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How to calculate the pole expansion of the optical scattering matrix from the resonant states
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We present a formulation for the pole expansion of the scattering matrix of open optical resonators, in
which the pole contributions are expressed solely in terms of the resonant states, their wave numbers, and their
electromagnetic fields. Particularly, our approach provides an accurate description of the optical scattering matrix
without the requirement of a fit for the pole contributions, or the restriction to geometries, or systems with low
Ohmic losses. Hence, it is possible to derive the analytic dependence of the scattering matrix on the wave number
with low computational effort, which allows for avoiding the artificial frequency discretization of conventional
frequency-domain solvers of Maxwell’s equations and for finding the optical far- and near-field response based
on the physically meaningful resonant states. This is demonstrated for three test systems, including a chiral
arrangement of nanoantennas, for which we calculate the absorption and the circular dichroism.
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I. INTRODUCTION

Since the pioneering work of Gustav Mie [1], it is known
that the scattering of light at small obstacles is governed
by the resonant states of that system. Resonant states, also
known as quasinormal modes, are solutions of Maxwell’s
equations at discrete complex wave numbers with purely
outgoing boundary conditions in the absence of any sources.
This set of discrete wave numbers manifests itself as poles
in the analytic continuation of any sort of linear optical
response function (see Fig. 1). According to the Mittag-Leffler
theorem [2], it is possible to develop a pole expansion for
these response functions, including the Green’s dyadic as well
as the scattering matrix of a system. Knowing the poles and
residues of the response function then provides its behavior as
a function of the wave number, which is clearly advantageous
compared to conventional numerical calculations, where an
artificial discretization in either time or frequency domain is
introduced [3-9].

Regarding the Green’s dyadic, it has been shown that
the residues of its pole expansion can be derived from the
resonant electric field distributions of the resonant states
when normalizing them appropriately [10]. Several approaches
have been suggested for the normalization of resonant states
[10-26]. This includes approximate formulations for high-
quality modes [23-25], the utilization of perfectly matched
layers [14] or, equivalently, complex coordinates [11] in the
exterior of the system, as well as numerical approaches [20,22].
A fully analytical form of normalization has been derived in
Ref. [10] and extended to various geometries and materials
[15-21,26-28].
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Existing methods for expanding the scattering matrix in
terms of its poles often require fitting procedures or corrections
based on symmetry arguments [29,30], and have been proven
only for the case of spectrally isolated (single) resonant
states [29-31]. The approach of Perrin [32] for the pole
expansion of a scattered field is more general and has been
validated for two poles. Recently, the scattered field has been
computed more accurately by using a larger number of resonant
states and adding an auxiliary group of artificial, so-called
perfectly-matched-layer modes [33]. In a similar manner, Yang
et al. show how to derive the outgoing channels for a known
electromagnetic near field [34], but both Perrin’s and Yang’s
approaches do not provide the pole expansion of the scattering
matrix, which directly relates incoming and outgoing channels.
Alpeggiani et al. [35] presented a formulation that is valid
for a large number of resonant states. Based on symmetry
considerations, a system of equations is derived that is solved
in a least-square sense to calculate the residues for the pole
expansion of the scattering matrix. However, the approach
cannot be applied to strongly absorbing systems, with the
least-square method being an artificial fitting procedure that
increases the computational time proportional to the number
of considered resonant states and channels in the scattering
matrix.

Here, we derive the pole expansion of the scattering matrix
from the pole expansion of the Green’s dyadic for reciprocal
systems. In contrast to previous works, the residues of the pole
contributions in the scattering matrix are calculated directly
from the resonant field distributions by projecting them onto
basis functions of free space [36]. The derivation is based on
selecting basis functions that satisfy appropriate orthogonality
relations, and separating the total field into the background
and scattered field [6,32,35,37]. The formulation is neither
limited with respect to the number of resonant states nor
restricted to certain geometries. Moreover, it is valid for
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FIG. 1. Analytic continuation of the transmittance for a sym-
metric planar slab of thickness d with refractive index n® = 2.5
surrounded by homogeneous and isotropic half spaces with index
n' =n® =1 at normal incidence (displayed as wave vector k and
electric field E). It can be seen that the oscillating behavior of the
transmittance at real wave numbers k (orange solid line) originates
from the poles on the complex k plane, which correspond to the
resonant states of that system.

strongly absorbing systems and can be implemented in any
numerical frequency-domain solver of Maxwell’s equations
that allows for calculating the resonant states and their field
distributions. Thus, it is possible to derive the scattering matrix
for arbitrary geometries as a function of the wave number,
which is particularly useful for systems that exhibit resonant
states with a narrow linewidth, such as Fano resonances
[38—40]. In addition, our approach can be applied to systems
with resonant phenomena dominated by losses, such as perfect
absorbers [41] and chiral nanoantenna arrays [42,43].

The paper is organized as follows: In Sec. II, we give an
overview of the compact operator form of Maxwell’s equations
introduced in Ref. [26] and define two forms of bilinear maps
to simplify the further derivation steps. Section III is devoted
to the resonant states and the pole expansion of the Green’s
dyadic. After this introduction, we recapitulate in Sec. IV the
concept of background field and scattered field. In Sec. V,
we define the scattering matrix and introduce orthogonal basis
functions selected as input and output channels of the scattering
matrix. Using the notations and relations of Secs. Il to V, we
then derive in Sec. VI the pole expansion of the scattering
matrix for arbitrary geometries, which is the central result of
this paper. Particularly, we show that it is possible to calculate
the residues of the pole expansion solely from the resonant
field distributions. In Secs. VII and VIII, we focus on planar
periodic systems, for which we compare the results of our
formulation with full numerical and analytical calculations
for three test systems: a planar symmetric slab consisting of
homogeneous and isotropic materials, a dielectric grating with
quasi-guided modes [44], and a chiral arrangement of gold wire
antennas [42]. The full numerical calculations are based on the
Fourier modal method with adaptive coordinates [45—49]. The
resonant states and their field distributions are calculated by
the methods described in Refs. [20,50,51]. In the Appendix,

we sketch how to use our formalism for single scatterers in
three-dimensional space and give more details on the planar
periodic systems.

