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Summary 

Refractive errors such as myopia are the leading cause of reversible visual 
impairment worldwide with their prevalence rapidly increasing, resulting in greater 
burden on public health services. The aim of this series of investigations was to 
leverage the latest statistical methods and large-scale cohorts available in order to 
develop our understanding of the genetic determinants for the refractive error 
traits of spherical equivalent, corneal astigmatism and refractive astigmatism. 

Investigation of genetic variants on the X-chromosome, a region often neglected in 
genome-wide association studies (GWAS), identified four genes demonstrating 
association in a gene-based analysis of spherical equivalent for a cohort of 
teenagers. 

Meta-analysis of GWAS results for corneal astigmatism including European and 
Asian ancestry cohorts performed on behalf of the CREAM consortium successfully 
replicated the previously identified association near the PDGFRA gene (lead variant: 
rs7673984, odds ratio = 1.12, P = 5.55 × 10−9). 

The availability of data from the UK Biobank facilitated the largest GWAS for corneal 
and refractive astigmatism performed to date (N = 86,335 and 88,005 respectively). 
Here, GWAS for these traits identified four and two novel loci associated with 
corneal and refractive astigmatism respectively. Each of these loci had previously 
been associated with other ocular traits including myopia. Phenotypic variance 
explained by common genetic variants was relatively low for corneal and refractive 
astigmatism at ~6% and ~5% respectively, thus proposing a greater role for rare 
variants in explaining astigmatism variance due to genetics. 

Lastly, in order to link identified variants and genes functionally influenced in 
myopia development, several candidate myopia genes identified from a primate 
myopia model demonstrated enrichment with refractive error associated variants in 
human samples. 

Overall, the findings from these investigations are a starting point in guiding further 
research into the complex biological mechanisms underlying refractive error 
development. 
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Chapter 1 General Introduction 
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Chapter 1 General Introduction 

1.1 Refractive errors 

1.1.1 Definitions / classification of refractive errors

There are three main classes of refractive errors: myopia, hyperopia and 

astigmatism. 

1.1.1.1 Myopia and Hyperopia 

Myopia occurs when light focuses in front of the retina in the non-accommodated 

eye, whereas hyperopia occurs when light focuses behind the retina. In both 

instances, the refractive error results in impaired vision if uncorrected. This altered 

focusing is due to a mismatch between the power of the refractive components 

(primarily the cornea and lens) and the axial length of the eye (Young, Metlapally 

and Shay, 2007). Myopia is primarily caused by axial elongation of the eye 

(Grosvenor and Scott, 1993; Saw et al., 1996). 

1.1.1.2 Astigmatism 

Astigmatism occurs when the eye fails to bring light from a point source object to a 

single point focus on the retina, resulting in impaired vision when viewing objects at 

any distance. If uncorrected in childhood, astigmatism is a risk factor for amblyopia 

development (Read, Collins and Carney, 2007; Harvey, 2009). In the human eye, the 

two major sources of astigmatism are the cornea and the crystalline lens. 

Astigmatism can be described as either “refractive”, which encompasses all 

contributing sources, or “corneal”, which is restricted to the corneal component, 
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the major contributing source in most cases of moderate and high astigmatism 

(Read et al., 2007). 

1.1.1.3 Mean Spherical Equivalent (also known as Spherical Equivalent) 

As astigmatism occurs in conjunction with myopia or hyperopia, clinicians often 

combine these two refractive error components into a single value known as the 

spherical equivalent refractive error. Spherical equivalent is the combination of the 

spherical and cylindrical components obtained from refraction, referring to the 

degree of myopia or hyperopia and the degree of astigmatism respectively. 

Spherical equivalent refractive error is calculated using the formula: spherical 

power + ½ cylindrical power.

1.1.2 Worldwide prevalence

Globally, uncorrected refractive error is the leading cause of reversible visual 

impairment and the second leading cause of blindness after cataract (Flaxman et al., 

2017). The prevalence of refractive errors such as myopia and astigmatism has been 

on the increase over the last 50 years in the United Kingdom and especially in East 

Asia (He, Zheng and Xiang, 2009; Sun et al., 2012; O'Donoghue et al., 2015). Overall, 

it is projected that a third of the global population will have at least -0.50 Dioptres 

(D) of myopia by the year 2020, with this projected to increase to half of the global 

population by 2050 (Holden et al., 2016).  

It should be noted that prevalence estimates tend to vary across ethnicities and 

with age, but also are dependent on trait definitions. 
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1.1.2.1 Myopia 

In a meta-analysis of refractive error prevalence studies in European adults over the 

age of 25 years, myopia of at least -0.75 D was found to be present in over 30% of 

the population (Williams et al., 2015b). The prevalence of high myopia (spherical 

equivalent ≤-6.00 D) was 2.7% (Williams et al., 2015b). It was also noted that at 

least -0.75 D of myopia was present in almost half of those aged between 25 and 29 

years of age (Williams et al., 2015b). On closer inspection of these cohorts, there 

was a noticeable cohort effect whereby myopia was more prevalent in cohorts of 

individuals born in more recent years than those of an equivalent age born in earlier 

decades (Williams et al., 2015a). As with these European ancestry cohorts, myopia 

was found to be as prevalent in a meta-analysis of Asian ancestry cohorts (~28%), 

with prevalence approaching 50% in the subgroup of individuals aged 20-29 years 

(Pan et al., 2015). However, these prevalence estimates were derived using a 

myopia threshold of -0.50 D, obtained from studies spanning the Asian continent, 

rather than restricting to Chinese or Japanese individuals in whom myopia tends to 

occur at a higher prevalence (Pan et al., 2015). No birth year (cohort) effect was 

identified by Pan et al. (2015). However, year-of-birth cohort effects similar to those 

identified in European ancestry individuals have been observed in studies from 

Singapore and Taiwan (Sherwin and Mackey, 2013). 

In European ancestry children, the prevalence of myopia (< -0.50 D) is relatively low 

at 1-5% at age 6-7 years (Ojaimi et al., 2005; O'Donoghue et al., 2010; Logan et al., 

2011), increasing towards 20% by age 13 years (O'Donoghue et al., 2010; Logan et 

al., 2011). However, prevalence rates of myopia are approaching epidemic levels in 
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parts of East Asia (Morgan et al., 2018). In a study of Chinese school children, the 

prevalence of myopia of at least -0.50 D was low in those aged 5 years (~5%) with 

myopia prevalence increasing dramatically from age 8 years up to 15 years, 

affecting over 70% of 15 year-old children (He et al., 2004). Similar results were 

found in other cohorts of Chinese and Singaporean schoolchildren (Quek et al., 

2004; Lam et al., 2012; Li et al., 2013; Guo et al., 2016). In studies of young adults 

(16-25 years old), myopia prevalence estimates were greater still, exceeding 90% in 

some instances (Wu et al., 2001; Jung et al., 2012; Lee et al., 2013a; Lee et al., 

2013b). 

1.1.2.2 Astigmatism 

In a study of 6-year-old children based in Australia, the prevalence of refractive 

astigmatism of at least 1.00 D was 4.8% with greater prevalence and magnitude in 

children of Asian ancestry than those of European origin (11.2% vs. 3.6%) (Huynh et 

al., 2006). In a subsequent study of 12 year-old children in the same location, the 

prevalence of refractive astigmatism of at least 1.00 D was largely stable at 6.7%, 

and, as with the younger cohort, refractive astigmatism was more prevalent in 

those of East Asian descent (11.2% vs. 5.6%) (Huynh et al., 2007). There were no 

significant differences between males and females with respect to the prevalence of 

refractive astigmatism in the Huynh et al. study. In European ancestry children in 

Northern Ireland, the prevalence of refractive astigmatism (≥ 1.00 D) was relatively 

stable between those aged 6 years and those aged 12 years, but was higher at 20-

25% (O'Donoghue et al., 2011). However, this may be due to the increased 

prevalence of myopia in this cohort (Northern Ireland: 17.7% vs. Australia: 5.1%) 
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(Rose et al., 2008; O'Donoghue et al., 2011). In Chinese schoolchildren, refractive 

astigmatism of at least 0.75 D was found to be present in at least a quarter of 

children (He et al., 2004; He et al., 2007; Li et al., 2013). 

