternal age (26+ 2 versus 24+1 years, P ¼ 0.747) and maternal body mass
index (BMI) (25.8+ 1.5 versus 24.7+ 1.1 kg/m2, P ¼ 0.766) between the
control and smoke-exposed groups, respectively.

AGD (AGDapp) measurement
‘Long’ AGD was measured in 126 consecutively collected human fetuses ex
vivo, from the centre of the anus to caudal or posterior insertion of the penis
or clitoris (AGDapp) using digital callipers (150 mm ISO 9001 electronic cal-
liper, Tesa Technology, Renens, Switzerland) as shown in Fig. 1A and in
Fowler et al. (2011b). Briefly, for each fetus AGDapp was measured as
follows: the fetus was laid supine with its legs slightly bent at the knees so
that the feet were flat to the dissection surface. By placing the fetus upon la-
boratory absorbent paper, the fetus remained stable due to slight adhesion of
damp skin to the absorbent paper. The fixed calliper point was aligned to the
centre of the anus and the moveable point adjusted to line up with posterior
insertion of the penis or clitoris and the digital reading recorded. The average
of two separate measurements of AGDapp was recorded. Over the collec-
tion period, three separate researchers recorded AGDapp and the spread
of AGDapp measurements in relation to fetal age was not different
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between operators. In addition, ANOVA using ‘operator’ as a term to
analyse AGD yielded P ¼ 0.887. The operators were blinded to maternal
smoking status. The reason for using these parameters is that in the
younger fetuses measuring ‘short’ AGD anus to scrotum (AGDas) or anus
to base of the posterior fourchette (AGDaf) as in (Thankamony et al.,
2009; Gilboa et al., 2014) (Fig. 1B) would decrease the accuracy of the mea-
sures due to the very small size of the younger fetuses. Subsequently, ‘long’
AGD measurements (Fig. 1C) from anus to cephalad insertion of the penis
(AGDap) and anus to the anterior tip of the clitoral hood (AGDac) have
been used in neonates (Swan et al., 2015), which could be applied to our
second trimester population.

Real-time quantitative PCR
We have previously found no association between maternal cigarette
smoking and testicular anti-apoptotic BCL2 or pro-apoptotic BAX transcript
expression in smoke-exposed fetuses (Fowler et al., 2008). In this study, we
measured fetal testis transcript expression of: (i) proliferation-associated
PA2G4 (proliferation-associated 2G4, also called EBP1), which is also a tran-
scriptional co-repressor of androgen receptor-regulated genes (Lamartine
et al., 1997) and (ii) apoptosis-inducing factor mitochondrion associated
AIFM1 (Xie et al., 2005). For quantification of specific mRNA species (see
Fowler et al., 2009a,b, 2011a) quantitative PCR (qPCR) was used after
reverse transcription of isolated RNA (see O’Shaughnessy et al., 2007).
The quantity of each measured cDNA from the real-time PCR was expressed

relative to the house-keeping gene TBP (O’Shaughnessy et al., 2011a,b). The
primer sequences are shown in Supplementary data, Table S1.

Data analysis
JMP 9.0.3 software (Thomas Learning, London, UK) was used. Normality of
data distribution was tested with the Shapiro–Wilk test. Non-normally distrib-
uted data were examined by Wilcoxon test. Normally distributed data, with
log-transformation as required, were analysed by one-way and two-way
ANOVA and Tukey–Kramer Honestly Significant Difference post-hoc test.
Relationships between morphological measures and weeks of gestation were
also explored by linear regression with log transformation as appropriate.

Results
Measurements of AGD, and supporting data, were collected from 126
elective terminations of normally progressing pregnancies as summar-
ized in Table I. No statistically significant differences in maternal indices
were observed between the four groups based upon fetal sex and mater-
nal smoking status.

