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Abstract: 

The deformation response and failure behavior of an orthotropic textile carbon-epoxy 

composite were investigated under off-axis tensile loading. Digital image correlation (DIC) was 

utilized to effectively capture the full-field and mesoscale strain distribution. The macroscale 

mechanical performance was strongly sensitive to the fiber bundles orientation relative to the 

loading direction. Based on the experimental data, a quantitative relation between the rotation 

angle and off-axis angle was established, and a negative correlation between the failure strength 

and the rotation angle was observed. The underlying failure mechanisms of the specimens with 

different off-axis orientations were analyzed using scanning electron microscopy (SEM) and DIC 

techniques. The load-bearing mechanisms were different between the on- and off-axis cases. High 

local shear strain eventually resulted in the brushy shear-type fracture in the off-axis case, and the 

local micro cracks developed during the loading caused the reduction and imbalance of local 

load-bearing capacity. 

Keywords: Textile composites; Off-axis tension; Digital image correlation(DIC); 

Deformation response; Failure strength; Fracture morphology. 

 



  

 

 

1. Introduction 

Fiber-reinforced textile composites are increasingly employed for structural components in 

aircraft/aerospace, automotive, civil engineering and marine industries in recent years. These 

materials have many advantages, e.g., outstanding mechanical and thermal properties, good 

chemical resistance, relatively lightweight, dimensional stability, excellent durability, and design 

flexibility [1–3]. Owing to the variability of textile composites, the deformation and failure 

response are influenced by many factors, such as the reinforcement architecture, the mechanical 

properties of their constituents and the interaction between the reinforcing fibers and the matrix 

[4,5]. So far, numerous numerical [6–10] and experimental [5,10–12] studies have been performed 

in order to examine the mechanical response and failure mechanisms of textile composites under 

the on-axis mechanical loading. However, such textile laminates are often subjected to local 

off-axis tensile loading due to its wide application in plane and shell structures. [13]. Therefore, it 

is essential to experimentally assess deformation response and failure behavior in such loading 

cases, which will contribute to the safety and reliable design of composite structures. 

Though the off-axis loading regime is uniaxial, multiaxial stress states will be generated due 

to the spatial variation of fiber orientation, leading to complex load-bearing mechanisms of textile 

composites from the interaction between the fibers and the matrix. The non-linear stress-strain 

response of textile composites is often observed in the global stress-strain curves under off-axis 

tensile loading [4,14–18]. The mechanical behavior has a strong sensitivity to the alignment of the 

fibers relative to the external loading. The angle between the fiber orientation and the loading 

direction significantly affects the degree of non-linear response [18,19]. Penava et al. [20] 

calculated the elastic constants of four woven fabrics for different fiber angles relative to the 

loading direction. The Young’s modulus was assumed to be highest in the warp and weft direction, 

and the smallest at an angle of 45°. Work by Kawai et al. [16] compared the tensile mechanical 

properties of woven laminates with five different fiber orientations (0°, 15°, 30°, 45°, 90°) and 

demonstrated that with the increase of off-axis tensile angle, the off-axis elastic modulus and 

strength of the specimens reduce significantly and the stress-strain curve presents more significant 

non-linearity. It suggested that this phenomenon may be a result of the interaction of the tensile 

and shear stresses. A similar mechanical response was also found by Cai et al. [13,21] and 



  

 

 

Koohbor et al. [4,15]. Godara et al. [17] employed the digital image correlation technique (DIC) 

method to experimentally investigate the effects of the fiber orientation on the mesoscale 

deformation and the multiple failure mechanisms of the woven textile composite. The composite 

exhibited a pronounced mechanical anisotropy at both macro and mesoscale. In addition, the 

full-field strain distribution at mesoscale and the microstructure of the material showed a strong 

correlation. Koohbor et al. [4] investigated the multi-scale deformation and failure mechanisms of 

an orthogonally woven composite at different off-axis angles. At meso scale, a high local strain 

gradient was found and the level of inhomogeneity was observed to be more obvious in the 

off-axis condition. In general, the failure of on-axis and off-axis textile composite indicates a 

noticeable brittle-natural feature [16,17], but especially for large off-axis angles such as 30° and 

45°, the textile specimens are fractured after large elongation. The failure modes of specimens 

loaded in directions parallel to the 0° and 90° fiber orientations are often observed as fiber-pull out, 

and a rather flat fracture surface can be formed. In the case of off-axis specimen at 45° angle, the 

local shear strain in matrix-rich regions is the driving cause of failure, leading to a conical rough 

shear-type fracture surface [17]. In addition, the occurrence of fiber rotation in off-axis conditions 

has a predominant influence on the deformation response and loading-bearing mechanism of 

textile composites [15]. 