In studies of adults, astigmatism of at least 1.00 D was found to be prevalent in 24% 

of European ancestry individuals, with prevalence increasing up to 50% in 

individuals aged 70 years and above (Williams et al., 2015b). Similar prevalence 

rates for those aged below and over 60 years were identified in a study of 

individuals resident in the United States (Vitale et al., 2008). In those of Asian 

ancestry, the prevalence of refractive astigmatism of > 1.00 D was 25-30% in 

individuals aged 40-59 years, with this level increasing in those over 60 years of age 

(Wong et al., 2000; Tan et al., 2011; Kim et al., 2013; Pan et al., 2013). As with 

children, there was little difference in prevalence of refractive astigmatism between 

males and females (Pan et al., 2013; Williams et al., 2015b). 

1.1.3 Genetic and environmental influences on refractive errors

Whilst improved access to eye care services has resulted in greater reporting of 

refractive errors, thus accounting for some of the increased prevalence described 

above, environmental factors have been suggested to be the primary contributors 

to this rapid increase in prevalence rates (Holden et al., 2016). 

Environmental influences known to influence myopia development include: higher 

educational attainment, reduced time spent outdoors and increased time spent 

reading; however, there is inconsistent evidence in support of the latter (Ip et al., 
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2008; Williams et al., 2008b; Guggenheim et al., 2012; Sherwin et al., 2012; French 

et al., 2013; Li et al., 2015c; O'Donoghue et al., 2015; Cuellar-Partida et al., 2016; 

Shah et al., 2017). Understanding of the environmental influences on astigmatism 

development is less well understood than for myopia. Suggestions for potential 

causes include eyelid tension, which in turn alters the corneal shape and reduces 

with age, and visual feedback mechanisms, which may induce astigmatic changes 

during myopia or hyperopia development  (Read et al., 2007). 

With respect to genetics, early studies of refractive errors in twins suggested 

genetic factors make a notable contribution to the development of refractive errors 

(Sorsby, Sheridan and Leary, 1962; Sorsby and Fraser, 1964). Early studies 

identifying the role of genetics in astigmatism development came to mixed 

conclusions. Some studies suggested little or no involvement of genetic factors, 

while others suggesting a central role of genetic factors (Mash, Hegmann and 

Spivey, 1975; Teikari et al., 1989; Clementi et al., 1998). It should be noted that the 

differences in the genetic contribution to astigmatism may be due to phenotypic 

uncertainty within the respective studies. Attempts to ascertain the genetic 

contribution to refractive error, and identify genetic loci for refractive error 

development are described in Section 1.4. 

1.1.4 Current treatments

Currently, the primary forms of managing refractive errors are through the optical 

correction methods of spectacles and contact lenses (Foster and Jiang, 2014). These 

forms of correction are well tolerated by wearers; however, they are not a 
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permanent solution and need to be replaced regularly. Alternatively, laser refractive 

surgery methods can provide a longer-term solution. However, there is a 

considerable cost implication to the individual and it is not suitable for all cases, 

especially when the refractive error has not yet stabilised. 

It should be noted that the above mentioned methods do not rectify the axial 

elongation that commonly occurs with myopia (Gwiazda, 2009). As a result, 

individuals who use these forms of refractive correction are still at risk of potentially 

sight threatening conditions later in life that are due to this increased axial length. 

Such conditions include: primary open angle glaucoma, retinal detachment and 

myopic maculopathy (The Eye Disease Case-Control Study Group, 1993; Marcus et 

al., 2011; Flitcroft, 2012).

In recent years, clinical trials of myopia retardation strategies have had some 

successes. For instance, use of atropine eye drops has been trialled with notable 

success (Huang et al., 2016). In a meta-analysis of 16 myopia control interventions, 

high (0.5-1%), medium (0.1%) and low (0.01%) dose atropine eye drops 

demonstrated greatest reduction in myopia progression in terms of refractive error 

change and axial length elongation compared to single vision spectacle wearing 

controls during the treatment period (0.45-0.55 D/year and 0.14-0.21 mm/year 

respectively) with minimal difference between the three dose categories (Huang et 

al., 2016). Similar results were identified in a wider meta-analysis on the use of 

atropine eye drops for myopia control conducted by Pineles et al. (2017). Pineles et 

al. (2017) also examined reported effects after the cessation of treatment and 
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identified that medium-to-high dose atropine (0.1-1%) resulted in increased axial 

elongation 1 year after cessation in comparison to low dose atropine (0.01%) where 

such effects were minimal in comparison to untreated children. This post-treatment 

“rebound” effect, in combination with the reduced side-effects from using lower 

doses and its near-equivalent efficacy to higher doses during the treatment period, 

gives support in favour of using 0.01% atropine as a method of myopia control in 

children. Alternatively, use of orthokeratology contact lenses reduced axial 

elongation by approximately 0.36mm compared to controls wearing single vision 

spectacles during the 2-year treatment period in Chinese schoolchildren aged 6-10 

years-old (Cho and Cheung, 2012). Similar results for orthokeratology were found in 

trials of other Asian and European cohorts as summarised by Li et al. (2016). Effects 

post-cessation of orthokeratology treatment are currently under investigation 

however, it has been suggested that axial elongation does resume upon cessation 

(Cho and Cheung, 2017). 

Despite these successes, both orthokeratology and atropine treatment require 

compliance from children and their parents / guardians in order to maximise 

efficacy; complications can arise from either strategy such as ocular infections and 

photosensitivity; and lastly, there is still the potential for rebound effects whereby 

axial elongation resumes on cessation of the intervention (Chia et al., 2014; Cho and 

Cheung, 2017; Pineles et al., 2017). Randomised controlled trials whereby children 

have been allocated additional outdoor time in the school timetable have also 

shown promise in reducing the incidence of myopia in Chinese schoolchildren (Wu 

et al., 2013; He et al., 2015). Further trials based on the theme of increasing 
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outdoor exposure are in progress including one which aims to give schoolchildren 

levels of light exposure typically experienced outdoors within a classroom setting 

(Zhou et al., 2017b). However, the role of spending time outdoors in retarding 

progression in already myopic children is still unclear (Li et al., 2015b; Xiong et al., 

2017). 

1.1.5 Why investigate refractive errors? 

As refractive errors have such a high prevalence in the population, especially for 

those of younger age who will require decades of management for these disorders, 

the causal factors contributing to refractive errors need to be found. This 

knowledge would allow at-risk individuals to be targeted for preventative treatment 

interventions, and enable improved preventative strategies to be developed. 

Ultimately, such approaches will lessen the burden of refractive errors in future 

generations. 

1.2 Features of complex traits 

Traits are often described as being either Mendelian or complex (Lander and 

Schork, 1994). Mendelian traits follow the classical pattern of having dominant or 

recessive modes of inheritance and are typically caused by mutation at a single 

genetic locus resulting in impaired or loss of function of that gene. Although rare, 

high myopia, in the presence or absence of other ocular or systemic pathology, can 

sometimes be classed as a Mendelian trait (Tang, Yap and Yip, 2008). Complex traits 

on the other hand can be under the influence of multiple genetic loci, gene-gene 

and gene-environment interactions and non-genetic effects (Lander and Schork, 
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1994). Examples of complex traits include common trait variations within the 

population such as eye colour, height and refractive error. Following, are the 

primary genetic features that need to be considered when attempting to discover 

causal genetic features of complex traits. 

1.2.1 Genetic variants 

The majority of phenotypic differences between individuals arise as a result of 

differences in our genomes. These genetic differences can occur in the form of 

single nucleotide substitutions in the genome, or more complex 

insertions/deletions of one of more nucleotides (Frazer et al., 2009). 

The simplest and most frequently occurring type of genetic variant is a single 

nucleotide polymorphism (SNP) (Wang et al., 1998). This is where the commonly 

occurring nucleotide at a specific locus in the genetic sequence is substituted for an 

alternative nucleotide. For example, at a specific position in the human genome, 

most of the population may possess the ‘A’ nucleotide but some individuals may 

instead possess an alternative nucleotide at that position (e.g. ‘T’). The different 

variant nucleotides are referred to as alleles. Often, SNPs do not cause changes to 

the amino acid sequence (so-called “synonymous” variants), however, there are 

many occasions where a SNP does alter the amino acid sequence (“non-

synonymous” variants) (Hunt et al., 2009). This occurs if the variant alters a codon, a 

sequence of three nucleotides, to one that codes for an alternative amino acid. 

Whether synonymous or not, either type of SNP can result in subtle variations to an 

individual’s phenotypes (Hunt et al., 2009). Millions of these polymorphisms are 
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known to exist throughout the human genome with many more yet to be 

discovered. SNPs are defined as being common if the rarer allele is present in at 

least 1% of the population (Wang et al., 1998). 