Sex dimorphism in AGD
Overall, the male fetuses tended to be older than the females but this
was not significant for the controls (Table I). This was also reflected by
a lack of significant difference between any non-AGD measure other
than paired gonad weights, where males had heavier gonads (P , 0.01).
All measures of AGD (AGDapp) were significantly (P , 0.05–0.001)
shorter in females than males. Overall, the rate of increase in AGDapp,
either as raw data (Fig. 2A) or normalized against CRL (Fig. 2B) was
slightly higher in males. If the period of study is divided into three
developmental windows (Table II), both AGDapp and AGDapp normalized
to ponderal index (an indication of the leanness of the fetus, calculated as:
body weight g/[CRL cm3]) were significantly shorter in female fetuses at all
three periods, with female/male ratiosof61% (P , 0.001), 63% (P , 0.01)
and 70% (P , 0.01) at 11–13, 14–16 and 17–21 weeks, respectively.

Effect of maternal cigarette smoking
on fetal AGD
Maternal cigarette smoking had no significant association with female
fetal AGDapp using the unprocessed data (Table I) or following separ-
ation in developmental windows (Table II). In contrast, both unpro-
cessed AGDapp and AGDapp normalized against ponderal index were
significantly (P , 0.05) increased in smoke-exposed males (Table I).
When data were separated into three developmental windows
(Table II), it was clear that at 14–16 weeks of gestation, maternal
smoking was associated with significantly (P , 0.05) increased AGDapp

and AGDapp, normalized against ponderal index. Figure 2C shows
smoke-exposed versus control divergence in AGDapp with the relative dif-
ference between control and smoke-exposed fetuses largest at 14–16
weeks of gestation. No significant difference in variance was observed
between groups (Levene’s Test). Further analysis by two-way ANOVA
(sex, smoking, gestational age) confirmed interactions between sex and
weeks of gestation (P , 0.001) and between sex and smoking (P , 0.01).

Testosterone and proliferation/apoptosis
in relation to fetal AGD
We have previously reported that maternal smoking is not associated
with significantly altered male fetal human plasma testosterone (by

Figure1 Landmarks for AGD determinations. (A) The present study
and (B and C) other published studies in fetuses and neonates. In all
cases, the centre of the anus is taken as a common landmark.
In males, AGD has been measured as anus to: (A) caudal or posterior
insertion of the penis (AGDapp), (B) scrotum (AGDas) or (C) cephalad
insertion of the penis (AGDap). In female, AGD has been measured as
anus to: (A) caudal or posterior insertion of the clitoris which is relatively
large during the second trimester (AGDapp), (B) base of the posterior
fourchette (AGDaf) and (C) anterior tip of the clitoral hood (AGDac).
Redrawn from Salazar-Martinez et al. (2004), Thankamony et al.
(2009), Sathyanarayana et al. (2010, 2015), Fowler et al. (2011b), Papa-
dopoulou et al. (2013a, b), Vafeiadi et al. (2013), Barrett et al. (2014),
Gilboa et al. (2014) and Swan et al. (2015).
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DELFIA assay: (O’Shaughnessy et al., 2007; Fowler et al., 2008)). In
the current study, male fetal plasma testosterone (measured
using GC-MS/MS) was similar in both control and smoke-exposed
fetuses (1.77+0.28 ng/ml in controls versus 1.80+0.34 ng/ml in
smoke-exposed, P ¼ 0.646, see Table III). In 21 of these male fetuses,
AGD data were also available but we found no statistically significant
correlation between concurrent circulating testosterone and either
raw AGD or AGD normalized by BMI, CRL or ponderal index. It
should be noted that the spread of fetuses across the whole age range
reduces the magnitude of the difference in AGD associated with mater-
nal smoking. Taken together with our previously published data, this
shows that smoke-exposure is not associated with any change in the
profile of decreasing testosterone levels across the second trimester.
There was no significant effect of smoke exposure on transcript levels of
either PA2G4 (74,832+12,589 versus 79,631+13,674 (/TBP × 103),
P ¼ 0.575) or AIFM1 (6821+655 versus 7207+981(/TBP × 103),
P ¼ 0.767). However, maternal smoking was associated with significant
changes in the developmental trajectory of these transcripts across the
second trimester (Fig. 3). Specifically, the statistically significant trend
for increasing testis expression of PA2G4 is lost in smoke-exposed
fetuses (Fig. 3A) while the trend for stable testis AIFM expression
across the second trimester becomes a statistically significant trend for
reduced expression if the mother smokes (Fig. 3B).

