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Abstract: Starting from the definition of fractional M/M/1 queue given in [3] and M/M/1 queue✶

with catastrophes given in [6], we define and study a fractional M/M/1 queue with catastrophes.✷

In particular we focus our attention on the transient behaviour, in which the time-change plays a✸

key role. We first specify the conditions for the global uniqueness of solutions of the corresponding✹

linear fractional differential problem. Then we provide an alternative expression for the transient✺

distribution of the fractional M/M/1 model, the state probabilities for the fractional queue with✻

catastrophes, the distributions of the busy period for fractional queues without and with catastrophes✼

and, finally, the distribution of the time of the first occurrence of a catastrophe.✽

Keywords: Fractional differential-difference equations; fractional queues; fractional birth-death✾

processes; busy period.✶✵

MSC: 60K25; 60J80✶✶

1. Introduction✶✷

Stochastic models for queueing systems have a wide range of applications in computer systems,✶✸

sales points, telephone or telematic systems and also in several areas of science including biology,✶✹

medicine and many others. The well known M/M/1 queueing model [4,5,13,16,22] constitutes the✶✺

theoretical basis for building many other refined models for service systems.✶✻

Due to the Markov nature of its inter-arrival times of the customers and of its service times, the model✶✼

can be mathematically treated in a simple manner, and for this reason it is widely used in many✶✽

modeling contexts. Nevertheless, in the past few decades, the advent of fractional operators, such as✶✾

fractional derivatives and integrals (see, for instance, [12] and [19] and references therein), has made✷✵

clear that different time scales, themselves random, that preserve memory (therefore not Markovian),✷✶

allow the construction of more realistic stochastic models.✷✷

The introduction of the fractional Caputo derivative into the system of differential-difference equations✷✸

for an M/M/1-type queue was done in [3], where for a fractional M/M/1 queue the state probabilities✷✹

were determined. In this kind of queue model, the inter-arrival times and service times are✷✺

characterized by Mittag-Leffler distributions [9]; in this case, the model does not have the property of✷✻

memory loss that is typical of the exponential distributed times of the classical M/M/1 model. Indeed,✷✼

a time-changed birth-death process [17,20], by means of an inverse stable subordinator [21], solves the✷✽

corresponding fractional system of differential-difference equations and fractional Poisson processes✷✾

[1] characterize the inter-arrival and service times.✸✵

Submitted to Mathematics, pages 1 – 26 www.mdpi.com/journal/mathematics
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The fractional M/M/1 model in [3] is an interesting and powerful model, not only because it is a✸✶

generalization of the classical one, where the fractional order is set to 1, but also because its range of✸✷

applications is extremely wide. Its importance can be further augmented by including in the model✸✸

the occurrence of catastrophes, as it was considered in [6] for the classical M/M/1.✸✹

The catastrophe is a particular event that occurs in a random time leading to the instantaneous✸✺

emptying of the system, or to a momentary inactivation of the system, as, for example, the action of✸✻

a virus program that can make a computer system inactive [15]; other applications of models with✸✼

catastrophes can be found in population dynamics and reliability contexts (see [7] and references✸✽

therein).✸✾

Motivated by the mathematical need to enrich the fractional M/M/1 model of [3] with the inclusion✹✵

of catastrophes, we study in this paper the above model; specifically we determine the transient✹✶

distribution, the distribution of the busy period (including that of the fractional M/M/1 queue of [3])✹✷

and the probability distribution of the time of the first occurrence of the catastrophe.✹✸

For this purposes, we need to guarantee the global uniqueness of the solution of the considered linear✹✹

fractional Cauchy problem on Banach spaces. After recalling the definitions and known results in✹✺

Section 2, we address the problem of uniqueness in Section 3. In Section 2, we also provide the transient✹✻

distribution of the fractional M/M/1 model in an alternative form to that given in [3]. In Section 4 the✹✼

distribution of the busy period for the fractional M/M/1 queue (without catastrophes) is obtained.✹✽

Here the time-changed birth-death process plays a key role to derive the results. In Section 5, we✹✾

define the fractional queue with catastrophes; we are able to obtain the distribution of the transient✺✵

state probabilities by following a strategy similar to that in [6]. We also found the distribution of the✺✶

busy period and of the time of the first occurrence of the catastrophe starting from the empty system.✺✷

Some special operators and functions used in this paper are specified in the Appendices.✺✸

2. Definition of a fractional process related to M/M/1 Queues✺✹

The classical M/M/1 queue process N(t), t ≥ 0 can be described as continuous time Markov

chain whose state space is the set {0, 1, 2, . . . } and the state probabilities

pn(t) = P(N(t) = n|N(0) = 0), n = 0, 1, 2 . . . (1)

satisfy the following differential-difference equations:





Dt pn(t) = −(α + β)pn(t) + αpn−1(t) + βpn+1(t), n ≥ 1

Dt p0(t) = −αp0(t) + βp1(t),

pn(0) = δn,0, n ≥ 0,

(2)

where δn,0 is the Kroeneker delta symbol, Dt = d
dt and α, β > 0 are the entrance and service rates

respectively.

Let Sν(t), t ≥ 0, ν ∈ (0, 1) be the Lévy ν-stable subordinator with Laplace exponent given by:

logE e−zSν(t) = −tzν, z > 0.

Consider the inverse ν-stable subordinator

Lν(t) = inf{u ≥ 0 : Sν(u) > t}, t ≥ 0.

For 0 < ν < 1, the fractional M/M/1 queue process Nν(t), t ≥ 0 is defined by a non-Markovian time

change Lν(t) independent of N(t), t ≥ 0, i. e.

Nν(t) = N(Lν(t)), t ≥ 0. (3)
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This process was defined in [3] and it is non-Markovian with non-stationary and non-independent

increments. For ν = 1, by definition, N1(t) = N(t), t ≥ 0. Then for a fixed ν ∈ (0, 1], the state

probabilities

pν
n(t) = P{Nν(t) = n|Nν(0) = 0}, n = 0, 1, . . . (4)

of the number of customers in the system at time t in the fractional M/M/1 queue are characterized by

arrivals and services determined by fractional Poisson processes of order ν ∈ (0, 1] [1] with parameters

α and β. They are solutions of the following system of differential-difference equations





C
0 Dν

t pν
n(t) = −(α + β)pν

n(t) + αpν
n−1(t) + βpν

n+1(t), n ≥ 1

C
0 Dν

t pν
0(t) = −αpν

0(t) + βpν
1(t),

pν
n(0) = δn,0, n ≥ 0,

(5)

where C
0 Dν

t is the Caputo fractional derivative (see Appendix A).

Using the equations (5) and representation (3) the state probabilities are obtained in [3]:

pν
n(t) =

(
1 −

α

β

)(
α

β

)n

+

(
α

β

)n +∞

∑
k=0

n+k

∑
m=0

k − m

k + m

(
k + m

k

)
αk

× βm−1tν(k+m)−νEk+m
ν,ν(k+m)−ν+1

(−(α + β)tν),

(6)

as well as its Laplace transform

πν
n(z) =

∫ +∞

0
e−zt pν

n(t)dt =

(
1 −

α

β

)(
α

β

)n 1

z
+

+

(
α

β

)n +∞

∑
k=0

n+k

∑
m=0

k − m

k + m

(
k + m

k

)
αk

× βm−1 zν−1

(zν + α + β)k+m
, z > 0.

In (6) the functions E
ρ
ν,µ are generalized Mittag-Leffler functions (see Appendix B). Note that✺✺

pν
n(t) ≥ 0 ∀n ≥ 0 and ∑

+∞
n=0 pν

n(t) = 1.✺✻

✺✼

Alternatively, let hν(t, x) =
d

dx
P{Lν(t) ≤ x}, x ≥ 0, be the density of Lν(t); then it is known (see, i.e.,

[2]) that ∫ +∞

0
e−sxhν(t, x)dx = Eν(−stν), s ≥ 0, (7)

and (see, i.e , [11], Proposition 4.1)

hν(t, x) =
1

π

∫ +∞

0
uν−1e−tu−xuν cos(νπ) sin (πν − xuν sin(πν))) du, x ≥ 0. (8)

Using (7) and an analytical expression for pν
n(t) given in [18], we can write down an alternative

expression for (6) as

pν
n(t) =

(
p

q

)n ∞

∑
r=n

(α + β)r

r!
trνE

(r)
ν (−(α + β)tν)

×
[ r−n

2 ]

∑
r=0

r + 1 − 2k

r + 1

(
r + 1

k

)
pkqr−k,

(9)
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where p =
α

α + β
, q =

β

α + β
, and E

(r)
ν (−(α + β)tν) is the r−th derivative of the function Eν(z)✺✽

evaluated at z = −(α + β)tν.✺✾

Really it is easy to see from (7) that

∫ +∞

0
e−sxxrhν(t, x)dx = E

(r)
ν (−stν)tνr;

thus using [18] and (3) we have

pν
n(t) =

∫ +∞

0
pn(s)hν(t, s)ds

=

(
p

q

)n ∞

∑
r=n

(α + β)r

r!