Other more complex variations occurring in the genome include INDELs and copy 

number variations (CNVs). These sources account up to 20% of all variations in the 

human genome (Frazer et al., 2009). INDELs refer to insertions and/or deletions of 

nucleotides to the genetic sequence. These modifications can be as small as a single 

nucleotide or cover several hundred nucleotides (Mullaney et al., 2010). Unlike 

SNPs, INDELs have the potential to cause frame-shift mutations. Frame-shift 

mutations occur when the additional (or deleted) nucleotides are not a multiple of 

three (the length of a codon), resulting in a change to the codon sequence starting 

from the site of the INDEL, thus altering the amino acid sequence from this point 

and ultimately the functionality of the affected gene (Mullaney et al., 2010). Copy 

number variants (CNVs) are structural variations whereby there is either a deletion 

or replication of an extensive section of genomic sequence, usually of at least one 

kilobase (kb) in length (Redon et al., 2006). Such alterations in copy number can 

result in functional effects due to altered gene expression resulting from loss of one 

or both copies of a gene, or the presence of additional copies of that gene. 

1.2.2 Genotyping and Imputation 

Ascertaining the genotype of a specific individual at a particular genetic locus can be 

performed either directly (“genotyped”) or inferred (“imputed”). Large-scale direct 

genotyping is usually achieved by using SNP arrays, which are able to genotype 
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individuals at hundreds of thousands if not millions of SNP loci simultaneously 

(Rabbee and Speed, 2006). SNPs that “tag” complex variants such as INDELs are 

increasingly being included in genotyping arrays. Genotyping is not the same as 

reading the entire DNA sequence of an individual, as only known locations of 

genetic variation are assessed during genotyping, and therefore will not detect all 

SNP variants (LaFramboise, 2009). Sequencing of the whole genome is still, to date, 

more costly, and therefore array-based genotyping is still widely used for larger-

scale studies in order to collect data about common variants spread throughout the 

human genome. 

As current genotyping methods cover only a small fraction of all known variants, 

imputation methods can be applied in order to increase the number of variants 

available for phenotypic association testing (Howie, Donnelly and Marchini, 2009). 

Imputation is the inference of unknown genomic variants based on other known 

variants (Marchini and Howie, 2010). Reference panels are required for imputation 

with the most commonly-used panels being those from the International HapMap 

Consortium and the 1000 Genomes Project (International HapMap et al., 2010; The 

1000 Genomes Project Consortium et al., 2012). These reference panels each 

contain genomic maps for hundreds, now thousands of individuals, with 2,504 

genomes included in Phase 3 of the 1000 Genomes Project (Sudmant et al., 2015). 

These genomic maps spread across multiple population ancestries and were 

obtained through either genotyping or sequencing methods, respectively. 
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For each variant, imputation aims to identify which one of two alleles would most 

likely be present in a particular individual at that locus. Imputation software such as 

IMPUTE2 and MaCH essentially match haplotypes between the individuals requiring 

imputation and the reference panels. The alleles chosen at each untyped variant are 

those present on the best fitting reference haplotype (Howie et al., 2009; Li et al., 

2010). One of the major limitations of imputation relates to variants with low minor 

allele frequency (MAF). These rarer variants occur less frequently in the reference 

panels and therefore, there is reduced accuracy when imputing these SNPs due to 

incomplete haplotype matching between the individual and the reference panels. 

To aid users, imputation software also provides metrics relating to the certainty of 

imputation for each variant. This enables researchers to exclude variants that are of 

poor imputation quality, as poorly imputed variants can affect the accuracy of 

subsequent association analyses. 

1.2.3 Linkage Disequilibrium 

As mentioned above, during imputation, untyped variants are inferred through 

knowledge of haplotypes (Marchini and Howie, 2010). These, in turn, arise through 

patterns of linkage disequilibrium (LD) throughout the genome (Wall and Pritchard, 

2003).  

Linkage disequilibrium refers to the non-random statistical correlation between two 

alleles (Goldstein and Weale, 2001; Slatkin, 2008). This means that if two variants 

are in LD with each other, and one of these variants has demonstrated significant 

association for a particular trait, association of the other variant to the trait can be 
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inferred with near certainty – and it may be that this alternative locus is the actual 

causal variant (Hirschhorn and Daly, 2005; Wang et al., 2010; Hormozdiari et al., 

2015). This is because variants in strong LD are usually inherited together as part of 

the same “haplotype block” (Goldstein and Weale, 2001; Wall and Pritchard, 2003). 

Complete linkage equilibrium, on the other hand, occurs when the presence of an 

allele at one locus is completely independent of that at another locus. 

The magnitude of LD between two loci can be determined by examining the 

relationship between the frequencies of alleles at these loci and the possible 

haplotypes (Wall and Pritchard, 2003). One commonly used measure of LD is the r2

value and it represents the square of the statistical correlation between the two loci 

(Devlin and Risch, 1995). Values range between one (complete linkage 

disequilibrium) and zero (complete linkage equilibrium). The r2 value is calculated 

by applying Equation 1.1. 

Equation 1.1: Calculating LD between two biallelic loci. r2 = linkage disequilibrium 
between loci p and q; pA = frequency of allele A at the first locus (p); pa = frequency 
of the alternative allele (a) at the first locus (p); qB = frequency of allele B at the 
second locus (q); qb = frequency of the alternative allele (b) at the second locus (q); 
xAB, xab, xAb and xaB refer to the probabilities of the four possible haplotypes (x). 
Adapted from Devlin and Risch (1995) 

1.3 Genetic investigations 

Investigations on the genetic aspects of various traits including refractive errors 

have traditionally focused on family pedigrees or twins, often with a substantial 
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proportion of those sampled exhibiting the investigated trait. More recently, 

investigations have moved on to concentrate on population-based cohorts, 

representative of the local demographic, usually consisting of samples of unrelated 

individuals. In these latter investigations, the findings are a more accurate 

representation of traits in the general population; however, much larger study 

samples are required in order to have sufficient statistical power to detect variants 

associated with the trait of interest. 

1.3.1 Family / twin studies 

1.3.1.1 Heritability 

Family studies consist of groups of multi-generational (both parents and their 

offspring) or sib-ship (same generation) family units with comparisons made 

between members within each family (Chen et al., 2007a). 

In sib-ship family structures, there is increased sharing of family environment during 

childhood, which, this could result in a greater proportion of phenotypic variance 

being attributed to genetic effects. This is likely due to misclassification of shared 

environmental effects as genetic effects and possible gene-environment 

interactions that may not have been accounted for (Tenesa and Haley, 2013). In 

both nuclear and sib-ship family studies, age-related effects within and between 

pairings need to be taken into consideration as these effects could affect heritability 

estimates. 
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Alternatively, twin-based studies use pairs of monozygotic (MZ) and dizygotic (DZ) 

twins to determine the influence of genetics on the trait of interest, whilst 

automatically eliminating the confounding effect of age within each pairing (Martin, 

Boomsma and Machin, 1997). Age-related effects between twin pairs, however, do 

need to be accounted for in these studies. On average, all genetic variants are 

shared between MZ twins and only half are shared between DZ twins (Boomsma, 

Busjahn and Peltonen, 2002). Thus, comparisons can be made between these two 

groups in order to estimate the proportion of variance attributed between genetic 

and environmental effects. 

An important assumption made in twin studies of heritability is that of equal 

environments. It is assumed that each member of a twin pairing experiences 

identical conditions in their shared family environment and this assumption is 

applied equally for both MZ and DZ twins (Kendler et al., 1993; Derks, Dolan and 

Boomsma, 2006). Thus, when estimating heritability according to phenotypic 

correlation within twin pairs, a greater correlation between MZ twins versus DZ 

twins is assumed to be a result of genetic effects. Conversely, if the phenotypic 

correlation between MZ twins is less than half of that for DZ twins, common 

environmental factors are assumed to be the predominantly causal feature (Hill, 

Goddard and Visscher, 2008). The equal environment assumption is often 

considered flawed, however, as it is possible for each member of the twin pair to 

partake in separate activities differentially depending on whether the pair are MZ or 

DZ twins. As a result, there is the potential for actual environmental effects to be 

mistaken for genetic effects in heritability estimates obtained through twin studies 
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(Hettema, Neale and Kendler, 1995). Moreover, estimates of heritability using twin 

pairs have the potential to misallocate the variance due to epistatic or gene-

environment interactions, which is typically assigned as additive genetic effects in 

these models. 

In spite of these limitations, family and twin based studies are very useful for 

determining the breakdown of the causes of phenotypic variance into their 

respective genetic and environmental components. This is because the entire 

genomes are compared according to assumptions of the proportion of variants 

shared between members of a family according to relatedness. However, these 

studies can only estimate the proportion of phenotypic variance attributed to 

genetic and environmental causes and are unable to identify specific causal loci or 

environmental factors associated with phenotypic variation. 

