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Abstract
In acute myeloid leukemia (AML), risk stratification based on cytogenetics and mutation profiling is essential but
remains insufficient to select the optimal therapy. Accurate biomarkers are needed to improve prognostic assessment.
We analyzed RNA sequencing and survival data of 430 AML patients and identified HMGA2 as a novel prognostic
marker. We validated a quantitative PCR test to study the association of HMGA2 expression with clinical outcomes in
358 AML samples. In this training cohort, HMGA2 was highly expressed in 22.3% of AML, mostly in patients with
intermediate or adverse cytogenetics. High expression levels of HMGA2 (H+ ) were associated with a lower frequency
of complete remission (58.8% vs 83.4%, P < 0.001), worse 3-year overall survival (OS, 13.2% vs 43.5%, P < 0.001) and
relapse-free survival (RFS, 10.8% vs 44.2%, P < 0.001). A positive HMGA2 test also identified a subgroup of patients
unresponsive to standard treatments. Multivariable analyses showed that H+was independently associated with
significantly worse OS and RFS, including in the intermediate cytogenetic risk category. These associations were
confirmed in a validation cohort of 260 patient samples from the UK NCRI AML17 trial. The HMGA2 test could be
implemented in clinical trials developing novel therapeutic strategies for high-risk AML.

Introduction
In adult acute myeloid leukemia (AML), clinical out-

come is predicted by age, cytogenetics and specific gene
mutations.1–5 In the recent European LeukemiaNet (ELN)
guidelines for AML genetic testing, screening for muta-
tions in NPM1, CEBPA, RUNX1, FLT3, TP53, and ASXL1
genes in addition to chromosomal anomalies is recom-
mended.1 It is now well accepted that the genetic and
cytogenetic risk stratification guides AML consolidation

therapy: patients in a favorable risk category are treated
with conventional consolidation chemotherapy, whereas
adverse-risk patients are usually referred for allogeneic
hematopoietic stem cell transplantation (allo-HSCT), a
procedure carrying an inherent mortality rate surpassing
15%.6 However, the ideal consolidation therapy remains
unclear for up to 40% of AML patients classified in the
intermediate-risk category, hence the need to improve
prognostic assessment in this patient subgroup.1 Likewise,
identification of possible long-term survivors in the
adverse-risk group represents another clinical challenge.
Gene expression signatures, mostly derived from

microarray studies, have been evaluated as a means to
further improve AML risk stratification.7–14 Although
several markers have been identified, they have not been
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widely adopted because of technical challenges in imple-
menting large gene signatures in clinical settings. Global
RNA-sequencing technologies, which are more accurate
in estimating gene expression levels than microarray
studies,15 have now been applied to a few large AML
cohorts including that of The Cancer Genome Atlas
(TCGA, n= 179)16 and Leucegene (n= 430).17–21 These
data sets provide new opportunities to determine whether
candidate gene expression levels can complement cur-
rently accepted prognostic tests.
In this study, we have explored the Leucegene data set

using bioinformatic tools to identify genes with bimodal
expression patterns that correlate with patient survival.
The two best candidate genes, High Mobility Group AT-
Hook 2 (HMGA2) and Pro-Apoptotic WT1 Regulator
(PAWR) were evaluated in the training cohort but only
HMGA2 was validated in the independent cohort. We
present the development and inter-laboratory validation
of a RT-qPCR HMGA2 clinical test and demonstrate its
utility to refine AML risk stratification.

Patients, materials, and methods
Study design, patients, and AML sample characteristics
This study is part of the Leucegene project and was

approved by the Research Ethics Boards of Université de
Montréal and Maisonneuve-Rosemont Hospital. Diag-
nostic AML samples and clinical data were collected with
informed consent from patients between 2002 and 2014 at
nine hospitals participating in the Banque de cellules
leucémiques du Québec program (BCLQ, bclq.org). The
Leucegene full cohort of 430 RNA-sequenced samples
(Fig. 1) was used for the discovery of new candidate
prognostic markers. RNA-sequencing data are available
separately,17–21 #GSE49642, #GSE52656, #GSE62190,
#GSE66917, #GSE67039. The training cohort includes
263 de novo AML patients treated with intensive regimens
sequenced in the Leucegene project and 95 additional
BCLQ specimens similarly selected, which were not
sequenced (Fig. 1). The median follow-up was 6.0 years.
Alive patients were censored at their last follow-up (May
to August 2015). Four additional patients were censored
owing to loss to follow-up. Definitions of complete
remission (CR), overall survival (OS), relapse-free survival
(RFS) and cumulative incidence of relapse (CIR) followed
ELN recommendations.1 Description of clinical char-
acteristics and treatment protocols are provided in the
Supplementary Information (Supplementary Figures S1–
S2; Supplementary Tables S1–S4). AML samples (n= 70)
from Australia were used to confirm the distribution of
HMGA2 expression values (Fig. 1 and Supplementary
Table S5). This study was approved by the Human
Research Ethics Committees of the Alfred and the Box
Hill Hospitals in Melbourne. The external validation
cohort included 263 AML samples from intensively

