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Bootstrapping estimates of stability for clusters, 

observations and model selection 
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Rachael Hageman Blair* 

 

Abstract Clustering is a challenging problem in unsupervised learning. In lieu of a gold 

standard, stability has become a valuable surrogate to performance and robustness. In this 

work, we propose a non-parametric bootstrapping approach to estimating the stability of a 

clustering method, which also captures stability of the individual clusters and observations. 

This flexible framework enables different types of comparisons between clusterings and can 

be used in connection with two if possible bootstrap approaches for stability. The first 

approach, scheme 1, can be used to assess confidence (stability) around clustering from the 

original dataset based on bootstrap replications. A second approach, scheme 2, searches over 

the bootstrap clusterings for an optimally stable partitioning of the data. The two schemes 

accommodate different model assumptions that can be motivated by an investigator's trust 

(or lack thereof) in the original data and additional computational considerations. We propose 

a hierarchical visualization extrapolated from the stability profiles that give insights into the 

separation of groups, and projected visualizations for the inspection of the stability of 

individual operations. 

 

Our approaches show good performance in simulation and on real data. These approaches 

can be implemented using the R package bootcluster that is available on the Comprehensive 

R Archive Network (CRAN). 
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1 Introduction 

Clustering is used to group items in a dataset based on similarity. Generally, the clustering 

problem can be framed as an optimization problem, where the objective is to maximize the 

similarity within a group, and minimize the similarity between groups (Jain et al., 1999). 

However, performance and robustness is difficult to quantify and are very much a function of 

the data set at hand. In lieu of a gold standard, the stability of a particular clustering of a 

dataset can be used as a surrogate for performance and robustness. 

 

Various definitions, applications and estimations of stability have emerged in recent years. 

The overarching aim of stability is to capture how stable the clusterings are over several 

different representations of the data (Von Luxburg, 2009). These data representations are 

derived either through subsetting, cross-validation, data noising or re-sampling, among 

others. Different data representations have the potential to reveal different characterizations 

of stability for a clustering. Recently, Von Luxburg (2009) provided a survey on the use of 

stability for clustering data that emphasizes the sensitivity of the underlying structure to these 

data representations. Stability based on subsampling is an intuitive example of where this 

sensitivity can be readily observed, especially when the subsets are small. Another intuitive 

example is when the stability estimate is generated by adding noise to the data, which can 

easily erode any signal of structure, and give rise to misleading results (Hennig, 2007). Briey, 

we provide a basic overview of approaches to stability estimation for clustering, but refer the 

reader to Von Luxburg (2009) for a more comprehensive survey. 

 

The bootstrap (Efron and Tibshirani, 1994) has been leveraged to connect ensemble 

clustering and cluster stability estimation. Felsenstein (1985) used a non-parametric 

bootstrap (Efron et al., 1996) to infer phylogenetic trees in one of the earliest examples of re-

sampling for various summarizations over an ensemble of dendrograms. Kerr and Churchill 

(2001) proposed a residual bootstrap that shuffles residuals from an analysis of variance 

(ANOVA) model of gene expression data. Clusters from the bootstrap data were compared to 

the original clusterings to assess confidence in the various clusters. This approach is model-

based in the sense that the ANOVA model _t is required to obtain residuals, and also requires 

a suitable experimental design. Dudoit and Fridlyand (2003) propose applications of bagging 

to clustering that frames the unsupervised problem as the supervised classification problem 

of predicting cluster labels. Two bootstrapping schemes were proposed, BagClust1 

determines cluster membership by consensus from a bootstrap and permutation scheme, and 

BagClust2 derives a new dissimilarity matrix based on bootstrapped data that is then used for 

input for another round of clustering (Dudoit and Fridlyand, 2003). In both approaches, 

improvements in accuracy were observed. 

 

Fang and Wang (2012) proposed the use of the non-parametric bootstrap for the estimation 

of the number of clusters, k. The estimation of stability that they propose is a function of 

pairwise comparisons between B bootstrap samples. For each pair of bootstrap samples, the 

original data is projected onto the bootstrap clusterings, and distance between the 

projections is calculated using binary indicators, see Fang and Wang (2012) for details. The 

mapping of the data to the bootstrap clusterings is not explicitly described. For k-means, a 

possibility is to assign membership based on the distance to the closest center, but in 

hierarchical clustering, this may require the use of a pre- defined linkage. Improvements were 



observed over a cross-validation approach proposed by Wang (2010), which overestimates 

the instability of the clustering due to bias arising from the fold assignments. 

 

Clustering over various subsets of the data is another approach to stability estimation. Ben-

Hur et al. (2001) characterize stability through pairwise similarities of clusterings obtained 

from random subsets of the observations. Similarity is based on the Jaccard distance between 

cluster labels for the random subsets. High similarities between observations suggests a 

stable clustering, and the authors demonstrate that this approach is a reliable way to select 

the number of clusters, and to assess the overall lack of structure in the data (Ben-Hur et al., 

2001). 

 

Tibshirani and Walther (2005) proposed a method for estimating the number of clusters by 

re-casting the unsupervised problem into a supervised classification problem, similar in spirit 

to Dudoit and Fridlyand (2003). Framing the problem in this way enables the calculation of 

prediction strength, which quantifies how well a clustering with k groups can be predicted by 

the data. Prediction strength is used for the purpose of model selection. For each k, repeated 

cross-validation is used to form training and test datasets, and prediction strength is 

calculated pairwise for observations in the test data. Specifically, the training and test data is 

clustered separately for a fixed k. The test data is then projected onto the training clustering. 