1.3.1.2 Linkage studies 

Linkage analysis attempts to identify a genetic region that harbours a variant (or 

variants) that influence the investigated trait (Ferreira, 2004). In order to facilitate 

this, linkage studies typically investigate multi-generational families (pedigrees) 

where several members are affected by the trait. In these studies, the transmission 

of a trait and the causal genetic loci can be traced through the generations of the 

pedigree (Balding, 2006). Variants in strong LD are transmitted together from one 

generation to the next, with continuous genetic sequences usually transmitted 

together in an “LD block”. These blocks are separated by recombination events 
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whereby there is a crossing over of the alleles from a parent during transmission 

(Weiss and Clark, 2002). 

Linkage analysis tests whether there is co-segregation of phenotype and a specified 

genetic polymorphism (Pulst, 1999). If co-segregation occurs more often than would 

be expected by chance it can be inferred that a causal variant for this trait likely 

resides nearby. Unfortunately, the regions identified through linkage studies often 

span across hundreds of genes, therefore it is typically not possible to narrow down 

identified regions to the level of a single gene (Boehnke, 1994). Instead, candidate 

gene studies need to be performed on selected genes within the linked regions. 

Linkage studies are particularly strong at identifying rare variants of large effect that 

contribute to the trait since such variants would be commonly occurring in the 

investigated pedigree (Manolio et al., 2009). However, as these are rare variants, it 

is often the case that a susceptibility locus identified in one family may not 

demonstrate linkage in other families. Therefore, findings from a linkage study are 

often harder to replicate to a statistically significant level in further pedigrees. 

In recent times, there has been a resurgence in the use of linkage studies to identify 

new susceptibility loci (Bailey-Wilson and Wilson, 2011; Ott, Wang and Leal, 2015). 

This has in part been due to the reduced costs of genetic sequencing, thus allowing 

for identification of specific, potentially causal variants within candidate loci, and 

improved ability to detect novel rare variants (Bailey-Wilson and Wilson, 2011). 
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1.3.2 Association Studies 

Whilst linkage and candidate gene studies have proved to be of value in identifying 

susceptibility loci, these studies are only able to identify rare causal loci that have a 

relatively large effect on phenotype (Hirschhorn and Daly, 2005). In addition, the 

identified loci only account for a small fraction of all of the heritability as estimated 

from family and twin based studies (Hirschhorn and Daly, 2005). 

Over the last decade, advances in genotyping and imputation techniques have led 

to the use of genome-wide association studies (GWAS) as an alternative method for 

identifying novel susceptibility loci (Visscher et al., 2017). GWAS are hypothesis-free 

investigations, individually examining common variants throughout the genome for 

association with the trait of interest (Stranger, Stahl and Raj, 2011). GWAS are 

hypothesis free because all available loci are investigated systematically, with no 

prior assumption as to which loci are more likely to demonstrate significant 

association. As a greater proportion of the genome is assessed through this method 

than in candidate gene studies, there is increased opportunity to identify novel 

susceptibility loci (Stranger et al., 2011). 

GWAS can be performed on either continuous or dichotomous traits, irrespective of 

the presumed mode of inheritance. Traditionally, an additive mode of inheritance is 

assumed for all variants when undertaking a GWAS, whereby the estimated 

phenotypic effect is doubled if an individual has two copies of a risk allele over 

having a single copy of that same risk allele at a particular locus. For example, if 

having one copy of a risk allele were estimated to change the refractive error of a 
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person by -0.10 D, having two copies of the same risk allele would be estimated to 

change the refractive error of that person by -0.20 D. However, if a particular 

variant has a dominant mode of inheritance resulting in the same phenotypic effect 

regardless of an individual having one or two copies of the risk allele, estimations of 

phenotypic effect per copy of that risk allele will be incorrect unless this alternative 

mode of inheritance is applied prior to analysis. 

Whilst GWAS allow for the identification of new susceptibility loci at locations 

throughout the genome in a single analysis, there are many limitations to using such 

studies. For instance, association test p-values for individual variants to 

demonstrate significant genome-wide association are very stringent (P < 5 x 10-8). 

This choice of statistical threshold takes into account the expected number of 

independent variants, the number of variants tested, and the patterns of LD 

between these variants (Risch and Merikangas, 1996; Dudbridge and Gusnanto, 

2008; Hoggart et al., 2008). Therefore, large sample sizes are required in order to 

have sufficient statistical power to detect true associated variants that often have 

modest effect sizes (e.g. odds ratio < 1.5) (Risch and Merikangas, 1996; Hoggart et 

al., 2008). It is assumed that quantitative traits are normally distributed (Goh and 

Yap, 2009). If a trait is not normally distributed, a normalising transformation such 

as a “Box-Cox”, “logarithmic” or an “inverse normal” transformation can be applied 

prior to analysis (Goh and Yap, 2009; Buzkova, 2013). Transforming quantitative 

phenotypes can, however, make interpretation of measures of phenotypic effect 

relative to allelic frequency much harder, since these measures will no longer be in 

the dimensions of the original trait. Additional technical considerations also need to 



22 

be made when conducting GWAS. GWAS are sensitive to allele frequencies in the 

sample and therefore population stratification effects can result in spurious 

associations if not accounted for. There will be uncertainty in the true genotype 

present at imputed loci, as by definition imputed variants for an individual are 

inferred, thus resulting in the potential for some variants to be incorrectly imputed. 

This can be mitigated through quality control processes, whereby variants with low 

imputation quality scores can be excluded from analysis. Rare variants (MAF < 0.01) 

are often excluded from analyses since studies would lack sufficient power to 

identify true association of these rare variants. Yet collectively, these rare variants 

may provide a significant contribution to the investigated phenotype and therefore, 

their exclusion reduces the overall number of identifiable associated loci. 

Individual GWAS have limited power to detect loci demonstrating significant 

association with their trait of interest. In order to enhance the ability to detect 

significant susceptibility loci, the results of multiple GWAS for a single trait from 

multiple samples are collated and analysed in meta-analyses (Evangelou and 

Ioannidis, 2013). 

1.3.3 Heritability 

For any sample, phenotypic variation is due to a combination of genetic and 

environmental factors (Falconer and Mackay, 1996; Hill et al., 2008). Genetic factors 

can be divided into additive and non-additive (dominance and epistatic) effects, 

with environmental factors divided into common and unique environmental effects 

(Equation 1.2). 
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Equation 1.2: Phenotypic variance (VP) as a sum of its parts: additive genetic (VA) 
and non-additive (VD) genetic effects, common (VC) and unique (VE) environmental 
effects. 

Additive genetic effects occur when the number of copies of an allele has a linear 

effect on an individual’s phenotype, and each locus acts independently of the 

others. Non-additive genetic effects include dominance genetic effects, where the 

resultant effect is dependent on interactions between the pair of alleles at a single 

locus; and epistasis, where the effect of an allele at one locus is dependent on its 

interactions with alleles at other loci (Visscher, Hill and Wray, 2008). 

Heritability is the proportion of phenotypic variation attributable to genetic factors 

(Visscher et al., 2008). This can be described in two ways: narrow-sense and broad-

sense heritability. Narrow-sense heritability (h2) is the proportion of phenotypic 

variance attributed solely to additive effects (Equation 1.3), whereas broad-sense 

heritability (H2) is defined as the proportion of phenotypic variance attributed to all 

genetic effects. In most instances, the term heritability refers specifically to the 

narrow-sense variety (h2) (Falconer and Mackay, 1996). 

Equation 1.3: Narrow-sense heritability (h2) is the proportion of phenotypic 
variance (VP) that is attributed to additive genetic (VA) effects. 
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By definition, heritability is population specific, as it is sensitive to environmental 

factors; thus it is not a constant value and can vary with age (Visscher et al., 2008). 

Understanding the heritability of a trait is important as it gives an understanding as 

to the possible causes of variation of that trait in a specific population. For example, 

for a highly heritable trait such as human height (Macgregor et al., 2006; Yang et al., 

2010), it can be inferred that much of the variation in height in a certain population 

is due to genetic variation within that population. Conversely, if a trait was to 

exhibit low heritability, it can be inferred that differing environmental (non-genetic) 

exposures within a population are mostly responsible for their phenotypic variation. 

This information can be used to direct further research into establishing the causal 

mechanisms of particular complex traits (Koran et al., 2014) or aid the development 

of strategies to predict individuals who are more likely to develop these traits 

(Sanfilippo et al., 2010). 