treated patients enrolled in the UK NCRI AML17 trial
(ISRCTN55675535) approved by Wales Research Ethics
Committee 3 (Fig. 1 and Table 1). Patients with inter-
mediate- and adverse-risk cytogenetics were selected for
external validation because the HMGA2 test appears
useful in these risk categories. HMGA2 expression values
were not available for 3 out of 263 samples.

Cytogenetics, mutation analysis, and RNA sequencing
Cytogenetic risk was categorized according to ELN

recommendations.1 Methods for leukemia cell cryopre-
servation and for NPM1, FLT3-ITD, and CEBPA muta-
tion testing are described in the Supplementary
Information. The workflow for RNA-sequencing and
mutation analysis has been described previously.20

Quantitative PCR experiments
A RT-qPCR assay to evaluate HMGA2 expression was

developed. Detailed methods including complementary
DNA synthesis, primer, and probe sequences, PCR, con-
struction of plasmid standard curves and results of ana-
lytical validation are outlined in the Supplementary
Information (Methods section, Supplementary Tables S6
and S7). Normalized copy numbers (NCN) of HMGA2
were generated following Europe Against Cancer program
recommendations.22

Statistical methods
Receiver operating characteristic (ROC) curves and the

Youden index were used to identify a threshold between
low and high HMGA2 expression values.23,24 Fisher’s
exact test was used to test bivariate unadjusted associa-
tions between the marker, dichotomized as above (H+ )
vs. below (H−) the threshold, and categorical variables.
Probabilities of OS were estimated with Kaplan–Meier
curves and compared using the log-rank test. CIR curves
were estimated using competing risks analyses to account
for mortality and compared with Gray’s test.25 OS was
measured from the date of AML diagnosis and RFS and
CIR were measured from the date of achievement of a
remission. For studies in the subgroup of younger trans-
planted patients, time 0 was defined as the date of
transplantation. Main analyses relied on multivariable
regression methods to estimate the associations of the
dichotomized marker with each of the clinically relevant
outcomes. Multivariable models were adjusted for the
following set of established prognostic variables: age,
white blood cell (WBC) counts, HSCT as a time-
dependent variable (except for CR prediction), cytoge-
netic risk and NPM1 and FLT3-ITD mutation status.
TP53, RUNX1, and ASXL1 mutations were added as
variables for models in the sequenced cohort and biallelic
CEBPA, RUNX1, and ASXL1 mutations for models in the
intermediate cytogenetic risk subgroup. The effect of age
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was modeled using the linear and quadratic terms, to
account for its significantly non-linear relationships with
most of the outcomes (Supplementary Information, Sta-
tistical Methods section). The ability of HMGA2 to
enhance CR prediction was assessed with multivariable
logistic regression and its independent association with
the time to relapse and/or death was estimated by mul-
tivariable Cox proportional hazards regression. Flexible
time-dependent model was used to test the proportional
hazards assumption26 (Supplementary Information, Sta-
tistical Methods section). The Lunn-McNeil competing
risks extension of the Cox model27,28 estimated associa-
tions of the marker with the hazards of either relapse or
death. Statistical significance of the associations was tes-
ted using multivariable model-based Wald tests and their
strength quantified by the adjusted hazard ratio (HR) or
for CR, odds ratio (OR), with 95% confidence intervals. All
P values were two-sided and considered statistically sig-
nificant if P < 0.05. The analyses were performed with R
(v3.2.2) and EZR (v3.1) softwares. Statistical methods for
the NCRI AML17 cohort are described in the Supple-
mentary Information (Statistical Methods section).

This manuscript complies with the REMARK guide-
lines29 (Supplementary Table S8).