For example, in the k-means setting, this projection amounts to membership labels based on 

the nearest centroid. For all pairs assigned to the same cluster in the test data, those pairs 

that are also assigned the same cluster (or not) in this projection are deemed to have a stable 

co-membership (or not). For each cluster, the proportion of co-members that stably map 

together when projected onto the training set is then computed, and the prediction strength 

is defined to be the minimum of these proportions. 

 

Within the prediction strength framework, an estimate of prediction strength at the individual 

observation level is also defined (Tibshirani and Walther, 2005). Similar to calculations at the 

cluster level, the estimation of prediction strength at the individual observation level is done 

in a pairwise manner. The estimate of prediction strength for an individual, i, is estimated as 

the proportion of pairs (i; i0) in the test cluster Ak(i) that map to together with i when 

projected onto the training set, is the proportion of pairwise co-memberships for all i0 6= i, 

within the assigned cluster in the test data that stably map together when projected onto the 

training set. In this work, we also emphasize stability at the individual level, but define it as 

an estimate of how stable an individual maps to the same cluster across bootstrap samples. 

 

Hennig (2007) proposed a method to estimate cluster-wise stability through bootstrapping 

and other re-sampling approaches. In this framework, the stability of an original cluster is 

estimated by the mean maximal Jaccard coefficient. The stability measure is specific to the 

clustering of the original data, as the comparisons are made between all of the re-sampled 

clusterings, and the original data clustering. A limitation of this approach is the implicit 

requirement of mapping between the re-sampled and original clusters. Importantly, during 

the re-samplings, it is possible that an original cluster is not detected through the mapping. 

When this occurs, the method simply ignores the re-sampled clusterings for the estimation 

for that cluster. Consequently, this can potentially lead to an overestimation of stability, since 

a cluster that does not consistently emerge during re-samplings is actually an indication of 

instability that is not accounted for. In addition, as a measure of cluster similarity, the maximal 



Jaccard coefficient is not symmetric (although the Jaccard coefficient itself is symmetric). Due 

to asymmetricity, a one-to-one mapping between clusters arising from different clusterings 

is not guaranteed, thus searching for maximum will tend to result in an overestimation. 

 

In this work we propose stability estimates based on the non-parametric boot-strap. Our 

approaches offer several advantages over existing methods for stability estimation. (1) To our 

knowledge, this is the first bootstrapping approach for cluster stability that can guide in the 

determination of the number of clusters and also retains valuable interpretations of stability 

at the level of the cluster and individual observation. (2) Two bootstrapping approaches to 

stability are developed that reflect different model assumptions, which can be motivated by 

an investigator's trust (or lack thereof) in the original data. Specifically, the first approach, 

scheme 1, can be used to assess confidence (stability) around clustering from the original 

dataset based on bootstrap replications. Whereas, a second approach, scheme 2, searches 

over the bootstrap clusterings for an optimally stable partitioning of the data. (3) Both 

bootstrap approaches directly estimate the conditional stability through comparisons 

between clusterings that depend on symmetric measure of cluster similarities. (4) Different 

visualizations are proposed, such as hierarchical visualizations extrapolated from stability 

profiles that reflect separation and stability of inferred clusters and projected visualizations 

for the inspection of individual stability. In this work, we focus on k-means, but the approach 

can be generalized to other clustering methods. The R (https://www.r-project.org/) package, 

bootcluster, is available on the Comprehensive R Archive Network (CRAN) and supports 

bootstrap stability estimation using these approaches. 

 

2 Methods 

In this section, we outline different approaches to estimating cluster stability that are based 

on non-parametric bootstrapping. The objective is to estimate how stable the clustering is (1) 

overall, (2) at the cluster level, and (3) at the individual observation level. This is achieved 

through the estimation of cluster centers for the original data and bootstrapped datasets, the 

projection of the data onto the partitions estimated from the bootstrapped datasets, and the 

comparisons of these mappings. Two bootstrapping schemes are illustrated in Figure 1, which 

differ in the nature of their comparisons. Scheme 1 (Figure 1A) depicts a scenario in which the 

clusterings arising from the bootstrapped datasets are directly compared to the clustering of 

the original data. In scheme 2 (Figure 1B), the clusterings arising from the bootstrapped 

datasets are compared to the clusterings of the original data, and to each other. These 

approaches can be implemented using the R package bootcluster that is available on CRAN. 

 

In the following sections, we propose two approaches that can be used to make the 

comparisons that underly the stability estimates used in scheme 1 & 2 (Figure 1).We define 

naive stability (Section 2.1) as estimates that rely on the crude indicators (0-1) to capture a 

stable mapping, or lack thereof, when the data points are _t to the bootstrapped centers. An 

alternative approach is presented that utilizes the Jaccard index (Section 2.2) to estimate the 

stability in the same basic framework. For simplicity, we develop these approaches for the k-

means algorithm, but the methods are generalizable to other prototype and non-prototype 

methods. More-over, we describe the naive and Jaccard-based formulations within the 

scheme 1 framework, but these formulations are used in connection with both bootstrapping 

schemes, and are both implemented in our applications. 

 



2.1 Bootstrapping estimation of naive stability 

 

In this work, we define naive stability in a straightforward manner. By applying a clustering 

algorithm to a dataset, each observation included is assigned a cluster label. If we have a 

bootstrapped sample, then new cluster assignments will be obtained, which leads to a 

different partition of the feature space. This causes changes in the labels of some 

observations and also in the members of certain clusters. The observations that switch labels 

frequently across bootstrap re-samplings are regarded as unstable. Therefore, the naive 

stability of an observation can be measured by the frequency that it remains in a cluster across 

re-samplings. 