∫ +∞

0
e−(α+β)ssνhν(t, s)ds

×
[ r−n

2 ]

∑
r=0

r + 1 − 2k

r + 1

(
r + 1

k

)
pkqr−k,

and formula (9) follows. On the other hand, using (8) we have

pν
n(t) =

∫ +∞

0
pn(s)hν(t, s)ds

=

(
p

q

)n ∞

∑
r=n

(α + β)r

r!

∫ +∞

0
uν−1e−tuFν,r(u)du

×
[ r−n

2 ]

∑
r=0

r + 1 − 2k

r + 1

(
r + 1

k

)
pkqr−k,

where

Fν,r(u) =
1

π

∫ +∞

0
exp {−(α + β)x − xuν cos(νπ)} xr sin (πν − xuν sin(πν)) dx.

3. Linear fractional Cauchy problems on Banach spaces✻✵

In order to describe the transient probabilities for our queues, we will need some uniqueness✻✶

results for solutions of linear fractional Cauchy problems defined on Banach spaces. To do that, let us✻✷

recall the following Theorem (Theorem 3.19 from [25]):✻✸

Theorem 1. Let (X, | · |) be a Banach space and J = [0, T] for some T > 0. Consider the ball BR = {x ∈ X :

|x| ≤ R}. Let ν ∈ (0, 1) and f : J × BR → X and consider the following Cauchy problem:

{
C
0 Dν

t x(t) = f (t, x(t)),

x(0) = x0,
(10)

where C
0 Dν

t is the Caputo derivative operator (see Appendix A).✻✹

Suppose that:✻✺

• f ∈ C(J × BR, X);✻✻

• There exists a constant M(R) > 0 such that

| f (t, x(t))| ≤ M(R)

for all x ∈ BR and t ∈ J and such that

R ≥ |x0|+
M(R)Tν

Γ(ν + 1)
;
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• There exists a constant L > 0 such that L ≥ 2M(R)
Γ(ν+1)

;✻✼

• There exists a constant L0 > 0 such that

| f (t, x1)− f (t, x2)| ≤ L0|x1 − x2|

for all x1, x2 ∈ BR and t ∈ J;✻✽

• There exist constants ν1 ∈ (0, ν) and τ > 0 such that

LA =
L0

Γ(ν)

T(1+β)(1−ν1)

(1 + β)1−ν1

(ν1

τ

)ν1
< 1

where β = ν−1
1−ν1

.✻✾

Then, if x0 ∈ BR, the problem (10) admits a unique solution x∗ ∈ Cν(J, BR).✼✵

The previous theorem can be easily adapted to the case in which J = [t0, T + t0] and the starting✼✶

point of the derivative is t0. Since we are interested in linear (eventually non-homogeneous) equations,✼✷

let us show how the previous theorem can be adapted in such case.✼✸

Corollary 1. Consider the system (10) and suppose f (t, x) = Ax + ξ where A : X → X is a linear and✼✹

continuous operator and ξ ∈ X. Then there exists a R > |x0| and T > 0 such that the system admits a unique✼✺

solution x∗ ∈ Cν(J, BR).✼✻

Proof. Observe that if |x| ≤ R then

| f (x)| ≤ ‖A‖|x|+ |ξ| ≤ ‖A‖R + |ξ|.

Let us choose T such that the conditions of Theorem 1 are verified. To do that, consider M(R) =

‖A‖R + |ξ|. Fix R ≥ |x0| and define R̃ = R + ε for some ε > 0. Define then

T =

[
εΓ(ν + 1)

M(R̃)

] 1
ν

and observe that

|x0|+
M(R̃)Tν

Γ(ν + 1)
= |x0|+ ε ≤ R + ε = R̃.

Thus one can fix L = 2M(R̃)
Γ(ν+1)

and L0 = ‖A‖. Moreover, since for fixed ν1 ∈ (0, ν) the function τ 7→ LA(τ)✼✼

is decreasing and limτ→0 LA(τ) = 0, then one can easily find a τ > 0 such that LA(τ) < 1. Since we✼✽

are under the hypotheses of Theorem 1, then we have shown the local existence and uniqueness of a✼✾

solution x∗ ∈ Cν(J, BR̃).✽✵

However, using such corollary we can only afford local uniqueness. Global uniqueness of the✽✶

solution of the Cauchy problem (10) can be obtained with the additional hypothesis that such solution✽✷

is uniformly bounded:✽✸

Corollary 2. Suppose we are under the hypotheses of Corollary 1. If there exists a solution x∗ ∈ C([0,+∞[, X)✽✹

and a constant k > 0 such that for any t ≥ 0 we have |x∗(t)| ≤ k, then such solution is unique.✽✺

Proof. Observe that |x0| ≤ k and then fix R̃ = k + ε. Define

∆T =

[
εΓ(ν + 1)

M(R̃)

] 1
ν

.
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Fix T1 = ∆T and observe that, by using Corollary 1 there exists a unique solution in [0, T1]. Since x∗ is

a solution of such problem, we have that x∗ is unique. Suppose we have defined Tn−1 such that x∗ is

the unique solution of system (10) in [0, Tn−1]. Consider the problem

{
C
Tn−1

Dν
t x(t) = f (x(t)),

x(Tn−1) = x∗(Tn−1).
(11)

Define then Tn = Tn−1 + ∆T and observe that, since |x∗(Tn−1)| ≤ k, by using Corollary 1, there exists

a unique solution in [Tn−1, Tn].

By using a change of variables it is easy to show that

C
Tn−1

Dν
t x = C

0 Dν
t−Tn−1

x̃,

where x̃ : t 7→ x(t + Tn−1). By using such relation we have that system (11) is equivalent to

{
C
0 Dν

t x̃(t) = f (x̃(t)),

x̃(0) = x∗(Tn−1),

whose unique solution is x̃(t) = x∗(t + Tn−1) so that x(t) = x∗(t) and x∗(t) is the unique solution of✽✻

system (10) in [0, Tn]. Since Tn → +∞ as n → +∞, we have global uniqueness of limited solutions.✽✼

4. The fractional M/M/1 queue✽✽

Let us consider again the fractional M/M/1 process Nν(t), t ≥ 0 defined by (3) with state

probabilites in (6).

Consider the Hilbert space (l2(R), | · |2) with the norm |x|22 = ∑
+∞
k=0 x2

k and let Cν([0, T], l2(R)) be the

space of the ν-Hölder continuous functions from [0, T] to l2(R). One can rewrite the system (5) in l2(R)

as follows: {
C
0 Dν

t pν(t) = A0 pν(t),

pν(0) = (δn,0)n≥0,
(12)

where pν(t) = (pν
n(t))n≥0 ∈ C([0, T], l2(R)) and

A0 =




−α β 0 0 0 · · ·

α −(α + β) β 0 0 · · ·

0 α −(α + β) β 0 · · ·

0 0 α −(α + β) β · · ·
...

...
...

. . .
. . .

. . .




is an infinite tridiagonal matrix with A0 = (ai,j)i,j≥0. Let us show the following:✽✾

Lemma 1. The linear operator A0 is continuous and ‖A0‖ ≤ 2(α + β).✾✵

Proof. To show that A0 is continuous, let us use Schur’s test (Theorem 5.2 in [8]). Observe that

+∞

∑
k=0

|ak,0| = 2α,
+∞

∑
k=0

|ak,j| = 2(α + β) for j 6= 0

so that, in general
+∞

∑
k=0

|ak,j| ≤ 2(α + β).
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Moreover

+∞

∑
k=0

|a0,k| = α + β,
+∞

∑
k=0

|aj,k| = 2(α + β) for j 6= 0

so that, in general
+∞

∑
k=0

|aj,k| ≤ 2(α + β).