A more detailed literature survey indicates that more quantitative knowledge on the 

deformation response relative to the off-axis angle is still not fully established, in particular, the 

investigation of the relation between the deformation response and failure behavior of textile 

composites. Investigating the quantitative relation in the off-axis loading condition is essential to 

deeply understand the failure physics of textile composites. In view of this, this work presents a 

detailed analysis of the mesoscale deformation response and failure behavior of an orthotropic 

textile composite with different off-axis angles under tensile loading. Digital image correlation 

(DIC) was used to capture the full-field displacement and strain distributions at mesoscale. Based 

on the experimental data, a quantitative relation of deformation response is established. In addition, 

the effect of off-axis angles on fracture behaviors is also analyzed by mesoscopic and microscopic 

observation techniques. 



  

 

 

2. Experiments 

2.1. Material and specimen description 

The material studied is a 1.6 mm thick, eight layer, plain woven composite made of carbon 

fiber (T300H) and thermosetting epoxy resin (E207). The two-dimensional plain woven fabric 

laminates consist of two mutually orthogonal fiber bundles (warp and weft) with 3K filaments per 

bundle. The warp and weft fiber bundles are interlaced to each other in an “one under- one over” 

pattern, forming unit cells of ~2.0×2.0 mm2 dimensions. The volume fraction of carbon fibers is 

approximately 0.56, and the laminate density is about 1510 kg/m3. The laminates were produced 

by using autoclave molding technique. In this technique, the prepregs were firstly stacked in the 

mold cavity, and then transferred to autoclave after degassing. A pressure of five bars was applied 

while the mold was heated to 80 °C for 20 min. The composite laminates were post-cured in the 

mold at 130 °C for two hours and taken out from the mold after cooling to 60 °C. The symmetrical 

weaving architecture enables the mechanical properties to be the same in the warp and weft 

directions [13]. Therefore, in this work, only four off-axis angles (i.e. θ = 0°, 15°, 30° and 45°) 

were considered. Rectangular specimens of 220 mm long and 25 mm wide were cut from 670 mm 

by 440 mm laminate sheets using a waterjet machine to ensure good edge quality. Three 

specimens were tested for each off-axis angle 0°, 15°, 30° and 45°. To reduce the effects of steel 

grips, 2mm glass/epoxy composite tabs were bonded to the ends of the specimens with epoxy 

adhesive. A schematic view of the tensile specimens is illustrated in Fig. 1. 

2.2. Test preparation 

Tensile tests were carried out at room temperature using a 100 kN MTS servo-hydraulic 

machine (Fig. 2 a), following ASTM D3090 standard [22]. Loading was applied until fracture by 

displacement control at a rate of 1.44 mm/min, which was equivalent to the strain rate of 2×10-4 

s-1. Here, the two-dimensional digital image correlation (2D DIC) technique [23,24] was used to 

obtain the full-field displacement and strain data. To facilitate the DIC method, an airbrush was 

used to spray a random white speckle pattern on the black surface of each specimen. With this 

spraying method, a typical high contrast speckle pattern with the average speckle size of ≈30 um 

was achieved as shown in Fig. 2 b. During the loading, a single charge-coupled device (CCD) 

camera equipped with a 90mm lens was employed to capture the images from the specimen 



  

 

 

surface; here, the images were taken at a rate of 2 HZ. The displacement and strain fields were 

analyzed using commercial software VIC-2D 2009 with subset and step sizes of 31 and 6 pixels, 

respectively. Details of the parameters used for the DIC procedure are shown in Table 1. In 

addition, scanning electron microscopy (SEM) was employed to observe the fracture 

morphologies of off-axis specimens. 