 

This procedure is outlined in Algorithm 1, where X = (X1;X2; : : : ;Xn)T is the sample of size n, 

and Xb is the data set from bth re-sampling. The notation C is used to denote a clustering, 

with Cb as the clustering on the bth re-sampled data. Further, Cb i denotes the set of data 

points in the ith cluster of Cb, while C(Xi) is the set of all data points in the cluster that contains 

Xi. A limitation to the naive approach is that clusters from different re-samplings have to be 

mapped to each other. In our applications, the minimum Euclidean distance between cluster 

centers is used for the mapping. Note that in Algorithm 1 and 2, the number of clusters, k, is 

fixed for the calculation of bootstrapped stability. In practice, this algorithm should be 

implemented several times over a range of k values to estimate the number of clusters. 

 

2.2 Bootstrapping estimation of Jaccard index based stability 

 

For the naive estimation of stability proposed in Algorithm 1, we defined stability at the 

observation level as the probability of an observation consistently being as- signed to the 

same cluster. However, the naive stability estimation of Algorithm 1 requires the mapping 

between centers from different re-samplings. This can be an issue when a cluster is broken 

down into multiple smaller clusters in a re-sampled clustering. This problem can be 

circumvented by using the change in pairwise co-membership. 

 

 
 

To motivate the use of the Jaccard coffcient, let us first consider the Hamming distance 

between clusterings, which are based on such pair-wise relationships. Let C and D be two 

clustering partitions of X, which is distributed as P. We use the notation xi _C xj , when xi and 



xj belong to the same cluster of C, and xi _C xj otherwise. The Hamming clustering distance 

between two clusterings, C and D, is de_ned as: 

 
where  is the logical XOR operation. Along the same lines, the similarity between 

two clusterings can be de_ned as: 

 

 
 

 

which is constructed based on agreements on each co-membership between two 

clusterings, C and D. Let the similarity at the individual level as: 

 
Thus, the overall similarity can be decomposed in terms of each observation: 

 

 
where, Sim(xi; C;D), can be expressed as: 
 

 
Upon inspection of Sim (xi; C;D), it is immediately clear that the summation j6=i I(xi _C xj)I(xi _D xj) is expected 

to be large and dominating, which will tend to send Sim(xi; C;D) ! 1. Ignoring this part, Sim(xi; C;D) can be 

redefined as: 

 

The definition of overall similarity remains, except that the observation-wise similarity Sim(xi; C;D) is replaced 
by A(xi; C;D) in Equation(1): 
 



 
Let C0; : : : ; CB be the clusterings obtained from original data and B re-sampled data sets, then we define 
conditional observation-wise and overall stability estimated as: 
 

 
 
and unconditional overall stability: 
 

 
 

Notably, unconditional cluster-wise stability cannot be defined. Moreover, although the 

unconditional overall stability can be defined, we emphasize that it is generally not useful 

because it does not reflect the feature of a specific clustering. Therefore, all the stability 

estimates in this study are conditional on a reference clustering. By this definition, we propose 

the Jaccard index based stability, and the bootstrapping approach for estimation in Algorithm 

2. This algorithm proceeds similarly to Algorithm 1, but with some key differences. For each 

bootstrapped dataset, k-means is applied to obtain estimates of the centers mb. Note that 

each observation, xi, is then mapped to the closest center using Euclidean distance. Finally, 

the Jaccard coefficient is computed between the bootstrapped and reference clusterings. 

 

In these approaches, the fact that the bootstrapped datasets may contain repeated 

observations, and may omit some observations, is not problematic. This is because the 

bootstrapped dataset is used to update the mean estimates (centroids) in each iteration of k-

means. If multiple instances occur in a data set, then within k-means, these multiple instances 

will be assigned the same cluster membership and used to update the means accordingly. On 

the other hand, if an observation does not occur, it will not enter into the clustering of the 

bootstrapped sample. However, once the k-means clustering has been carried out until 

convergence on the bootstrapped data, the means from the clustering are used to map each 

observation in the dataset, xi, to a cluster (xi ! mb) in order to obtain its membership, Cb(x), 

which is based on the minimum distance to the mean centers. This process can be understood 

in the first couple of lines within the for loops in Algorithm 1 

and 2. 

 



 
 

2.3 Properties of Jaccard-based observation-wise stability estimation 

 

We propose that A(xi; C;D) is a valid measure of observation-wise clustering similarity. Specific 

information is quantified from A(xi; C;D) about xi, and its value ranges from 0 to 1. When C(xi) 

and D(xi) have exactly the same members, we have A(xi; C;D) = 1, meaning clusterings C and 

D are identical with respect to xi, although C and D can be very different with respect to other 

observations. When C(xi) and D(xi) have completely different members except for xi, then 

A(xi; C;D) = 1 jC(xi)[D(xi)j ! 0 as jC(xi) [ D(xi)j ! 1. On the other hand, this is not true for Sim(xi; 

C;D). For example, if we have n = 100, and jC(xi)j = jD(xi)j = 10, then in the above case we will 

have A(xi; C;D) = 1=20 = 0:05, which is close to 0, while Sim(xi; C;D) = (1 + 80)=100 = 0:81. 

Inherently, Sim(xi; C;D) is very sensitive to both sample and cluster sizes, and the 

interpretation of simiPlarity and stability would vary among different data sets. Dropping the 

term j6=i I(xi _C xj)I(xi _D xj) would have the effect of scaling the support of A(xi; C;D) to 

approximately to (0; 1], and thus maintain consistent interpretation of the similarity and 

stability across data sets. 

 

The measure, A(xi; C;D) = A(xi;D; C), is a symmetric measure of similarity between C and D 

with respect to xi. This property justifies the comparison of a fixed clustering with all other 

clusterings at the observation level, by which the conditional stability is defined. We propose 

that the conditional stability is important in that it retains the specific information for the 

reference clustering. We illustrate this concept with a simple example. Let C1; C2; : : : C101 

be a set of 101 clusterings, based on the original data clustering and re-sampled clusterings. 