By Schur’s test we have that A0 is a bounded operator on l2 and

‖A0‖ ≤ 2(α + β).

✾✶

Thus, by Corollary 1, we obtain local existence and uniqueness of the solution of system (5).

Global uniqueness can be obtained a posteriori, since the solutions of such system are known.

Let us also observe that the distributions of the inter-arrival times are Mittag-Leffler distributions. To

do that, consider the system, for fixed n ≥ 0





C
0 Dν

t bν
n(t) = −αbν

n(t),
C
0 Dν

t bν
n+1(t) = αbν

n(t),

bν
n(0) = 1,

bν
n+1(0) = 0,

that are the state probabilities of a queue with null death rate, fixed birth rate, starting with n customers

and with an absorbent state n + 1. Under such assumptions, bν
n+1(t) is the probability that a customer

arrives before t. Moreover, the normalizing condition becomes

bν
n(t) + bν

n+1(t) = 1.

One can solve the first equation (see Appendix A) to obtain

bν
n(t) = Eν(−αtν),

where Eν is the one-parameter Mittag-Leffler function (see Appendix B), and then, by using the

normalizing condition, we have

bν
n+1(t) = 1 − Eν(−αtν).

In a similar way, let us show that the distributions of the service times are Mittag-Leffler distributions.

To show that, consider the system, for fixed n ≥ 0,





C
0 Dν

t dν
n(t) = βdν

n+1(t),
C
0 Dν

t dν
n+1(t) = −βdν

n+1(t),

dν
n(t) = 0,

dν
n+1(t) = 1,

that are the state probabilities of a queue with null birth rate, fixed death rate, starting with n + 1

customers with an absorbent state n. Under such assumption dν
n(t) is the probability that a customer is

served before t. Moreover, the normalizing condition becomes

dν
n(t) + dν

n+1(t) = 1.



Version August 30, 2018 submitted to Mathematics 8 of 26

One can solve the second equation to obtain

dν
n+1(t) = Eν(−βtν), t ≥ 0

and then, by using the normalizing condition, we have

dν
n(t) = 1 − Eν(−βtν), t ≥ 0.

Moreover, since we know that ∀t ≥ 0 pν
n(t) ≥ 0 and ∑

∞
n=0 pν

n(t) = 1, by the continuous inclusion✾✷

l1(R) ⊆ l2(R) (see [23]), (pn(t))n≥0 is uniformly bounded in l2(R) and then, by Corollary 2, it is the✾✸

(global) unique solution of system (5).✾✹

✾✺

4.1. Distribution of the busy period✾✻

We want to determine the probability distribution Kν(t) of the busy period Kν of a fractional✾✼

M/M/1 queue. To do this, we will follow the lines of the proof given in [4] and [16].✾✽

Theorem 2. Let Kν be the random variable describing the duration of the busy period of a fractional M/M/1

queue Nν(t) and consider Kν(t) = P(Kν ≤ t). Then

Kν(t) = 1 −
+∞

∑
n=1

+∞

∑
m=0

Cn,mtν(n+2m−1)En+2m
ν,ν(n+2m−1)+1

(−(α + β)tν), (13)

where

Cn,m =

(
n + 2m

m

)
n

n + 2m
αn+m−1βm. (14)

Proof. Let us first define a queue N
ν
(t) such that P(N

ν
(0) = 1) = 1 and N

ν
(t) behaves like Nν(t)

except for the state 0 being an absorbent state. Thus state probability functions are solution of the

following system





C
0 Dν

t pν
0 = βpν

1(t),
C
0 Dν

t pν
1 = −(α + β)pν

1(t) + βpν
2(t),

C
0 Dν

t pν
n = −(α + β)pν

n(t) + αpν
n−1(t) + βpν

n+1(t), n ≥ 2

pν
n(0) = δn,1, n ≥ 0.

(15)

First we want to show that if we consider Lν(t) the inverse of a ν-stable subordinator which is

independent from N
1
(t), then N

ν
(t)

d
= N

1
(Lν(t)). To do that, consider the probability generating

function Gν(z, t) of N
ν
(t) defined as

Gν(z, t) =
+∞

∑
k=0

zk pν
k(t). (16)

From system (15) we know that Gν(z, t) solves the following fractional Cauchy problem:

{
zC

0 Dν
t Gν(z, t) = [αz2 − (α + β)z + β][Gν(z, t)− pν

0(t)],

Gν(z, 0) = z,
(17)
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which, for ν = 1 becomes

{
z d

dt G1(z, t) = [αz2 − (α + β)z + β][G1(z, t)− p1
0(t)],

G1(z, 0) = z.
(18)

Taking the Laplace transform in Eq. (17) and using Eq. (A1) we have

z[sνG̃ν(z, s)− zsν−1] = [αz2 − (α + β)z + β][G̃ν(z, s)− πν
0(s)] (19)

where G̃ν(z, s) and πν
0(s) are Laplace transforms of Gν(z, t) and pν

0(t).

We know that N
ν
(t)

d
= N

1
(Lν(t)) if and only if

pν
n(t) = P(N

ν
(t) = n) = P(N

1
(Lν(t)) = n) =

∫ +∞

0
p1

n(y)P(Lν(t) ∈ dy) (20)

and then if and only if, by Eq. (16),

Gν(z, t) =
∫ +∞

0
G1(z, y)P(Lν(t) ∈ dy). (21)

Taking the Laplace transform in Eq. (20) and (21) for n = 0 and by using (see, i.e., Eq. (10) in [21])

L[P(Lν(t) ∈ dy)](s) = sν−1e−ysdy (22)

we know we have to show that

πν
0(s) =

∫ +∞

0
p1

n(y)s
ν−1e−ysν

dy (23)

and

G̃ν(z, s) =
∫ +∞

0
G1(z, y)sν−1e−ysν

dy. (24)

Since Eq. (17) admits a unique solution, then we only need to show that the right-hand sides of Eqs.

(23) and (24) solve Eq. (19) that is to say that we have to verify

z

[
sν
∫ +∞

0
G1(z, y)e−ysν

dy − z

]

= [αz2 − (α + β)z + β]

[∫ +∞

0
G1(z, y)e−ysν

dy −
∫ +∞

0
p1

0(y)e
−ysν

dy

]
(25)

To do that, consider the right-hand side of the previous equation and, recalling that G1(z, t) is solution

of Eq. (18):

∫ +∞

0
[αz2 − (α + β)z + β][G1(z, y)− p1

0(y)]e
−ysν

dy =
∫ +∞

0

(
d

dy
G1(z, y)

)
e−ysν

dy

and then, by integrating by parts, we have Eq. (25).

Now remark that pν
0(t) = Bν(t). Thus we want to determine pν

0(t). To do that, let us recall, from [4,16]

that

p1
n(t) = nt−1α

n
2 −1β− n

2 e−(α+β)t In(2
√

αβt) for n ≥ 1

from which, explicitly writing In(2
√

αβt), we have

p1
n(t) =

+∞

∑
m=0

(
n + 2m

m

)
n

n + 2m

1

(n + 2m − 1)!
αn+m−1βmtn+2m−1e−(α+β)t for n ≥ 1.
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Posing Cn,m = (n+2m
m ) n

n+2m αn+m−1βm we have

p1
n(t) =

+∞

∑
m=0

Cn,m

(n + 2m − 1)!
tn+2m−1e−(α+β)t for n ≥ 1

and then

p1
0(t) = 1 −

+∞

∑
n=1

+∞

∑
m=0

Cn,m

(n + 2m − 1)!
tn+2m−1e−(α+β)t. (26)

Since N
ν
(t) = N

1
(Lν(t)), we have

pν
0(t) =

∫ +∞

0
p1

0(y)P(Lν(t) ∈ dy)

and then, using Eq. (26), we have

pν
0(t) = 1 −

+∞

∑
n=1

+∞

∑
m=0

Cn,m

(n + 2m − 1)!

