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Summary of Thesis

The Laser Interferometer Gravitational-Wave Observatory (LIGO) has suc-
cessfully started the era of gravitational-wave astronomy with its ground-
breaking detections of gravitational waves. These signals have opened the door
to a new way to listen to the universe. The detections have already taught
us much about the universe. Firstly, the detection of gravitational waves con-
firms a key prediction of Einstein’s theory of General Relativity. LIGO has
also given more information on binary black hole populations and has con-
firmed that short gamma-ray bursts can be generated by binary neutron star
mergers. In Chapter 1, I explore the basic premises of gravitational waves,
their sources and the detectors that find them. I then explain how we identify
the signals in our data in Chapter 3.

We hope to maximize the information we can learn from LIGO’s detections.
In order to do that, we need to extract as much information about the sources
as possible from the gravitational waves. For example, by measuring the dis-
tance of black hole binaries accurately, some have suggested constraining the
Hubble constant H0 after multiple measurments. In Chapter 2, I explore the
degeneracy between inclination and distance and LIGO’s ability to constrain
the distance and inclination from binary systems. We find that even with
detectors sensitive to both polarizations of gravitational waves, LIGO would
be unable to differentiate a signal from a nearby, inclined system or a far-
away, face-on system, without breaking the degeneracy using measurements
from electromagnetic signals (for binary neutron star systems), precession (for
highly spinning objects) or higher modes (for high mass-ratio systems).

Additionally, it may be beneficial to measure the parameters of binary
systems quickly, especially when there is the chance of detecting an associated
electromagnetic signature, as is the case with binary neutron star systems and
neutron star-black hole binaries. For this reason, I begin to build a case for a
new method of rapid parameter estimation in Chapter 4.
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“Your goal today should be to be better tomorrow
than you are today.”
—Jeremy Arel
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been published, in addition to pieces of work which are currently under internal
review before publication.
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Chapter 1

Gravitational Waves: Theory,

Sources, and Detectors

1.1 Introduction

On September 14th, 2015, the Laser Interferometer Gravitational-Wave Ob-

servatory (LIGO) [1, 2] and Virgo made a mark on history by directly ob-

serving a gravitational wave for the first time [3]. This event signified the

beginning of gravitational-wave astronomy, an entirely new way to interpret

our universe. The LIGO-Virgo Collaboration has since observed several more

gravitational-wave signals from binary black hole systems [4, 5, 6, 7] as well

as a gravitational-wave from a binary neutron star system and its associated

electromagnetic counterpart [8, 9].

The binary black hole detections provide the first evidence of a new popula-

tion of black holes, whose masses are larger than what had been seen in X-ray

studies [10]. With accurate estimates of their distance, the binary black hole

detections have been theorized to be able to constrain the Hubble constant

[11]. With more binary neutron star detections, astronomers may be able to

constrain the nuclear equation of state [12]. These gravitational waves are

thus significant for both detecting a phenomenon which had never before been

directly observed and the technical advances necessary to make such an obser-

vation, as well as the advances in astrophysical knowledge that this fledgling

branch of astronomy promises.
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1.1. Introduction

1.1.1 What are gravitational waves?

When Newton first described gravity, he described it as an inherent and unex-

plainable force that drew two objects toward each other [13]. This force was

described to effect everything that has mass and would be stronger the more

massive and the closer two objects were. This is summarized by Newton’s law

of gravitation: F = Gm1m2

r2
. Here, f is the force between two objects of mass

m1 and m2 separated by a distance r. G represents the gravitational constant.

This law was extremely useful and could be applied in all practical applica-

tions. However, the law could not explain the underlying mechanism of the

force, and in some cases, such as the Mercury’s perhelion precession, did not

quite fit to observations [14]. Similarly behavior has recently been observed in

the star S2 orbiting black hole candidate Sagittarius A* [15].

When Einstein published his theory of general relativity in 1918, he put

forward a new understanding of gravity: his theory suggested that mass curved

space, and what we observe to be gravity is the natural path of objects moving

in curved space [16]. This theory brought with it a suprising result: the

equation describing the fabric of space and time had a wave solution. This

meant it was possible to create wave-like properties in the fabric of space

itself. This phenomenon came to be called gravitational waves [17].

Looking at the result of gravitational waves, several things could be in-

ferred: one, gravitational waves are generated whenever there is a changing

quadrupole moment, i.e. whenever there is accelerating mass. However, it

would be extremely hard to detect the effect of these gravitational waves in a

laboratory, since, two, gravitational waves are very weak. Mass and spacetime

couple extremely weakly, so in order to detect gravitational waves, we must

use extremely massive objects moving at very high speeds. For this reason, we

look to astrophysical sources.

The resulting gravitational waves would stretch and skew space perpendic-

ular to its direction of travel. In addition, like electromagnetic radiation, the

waves travel at the speed of light, and there are only two possible polarizations

for a given gravitational wave in General Relativity. These polarizations are

called the plus (+) and cross (×) polarizations, since they bend space along a

plus and cross orientation, as seen in Figure 1.1. Once these basic properties

are established, the next question is: how would we be able to measure the ef-

fect of these gravitational waves? This is where the LIGO and Virgo detectors

step in.
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Chapter 1. Gravitational Waves: Theory, Sources, and Detectors

Figure 1.1: The effect of a plus or cross polarization of a gravitational wave
on a ring of particles as it passes through space, (in the direction in or out of
the page). Image from [18].

1.2 How do the detectors work?

Since gravitational waves stretch and skew the fabric of space, we would need

essentially a high-tech ruler which would be able to notice minute changes in

the length of space to detect them. The difficulty lies in the fact that any

bend in the fabric of space will also affect any object occupying that space.

For this reason, we turn to light itself to measure the length of space. Light can

measure distance by timing how long it takes to travel between two objects. If

the objects have not moved, and it takes more time to travel between them than

it had previously, we know that the length of space between them has changed.

For this reason, LIGO is based on the design of a Michelson interferometer, as

seen in Figure 1.2. This device uses the light from a laser, splits it using a half-

silvered mirror (meaning that the mirror is half reflective and half transparent),

directs the light down the arms of the device, bounces it off two mirrors and

finally directs the light back down the arms, where they recombine at the

beamsplitter. The combined beam is observed by a photodetector. If there

is no change to the length of the arms, the light recombines deconstructively

and no light is seen at the output of the detector. If the length of the arms

change, the light will not completely deconstruct, and the sensor at the output

will detect light.

This is, of course, an extremely simple and idealized version of the actual

detector. Gravitational waves from astrophysical sources have an extremely

small amplitude by the time they reach earth. The effect of the gravitational

wave is measured in strain h, which is the change of length over length: h = δL
L

.
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1.3. It’s too loud in here

Figure 1.2: A Michelson-type interferometer - a simplified layout of a GW
interferometer. Image is from [19].

In other words, as a gravitational wave travels through space, it stretches space

proportionally to the length of space being measured over. In order to detect

gravitational waves, the length of the interferometer arms need to be as long

as feasibly possible, so as to maximize the detectable effect on the change

in length of space. The arms of the detector are therefore four kilometers

in length. In addition, noise in the detector must be minimized so that the

gravitational-wave signal stands out as much as possible from the background

noise.

1.3 It’s too loud in here

There are many different types of fundamental noises inherent to the detector,

the most significant of which can be seen in Figure 1.3. The biggest contribu-

tors are seismic noise, low-frequency rumblings from the earth; thermal noise,

mid-range noise from the vibrations of particles in the detector itself; and pho-

ton shot noise, high-frequency noise caused by inconsistencies in the arrival

time of photon packets in the laser beam, as well as many other noise sources.

Each of these noise types have unique solutions to mitigate the noise as much

as possible. Seismic noise is damped using quadruple pendulums on top of iso-

lated platforms. Photon shot noise is controlled using extremely high-powered

lasers. Scattering of light off of particles in the air is dealt with by creating

the world’s second largest vacuum system. These are just a few examples of
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Chapter 1. Gravitational Waves: Theory, Sources, and Detectors

Figure 1.3: This plot shows the noise curve for Advanced LIGO. The x-axis
is the frequency range in which LIGO is most sensitive. The y-axis is the
displacement of the mirrors, which can be interpreted as displacement at dif-
ferent frequencies caused by noise. The red line indicates the measured noise
curve, while the smooth solid lines represent different known sources of noise;
blue for quantum shot noise, green for thermal noise, brown for seismic noise,
and orange for Newtonian gravitational noise caused by surface ground mo-
tion. “Other DOF” refers to measured noise correlated to the auto-alignment
system and auxillary length channels. (This figure is from Ref. [20].)

the many efforts put in to create the most effective gravitational-wave detec-

tor possible [21]. Similarly, Virgo has undergone many upgrades to become

Advanced Virgo [22].

Even with all these efforts in place, there are still instances of noise tran-

sients in the detector. These can occur for a variety of reasons, from airplanes

creating Doppler-shifting transients to thirsty ravens scraping at built-up ice

on pipes [23]. Detector characterization is used to identify these noises sources

and either mitigate this noise at the source (where possible) or to remove the

noise from the gravitational-wave strain data. For the example of ravens peck-

ing at pipes, the pipes were insulated to prevent the ice build-up from being

exposed. In other cases, the noise transients need to be removed directly from

the detector data itself. This can be done by using a windowing function to

zero out loud noise transients, as can be seen in Figure 1.4. In extreme cases,

data with extreme levels of noise must be removed from anaylses entirely.