Suppose that C1(xi) \ Cj(xi) = fxig; j = 2; 3; : : : ; 101, and C2(xi) = _ _ _ = C101(xi). In addition, 

we assume jCj(xi)j = 10; j = 1; 2; :::; 101. The observation-wise clustering similarity is calculated 

as, A(xi; C1; Cj) _ 0:05; j = 2; : : : 101, and A(xi; Cj ; Ck) = 1, for 2 _ j 6= k _ 101. Furthermore, it 

can be shown that the conditional stability estimate (Equation 4) is Sobs(xi; C1) _ 0:05, while 

Sobs(xi; Cj) _ 0:99. The interpretation is that, the clustering of xi in C1 is unstable, but are 

stable in Cj ; j = 2; 3; : : : ; 101. However, if the unconditional overall stability (Equation 5) is 

used, then the estimates will be erroneously concluded that the results are generally stable, 

regardless of the clustering it refers to. 

 



2.4 Bootstrapped estimate description in mathematical terms 

 

The stability estimates arising from bootstrap schemes 1 and 2 (Figure 1) can be expressed as 

conditional and unconditional expectations, respectively. Let Xi be a random variable such 

that Xi _ F(x) and X = (X1;X2; : : : ;Xn)T , while Y is another independent sample drawn from 

the same distribution. Let CX denote the partition of sample space that corresponds to a 

sample X, and CX(x) denote the set of all points in sample space that are within the same 

partition of x. Then, wedefine the similarity between two partitions CX and CY with respect to 
x as: 

 
and the overall similarity as: 

 

A(CX; CY) = Ex(A(CX; CY j x)): 

 

The overall stability with respect to a sample X, which is estimated by scheme 1 (Figure 1A), 

can be defined as: 

 

Sover(CX) = EXY(A(CX; CY) j CX); 

 

where EXY takes the expectation over both X and Y. On the other hand, the unconditioned 

stability estimated by scheme 2 (Figure 1B) can be expressed as: 

 

Sover = EXY(A(CX; CY)): 

 

The individual stability is more meaningful in the conditioned scheme 2, and can be de_ned 

as: 

Sobs (x j CX) = E (A(CX; CY j x) j CX) : 

 

The cluster-wise stability is defined as the integration of Sobs(x j CX) within a corresponding 

partition with respect to x. 

 

2.5 Estimation of k 

 

The stability estimates can be used for selecting the number of clusters, k. For this purpose, 

the bootstrapping schemes should be carried out over a range of k values, resulting in a 

stability profile. However, instead of directly using the overall stability, we calculate cluster-

wise mean Jaccard index during each re-sampling, record the minimum, and then average the 

minima across the B re-samplings. This measure is defined based on observation-wise 

similarity, such that it will have a large drop when ^k is greater than the true number of 

clusters k, and be independent of the value k. The overall stability does not always have such 

desirable properties. For example, when ^k = k+1, there will always be at least one group 

randomly split into at least two clusters, leading to a drop in stability. However, when k is 

large, this drop may be washed out in the average of stability, which is calculated over 

a large number of clusters. In contrast, the proposed measure, denoted by Smin, only records 

the minimal cluster-wise similarity from each re-sampling, such that the effects of random 



splitting of groups will stand out, regardless of k. A similar minimum estimate is also utilized 

in the prediction strength method (Tibshirani and Walther, 2005). 

 

2.6 Simulations 

 

A series of simulations are used to assess and benchmark the performance of the proposed 

bootstrapping stability methods. Our first simulation sets out to examine the consequences 

from subsetting the data for stability estimation compared to the re-sampling bootstrap 

approach. We examined scheme 1 using a naive for mutation given in Algorithm 1 to compare 

estimates arising from subsets of the data of dwindling sizes. The naïve formulation given in 

Algorithm 1 allows for the direct comparison of the clustering results between the re-

sampling and subsetting approach. For visual purposes, two clusters were simulated in two 

dimensions, the clusters are standard normal variables with (50; 50) observations per group, 

centered at (0; 0) and (2; 0), respectively. 

 

Following Tibshirani and Walther (2005), we also simulated six scenarios to examine the 

performance with respect to selection of the number of clusters, k. The proposed bootstrap 

schemes were tested, along with the pairwise bootstrap pro- posed by Fang and Wang (2012) 

and prediction strength (Tibshirani and Walther, 2005). The pairwise bootstrap and prediction 

strength were implemented in the R programming language (https://www.r-project.org) 

using the package fpc. Each of the following simulations was performed 50 times. 

 

1. Null model: A null model simulation was performed using 200 data points uniformly 

distributed over the unit square in ten dimensions. 

2. Three-cluster model: Three clusters were simulated in two dimensions: the clusters are 

standard normal variables with (25; 25; 50) observations per group, centered at (0; 0), (0; 5) 

and (5;3). 

3. Random four clusters in three dimensions: Four clusters were randomly chosen to have 25 

or 50 multivariate normal observations with the covariance matrix as the identity matrix, I, 

and cluster centers randomly chosen from N(0; 5 _ I). Simulations with clusters having 

minimum distance less than 1:0 units between them were discarded. 

4. Random four clusters in ten dimensions: Four clusters were randomly chosen to have 25 or 

50 multivariate normal observations with the covariance matrix as the identity matrix, I, and 

cluster centers randomly chosen from N(0; 1:9 _ I). Simulations with clusters having minimum 

distance less than 1:0 units between them were discarded. In this and the previous scenario, 

the settings are such that about one-half of the random realizations were discarded. 