∫ +∞

0
yn+2m−1e−(α+β)y

P(Lν(t) ∈ dy). (27)

Taking the Laplace transform in Eq. (27), using Eq. (22), we have

πν
0(s) =

1

s
−

+∞

∑
n=1

+∞

∑
m=0

Cn,m

(n + 2m − 1)!
sν−1

∫ +∞

0
yn+2m−1e−(α+β+sν)ydy

and then integrating

πν
0(s) =

1

s
−

+∞

∑
n=1

+∞

∑
m=0

Cn,m
sν−1

(α + β + sν)n+2m
.

Finally, using formula (A2), we have

pν
0(s) = 1 −

+∞

∑
n=1

+∞

∑
m=0

Cn,mtν(n+2m−1)En+2m
ν,ν(n+2m−1)+1

(−(α + β)tν)

completing the proof.✾✾

Remark 1. As ν → 1 we obtain, by using

En+2m
1,n+2m(−(α + β)t) =

e−(α+β)t

(n + 2m − 1)!

that pν
0(t) → p1

0(t) and then Kν(t) → K1(t).✶✵✵

5. The fractional M/M/1 queue with catastrophes✶✵✶

Let us consider a classical M/M/1 queue with FIFO discipline and subject to catastrophes whose

effect is to instantaneously empty the queue [6] and let N1
ξ (t) be the number of customers in the system

at time t with state probabilities

p
1,ξ
n (t) = P(N1

ξ (t) = n|N1
ξ (0) = 0), n = 0, 1, . . .
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Then the function p
1,ξ
n satisfy the following differential-difference equations:





Dt p
1,ξ
0 (t) = −(α + ξ)p

1,ξ
0 (t) + βp

1,ξ
1 (t) + ξ,

Dt p
1,ξ
n (t) = −(α + β + ξ)p

1,ξ
n (t) + αp

1,ξ
n−1(t) + βp

1,ξ
n+1(t), n ≥ 1

p
1,ξ
n (0) = δn,0, n ≥ 0,

(28)

where δn,0 is the Kroeneker delta symbol, Dt = d
dt , α, β > 0 are the entrance and service rates

respectively and ξ > 0 is the rate of the catastrophes when the system is not empty.

For ν ∈ (0, 1) we define the fractional M/M/1 queue process with catastrophes as

Nν
ξ (t) = N1

ξ (Lν(t)), t ≥ 0

where Lν is an inverse ν-stable subordinator which is independent of N1
ξ (t), t ≥ 0 (see Section 2).

We will show that the state probabilities

p
ν,ξ
n := P(Nν

ξ (t) = n|Nν
ξ (0) = 0)

satisfy the following differential-difference fractional equations:





C
0 Dν

t p
ν,ξ
0 (t) = −(α + ξ)p

ν,ξ
0 (t) + βp

ν,ξ
1 (t) + ξ,

C
0 Dν

t p
ν,ξ
n (t) = −(α + β + ξ)p

ν,ξ
n (t) + αp

ν,ξ
n−1(t) + βp

ν,ξ
n+1(t), n ≥ 1

p
ν,ξ
n (0) = δn,0, n ≥ 0,

(29)

where C
0 Dν

t is the Caputo fractional derivative (see Appendix A). In the classical case, catastrophes

occur according to a Poisson process with rate ξ if the system is not empty. In our case, consider for a

fixed n > 0 



C
0 Dν

t cν
0(t) = ξ(1 − cν

0(t)),
C
0 Dν

t cν
n(t) = −ξcν

n(t),

cν
0(0) = 0,

cν
n(0) = 1,

which describes the state probabilities of an initially non empty system with null birth and death rate

but positive catastrophe rate. In such case cν
0(t) is the probability a catastrophe occurs before time t.

Moreover the normalization property becomes

cν
0(t) + cν

n(t) = 1.

In such case, we can solve the second equation to obtain

cν
n(t) = Eν(−ξtν), t ≥ 0.

Using the normalization property we finally obtain

cν
0(t) = 1 − Eν(−ξtν), t ≥ 0 (30)

and then the distributions of the inter-occurrence of the catastrophes are Mittal-Leffler distributions.

We can conclude that, in the fractional case, catastrophes occur according to a fractional Poisson process

([1,17,20]) with rate ξ if the system is not empty.

Since the operators C
0 Dν

t are Caputo fractional derivatives, we expect the stationary behaviour of the
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queue to be the same as the classic one. Denoting with N1
ξ the number of customers in the system at

the steady state of a classical M/M/1 with catastrophes and defining the state probabilities

qn = P(N1
ξ = n), n ≥ 0

we can use the results obtained in [15] to observe that

qn =

(
1 −

1

z1

)(
1

z1

)n

, n ≥ 0, (31)

where z1 is the solution of

αz2 − (α + β + ξ)z + β = 0 (32)

such that z1 > 1. Let us call z2 the other solution of Eq. (32) and observe that 0 < z2 < 1 < z1. Some

properties coming from such equations that will be useful hereafter are

α + β + ξ = αzi +
β

zi
(33)

and

αz2
i = (α + β + ξ)zi − β (34)

with i = 1, 2.✶✵✷

✶✵✸

5.1. Alternative representation of the fractional M/M/1 queue with catastrophes✶✵✹

We want to obtain an alternative representation of the fractional M/M/1 queue with catastrophes

in a way which is similar to Lemma 2.1 in [6]. To do that, we firstly need to assure that system (29)

admits a unique uniformly bounded solution. To do that let us write system (29) in the form

{
C
0 Dν

t pν,ξ(t) = f (pν,ξ(t)),

pν,ξ(t) = (δn,0)n≥0,
(35)

where pν,ξ(t) = (p
ν,ξ
n (t))n≥0 ∈ C([0, T], l2(R)), f (x) = Aξ x + ξ, ξ = (ξ, 0, . . . , 0, . . . ) and

Aξ =




−(α + ξ) β 0 0 0 · · ·

α −(α + β + ξ) β 0 0 · · ·

0 α −(α + β + ξ) β 0 · · ·

0 0 α −(α + β + ξ) β · · ·
...

...
...

. . .
. . .

. . .




is an infinite tridiagonal matrix with Aξ = (ai,j)i,j≥0. We need to show the following:✶✵✺

Lemma 2. The linear operator Aξ is continuous and ‖Aξ‖ ≤ 2(α + β) + ξ.✶✵✻

Proof. To obtain an estimate of the norm of Aξ , let us use Schur’s test. Observe that

+∞

∑
k=0

|ak,0| = 2α + ξ,
+∞

∑
k=0

|ak,j| = 2α + 2β + ξ with j 6= 0

so that, in general
+∞

∑
k=0

|ak,j| ≤ 2α + 2β + ξ.
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Moreover

+∞

∑
k=0

|a0,k| = α + β + ξ,
+∞

∑
k=0

|aj,k| = 2α + 2β + ξ for j 6= 0

so that, in general
+∞

∑
k=0

|aj,k| ≤ 2α + 2β + ξ.

By Schur’s test we have that Aξ is a bounded operator on l2 and

‖Aξ‖ ≤ 2(α + β) + ξ.

✶✵✼

Observe that if ξ = 0 the operator A0 is the same of system (12). Let us also observe that by✶✵✽

Corollary 1 there locally exists a unique solution. Moreover if we show that a solution is uniformly✶✵✾

bounded, such solution is unique.✶✶✵

Now we are ready to adapt Lemma 2.1 of [6] to the fractional case.✶✶✶

Theorem 3. Let Ñν(t) be the number of customers in a fractional M/M/1 queue with arrival rate αz1 and

service rate
β
z1

such that P(Ñν(0) = 0) = 1 and consider N a random variable independent from Ñν(t) whose

state probabilities qn are defined in Eq. (31). Define

Mν(t) := min{Ñν(t), N}, t ≥ 0.