These advances in detector technology and noise suppression has allowed us

to detect numerous gravitational waves.
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1.3. It’s too loud in here

Figure 1.4: This plot shows the effect of a Tukey windowing function on a noise
transient in the data. The x-axis represents time (starting from the beginning
of the chunk of data). The y-axis represents the whitened strain data (with
the very low and very high seismic noises damped, as is used in the offline
gravitational-wave search, PyCBC). The blue line represents the data with no
windowing, thus including the large noise transient at around 72.6 seconds.
The red line shows the effect the Tukey window has on the data, effectively
zeroing out the noise transient so it does not affect the search. (The effects of
this Tukey window on the search for gravitational waves from binary systems
is explained in more detailed in the paper where this plot is from, Ref. [24].)

1.3.1 The First Detections

On September 14th, 2015, LIGO detected the gravitational wave GW150914

[3]. This was a landmark event, being the first gravitational-wave to ever be

directly detected. The source of this gravitational wave was a binary black hole

system approximately 410 Mpc away. The black holes had masses of about 29

and 36 solar masses, resulting in an approximately 62 solar mass black hole.

The black holes radiated about 3 solar masses of energy away as gravitational

waves during its merger, meaning binary black hole mergers are some of the

most energetic events in the universe. In the same analysis period O1 (called

an observing run), another binary black hole event was detected, GW151226

[4], which had significantly smaller black holes in its source binary.

More black hole binaries were found in the following observing run, O2:

GW170104, GW170608 and GW170814 [5, 6, 8]. These brought more in-

formation about black holes and their populations, but we hoped for a new

source that would shed a little light on an exotic celestial body. GW170814
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Chapter 1. Gravitational Waves: Theory, Sources, and Detectors

was also the first gravitational wave detected in conjunction with Advanced

Virgo, allowing for the best sky localization up to that point. At the end of

the run, we detected GW170817, the first gravitational wave from a binary

neutron star system. This was found simultaneously in gravitational waves

[8] and across the electromagnetic spectrum, including as a gamma ray burst

named GRB170817a [9]. Over the following few weeks, the electromagnetic

component went through a variety of wavelengths, being seen as an optical

kilonova [25] and an X-ray afterglow [26]. These led to lots of new information

about our universe, including contstraining the nuclear equation of state [12]

and observations of the kilonova matched predictions for the optical imprint

from radioactive decay of r-process nuclei [27].

Much can be learned from these gravitational-wave signals. However, much

of what we can learn about the universe rests on what information we can

extract about the source binaries from the gravitational wave signals. In my

research, I describe a novel way for rapidly estimating the source parameters

for a gravitational wave and a limitation on our ability to learn about a binary

system’s distance and inclination.

1.4 My Research

This details the contributions I have made over the past two years to the field

of gravitational-wave astronomy. These range from a new method of rapidly

identifying parameters of the source of a gravitational wave from a binary

system to testing our ability to measure the inclination of such a binary.

1.4.1 Rapid Parameter Estimation

Since the era of gravitational-wave astronomy has just begun, we have much to

learn from these exotic phenomena. One method of learning more from new

detections is by identifying their electromagnetic counterparts. GW170817

marks the first of these multimessenger events, which was identified as a gravi-

tational wave from binary neutron stars and was then coincidentally identified

across the electromagnetic spectrum, in the form of gamma rays, optical light,

infrared radiation and X-rays [9, 25, 26, 28, 29]. Quickly estimating the param-

eters of this type of gravitational wave would allow our astronomer colleagues

to have more information and could aid in the localization and identification

of electromagnetic counterparts. For example, the ejecta and EM signature

emanating from a binary neutron star varies as a function of mass [27].
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1.4. My Research

Low-latency pipelines have been developed to quickly identify gravitational-

wave signals in LIGO and Virgo data [30]. A secondary pipeline can be used

to more precisely estimate the parameters of the gravitational wave so that

collaborators can more precisely know what to look for and where. Our

parameter-estimation pipeline uses an intuitive method of creating a gridded

set of gravitational-wave templates and compares them to the data around the

time of the detection. This method mimics the topology of the gravitational

wave search pipelines, and allows us to use more information from the initial

search to focus our parameterization of the binary. By seeing which templates

are most similar to the data set, we can approximate which binary parameters

the data most supports. We can use the fall off of the templates’ similarity

over the parameter space to estimate the most likely parameters, their stan-

dard deviation and the confidence regions for the signal. Using the phase and

timing differences between the signal in each detector, we can also estimate the

signal’s origin in the sky. Our intuitive match filtering method allows people

unfamiliar with the parameter estimation process to better understand how

the low-latency search pipelines are generally laid out.

1.4.2 Estimating Inclination

Next, we characterize LIGO’s ability to measure the inclination of a binary.

The effect of a gravitational wave is weaker when the source is far away from

Earth, since the amplitude of the wave is inversely proportional to the distance

it has traveled. If the gravitational-wave signal is coming from a binary star

system, a binary system whose oriented directly toward or away from us will

have a stronger signal than a binary system which is oriented perpendicular to

us. This edge-on orientation would prevent us from seeing one of the polariza-

tions of the gravitational wave, meaning we only measure half of the possible

amplitude from the gravitational wave. We can therefore see that a degeneracy

exists between the distance from the source and the inclination of the binary

system.

Being able to measure the distance and inclination accurately could be key

for various astrophysical areas of research. Some astrophysicists posit that

being able to identify the distance for various signals from binary black hole

systems will allow us to constrain the Hubble constant [11]. Others predict

that we can expect different electromagnetic radiation at different opening

angles for gamma-ray bursts [27].

For this reason, we explore LIGO’s ability to measure the inclination of a
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Chapter 1. Gravitational Waves: Theory, Sources, and Detectors

binary system. We do this by estimating the change in signal-to-noise ratio

over the inclincation-distance parameter space. This allows us to make a prob-

ability density plot for various hypothetical signals, allowing us to compare the

probability distribution we would expect to see for different signals. We also

investigate this for the specific example of the detected signal GW170817 to

verify that our method works and aligns with current parameter estimation

publications.
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Chapter 2

Estimating Inclination

With its ground-breaking detections in the first years of its operation, the

upgraded LIGO and Virgo detectors have opened up the door to discovering

new information about the universe. The collaboration’s many gravitational-

wave (GW ) detections from binary systems, including GW150914 [3] and

GW170817 [8] have allowed us to draw new insights from these astrophysi-

cal sources. These developments include constraining the nuclear equation of

state [12] and constraining binary black hole populations [31, 32]. With more

detections, we hope to learn even more about our universe, such as more accu-

rately measuring the Hubble constant H0 as suggested in Ref. [33] and [11] or

detailing the opening angle for gamma ray bursts (GRBs) from binary neutron

star systems (BNS ) [34, 27, 35]. However, both of these measurements rely on

the accurate measurement of the distance to the binaries and the inclination of

their orbital angular momentum with respect to the line of sight. A degeneracy

exists between distance and inclination making the measurement of these two

parameters very difficult. Of the compact binary detections made by LIGO

and Virgo, only the BNS merger GW170817 has had a tightly constrained

inclination and distance. The detection of a kilonova afterglow allowed for an

accurate distance measurement [36, 37], breaking the degeneracy with inclina-

tion. When this type of external information is unavailable, the degeneracy

severely limits our ability to measure these parameters.

In this chapter, we will show that this degeneracy is typical for binary

mergers. The measured amplitude and phase of the gravitational-wave signal

encode the properties of the binary. In particular, it is the differing ampli-

tude of the two polarizations of the gravitational waveform that allow us to

determine the binary inclination. However, the plus (+) and cross (×) polar-

izations have nearly identical amplitudes at small inclination angles (less than
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Chapter 2. Estimating Inclination

45◦) and significantly lower amplitudes at large inclination angles (greater than

45◦). This leads to two simple observations: first, the signal is strongest for

binaries which are close to face-on (ι ∼ 0) or face-away (ι ∼ 180◦) and thus

we will be observationally biased to detecting binaries whose orbital angular

momentum is well-aligned (or anti-aligned) with the line of sight [38, 39]. Sec-

ond, for small angles, the amplitudes of the two polarizations are close to equal

and we cannot measure distance or inclination separately. Therefore, for the

majority of detections, this face-on degeneracy will limit our ability to con-

strain both electromagnetic (EM ) emission models and the Hubble constant.

There are various ways to break this degeneracy, such as using the EM mea-

sured distance or using jet modelling to constrain the opening angle of a GRB.

These techniques were used to improve the constraints on the inclination and

distance for the BNS merger GW170817 [40, 41, 42, 43, 44].

Since an inclined binary system would produce both a high-amplitude plus

polarization and a lower-amplitude cross polarization, creating a network of

detectors which is sensitive to both the plus and cross polarization has been

suggested to constrain the inclination using only gravitational waves [45]. A

single detector is sensitive to just one polarization. Hanford and Livingston

are almost aligned, and see essentially the same polarization. While Virgo is

anti-aligned and is sensitive to the orthogonal polarization. The addition of

Kagra [46] and India [47] would further increase the network’s sensitivity to the

orthogonal polarization. Thus it is hoped this network could better constrain

the inclination angle and distance. We examine this possibility of constraining

the inclination using only the measurement of the two GW polarizations.

There have been many studies looking at inclination constraints. From the

GRB perspective they are largely divided into two groups: the first focuses

on exploring the possibility of nailing down the viewing angle by comparing

the rate of GRB sources observed in GWs with those in gamma rays [48, 34,

49]. The second focuses on measurements for individual detections, mainly

in the case where the event has been three dimensionally localized by an EM

counterpart [50, 51, 52] Inclination constraints have also been discussed in the

context of distance estimates for cosmology [53, 38, 54] and as part of wider

parameter estimation investigations [55, 56]. It was noted in Ref. [38] that

adding detectors to a network did not seem to greatly improve the inclination

measurement. Here we push this to this extreme by including all current and

proposed future ground-based observatories. In particular, we investigate a

network that would measure both polarizations equally as would be expected
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2.1. Measuring Distance and Inclination

over the majority of the sky for the Einstein Telescope (ET ) [57].