Integrating AGD studies from fetal to
early post-natal life: developmental
trajectories of AGD
In Fig. 4, data on AGDapp from this study are integrated with data from
other studies reporting AGD measurements between 20 weeks of

gestation and 24 months post-natal. When both AGDas and AGDap

were measured in males and AGDaf and AGDac were measured in
females, the within-sex ratios between the two measures (i.e. using
different landmarks, see Fig. 1) were reasonably consistent (1.9–2.3
for males and 1.9–2.5 for females). Therefore, in terms of the trajector-
ies of increasing AGD with gestational age and at birth (Fig. 4A) the
AGDas and AGDaf and AGDap and AGDac values ended at similar
points when these ratios were used as conversion factors. It is clear
that from 10–13 weeks of gestation up to birth, AGD increases approxi-
mately linearly, with male AGD increasing along a steeper slope.
However, some interesting detail emerges with the in utero ultrasound
data overshooting cognate, landmark-method, neonatal AGD (AGDas,
AGDaf) as shown in Fig. 4B. In contrast, when linearly extrapolated,
our ex vivo second trimester data showed close similarity to neonatal
AGDap in males, whereas in females the extrapolation markedly
undershot neonatal AGDac values.

Integrating AGD studies from fetal to early
post-natal life: sexual dimorphism in AGD
We further interrogated our data and the literature by calculating the
ratio of male:female AGD (male AGD/female AGD), i.e. the larger
the value, the greater the sexual dimorphism in AGD (Fig. 4C). Apart
from Thankamony et al. (2009), all the male/female AGD ratios fell
between 1.4 and 1.9 and the AGDas/AGDaf sex dimorphism ratios
were higher than the AGDap/AGDac ratios. What is also apparent,
however, from the combined data are that the study/methodology/
landmark selection is a greater determinant of the male/female AGD
ratio than fetal or neonatal age (Fig 4C).

................................................................. .................................................................

.............................................................................................................................................................................................

Table I Characteristics of the pregnancies and fetuses included (mean+++++ SEM).

Female Male

Control Smoke-exposed P-valuea Control Smoke-exposed P-valuea

N 32 24 56 31 39 70

Maternal indices

Age (years) 25.3+1.2 22.8+1.0 0.135 23.2+1.1 25.4+0.9 0.056

BMI (kg/m3) 24.5+0.8 26.0+1.3 0.830 25.0+0.9 25.6+1.0 0.917

Cigarettes/day 0 10.2+0.9 0 10.9+0.9

Fetal indices

Weeks of gestation 14.4+0.4 14.6+0.5 0.643 15.1+0.4 15.7+0.3 0.225

Weight (g) 76.2+14.3 76.7+13.0 0.294 87.9+13.2 111.2+12.4 0.123

CRL (mm) 96.6+5.5 95.8+4.5 0.634 102.1+4.8 113.5+4.7 0.092

Paired gonad weight (mg) 18.2+3.1b 20.2+3.2 0.440 28.0+3.4b 36.5+4.3 0.126

Ponderal index (weight g/[CRL cm3]) 0.066+0.001 0.070+0.005 0.662 0.069+0.003 0.064+0.002 0.207

AGD measures

AGDapp (mm)c 4.87+0.41b 4.66+0.33 0.766 9.06+0.77b 10.99+0.64 0.034

AGDapp/weight 0.11+0.01b 0.09+0.01 0.344 0.14+0.01b 0.13+0.09 0.741

AGDapp/CRL 0.050+0.002b 0.048+0.002 0.678 0.086+0.004b 0.094+0.003 0.113

AGDapp/ponderal index 75.6+6.0b 68.2+4.5 0.700 135.3+11.2b 175.5+12.4 0.020

aAssociation with maternal smoking.
bMale versus female controls: P , 0.05.
cAGDapp distance (mm) from the centre of the anus to caudal or posterior insertion of the penis or clitoris.
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Discussion