Twin and family-based studies have been used to estimate trait heritability and 

partition trait variation into its component parts for decades. More recently, 

statistical methods have been developed to estimate heritability in large samples of 

unrelated individuals. Here, studies have estimated the proportion of phenotypic 

variance attributed to variants demonstrating genome-wide significant association 

in GWAS or from a wider selection of commonly occurring genetic variants 

(Visscher, 2008; Yang et al., 2010; Yang et al., 2011a). However, there is often a 

considerable discrepancy in heritability estimates obtained from these newer SNP-

based methods and traditional twin / family study based methods. For example, 
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twin studies of human height have estimated heritability to be approximately 0.80 

(Silventoinen et al., 2003). This is in contrast to the estimates of 0.16 and ~0.50, 

obtained respectively from variants that have demonstrated genome-wide 

significant association for this trait (Wood et al., 2014) or from a collection of 

commonly occurring variants irrespective of their strength of association (Yang et 

al., 2010; Wood et al., 2014). The discrepancy between heritability estimates for a 

trait from twin / family studies and from variants identified to demonstrate 

association with that trait is a common problem faced in the field of complex trait 

genetics and is described as the “missing heritability” (Maher, 2008; Manolio et al., 

2009). It is important to note that heritability estimates obtained from twin / family 

studies include the contribution of all genetic variants, irrespective of their allele 

frequencies and effect sizes, whereas estimates obtained using variants identified 

using GWAS (h2
GWAS) only consider the contribution of a few variants to the 

phenotypic variance. This means that most variants contributing to the phenotype 

and its variance are not included when estimating h2
GWAS, due to their low allele 

frequency or because they have effect sizes too small to demonstrate sufficiently 

strong association in GWAS (Pritchard, 2001; Bodmer and Bonilla, 2008; Frazer et 

al., 2009). In addition, the true causal marker may not be in complete linkage 

disequilibrium with any variants included in GWAS, thus resulting in the true 

marker’s contribution not being fully determined (Yang et al., 2010). As described 

above, an important assumption made in twin studies is the common 

environmental assumption. This assumption presumes that both individuals in pairs 

of monozygotic or dizygotic twins are exposed to identical environments (Kim et al., 

2015), thus if monozygotic twins are more phenotypically correlated than dizygotic 
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twins, any differences between them must be due to genetic factors (Scarr and 

Carter-Saltzman, 1979; Kendler et al., 1993). However, this is often not the case as 

differences in environmental exposures have been reported to be greater between 

pairs of dizygotic twins than their monozygotic counterparts, as reviewed by 

Richardson and Norgate (2005). Further explanations include epigenetic variations, 

poorly tagged structural variants, gene-gene and gene-environment interactions, all 

of which are not directly considered in GWAS yet do contribute to the genetic 

component of phenotypic variance in twin / family studies (Johannes, Colot and 

Jansen, 2008; Frazer et al., 2009; Manolio et al., 2009; Eichler et al., 2010).

1.4 What has been discovered so far by each of these methods? 

1.4.1 Heritability 

With respect to refractive errors, twin and family based investigations have 

demonstrated spherical equivalent (and myopia) to be highly heritable (50-91%) 

and determined primarily by additive effects (Teikari et al., 1991; Hammond et al., 

2001; Lyhne et al., 2001; Wojciechowski et al., 2005; Chen et al., 2007a; Klein et al., 

2009; Lopes et al., 2009; Baird, Schache and Dirani, 2010; Kim et al., 2013). 

Genome-wide significant associations from GWAS for spherical equivalent and 

myopia, only account for 3-10% of the variance in spherical equivalent (Verhoeven 

et al., 2013; Miraldi Utz, 2017). However, investigation of commonly occurring 

variants in unrelated individuals estimated the heritability of refractive error to be 

approximately 0.35 (Guggenheim et al., 2015). 
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Twin and family studies of refractive and corneal astigmatism have been found each 

trait to be moderately heritable (50-65%) with this predominantly composed of 

dominance effects (Hammond et al., 2001; Dirani et al., 2006; Grjibovski et al., 

2006); however, one study of corneal astigmatism in Koreans estimated heritability 

to be slightly greater (70%) and to be composed of solely additive genetic effects 

(Kim et al., 2013). Estimates of heritability for astigmatism using the newer SNP-

based methods have not been published to date. 

1.4.2 Linkage studies 

Linkage studies of refractive errors have typically concentrated on high myopia 

(< -6.00 D). However, there are some studies that have investigated low-moderate 

myopia (< -1.00 D) (Stambolian et al., 2004; Stambolian et al., 2005; Chen et al., 

2007b; Ciner et al., 2008; Schache et al., 2009) or spherical equivalent refractive 

error as a continuous trait (Hammond et al., 2004; Klein et al., 2007). To date, 25 

loci have been designated as myopia (MYP) associated loci, as listed in the Online 

Mendelian Inheritance in Man (OMIM) database (URL: https://omim.org/) and 

summarised in Table 1.1. 

https://omim.org/
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Table 1.1: Summary of myopia (MYP) loci listed in the Online Mendelian Inheritance in Man (OMIM) database (URL: https://omim.org/). 

MYP Locus Region Low/High Myopia References
MYP1 Xq28 High Guo et al. (2010); Ratnamala et al. (2011)
MYP2 18p11.31 High Young et al. (1998b); Young et al. (2001)
MYP3 12q21-q23 High Young et al. (1998a); Farbrother et al. (2004); Nurnberg et al. (2008)
MYP5 17q21-q22 High Paluru et al. (2003)
MYP6 22q13.33 Low Stambolian et al. (2004); Klein et al. (2007); Tran-Viet et al. (2013)
MYP7 11p13 Low Hammond et al. (2004)
MYP8 3q26 Low Hammond et al. (2004); Andrew et al. (2008)
MYP9 4q12 Low Hammond et al. (2004)

MYP10 8p23 Low Hammond et al. (2004); Stambolian et al. (2005)
MYP11 4q22-q27 High Zhang et al. (2005)
MYP12 2q37.1 Low/High Paluru et al. (2005); Chen et al. (2007b); Schache et al. (2009)
MYP13 Xq23-q27.2 High Zhang et al. (2006); Zhang et al. (2007)
MYP14 1p36 Low Wojciechowski et al. (2006)
MYP15 10q21.1 High Nallasamy et al. (2007)
MYP16 5p15.33-p15.2 High Lam et al. (2008)

MYP17 (MYP4) 7p15 Low/High Ciner et al. (2008); Paget et al. (2008)
MYP18 14q22.1-q24.2 High Yang et al. (2009)
MYP19 5p15.1-p13.3 High Ma et al. (2010)
MYP20 13q12.12 High Shi et al. (2011b)
MYP21 1p22.2 High Shi et al. (2011a); Tran-Viet et al. (2012); Xiang et al. (2014)
MYP22 4q35.1 High Zhao et al. (2013)
MYP23 4p16.3 High Aldahmesh et al. (2013); Jiang et al. (2014)
MYP24 12q13.3 High Guo et al. (2014); Jiang et al. (2014)
MYP25 5q31.1 High Guo et al. (2015)
MYP26 Xq13.1 High Xiao et al. (2016)

https://omim.org/
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Using a combination of linkage analysis and whole-exome sequencing in recent 

years, high myopia susceptibility loci have been identified at the genes, SLC39A5

and P4HA2 in Chinese families with autosomal dominant (AD) non-syndromic high 

myopia (Guo et al., 2014; Guo et al., 2015). These loci have since been designated 

as MYP24 and MYP25 respectively (Table 1.1). The increasing number of potential 

susceptibility loci has added much complexity to understanding the polygenic 

nature of myopia (Farbrother et al., 2004). 

Linkage studies have not been performed for astigmatism, despite the suggestion 

that such studies may be useful in identifying astigmatism susceptibility loci 

(Clementi et al., 1998; Dirani et al., 2008) 

1.4.3 Genome-wide Association Studies (GWAS) 

1.4.3.1 Spherical Equivalent / Myopia 

Early GWAS for refractive errors were conducted in relatively small samples of Asian 

ancestry. In these studies, potential high myopia susceptibility loci were identified 

near the BLID gene and in the region of the CTNND2 gene (Nakanishi et al., 2009; Li 

et al., 2011a). However, these loci did not reach genome-wide significance. It should 

be noted that this shortfall in statistical significance is likely to be due to the size of 

the cohorts in each study (N = 4,155 and 2,741 respectively). Li et al. (2011b) 

identified a genome-wide significant locus for high myopia in the MYP11 myopia 

linkage locus in their Asian ancestry cohort and two discrete loci (near the GJD2 and 

RASGRF1 genes) demonstrating genome-wide significant association with myopia 
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were identified on chromosome 15 in separate studies of European ancestry 

cohorts (Hysi et al., 2010; Solouki et al., 2010). 