Then the state probabilities of Mν(t) are the unique solutions of (29).✶✶✷

Moreover Mν(t)
d
= Nν

ξ (t), where
d
= is the equality in distribution, and then p

ν,ξ
n (t), n = 0, 1, . . . are the✶✶✸

unique solutions of (29).✶✶✹

Proof. Define p∗,ν
n (t) = P(Mν(t) = n) and p̃ν

n(t) = P(Ñν(t) = n). Since Ñν(t) and N are independent,

then

p∗,ν
n (t) = P(N = n)P(Ñν(t) ≥ n) + P(Ñν(t) = n)P(N > n)

that, by using the definitions of p̃ν
n(t) and qn, becomes

p∗,ν
n (t) = qn

+∞

∑
k=n

p̃ν
k(t) +

(
+∞

∑
k=n+1

qn

)
p̃ν

n(t). (36)

Moreover, by using Eq. (31), we have

+∞

∑
k=n+1

qn =

(
1 −

1

z1

) +∞

∑
k=n+1

(
1

z1

)k

=

(
1 −

1

z1

)(
1

z1

)n+1 +∞

∑
k=0

(
1

z1

)k

=

(
1

z1

)n+1

(37)

and then, substituting Eq. (37) in (36) we obtain

p∗,ν
n (t) = qn

+∞

∑
k=n

p̃ν
k(t) +

(
1

z1

)n+1

p̃ν
n(t). (38)

We want to show that Mν(t) = Nν(t). Since by definition p∗,ν
n (t) are non-negative and ∑

+∞
n=0 p∗,ν

n (t) = 1,

they are uniformly bounded in l2(R). Thus we only need to show that p∗,ν(t) = (p∗,ν
n (t))n≥0 solves

system (35).
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The initial conditions are easily verified, so we only need to verify the differential relations. Observe

that

p∗,ν
0 (t) = q0 +

1

z1
p̃ν

0(t)

and then, applying the Caputo derivative operator we obtain

C
0 Dν

t p∗,ν
0 (t) =

1

z1

C
0 Dν

t p̃ν
0(t).

Since p̃ν
0(t) is solution of system (5) with rates αz1 and

β
z1

we have

C
0 Dν

t p∗,ν
0 (t) = −α p̃ν

0(t) +
β

z2
1

p̃ν
1(t).

Observe also that

p∗,ν
1 (t) = q1(1 − p̃ν

0(t)) +

(
1

z1

)2

p̃ν
1(t)

so we have

− (α + ξ)p∗,ν
0 (t) + βp∗,ν

1 (t) + ξ

= −(α + ξ)

(
q0 +

(
1

z1

)
p̃ν

0(t)

)
+ β

[
q1(1 − p̃ν

0(t)) +

(
1

z1

)2

p̃ν
1(t)

]
+ ξ.

After some calculations we obtain

−(α + ξ)p∗,ν
0 (t) + βp∗,ν

1 (t) + ξ = −(α + ξ)q0 −
α + ξ

z1
p̃ν

0(t) + βq1 − βq1 p̃ν
0(t) +

β

z2
1

p̃ν
1(t) + ξ.

Let us remark that

q0 = 1 −
1

z1
, q1 =

(
1 −

1

z1

)(
1

z1

)

so we have

− (α + ξ)p∗,ν
0 (t) + βp∗,ν

1 (t) + ξ

=
−αz2

1 + (α + β + ξ)z1 − β

z2
1

+
(−(α + β + ξ)z1 + β) p̃ν

0(t)

z2
1

+
β

z2
1

p̃ν
1(t).

By using Eq. (32) and (34) we obtain

−(α + ξ)p∗,ν
0 (t) + βp∗,ν

1 (t) + ξ = −α p̃ν
0(t) +

β

z2
1

p̃ν
1(t) =

C
0 Dν

t p∗,ν
0 (t).

Rewrite now Eq. (38) in the form

p∗,ν
n (t) = qn

(
1 −

+∞

∑
k=0

p̃ν
k(t)

)
+

(
1

z1

)n+1

p̃ν
n(t) (39)

and then apply Caputo derivative operator to obtain

C
0 Dν

t p∗,ν
n (t) = −qn

+∞

∑
k=1

C
0 Dν

t p̃ν
k(t)− qn

C
0 Dν

t p̃ν
0(t) +

(
1

z1

)n+1
C
0 Dν

t p̃ν
n(t).
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Since p̃ν
n(t) is solution of system (5) with birth rate αz1 and death rate

β
z1

then we have

C
0 Dν

t p∗,ν
n (t) = qn

(
αz1 +

β

z1

) n−1

∑
k=1

p̃ν
k − qnαz1

n−2

∑
k=0

p̃ν
k(t)−

β

z1
qn

n

∑
k=2

p̃ν
k(t)

+ αz1qn p̃0(t)−
β

z1
qn p̃ν

1 −

(
1

z1

)n+1 (
αz1 +

β

z1

)
p̃ν

n(t)

+ α

(
1

z1

)n

p̃ν
n−1(t) + β

(
1

z1

)n+2

p̃ν
n+1(t).

Remark that, by using Eq. (39)

−(α + β + ξ)p∗,ν
n (t) + αp∗,ν

n−1(t) + βp∗,ν
n+1(t) =

− (α + β + ξ)

(
qn

(
1 −

n−1

∑
k=0

p̃ν
k(t)

)
+

(
1

z1

)n+1

p̃ν
n(t)

)

+ α

(
qn−1

(
1 −

n−2

∑
k=0

p̃ν
k(t)

)
+

(
1

z1

)n

p̃ν
n−1(t)

)

+ β

(
qn+1

(
1 −

n

∑
k=0

p̃ν
k(t)

)
+

(
1

z1

)n+2

p̃ν
n+1(t)

)
.

Then, recalling that by definition qn−1 = z1qn and qn+1 = qn
z1

and doing some calculations, we have

−(α + β + ξ)p∗,ν
n (t) + αp∗,ν

n−1(t) + βp∗,ν
n+1(t) =

(α + β + ξ)qn

n−1

∑
k=1

p̃ν
k(t)− αz1qn

n−2

∑
k=0

p̃ν
k(t)−

β

z1
qn

n

∑
k=2

p̃ν
k(t)

+
(α + β + ξ)z1 − β

z1
qn p̃ν

0(t)−
β

z1
qn p̃ν

1(t)− (α + β + ξ)

(
1

z1

)n+1

p̃ν
n(t)

+ α

(
1

z1

)n

p̃ν
n−1(t) + β

(
1

z1

)n+2

p̃ν
n+1(t) +

αz2
1 − (α + β + ξ)z1 + β

z1
qn.

Finally, by using Eq. (32), (33) and (34) we have

−(α + β + ξ)p∗,ν
n (t) + αp∗,ν

n−1(t) + βp∗,ν
n+1(t) =

(
αz1 +

β

z1

)
qn

n−1

∑
k=1

p̃ν
k(t)− αz1qn

n−2

∑
k=0

p̃ν
k(t)−

β

z1
qn

n

∑
k=2

p̃ν
k(t)

+ αz1qn p̃ν
0(t)−

β

z1
qn p̃ν

1(t)−

(
αz1 +

β

z1

)(
1

z1

)n+1

p̃ν
n(t)

+ α

(
1

z1

)n

p̃ν
n−1(t) + β

(
1

z1

)n+2

p̃ν
n+1(t) =

C
0 Dν

t p∗,ν
n (t).

We have shown that the state probabilities p∗,ν
n (t) of Mν(t) are the unique solutions of system (29). Now

we need to show that Mν(t)
d
= Nν

ξ (t). To do this consider Ñ1(t) a classical M/M/1 queue with arrival

rate αz1 and service rate
β
z1

, N a random variable independent from Ñν(t) and Ñ1(t) with probability

masses qn and finally Lν(t) the inverse of a ν-stable subordinator which is independent from N and
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Ñ1(t). Define also M1(t) = min{Ñ1(t), N}. By Lemma 2.1 of [6] we know that M1(t)
d
= N1

ξ (t), so

M1(Lν(t))
d
= N1

ξ (Lν(t))
d
= Nν

ξ (t). But by definition we know that Ñ1(Lν(t))
d
= Ñν(t), thus finally

Mν(t)
d
= M1(Lν(t))

d
= N1

ξ (Lν(t))
d
= Nν

ξ (t).

✶✶✺

5.2. State probabilities for the fractional M/M/1 with catastrophes✶✶✻

Since we have defined Nν
ξ (t)

d
= N1

ξ (Lν(t)), where Lν(t) is the inverse of a ν-stable subordinator

which is independent from N1
ξ (t), we can use such definition and Theorem 3 with the results obtained

in [6] to study the state probabilities of Nν
ξ (t). In particular we refer to the formula

p
1,ξ
n (t) = qn +

+∞

∑
m=0

m+n

∑
r=0

C1
n,m,r

(m + r − 1)!
tm+r−1e−(α+β+ξ)t

+
+∞

∑
m=0

+∞

∑
r=m+n+1

C2
n,m,r

(m + r − 1)!
tm+r−1e−(α+β+ξ)t,

(40)

where

C1
n,m,r =

z1 − 1

(z1 − z2)z
n+m+1−r
1

(
m + r

r

)
m − r

m + r
βmαr−1,

C2
n,m,r =

1 − z2

(z1 − z2)z
n+m+1−r
2

(
m + r

r

)
r − m

r + m
βmαr−1.