2.1 Measuring Distance and Inclination

When a gravitational-wave signal is observed in the data from the LIGO and

Virgo instruments, the goal is to obtain estimates for the parameters that de-

scribe the waveform. Typically, Bayesian inference [58, 59, 60] is used to obtain

a posterior distribution for the parameters of the system θ given the observed

data d. As described in detail in Ref. [61], the likelihood of obtaining data

d given the presence of a signal h(θ), and under the assumption of Gaussian

noise characterized by a power spectrum S(f), is

Λ(d|θ) ∝ exp

[
−1

2
(d− h(θ)|d− h(θ))

]
. (2.1)

Here, we have introduced the weighted inner product

(a|b) := 4Re

∫ fmax

0

ã(f)b̃(f)?

S(f)
df . (2.2)

The likelihood for a network of detectors is simply the product of likelihoods

for the individual detectors:

Λ(d|θ) ∝ exp

[
−1

2

∑
i∈dets

(di − hi(θ)|di − hi(θ))

]
. (2.3)

The posterior distribution for parameters θ given the data d is given as

p(θ|d) ∝ Λ(d|θ)p(θ), (2.4)

where p(θ) is the prior distribution for the parameters. The posterior distri-

butions are typically calculated by performing a stochastic sampling of the

distribution [59, 60, 62, 63, 64]. Distributions for a subset of parameters are

obtained by marginalizing, or integrating out, the additional parameters.

In this analysis, we are interested in obtaining the joint distribution of the

luminosity distance dL and binary inclination ι. This is calculated as

p(dL, cos ι|d) =

∫
dµΛ(d|µ, dL, cos ι)p(µ, dL, ι) (2.5)

Typically, µ contains all parameters describing the system, including the
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Chapter 2. Estimating Inclination

masses, spins, sky location, orientation and parameters describing the nuclear

equation of state. For our work, we consider a simplified model, for which the

only additional parameters µ are the binary’s polarization ψ and coalescence

phase φo. We choose uniform priors on these parameters, as well as a uniform

prior on cos ι, which leads to a uniform distribution of binary orientation. Fur-

thermore, we use a uniform-in-volume prior for the distance p(dL) ∝ d2L. For

binaries at greater distance, we need to take into account cosmological effects

and use a prior with sources uniform in comoving volume and merging at a

constant local rate. At even greater distances, the local merger rate would

follow the star formation rate [65], which peaks at z ∼ 2. We take this into

account later in this chapter for binary black hole systems, (BBH ), detected

at far distances using future detector networks.

In our approximation, we fix the sky location and arrival time of the sig-

nal, as well as the masses and spins of the system. Fixing the sky location is

reasonable, as one of the main motivations for this work is to investigate the

accuracy of gravitational-wave measurements of distance and inclination after

the signal has already been identified and localized by the detector network.

We also investigate how inclination measurements from gravitational-wave ob-

servations can be combined with electromagnetic observations. An unknown

sky location will only lead to larger uncertainties in the distance and inclination

measurements arising from varying detector sensitivities over the sky.

While the masses and spins of the binary will not be known, in most cases

these parameters have little impact on the inferred distance and inclination.

Binary neutron star systems are in-band in ground-based detectors for a large

number of cycles, O(105−106), allowing the accurate measurement of the phase

evolution of the binary. Hence the chirp massM— the parameter determining

the leading order phase evolution — is measured with great precision. For

BNS, the GW amplitude scales asM 5
6 , so uncertainty in mass has no effect on

the distance dL. In the analysis presented here, we focus only on the dominant

gravitational-wave emission at twice the orbital frequency. For unequal-mass

systems, the other gravitational-wave harmonics can significantly affect the

waveform, particularly when the binary has a high mass ratio, i.e. one of the

compact objects is significantly more massive than the other [66]. This can

lead to improvements in the measurement of the binary orientation [67].

Spins which are misaligned with the orbital angular momentum lead to

precession of the binary orbit [68] which can, in principle, lead to an improved

measurement of the binary orientation. To date, there is no evidence for pre-
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2.1. Measuring Distance and Inclination

Figure 2.1: The marginalized posterior distribution for the distance and incli-
nation of the binary neutron star system GW170817, detected with an align-
ment factor α ∼ 0.13 and signal to noise ratio ρ ∼ 32. The alignment fac-
tor α refers to the relative sensitivity to the cross polarization when a frame
of reference is chosen to maximize the sensitivity to the plus polarization in
the detector frame, F× = αF+. The left plot was generated using only the
data from gravitational-wave detectors, while the right plot also uses the in-
dependent distance measurement (40.7 Mpc, ±2.4 Mpc at 90% confidence)
from electromagnetic observations. The coloured portion of the plot shows
the probability distribution obtained using our approximate analysis, normal-
ized such that the peak probability is 1. The orange contours represent the
90% and the 50% confidence intervals obtained by performing the full anal-
ysis of the LIGO-Virgo data (posterior samples are publicly available here:
https://dcc.ligo.org/LIGO-P1800061/public) [43].

cession in the observed GW signals [69, 70, 71, 72, 73], so the approximations

discussed here would therefore be applicable. Furthermore, neutron stars are

not expected to achieve a spin high enough to have observable precession.

To verify that fixing the masses and spins has limited impact on the recov-

ered distance and inclination, we compare results from our model with those

from the full parameter estimation of GW170817. We recreate the posterior

distribution for the multi-messenger signal GW170817, with and without dis-

tance information from the coincident electromagnetic signal, and compare it

to the full, Bayesian parameter estimation, with a fixed sky location, using

the observed LIGO and Virgo data [43]. The results are shown in Figure 2.1.

To generate our results, we approximate the data d by a gravitational-wave

signal at a distance of dL = 40.7 Mpc [40] and an inclination of 153◦ [43].

We then generate a posterior distribution for the four dimensional parameter

space of distance dL, inclination ι, polarization ψ and coalescence phase φ0.

From this we calculate the posterior distribution, p(dL, ι|d) by marginalizing
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Chapter 2. Estimating Inclination

over the polarization and phase angles. As is clear from the figure, our ap-

proximate method gives a posterior on distance and inclination which is in

excellent agreement with the full results from the real data.1

The results in Figure 2.1 show an example of the degeneracy in the mea-

sured values of the distance and binary inclination. The 50% confidence in-

terval includes both a face-away binary at a distance of 45 Mpc and a binary

inclined at 135◦ at a distance of 35 Mpc. It is only when the gravitational-wave

data is combined with the electromagnetically determined distance 45 ± 2.4

Mpc [40] that the binary inclination can be accurately inferred. The degen-

eracy between distance and inclination arises directly from the dependence

on the gravitational waveform on these parameters, and has been discussed

several times previously [53, 55, 38].

To understand why distance and inclination are degenerate, we must look

to the waveform of gravitational waves emitted from a binary system. The

gravitational-wave signal, h(t), incident on a gravitational-wave detector is

given by [74]:

h(t) = F+(α, δ, χ)h+(t) + F×(α, δ, χ)h×(t), (2.6)

where F+ and F× are the detector response to the plus and cross polariza-

tions, respectively. The detector responses depend on the location (α, δ) of the

source. In addition, we must specify a polarization angle χ to fully specify the

radiation frame. It is common [75, 76] to define a dominant polarization frame,

for which the detector network is maximally sensitive to the plus polarization.

With this choice, we can naturally characterize the network by its overall sen-

sitivity and the relative sensitivity to the second polarization [75, 77]. This

simplifies the comparison of different networks.

For a waveform where it is appropriate to neglect higher order modes and

precession, the two polarizations given in Equation 2.6 can be expressed in

terms of the two orthogonal phases of the waveform:

h+(t) = A1h0(t) +A3hπ
2
(t) (2.7)

h×(t) = A2h0(t) +A4hπ
2
(t) (2.8)

1We note that the results in [43] show this distribution as a function of inclination ι
instead of cos ι. This leads to a different distribution, and different 90% confidence intervals
as these are defined to be the minimum range that contains 90% of the probability, and
this is dependent upon variable choice. As we discuss later, there is no evidence in the GW
data alone that the signal is not face-on, and since the prior is flat in cos ι we believe that
plotting the distribution against cos ι leads to a clearer understanding of the distribution.
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2.1. Measuring Distance and Inclination

where h̃π
2
(f) = ih̃0(f). The Ai are overall amplitude parameters, and depend

on the distance D, inclination ι, polarization ψ and coalescence phase φ0 [78,

79]:

A1 = A+ cos 2φ0 cos 2ψ −A× sin 2φ0 sin 2ψ (2.9)

A2 = A+ cos 2φ0 sin 2ψ +A× sin 2φ0 cos 2ψ (2.10)

A3 = −A+ sin 2φ0 cos 2ψ −A× cos 2φ0 sin 2ψ (2.11)

A4 = −A+ sin 2φ0 sin 2ψ +A× cos 2φ0 cos 2ψ, (2.12)

where A+ and A× are amplitudes for the plus and cross polarizations in the

source frame, which is aligned with the binary’s orbital angular momentum.

They are given by:

A+ =
d0
dL

1 + cos2 ι

2
(2.13)

A× =
d0
dL

cos ι, (2.14)

where dL is the luminosity distance and d0 is the reference luminosity distance.

The variation of the two polarization amplitudes with inclination ι is shown

in Figure 2.2. We note that there is an arbitrary choice of the radiation frame

and this will affect the value of the angles ψ and χ and consequently the values

of the Ai. However, the signal observed at the detectors is independent of this

choice.

In principle, we should be able to measure all four of the amplitude pa-

rameters by accurately measuring both the amplitude and phase of both the

plus and cross polarizations of a gravitational wave. From here, we could then

infer the distance and orientation of the source binary. However, degeneracies

in parameters limits our ability to accurately measure these parameters.