3. Results and discussion 

3.1. Stress–strain curves 

Fig. 3 illustrates the tensile stress-strain curves of the tested specimens with different fiber 

orientations. The tensile stress (σx) was determined by dividing the applied load by the 

cross-sectional area, and the tensile strain was obtained by averaging the full-field axial strain 

component (εx) extracted from DIC at mesoscale. A remarkable nonlinear response from the 

off-axis specimens is clearly visible. As the loading progresses, a significant knee feature is 

observed in the curves of off-axis specimens (θ=15°, 30° and 45°), reflecting the reduction of 

material stiffness. Meanwhile, elastic modulus and tensile strength significantly drop with the 

fiber orientation change from 0° to 45° [16]. However, the knee-feature phenomenon does not 

occur in the on-axis (θ=0°) case. The on-axis stress-strain curve is monotonically linear and 

smooth up to failure. 

To provide a quantitative assessment, the mechanical parameters of specimens with different 

fiber orientation angles were obtained by extracting the data from DIC and are listed in Table 2. 

Here, the linear regression fit was performed in the initial elastic region of stress-strain curves for 

each off-axis case to obtain the corresponding Young’s modulus (E). Compared with the on-axis 

specimens, the elastic moduli (E) and failure strength (σf) values of specimens at θ=45° decrease 

by about 82.1% and 75.7%, respectively. With the increasing fiber orientation angle from 0° to 

45°, the ductility of this material simultaneously increases, consequently the failure strain (εf) 

increases by about 12 times. It suggests that the mechanical properties of this material strongly 

depend on the reinforcing fiber orientation relative to the applied load. 

In fiber-reinforced polymer composites, this anisotropic mechanical response can be 

explained by the load-bearing mechanisms of specimens with different off-axis angles. For the 

on-axis specimens (θ=0°), the stiffer reinforcing carbon fibers, which possess excellent tensile 



  

 

 

strength and stiffness, take most of the applied load. In contrast, the softer polymer matrix has 

much lower strength compared with the carbon fibers. Once the fibers failed, almost all the 

applied load will be transferred to the soft matrix, which far exceeds the strength of the matrix, 

resulting in catastrophic failure. Therefore, the specimens with θ=0° exhibit high tensile strength 

and low ductility at fracture. However, due to the change of the off-axis orientation from 0° to 

45° relative to the tensile load direction, the stiffer fibers, and the compliant matrix will share the 

applied tensile load [17]. Initially, most of the applied load is carried by the matrix, and shear flow 

occurs in the matrix material even at low external load. As the loading process progresses, the 

matrix starts dominating the mechanical behavior. Once the local shear stress in the matrix 

exceeds the shear strength, plastic flow occurs and the fiber bundles partially undergo stretching 

and realigning towards the loading direction (fiber trellising phenomenon [4,25]), consequently 

exhibiting the large non-linear deformation response at macroscopic scales. 

3.2. Deformation response and failure strength 

Under the off-axis loading, fiber trellising phenomenon leads to the large non-linear 

deformation response especially when the off-axis angle is large, e.g. θ=30°, 45°. To 

quantitatively analyze the stretching and rotation of fiber bundles, all relevant data were extracted 

from DIC measurements [15]. The stretch ratio of the fiber bundles is specified by, 
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respectively. Note that in the above equations (1), (2), (3) and (4), xk and yk indicate the initial 

coordinates at the measuring point k (k=A or B, here), uk and vk are the x-direction (axial) and 

y-direction (transverse) displacements, respectively. 

The relationship between the stretch ratio (
θ

δ ) and the global axial strain (εx) for specimens 

with different off-axis angles is exhibited in Fig. 4. With the increase of the global strain, the 

stretch ratios of all specimens exhibit approximately monotonic linear response. The slope of 

specimens with θ=0° is close to 1% (The slop = The stretch ratio / The global strain), but the 

increase of the off-axis angles, the deviation between the stretch ratio and the strain obviously 

becomes larger, which is attributed to the load-bearing mechanism. For the case of θ=0°, the stiff 

fiber bundles take almost all the applied load during loading. Meanwhile, the crimped fiber 

bundles tend to straighten out with the increasing load. However, due to the internal architecture 

characteristics of the plain woven composite, the straightening magnitude is limited. As the 

off-axis angles increase, the matrix takes more load while the straightening trend of fiber bundles 

is becoming less pronounced. The softer matrix shows a more significant role in the load-bearing 

mechanism and induces a larger global strain, but does not have much effect on the elongation of 

fiber bundles. The above discussion may explain why the stretch ratios at failure are all about 1% 

for the four configurations while the strain levels are completely different. 