In larger scale studies, Kiefer et al. (2013) conducted a GWAS for refractive error

including over 45,000 customers from the database of the 23andMe direct-to-

consumer genetic testing company. For the purposes of their analysis, refractive 

error was considered as a binary trait with patients reporting if they had been 

diagnosed as being near-sighted and their age at diagnosis, if applicable. Twenty-

two variants were identified to demonstrate genome-wide significant association 

with the age of myopia onset; all but two of these were not identified in previous 

studies. In a smaller replication dataset of 8,323 individuals, half of these variants 

were found to demonstrate significant association. Of the 22 variants identified in 

the initial cohort, most of these were in or near genes responsible for extracellular 

matrix (ECM) structure, photoreceptor function, ocular growth, neuronal 

development and signalling pathways. In turn, altered function of these genes could 

affect the normal course of ocular development, resulting in changes in cell 

proliferation, axial length and other structural abnormalities. A similarly sized meta-

analysis conducted by the Consortium of Refractive Error and Myopia (CREAM) 

included 32 population-based cohorts of European and Asian ancestries (total 

45,931 participants: 36,636 of European ancestry and 9,295 of Asian ancestry)

(Verhoeven et al., 2013). This study identified 24 novel loci demonstrating 

association with refractive error, with many of these loci identified in both 

European ancestry and Asian ancestry individuals. The findings from this analysis 

showed considerable overlap with the GWAS conducted independently and almost 
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concurrently by the 23andMe group (Kiefer et al., 2013), with 25 loci identified as 

demonstrating potential association with myopia susceptibility in both studies, 

despite being conducted through differing methodologies (Kiefer et al., 2013; 

Verhoeven et al., 2013). A more recent GWAS for near-sightedness conducted by 

Pickrell et al. (2016) identified 183 associated loci in their sample of almost 200,000 

individuals registered on the 23andMe database. However, their study only 

reported the marker demonstrating strongest association at the top 50 loci of these 

183 loci. 

1.4.3.2 Astigmatism 

Early GWAS for corneal astigmatism showed promise, with the identification of a 

single locus in the promoter region of PDGFRA on chromosome 4 (lead variant: 

rs7677751, P = 7.87 x 10-9) associated with this trait in 8,513 individuals of Asian 

ancestry by Fan et al. (2011). Association of the PDGFRA region with corneal 

astigmatism was replicated in a sample of European children (N = 1,968; 

Guggenheim et al. (2013a)). Variants in the PDGFRA region have also demonstrated 

association in studies of corneal curvature (a trait from which corneal astigmatism is 

derived) in this sample of European children, in Australians of European ancestry (N 

= 2,801; Mishra et al. (2012)) and in 10,008 Asian ancestry individuals (Han et al., 

2011).  Furthermore, variants at the FRAP1 gene locus on chromosome 1 have 

demonstrated genome-wide significant association with corneal curvature in this 

Asian ancestry sample (Han et al., 2011). 
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The above studies were relatively small scale and therefore had low statistical 

power to detect variants of small effect size at genome-wide significance. In order 

to improve the ability to identify associated genetic variants of small effect size, 

meta-analyses of GWAS for refractive astigmatism, a trait with greater volume of 

data available from research studies, have been performed in recent years. 

However, these analyses have not been as fruitful as anticipated. Lopes et al. (2013) 

identified a susceptibility locus near the VAX2 gene in their meta-analysis of 22,100 

European ancestry individuals. Despite the known function of VAX2 with respect to 

early ocular development, giving support to the notion of it being an astigmatism 

susceptibility locus (Barbieri et al., 1999; Zagozewski et al., 2014), this locus did not 

demonstrate genome-wide significant association. Furthermore, a larger-scale 

GWAS meta-analysis for refractive astigmatism conducted by CREAM with 45,931 

participants (36,636 of European ancestry and 9,295 of Asian ancestry), identified 

only a single locus demonstrating genome-wide significant association, located near 

the NRXN1 gene on chromosome 2 (lead variant: rs1401327, P = 3.92 x 10-8) (Li et 

al., 2015a). These results are in contrast to those for the highly heritable refractive 

traits of spherical equivalent and myopia, which have identified nearly two hundred 

variants demonstrating genome-wide significant association (Kiefer et al., 2013; 

Verhoeven et al., 2013; Pickrell et al., 2016).

1.5 Overall Aims 

By developing our understanding of the genetic determinants of refractive errors 

and the biological processes that underlie their development, it is anticipated that 

more effective therapeutic and preventative strategies can be developed, with the 
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possibility of tailoring strategies to individual needs. Furthermore, models 

predicting at-risk individuals can be developed and improved through improved 

understanding of the genetic architecture underlying these traits. 

The aim of the following series of investigations was to leverage the latest statistical 

methods and large-scale cohorts available in order to further understand the 

genetic determinants for the refractive error traits of spherical equivalent, corneal 

astigmatism and refractive astigmatism. 

Specifically, studies were conducted with the following aims: 

 Examine genetic variants on the X-chromosome for association with 

spherical equivalent refractive error in a cohort of teenage children. 

 Conduct a meta-analysis of GWAS results for corneal astigmatism including 

European ancestry and Asian ancestry cohorts (on behalf of the CREAM 

consortium). 

 Utilise data from the UK Biobank study to estimate SNP-heritability for 

spherical equivalent, corneal astigmatism and refractive astigmatism. 

 Conduct GWAS for corneal astigmatism and refractive astigmatism using 

data from the UK Biobank study. 

 Investigate whether candidate myopia genes identified from a primate 

myopia model are enriched with refractive error associated variants in 

human samples. 
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Chapter 2 General Methods 
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Chapter 2 General Methods (Study cohorts, tools and models used 

in these investigations) 

2.1 ALSPAC cohort of children and their mothers 

The Avon Longitudinal Study of Parents and Children (ALSPAC) is a population-based 

birth cohort study (Boyd et al., 2013). Pregnant women with expected delivery 

dates between 1st April 1991 and 31st December 1992, residing in the former 

county of Avon, UK, were eligible for enrolment. This cohort consisted of 14,541 

pregnancies, from which there were 13,988 children alive at 1 year of age. All 

participants provided informed consent. Ethical approval for the study was obtained 

from the ALSPAC Ethics and Law Committee and the Local Research Ethics 

Committees. The ALSPAC website contains details of all the data that is available 

through a fully searchable data dictionary (URL: 

http://www.bris.ac.uk/alspac/researchers/data-access/data-dictionary/). 

Phenotyping, genotyping and imputation were carried out by members of the 

ALSPAC team. 

2.1.1 Phenotypes 

Non-cycloplegic autorefraction (Canon R50 instrument, Canon USA Inc., Lake 

Success, NY) was performed at clinic visits scheduled at ages 7, 10, 11, 12 and 15 

years. Mean spherical equivalent (MSE) was averaged for the two eyes. Outlier 

autorefraction values were removed as described by Northstone et al. (2013) and 

the child’s precise age was recorded at each clinic visit. As outlined by Guggenheim 

et al. (2013a), corneal astigmatism was calculated from corneal curvature 

http://www.bris.ac.uk/alspac/researchers/data-access/data-dictionary/
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measurements (Zeiss IOLmaster instrument, Carl Zeiss Meditec, Welwyn Garden 

City, UK) obtained at the clinic visit scheduled at age 15 years. Corneal curvature 

measurements were introduced towards the latter stages of the age 15 year 

assessment visits; hence only a minority of participants underwent this test. 

2.1.2 Genotyping and Imputation 

ALSPAC children were genotyped using the Illumina HumanHap550 quad chip. 

Following quality control (individual call rate > 0.97, SNP call rate > 0.95, minor 

allele frequency (MAF) > 0.01, Hardy-Weinberg equilibrium (HWE) p-value > 1 x 10-7, 

non-European clustering individuals removed), 477,482 SNP genotypes were 

available for 8,935 children after excluding participants who had withdrawn 

consent. Haplotypes were phased (using a combined sample of these children and 

their mothers, when the mother’s genotype data was available) using ShapeIT 

(v2.r644). Imputation was performed using IMPUTE v2.2.2 against all 2,186 

reference haplotypes (including non-Europeans) in the Dec 2013 release of the 1000 

Genomes reference haplotypes (Phase 1 Version 3). All variants were mapped to 

NCBI human genome build 37 (hg19/GRCh37) coordinates. 