In order to identify the inclination of the binary system using the polar-

izations of the gravitational wave, we must distinguish the contributions of

the plus and cross polarizations. When the binary system is near face-on or

face-away, the two amplitudes A+ and A× have nearly identical contributions

to the overall gravitational-wave amplitude. In Figure 2.2, we see the relative

difference between plus and cross is less than 1% for inclinations less than

30◦ (or greater than 150◦) and 5% for inclinations less than 45◦ (or greater

than 135◦). This is the main factor that leads to the strong degeneracy in the

measurement of the distance and inclination.

As we have already described, gravitational-wave detectors with limited
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sensitivity will preferentially observe signals which are close to face-on or face-

off. In addition, when the binary is close to face-on and the emission is cir-

cularly polarized, the waveform is described by a single overall amplitude and

phase (as the two polarizations are equal, up to a phase difference of ±90◦).

Thus it is no longer possible to measure both the polarization ψ and phase at

coalescence φ0 of the binary, but only the combination φ0 ± ψ (with the +/−
for face-on/away binaries respectively). This degeneracy, combined with the

distance prior, leads to a significantly larger volume of parameter-space which

is consistent with face-on, rather than edge-on systems.

To exclude face-on binaries from a marginalized posterior probability distri-

bution on the inclination, the network must accurately measure the amplitude

and phase of both of the polarizations. In general, gravitational-wave detectors

are not equally sensitive to the two polarizations. For a given sky location, we

can define the plus polarization as the linear combination we are most sensitive

to and then calculate the relative sensitivity of ×. We can think of this as a

detector network comprised of a long plus-detector and a shorter cross-detector

(a factor of α shorter). Thus we can estimate the proportional sensitivity to

the second polarization, called the network alignment factor [75], through the

relation F× = αF+, where α varies between 0 and 1. Therefore the sensitivity

of the network to the second polarization can be determined by looking at the

values of α over the sky.

Figure 2.3 shows the distribution of alphas for various detector networks.

As might be expected, the sensitivity to the second polarization increases as

more detectors are added to the network. For the two LIGO detectors, the typ-

ical value is α ∼ 0.1 because the two detectors have very similar orientations.

When the Virgo detector is added to the network, the mode is α ∼ 0.3 and this

increases to α ∼ 0.5 when KAGRA and LIGO India join the network. The

Einstein telescope is a proposed future detector with a triangular configura-

tion [57]. For an overhead source, ET is equally sensitive to both polarizations,

giving α = 1. While ET does not have equal sensitivity to both polarizations

over the whole sky, the majority of signals will be observed with α > 0.9.

For the future networks, we consider an ET detector complemented by either

the advanced LIGO detectors with sensitivity improved by around a factor of

three (LIGO Voyager), or by one or two Cosmic Explorer detectors [80, 77].

When the ET detector dominates the network’s sensitivity, we have excellent

measurement of both polarizations but, in the CE-ET networks where CE is

more sensitive, the sensitivity to the second polarization is comparable to the

– 17 –



2.2. Accuracy of measuring distance and inclination

current networks.

2.2 Accuracy of measuring distance and incli-

nation

Now that we understand how the degeneracy between inclination and distance

arises, we can explore the expected accuracy with which these parameters will

be measured in various gravitational-wave detector networks. For concreteness,

in the examples that follow, we fix the SNR of the signals to be 12. While

this might seem low, we note that for a detection threshold of 8, the mean

SNR observed from a uniform-in-volume population would be 12 [39]. We

discuss higher SNR signals later in the chapter. Rather than specifying a

network and sky location, we instead investigate the ability to measure distance

and inclination as we vary the network’s relative sensitivity to the second

polarization, encoded in the variable α. For convenience, we fix the masses of

the system to be 1.4M� and set the sensitivity of detector network to the plus

polarization of GW to be equal to that of a single advanced LIGO detector

at design sensitivity for an overhead source. This places a face-on system at

approximately 300 Mpc at SNR of 12. For inclined systems, the distance will

be smaller to ensure that the network still receives an SNR of 12. While we

have fixed the masses and detector sensitivities to make the plots, the results

are essentially independent of these choices, up to an overall rescaling of the

distance. Thus the results will be applicable to any system for which it is

reasonable to neglect precession effects and the impact of higher modes in the

gravitational waveform.

Let us begin by considering a network with relatively poor sensitivity to

the second GW polarization, with F× = 0.1F+. This is typical for the LIGO

Hanford-Livingston network, and is common for the LIGO-Virgo network, as

described in Figure 2.3 We consider two signals, both with SNR of 12, but

one which is face-on (ι = 0) at a distance of 300Mpc while the second is edge-

on (ι = 90◦) at a distance of 150 Mpc and a polarization angle of ψ = 0 so

that the GW power is contained in the plus polarization. The first column of

figures in Figure 2.4 shows the likelihood, maximized over φ0 and ψ, across

the distance-inclination plane. Note that the contours here are calculated

for our simplified model and do not represent the results of full parameter

estimation analyses, as they did in Figure 2.1. As expected, the maximum

likelihood occurs at values of distance and inclination which exactly match the
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signal. We observe a degeneracy in distance and inclination, so that there is

some support for the edge-on binary to be face-on (or face-away). There is

also degeneracy for the face-on binary, which is marginally consistent with an

edge-on binary, but face-away orientation can be excluded. With an SNR of

12 and α = 0.1, for a face-on signal we expect an SNR of about 1.2 in the cross

polarization. These results show that the presence or absence of this signal is

sufficient to down-weight, but not exclude, an edge-on orientation when the

source is really face-on, and vice-versa. For a face-away system, the expected

signal in the cross polarization is the same amplitude, but entirely out of phase

from the face-on system, and this is sufficient to distinguish the two.

In the second column, we show the likelihood, marginalized over the po-

larization and phase angles. This marginalization does not have a significant

impact on the face-on binary, but completely changes the distribution for the

edge-on binary — with the marginal likelihood now peaked at cos ι = ±1.

Typically, we would expect to be able to measure the two phase angles with

accuracy ∼ 1/ρ thus to a crude approximation, marginalizing over the phase

angles would give a contribution ≈ (1/ρ2)Λmax, where Λmax is the maximum

likelihood. When the binary is recovered (nearly) face-on the two amplitudes

A+,× are (nearly) equal. Consequently, the signal is circularly polarized, with

the phase determined by φ0 +ψ. Changing the value of φ0−ψ has no effect on

the waveform. Thus, when marginalizing over the polarization and phase, we

obtain a factor ∼ (π/ρ)Λmax. Thus, for this signal at SNR 12, marginalizing

of the polarization and phase will lead to a relative increase of nearly 40 in

favour of the face-on signal.

Finally, in the third column, we include the distance prior by re-weighting

by d2L to place sources uniformly in volume. This gives an additional factor of

four weighting in favour of the face-on signal over the edge-on one. Once all

these weightings are taken into account, the probability distributions between

a face-on and edge-on signal are similar for a network with this sensitivity. The

edge-on signal has slightly more support at cos ι ≈ 0, and this is still included

at 90% confidence. Additionally, the edge-on signal is consistent with either a

face-on or face-away orientation. It may seem strange that we will not recover

the parameters of the edge-on system accurately. However, this is appropriate.

As we have discussed, the volume of parameter space consistent with a face-

on system is significantly larger than for the edge-on case. Thus, even if we

observe a signal that is entirely consistent with an edge-on system, it is more

likely that this is due to a face-on system and noise fluctuations leading to the
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observed signal than it is that the signal is coming from an edge-on system.

Our next example investigates differing inclinations for a signal detected

by a network with an F× = 0.5F+, a network with half the sensitivity to

the cross polarization as the plus polarization. This is the predicted mean

sensitivity expected for the best near-future detector network consisting of the

Hanford, Livingston, Virgo, KAGRA and LIGO-India detectors. Again, the

SNR is set to 12 for all hypothetical signals, and now we consider three different

inclinations: ι = 0 (face-on) and two inclined signals, one with ι = 66◦ and

the other with ι = 78◦. In Figure 2.5, we show the posterior distribution for

distance and inclination for the three cases. Here, we have marginalized over

the phase angles and included the distance prior weighting, so the plots are

equivalent to the third column of plots in Figure 2.4.

The leftmost plot shows the probability distribution for a face-on signal.

This distribution is similar to the one for α = 0.1, though now the most

inclined and face-away points in parameter space are excluded from the 90%

credible region. The second plot is for a binary inclined at 66◦ (cos ι = 0.4).

Here, the peak of the inclination distribution corresponds to a face-on system

and, indeed, the posterior is nearly identical to that obtained for the face-

on system. Thus, for a typical system with close-to-threshold SNR we will

remain unable to distinguish between face-on signals and those inclined at 60◦

based on gravitational-wave observations alone. The best near-future detector

therefore would be unable to measure a difference in inclination between these

two hypothetical signals. Only once the inclination reaches 78◦ (cos ι = 0.2)

does the distribution peak at an inclined signal, as in the rightmost plot.

However even for inclinations as great as this, the 90% credible region cannot

exclude face-on and extends across all orientations from face-on to edge-on.

In this case it is not possible to clearly distinguish the binary orientation.

For values of cos ι < 0.1 the posterior is peaked at the correct value of ι and

excludes face-on from the 90% credible region.

The results shown in Figures 2.4 and 2.5 show the general features of the

distance and inclination distribution. It is characterized by three components:

one consistent with a face-on signal, one with an face-off signal and a third

contribution peaked around the true values of distance and inclination. In all

of the cases we have shown, only one or two of the contributions are significant.