Fig. 5 shows the variation of the rotation angle of fiber bundles with the increase of the 

global axial strain. It is clearly observed that in contrast with the relationship between stretch ratio 

and off-axis angle, the rotation angles of the off-axis specimens at failure strain remarkably 

increase with the increasing off-axis angle. This suggests that in fiber trellising phenomenon, 

compared with the stretching of fiber bundles, the rotation has a dominant influence on the 

mechanical behavior of this material. Owing to the important influence of off-axis angles on the 

mechanical properties (e.g. failure strength) of woven composite, it is worthwhile to investigate 

whether there is a certain relationship between the rotation of fiber bundles (∆θ, i.e. fiber trellising) 

and the off-axis angles (θ) of the tested specimens. 

The relationship between the off-axis angle (θ) and the rotation angle (∆θ) at the instant of 

failure is shown in Fig. 6 (a). The experimental data was processed by curve-fitting, and indicates 

that the rotation angle at failure was approximately a quadratic function of the off-axis angle. The 



  

 

 

quantitative relationship can approximately be expressed as, 
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Where the constant k=0.00293, the coefficient of determination R-square=0.9968, a value 

close to 1 indicates that the fit is a good one. In order to verify the validity of the above 

relationship, previous testing of rotation angles at different off-axis angles in the literature [15] 

were referenced and processed. As expected, although the plain woven composite used in the 

literature [15] is different from that of this present work, a similar quantitative relationship can be 

obtained, in comparison with Equation (5). For the quantitative relationship in the literature [15], 

the constant k=0.00413, the coefficient of determination R-square=0.9736, as shown in Fig. 6 (b). 

Therefore, it suggested that this kind of quantitative relationship may be less affected by the 

material constituents, but more because of the plain woven architecture. 

Material strength is one of the most important mechanical properties in most engineering 

applications. Based on the above analysis, the relationship between the failure strength and the 

rotation angle of fiber bundles is further investigated in this work. Tsai-Wu failure criterion [26,27] 

is applied to predict the off-axis strength. The criterion is a failure-mode-independent and 

stress-based criterion, which has been proven to be applicable to this case under tensile loading 

[28]. 

In the plane-stress condition, the failure criterion has the following form: 
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Where Xt, Xc are the uniaxial tensile (index t) and compressive (index c) strengths in the 

longitudinal (X) direction respectively, Yt and Yc are the tensile and compressive strengths in the 

transverse (Y) direction, S12 is the shear strength, and F12 is the interaction coefficient of the 

normal stresses (σ1 and σ2). In this work, F12=
t

1 1

2 c t cX X YY
− . 

For the off-axis specimen under uniaxial tensile loading (σx), the stress components can be 

expressed as functions of the orientation angle 	, and given as  

2 2
1 2 12= cos ,  = sin ,  cos sinx x xσ σ θ σ σ θ τ σ θ θ= − . Therefore, the criterion can be rewritten as 
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Where the strength components Fxx and Fx are given as: 
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Due to the architecture symmetry of the plain woven composite studied in this work, this 

material has the same in-plane mechanical properties in the longitudinal (x) and transverse (y) 

directions. Therefore, the in-plane strength values obtained from basic mechanical tests are listed 

in Table , where the shear strength S12 was determined by tensile tests for 45° off-axis specimens. 

The failure strengths of the tested specimens with different fiber orientations are shown in 

Fig. 7. The strengths are significantly dependent on the off-axis angles as described earlier. For the 

different off-axis cases, the predicted strengths have good agreement with the experimental data. It 

clearly suggests that this criterion has an excellent forecasting capability for the tensile strength of 

plain woven composite with different off-axis angles. 

As discussed above, both the rotation angle and the failure strength are functions of the 

off-axis angles. In this case, the relationship between the rotation angle and the failure strength can 

be derived from Equations (5) and (7), and expressed as 

 ( )f f
θ

σ θ= ∆   (10) 

Fig. 8 demonstrates the negative correlation between the failure strength and the rotation 

angle. The particular significance in the determination of quantitative relationship is that the 

obtained results will contribute to accurately predicting and modeling the structural and 

mechanical responses of the plain woven composite, optimizing the material design and ensuring 

reliable service. 