Results
Identification of HMGA2 as a new prognostic marker in
AML
We first investigated all annotated genes in the Leuce-

gene full cohort (n= 430) for their potential to dis-
criminate between patients with good vs. poor survival by
analyzing survival based on the 75th percentile of
expression values (Fig. 1). The best candidate prognostic
markers were also selected for features that would ease
their usage as clinical tests: (1) high dynamic range of
expression; (2) evidence for bimodal distribution illus-
trative of two distinct subgroups with more than tenfold
difference in reads per kilobase per million mapped reads
(RPKM) values between low and high expressors, and (3)
peak expression in high expressors above one RPKM.
HMGA2 and PAWR were identified for test development
and validation but only HMGA2 was validated in the
independent NCRI AML17 validation cohort and is
reported herein. Analyses of PAWR in the validation
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Fig. 1 Flow diagram of the study and discovery approach for identification of HMGA2. The HMGA2 prognostic marker was identified from the
RNA-sequenced samples of the Leucegene full cohort (n= 430). Criteria for marker selection were: best log-rank P values to discriminate between
poor vs good survivors based on the 75th percentile of expression (in RPKM values) for each gene, high dynamic range, bimodal distribution of gene
expression values, and gene expression values above one RPKM. Development, analytical, and clinical validation of the HMGA2 RT-qPCR test were
performed in the training cohort (n= 358). The Australian cohort (n= 70) was used to validate the RT-qPCR expression values. The HMGA2 test was
externally validated in the NCRI AML17 cohort (n= 260). AML, acute myeloid leukemia; APL, acute promyelocytic leukemia; MDS, myelodysplastic
syndromes; RPKM, reads per kilobase per million mapped reads; Tx, treatment
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Table 1 Association of HMGA2 expression levels with clinical and genetic characteristics

Training cohort Validation cohort

Characteristics Total

(n= 358)

HMGA2

low

(n= 278)

HMGA2 high

(n= 80)

P Total

(n= 260)

HMGA2 low

(n= 160)

HMGA2 high

(n= 100)

P

Age at diagnosis, years

Median 53 58 51.5 50 53 0.09

Range 17–78 21–74 0–71 7–69 0–71

Age, n

0–16 years 0 0 0 12 7 5

17–59 years 235 193 42 0.007 184 118 66

≥ 60 years 123 85 38 64 35 29

Male sex, n (%) 194 149 (53.6) 45 (56.3) 0.704 140 80 (50.0) 60 (60.0) 0.4

WBC (× 109/l), n (%)

<50 230 166 (59.7) 64 (80.0) 0.001 195 107 (66.9) 88 (88.0) <0.001

50–99 76 69 (24.8) 7 (8.8) 39 33 (20.6) 6 (6.0)

>100 48 41 (14.7) 7 (8.8) 26 20 (12.5) 6 (6.0)

Not available 4 2 (0.8) 2 (2.4) 0 0 (0.0) 0 (0.0)

AML history, n (%)

De novo 358 278 (100.0) 80 (100.0) 242 152 (95.0) 90 (90.0) 0.16

Secondary 0 0 (0.0) 0 (0.0) 13 6 (3.7) 7 (7.0)

High-risk MDS 0 0 (0.0) 0 (0.0) 5 2 (1.3) 3 (3.0)

CR, n (%) 279 232 (83.4) 47 (58.8) <0.001 207 137 (85.6) 70 (70) 0.002

HSCT, n (%)

CR1 66 54 (19.4) 12 (15.0) 68 41 (25.6) 27 (27.0)

CR2 32 27 (9.7) 5 (6.3) 25 18 (11.2) 7 (7.0)

Others 2 0 (0.0) 2 (2.5) 13 8 (5.0) 5 (5.0)

Cytogenetic risk, n (%)

Favorable 54 51 (18.3) 3 (3.8) <0.001 0 0 (0.0) 0 (0.0) <0.001

Intermediate 232 191 (68.7) 41 (51.3) 214 142 (88.8) 72 (72.0)

Adverse 68 33 (11.9) 35 (43.8) 35 11 (6.9) 24 (24.0)

Undetermined 4 3 (1.1) 1 (1.3) 11 7 (4.4) 4 (4.0)

2017 ELN genetic risk, n (%)

Favorable 185 180 (64.7) 5 (6.3) <0.001 — —

Intermediatea 84 54 (19.4) 30 (37.5) — —

Adverse 87 42 (15.1) 45 (56.3) — —

Undetermined 2 2 (0.7) 0 (0.0) — —

NCRI AML17 Risk groupb, n (%)

Known high risk — — 101 53 (33.1) 48 (48.0) 0.05

Not high risk — — 157 105 (65.6) 52 (52.0)

Not calculable — — 2 2 (1.3) 0 (0.0)
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cohort are provided in Supplementary Figure S3 and
Supplementary Table S9.
Notably, based on the 75th percentile of HMGA2

expression values, most genetic anomalies associated with
poor survival were highly prevalent in the HMGA2 posi-
tive subgroup including samples with complex karyotype,
TP53 mutations or other adverse-risk mutations such as
RUNX1, ASXL1, SRSF2, and MLL (Supplementary Figure
S4).