2.2 UK Biobank Study 

UK Biobank is a prospective study following the health and wellbeing of 502,633 

participants resident in the UK aged between 40 and 69 years-old at the baseline 

recruitment visit (during the period 2006 to 2010). UK Biobank received ethical 

approval from the NHS Research Ethics Committee (Reference: 11/NW/0382). 

Baseline assessment was undertaken at one of 22 assessment centres distributed 
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across the UK (Allen et al., 2014; Sudlow et al., 2015). Approximately 20,000 

participants also attended the first repeat assessment visit (during the period 2012 

to 2013). Demographic information and medical history were ascertained through 

touch-screen questionnaires. Participants also underwent a wide range of physical 

and cognitive assessments, including blood sampling (for DNA) and, for participants 

recruited towards the end of the recruitment period, an ophthalmic examination. 

Phenotyping, genotyping and imputation were carried out by members of the UK 

Biobank team. 

2.2.1 Phenotypes 

119,806 participants had keratometry readings taken for at least one eye using the 

Tomey RC 5000 autorefractor-keratometer (Tomey Corp., Nagoya, Japan). Up to six 

measurements were taken for each eye using 6mm diameter keratometry mires, 

from which corneal astigmatism was derived (see below). 130,521 participants had 

non-cycloplegic autorefraction performed for at least one eye using the same 

autorefractor-keratometer, with up to ten measurements taken for each eye. 

Refractive astigmatism was derived from the autorefraction cylindrical power. 

Spherical equivalent was recorded as the spherical power plus half of the cylindrical 

power from autorefraction. All keratometry/autorefractor measurements flagged 

with an error code ‘E’ (indicating ‘Lower reliability data’) were recoded as missing 

before taking the mean trait values for each eye individually across assessment 

centre visits, then the mean of both eyes for each individual. The mean corneal 

astigmatism and mean refractive astigmatism for each individual were also 

categorised as dichotomous variables using a grid of thresholds to define 
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case/control status, from 0.50 to 1.50 D, in 0.25 D steps. After the exclusion of 

unreliable readings, 119,799 participants had measures for corneal astigmatism, 

and 130,459 participants had measures for refractive astigmatism and spherical 

equivalent refractive error. 

2.2.2 Genotyping and Imputation 

Participant DNA samples were genotyped by UK Biobank researchers at 

approximately 800,000 genetic variants using one of two genotyping arrays, the UK 

BiLEVE Axiom array or the UK Biobank Axiom array. Genetic data were released in 

two waves. In the UK Biobank “Interim 150K” release, data were made available for 

152,725 samples imputed at 72,355,689 variants using IMPUTE2 (Howie, Marchini 

and Stephens, 2011) with a merged 1000 Genomes Project Phase 3 and UK10K 

Project haplotype reference panel (The UK10K Consortium et al., 2015; Wain et al., 

2015; Davies et al., 2016). Further details of the imputation protocol can be found 

at the following URL: http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=157020.  

Of these 152,725 genotyped participants, 141,751 were of European ancestry based 

on principal components analysis (PCA), and were non-outliers for heterozygosity 

(defined as autosomal heterozygosity within four standard deviations of the mean 

for the full set of European ancestry samples). Data for these individuals were taken 

forward for SNP-heritability estimation. 

The second wave of genetic data released from the UK Biobank consisted of 

information for all participants whose data passed quality control filters, resulting in 

http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=157020
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genotype information for 488,377 participants. Imputation for the second wave was 

performed prior to release as described by Bycroft et al. (2017). Briefly, imputation 

was carried out using IMPUTE4, an updated version of IMPUTE2 (Howie et al., 2011; 

Bycroft et al., 2017) with a reference panel comprising of the Haplotype Reference 

Consortium (HRC) reference panel and a merged 1000 Genomes Project Phase 3 

and UK10K Project haplotype reference panel (The UK10K Consortium et al., 2015; 

McCarthy et al., 2016; Bycroft et al., 2017). Due to uncertainty about the reliability 

of the 1000 Genomes and UK10K imputations, for the present work only the ~40 

million variants present in the HRC imputation panel were utilised. All variants were 

mapped to NCBI human genome build 37 (hg19/GRCh37) coordinates.

Of the 488,377 genotyped participants, 409,728 self-reported White British ancestry 

and were non-outliers for heterozygosity (heterozygosity within four standard 

deviations of the mean of the White British ancestry subset defined by Bycroft et al. 

(2017)). These individuals were taken forward for the GWAS analyses. 

Table 2.1 summarises the number of participants in the UK Biobank study with 

keratometry, autorefraction and genotype data available.  
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Table 2.1: Summary of the UK Biobank Sample. 

Before QC After QC
Total Sample 502,633 -
Keratometry performed 119,806 119,799
Autorefraction performed 130,521 130,459
Genotype data available (interim release) 152,725 141,751a

Genotype data available (full release) 488,377 409,728b

a After restricting to European ancestry based on PCA and non-outliers for 
heterozygosity
b After restricting to self-reported White British ancestry and non-outlier for 
heterozygosity

2.2.3 Exclusion Criteria 

In order to minimise the effects of ocular pathology or surgery affecting 

keratometry/autorefraction readings, individuals were excluded from analyses if at 

any visit, they self-reported having had any ocular conditions or surgery as listed in 

Table 2.2. Note that individuals may have met multiple criteria for exclusion. 

Further exclusions on the basis of extreme phenotype values or anisometropia 

(differences between eyes within an individual) were not made in the primary 

analyses. 
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Table 2.2: Summary of exclusions from the UK Biobank sample due to ocular conditions or surgery. 

Corneal Astigmatism Refractive Astigmatism / 
Spherical Equivalent

Individuals with phenotype data availablea 119,799 130,459

Exclusion Criteria UK Biobank
Field Code No. of individuals excludedb

Any injury or trauma resulting in loss of vision 6148 841 932
Cataract extraction/lens implant 20004 1,658 1,832
Glaucoma surgery/trabeculectomy 20004 149 173
Any eye surgery in the last four weeks 5181 7 8
Cataract surgeryc 5324 2,863 3,156
Refractive laser eye surgeryc 5325 2,822 3,010
Surgery for glaucoma or high eye pressurec 5326 208 252
Corneal graft surgeryc 5327 274 308
Cataract 6148 - 7,462
Other serious eye condition 6148 - 2,749
Retinal operation/vitrectomy 20004 - 874
Any eye surgery 20004 - 1,130
Total Excludedb 6,610 14,413
Individuals remaining 113,189 116,046
a After excluding for unreliable readings (see Section 2.2.1)
b Individuals may have met multiple exclusion criteria
c Individuals responding “Don’t know” to these questions were also excluded
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2.2.4 Covariates 

For all analyses using the UK Biobank data sets, the mean age of the participant at 

the assessment centre visit(s) when eye measures were recorded, was included as a 

quantitative covariate. Mean spherical equivalent was included as an additional 

quantitative covariate for all analyses of corneal and refractive astigmatism. 

Genotyping array (0 = BiLEVE, 1 = UK Biobank Axiom) and sex (0 = female, 1 = male) 

were included as binary covariates. The sex of each individual was matched 

between self-reported and genetically inferred sex values. If these values did not 

match, sex was recoded as missing for that individual. Individuals with missing 

values for either the investigated trait or any of the covariates were excluded from 

analysis. 

2.2.5 “High-confidence” Variants

For the mixed model analyses carried out using BOLT-LMM and GCTA (Chapters 5 

and 6), a set of approximately 890,000 “high-confidence” variants in LD was 

generated using PLINK 2.0 (Chang et al., 2015). All variants with an “rs” prefix that 

were directly genotyped or imputed in at least 99% of individuals, with minor allele 

frequency (MAF) > 0.005 and imputation quality (INFO) > 0.90 were LD-pruned to 

obtain list of variants for creating genetic relatedness matrices (GRMs). This LD-

pruning was performed using the PLINK command [--indep-pairwise 50 5 0.1] 

whereby r2 values between pairs of markers within 50-marker-wide windows were 

assessed, with one marker from the pair removed if r2 > 0.1. Window start positions 

were located in 5-marker steps. 



43 

2.3 Statistical Methods 

Throughout this series of investigations, a variety of statistical methods have been 

utilised. This section outlines the overall purpose of these tests and the software 

applications used to perform them. 