5. Two elongated clusters: Two elongated clusters were simulated in three dimensions. Each 

cluster is generated as follows: set x1 = x2 = x3 = t with taking on 100 equally spaced values 

from 0:5 to 0:5 with Gaussian noise with standard deviation 0:1 is then added to each 

feature. A second cluster is generated in the same way, except that the value 10 is then added 

to each feature. The result is two elongated clusters, stretching out along the main diagonal 

of a three-dimensional cube. 

6. Two close elongated clusters: Two close and elongated clusters were simulated in three 

dimensions. As in simulation five, a second cluster was generated in the same way as the first 

cluster. The value of 1:0 is then added to the first feature only. 

 

2.7 Applications to real data 



 

The bootstrap approaches were applied to four different datasets that range in terms of 

complexity. Each dataset can be found in the UCI machine learning repository (Lichman, 

2013). The iris and wine data are well-studied for classification and clustering. The iris data 

has 150 observations and four features. The wine data has 178 observations and 13 features. 

Iris and wine each have three classes that are not used for the clustering, but rather in a post 

hoc manner to assess performance. 

 

The NCI60 microarray data set contains 64 samples representing 12 different types of cancer 

and 6; 830 gene expression features (Ross et al., 2000). The first two principal components 

(PCs) were used for clustering. The image segmentation data set was derived by randomly 

sampling from a database of 7 outdoor images (Lichman, 2013). The images were hand-

segmented to create a classification for every pixel. The total of 2; 100 instances 

(observations) consist of 7 classes, with 300 observations per class. Although 19 features were 

present, six features were excluded due to redundancy or being uninformative. As with the 

iris and wine data sets, the class labels are not used in the clustering. To our knowledge, the 

image segmentation data has not been studied for clustering, whereas the other datasets 

have been. Linear discriminant analysis was applied to the image data in order to obtain a 

general assessment of the separability of the different classes of images (Hastie et al., 2001). 

 

For the real data examples, we constructed a hierarchical visualization of the clusters derived 

from the stability profile. The hierarchy is derived by first selecting the largest k with stability 

Smin above 0:9. These k's correspond to well-separated clusters, or the ones that can be easily 

detected by the algorithm. The second largest k with the stability Smin above 0:8 but below 

0:9 is selected to represent finer cluster structures that are more challenging to detect (for 

example, more overlapped clusters). 

 

3 Results 

Stability estimation via repetitive subsetting is performed by randomly drawing a subset of 

observations without replacement multiple times (Ben-Hur et al., 2001; Tibshirani and 

Walther, 2005). Our first simulation was motivated by the fact that stability for prototype 

methods is closely related to the variability of centroids, which in turn is a function of sample 

sizes. Subsetting leads to a smaller sample size, and subsequently to an underestimation of 

stability and larger variance in estimates. Due to differences in defining clustering distances, 

stability or other characterizations of a clustering, estimates from different approaches are 

not directly comparable. For example, prediction strength (Tibshirani and Walther, 2005) and 

Boot2012 (Fang and Wang, 2012) rely on agreements of co-memberships, while Ben-Hur et 

al. (2001) uses Jaccard distance. However, all of them depend on the changes in item 

memberships. We examined the consistency of the predicted membership of a grid of data 

points in sample space between bootstrap resampling and repetitive subsetting in a balanced 

2-cluster model (Figure 2). In this simple model, the exact mapping between resampled 

clusters and original ones is known, which enables the determination of membership switch. 

Figure 2A-C depicts the frequency of a point retaining its original membership on a gray scale. 

The light gray areas have low frequencies of membership changes, while those in darker gray 

areas tend to change membership more often. The differences between bootstrap 

resampling (Figure 2A) and repetitive subsetting with 1=2 the data (Figure 2B) are subtle, but 

the dark gray area (unstable region) for repetitive subsetting with 1=2 the data is larger than 



that of the bootstrapping. Naturally, the effect is much more striking when repetitive 

subsetting with 1=4 of the data (Figure 2C). The bias and standard errors were also found to 

be higher for the repetitive subsetting (Figure 2D-E). 

 

Bootstrapping stability based on the Jaccard index for the determination of the number of 

clusters, k, was also examined. Table 1 shows the performance of three methods for the 

selection of k for six classic simulation scenarios that were simulated 50 times and estimated 

using the prediction strength approach (Pred str) (Tibshirani and Walther, 2005), the pairwise 

bootstrap data comparisons method (Boot2012) (Fang and Wang, 2012), and our proposed 

Jaccard-based bootstrap estimate of stability using scheme 1 (Boot-min-S1) and scheme 2 

(Boot-min-S2). Results indicate that our method is comparable, and in some scenarios 

outperforms prediction strength, while generally better than Boot2012. The stability profiles 

for difference settings are shown in Figure 3. The simulation results also support our 

argument that Boot2012 usually has poor performance for asymmetric settings 

(three-cluster model and random four-cluster model) due to its criteria of maximum stability. 

Furthermore, this criteria also makes it impossible for Boot2012 to detect a null model. The 

difference between Boot-min-S1 and Boot-min-S2 is often subtle (Table 1), with Boot-min-S2 

identical or slightly superior in all settings except for the null model estimation. With the 

exception of Boot2012, the errors in the selection of k are rather conservative in the sense 

that they tend to underestimate k, rather than overestimate. The proposed bootstrapping 

schemes clearly outperform both Boot2012 and Pred Str for the two close elongated cluster 

simulations (Table 1). 