Development and validation of the HMGA2 RT-qPCR test
We developed and validated a HMGA2 RT-qPCR test

in three independent AML patient cohorts (Leucegene,
NCRI AML17 and Australian cohorts) and confirmed the
bimodal expression pattern of HMGA2 (Fig. 1 and

Supplementary Figure S5). We observed a high correla-
tion between these results and those found by RNA
sequencing or droplet digital PCR as well as a large range
of expression values (Supplementary Figure S6; Fig. 2
upper panel). Using ROC curves, the cutoff for the RT-
qPCR test was optimized and established at 1100 NCN in
the training cohort.23 Samples with expression levels ≥
1100 NCN are hereafter referred to as H+ and those with
expression levels < 1100 NCN as H−.
In the training cohort, the HMGA2 test showed high

reproducibility, robustness, and specificity (Supplemen-
tary Table S7). Inter-laboratory test validation was per-
formed at the King’s College University of London
laboratory, using 263 AML samples from patients of the
NCRI AML17 trial.

Table 1 continued

Training cohort Validation cohort

Characteristics Total

(n= 358)

HMGA2

low

(n= 278)

HMGA2 high

(n= 80)

P Total

(n= 260)

HMGA2 low

(n= 160)

HMGA2 high

(n= 100)

P

WHO Performance Status

0 — — 160 104 (65.0) 56 (56.0) 0.4

1 — — 84 48 (30.0) 36 (36.0)

2 — — 8 5 (3.1) 3 (3.0)

3 — — 3 2 (1.3) 1 (1.0)

Not completed — — 5 1 (0.6) 4 (4.0)

Mutations in the training cohort and the validation cohort, n (%)

Intermediate cytogenetics 232 191 41 Totalc 256 157 99

FLT3-ITD 90 81 (42.4) 9 (22.0) 0.021 66 54 (34.4) 12 (12.1) <0.001

NPM1 128 126 (66.0) 2 (4.9) <0.001 113 91 (58.0) 22 (22.2) <0.001

NPM1− and FLT3-ITD− 79 49 (25.7) 30 (73.2) 122 51 (32.5) 71 (71.7)

NPM1− and FLT3-ITD− and biCEBPA− 69 39 (20.4) 30 (73.2) — —

NPM1+ and FLT3-ITD− 63 61 (31.9) 2 (4.9) 69 53 (33.8) 16 (16.2)

NPM1− and FLT3-ITD+ 25 16 (8.4) 9 (22.0) 44 38 (24.2) 6 (6.1)

NPM1+ and FLT3-ITD+ 65 65 (34.0) 0 (0.0) 21 15 (9.6) 6 (6.1)

Adverse-risk mutations in the sequenced cohort (excluding patients with favorable cytogenetics), n (%)

Total 219 174 45

TP53 19 3 (1.7) 16 (35.6) — —

RUNX1 only 14 7 (4.0) 7 (15.6) — —

ASXL1 only 5 4 (2.3) 1 (2.2) — —

RUNX1 and ASXL1 6 3 (1.7) 3 (6.7) — —

— not available, CR complete remission, HMGA2 low expression level of HMGA2 < 1100 NCN, HMGA2 high expression level of HMGA2 ≥ 1100 NCN, HSCT allogeneic
hematopoietic stem cell transplantation, MDS myelodysplastic syndromes, WBC white blood cells
aThirty-seven patients with intermediate-risk cytogenetics and absence of NPM1, FLT3-ITD, and biallelic CEBPA (biCEBPA) mutations were not sequenced
bThe NCRI high-risk category is defined in the statistical methods section in the Supplementary Information
cIn the validation cohort, NPM1 and FLT3-ITD mutation status was not available for four patients
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HMGA2 expression profile in relation to age and genetics
In the training cohort, 38 of 123 (30.9%) older patients

(≥60 years) were H+ compared with 42 of 235 (17.9%)
younger patients (<60 years) (P= 0.007) (Table 1). H+
status was more frequent in the adverse cytogenetic risk
category: 35 patients of 68 (51.5%) were H+ , and in the
2017 ELN adverse-risk group: 45 patients of 87 (51.7%)
were H+ . Similar to RNA-sequencing results, most
patients with complex and monosomal karyotype (88.9%
H+ , 24 of 27) or with TP53 mutations (84.2% H+ , 16 of
19) were H+ (Fig. 2). Among the 232 patients in the
intermediate cytogenetic risk category, 41 (17.7%) were
positive for HMGA2. Of those, only a low proportion were
NPM1 (4.9% vs 66.0% in H−; P < 0.001) or FLT3-ITD
mutated (22.0% vs 42.4% in H−; P= 0.021) (Table 1). In
the favorable cytogenetic risk category (t(8;21) and inv