(41)

By using such formula we can show the following:✶✶✼

Theorem 4. For any t > 0 and n = 0, 1, . . . we have

p
ν,ξ
n (t) = qn +

+∞

∑
m=0

m+n

∑
r=0

C1
n,m,rtν(m+r−1)Em+r

ν,ν(m+r−1)+1
(−(α + β + ξ)tν)

+
+∞

∑
m=0

+∞

∑
r=m+n+1

C2
n,m,rtν(m+r−1)Em+r

ν,ν(m+r−1)+1
(−(α + β + ξ)tν),

(42)

where Ci
n,m,r are defined in (41).✶✶✽

Proof. From Nν
ξ (t)

d
= N1

ξ (Lν(t)), we have

p
ν,ξ
n (t) =

∫ +∞

0
p

1,ξ
n (y)P(Lν(t) ∈ dy)

and then, by using formula (40)

p
ν,ξ
n (t) = qn +

+∞

∑
m=0

m+n

∑
r=0

C1
n,m,r

(m + r − 1)!

∫ +∞

0
ym+r−1e−(α+β+ξ)y

P(Lν(t) ∈ dy)

+
+∞

∑
m=0

+∞

∑
r=m+n+1

C2
n,m,r

(m + r − 1)!

∫ +∞

0
ym+r−1e−(α+β+ξ)y

P(Lν(t) ∈ dy).
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Taking the Laplace transform and using Eq. (22) we obtain

π
ν,ξ
n (s) = qn +

+∞

∑
m=0

m+n

∑
r=0

C1
n,m,r

(m + r − 1)!
sν−1

∫ +∞

0
ym+r−1e−(α+β+ξ+sν)ydy

+
+∞

∑
m=0

+∞

∑
r=m+n+1

C2
n,m,r

(m + r − 1)!
sν−1

∫ +∞

0
ym+r−1e−(α+β+ξ+sν)ydy

and then, integrating

π
ν,ξ
n (s) = qn +

+∞

∑
m=0

m+n

∑
r=0

C1
n,m,r

sν−1

(α + β + ξ + sν)m+r

+
+∞

∑
m=0

+∞

∑
r=m+n+1

C2
n,m,r

sν−1

(α + β + ξ + sν)m+r
.

Finally, by using Eq. (A2) we obtain

p
ν,ξ
n (t) = qn +

+∞

∑
m=0

m+n

∑
r=0

C1
n,m,rtν(m+r−1)Em+r

ν,ν(m+r−1)+1
(−(α + β + ξ)tν)

+
+∞

∑
m=0

+∞

∑
r=m+n+1

C2
n,m,rtν(m+r−1)Em+r

ν,ν(m+r−1)+1
(−(α + β + ξ)tν).

✶✶✾

Remark 2. From formula (42) we can easily see that limt→+∞ p
ν,ξ
n (t) = qn so, as we expected, the steady-state✶✷✵

probabilities are the same as the classical ones. For such reason we can say that the fractional behaviour is✶✷✶

influential only in the transient state of the queue.✶✷✷

Remark 3. As ν → 1, by using

Em+r
1,m+r(−(α + β + ξ)t) =

e−(α+β+ξ)t

(m + r − 1)!

we obtain that limν→1 p
ν,ξ
n (t) = p

1,ξ
n (t).✶✷✸

Remark 4. If α < β and ξ = 0, then z1 = β
α and z2 = 1. For such reason qn =

(
1 − α

β

) (
α
β

)n
,

C1
n,m,r =

(
α
β

)n
m−r
m+r (

m+r
m )αmβr−1 and C2

n,m,r = 0. Then we have that p
ν,ξ
n (t) of Eq. (42) has the form of

Eq. (6).

If α > β and ξ → 0 then z1 = 1 and z2 = β
α . In such case qn = 0, C1

n,m,r = 0 and C2
n,m,r =

αn+mβr−n−1(m+r
m ) r−m

m+r . For such case we have

lim
ξ→0

p
ν,ξ
n (t) =

(
α

β

)n +∞

∑
m=0

+∞

∑
r=m+n+1

αmβr−1

(
m + r

m

)
r − m

m + r
tν(m+r−1)Em+r

ν,ν(m+r−1)+1
,

which is not recognizable as a previously obtained formula. This is due to the fact that the formula

lim
ξ→0

p
1,ξ
n (t) =

e−(α+β)t

βt

(
α

β

)n +∞

∑
r=n+1

r

(
β

α

) r
2

Ir(2
√

αβt) (43)

(which is the one that is obtained from (42) as ν = 1 and α > β, as done in [6]) has no known equivalent in

the fractional case. It is also interesting to observe that in [3] another representation of the Laplace transform
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of pν
n(t) is given in formula 2.40, which is not easily invertible, but has been obtained by using (43) instead of

Sharma’s representation of p1
n(t) ([5])

p1
n(t) =

(
1 −

α

β

)(
α

β

)n

+ e−(α+β)t

(
α

β

)n +∞

∑
r=0

(αt)r

r!

k+r

∑
m=0

(r − m)
(βt)m−1

m!
.

5.3. Distribution of the busy period✶✷✹

Let Bν denote the duration of the busy period and Bν(t) = P(Bν ≤ t) be its probability distribution

function. Let us observe that if we pose Nν(0) = 1, then the queue empties within t if and only if

a catastrophe occurs within t or otherwise the queue empties without catastrophes within t. Let

us remark that if there is no occurrence of catastrophes, the queue behaves as a fractional M/M/1.

Let us define Kν the duration of a busy period for a fractional M/M/1 queue without catastrophes,

Ξν the time of first occurrence of a catastrophe for a non empty queue and Kν(t) = P(Kν ≤ t) and

Ξν(t) = P(Ξν ≤ t) their probability distribution functions. Thus we have

Bν(t) = Ξν(t) + (1 − Ξν(t))Kν(t). (44)

Remark 5. If we denote with bν(t), ξν(t) and kν(t) the probability density functions of Bν, Ξν and Kν, we

have, by deriving formula (44)

bν(t) = ξν(t)(1 − Kν(t)) + (1 − Ξν(t))kν(t)

which, for ν = 1, is formula 17 of [6].✶✷✺

By using formula (44) we can finally show:✶✷✻

Theorem 5. Let Bν be the duration of the busy period of a fractional M/M/1 queue with catastrophes and

Bν(t) = P(Bν ≤ t). Then

Bν(t) = 1 − Eν(−ξtν)
+∞

∑
n=1

+∞

∑
m=0

Cn,mtν(n+2m−1)En+2m
ν,ν(n+2m−1)+1

(−(α + β)tν), (45)

where Cn,m is given in (14).✶✷✼

Proof. Observe that, by formula (30), we have

Ξν(t) = cν
0(t) = 1 − Eν(−ξtν)

and by formula (13) we also have a closed form of Kν(t). Thus, by using formula (44) we obtain Eq.✶✷✽

(45).✶✷✾

5.4. Distribution of the time of the first occurrence of a catastrophe✶✸✵

We already know that if the queue starts from a non-empty state, then the occurrence of the✶✸✶

catastrophes is a Mittag-Leffler distribution. However, we are interested in such distribution as the✶✸✷

queue starts being empty. To do that we will need some auxiliary discrete processes.✶✸✸

Theorem 6. Let Dν be the time of first occurrence of a catastrophe as P(Nν(0) = 0) = 1 and let Dν(t) =

P(Dν ≤ t). Then

Dν(t) = 1 −
+∞

∑
j=1

+∞

∑
m=0

Cm,jt
ν(2m+j−1)E

2m+j

ν,ν(2m+j−1)+1
[−(α + β + ξ)tν], (46)
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where

Cm,j =
j

2m + j

(β + ξ)j − αj

β + ξ − α

(
2m + j

m

)
(αβ)m.