 

Boot-min-S1 and Boot-min-S2 were applied to the iris data, which has three classes. Boot-

min-S2 suggests the correct number of clusters (k = 3) (Figure 4A), whereas Boot-min-S1 

selects k = 2, with only a marginal difference in stability from Boot-min-S2. Comparatively, 

both prediction strength and Boot2012 imply two clusters due to the severe overlapping 

between species Virginica and Versi color in feature space (data not shown). This further 

illustrates the advantage of our method in dealing with asymmetrically distributed and 

overlapping clusters. 

 

The individual stability plot includes three categories of stability, high (> 0:9), moderate (0:8 

 0:9) and low (< 0:8) (Figure 4C). The stability of the observa- tions for Boot-min-S2 (k = 3) 

naturally reveals more unstable points towards the boundaries of the clusters. For the iris 

data, we also considered two different representations of the data, one based on the first two 

PCs, and another using only sepal width and length. Visualizations of individual stability 

suggest that the less stable clusters (Supplemental Figure 1E) contain a higher proportion of 

unstable points (Supplemental Figure 1 C-D), as expected, which is a trend we will see in the 

other datasets. 

 

With a pairwise distance, the clustering results can be projected into a clustering space using 

multi-dimensional scaling (MDS), where each clustering is represented as a point, and the 

clustering space can be visualized to observe the regions of high (black) and low (white) 

density (Figure 4E). Note that Equation (3) provides a Jaccard index based similarity that is a 

symmetric measure for each pair of the clusterings, A(Ci; Cj ), where 0 _ i; j _ B. Therefore, the 

distance between the clusterings can be de_ned as 1  A(Ci; Cj ). 

 



The three classes in the wine data are approximately Gaussian distributed. Pred str, Boot2012, 

Boot-min-S1, and Boot-min-S2, all correctly indicate three clusters. Figure 4B shows the 

profile across different values of k for Boot-min-S1 and Boot-min-S2, respectively. The 

individual observation stability is viewed on PC axes (Figure 4D), although the clustering was 

done using all 13 features. The instabilities are naturally occurring at the boundaries, as these 

observations are more likely to change labels during repetitive re-sampling from the 

population. On the contrary, points in well separated clusters generally have higher stability 

levels. Figure 4F shows the re-sampled clusters using MDS. The clusterings selected by scheme 

2 generally locate at the center of the points. Analogous to the minimization of average 

Euclidean distances by sample mean, scheme 2 can be viewed as an approach to obtaining an 

average of the bootstrapped clusterings, or a version of bagging. 

 

The first two PCs of the NCI data were used to cluster the cancer samples. Application of the 

Boot-min-S2 method revealed three clusters (Figure 5A-B). Prediction strength (Tibshirani and 

Walther, 2005) indicated no cluster structure (1 cluster), which may be due in part to the 

smaller sample size and heterogeneity of the tumor samples. The effect of subsetting on 

exaggerating the variability of cluster centers is more severe for a small data set. Boot2012 

(Fang and Wang, 2012) suggests _ 20 clusters. Figure 5C-E indicate that all melanoma samples 

cluster together (Cluster 3) with high stability, while the samples at the boundary of Cluster 2 

and 3 are less stable. The cluster assignments tend to keep samples from the same cancer 

together, with the exception of breast which is almost evenly spread over the three clusters 

(Figure 5E). Examination of individual bootstrap samples (Supplemental Figure 3) reveals 

known challenges for the k-means algorithm due to the disparity in cluster shape, specifically 

elongation and imbalance between groups. Notably, the NCI microarray data does not show 

any clear cluster structure if the genes are used instead of a PCs. In this case, both prediction 

strength and Boot-min-S2 again indicate k = 1, and Boot2012 suggests k _ 20. 

 

The image segmentation dataset consists of overlapping features and a larger number of 

classes (seven). The stability analysis suggests four clusters by a criteria of 0:9 (Figure 6A). This 

threshold is very stringent, and is more suitable for better separated cases, as was seen in the 

simulation settings. If we relax it to 0:8 to allow larger extent of overlap, then six clusters will 

be detected (Figure 6A). Figure 6B shows the clustering result in a PC space. It has been 

reported that the k-means clustering may not be optimal for image dataset, because even 

when the true number of classes is used (k = 7), the agreement between cluster and class 

labels is still low (Falasconi et al., 2010). This is also apparent in our clustering result (Figure 

6E) Individual observation stability (Figure 6C) and cluster stability (Figure 6D) indicates that 

clusters 5 and 6 have highest stability, which corresponds to a 

large proportion of sky and grass samples (Figure 6E). Visualizing these points, it becomes 

more apparent that the stability of a cluster depends on the proportion of unstable points 

and the degree of their instability. The least stable cluster (cluster 1 in Figure 6B) is comprised 

of nearly all points in a moderate stability range, it is thus clear that the stability of this cluster 

would be in the moderate range (_ 0:81). Clusters 2-4 also have lower stabilities, and pairs 

(Clusters 1 and 3, and Clusters 2 and 4), are more similar (Figure 6E). This may be due to the 

fact that these classes are less separable. To further investigate this, we performed linear 

discriminant analysis and found that cement, foliage and window are poorly classified when 

compared to sky and grass (Supplemental Table 1). 

 



4 Discussion 

 

The stability of a clustering captures the uncertainty of groupings and has been widely used 

to characterize the results, primarily in the context of model selection. Stability has been 

defined in a variety of ways that derive from different data representations such as 

bootstrapping, subsetting, or cross-validation. In this work, we have proposed two schemes 

for estimating stability via non-parametric bootstrap. A major advantage of both schemes is 

that stability can be estimated overall, as well as at the cluster and individual observation 

levels, which offers deeper insights into cluster structure and enables higher flexibility in 

model selection (e.g., Smin estimation). Moreover, because of the symmetric measure of 

observation-wise clustering similarity, it becomes possible to condition all levels of stability 

on a reference clustering. Therefore, all stability-related results are with respect to the 

reference. 