(16)), only 3 of 54 patients (5.6%) were H+ (Table 1; Fig.
2). All biallelic CEBPA mutated samples were H− (Fig. 2).
In the validation cohort, high HMGA2 expression levels
were detected in 72 of 214 (33.6%) intermediate cytoge-
netic risk patients and 24 of 35 (68.6%) adverse cytoge-
netic risk patients with a lower frequency in NPM1 (22.2%
vs 58.0% in H−; P < 0.001) or FLT3-ITD (12.1% vs 34.4%
in H−; P < 0.001) mutated samples (Table 1).

HMGA2 test is powerful to predict clinical outcomes in
AML
In the training cohort, compared with H− patients, H+

patients had lower CR frequency (58.8% vs 83.4%; P <
0.001) (Table 1), worse 3-year OS (13.2% vs 43.5%; P <
0.001) and RFS (10.8% vs 44.2%; P < 0.001), and a higher
3-year CIR (72.9% vs 48.1%; P= 0.004) (Fig. 3a;

Fig. 2 HMGA2 expression in AML cytogenetic and mutation subgroups. Upper panel. The HMGA2 RT-qPCR test shows a large range of
expression values among cytogenetic and mutation subgroups of the training cohort. HMGA2 expression levels evaluated by this test were
normalized on the ABL1 control gene and expressed as NCN. The dotted line represents the assay cutoff established at 1100 NCN. Bottom panel.
Frequency of patients classified in each subgroup according to the HMGA2 expression profile. Numbers in white represent HMGA2+ patients. ELN
2017 and cytogenetic risk subgroups were evaluated in the training cohort (n= 358), mutations were obtained by RNA sequencing in 263 samples of
the training cohort. Abn., abnormal; biCEBPA, biallelic CEBPAmutations; ELN: European LeukemiaNet; HMGA2+ , high expression (≥1100 NCN); HMGA2
−, low expression (<1100 NCN); NCN, Normalized Copy Numbers; NK, normal karyotype
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Supplementary Table S10). Univariate analyses showed
the strong effect of H+ as well as age and cytogenetics,
for all these clinical outcomes (Supplementary Table S11).
Among the 308 patients with ≥3 years of follow-up, only 7
of 72H+ patients were still alive at 3 years compared with
87 of 236 H− patients (9.7% vs 36.9%; P < 0.001) (Sup-
plementary Figure S7).
Multivariable analyses, adjusted for age, WBC counts,

HSCT as a time-dependent variable (except for CR pre-
diction), cytogenetic risk and NPM1 and FLT3-ITD
mutation status, revealed that H+was independently
associated with a significantly higher probability of pri-
mary refractory disease (adjusted Odds ratio= 3.08, (95%
confidence interval (CI), 1.44–6.59), P= 0.004), worse OS

(adjusted Hazard ratio= 1.68, (95% CI, 1.17–2.43), P=
0.006) and RFS (aHR= 1.61, (95% CI, 1.02–2.55), P=
0.041) and a higher CIR (aHR= 1.67, (95% CI, 1.01–2.75),
P= 0.047) (Table 2; Fig. 4). Importantly, among the
263 sequenced patients of the Leucegene prognostic
cohort (Fig. 1), even after having adjusted for the 2017
ELN poor risk mutations (TP53, ASXL1, and RUNX1),
HMGA2 remained a strong predictor for poor response to
induction chemotherapy (aOR= 4.03, (95% CI,
1.55–10.4), P= 0.004) (Table 2) and worse OS (aHR=
1.73, (95% CI, 1.06–2.84), P= 0.030) (Supplementary
Table S12). Interestingly, after adjusting for HMGA2,
TP53 mutations lost their statistical significance in the OS
model (Supplementary Table S12).
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HMGA2 test is clinically useful in intermediate genetic risk
patients
The prognostic value of HMGA2 expression was also

evaluated in the intermediate cytogenetic risk category. In
this subgroup, a positive HMGA2 test (41 of 232 patients)
also predicted poor clinical outcomes (OS: 17.3% vs 40.2%
for H− patients, P= 0.024; RFS: 12.8% vs 42.0%, P=
0.010; CIR: 75.6% vs 50.6%, P= 0.028) (Fig. 5a and Sup-
plementary Table S10). Importantly, among these H+
patients, seven were negative for the six prognostically
informative AML mutations (FLT3-ITD, NPM1, biallelic
CEBPA, ASXL1, RUNX1, and TP53) (Fig. 5b). Moreover,
in 14 additional H+ patients negative for FLT3-ITD,
NPM1, and biallelic CEBPA mutations, and for which
mutation profiling of ASXL1, RUNX1, and TP53 genes
was not available in the clinical laboratory, the HMGA2
test could have been useful to identify poor risk patients