Use of AGD as an index of masculinization and, hence, exposure to
androgen in fetal life may be a particularly powerful way of linking fetal
reproductive programming to adult disease. To fulfil this potential,
however, it is essential that normal population data are generated as
argued recently (Dean and Sharpe, 2013). In this study, we expand the
population size of our previous study (Fowler et al., 2011b) (from 83
to 126 fetuses) and also incorporate the data from 11 other published
studies on fetal, neonatal and early infancy AGD in both male and
female offspring. The combined data now provide a framework
showing changes in AGD across the entire sexually dimorphic period
of human gestation. Results from the expanded study confirm that:
(i) the male fetus already has a significantly greater AGD than the
female at 11–13 weeks of gestation, (ii) that there is a linear increase
in AGD in both sexes throughout gestation and (iii) that maternal
smoking is associated with a transient increase in male AGD during the
second trimester. The 53 additional fetuses combined with our previous
study data (Fowler et al., 2011b) have served to increase both the mag-
nitude and statistical significance of the effect of maternal smoking on
AGD in male fetuses at 14–16 weeks, adding confidence that this is a
consistent observation. Reviewing these results in the context of other
published data also shows, however, that considerable variation exists
across studies in certain measured parameters which may limit use of
AGD measurements unless more standardized procedures can be
developed.

One surprising finding identified in Fowler et al. (2011b) was that ma-
ternal smoking was associated with significantly increased AGD in male
fetuses, but not in females, during the middle part of the second trimes-
ter. Our expanded dataset (Table II) has strengthened the significance of
this observation with a 28% increase in male smoke-exposed AGD at
14–16 weeks. The findings with respect to smoke-exposure in other
gestation age groups have remained very similar between the original
study and the updated data in Fig. 1B. This finding was surprising since
it suggests a dysregulation of masculinization in the period following
peak testosterone in the male fetus (O’Shaughnessy et al., 2007), with
the dysregulation corrected by the end of the second trimester. This sug-
gests that androgen-dependent growth of the anogenital area is altered in
these smoke-exposed fetuses. We have previously found adverse and
sex-specific outcomes associated with maternal cigarette smoking
during pregnancy on a number of developmentally important organ
systems (e.g. testis, ovary, liver (Fowler et al., 2008, 2009a,b), (Fowler
et al., 2014) (O’Shaughnessy et al., 2011a,b, 2013; Drake et al., 2015;
Filis et al., 2015)) and changes in AGD may, therefore, be part of a
general trend. A theme common to these tissues is that there is evidence
for dysregulation (sex-dependent in the case of the liver) of the progres-
sion of organ development if the mother smokes while pregnant and at
least one pathway through which smoking may affect development is
via the aryl hydrocarbon receptor (AHR), at least in the ovary (Anderson
et al., 2014; Fowler et al., 2014). The subsequent reversal of the effects of
smoking on AGD in the male may be because of tissue plasticity which
has been shown (Gyekis et al., 2010; Mitchell et al., 2015), at least in
rodents, to allow recovery of AGD from adverse effects.

The increase in AGD in smoke-exposed males we report here is oc-
curring just after the peak time of androgen action on the AGD in the
male fetus. Maternal smoking does not appear to alter fetal testosterone