 

The difference between the two schemes for stability estimation is the clusterings that are 

compared. In scheme 1, the original data clustering is trusted in the sense that the stability is 

conditional on the inferred clusters from the original data. This scheme mimics classical 

applications of the bootstrap that aim to assess confidence of an estimate (Efron et al., 1996). 

However, in practice this may be not be ideal for noisy data. In scheme 2, the clustering of 

the original data is not trusted to the same degree. On the contrary, the data is bootstrapped 

to find the most representative clusters, which is determined through the pairwise 

comparisons of bootstrapped clusterings. Additional factors may play into deciding between 

scheme 1 and 2. From the point of view of stability estimates, scheme 2 will always produce 

more stable clusters, as it selects the most optimal from the exhaustive set of pairwise 

companions between clusterings. However, this requires massive computation. For model 

selection, scheme 2 will also always capture the overall stability calculated with scheme 1 by 

design. However, we hypothesize that there will be additional bias' in the stability estimates 

at the cluster and individual level using scheme 2. An area of future research will assess the 

utility of these approaches with out of bag estimates of stability to capture the generalization 

and predictive capabilities of clustering method to assign group membership to new samples 

(Breiman, 1996). 

 

Within the bootstrapping schemes, the comparison between clustering can be made via naive 

or Jaccard-based estimates of stability. These have relatively similar formulations. However, 

the ways in which they compare clustering capture different features of the stability. The 

naive approach uses 0-1 indicators to record whether an observation changes cluster 

membership, and it relies on the mapping between clusters from different clustering results. 

In the case of k-means, this can be achieved through the minimal Euclidean distance between 

centroids. An important limitation of the naive approach is with respect to mapping and the 

inaccuracies that can arise when the clusters are nested, e.g., a cluster is broken into two 

smaller clusters in the bootstrapped clustering of the data. This issue arises because the 

similarity between clusterings is asymmetric for naive stability estimates. These can be 

avoided by tracking the changes in co-memberships be- tween different clusterings, as in Ben-

Hur et al. (2001); Tibshirani and Walther (2005), among others. Our implementation of 

Jaccard-based stability is motivated by the idea of monitoring changes of co-memberships, 

and reflects our confidence in a clustering at various levels of the method, clusters, and 

individual samples. 



 

A limitation of our approaches is the need to set a threshold for estimating k. In practice, a 

threshold of 0:9 works well when the clusters are well separated or mildly overlapped 

(Supplemental Figure 4). In our real data applications, when the boundaries are less clear, it 

is advantageous to take a more liberal threshold of 0:8. However, stability ranges and profiles 

may vary due to different characteristics of the data. In application, we strongly suggest a 

coupling of the stability profiles with a visualization of the hierarchical organization via a 

dendrogram, which may provide insights into the separations (or lack thereof) of a complex 

feature space. Taken together with the stability estimates of the individual clusters and 

samples, additional insight can be gained for the selection of k. Note that prediction strength 

(Tibshirani and Walther, 2005), also requires a similar form of thresholding for model 

selection. In fact, the same thresholds, 0:9 and 0:8, are used in their 

examples. 

 

In terms of comparisons, our methods are closest to the bootstrapping approach described 

in Fang and Wang (2012). The performance differences between our method and Boot2012 

is due in part to the underlying definitions of stability and the distinct criteria for determining 

k. Boot2012 does not require thresholding, but suffers from other drawbacks. In our 

approach, we define stability at the observation level, which provides higher flexibility on the 

criteria. In particular, it enables estimation of Smin and the usage of a criteria similar to the 

prediction strength approach (Tibshirani and Walther, 2005). On the other hand, the usage of 

maximum stability as criteria for estimating k in Boot2012 makes it impossible to detect null 

structure, as the stability will always be 1 when ^k = 1. Such criteria also tends to be 

conservative when the data structure is asymmetric (Von Luxburg, 2009). This can be 

overcome by using other criteria such as thresholding. However, as discussed in Section 2.5, 

the change in overall stability when ^k > k depends on sample size and the drop in overall 

stability can be washed out in averaging, which may pose challenges in model selection. The 

definition of Boot2012 stability by using an overall measure precludes its usage of a threshold 

criteria. 

 

The prediction strength approach can provide an estimate for the individual observation 

(Tibshirani and Walther, 2005). However, due to repeated k-fold cross validation, these 

estimate may be inaccurate. For example, in the case of k-means, the feature space is 

partitioned according to the minimum distance of a point to cluster centers. Therefore, there 

are two factors affecting the individual stability: location of true cluster centers and variation 

of the estimates for the centers. The variation of an estimator is usually a function of sample 

sizes. However, by only sampling a part from the original sample, as is done repeatedly in 

prediction strength, the variation of the estimates for centers are expected to be over-

estimated, and result in an under-estimation in stability. This is not an issue for prediction 

strength when used for the selection of the number of clusters, k, because it takes the 

minimum (least stable cluster) as the conservative prediction strength estimate. However, at 

the individual level, this is not a possibility. We therefore believe that our approach offers less 

bias with respect to stability estimation of an individual observation, although investigation 

through a controlled simulation would be challenging. Notably, if we view the prediction 

strength as a surrogate for stability, then the measure on the similarity between two 

clusterings is asymmetric, which precludes the definition of conditional stability as in this 

study. 