II. MAXWELL’S EQUATIONS AND GREEN’S DYADIC

In Ref. [26], a compact matrix-operator formulation of
Maxwell’s equations has been introduced, which is given
in Gaussian units and frequency domain [time dependence
exp(—iwt)] by

M(r; k)F(r; k) = J(r; k), (1)

\yhere k = w/c is the wave number and M(r; k)= k@(r; k) —
D(r) with

5oy | k) —iE(r; k)
= [im;k) (s k) ] @
A 0 V x
D(r) = (VX 0 ) 3)
Ingeneral, ¢, 4, {,and £ are 3 x 3 tensors. For reciprocal mate-
rials, the bianisotropy tensors £ and ¢ obey €T = —¢, whereas

AT & .
eT = ¢ and uT = u, so that P = IP, with the superscript T
denoting the matrix transpose. The electric and magnetic fields

as well as the currents form six-dimensional supervectors:

oy | E(r;k) oy | Je( k)
F(r; k) = |:iH(r;k):|’ I k) = [iJH(r;k)]‘ )

Here, Je(r; k) = —4mij(r; k)/c, and the magnetic currents Jy
have been introduced for symmetry purposes.

Equation (1) presents an inhomogeneous linear differential
equation. Its Green’s dyadic G(r, r'; k) satisfies

M(r; H)G(r, ¥'; k) = 18(r — 1), 5)

with 1 as a 33 unit matrix, which allows to construct a special
solution of Eq. (1) as

F(r;k) = / dv'G, v’ kI k). (6)
|4

For later convenience, we define two types of bilinear maps
between two six-dimensional field supervectors A and B that
are either field vectors IF or current vectors J:

A B
A= <iAF;I)’ B = (m';)- D

The first bilinear map is defined as a volume integral over a
finite volume V':

(AIB)y E/MAE-BE—AH-BH). ®)
\%

This bilinear map is symmetric, i.e., (A|B)y = (B|A)y. The
second one is defined as a surface integral over the surrounding
surface 0V, the boundary of V:

2%

Itis antisymmetric with [A|B]s, = —[B|A]sy, and equals zero
for identical vectors, i.e., [A|A]z, = 0. Using vector identities
and the divergence theorem, it is straightforward to show that

[ABlay = (BIDIA)y — (A|D|B)y. (10)
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FIG. 2. Typical scattering geometries with spatial inhomo-
geneities AN denoted by light blue color: (a) Single scatterer in
homogeneous and isotropic space, (b) planar periodic system with
super- and substrate at the top and bottom, respectively. The scattering
matrix S provides a connection between the incoming fields 7 and the
outgoing fields O. The residues for the pole expansion of the scattering
matrix should be calculated from the resonant field distributions on
the surface of a minimal convex volume surrounding the scatterer,
which is denoted by the light gray regions.

III. RESONANT STATES

The homogeneous form of Eq. (1) possesses a countable
number of solutions on the complex k plane satisfying outgoing
boundary conditions, which are the resonant states. They obey
the equation

N(r; k,)F, (r) = 0. (11)

The real part of k,, gives the resonance wave number, whereas
—2Imk, is the resonance linewidth. When normalizing the
resonant states appropriately [10,15-21,26,27], they can be
used together with possible cuts to expand the Green’s dyadic
with outgoing boundary conditions as follows:

R (4
Gmﬂm)zzjgﬁ%?%gl. (12)

n

Here, the superscript R denotes the reciprocal conjugate
resonant states that are solutions of Maxwell’s equations at the
same wave number k,, but for reciprocal boundary conditions
(which corresponds to a reversal in pathways such as in-plane
momentum k;; — —k;; for planar systems [21]), and ® is the
outer vector product. Note that we do not distinguish explicitly
between pole and cut contributions, since they can be formally
written in the same way and replaced by a finite number of cut
poles in numerical calculations [15,28]. Furthermore, it has to
be emphasized that the pole expansion of the Green’s dyadic in
Eq. (12) is generally not valid in the region outside the scatterer,
since the resonant states contributing to Eq. (12) contain only
outgoing waves, as discussed in more detail in Ref. [21]. To
warrant its applicability, it should be restricted to a minimal
convex volume enclosing the scatterer, see Fig. 2.

The most general form of the analytical normalization
condition can be written as [26]

L= (Fy | kB [Fa)y, + [FR]E, ] (13)

where Vy is the volume of normalization and 0 Vy is the
boundary of Vy. The prime denotes the derivative with re-
spect to k at k,. Calculating the derivative is trivial for the
first term on the right-hand side. For the second term, we
have to differentiate the analytical continuation of I, on the
complex k plane, which depends on the geometry of interest
[15-17,20,21,27].

It should be noted that this formulation of the normalization
is slightly different than in most of our previous works on the
resonant state expansion [10,15-21,25,27,28], which is valid
also for magnetic and bianisotropic materials [26]. This formu-
lation can be reduced to our previous results for nonmagnetic
materials that are solely described by the electric field, the
electric permittivity, and the electric current as a special case.
Note, however, that in this new formulation, the normalized
electric field is a factor of ﬁ smaller than in previous works.