(Fig. 5b). RNA-sequencing data were available for 165
intermediate cytogenetic risk patients: mutations in
ASXL1 and/or RUNX1 genes were detected in 22 patients.
Only 2 of these 165 patients had TP53 mutations and
were excluded from the multivariable analyses. Even after
having adjusted for FLT3-ITD, NPM1, biallelic CEBPA,
ASXL1 and RUNX1 mutations, the WBC count and
HSCT as a time-dependent variable, the significant
independent impact of H+ for survival and relapse pre-
diction was further confirmed (OS: aHR= 2.38, (95% CI,
1.26–4.50), P= 0.008; RFS: aHR= 2.67, (95% CI,
1.24–5.77), P= 0.012; CIR (aHR= 2.61, (95% CI,
1.13–6.05), P= 0.025) (Supplementary Table S13).

HMGA2 test in transplanted patients
Among 60 younger patients who underwent allo-HSCT

in first CR, including 42 intermediate-risk patients, H+
was highly predictive of poor OS (3-year OS: 13.3% vs
63.6%, P= 0.013) and RFS (3-year RFS: 15.0% vs 57.6%, P
= 0.047) (Fig. 3c) and appeared to be associated with a
higher CIR (3-year CIR: 65.0% vs 27.7%, P= 0.064)
(Supplementary Figure S8; Supplementary Table S10).
However, the number of transplanted patients was too
small for multivariable analysis.

HMGA2 test also adds prognostic value in the 2017 ELN
adverse-risk category
We next studied whether the HMGA2 test could

improve prognostic assessment in AML patients classified
according to the 2017 ELN genetic risk stratification.1 We
found that 45 out of 87 ELN adverse-risk patients (51.7%)
(Table 1, Supplementary Table S14) were positive for the
HMGA2 test and had a significantly worse survival
(Supplementary Figure S9, right panel, red curve). In this
patient subgroup (ELN adverse-H+ ), representing 12.6%
of the entire AML training cohort, no patients were long-
term survivors. In contrast, the survival of H− patients
classified as adverse risk by the ELN risk stratification was
similar to that of ELN intermediate-risk patients (Sup-
plementary Figure S9, right panel, yellow and green
curves). Importantly, among the 45H+ patients, eight
samples harbored mutations in RUNX1 and/or ASXL1
genes (intermediate-risk cytogenetics) and 15 had muta-
tions in TP53 (Supplementary Table S14). This finding is
clinically relevant, especially if screening for these poor
risk mutations is not readily available.

HMGA2 test validation in the NCRI AML17 cohort
To validate the ability of HMGA2 expression to enhance

risk stratification in an independent cohort, the prog-
nostic value of H+was assessed in the UK NCRI AML17
cohort using the same RT-qPCR assay and cutoff (Table
1). Consistent with our findings, H+was a strong pre-
dictor of a lower frequency of CR (70% vs 85.6%, P=

Table 2 Results of multivariable analysis for complete
remission in the training cohort (n= 358) and in the
sequenced cohort (n= 263)