Figure 2 Divergent increase in male and female AGD during the
second trimester whether or not growth is included and effects of
maternal smoking on male AGD. (A) Raw AGDapp data (directly
measured) and (B) AGDapp normalized against fetal CRL in second tri-
mester female (n ¼ 56) and male (n ¼ 70) fetuses, respectively. The solid
lines show linear fits and the dotted linesdenote the 90% confidence inter-
vals for the linear regressions (A) C AGDapp ¼ 25.825 + 0.729*weeks,
P , 0.001, F AGDapp ¼ 213.612 + 1.539*weeks, P , 0.001 and (B)
C AGDapp/CRL¼ 0.0276 + 0.00147*weeks, P ¼ 0.045, F AGDapp/
CRL¼ 0.0279 + 0.00406*weeks, P , 0.001. In (C), maternal smoking
is associated with increased AGD (AGDapp) in 14–16 week old male
fetuses. Data are shown as box and whisker plots in which the horizontal
line in the boxes show the median values, with the limits of the boxes
showing the 25 and 75% quantiles and the whiskers showing the 10
and 90% quantiles. AGDapp distance (mm) from the centre of the
anus to caudal or posterior insertion of the penis or clitoris.
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levels, however, during the second trimester (this study and Fowler et al.,
2008) and so smoke-induced changes in AGD appear unlikely to be due
to direct changes in androgen levels. It is possible, however, that circulat-
ing testosterone levels may not be the most relevant indicator of andro-
gen exposure to the external genitalia since it has been shown that the
alternative, ‘backdoor’ pathway of androgen synthesis may be important
in the human (Fluck et al., 2011). More comprehensive analysis of circu-
lating androgens and maternal smoking effects in the human male fetus
would therefore be required in order to more comprehensively charac-
terize the impact of smoking on steroidogenesis. Alternatively, maternal
smoking may act on the AGD of male fetuses directly through interaction
with the effects of androgen or other endocrine systems. This may, for
example, be through effects on expression or activity of the androgen re-
ceptor in the region of the external genitalia. Maternal smoking is asso-
ciated with sex-specific alterations in hCG levels (Fowler et al.,
2009a,b, 2014; Varvarigou et al., 2009) and hCG has been linked to

adverse effects induced by some environmental chemical contaminants,
such as phthalates (Adibi et al., 2015). Changes in the gonadotrophin
drive may, therefore, have effects on AGD that do not depend on andro-
gen as an intermediary. Cigarette smoke also contains activating ligands
for the AHR (e.g. polycyclic aromatic hydrocarbons) and these have been
shown to be amongst the active compounds which affect female repro-
ductive development in rodents (Matikainen et al., 2001). Similarly,
changes in fetal AHR signalling have been shown to be associated with
adverse effects in the human fetal ovary (Anderson et al., 2014; Fowler
et al., 2014). While effects of AHR stimulation remain to be established
in androgen-responsive tissues such as the external genitalia it is possible
that the AHR system is involved in the association between maternal cig-
arette smoking and altered AGD.

We have, for the first time, characterized PA2G4 and AIFM1 expres-
sion in the human fetal testis to expand our understanding of the associ-
ation between maternal smoking and the balance between proliferation
and apoptosis in fetal tissues. For both transcripts maternal smoking
acted to alter the normal developmental trajectory, which might be
expected to change the dynamics of tissue growth. Reduced expression
of AIFM1 caused by maternal smoking would, for example, be indicative
of a reduction in apoptosis with potential adverse consequences, includ-
ing reduced protection from chemical-stress induced apoptosis (Urbano
et al., 2005) by AHR activating ligands (Coutts et al., 2007). Reduced
AIFM1 is also associated with disturbed oxidative phosphorylation
(Vahsen et al., 2004), suggesting another pathway to tissue damage in
smoke-exposed fetuses. In the case of PA2G4, changes in expression
may lead to altered growth regulation and to a potential reduction in
control of androgen signalling (Zhang and Hamburger, 2005; Zhou

................................................... ....................................................

.............................................................................................................................................................................................

Table II Comparison of fetal growth between 11–13, 14–16 and 17–21 weeks of gestation (mean+++++ SEM).

Weeks of gestation
window

Fetal characteristic Female Male

Control Smoke-exposed Control Smoke-exposed

11–13 Weeks of gestation (n) 12.5+0.2 (16) 12.7+0.2 (10) 12.6 + 0.4 (9) 12.8 + 0.2 (6)

Weight (g) 27.0+2.4 32.3+4.5 28.6 + 6.2 34.0 + 6.1

CRL (mm) 74.6+2.3 78.5+3.4 74.3 + 3.2 77.8 + 6.5

Paired gonad weight (mg) 9.6+1.2a 10.4+1.6 17.0 + 1.6a 15.0 + 1.5

AGDapp (mm) 3.55+0.24a 3.47+0.24 5.70 + 0.56a 6.61 + 0.70

AGDapp/ponderal index 56.2+5.5a 54.5+3.7 89.1 + 12.6a 98.6 + 15.2

14–16 Weeks of gestation (n) 15.0+0.5 (9) 14.6+0.2 (9) 14.7 + 0.3 (12) 15.0 + 0.2 (20)