IV. BACKGROUND AND SCATTERED FIELD

For a given system, Maxwell’s operator M in Eq. (1) can
be separated into a background term Mpg = kIP’BG —D for
a simple material distribution, and a scatterer AN = k(P —
Pgg), which describes a spatial inhomogeneity (see Fig. 2).
The field scattered at AN can be obtained by separating the
total field into a background field Fpg that is a solution of the
background Maxwell’s equations for a given incoming field,

Mg (r; k)Fpg(r; k) = 0, (14)
and the scattered field Fy., [6,32,35,37]:
F(r; k) = Fpg(r; k) + Fyea (15 k). (15)

Using Eq. (14) in Maxwell’s equations for the full system,
it is straightforward to obtain

MI(r; k) Fseae (k) = —AM(r; K)Fpg (r; k). (16)

Thus, knowing the pole expansion Eq. (12) for the Green’s
dyadic of M provides via Eq. (6) the scattered field within the
system as [32]

(FS | AMHIFBG)v

k — ky 17

Feeal(r; k) = — Y Fy(r)

It should be mentioned that the background field Fgg possesses
aregular behavior inside the scatterer, i.e., it does not diverge at
any point, whereas the corresponding incoming and outgoing
fields may have singularities such as the incoming and outgoing
Hankel functions. For more details, see Appendix A.

V. THE SCATTERING MATRIX

The scattering matrix provides a relation between incoming
and outgoing channels of a system. A channel is defined
by a solution of Maxwell’s equations in the surrounding
of the scatterer, which we assume to be homogeneous and
isotropic space or two half spaces of homogeneous and
isotropic dielectric materials separated by a planar interface
(see Fig. 2). For such cases, Maxwell’s equations provide
complete sets of orthogonal basis functions that can be used to
expand an arbitrary solution of Maxwell’s equations outside
the system and on the surface surrounding the scatterer. The
best-suited basis set depends on the geometry: plane waves for
planar systems, vector spherical harmonics for finite three-
dimensional geometries, and cylindrical waves for systems
with translational symmetry in one dimension.

Each basis function defines one incoming and one outgoing
channel. From a mathematical point of view, the definition
of incoming and outgoing channels is arbitrary, and more
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motivated by physical arguments. For real-valued wave num-
bers k, an outgoing channel either possesses a time-averaged
energy flux that propagates outward, or its fields are decaying
exponentially with distance to the scatterer. The analytical con-
tinuation to the complex k plane is more sophisticated [21,52],
but usually defined such that there is a smooth transition from
any point on the complex k plane to the real axis. Thus, an
arbitrary field in the exterior can be expanded as follows:

F(r; k) = Yl (0N k) + o ()On (s k). (18)
N

The index N denotes a set of quantum numbers that specify
the different basis functions Iy and Oy, respectively, of the
incoming and outgoing nature. The scattering matrix S then
relates incoming and outgoing channels as follows:

O(k) = S(k)Z(k). (19)

Here, 7 and O are supervectors containing the expansion
coefficients ozli\? and oe&“t, respectively. The elements of the
scattering matrix are labeled as Syn' for an incoming channel
with quantum number N’ and an outgoing channel with
quantum number N.

How can we derive the expansion coefficients ali\? and aQ"?
This can be achieved by introducing, following Ref. [36], a set
of orthogonal modes in free space. Based on the reciprocity
principle, there exist reciprocal conjugate basis functions I[§
and @1131 such that

[H§|©N/]av = _[©§|HN’]3V = NN (20)

[§[x],, = [0F[ox],, =0, @D

At a first glance, it might seem strange that we have to
combine incoming and outgoing basis functions to obtain
unity for N' = N. However, this is a direct consequence of
the antisymmetric form of Eq. (9). From the physical point
of view, it is related to the fact that reciprocity provides the
connection between fields of reciprocal pathways. In general,
the orthogonality given by Egs. (20) and (21) follows from
the fact that the proper choice of the basis functions in free
space determining its quantum numbers N is dictated by the
properties of the surface dV chosen for the integration, and, in
particular, by its symmetry. While we do not provide a general
proof for an arbitrary surface, we prove in Appendices A and B
the orthonormality Egs. (20) and (21) in two important cases:
A spherical surface 9V and the surface dV of a unit cell of a
planar periodic system. For N = N’, Eq. (20) determines the
normalization of modes in free space. Using Eqs. (20) and (21)
in Eq. (18), we obtain

an(k) = [OR[F],,. o) =[I]|F],,. (22

VI. POLE EXPANSION
Formally, the pole expansion of the scattering matrix yields
R
—k

(23)

Sy =Sac+ )

The background term Sgg arises, because even for the vacuum
background, its scattering matrix is nonzero. As in Ref. [35],

where Spg is called the direct-coupling matrix, we do not
focus on the calculation of the background term, but derive
expressions for the residue matrices R,, with elements R, nn'.

Applying Eq. (22) to Eq. (15), it is possible to calculate, for a
given incident field, the expansion coefficients of the outgoing
field as the elements of the vector O in Eq. (19):

aQ (k) = [1&[Fsa],, + [1&[Fea],, - (24)

For the last term, we can use Eq. (17), which yields

[IR[Fw ], (F5 | AML | Fisc)
(IR [Fecat 5y = — ; . [Wk —k, -

(25)

It should be noted that I, exhibits outgoing boundary con-
ditions, so that it can be decomposed into outgoing fields
OnN(r;k,) on the surface dV. As a remark, the analytic
continuation of [F,, which is used in Eq. (13), is defined
as F,(r;k) = )\ @, NOn(r; k), with the expansion coeffi-
cients o, N given by o, N = []Iﬁ(kn)HFn]aV [19,21,26], so that
F,(r;k,) =F,(r).