3.3. Failure mechanism 

Fig. 9 illustrates the front view of the fractured specimens with θ=0°, 15°, 30°, 45°. A 

nearly flat fracture edge almost perpendicular to the applied loading can be observed for the 

on-axis specimens (θ=0°) (Fig. 9 a), which is an indication of brittle fracture mode. For the cases 

of θ=15°, 30°, 45°, the final fracture approximately takes place along the orientation of fiber 



  

 

 

bundles. The fracture surfaces of all the off-axis specimens have a brushy failure appearance. Note 

that the fracture surface at θ=15° contains both on-axis and off-axis fracture morphologies (Fig. 9 

b). It suggests that for this case, the specimens are under a transitional condition from 

fiber-dominated to matrix-dominated failure. 

The brushy fracture surface, which comprises separated fiber bundles, at lager off-axis angles 

(i.e. 30°, 45°) indicates that during the applied loading, the combination of in-plane fiber 

rotations and the shared loading mechanism between the fibers and the matrix creates the shear 

stress which causes the shear-type deformation at the fiber/matrix interface. Moreover, in this case, 

this deformation mainly occurs in the matrix, leading to the nucleation and coalescence of 

microcracks. Hence, shortly before fracture, a significant amount of delamination has been 

developed by the accumulated cracks, which induces this “brushy” fracture. As shown in Fig. 9 e, 

the matrix debris on the specimen surface can be clearly observed, which could be attributed to the 

extrusion effect from the interweaving fiber bundles. The superficial layer of the specimen is 

peeled off due to the occurrence of debonding between layers. Due to the shear stress, many local 

debond cracks are formed along the fiber/matrix interfaces within fiber bundles, as shown by the 

yellow arrows of Fig. 9 e. In addition, more damage (i.e. delamination and bundle cracks, Fig. 9 f) 

is found closer to the edges, which could be attributed to the free-edge effect [29]. 

Fig. 10 shows the fracture micromorphologies observed by SEM. In the on-axis case (Fig. 10 

a), the deep pockets formed by fiber pull-out mechanism indicate the fiber/matrix interfacial 

debonding. During the loading, the longitudinal fibers are in an iso-strain condition. However, 

when some local longitudinal fibers have been broken, the softer matrix surrounding these fibers 

is incapable of bearing the large load transferred from the failed fibers. Therefore, the interfacial 

debonding and matrix cracks occur. At the ultimate failure, the instantaneous catastrophic failure 

results in the pull-out of the longitudinal fibers and breakage. On the other hand, the transverse 

fibers are in an iso-stress condition, contributing to the occurrence of smooth fracture surface (Fig. 

10 a). It also implies that the applied loading is mainly carried by the longitudinal fibers. As 

depicted in Fig. 10 b and d, the fiber bundles of the off-axis specimen were pulled out by cluster, 

leading to the formation of deep pockets. Failure is expected to occur in the brushy fracture region, 

which supports the description earlier. Compared with the fractured sections of the fibers of 

on-axis specimens, there are numerous sites of oblique fracture sections of the fibers for off-axis 



  

 

 

specimens [13] (Fig. 10 d), in some extent indicating the characteristics of off-axis failure 

mechanism at micro-scale. 

As the above explanations for failure mechanism are just based on the phenomenology, 

full-field strain distributions of the investigated specimens obtained from DIC measurements are 

required. These observations are useful and important for analyzing ultimate strength and breaking 

mechanism. Fig. 11 demonstrates the typical evolution of local vertical strain component (i.e. 

strain component in the x-direction) at selected global strain values of xε  for the specimens with 

θ=0° and 30°, respectively. It is clearly observed that for the on- and off-axis specimens, the 

distributions of local strain are all inhomogeneity, and the level of inhomogeneity increases 

obviously with an increase of global strain. Also, in the case of off-axis specimens, the local 

vertical strain exhibits a more pronounced gradient, when compared to the on-axis specimens. 