Weight (g) 68.0+15.6 68.3+14.4 60.7 + 6.0 74.4 + 6.8

CRL (mm) 99.1+7.2 95.4+2.7 96.8 + 3.9 103.7 + 3.2

Paired gonad weight (mg) 17.4+4.0 17.8+3.6 21.2 + 2.1 27.5 + 2.4

AGDapp (mm) 4.65+0.39a 4.62+0.33 7.58 +++++ 0.63a 9.73 +++++ 0.55

AGDapp/ponderal index 76.2+7.2a 67.0+6.4 117.2 +++++ 11.9a 153.9 +++++ 9.7

17–21 Weeks of gestation (n) 18.0+0.5 (7) 18.4+0.4 (5) 17.9 + 0.4 (10) 18.2 + 0.3 (13)

Weight (g) 199.2+29.9 171.9+17.0 174.1 + 21.2 203.4 + 15.4

CRL (mm) 140.3+7.3 131.2+4.8 133.4 +++++ 4.5 147.8 +++++ 3.7

Paired gonad weight (mg) 42.2+8.9 43.7+5.1 45.2 + 6.5 62.3 + 9.1

AGDapp (mm)# 8.16+0.94a 7.08+0.51 13.85 + 1.17a 14.97 + 0.89

AGDapp/ponderal index 116.3+11.7a 94.7+7.8 198.6 + 16.2a 249.9 + 21.8

AGDapp, anogenital distance (mm) measured from the centre of the anus to caudal or posterior insertion of the penis or clitoris.
aMale versus female controls: P , 0.05; values in bold within each sex: P , 0.05.

........................................................................................

Table III Maternal smoking is not associated with
differences in the relationship between plasma
testosterone and AGDapp in male fetuses (mean+++++ SEM).

Fetal characteristic Control Smoke-exposed

Plasma testosterone (ng/ml) 1.77+0.28 1.80+0.34

AGDapp (mm)a 8.64+1.05 9.75+0.97

aAGDapp distance (mm) from the centre of the anus to caudal or posterior insertion of
the penis or clitoris.
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et al., 2010). The pattern of transcript dysregulation described here is
similar to that shown between maternal smoking and ovarian transcript
signalling with coincident alterations in ovarianmorphology (Fowleret al.,
2014). Since maternal smoking is associated with reduced fetal and pla-
cental growth, it may also be pertinent that PA2G4 and AIFM1 are wide-
spread in tissues and PA2G4-null and AIFM1-null mice show significant
growth reduction (although embryo lethal by GD9 in the case of
AIFM1) (Brown et al., 2006; Zhang et al., 2008).

Currently, published studies are lacking on the association between
maternal cigarette smoking, or other adverse maternal circumstances
(alcohol consumption, diet, obesity and deprivation), and the AGD of
offspring either post-natally or in adulthood. Therefore, further robust
AGD measures and their integration with reproductive and health
indices across life are required. In previous studies (Thankamony et al.,
2009; Gilboa et al., 2014), non-invasive approaches were used to quan-
tify AGD in the third trimester of pregnancy and in the neonate/infant
and this is probably the best way to develop this normative data. We
suggest that studies should be extended to include the effects of the ma-
ternal environment on the range of the normative data across pre-, peri-
and post-natal development.