Let us now consider a background field and a scattered field
that are generated by an incoming field In and calculate the
residue of Eq. (24) at k,:

Runn = Res ay (k) = Res [IR [ Fcar ],

= —[I& (k)IF, ], (FR| ANI(K,)[Frg k), - (26)

To derive a more explicit expression for the volume integral
in the second line, we take Eq. (11) for the reciprocal con-
jugate resonant state FR using NN = M, multiply it from
the left with Fgg(k,), and integrate over a finite volume V:
(FBG(k,,)|M(k,1)|F§)V = 0. Using Eq. (14), we subtract a zero
in the form of (FR|Mpg (k, )|Fgg(k,))v = 0, which yields due

to ' = P that
0 =(Fac(kn)|M(kn)[F5 ), — (Fx | M (k)| Fea(kn)),,
=(Fx| AM(ky)|Fp (kn)),,
~ (Fea(ka)[D|FS), + (F} D] Fec (k). - 27)

With the help of Eq. (10), we are then able to convert the volume
integral in Eq. (26) into a surface integral:

(FR|AMI(k,)|Fo (k) = [FRIFae k)], (28)

On the surface 3V, the field FR exhibits outgoing boundary
conditions, i.e., it can be constructed as a superposition of
outgoing waves @ﬁ(r; k). Owing to this outgoing nature of
[FR and the orthogonality Eq. (21), we obtain that any outgoing
field as part of the background field g on the right-hand side
of Eq. (28) does not contribute to the volume integral on the
left-hand side, so that we can replace Fgg by the incoming
field. Particularly, by selecting the incoming field to be basis
functions Iy (7; k,, ), we derive that the residues in Eq. (23) are
given by

Runw = —[IRGDIF ], [FR N )],y (29)

This is the main result of this work, which allows for calculating
the pole contribution in the scattering matrix solely from
the resonant field distribution I, and the wave number %,,.
Hence, by determining additionally the background term Sgg,
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e.g., using a fit or analytical considerations, the fields at any
point in space outside the scatterer can be calculated from
Egs. (18), (19), (23), and (29), while the internal fields are
given by Eq. (17). Note that the background term can be
reduced to the scattering matrix of homogeneous and isotropic
space for some highly symmetric geometries, as it is assumed
in the examples of Ref. [35], but this is not necessarily the
case.

As written above in Sec. III, the pole expansion of
the Green’s dyadic in Eq. (12) should be restricted to
a minimal convex volume enclosing the scatterer. Conse-
quently, Eq. (29) is evaluated on the surface of this minimal
volume.

VII. PLANAR PERIODIC SYSTEMS

As test systems, we consider planar periodic systems with
a scattering material distribution that is periodic in the xy
plane and bound in the z direction. More specifically, M (r +
R; k) = N(r; k) for any translation vectors of the form R =
(n1Py)a; + (np P,)a with P; and P, being the periods in the
directions defined by the unit vectors a; and a,, respectively,
and ny, n, € Z. Without the loss of generality, we assume that
a; and a, are normal to the z direction.

The minimal convex volume spans over one unit cell in the
periodic directions with a plane on top and bottom that touches
the scatterer [see Fig. 2(b)]. The orthogonal basis is given by
s- and p-polarized plane waves, where ‘s’ specifies linearly
polarized light with the electric field being perpendicular to
the incidence plane (the plane defined by the incident k vector
and the z axis), while ‘p’ denotes an electric field that is parallel
to the incidence plane. The role of the quantum numbers N is
taken by the two polarizations and the reciprocal lattice vectors
G = (n2n/Py)b; + (n,27/ P>)b, with a, - bﬁ = 80,,/3. Ow-
ing to Bloch’s theorem, the fields [F as solutions of the scattering
at the periodic system can be constructed as a product of
a phase factor exp(ik - r) and vector components that are
periodic functions with the same periodicity as M. The in-plane
momentumk;; = (b - k)a; + (b, - k)a, with k as the incident
wave vector is preserved throughout the whole system, apart
from Umklapp processes. Solving Maxwell’s equations is then
reduced to finding the periodic part of the field distributions for
periodic sources or incident fields. It is convenient to introduce
a Green’s dyadic Gku for each value of kj;, which obeys the
following constituting equation:

MI(r; £)Gy, (r.x':k) = Y " 1e™Rs(r —r' —=R).  (30)
R

Thus, it is sufficient to consider only one unit cell for further
analysis. For instance, any volume of integration can be
restricted to span over one unit cell in the xy plane. If a surface
integral contains all boundaries of the unit cell, it reduces for
periodic integrands to an integration over the top and bottom
surfaces of one unit cell, since the surface integrals to adjacent
unit cells cancel out due to the periodicity. This implies that we
can distinguish the channels of the scattering matrix not only
by plane wave orders G and polarization p, but also by the
surface at which the fields enter or leave the minimal convex
volume [see Fig. 2(b)].

Let us define K = k;; + G. Then, the orthonormal basis in

the top (t) and bottom (b) half space is given by supervectors

l/ b K.+ (T; k) withall possible K for the given k| and the electric
and magnetlc fields

B (k) = NGRS Lol k), (31
t/b
HY (k) = N (k”;/‘;(i(kw‘/b k), (32)

Z5(k)

t/b . — F/b Fyt/b
where NK. isa normalization constan.t, E PK £ and H pK.+ are
unit polarization vectors, p denotes either s or p polarization,

ZY%(k) = /> (k) /e'/® (k) is the impedance, and
/b t/b
v/l/b ( k) zKr:tucK (k)(z—2 ) (33)
\/Su
Here, 7'/® gives the positions of the xy planes as the top

and bottom surfaces of the minimal convex volume, S, is the
top/bottom area of one unit cell, and

/(kt/b)2 — KZ’ (34)

where kY° = n'/(k)k with refractive index n'"(k) =

Ve/P(k)ut/>(k). For lossless n'/® and real wave numbers k,

either KIt(/b or iK;(/b is purely real. In the case of the former, the

channel associated with that plane wave is called open, since
the field can propagate in z direction from and to the far-field
region. In the case of the latter, the channel is closed, and the
fields grow or decay exponentially. We select the sign for the
square root in Eq. (34) such that the fields are either forward-
propagating or decaying in positive z direction. For complex &,
the sign is chosen to match the sign of the same channel on the
real axis. If the channel is open on the real axis, the real part of
Kll(/b must specify forward propagation in positive z direction.
Otherwise, the field must decay in positive z direction. The sign
=+ in Egs. (31) to (33) thus means forward propagation or decay
in the positive z direction for + and backward propagation or
decay in the negative z direction for —. In the same manner,
it is possible to define incoming and outgoing channels for
lossy materials in the top and bottom half spaces by making
an analytic continuation from real to complex n'/®.