There are, however, cases where we obtain three distinct peaks in the posterior

for the inclination, although these are rare. In Appendix B of [81], an approxi-

mate expression for probability associated with each peak was obtained, which
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Network 0◦ ≤ ι < 45◦ 45◦ ≤ ι < 60◦

face on mixed edge on face on mixed edge on
HL 100% 0% 0% 97% 3% 0%

HLV 100% 0% 0% 86% 13% 1%
HLVK 100% 0% 0% 78% 21% 1%
HLVKI 100% 0% 0% 67% 32% 1%

Network 60◦ ≤ ι < 75◦ 75◦ ≤ ι < 90◦

face on mixed edge on face on mixed edge on
HL 80% 18% 2% 47% 32% 21%

HLV 47% 44% 9% 29% 27% 44%
HLVK 27% 59% 14% 17% 20% 63%
HLVKI 7% 72% 21% 7% 13% 80%

Table 2.1: The table shows the ability of various networks to distinguish the
orientation of a population of binary mergers with given inclination, ι. For
each network and range of ι, we give the percentage of binaries for which the
posterior on the inclination peaks at ι = 0 or 180◦ (face-on) and this peak
contains over 90% of the probability; those binaries for which the recovered in-
clination peaks at the correct value, and greater than 90% of the probability is
consistent with this peak (inclined); and those for which the posterior includes
significant contributions for both face-on and inclined orientations (uncertain).
For all networks, essentially all binaries with ι < 45◦ will be recovered face-on.
As the inclination increases further, the ability to clearly identify the binary
as inclined increases significantly with the number of detectors in the net-
work as this improves the average sensitivity to the second gravitational-wave
polarization.

is valid for networks sensitive to a range where a d2L prior is still appropriate.

This provides an analytic expression for the probability associated to each of

the three contributions, as a function of SNR, inclination, polarization and the

network sensitivity to the second polarization, encoded in the variable α.

To get a sense of how accurately binary inclination will be measured, we

simulated a set of 1, 000, 000 events uniformly in volume and determined those

which would be observed above the detection threshold of the network (typi-

cally leaving 30,000-80,000 events). For each event, we then determine whether

the event would be recovered as definitely face-on — over 90% of the probabil-

ity associated to the face-on (and face-away) components of the distribution

— definitely inclined or uncertain. These results are summarized in Table

2.1, for a series of networks each with an increasing number of detectors. For

all networks, essentially all events with a true inclination less than 45◦ will

be recovered face-on. Only for those events with inclination greater than 45◦

do we start to be able to distinguish the orientation. Between 45 and 60◦,
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networks with three or more detectors will classify a small fraction of events

as inclined, and this fraction increases with both the inclination of the sys-

tem and the number of detectors (which directly effects the typical value of

α). However, even for events which have an inclination greater than 75◦, the

LIGO Hanford–Livingston network would recover half as face-on and only 20%

as definitely not. This improves for the five detector network where less than

10% are face-on, and 80% are clearly identified as being inclined.

Next, let us consider the general accuracy with which we can measure the

inclination for a binary which is (nearly) face-on. In this case, the distribution

for the inclination angle can be approximated in a simple way. If we begin by

assuming that the degeneracy between distance and inclination is exact, then

orientations with | cos ι| ≈ 1 are preferred due to the prior on the distance.

This can be clearly seen by comparing the second and third columns of plots

in Figure 2.4. The distribution in the second column (when we don’t apply the

uniform-in-distance weighting) shows a broad degeneracy with equal probabil-

ity along lines of constant A = cos ι/dL. It is only by applying the distance

re-weighting that the peak shifts more to cos ι = 1. For a fixed value of ι, we

wish to integrate over a given distribution, p(cos ι/dL). Thus we obtain

p(cos ι) =

∫
d2Lp(cos ι/dL)ddL

=

∫
cos3 ιA−4p(A)dA

∝ cos3 ι (2.15)

Thus, it follows that, where the degeneracy holds, the posterior on cos ι will be

proportional to cos3 ι. In Figure 2.6, we show the posterior for three examples

of face-on signals : SNR ρ = 12 with α = 0.1 and 0.5, and SNR ρ = 50 with α =

1. All three distributions follow the cos3 ι distribution for small inclinations.

The high-SNR signal deviates at around 30◦ — at this inclination there is

enough difference from a circularly polarized signal for larger inclinations to

be disfavoured. However, for the lower-SNR signals (and also lower values of

α) the approximation remains accurate to greater than 45◦.

We can improve the approximation by noting [81] that the SNR lost by

projecting an inclined signal onto a circular signal is

∆ρ2 =
α2ρ2

(1 + α2)2
(1− cos ι)4

4
. (2.16)
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This loss in SNR leads to a reduction in the likelihood associated with the

inclined signal, which causes the probability distribution to fall off more rapidly

away from ι = 1. In particular we obtain:

p(cos ι) ∝ cos3 ι exp

(
−∆ρ2

2

)
. (2.17)

We can use this expression to determine how well a network with sensitivity

α would be able to constrain a signal’s inclination ι, given the SNR of the

signal. In Figure 2.7, we specifically look at how tightly we can constrain

a face-on signal. We can see that for low-SNR signals or for networks with

little sensitivity to the cross polarization, GW observations will only be able

to constrain the signal to being less than about 45◦. Even with an extremely

loud signal and a very sensitive detector network, we are only able to constrain

the signal to about 30◦. It’s important to note here that at these SNRs, higher

order modes or precession in the gravitational-wave signal may be observable.

If these are detected, the degeneracy between distance and inclination would

be broken, and we would be able to more tightly constrain the inclination.

Finally, it is interesting to consider what effect the inclination distance

degeneracy would have on the mass estimate of binary black holes. GW de-

tectors actually measure the redshifted massMdet = (1 + z)Msource where the

subscripts denote detector-frame and source-frame respectively [55]. There is

no way to determine the redshift directly from the gravitational waveform of

a binary black hole. However the measured value of the luminosity distance

can give the redshift if a cosmology is assumed. In this way, the inclination

distance degeneracy will map to an uncertainty in the rest-frame masses. For

the next generation of gravitational-wave detectors, which will be sensitive

to BBH mergers throughout the universe, the uncertainty in the redshift will

likely be the dominant uncertainty in the masses. As such, we explore the

inclination measurement with ET for a BBH merger at a redshift of z = 10

with intrinsic masses of a 10M� − 10M� corresponding to a detector frame

chirp mass ofMdet = 96M�. We place the source directly above the detector,

in the most sensitive part of the sky. In this case, α = 1 and ρ = 20, where we

have assumed standard cosmology [82].

At these cosmological distances, a d2L prior for the distance is no longer

appropriate. Rather, we use a distance prior that is uniform in comoving

volume where the rest-frame binary merger rate density follows the cosmic star

formation rate [65] with a delay between star formation and binary merger ∆t,
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and a distribution of delay times p(∆t) ∝ 1/∆t [83] (see Section 5 of [77] for

details). The new prior peaks at z ∼ 1.4. Therefore at z ∼ 10, the nearer,

more inclined binaries are a priori more likely.

In Figure 2.8 we show the marginalized posterior for three different incli-

nations: ι = 66◦, ι = 60◦ and ι = 0◦. For the second generation networks

in Figure 2.5, the ι = 66◦ (cos ι = 0.4) source is recovered as face-on. With

the higher signal to noise ratio and improved sensitivity to the second polar-

ization, ET can identify the signal as edge on. At an inclination of ι = 60◦,

the degeneracy still extends across 25◦ < ι < 70◦, though smaller inclinations

are now excluded from the 90% credible interval. This is the effect of the new

distance prior which is a factor of 12 larger at redshift 6 than at redshift 10.

Thus, though the 90% credible region of the marginalized likelihood extends

right up to face-on, the prior is able to partially break the degeneracy. For

binaries with inclinations greater than this ι > 60◦, the degeneracy extends

right up to face-on to a 90% probability interval.

For the face-on binary in the rightmost plot, the prior shifts the peak of the

posterior away from the true value. Although the value of the likelihood at face-

on and redshift 10 is a factor of 12 larger than it is at an inclination of 60◦ and

redshift 6, after the prior re-weighting these two points in the parameter space

are equally likely. If the detector frame chirp mass of the binary is measured to

beMdet = 96M�, the degeneracy between the inclination and distance results

in Msource = 96M� and Msource = 61M� being equally likely. The detector-

frame chirp mass Mdet would be determined to an accuracy similar to the

accuracy of the GW phase measurement ∆Mdet/Mdet ∼ 1/(ρNcycles) [84, 38].

Parameter estimation for GW150914 yielded a precision in the detector-frame

mass estimate of ∆Mdet/Mdet ∼ 10% for a comparable SNR [85]. For a

larger mass binary, typically fewer cycles of the waveform will be visible in the

data. However ET’s improved sensitivity at low frequencies compared to LIGO

means that we can expect the precision of the detector-frame mass estimate

of GW150914 and the ET binary to be roughly the same. Thus the broad

uncertainty in the intrinsic masses due to the distance inclination degeneracy

∆Msource/Msource ∼ 40% will dominate the total error budget.

2.3 Conclusion and Future Work

Our work demonstrates that even with a network equally sensitive to both po-

larizations of the gravitational wave, we would be unable to precisely measure
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the inclination or distance of a nearly face-on binary due to a strong degeneracy

between distance and inclination. However, we have focused on non-spinning

binaries and assume that the sky location, masses and arrival times of the

detectors are all known. Introducing these parameters would increase the un-

certainties. Exploring how these parameters affect the overall measurement of

the distance and inclination could give a more accurate summary of LIGO’s

ability to measure distance and inclination.