Proof. Following the lines of [6], let us consider the process N
ν
(t) with state space {−1, 0, 1, 2, . . . }

such that P(N
ν
(t) = 0) = 1 and posing rn(t) = P(N

ν
(t) = n), n ≥ −1 its state probability we have





C
0 Dν

t rν
−1(t) = ξ[1 − rν

−1(t)− rν
0(t)],

C
0 Dν

t rν
0(t) = −αrν

0(t) + βrν
1(t),

C
0 Dν

t rν
n(t) = −(α + β + ξ)rν

n(t) + αrν
n−1(t) + βrν

n+1(t), n ≥ 1

rν
n(0) = δn,0, n ≥ −1.

(47)

Let us remark that such process represents our queue until a catastrophe occurs: in such case, instead

of emptying the queue, the state of the process becomes −1, which is an absorbent state. With such

interpretation, we can easily observe that Dν(t) = rν
−1(t).

In order to determine rν
n(t), we will first show that N

ν
(t)

d
= N

1
(Lν(t)) where Lν(t) is the inverse of a

ν-stable subordinator which is independent from N
1
. To do that, let us consider N

ν
(t) + 1 instead of

N
ν
(t). Let us remark that P(N

ν
(t)+ 1 = n) = rν

n−1(t). Let Gν(z, t) = ∑
+∞
n=0 znrν

n−1(t) be the probability

generating function of N
ν
(t) + 1. Multiplying the third sequence of equations in (47) with zn+1 and

then summing all these equations, we have

C
0 Dν

t

(
+∞

∑
n=2

znrν
n−1(t)

)
= −(α + β + ξ)

+∞

∑
n=2

znrν
n−1(t) + α

+∞

∑
n=2

znrν
n−2(t) + β

+∞

∑
n=2

znrν
n(t). (48)

Now observe that

+∞

∑
n=2

znrν
n−1(t) =

+∞

∑
n=0

znrν
n−1(t)− rν

−1(t)− zrν
0(t) = Gν(z, t)− rν

−1(t)− zrν
0(t); (49)

moreover

+∞

∑
n=2

znrν
n−2(t) =

+∞

∑
n=1

zn+1rν
n−1(t) = z

+∞

∑
n=1

znrν
n−1(t)

= z[Gν(z, t)− rν
−1(t)] = z[Gν(z, t)− rν

−1(t)− zrν
0(t)] + z2rν

0(t); (50)

finally

+∞

∑
n=2

znrν
n(t) =

+∞

∑
n=3

zn−1rν
n−1(t) =

1

z

+∞

∑
n=3

znrν
n−1(t)

=
1

z
[Gν(z, t)− rν

−1(t)− zrν
0(t)− z2rν

1(t)]

=
1

z
[Gν(z, t)− rν

−1(t)− zrν
0(t)]− zrν

1(t). (51)

Using Eqs. (49),(50) and (51) in Eq. (48) we obtain

C
0 Dν

t [G
ν(z, t)− rν

−1(t)− zrν
0(t)]

=

[
αz − (α + β + ξ) +

β

z

]
[Gν(z, t)− rν

−1(t)− zrν
0(t)]

+ αz2rν
0(t)− βzrν

1(t). (52)
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Finally, by using the first and the second equation of Eq. (47) in Eq. (52) we obtain

C
0 Dν

t Gν(z, t) =

[
αz − (α + β + ξ) +

β

z

]
[Gν(z, t)− rν

−1(t)− zrν
0(t)]

+ αz(z − 1)rν
0(t) + ξ[1 − rν

−1(t)− rν
0(t)].

We have obtained that the probability generating function Gν(z, t) of N
ν
(t) + 1 solves the Cauchy

problem 



zC
0 Dν

t Gν(z, t) =
[
αz2 − (α + β + ξ)z + β

]
[Gν(z, t)− rν

−1(t)− zrν
0(t)]

+αz2(z − 1)rν
0(t) + ξz[1 − rν

−1(t)− rν
0(t)],

Gν(z, 0) = z,

(53)

that, for ν = 1, becomes





z
d

dt
G1(z, t) =

[
αz2 − (α + β + ξ)z + β

]
[G1(z, t)− r1

−1(t)− zr1
0(t)]

+αz2(z − 1)r1
0(t) + ξz[1 − r1

−1(t)− r1
0(t)],

G1(z, 0) = z.

(54)

Let G̃ν(z, s), r̃ν
0(s) and r̃ν

−1(s) be the Laplace transforms of Gν(z, t), rν
0(t) and rν

−1(t) and let us take the

Laplace transform in Eq. (53) to obtain

z[sνG̃ν(z, s)− sν−1z] =
[
αz2 − (α + β + ξ)z + β

]
[G̃ν(z, s)− r̃ν

−1(s)− zr̃ν
0(s)]

+αz2(z − 1)r̃ν
0(s) + ξz

[
1

s
− r̃ν

−1(s)− r̃ν
0(s)

]
.

(55)

Now, let us remark that N
ν
(t) + 1

d
= N

1
(Lν(t)) + 1 if and only if for all n ≥ 0:

rν
n−1(t) =

∫ +∞

0
r1

n−1(y)P(Lν(t) ∈ dy) (56)

that is to say if and only if

Gν(z, t) =
∫ +∞

0
G1(z, y)P(Lν(t) ∈ dy).

Taking Laplace transform and using Eq. (22) we obtain

G̃ν(z, s) = sν−1
∫ +∞

0
G1(z, y)e−ysν

dy,

r̃ν
−1(s) = sν−1

∫ +∞

0
r1
−1(y)e

−ysν
dy,

r̃ν
0(s) = sν−1

∫ +∞

0
r1

0(y)e
−ysν

dy.

(57)
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Thus, by substituting the formulas (57) in (55) we obtain

z

[
sνsν−1

∫ +∞

0
G1(z, y)e−ysν

dy − sν−1z

]
= [αz2 − (α + β + ξ)z + β]

×

[
sν−1

∫ +∞

0
G1(z, y)e−ysν

dy − sν−1
∫ +∞

0
r1
−1(y)e

−ysν
dy − zsν−1

∫ +∞

0
r1

0(y)e
−ysν

dy

]

+ αz2(z − 1)sν−1
∫ +∞

0
r1

0(y)e
−ysν

dy

+ ξz

[
1

s
− sν−1

∫ +∞

0
r1
−1(y)e

−ysν
dy − sν−1

∫ +∞

0
r1

0(y)e
−ysν

dy

]
.

Finally, multiplying with 1
sν−1 , we have

z

[
sν
∫ +∞

0
G1(z, y)e−ysν

dy − z

]
= [αz2 − (α + β + ξ)z + β]

×

[∫ +∞

0
G1(z, y)e−ysν

dy −
∫ +∞

0
r1
−1(y)e

−ysν
dy − z

∫ +∞

0
r1

0(y)e
−ysν

dy

]

+ αz2(z − 1)
∫ +∞

0
r1

0(y)e
−ysν

dy

+ ξz

[
1

sν
−
∫ +∞

0
r1
−1(y)e

−ysν
dy −

∫ +∞

0
r1

0(y)e
−ysν

dy

]
.

(58)

Now we know that N
ν
(t)

d
= N

1
(Lν(t)) if and only if Eq. (58) is verified. For this reason we only need

to show such equation. To do that, remarking that
∫ +∞

0 e−ysν
dy = 1

sν , consider the right-hand side of

Eq. (58) and observe that

[αz2 − (α + β + ξ)z + β]

[∫ +∞

0
G1(z, y)e−ysν

dy −
∫ +∞

0
r1
−1(y)e

−ysν
dy − z

∫ +∞

0
r1

0(y)e
−ysν

dy

]

+ αz2(z − 1)
∫ +∞

0
r1

0(y)e
−ysν

dy + ξz

[
1

sν
−
∫ +∞

0
r1
−1(y)e

−ysν
dy −

∫ +∞

0
r1

0(y)e
−ysν

dy

]

=
∫ +∞

0
([αz2 − (α + β + ξ)z + β][G1(z, y)− r1

−1(y)− zr1
0(y)]

+ αz2(z − 1)r1
0(y) + ξz[1 − r1

−1(y)− r1
0(y)])e

−ysν
dy.