High and low strain domains can be observed on the local strain maps regardless of on- and 

off-axis specimens, which is related to the load-bearing mechanisms discussed in section 3.1. For 

the on-axis specimens, similar to that found in the literature [15,30], the high vertical local strain 

is also identified within the regions containing mostly longitudinal fiber bundles. As described 

earlier, these fiber bundles parallel to the loading orientation carried most of the tensile load and 

thus underwent more local deformation as expected. However, in the off-axis cases, the high strain 

domains were developed within the epoxy-rich regions confined by the fiber bundles (Fig. 11 b), 

which could be explained by the off-axis load-bearing mechanism. As described in section 3.1, the 

compliant matrix initially took much of the tensile load, hence indicating higher deformation 

response, and the fiber bundles shared the remaining load. The strain maps show a periodic strain 

pattern at the middle stage of loading. However, as the loading increases, the periodicity of the 

strain pattern tends to be weakened at the advanced stage, e.g. εx=11.5%. Meanwhile, the grey 

parts of the DIC image at εx=11.5% (Fig. 11 b) indicate the regions of paint flaking, leading to the 

loss of data at these areas. As it can be seen, spotty strain concentrations appear, probably induced 

by local micro cracks developed within the matrix-rich regions. It suggests that these local cracks 

caused the imbalance of local load-bearing capacity.  

With the increase of off-axis angles, a shear strain begins to develop in the matrix-rich 

regions between the longitudinal and transverse fiber bundles. Fig. 12 illustrates the shear strain 



  

 

 

fields obtained at two different global tensile strains (εx=5.75% and 11.5%). Significant shear 

strain stripes could be observed along the off-axis direction. Similar to what showed in the local 

vertical strain maps (Fig. 11), the level of shear-strain periodical-non-homogeneity increases with 

the increase of global strain. Prior to failure, the maximum value of local shear strain is about 74% 

of the global tensile strain. As discussed earlier, local microvoids in the matrix-rich areas weaken 

the local load-bearing capacity of the material. Under such high local shear strain, the material 

would eventually fail in a shear-type fracture, which is associated with a “brushy” shear fracture 

surface, as illustrated in Fig. 10. 

4. Conclusion 

The research work was focused on the tensile deformation response and failure behavior of 

an orthotropic textile carbon-epoxy composite with different off-axis angles. The global 

stress-strain responses, as well as the mechanical properties, were found to be strongly influenced 

by the off-axis angles, which was attributed to the load-bearing mechanism. Based on the 

mesoscale data extracted from DIC, the parameters in the fiber trellising (i.e. the stretch ratio and 

rotation angle of fiber bundles) were quantified, indicating that the rotation of fiber bundles rather 

than the stretch mainly affected the non-linear response. A quantitative relation between the 

rotation angle and the off-axis angle was established based on the analysis of experimental data. 

The predicted results from the established relation showed very good agreement with the 

experimental data at different off-axis angles. Furthermore, the Tsai-Wu strength criterion used for 

failure strength analysis exhibited high prediction precision. A negative correlation was observed 

according to the function curve between failure strength and rotation angle. 

In addition, the fracture surface was nearly flat for the on-axis specimens, and brushy for the 

off-axis specimens. Due to the extrusion effect from interweaving fiber bundles, the matrix debris 

could be found on the specimen surface. A series of debond cracks along the orientation of fiber 

bundles was also observed. Deep pockets were found in SEM images of the on- and off-axis 

specimens. Oblique sections of fracture fibers were observed for off-axis specimens compared to 

those of on-axis specimens. Further investigation on failure mechanism was conducted through 

full-field strain analysis. The high vertical strain domains of the off-axis specimens were identified 

within the epoxy-rich regions while those of the on-axis specimens were developed within the 



  

 

 

regions of fiber bundles, which led to different failure modes. For the off-axis case, a relatively 

high shear strain developed within the soft matrix regions, which eventually caused the shear-type 

fracture of this material. The periodicity of both vertical strain and shear strain became less 

obvious at the later stage of loading. It could be concluded that the local microcracks induced the 

reduction and imbalance of local load-bearing capacity. 
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Table Captions 

Table 1  Summary of the parameters used in DIC technique. 

Table 2  The global mechanical properties of the tested specimens with different off-axis angles. 

Table 3  Failure strengths of the plain woven composite. 

 

Table 1  Summary of the parameters used in DIC technique. 