The degeneracy between inclination and distance described here could be

broken in a few different ways: by using distance or inclination from electro-

magnetic measurements, by detecting higher order modes [67] and by mea-

suring precession [86]. Binary neutron star systems produce a variety of EM

signatures, as were observed for GW170817 [8]. Neutron star-black hole bina-

ries (NSBH ) could produce EM signatures should the neutron star be tidally

disrupted. However, tidal disruption only happens at relatively small mass

ratios [87]. For larger mass ratios, the neutron star plunges into the black

hole creating a deformity which rings down. Interestingly, both precession and

higher modes have a larger effect on the gravitational waveform at higher mass

ratio [88, 89]. The polarizations of the higher modes have a different depen-

dence on the inclination, and the precession of the orbital plane would result

in changing amplitudes for the plus and cross polarizations. These effects can

make it easier to identify the inclination angle [67, 89, 86]. For NSBH, the

degeneracy can thus be broken by either information from the EM emission

or from higher modes or precession. [86] demonstrated that precession would

break the distance inclination degeneracy in NSBH for a few binaries with a

few values of the precession angle and large, highly spinning black holes. It

would be an interesting follow up to this study to explore this with a real-

istic distribution of spins, to see when precession plays a significant role in

measuring binary parameters.
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Figure 2.2: The relative contributions of the plus and cross polarizations to
a gravitational-wave signal, dependent on the inclination. The red solid line
indicates the amplitude of the plus polarization, while the dashed red solid line
indicates the amplitude for the plus polarization with a negative phase. The
blue solid line indicates the amplitude of the cross polarization. The shaded
regions show the percent differences between the plus and cross polarizations.
The red portion represents when the plus and cross polarization are less than
1% different. The blue region represents where the polarizations are between
1% and 5% different. The grey region represents where the polarizations are
between 5% and 10% different.
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Figure 2.3: The relative sensitivity of detector networks to the second po-
larization, as encoded in the parameter α, defined through F× = αF+ (in
the dominant polarization frame where the network is maximally sensitive to
the plus polarization). The left plot shows the expected distribution of α for
second-generation gravitational-wave networks, while the right plot shows the
distribution for potential third generation networks. In both cases, the dis-
tribution is the expected distribution for a population of events, distributed
uniformly in volume, and observed above threshold in the detector network.
Thus, directions of good network sensitivity are more highly weighted. The sec-
ond generation networks considered are LIGO Hanford and Livingston (HL);
two LIGO detectors and Virgo (HLV); LIGO-Virgo and KAGRA (HLVK) and
LIGO-Virgo-KAGRA with LIGO-India (HLVKI). As more detectors are added
to the network, the average sensitivity to the second polarization increases.
The right plot shows results for the Einstein Telescope (ET), which is com-
prised of three 60-degree interferometers, ET and three LIGO-Voyager detec-
tors (Voyager-ET) and ET with either one or two Cosmic Explorer detectors
(1CE-ET and 2CE-ET). Here, α̃ represents the mean value of α for the given
detector network. As the ET detector has good sensitivity to both polariza-
tions, networks where ET is the most sensitive detector will have large values
of α. Third generation target noise curves are taken from [80].
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Figure 2.4: The progression of the probability distributions over a cos ι and
distance parameter space for a signal detected with alignment factor α = 0.1
and signal to noise ratio ρ = 12. The top panel shows the distribution for an
face-on signal. The bottom panel shows the distribution for an edge-on signal.
The leftmost plots are the distribution for only the likelihood. The middle
plots show the distribution after we have marginalized over a flat prior for φ
and ψ. Lastly, the rightmost plots are the complete probability distribution,
calculated by applying a distance-squared weighting to the likelihood. This is
to account for the expectation that binary systems are distributed uniformly in
volume. Recall that α = 0.1 is the mode sensitivity for the Hanford-Livingston
network. The white star represents the hypothetical signal. The white contours
represent the 50% and 90% confidence intervals obtained from our simplified
model. Note that these contours do not represent the results of full parameter
estimation, as they did in Figure 2.1. From these plots, we can see that at this
α, a side-on signal is indistinguishable from a face-on/face-away signal.
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Figure 2.5: The probability distribution over a cos ι and distance parameter
space for a signal detected with alignment factor α = 0.5 and signal to noise
ratio ρ = 12. The white star represents the injected signal. The white contours
represent the 50% and 90% confidence intervals obtained from our simplified
model. Note that these contours do not represent the results of full parameter
estimation, as they did in Figure 2.1. A face-on signal (where cos ι = 1)
returns a nearly identical probability distribution of the parameter space as a
signal from a binary with an inclination of about 66 degrees (cos ι = 0.4). For
inclinations in the range 0.1 < cos ι < 0.4, though the distribution now peaks
at the correct inclination, there is support extending across from face-on to
an inclination of ι ∼ 80◦ − 90◦. In these cases it is not possible to distinguish
the binary inclination. The signal is only clearly identified as not face-on after
cos ι < 0.1.
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Figure 2.6: The un-normalized marginalized posterior for cos ι for a face-on
source as measured for three networks with alignment factors α = 0.1, α = 0.5,
α = 1.0 and signal to noise ratio ρ = 12, ρ = 12, ρ = 50 respectively. The
solid line shows the expected cos3 ι form of the likelihood.
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Figure 2.7: This plot shows a detector network’s ability to constrain the incli-
nation of a face-on signal with 90% confidence. The x-axis shows the network
alignment factor α, whereas the y-axis shows the signal-to-noise ratio (SNR)
of the hypothetical gravitational-wave signal. The colour represents the upper
limit on the inclination angle. For weak signals or for networks which are not
very sensitive to the cross polarization, the network can only constrain the
inclination to being less than about 45◦. Even for the most sensitive detec-
tor network detecting the loudest hypothetical signals, the network would be
unable to constrain the inclination to being less than 30◦. However, we note
that at these SNRs, the detector network may be able to identify higher order
modes, which would break the degeneracy between distance and inclination
and allowing us to constrain the inclination more precisely.
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Figure 2.8: Marginalized posterior distribution for a 10M�−10M� binary black
hole at redshift z = 10 detected by the Einstein Telescope in the most sensitive
part of the sky, i.e. directly above the detector. Here, the alignment factor is
α = 1 and the signal-to-noise ratio is ρ = 20. The white star represents the
injected signal at three different inclinations: ι = 66◦, ι = 60◦ and ι = 0◦. The
white contours represent the 50% and 90% confidence intervals obtained from
our simplified model. Note that these contours do not represent the results of
full parameter estimation, as they did in Figure 2.1. We use a prior that is a
uniform in comoving volume with a rest frame rate density that follows the star
formation rate [65]. At this redshift the prior varies by a factor of ∼ 12 across
the degeneracy and now favours more inclined binaries. Thus binaries that
are face-on will be recovered as being more inclined. The redshift uncertainty
∆z/z ∼ 40% dominates the statistical error in the recovery of the binary
chirp mass. All conversions between luminosity distance and redshift assume
standard cosmological parameters [82].
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Chapter 3

Overview of the Search Pipeline

To identify gravitational waves in LIGO’s noisy data, we use a sophisticated

search workflow to process the data. The main takeaway from this pipeline is

the best-matched gravitational-wave template. However, lots of information

could be used for parameter estimation. Because of this, our parameter esti-

mation analysis is based on and uses information from the gravitational-wave

search pipeline PyCBC. We explain the basic setup of this analysis so that the

setup for our parameter estimation pipline is clear. More details of the offline

search pipeline can be found in [24].

3.1 Template Bank and Match Filtering

Gravitational waves have amplitudes comparable to the noise background in

the LIGO detectors, but gravitational waves from binary star systems can be

well-modeled using analytic and numerical methods. This implies that match

filtering is a useful method of identifying gravitational waves amongst the

detector noise. The search pipeline thus uses a set of predicted gravitational

waveforms called a template bank which is used to compare to the data set

using a match filter. This bank is usually very large, covering the entire target

parameter space and containing thousands of templates. Each template is

individually match filtered against the data. This filtering algorithm is:

(s|h)(t) = 4Re

∫ fhigh

flow

s̃(f)h̃∗(f)

Sn(f)
e2πift df. (3.1)

This equation is effectively a weighted dot product and tells us if a template

waveform, h, is a significant component in the detector data, s, given the

detector noise Sn(f), over the sensitive band of frequencies (from flow to fhigh).
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When you divide by the magnitude of the waveform,
√

(h|h), the result is

called the signal-to-noise ratio, or SNR, and is denoted ρ. By repeating this

calculation at every data point, the pipeline creates an SNR timeseries, which

describes the match between the template waveform and the data over time.

We also maximize over the phase of the signal. Each template waveform has

two orthogonal phases, h0 and hπ
2
. The resulting match filter is:

ρ2(t) =
(s|h0)2

(h0|h0)
+

(s|hπ
2
)2

(hπ
2
|hπ

2
)

=
(s|h0)2 + (s|hπ

2
)2

(h0|h0)
(3.2)

Any template with an SNR higher than a predetermined threshold are flagged

as triggers and undergo additional statistical testing, as is explained in Sec-

tion 3.2. The finer details of this matched filtering are explained in [24].

The template bank used in the search is designed so that any gravitational

wave within the parameter space of the the search would be at least 97%

similar to one of the gravitational wave templates. This threshold is called the

minimum match and can be adjusted. The minimum match thus determines

how tightly packed the template bank needs to be when it is generated. The

more similar the template is to the gravitational-wave template, the higher

the SNR. However, a higher minimum match would increase the number of

templates in the bank, thus increasing the computational cost of the search

and slowing down the analysis. Setting the minimum match to 97% is a good

compromise between recovering the most SNR from a signal without burdening

the search.