Thus, by using Eq. (54), we have

[αz2 − (α + β + ξ)z + β]

[∫ +∞

0
G1(z, y)e−ysν

dy −
∫ +∞

0
r1
−1(y)e

−ysν
dy − z

∫ +∞

0
r1

0(y)e
−ysν

dy

]

+ αz2(z − 1)
∫ +∞

0
r1

0(y)e
−ysν

dy + ξz

[
1

sν
−
∫ +∞

0
r1
−1(y)e

−ysν
dy −

∫ +∞

0
r1

0(y)e
−ysν

dy

]

= z
∫ +∞

0

(
d

dt
G1(z, y)

)
e−ysν

dy

= z

[∫ +∞

0
G1(z, y)e−ysν

dy − z

]

concluding the proof of our first claim.

From Theorem 3.1 of [6] we know that

r1
−1(t) = 1 −

+∞

∑
j=1

+∞

∑
m=0

Cm,j

(2m + j − 1)!
t2m+j−1e−(α+β+ξ)t (59)
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and, since we know that N
ν
(t)

d
= N

1
(Lν(t)), we can use (59) in (56) with n = 0 to obtain:

rν
−1(t) = 1 −

+∞

∑
j=1

+∞

∑
m=0

Cm,j

(2m + j − 1)!

∫ +∞

0
y2m+j−1e−(α+β+ξ)y

P(Lν(t) ∈ dy). (60)

Taking the Laplace transform in (60) and using formula (22) we obtain

r̃ν
−1(s) =

1

s
−

+∞

∑
j=1

+∞

∑
m=0

Cm,j

(2m + j − 1)!
sν−1

∫ +∞

0
y2m+j−1e−(α+β+ξ+sν)ydy

and then, integrating

r̃ν
−1(s) =

1

s
−

+∞

∑
j=1

+∞

∑
m=0

Cm,j
sν−1

(α + β + ξ + sν)2m+j
. (61)

Finally, applying the inverse Laplace transform on Eq. (61) and using formula (A2) we complete the✶✸✹

proof.✶✸✺

6. Conclusions✶✸✻

Our work focused on the transient behaviour of a fractional M/M/1 queue with catastrophes,✶✸✼

deriving formulas for the state probabilities, the distribution of the busy period and the distribution of✶✸✽

the time of the first occurrence of a catastrophe. This is a non-Markov generalization of the classical✶✸✾

M/M/1 queue with catastrophes, obtained through a time-change. The introduction of fractional✶✹✵

dynamics in the equations that master the behaviour of the queue led to a sort of transformation of✶✹✶

the time scale. Fractional derivatives are global operators, so the state probabilities preserve memory✶✹✷

of their past, eventually slowing down the entire dynamics. Indeed we can see how Mittag-Leffler✶✹✸

functions take place where in the classical case we expected to see exponentials. However, such✶✹✹

fractional dynamic seems to affect only the transient behaviour, since we have shown in Remark 2 that✶✹✺

the limit behaviour is the same.✶✹✻

The main difficulty that is linked with fractional queues (or in general time-changed queues) is the✶✹✼

fact that one has to deal with non-local derivative operators, such as the Caputo derivative, losing✶✹✽

Markov property. However, fractional dynamics and fractional processes are gaining attention, due to✶✹✾

their wide range of applicability, from physics to finance, from computer science to biology. Moreover,✶✺✵

time-changed processes have formed a thriving field of application in mathematical finance.✶✺✶

Future works will focus on an extension of such results to Ek/M/1 and M/Ek/1 queues, or even to a✶✺✷

generalization of fractional M/M/1 queue to a time-changed M/M/1 queue by using the inverse of✶✺✸

any subordinator.✶✺✹
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Appendix A. Fractional Integrals and Derivatives✶✻✹

Let us recall the definition of fractional integral [19]. Given a function x : [t0, t1] ⊆ R → R its

fractional integral of order ν > 0 in [t0, t] for t0 ≤ t ≤ t1 is given by

t0 I
ν
t x =

1

Γ(ν)

∫ t

t0

(t − τ)ν−1x(τ)dτ.

The Riemann-Liouville fractional derivative operator is defined as

RL
t0

Dν
t =

dm

dtm t0 I
m−ν
t

while the Caputo fractional derivative operator is defined as

C
t0

Dν
t = t0 I

m−ν
t

dm

dtm

whenever m − 1 < ν < m. Obviously such operators are linear. It is interesting to remark that

RL
0 Dν

t 1 =
t−ν

Γ(1 − ν)
, C

0 Dν
t 1 = 0.

Note that for a function x(t), t ≥ 0 and ν ∈ (0, 1), the Caputo fractional derivative is defined as:

C
0 Dν

t x =
1

Γ(1 − ν)

∫ t

0

d

dt
x(t − s)

ds

sν

=RL
0 Dν

t x −
x(0)

Γ(1 − ν)tν
,

where
RL
0 Dν

t x =
1

Γ(1 − ν)

d

dt

∫ t

0
x(t − s)

ds

sν
,

and for its Laplace transform, denoting by x̃(z) the Laplace transform of x,

L[C0 Dν
t x](z) = zν x̃(z)− zν−1x(0). (A1)

Moreover, for ν ∈ (0, 1), a well-posed fractional Cauchy problem with Riemann-Liouville derivatives

is given in the form 



RL
t0

Dν
t x = f (t, x(t)),[

t0 I1−ν
t x

]
|t=t0

= x0,

in which the initial condition is given in terms of fractional integrals, while if we use Caputo derivatives

we have {
C
t0

Dν
t x = f (t, x(t)),

x(t0) = x0,

in which the initial condition is related only with the initial value of the function. For such reason we✶✻✺

will prefer adopting Caputo derivatives as fractional derivatives in this paper.✶✻✻

Finally, let us remark that the definition of fractional integral and derivative can be also considered for✶✻✼

functions x : [t0, t1] ⊆ R → B where B is a Banach space and all the involved integrals are Bochner✶✻✽

integrals ([24]).✶✻✾

Appendix B. Some special functions✶✼✵

We recall the definitions of some special functions we use in such text.✶✼✶
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Gamma funcion✶✼✷

The Gamma function is defined as

Γ(z) :=
∫ ∞

0
tz−1e−tdt.

In particular we have Γ(z + 1) = zΓ(z) and, for z = n ∈ N, Γ(n + 1) = n!.✶✼✸

Modified Bessel function of the first kind✶✼✹

The modified Bessel function ([14]) of the first kind can be defined by its power series expansion

as

Ir(x) =
+∞

∑
m=0

(
x
2

)2m+r

m!Γ(m + r + 1)
.

Mittag-Leffler functions✶✼✺

One-parameter Mittag-Leffler functions ([12]) are defined by their power series expansion as

Eν(z) =
∞

∑
k=0

zk

Γ(νk + 1)
, ν > 0, z ∈ C.

Two-parameters Mittag-Leffler functions are also defined by their power series expansion as

Eν,µ(z) =
∞

∑
k=0

zk

Γ(νk + µ)
, ν > 0, µ > 0, z ∈ C.

Remark that Eν,1(t) = Eν(t).

Generalized Mittag-Leffler functions are defined by their power series expansion as

E
ρ
ν,µ(z) =

+∞

∑
k=0

(ρ)k

Γ(νk + µ)

zk

k!
, ν > 0, µ > 0, ρ > 0, z ∈ C,

where (ρ)k is the Pochhammer symbol

(ρ)k = ρ(ρ + 1)(ρ + 2) · · · (ρ + k − 1).

An alternative way to define the Generalized Mittag-Leffler function is

E
ρ
α,β(z) =

+∞

∑
k=0

zkΓ(ρ + k)

k!Γ(αk + β)Γ(ρ)
, z ∈ C.

Remark also that E1
α,β = Eα,β. Functions with similar series expansions are also involved in the study

of the asymptotic behaviour of some integrals which arise from a Feynman path integral approach to

some financial problems (see, i.e., [10] Section 4).

Recall also the following Laplace transform formula [9]

L[zγ−1Eδ
ν,γ(wzν)](s) =

sνδ−γ

(sν − w)δ
, γ, ν, δ, w ∈ C, ℜ(γ),ℜ(ν),ℜ(δ) > 0, s ∈ C, |wsν| < 1. (A2)

Finally let us remark, for ν ∈ (0, 1), that the Cauchy problem

{
C
0 Dν

t x = λx,

x(0) = x0,
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admits as unique solution x(t) = x0Eν(λtν) ([12], p. 295).✶✼✻
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