 

Hennig (2007) proposed an approach to estimate cluster-wise stability through using mean 

maximal Jaccard coffcient. However, the estimation can be inaccurate, because it implicitly 

requires mapping between re-sampled and original clusters, and as discussed, the maximal 

Jaccard coffcient as a cluster-wise similarity measure is asymmetric. Also, it does not provide 

any information of the stability of individual observation. On the other hand, our approach 

does not require this re-mapping and uses a symmetric measure of similarity. Moreover, the 

exibility of our approach enables the user to calculate stability with respect to the initial data 

clustering, as in Hennig (2007), but also enables a search over the bootstrap replicates for a 

more likely clustering (scheme 2). 

 

In this work, we focus on k-means for simplicity. However, the methods described can be 

generalized to other clustering methods. In the case of k-means, observations are mapped to 

the prototypes (estimated means from bootstrappeddata b) xi ! mb estimated to obtain 

bootstrapped membership Cb(xi). Alternative methods can be used as long as the mappings 

are well-dined, e.g., linkage in hierarchical clustering. In fact, the bootstrap can be used as a 

means to bench-mark and select the best suited clustering methods for a particular data set 

via the overall stability estimates. An area of future research is to combine results across 

different clustering methods in an ensemble fashion. A hypothesis is that different methods 

capture different features of the population better than others, combinations across methods 

may improved cluster assignment if coupled or weighted by stability estimates. 

 

In conclusion, the stability of a clustering offers insights into the quality of a method and 

clustering for a dataset. We have developed novel methods for stability estimates based on 

the non-parametric bootstrap. Our approaches perform well in the selection of the number 

of clusters, but also offer an additional layer of model interpretation at the cluster and 

individual level. The two proposed bootstrapping schemes provide stability estimates that 

react different forms of uncertainty in the data, which may reflect an investigator's lack of 

trust in the original data clustering and the data itself. Visual interpretations of stability have 

been proposed to complement the estimates and guide the investigator in assessing the 

results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Tables 

Table 1 Performance for identifying the number of clusters, k, for six different simulations of 

50 datasets each. Results are shown for prediction strength (pred str), bootstrapping 

proposed by Fang et al. (Boot2012), and bootstrapping scheme 1 (Boot-min-S1) and 2 (Boot-

min-S2). The asterisk * indicates the true number of clusters. 

 

 

 
 

 

 



Figure Legends 

Figure 1: Schematics for bootstrapping schemes for estimating clustering stability. (A) Clusters 

are estimated from the data, C0. Bootstrap data sets are sampled from the data with 

replacement (B1; : : : ;Bp) and clustered (C1; : : : ;Cp). The bootstrap clusterings are compared 

only to the original clustering of the data, C_ 0, using a naive 0-1 approach to membership, or 

a Jaccard coefficient. (B) Similar to scheme A, clusters are estimated from the data and 

bootstrapped datasets. However, in addition to comparing the original data clustering to the 

bootstrapped clusterings, each of the bootstrapped clusterings is compared with each other, 

and the original data clustering. 

 

Figure 2: Simulation of a simple balanced 2-cluster model that illustrates the bias and 

standard error captured by the naive bootstrapped stability and repeated subsetting stability 

approach. Heatmap depiction of frequencies of data points retaining their original 

memberships for (A) bootstrap resampling, (B) 1/2 sub-setting (middle), and (C) 1/4 

subsetting (right). Blue is unstable and red is stable. The (D) bias and (E) standard errors of 

naive stability for bootstrap resampling and subsetting. 

 

Figure 3: Stability profiles based on minimal cluster similarity from each resampling (Smin) for 

the different simulation experiments estimated via Jaccard based bootstrapping. For each 

simulated scenario, 50 simulations were performed across k = 1 : : : 7 using scheme 2. The 

vertical lines indicate the true cluster numbers and horizontal lines indicate a threshold 

criteria of 0:9 Simulation scenarios are for a (A) null model, (B) three-cluster model, (C) four 

clusters in three dimensions, (D) four clusters in ten dimensions, (E) two elongated clusters, 

and (F)two elongated close clusters. 

 

Figure 4: Results for the iris and wine data. Stability profiles based on minimal cluster 

similarity from each re-sampling (Smin) for the two bootstrapping schemes for the (A) iris and 

(B) wine data. Individual stability for (C) iris and (D) wine are shown for stable (> 0:9), 

moderately stable (0:8  0:9) and unstable (< 0:8) points. Note that the stability is visualized 

on PC axis, although the clustering and stability estimation was performed using the entire 

datasets. MDS representation of the results for (E) iris and (F) wine data that is based on the 

symmetric distance measure for each pair of clusterings arising from bootstrapped samples. 

The density plots are constructed according to the Jaccard index-based distance between 

resampled cluster labels. The asterisk indicates the final clustering result from scheme 2, 

which resides near the center of the cloud, which may be interpreted as an average 

representation of the clusterings. 

 

Figure 5: Results of the NCI dataset clustering. (A) Stability profile based on minimal cluster 

similarity from each re-sampling (Smin) for the NCI dataset. (B) Inferred cluster assignment 

from stability analysis. (C) Individual stability is shown for stable (> 0:9), moderately stable 

(0:8  0:9) and unstable (< 0:8) points. (D) Visual hierarchy depicts the three clusters that are 

well separated and their memberships. The cluster specific stability is indicated. 

 

Figure 6: Results of the image dataset clustering. (A) Stability profile based on minimal cluster 

similarity from each re-sampling (Smin) for the image dataset. (B) Inferred cluster assignment 

from stability analysis. (C) Individual stability is shown for stable (> 0:9), moderately stable 

(0:80:9) and unstable (< 0:8) points. 



(D) Stability of the inferred clusters. (E) Two-layer hierarchy constructed from the stability 

profile. The hierarchy reveals the data contains four well-separated clusters, while two among 

them can be further partitioned into two less separable ones (red dashed clades), 

respectively. The cluster specific stability is indicated. 
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