The s-polarized unit vectors can be written in the top and
bottom half spaces as

ol k) =

f/o T
E g (k) = K ng , (35)
FK il (k)
oy (k)= TR | Tl | (36)
K2

The p-polarized unit vectors are given by

B/% (0 =FH/g (0, 37)
A% (k) = B (k). (38)
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The normalization constant is

P t/b(k)kt/b
NP (k) = /ZZ—. 39
K ( ) ZKE(/b(k) ( )

We define the outgoing and incoming channels in the top
and bottom half spaces as

0, x(r;k) =T, ¢ _(r;k), OY ((r;k) =TF) g, (r;k),
(40)
I (k) = F (k). I (k) = F o (r3k). (41)
The reciprocal conjugate is given by
/b \R t/b t/b \R t/b
(O;,K) = (O)p/,fK’ (]Ip/,K) = ]Ip/,fK’ (42)
which warrants together with Eq. (39) the orthonormality rela-
tion given by Egs. (20) and (21). For details, see Appendix B.
If I, is a solution of Eq. (11) for a fixed k;;, the reciprocal
conjugate resonant state FX is a solution of Eq. (11) for —k;,
having the same wave number k.
Using Refs. [21,26], the normalization of the resonant states

of the planar periodic systems can be summarized as (see
Appendix C)

1
1, (St +SP k) =1, 43
+;2(n,x+ ) (43)
with
kP
R
b= {Fy| =~ ” IE),, - (44)
ant/b
b b b K
Six = (Blx = Blox) == (45)
where
Bk = ol (olfh ) e a6
and
t/b
t/b _ kg (k)
ngx (k) = 1In ZUb (kb (47)
ZVP (ke l® (k)
t/b
np/-,K(k) =1In k[—/bK (48)

Here, a% };’K = [I[Z}:K (k)| 17,8 gives the plane-wave expan-

sion of the resonant state at the top and bottom surface T
and B, respectively, enclosing the minimal convex volume V.
The reciprocal counterpart is (a;{ I;’K)R = [Htp/g((kn)HFE]T/B.

Furthermore, Az%b > 0 is the distance between the top and
bottom planes of the normalization volume Vy and the minimal
convex volume V.

VIII. RESULTS

As first example, we consider a planar symmetric slab of
refractive index n®* = 2.5 and thickness d = 50 nm that is sur-
rounded by air (n' = n® = 1). The transmission ¢ and reflection
r through such a system can be calculated analytically [53]. At
normal incidence (k; = 0), we obtain

in*kd

TEC
tk) = T

— plelin‘kd’ (49)

E, (a.u)
K 0.1
nt oy -
c 0.05— —
ns d =
nP=nt " o=
-0.05
n=" (3) (2 (1) (0
19
G =
O O L
cg 0.8
8 g
@ 5067
£ » b ¢ L3 » ® -«
8
0.4
@
=
(o]
202
©
0

-1 -0.5 0 0.5 1
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FIG. 3. Test system 1: Normalized transmittance (orange), re-
flectance (blue), and absorbance (black) of a planar symmetric
slab of refractive index 2.5 and thickness 50 nm in air at normal
incidence (schematic at the top left). The results have been calculated
analytically (dots) and based on the pole expansion using 301 resonant
states (lines). The electric field distributions (real part) of the resonant
states with index n = 0, 1, 2, 3 are displayed at the top right.

p(GZinskd -1 )

rik)=~1— p2edinkd

(50)
In this case, p = (1 —n*)/(1 +r*) and © = 4n®/(1 +n%)2.
Equations (49) and (50) can be summarized in a two-
dimensional scattering matrix:

1 eZinSkd -1 .L,einskd
Sth)= ——— 2 - ) - .
1 — ,0262”' kd Tein kd ,0(62m kd __ 1)
(S
This matrix exhibits poles at
i 1
g, = T nlel (52)
nsd
The corresponding residues yield
2i 1 (_1)n+l
Ryn= ——— . , 53
[l — (n))d [(—1) * 1 43

while the background scattering matrix is given by

2i 1
%06 = = i 25, 9

n

where 1 is a 2 x 2 unit matrix.
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mode D: 3854.7-0.7i meV

mode C: 3719.3-9.7i meV

*

FIG. 4. Test system 2: We consider a dielectric one-dimensional
periodic grating with period 300 nm and thickness 50 nm with high-
index regions of refractive index 2.5 and width 200 nm embedded
in air. For in-plane wave-vector components k, = k, = 0.2 um~",
the system exhibits two transverse-electric quasiguided modes
at eigenenergies of E, = 2676.2 —0.2i meV and Eg = 3180.0 —
92.7i meV, respectively, and two transverse-magnetic quasiguided
modes at eigenenergies of Ec =3719.3 —9.7imeV and Ep =
3854.7 — 0.7i meV, respectively. The field plots at the bottom display
the real parts of the y components of the normalized electric (modes
A and B) and magnetic (modes C and D) resonant field distribution of
these modes within one unit cell. The material interfaces are indicated
by green and white lines, respectively.