Field of view dimensions (mm2) 14 × 10.5 

Subset size 31×31 Pixels square 

Step size 6 pixels 

Image rate 2 HZ 

Pixel-to-length ratio 5.401 um/pixel 

Lens (MLM-3XMP)  

Max. Magnification 0.3×-1.0× 

Focus 90 mm 

Camera (MER-500-7UM/UC )  

Pixel Array 2592 × 1944 pixels 

Total Pixels 5 Megapixels 

 

Table 2  The global mechanical properties of the tested specimens with different off-axis angles. 

θ (°) E (GPa) ν σf (MPa) εf (%) 

0 72.59 0.035 762.19 1.05 

15 27.69 0.574 319.36 3.69 

30 13.35 0.851 219.97 11.70 

45 10.50 0.862 185.16 13.32 

E: the global elastic modulus; ν: Poisson’s ratio; σf: the failure strength; εf: the failure strain 

 

Table 3  Failure strengths of the plain woven composite. 

Xt [MPa] Xc [MPa] Yt [MPa] Yc [MPa] S12 [MPa] 

762.19 721.42 762.19 721.42 92.58 



  

 

 

 

 

 

Figure Captions 

Figure 1  Schematic view of the tensile specimens (Unit: mm). The definition of coordinate 

system is also shown. 

Figure 2  (a) The tensile experimental set-up used to capture the deformation response of tested 

specimen, with the typical speckle pattern on the specimen surface is shown in (b). 

Figure 3  The axial tensile stress–strain curves of off-axis specimens. 

Figure 4  Stretch ratio of fiber bundles versus axial strain for various fiber orientations. 

Figure 5  Rotation angle of fiber bundles versus axial strain for various fiber orientations. 

Figure 6  Variation of the rotation angle of fiber bundles (∆θ) as a function of the off-axis angle 

(θ) in (a) this paper, and (b) the literature [15]. 

Figure 7  Tensile failure strength (σf) as a function of the off-axis angle (θ). 

Figure 8  Variation of tensile failure strength (σf) as a function of the rotation angle (∆θ). 

Figure 9  Optical images of fractured specimens with (a) θ=0°, (b) θ=15°, (c) θ=30° and (d) 

θ=45°. 

Figure 10  SEM micrographs of fractured specimens with (a)(c) θ=0°, (b)(d) θ=30° (Oblique 

sections of fibers was highlighted with yellow encircles). 

Figure 11  Full-field distribution of local strain component εx for tested specimens at different 

values global tensile strain εx, (a) θ= 0° and (b) θ= 30°. 

Figure 12  Full-field distribution of shear strain (εxy) for tested specimens with θ= 30° at (a) 

εx=5.75%, (b) εx=11.5%. 

 



  

 

 

 

Figure 1  Schematic view of the tensile specimens (Unit: mm). The definition of coordinate system is also shown. 

 

 

Figure 2  (a) The tensile experimental set-up used to capture the deformation response of tested specimen, 

with the typical speckle pattern on the specimen surface is shown in (b). 
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Figure 3  The axial tensile stress–strain curves of off-axis specimens. 

 

 

Figure 4  Stretch ratio of fiber bundles versus axial strain for various fiber orientations. 

 



  

 

 

 

Figure 5  Rotation angle of fiber bundles versus axial strain for various fiber orientations. 

 

 

(a) 



  

 

 

 

(b) 

Figure 6  Variation of the rotation angle of fiber bundles (∆θ) as a function of the off-axis angle (θ) in (a) this 

paper, and (b) the literature [15]. 

 

 

Figure 7  Tensile failure strength (σf) as a function of the off-axis angle (θ). 

 



  

 

 

 

Figure 8  Variation of tensile failure strength (σf) as a function of the rotation angle (∆θ). 

 

 

Figure 9  Optical images of fractured specimens with (a) θ=0°, (b) θ=15°, (c) θ=30° and (d) θ=45°. 
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Figure 10  SEM micrographs of fractured specimens with (a)(c) θ=0°, (b)(d) θ=30° (Oblique sections of fibers 

was highlighted with yellow encircles). 
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Figure 11  Full-field distribution of local strain component εx for tested specimens at different values global 

tensile strain εx, (a) θ= 0° and (b) θ= 30°. 

 

Figure 12  Full-field distribution of shear strain (εxy) for tested specimens with θ= 30° at (a) εx=5.75%, (b) 

εx=11.5%. 
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