Variables aOR (95% CI) P

Training cohort WBC ≥ 100 vs WBC < 100 1.26 (0.58–2.73) 0.559

NPM1 0.51 (0.18–1.46) 0.208

FLT3-ITD 0.54 (0.18–1.66) 0.284

NPM1/FLT3-ITD interaction 8.26 (1.82–37.40) 0.006

Adverse vs favorable

cytogenetic risk

5.48 (1.38–21.80) 0.016

Intermediate vs favorable

cytogenetic risk

2.30 (0.60–8.82) 0.226

HMGA2+ vs HMGA2− 3.08 (1.44–6.59) 0.004

Sequenced

cohort

WBC ≥ 100 vs WBC < 100 1.41 (0.63–3.2) 0.406

NPM1 0.4 (0.11–1.43) 0.158

FLT3-ITD 0.41 (0.1–1.72) 0.226

NPM1/FLT3-ITD interaction 11.9 (1.86–76.6) 0.009

Adverse vs favorable

cytogenetic risk

6.54 (1.54–27.9) 0.011

Intermediate vs favorable

cytogenetic risk

2.42 (0.58–10.1) 0.228

HMGA2+ vs HMGA2- 4.03 (1.55–10.4) 0.004

ASXL1 0.53 (0.11–2.66) 0.442

RUNX1 1.62 (0.47–5.65) 0.446

TP53 0.41 (0.1–1.67) 0.215

aOR adjusted odds ratio, CI confidence intervals, HMGA2+ high expression
(≥1100 NCN), HMGA2− low expression (<1100 NCN), ITD internal tandem
duplication, WBC white blood cells (× 109/l)
As the non-linear effect of age at diagnosis is represented jointly by the two
coefficients (linear and quadratic), the interpretation of each coefficient
separately is not appropriate. See statistical methods (Supplementary Informa-
tion) for description of the adjusted effect of age at diagnosis
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0.002, Table 1), poor survival (5-year OS: 21% vs 51%, P <
0.001) and a higher risk of relapse (5-year RFS: 21% vs
44%, P < 0.001 and 5-year CIR: 60% vs 46%, P= 0.003) in
the validation cohort (Table 3, Fig. 3b). Multivariable
logistic and Cox regression analyses were used to examine
the effect of HMGA2 expression adjusted for these known
prognostic variables: age, log WBC count, secondary
disease, WHO/ECOG performance status, presence of
adverse cytogenetics, FLT3-ITD and NPM1 mutations.
These results confirmed that H+was significantly and
independently associated with lower CR/CRi (CR with
incomplete hematologic recovery) frequency (aOR= 3.98,
(95% CI, 1.36–11.65), P= 0.010), worse OS (aHR= 2.03,
(95% CI, 1.36–3.03), P < 0.001), and RFS (aHR= 2.06,
(95% CI, 1.38–3.08), P < 0.001) and a higher CIR (aHR=
2.01 (95% CI, 1.28–3.14), P= 0.002) (Table 3). The utility
of the HMGA2 test was also evaluated in AML patients
classified using a clinical risk score to identify high-risk
patients. High-risk disease was defined according to the
NCRI multi-parameter risk score, based upon baseline
characteristics and response to the first course of induc-
tion chemotherapy30,31 (detailed in Supplementary
Information, Statistical Methods section). Importantly,
among the 157 patients not classified in the NCRI high-

risk category, 52 (33%) H+ patients had a significantly
worse survival than 105 H− patients (P= 0.002) (Fig. 3d).

Discussion
HMGA2 encodes a member of the HMGA family of

proteins implicated in chromatin remodeling and tran-
scription regulation. It is overexpressed in many human
solid tumors and its upregulation was thought to be
potentially associated with tumor progression and poor
prognosis.32,33 This study reports the strong negative
prognostic impact of HMGA2 overexpression in AML,
thus justifying the development and validation of a rapid,
simple and inexpensive RT-qPCR test, also optimized on
the droplet digital PCR platform, which can now be
implemented in clinical laboratories. Our findings reveal
that high HMGA2 expression confers a significantly
higher probability of primary refractory disease after an
anthracycline and cytarabine based induction che-
motherapy. Interestingly, in the training cohort, the
HMGA2 test also reclassified 17.7% of intermediate
cytogenetic risk patients into a poor risk group. These
results were confirmed in the validation cohort in which
33% of patients not classified in the NCRI high-risk
category were H+ and had a significantly worse survival

Overall survival Relapse-free survival Cumulative incidence of relapse

WBC ≥100 vs WBC <100

NPM1

FLT3-ITD

NPM1 / FLT3-ITD interaction

Adverse vs favorable cytogenetic risk

Intermediate vs favorable cytogenetic risk

HSCT

HMGA2+ vs HMGA2−

1.09 (0.73−1.61)
1.03 (0.64−1.68)
1.18 (0.71−1.97)
0.65 (0.42−1.01)
0.64 (0.41−1.02)
0.57 (0.34−0.93)
1.09 (0.66−1.81)
0.90 (0.50−1.59)
0.78 (0.40−1.51)
3.85 (1.97−7.54)
3.98 (1.88−8.44)
5.08 (2.18−11.82)
7.06 (3.60−13.85)
5.59 (2.73−11.44)
5.67 (2.65−12.15)
2.56 (1.36−4.83)
2.58 (1.37−4.87)
2.78 (1.42−5.41)
0.63 (0.41−0.98)
0.68 (0.44−1.07)
0.45 (0.27−0.75)

1.68 (1.17−2.43)
1.61 (1.02−2.55)
1.67 (1.01−2.75)