Figure 3 displays the transmittance (orange), reflectance
(blue), and absorbance (black) calculated from Eq. (51) (dots)
as well as the pole expansion of the scattering matrix (lines).
For the pole expansion, we have considered 301 resonant states
symmetrically distributed around k = 0. The residues have
been calculated from the correctly normalized resonant states,
which exhibit a perfect agreement with the analytical values
given by Eq. (53). For the background scattering matrix, we
have used Eq. (54) with the sum truncated to the finite number
of the 301 resonant states. Evidently, the pole expansion
exhibits a good agreement with the analytical results in the
given range, with a growing deviation for larger energies
that can be particularly seen in the nonzero absorbance. This
deviation becomes smaller when using more resonant states as
basis.

1 1
0.5 0.5
0 < < < 0 *0-0-0-0-0-0-0-0-000000
2660 2680. 2700 3700 3800 3900
1 ; :
o ~
2308
g
8 g
© 5 0.6
R
8a
5 § 0.4
5%
52
lc_g 802
0
2500 3000 3500 4000
Energy (meV)

FIG. 5. Transmittance (orange), reflectance (blue), and ab-
sorbance (black) of test system 2, obtained by full numerical cal-
culations (dots) and the pole expansion of the scattering matrix (solid
lines) for p-polarized incidence with k, = k, = 0.2 um™~"'. The gray
triangles on top indicate the resonance energy of the four quasiguided
modes in that energy range (see Fig. 4). Note that the pole expansion
provides an accurate description around the narrow modes A and D
(magnification in top panels), while the full numerical calculations
cannot properly resolve the resonant functional behavior on the given
equidistant energy grid.

The second test system is a dielectric one-dimensional
periodic grating (see Fig. 4) with period 300 nm that consists
of a high-index material of refractive index 2.5 with width
200nm and height 50nm embedded in air [44]. Without
the loss of generality, we consider p-polarized incidence for
in-plane wave-vector components k, =k, = 0.2um™'. In
this case, the far-field spectra exhibit four resonant states in the
region between 2500 meV and 4000 meV that are quasiguided
modes [8]. The corresponding poles are located at 2676.2 —
0.2i meV (mode A), 3180.0 — 92.7i meV (mode B), 3719.3 —
9.7i meV (mode C), and 3854.7 — 0.7i meV (mode D). The
resonant electric and magnetic field of the transverse-electric
and transverse-magnetic quasiguided modes, respectively, can
be seen in Fig. 4. Of course, the system has an infinite number
of resonant states as well as cut contributions. However, for the
given energy range and polarization, all other resonant states
and cuts are far enough away in the complex k plane, so that
their impact can be reduced to a slowly varying background.

Figure 5 displays the far-field spectra of test system 2,
with transmittance (orange), reflectance (blue), and absorbance
(black). Since the system is nonabsorbing, the absorbance
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mode A: mode B:

932.3-91.1imeV  948.1-91.5i meV

RCP LC

T

o

FIG. 6. Test system 3: Chiral arrangement of an array of gold
wire pairs with period 400 nm in x and y direction. The wires have
a width and height of 40nm and are 220nm long. The vertical
distance d between the wire pairs is 120 nm. The surrounding material
has a refractive index of 1.5. We consider normal incidence, i.e.,
k. =k, =0. The two localized plasmon modes that originate in
the hybridization of the fundamental dipolar modes of the single
wires exhibit eigenenergies of Ex = 932.3 —91.1i meV and Eg =
948.1 — 91.5i meV. The field plots on the right display the real parts
of the z components of the normalized resonant electric field 10 nm
below the top wire (top row) and 10 nm above the bottom wire (bottom
row) in one unit cell. Green solid and dashed lines indicate the location
of the upper and lower antenna, respectively.

equals zero and is only shown to verify that the pole expansion
of the scattering matrix fulfills the energy conservation. The
filled dots have been obtained by full numerical calculations,
whereas the solid lines are the results of Egs. (23) and (29).
The nonresonant background and the influence of other poles
and cuts is taken into account by a cubic fit to the spectra
calculated at four equidistant energy points in the considered
energy range.

Note that the number of points for the full numerical calcula-
tions has been chosen such that the total calculation time equals
that required for calculating the resonant states and carrying
out the cubic fit for the background. Even though the derivation
of the pole expansion is not yet optimized with respect to
calculation time—in contrast to our full numerical approach, it
can be seen that the full numerical calculations provide much
less detail than the pole expansion. This is particularly obvious
around the narrow modes A and D (magnification in top
panels), where the full numerical calculations cannot resolve
the behavior of transmittance and reflectance accurately. Note
that the absorbance derived by the pole expansion is less
than 0.7 % over the entire energy range. This value can be
further reduced by making a higher-order fit or by taking more
resonances and some cut contributions into account.

Test system 3 consists of a square array of two gold wire
antennas of 40 nm width and height and 220 nm length per
unit cell, with period 400 nm (see Fig. 6). The two antennas
are vertically displaced with a distance of 120 nm and rotated
by 90° with respect to each other. The surrounding material
has a refractive index of 1.5. The gold permittivity is described

by an analytical model [54]. As shown in Ref. [42], this
system is chiral and exhibits a large circular dichroism as
the absorbance difference for left- and right-handed circularly
polarized light incidence. Note that we are using here the
convention of the point of observer for the definition of the
handedness of the light. The circular dichroism originates in the
excitation of the bonding and antibonding combination of the
fundamental plasmon modes in the two wire antennas. Owing
to the spatial configuration of the antennas, these modes can
be predominately excited by incident light of opposite hand-
edness. Furthermore, they are spectrally shifted. The bonding
mode A is located for k;; =0 at 932.3 — 91.1i meV, the
antibonding mode is at 948.1 — 91.5i meV. The z component
of the corresponding resonant electric field distributions can
be seen in Fig. 6.