Integration of data already available (Fig. 4A) shows that AGD
increases in a linear fashion throughout the second and third trimesters
of gestation in both sexes. However, there are sex-specific differences in
this pattern during fetal life. The growth in male fetal AGD from 11 to 21
weeks of gestation that we present here is linear, intersecting with the

range of landmark cognate measures of AGD in neonates from several
studies. In contrast, the equivalent AGD measure in our female fetuses
undershoots the expected neonatal AGDac from several studies by
some 10 mm. Given that we do not see a marked difference in overall
fetal weight and length in our control fetuses (Table II), the reason for
this is not clear. Some discrepancy between in utero ultrasound (Gilboa
et al., 2014) and in vivo post-natal AGD measurement would also be
expected because of the very different methodologies used to make
the measurements. However, when extrapolated, the ultrasound
AGD growth trajectory only deviates slightly from expected neonatal
AGDas and AGDaf measures from a number of studies. Taken together,
this suggests that there is a relative increase in female fetal AGD growth
rates at some point in the second half of pregnancy although there is in-
sufficient mechanistic data to do more than speculate about potential
mechanisms.

To gain a better understanding of the growth trends in AGD, we
plotted the male/female AGD ratio from 11 studies including the
present study (Fig. 4C). When these data are presented together,
there is clear variability in the male/female AGD ratio between studies
and between landmarks used. The most consistent difference is that
the AGDas/AGDaf ratio is higher (i.e. more masculinized) for a given
age than the AGDap/AGDac. This higher AGDas/AGDaf ratio may be
an indication that the whole AGD is not equally sexually dimorphic
with a greater effect of androgens seen in the region of the perineum.
Inter-study variability is most clearly seen in the reported male/female

Figure 3 Maternal cigarette smoking is associated with divergent changes in testis expression of transcripts for PA2G4 and AIFM1. In the case of
(A) PA2G4, a significant positive association between expression and fetal age is reversed by smoke-exposure while for (B) stable AIFM1, expression
is altered to a significant negative association between expression and fetal age. The solid lines show linear fits and the dotted lines denote the 90%
confidence intervals for the linear regressions.

Anogenital distance and human fetal smoke exposure 469

Downloaded from https://academic.oup.com/humrep/article-abstract/31/2/463/2380314
by Acquisitions user
on 28 August 2018



AGDas/AGDaf ratio at birth. For example, there is a 60% difference in
male/female AGD ratio (Sathyanarayana et al., 2010, 2015; Swan
et al., 2015) and (Thankamony et al., 2009; Adibi et al., 2015). The
reason for this is not clear—a primary cause could simply be ethnic
and technical variation. This is supported by the fact that in their more
recent publication on boys only (Thankamony et al., 2014), the mean
male AGDs were 3 mm shorter on average at 12 months post-natal
age than in Thankamony et al. (2009). Therefore, small sex-specific vari-
ation in AGDs between studies could manifest as quite large differences
in male/female AGD ratios. It is also noticeable that in Thankamony et al.
(2009) males were slightly heavier and longer at birth (and subsequently)
than females, whereas in other studies (e.g. Salazar-Martinez et al., 2004)
there was no sexual dimorphism in birth size. While this makes no differ-
ence in terms of within study analyses, an inevitable conclusion is that in
order to allow more robust inter-study comparisons, some effort must
be made to find methodologically and statistically robust methods to nor-
malize AGD against fetal/neonatal/infant size. It should also be stated
that all the studies of AGD with a neonatal measurement and at least
one other time point in infancy are internally consistent, with very little
evidence for any further change in the male/female AGD ratio, even
though androgen action is clear during the post-natal mini-puberty
(e.g. Pasterski et al., 2015).

In conclusion, this study shows that second trimester human fetal
AGD growth is sexually dimorphic and linear and confirms that in male
fetuses maternal cigarette smoking is associated with an unexpected
and temporary effect of increasing AGD. Overall, given the well-
established link between AGD and defects in reproductive development
(e.g. hypospadias (Thankamony et al., 2014)), the techniques and study
populations are now available for much more informative studies to be
carried out across gestation and in the perinatal/post-natal period.
This will enable a much-improved understanding of the links between
maternal environment/lifestyle and fetal and neonatal reproductive
and functional development. The introduction of ultrasound scan tech-
nologies to these studies will enable us to examine more deeply into
the role of the intrauterine environment and to follow-up studies in
limited numbers of fetuses with properly powered non-invasive studies.

Supplementary data
Supplementary data areavailable athttp://humrep.oxfordjournals.org/.
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