0.682
0.897
0.519
0.055
0.060
0.025
0.737
0.713
0.462

 <0.001
 <0.001
 <0.001
 <0.001
 <0.001
 <0.001

0.004
0.003
0.003
0.041
0.060
0.002

0.006
0.041
0.047

Variables aHR (95% CI)  P
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1684210.500.25

Fig. 4 HMGA2 is an independent prognostic factor of poor outcome in AML. Forest plot for multivariable analyses of overall survival, relapse-free
survival and cumulative incidence of relapse in the training cohort. aHR, adjusted hazard ratio; CI, confidence intervals; HMGA2+ , high expression ( ≥
1100 NCN); HMGA2-, low expression (<1100 NCN); HSCT, allogeneic hematopoietic stem cell transplantation; ITD, internal tandem duplication; WBC,
white blood cell counts (×109/l). As the non-linear effect of age at diagnosis is represented jointly by the two coefficients (linear and quadratic), the
interpretation of each coefficient separately is not appropriate and not shown in the figure
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Table 3 Results of univariate and multivariable analyses for HMGA2 in the NCRI AML17 validation cohort

Outcome HMGA2− HMGA2+ Unadjusted OR/HR

(95% CI) P

Adjusteda OR/HR

(95% CI) Pn= 160 n= 100

CR and CRib 95.6% 80% 5.05 (2.20–11.6)

<0.001

3.98 (1.36–11.65)

0.010

Overall survival 51%c 21%c 2.33 (1.61–3.36) <0.001 2.03 (1.36–3.03) <0.001

Relapse-free survival 44%c 21%c 2.13 (1.45–3.13)

<0.001

2.06 (1.38–3.08)

<0.001

Cumulative incidence of relapse 46%c 60%c 1.97 (1.28–3.03)

0.002

2.01 (1.28–3.14)

0.002

Cumulative incidence of death 10%c 18%c 2.87 (1.22–6.75)

0.020

2.29 (0.89–5.87)

0.090

Overall survival censored at transplant 60%c 31%c 2.70 (1.68–4.34)

<0.001

2.00 (1.18–3.39)

0.010

CI confidence intervals, HMGA2− low expression (<1100 NCN), HMGA2+ high expression (≥1100 NCN), HR hazard ratio, OR odds ratio
aVariables included in the multivariable models are: age, log white blood cell count, secondary disease, WHO/ECOG performance status, the presence of adverse
cytogenetics, FLT3-ITD, and NPM1 mutations
bComplete remission (CR) and complete remission with incomplete hematologic recovery (CRi) excluding induction deaths
cClinical end-points at 5 years
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than H− patients. This new knowledge could guide
clinicians to consider offering more intensive or novel
consolidation therapies for these patients.
Data presented in this study also highlight the possibi-

lity that HMGA2 expression status may predict outcome
following allo-HSCT, although our study does not have
the power to fully address this issue.
Importantly, in a subgroup of ELN adverse genetic risk

patients, a positive HMGA2 test could also predict
resistance to standard treatments including allogeneic
stem cell transplantation. However, these results require
further validation in other AML cohorts with compre-
hensive mutation profiling data and classified according to
the 2017 ELN genetic risk categories. Future prospective
studies will determine if specific therapeutic strategies
such as investigational new drugs or novel transplantation
methods can improve the clinical outcome of HMGA2
positive patients.
Although age, mutations, and cytogenetic character-

istics affect patient survival in AML, we demonstrate that
expression of a single gene, HMGA2, is an independent
prognostic factor in multivariable analyses in two inde-
pendent AML cohorts. Moreover, HMGA2 appears to
integrate the negative prognostic value conferred by
complex karyotype and several poor risk mutations and
could simplify prognostic assessment of positive cases.
However, the test did not capture all poor prognosis
patient subgroups. For example,MLL rearrangements and
the poor prognostic NPM1+ FLT3-ITD+DNMT3A+
subset3 (~ 7% and ~ 12.5% in the Leucegene cohort,
respectively) were frequently associated with low expres-
sion levels of HMGA2. Based on these findings, we pro-
pose a new algorithm integrating the HMGA2 test in
current strategies for AML prognostic assessment (Sup-
plementary Figure S10). Validation of this algorithm in
clinical trials is warranted.
In conclusion, this study showed that high HMGA2

expression adds significant independent prognostic value
to known clinical and genetic prognostic factors in AML,
and is predictive of poor clinical outcomes with standard
AML therapies. The HMGA2 test could complement the
current AML tests to improve treatment orientation and
be integrated in ongoing and future prospective clinical
trials studying innovative therapies to increase survival of
HMGA2 positive AML patients.
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