While the nonabsorbing test systems 1 and 2 can be treated
by the formulation of the pole expansion described in Ref. [35],
the third test system is beyond its scope due to the large Ohmic
losses. Its absorbance reaches values of nearly 40 %, as seen
in Fig. 7(a). The far-field spectra are displayed for left-handed
circularly polarized (LCP, dashed lines and squares) and right-
handed circularly polarized (RCP, solid lines and dots) plane
waves at normal incidence. The pole expansion (solid and
dashed lines) agrees well with the full numerical calculation
(dots and squares) and predicts the circular dichroism correctly
[see Fig. 7(b)].

Note that any contributions to the pole expansion beyond
modes A and B have been treated in similar way as in test
system 2 by carrying out a quadratic fit to three equidistant
energy points in the range between 700meV and 900 meV.
Furthermore, the computational time for deriving the selected
number of energy points by the full numerical calculations
roughly equals the time for deriving the two modes and the
quadratic fit. As in the case of test system 2, it is obvious that
the pole expansion provides much more detail than the full
numerical results within the same computational time. This is
due to the fact that the pole expansion of the scattering matrix
in Eq. (23) has an explicit analytic dependence on the wave
number, so that once all relevant resonant states in the wave-
number range of interest are calculated and projected onto the
basis functions in free space, the scattering matrix becomes
immediately available in the whole wave-number range.

IX. CONCLUSION

We have developed a formalism of the pole expansion of
the scattering matrix that allows for deriving the residues of the
pole contributions solely from the resonant states. The accu-
racy and efficiency of the formulation is demonstrated for three
test systems, where the pole expansion is compared with exact
analytical and numerical results. The pole expansion agrees
well with the exact results and provides much more detail of the
far-field spectra for the same computational time, owing to the
analytic wave-number dependence. This is particularly useful
for optimizing certain geometries to obtain desired far-field
properties. Moreover, the artificial frequency discretization
used in conventional frequency-domain solvers is replaced by
a natural discretization in terms of the physically meaningful
resonant states, which can provide intuitive insights into the
underlying physical mechanisms.
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FIG. 7. (a) Transmittance (orange), reflectance (blue), and ab-
sorbance (black) of test system 3, derived by full numerical calcula-
tions (symbols) and the pole expansion of the scattering matrix (lines)
at normal incidence. Solid lines and dots correspond to right-handed
circularly polarized (RCP) light, whereas dashed lines and squares
denote the results for left-handed circularly polarized (LCP) light.
(b) Circular dichroism as the absorbance difference for incident
light with left- and right-handed circularly polarized (RCP) light,
respectively. The gray triangles on top indicate the resonance energy
of the two localized plasmon modes in that energy range (see Fig. 6).

Note added in proof. Recently, the scattered field has been
computed more accurately by using a larger number of resonant
states and adding an auxiliary group of artificial, so-called
perfectly-matched-layer modes [33].
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APPENDIX A: SINGLE PARTICLES

In the case of single particles in three-dimensional space,
the minimal convex volume has to be chosen as a sphere. On a
unit sphere, the vector spherical harmonics Y;,,,, ¥;,,, and ®;,,

are forming a complete orthogonal basis [55], with

Ylm = érYlm’ \I’lm =rVY¥u, <I>lm =r x VY, (Al)

where Y}, are scalar orthonormal spherical harmonics, r = |r|,
and €, is the unit vector in the radial direction. The vector
spherical harmonics obey the orthogonality relations

y§ d2Y;,, - Yim = 81.08mm (A2)
Q
% AQW},, Wy = 10+ D880, (A3)
Q
f dQ q’ff,w @y = l(l + l)al,l’am,m” (A4)
Q
and
0= ,(f ey, ¥, = f ALY}, - P
Q Q
= % dQw;, - ®py. (AS5)
Q

Here, d<2 is the differential of the solid angle €2, and the
integration is carried out over the whole solid angle 4.
Furthermore,

Yi, = (=1)"Yi . (A6)
Vi, = (—1)" W, (A7)
@), = (—1)"®; . (A8)

As in the case of plane waves, the spherical-wave solutions
of Maxwell’s equations have two orthogonal polarizations
in homogeneous and isotropic space, labeled as transverse-
electric (TE) and transverse-magnetic (TM). In this case,
transverse-electric and transverse-magnetic mean the absence
of a radial electric or magnetic field component, respectively.
The role of the components of the index vector N is taken by
the two polarizations, the azimuthal quantum number m and
the polar number / of the vector spherical harmonics. The basis
functions are given by [56]

N; fi(kr)

Brin (k) = S0 ,@) (A9)
) _ —iN;
Hie (1) = SV fl0@in(@), - (A10)
. J— Nl
Brviin () = T7besV 5 i@ (@, (ALD
Hoyom (13 6) = — NSED 6 @) (A12)
) = i

where f; is the radial dependence, which is given by spherical
Bessel and Neumann functions j; and n;, respectively, or by
outgoing and incoming spherical Hankel functions hf’) =
Ji +in; and hg_) = j; — iny, respectively. In addition, N; is
the normalization constant that is determined by Eq. (20),
and Z* is the impedance of the surrounding homogeneous
and isotropic space, while k is here the wave number in the
surrounding medium. Note that the angular dependence of

085433-9



T. WEISS AND E. A. MULJAROV

PHYSICAL REVIEW B 98, 085433 (2018)

Egs. (A9) to (A12) is solely given by the vector spherical
harmonics, because
1 orf
VX fi®um === I+ D fi¥im + W‘I’lm - (Al3)
While the orthogonality relations of the vector spherical
harmonics given by Eqs. (A2) to (AS) contain complex con-
jugation, the complex conjugation is replaced by a reciprocal
conjugation in Egs. (20) and (21). To use the orthogonality
properties of the vector spherical harmonics, we chose

Fy 1w (05 k) = (=1)"F 1 (3 k), (Al4)

where F,; _,, is the supervector consisting of the electric and
magnetic fields given by Eqgs. (A9) to (A12). Thus, by using
Eq. (A13) as well as

& (@), xYim)=0, (A15)
& - (@), X i) =~} - W, (A16)
we obtain after some algebra that
i 752 dQe, - (BN, x Hy )
N? Ldf - for p = TE,
= LSSy O F (AL7)
zs ‘ %% for p = TM,

where the tilde indicates that the first field might have a
different radial dependence than the second field.