3.2 χ2 Test

Many statistical tests are performed on the gravitational-wave candidates to

verify that they are true signals instead of a noise fluctuation. Arguably the

most significant of these is the χ2 test [90]. This test effectively cuts the

predicted waveform into p bins of equal power, then match filters each bin

with respect to the data. This is described by the equation:

χ2 = p

p∑
i=1

[(
ρ20
p
− ρ20,i

)2

+

(ρ2π
2

p
− ρ2π

2
,i

)2
]
. (3.3)

This test measures if the power distribution of a gravitational-wave candidate

matches what we expect from the data, given the predicted waveform. If the

distribution is similar, it will return a number between zero and one, with a
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dissimilar distribution returning a high number and random noise returning a

number near unity. For candidates that return a χ2 statistic greater than one,

the candidate’s SNR is downweighted by:

ρ̂ =
ρ[

1+(χ2
r)

3

2

] 1
6

(3.4)

where ρ̂ is the reweighted SNR and χ2
r = χ2/(2p−2) is the reduced χ2 statistic.

This reduction comes from the 2p − 2 degrees of freedom in the χ2 statistic.

This check plays a significant role in removing triggers caused by loud tran-

sient noises in the detector matching with template waveforms. The resulting

reweighted SNR is then used to determine the significance of the gravitational-

wave candidate with respect to the background. Since a gravitational wave

may match highly with several different template waveforms, the analysis will

choose the loudest candidate within a window as the best-fit waveform for the

trigger. Further research to reweight signals is ongoing, including a test similar

to the χ2 test using sine-Gaussian tiles, described in [91].

3.3 Coincidence Testing

Since gravitational waves travel at the speed of light, we expect gravitational

waves to be found with the same gravitational-wave template in the two LIGO

detectors within the light-travel time between the two detectors. This means

that a gravitational wave should reach both detectors within ten milliseconds.

In order to account for timing errors, we loosen the restriction to about fifteen

milliseconds. This coincidence testing is vital, as it also becomes the basis

for generating a set of background triggers, which is created by shifting the

timestamps of the gravitational-wave candidates of one detector with respect

to the gravitational-wave candidates of the other detector within the light

travel time. Any resulting coincidences are therefore a result of noise. These

time shifts are described in further detail in [24].

We calculate the final ranking statistic using the coincident signals. After

identifying triggers in both detectors and calculating their reweighted SNR

using 3.4, we then take the square root of the quatrature sum of the SNRs in

each detector:

ρc =
√
ρ2H1 + ρ2L1, (3.5)

where ρc is the combined reweighted SNR. This is performed for all coinci-
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dences in both the background and foreground. We then compare this de-

tection statistic for the foreground triggers to the detection statistic for the

background triggers to calculate the false-alarm rate, or FAR, for the fore-

ground signals.

– 36 –



Chapter 4

Rapid Parameter Estimation

Our search pipeline allows us to find the very quiet gravitational wave in noisy

strain data, as described in Chapter 3. The detectors give a lot of informa-

tion about the gravitational-wave signal, much of which is, at the moment,

discarded. Our aim is to leverage this additional information to improve our

rapid parameter estimation analysis. Low-latency parameter estimation are

necessary so that we can learn about the parameters of the source binary very

quickly. The information we extract can be useful for astronomers to search

for an electromagnetic counterpart to a gravitational wave. For any given sig-

nal, we have information about the best-fit template, including the template’s

masses and spins, as well as the time this waveform peaks in the data, its

SNR and reweighted SNR at this time, and the time difference between the

two detectors. However, the pipeline also keeps information for triggers for

all waveforms in the template bank. Using this information would allow us to

more quickly and more easily constrain the parameters of the source binary.

4.1 Template Bank Generation

The first step in our parameter estimation code is to generate a bank of tem-

plate waveforms. From the search, we will know the parameters of the best-fit

template in the search pipeline’s coarse bank of templates.

We use information from the search to build a more focused, dense bank

in the region containing the signal. The pipeline used for the binary search

uses the same method of matched filtering template waveforms. In particular,

the search uses a large, coarse bank that covers a wide parameter space and

matched filters every template against every moment of data in the data set,

using Eq. 3.1; Meanwhile, our code uses a small, dense bank of templates fo-
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cused only on the area of parameter space surrounding the loudest template

found in the search pipeline and matched filters it only against the chunk of

data containing the signal, approximately 256 seconds long. Since the template

waveforms are not orthogonal, a signal will usually cause multiple templates

within a template bank to be flagged as gravitational-wave candidates. The

search pipelines will simply take the signal with the loudest SNR as the de-

tected gravitational-wave candidate. However, we can use the information

from which templates in the template bank were flagged to tell us more about

the detection. From the search, our pipeline loads in the information about

which templates were flagged within the one-second window around the time

of detection.

We create a bank which covers the 99.9% confidence interval of the original

template bank. We calculate this confidence interval by finding the probability

for each gravitational-wave template and looking at the probability distribution

over the original parameter space.

We can expect the detector s(t) to either contain noise, n(t), or both signal

and noise h(t) + n(t) [61]:

s(t) =

h(t) + n(t), if a signal is present

n(t). if there is no signal

Instrumental noise n(t) is a randomly occuring process, and can be described

through a probability distribution function. For our argument, we assume the

noise is stationary and Gaussian, with a mean value of 0: 〈n(t)〉 = 0. We can

write the noise as n = s− h. The likelihood of getting noise is simply:

p(n) = e−
1
2
(s−h|s−h) (4.1)

By Bayesian statistics, the likelihood of getting the signal h given the data s

is thus:
p(s|h)

p(s|0)
=
e−

1
2
(s−h|s−h)

e−
1
2
(s|s)

(4.2)

For a given waveform h, the probability that the signal h is present in the data

is proportional to the likelihood. The log-likelihood for a waveform is simply:

ln(Λ) = (s|h)− 1

2
(h|h), (4.3)

where (s|h) is defined in Eq. 3.1. This can be interpreted as the component
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of the data containing the signal, minus the magnitude of the waveform itself.

This formula allows us to focus on the significance of the waveform in the data

without being weighted towards waveform which contain more overall power

than other waveforms in the set. From here, we can intuitively see that the

log-likelihood for a network of detectors is simply the sum of the individual

contribitutions from each detector:∑
i

ln(Λi) = (s|h)− 1

2
(h|h), (4.4)

where (a|b) =
∑

i(ai|bi).

We can then use the SNR of a template to find its likelihood. Our pa-

rameter estimation code focuses on analyzing data which we know contains

a gravitational wave from the initial analysis. For this reason, the inital in-

formation we receive will use reweighted SNR, but our parameter estimation

analysis will focus specifically on the unweighted SNR. Similarly, our param-

eter estimation code is meant to be run on triggers that have already been

determined to be true signals, therefore we do not use time slides for back-

ground estimation. Once calculated for all templates in our parameter space,

we can use the likelihoods to estimate the probability distribution over the

space.

We want to maximize the likelihood over amplitude. If we assume the

signal h has an unknown amplitude A for a single polarization h0, h = Ah0,

then

ln Λ = (s|h)− 1

2
(h|h) = A(s|h0)−

A2

2
(h0|h0). (4.5)

To find the peak amplitude, we take the derivative with respect to A and set

it to zero, and solve for A:

∂

∂A

[
A(s|h0)−

A2

2
(h0|h0)

]
= 0, (4.6)

which gives:

A =
(s|h0)
(h0|h0)

. (4.7)

This simplifies our log-likelihood equation to simply the SNR squared over 2:

ln Λ =
(s|h0)2

2(h0|h0)
=
ρ2

2
(4.8)

Therefore, from the SNRs of each template, we can find the likelihood for
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each flagged template i using:

pi ∝ e
ρ2i
2 . (4.9)

We sum up these probabilities for every waveform i and then divide each

probability by this normalization factory. When normalized, this equation

then becomes:

pi =
e
ρ2i
2∑

j e
ρ2
j
2

(4.10)

We then order these waveforms by their probability, and sum up the prob-

abilities until we get the total probability we would like in our interval. For

our analysis, we chose the 99.9% confidence interval. Then we look at the

template waveforms contained in the interval and use it to define the edges of

our hyperdense bank. By summing up these probabilities, we can estimate the

99.9% confidence interval for the signals in the coarse bank.

This 99.9% confidence interval then becomes our bounds for the hyperdense

bank in the parameter estimation code. We take the smallest and largest values

of the individual masses m1 and m2, the chirp mass Mchirp = (m1m2)
3
5

(m1+m2)
1
5

, the

individual spins χ1 and χ2 and the effective spin χeff = χ1m1+χ2m2

m1+m2
and later

use these as the lower and upper bounds over the mass-spin parameter space.

Next, we create a grid of points with a fixed step in each direction (deter-

mined by the desired minimum match of the bank) over this parameter space.

Using a uniformly spaced grid allows us to sample the parameter space in a

simple and intuitive way without biasing our search to any particular region

of the bank which would be more or less covered if we were using a different

placement such as the stochastic bank method [92]. To determine the grid

spacing, we take the loudest signal from the search and generate a template

nearby in the parameter space and test the match between the two waveforms.

We can expect the match to fall off roughly quadratically as we move away

from the peak match in parameter space [93]. This allows us to estimate how

quickly the signals become dissimilar as we move through this dimension of

the parameter space. If a waveform is matched with itself, the match will

return 1. Because of this, we know that the form of the match fall off will be

m = 1− k∆λ2 + 1 where ∆λ is the change in one of the parameters and m is

the match between the old and the new waveform, for some constant k. If we

generate a waveform whose bigger object has mass is M0M� larger than our

original waveform and returns a match of m0, we can rewrite our equation to
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find the rate of fall off, k:

k =
m0 − 1

M2
0

(4.11)

which can be plugged into the original match as:

m0 =

(
m0 − 1

M2
0

)
∆M2 (4.12)

We can set m equal to the match we would like between the waveforms in our

bank, D, and solve for the necessary change in the parameters ∆λ to get the

correct grid spacing:

∆Λ = M0

√
1−D
1−m0

(4.13)

Since the fall off of the match is only approximately quadratic, we use a loop

to repeat this calculation by generating a waveform with the newly calculated

difference in the parameter space. This is repeated until the change in match

is within a small range of what we want for the gridding.