Let us now define the outgoing and incoming fields @, ;;,
and T, ;,, respectively, such that their radial dependence
is given by the outgoing and incoming spherical Hankel
functions. Thus, the antisymmetric form of Eq. (9) results in
Eq. (21) for identical Hankel functions. For pairs of fields with
incoming and outgoing Hankel functions, respectively, it is
proportional to the Wronskian

any” on  —2i
w h(Jr)’ h(*) — h(+) i _ h(*) i = Al8
[1 0 I ox I ox x2 (AL8)
with x denoting the argument of the spherical Hankel functions,
which yields Eq. (20) for a spherical volume of radius R,
provided that

_ZS ZS
: \/ RWIR D WR), B O R)) V2 (A19)

We note that the background field Fgg that fulfills Eq. (14)
is understood to be without singularities. Thus, the radial
dependence of the background field must be given by a
spherical Bessel function j;. This means that the superposition
of incoming and outgoing fields I, ;,, and @, ;,, removes the
diverging contribution of the spherical Hankel function.

For single particles, the reciprocal conjugate FR can be
deduced from F, by going from azimuthal order m to —m.
The analytical normalization of the resonant states in Eq. (13)
can be simplified by using [26]

1
F, =@ VE,. (A20)

n

Finally, it should be noted that, in this case of single particles,
Egs. (23) and (29) can be converted to the form given in
Ref. [57].

APPENDIX B: ORTHOGONALITY OF PLANE WAVES

We show here how to derive the reciprocal conjugate basis
functions for the plane waves defined in Eqs. (31) and (32) that
fulfill the orthonormality relations given by Eqs. (20) and (21).
First, note that

/ dxdy ¢'g, (v kY (k) = Sk ke, (BI)
Su

from which we identify that the reciprocal conjugate
basis functions are solutions for the opposite in-plane
momentum —K.

Next, we consider cross products of electric and magnetic
components for reciprocal conjugate pairs of basis functions
for the same polarization (s or p):

[ TR

fxt/b Ay t/b _

E ko xHggqa= *ub Ky |, (B2)
—SdKll(/b
SaSa K

fit/b Ayt/b ;

B ko x Hyka = 775 [ 4% Kﬁ : (B3)
—SdK;(/

Here, d, d’ = +, with s = +1, which specifies the direction
of propagation or decay. Note that for different polarizations
and the same K, the cross products of the electric and magnetic
components vanishes. Therefore,

t/b
N At/b yt/b kg
n, - (Ep’,—K,d/ X Hp,K,d) = ﬂ:msp,pr. (B4)

In the case that the magnetic field corresponds to an outgoing
(or decaying) field, the sign on the right hand side of Eq. (B4) is
negative. Otherwise, the sign is positive. Hence, for reciprocal
pairs of basis functions with identical outgoing or incoming
boundary conditions, the antisymmetric form of Eq. (9) results
in a cancellation of the integrands, which provides Eq. (21).
For pairs with different boundary conditions, the sign change
in Eq. (B4) prohibits the cancellation, resulting in

2Kt/b
t/b Ast/b K

t/b t/b
[]Ip’,—K’|@p,K —Kl'Zt/bkt/b

(Sp’.pSK’,K- (BS)
Since none of the quantities on the fraction on the right-hand
side depends on the sign of K, we can define Nt_/llz = Nlléb.
Hence, Eqs. (39) and (42) provide the orthonormality condition
required in Eq. (20).

APPENDIX C: NORMALIZATION OF RESONANT STATES
IN PLANAR PERIODIC SYSTEMS

Based on the plane-wave expansion of the resonant states in
the exterior, it is possible to derive the surface contribution in
the normalization condition given by Eq. (13). The analytical
continuation of the fields in the top and bottom half space is
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given by where the expansion coefficients a;{ l;,K and (a;{ l;,K)R are
calculated at the top and bottom surface of the minimal convex
FY(r: k) = b Y (k). Cl volume V. Owing to the periodicity, the surface integrals to
w (1K) EI;O[””’ xOpx(r:k) «h adjacent unit cells in Eq. (13) cancel out. For the remaining
R P " " surface integrals at the top and bottom of the normalization
(FP) (k) =Y (@) ) (V%) (k). (C2)  volume Vy, we obtain
r.K |
b\R b/ _ t/b t/b \R t/b \R t/b \/
[(F;/ ) ’(Eﬁ/ ) ]TN/BN - Zan,p,K(an,p,K) [(O)p,K) ’(@p,K) ]TN/BN' (€3)
p.K

The surface integral on the right-hand side depends on the polarization, because either the electric or the magnetic polarization
vectors, Eqs. (36) and (37), depend on k, while their counterparts Egs. (35) and (38) vanish after differentiation with respect to
k. After some algebra, we end up with

(00" (050 Ty, = 1 2K
p.K K /By ™ T ok

t/b

. t/b
eZlKK Azy , (C4)

kn

where the positive sign has to be taken for s polarization, while the minus sign corresponds to p polarization, and Az%b is the
distance between the top and bottom planes of the normalization volume Vy and the minimal convex volume V. This results in
the normalization of the resonant states for planar periodic systems given by Egs. (43) to (48). Equating the explicit form of the
derivatives of the terms ntﬁ( defined in Egs. (47) and (48) yields

2
8”2{?{ — |K| L okt/P B 1 PYAZL (CS)
ok, kP, | K Bk |, 2Pk Ok |y
an;{% | K] 1 9kY® VAL
ok | el | K ok |, T 2P ok |, (C6)
kn kg (kﬂ) kn ( n) &,
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