Once the grid of points in the parameter space has been generated, we

cull the points outside of the 99.9% confidence interval from the search, as

described earlier. Since the spacing is estimated in both mass parameters and

both spin parameters, the bank generated is well-covered in the region of the

parameter space containing the signal, without biasing our search. We also

limited our spins to having a magnitude less than 0.98, since attempting to

match filter with a spin greater than 0.98 caused the code to fail. You can see

the result of this in Figure 4.1.

This template bank presented some limitations when running on a single-

core computer. For example, a bank at this density in all four dimensions of

this parameter space (two dimensions for mass parameters and two for spin

parameters) has far too many templates to run quickly on a single computer.

One solution for this issue would be to confiugre the code so it could run on

a network of computers. In addition, the grid of points is laid out linearly in

the parameter space. The method of placement could be further explored to

allow for a more efficient placement method.

4.2 Match Filtering

Next, our hyperdense parameter estimation pipeline uses the same matched-

filtering as used in the PyCBC pipeline, Eq. 3.1, to find the significance of the

waveforms in the hyperdense template bank. We then take the loudest signal-
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Figure 4.1: An example hyperdense bank for the gravitational wave
GW170104, spanning the four-dimensional mass-spin parameter space. The
left plot shows the bank in the mass parameter space in solar masses, where
the x-axis is mass 1, the bigger black hole’s mass, and the y-axis is mass 2, the
smaller black hole’s mass. The right plot shows the bank in the spin parameter
space, where x-axis is spin 1, the spin of the bigger black hole, and the y-axis
is spin 2, the spin for the bigger mass.

to-noise ratio for each template within the one-second interval around the

reported end time. The fall off of the SNRs over the parameter space tells us

the likely range for the signal’s parameters. We calculate the 99.9% confidence

interval for the returned SNRs and use it to approximate the masses and spins

of the signal. This method of matched filtering for points over the parameter

space is related to other parameter estimation pipelines’ method of randomly

walking over the parameter space (often using a Markov-Chain Monte Carlo)

insofar that both methods sample the parameter space at different points to

estimate the overall structure of the probablities.

Thus, we use Eq. 3.1 to match every waveform in our template bank against

the 256 s segment of data in which the gravitational-wave signal was identified

by the pipeline. Recall that this uses the noise in the detector to weight the

matched filter. We thus Fourier transform the data segment to generate a

power spectral density for the matched filter. This allows us to downweight

excess power from noisy frequecies, such as the low-frequency seismic noise

or the high-frequency photon shot noise discussed in Section 1.3. Note that

Eq. 3.1 is a timeseries: the output gives the SNR for a given waveform over

the course of the time segment. We know the approximate time of the signal

(defined as the point of merger in the waveform) from the search, so we find

the peak value of the SNR in a one-second window around this time for each

template waveform. These peak values, the time stamp and the parameters of

the template waveform are saved in a database. This process is done for each

contributing gravitational-wave detector.
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We then weight the SNR to account for the astrophysical distribution of

sources, φ. This factor is found by consulting an empirically calculated table.

This table is generated by creating a set of simulated gravitational-wave sources

which are uniform in volume. For each of these hypothetical sources, the

associated SNR and phase for each detector is calculated, along with the time

difference between detectors. Then we histogram over these parameters to find

the probability of expected signals over this space. This probability is then

used to reweight the SNR in order to favor signals that are more astrophysically

likely. This is described in detail in Ref. [94].

4.3 Sky Rings

Next, we then need to calculate the combined likelihood statistic. For our

research, we focused on an analysis of the Hanford and Livingston detectors

only, so we need only find the combined statistic between the events found

in these two data sets. We calculate the constants for each signal including

time delay, the amplitude of the gravitational waveform σ, maximum distance

and the combined SNR squared ρ2. Next we use a relatively new method

of calculating the sky location to make further calculations, using sky rings.

Using the SNRs from the matched filtering process and the difference in the

time delays, we can also estimate the sky location and orientation of the binary

system.

We generate a set of rings of points at different sky locations. These rings

are generated such that a gravitational wave coming from a sky location on any

point along a single ring would have the same time delay when detected by the

Hanford and Livingston detectors. In order to generate these rings, we need

the time-of-arrival for the gravitational wave. We feed this information from

the search. We convert this to Greenwich mean sidereal time. We then create

a line of maximum time delay, which is the line that runs through Hanford and

Livingston. This line points to two sky locations from which a gravitational

wave would give the maximum possible time delay between the detectors. This

maximum time delay is equal to the light travel-time between detectors, about

11 ms, since gravitational waves travel at the speed of light. Next we generate

rings in the sky centered along the line of maximum time delay. For our

analysis we choose 180 rings of 300 points. We can then calculate the detector

response, F+ and F×, for each of these sky points. For each waveform, once

the match filter is performed, the difference in the end times between the two
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detectors constrains the signal to the ring of points with the most similar time

delay.

We can use these sky rings to identify the orientation of the binary. Using

the detector response for each of the sky points, we can see if the observed SNRs

are consistent with the signal. If the components of the flagged gravitational

wave are similar to the response we expect to see in the detector, the signal is

more likely to have come from that sky point. Similarly, we can use the detector

response at each sky point to find how the signal’s SNR can be attributed to

being face-on, face-away or edge-on. As discussed in detail in Chapter 2, face-

on and face-away binaries are more likely to be detected. We quantify this by

calculating the SNRs weighted by the expected detector response:

ρright =

∣∣∣∣∣zHFHσH + zLFLσJ√
σ2
HF

2
H + σ2

LF
2
L

∣∣∣∣∣ (4.14)

ρleft =

∣∣∣∣∣zHF̄HσL + zLF̄LσL√
σ2
HF

2
H + σ2

LF
2
L

∣∣∣∣∣ (4.15)

Here, zH and zL are the complex SNR values for Hanford and Livingston,

respectively. σ is the norm of the gravitational waveform. F is the detector

response to the components of the signal for each detector, e.g., FH = FH,+ +

iFH,×, while F̄ is its conjugate. We can also estimate the SNR for an edge-on

binary as being the norm of the complex SNRs in the two detectors.

ρcoherent = |zH |2 + |zL|2. (4.16)

From these SNRs, we can calculate the approximate distance of the binary.

Since a nearby binary would create the loudest signal, the distance is inversely

proportional to the signal’s SNR:

d =
σ

ρ
. (4.17)

We calculate this for each waveform, at each point, for face-on, face-away and

edge-on orientations.

Once we have all the SNRs for the three orientations for each waveform

at each point on its optimum sky ring, we can calculate the probabilities for

each of these points (as used in Eq. 4.1). We sum the probabilities for all

waveforms at each point to find which location is most likely for our newly

generated bank. We also sum the probabilities for each handedness to find if
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the binary was likely to be face-on or edge-on. Lastly, we do a weighted sum

to determine what the distance is most likely to be.

4.4 Confidence Regions

After calculating the signal-to-noise ratio at the time of the detection for each

waveform, we use Eq. 4.1 to estimate the probabilites for each waveform. Using

these probabilities, we generate 90% and 50% confidence intervals for each

part of the parameter space. We do this by organizing the templates by their

probabilities, and then totaling the probabilities until we reach a cumulative

probability of 90% and 50%, respectively, as is done for the coarse bank in

Sec. 4.1.

4.5 Discussion and Future Direction

Here, we present an exploration into a new method for rapid parameterization.

This parameter estimation pipeline has been tested on the gravitational-wave

signal GW170104, and is able to approximate the masses, spins, distance, incli-

nation and sky location on the order of hours for a single-core computer. The

method works in principle, though several changes need to be made in order to

optimize the method for use in the collaboration. For example, the density of

the bank made it difficult to run on a small scale. If this were to be expanded

to running for multiple detections over the course of a observing run, it may be

computationally expensive to perform this parameter estimation. By finding

a better way to uniformly cover the mass space, such as placing the templates

diagonally and optimizing the spacing between templates in the parameter

space, we could minimize the run time. It may also be possible to create a

single, large hyperdense bank and use the boundaries defined in Sec. 4.1 to cull

this bank for the parameter estimation analysis. Secondly, this code would be

best used to run automatically when low-latency pipelines identify a signifi-

cant signal in the gravitational-wave data. This requires creating a code which

merges seamlessly with one of the already existing low-latency pipelines such

as PyCBCLive [30].
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Conclusions

In this thesis, I have presented my work in gravitational waves over the past

two years. This research focused on parameter estimation of binary systems

using the resulting gravitational wave. I explored LIGO’s parameter estima-

tion in Chapter 2. Here, I found that current LIGO would rarely be able to

correctly constrain the inclination angle for most binary signals, due to the de-

generacy between distance and inclination. Future detector networks may be

able to constrain the face-on signals to having less than about 45◦, but it would

be difficult to constrain it more tightly than that without breaking degeneracy

by measuring distance using an EM counterpart, by measuring precession ef-

fects or by detecting higher order modes. I give details on the overview of the

search pipelines currently used to identify gravitational waves in LIGO data in

Chapter 3, which was a significant component of my undergraduate research.

This work I completed and published during my first months in Cardiff [24].

This gave the background necessary to understand the parameter estimation

work I performed, which I described in detail in Chapter 4. This novel param-

eter estimation pipeline has been tested to work, but would need significant

optimization in order to be implemented in LIGO research. This work could

be used to help our astronomer colleagues to better understand what type of

signal they may be looking for associated with a gravitational wave.
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