2.3.1 Single Marker Tests 

Several software applications are available to perform single marker tests, 

commonly known as genome-wide association studies (GWAS) when all autosomes 

are investigated. Commonly used applications that were implemented in this series 

of investigations include SNPTEST v2.5, PLINK v1.9/2.0 and BOLT-LMM v2.3 (Purcell 

et al., 2007; Marchini and Howie, 2010; Chang et al., 2015; Loh et al., 2015; Loh et 

al., 2018). For all single marker association tests performed here, they used linear or 

logistic regression approaches or, as seen in Chapter 6, newer, mixed linear models.

2.3.1.1 Linear and Logistic Regression 

Linear and logistic regression models are the simplest methods of performing single 

marker association tests whilst allowing the inclusion of covariates (such as age, sex 

or ethnicity). These covariates are likely predictors of the trait of interest and may 

also share independent genetic associations with it; therefore they must be 

accounted for in order to prevent confounding when testing for associations of 

genetic variants to the trait of interest (Clarke et al., 2011; Bush and Moore, 2012). 

Linear regression was employed for continuous traits with effect sizes reported as 

the average increase (or decrease) in trait value for each copy of the “effect” allele 

possessed (βg). 
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Equation 2.1: Linear Regression Equation. Y = expected outcome (trait); β0 = 
intercept of linear regression line; βgXg = effect size per copy of the effect allele g; 
βcXc = effect size per unit of the covariate c (e.g. age, sex); ε = residual error term. 

Conversely, for dichotomous traits, logistic regression was employed as there are 

only two trait classifications, with variant effects reported as odds ratios. Odds 

ratios state the average factor by which the likelihood of an individual having case 

status increases (or decreases) for each copy of the “effect” allele possessed

(Equation 2.2). If the likelihood of having case status is equal to that for being 

unaffected for a given variant, the odds ratio will be 1. 

Equation 2.2: Odds Ratio for a given genotype. Pcase = probability of being a case; 
Pcontrol = probability of being a control.

Rather than estimating the expected trait value for a given genotype as is the case 

for linear regression, logistic regression estimates the natural logarithm (ln) of the 

odds ratio, given the predictors (Equation 2.3; Lever, Krzywinski and Altman (2016)). 

Equation 2.3: Logistic Regression Equation. ln(Pcase/Pcontrol) = log odds ratio given 
the predictor (X); β0 = intercept of logistic regression line; βgXg = effect size per copy 
of the effect allele g; βcXc = effect size per unit of the covariate c (e.g. age, sex); ε = 
residual error term. Adapted from Lever et al. (2016). 



45 

In all instances, an additive model has been applied whereby reported effects are 

an average per copy of the effect allele possessed (i.e. if β is the magnitude of effect 

of a particular variant if an individual were heterozygous for this variant, then the 

magnitude of effect would be 2β for an individual who is homozygous for this same 

allele). 

2.3.1.2 Mixed Linear Models 

As implemented in BOLT-LMM v2.3 (Loh et al., 2015; Loh et al., 2018), mixed linear 

models are an alternative to standard linear regression models for single marker 

association tests.  

Equation 2.4: Mixed Linear Model. Y = expected outcome (trait); β0 = intercept of 
linear regression line; βgXg = effect size per copy of the effect allele g; βcXc = effect 
size per unit of the covariate c (e.g. age, sex); G = genetic effects (included as a 
random effect); ε = residual error term. 

Mixed linear models share features of standard linear regression models (Equation 

2.4 vs. Equation 2.1), with the terms from linear regression forming the fixed effects 

portion of the linear mixed model. However, a key advantage of mixed linear 

models over linear regression is that residual population stratification and 

relatedness within the study sample can be accounted for as random effects (term 

G in Equation 2.4), which (if otherwise left unaccounted for) can lead to reduced 

power to detect associations or an excess of false positive association signals (Yang 

et al., 2014). This consideration of population effects therefore facilitates the 
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inclusion of related individuals who would traditionally be excluded from analyses, 

thus improving association study power. 

Mixed linear models traditionally use pre-constructed GRMs in order to account for 

this residual population structure (Yang et al., 2014); however, BOLT-LMM on the 

other hand computes the parameters required for the random effects portion of 

the model during analyses. This improves computational efficiency in part due to 

the leave-one-chromosome-out (LOCO) procedure implemented by BOLT-LMM, 

which would otherwise be computationally intensive if multiple GRMs were 

required to be stored in memory (as is the case for the alternative software 

application GCTA-LOCO (Yang et al., 2014)). In LOCO analyses, variants situated on 

the same chromosome as the variant tested are not included in the computation of 

the random effects portion of the model (Yang et al., 2014). This is because, the 

variant tested would be considered twice in the model – once as a fixed effect (by 

default as the tested variant) and secondly as a random effect (either directly, or 

indirectly through variants in LD acting as proxies). This over-fitting would dampen 

the true association signal of the tested variant and therefore, use of the LOCO 

procedure improves the power to identify associations. 

BOLT-LMM has the ability to employ two different models when performing single 

marker association tests; the standard “infinitesimal” and the Bayesian “non-

infinitesimal” models (Loh et al., 2015). The “infinitesimal” model assumes that all 

variants are causal and are of small, normally distributed effect sizes. This model is 

equivalent to alternative mixed linear models used for single marker association 
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tests. The “non-infinitesimal” model on the other hand is a more complex model 

and is only applied if BOLT-LMM computes that there will be an expected 

improvement in performance compared to the standard “infinitesimal” model (Loh 

et al., 2015). This Bayesian model assumes effect sizes of variants do not follow a 

pre-defined single normal distribution, as is the case with frequentist tests (i.e. 

standard linear/logistic regression or the BOLT-LMM “infinitesimal” model), but 

rather they can be fitted to two normal distributions that consider the presence of a 

small number of variants of large effect, with the remaining variants assumed to be 

of small effect size. These probability distributions are calculated by the software 

based on the input data and parameters from these distributions are subsequently 

incorporated into their mixed linear models (Stephens and Balding, 2009). For all 

single marker association tests performed using BOLT-LMM, the standard 

“infinitesimal” model was used as the software computed there would be no gain in 

performance from the “non-infinitesimal” model.

2.3.2 Genomic Control 

It is important to take into consideration sources of genomic inflation when 

performing any genetic association test. Genomic inflation occurs when association 

test p-values are more significant than would be expected under the null hypothesis 

of uniformly distributed p-values obtained by chance (Devlin and Roeder, 1999; 

Zheng, Freidlin and Gastwirth, 2006). Sources of genomic inflation include 

genotyping errors, unadjusted population stratification and relatedness between 

sample individuals, all of which can result in false associations; and true polygenicity 

of the investigated trait (Yang et al., 2011c). 
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2.3.2.1 Genomic Inflation Factor (λGC) 

For each GWAS performed, the genomic inflation factor (λGC) was determined by 

taking the median χ2 test statistic observed and dividing it by the expected median 

χ2 test statistic of ~0.456 (Equation 2.5) (Devlin, Roeder and Wasserman, 2001). 

Equation 2.5: Calculating genomic inflation factor (λGC) (Devlin et al., 2001). 

In the event that λGC > 1, studies may decide to adjust their association test 

statistics in order to account for this inflation by dividing all association test χ2

statistics by λGC (Hinrichs, Larkin and Suarez, 2009). In the quality control protocol 

outlined by Winkler et al. (2014) and implemented in the software package EasyQC, 

studies with λGC > 1.1 were deemed to be in need of reviewing with respect to 

unadjusted population structure. However, adjustment of results using λGC can be 

overly conservative in cases of true polygenicity (Bulik-Sullivan et al., 2015b). 

2.3.2.2 LD Score Regression Intercept (λLDSC) 

As an alternative method to overcome this problem of assessing genomic inflation 

in the presence of polygenicity, the software application LD Score regression (LDSC) 

uses single marker association test statistics to calculate an alternative genomic 

inflation statistic, λLDSC (Bulik-Sullivan et al., 2015b). This alternative statistic is 

obtained from the intercept of its regression analysis and is an estimate of inflation 

in association test statistics due to residual population structure or genotyping 
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errors. In order to perform this LD Score regression, reference LD scores were 

obtained using European ancestry individuals from the 1000 Genomes Project but 

restricted to variants in the HapMap3 reference panel, since these variants were 

known to be commonly occurring and well imputed (International HapMap et al., 

2010; Bulik-Sullivan et al., 2015b). 

The LD score for a variant is defined as the sum of pairwise r2 values between itself 

and all variants within 1cM of that variant. As multiple variants may have equal LD 

scores, variants were grouped into quantiles with the mean LD score of the variants 

within that quantile regressed against the mean χ2 test statistic of those same 

variants. From this regression, the intercept of the regression line (i.e. the expected 

mean χ2 test statistic in the event of a marker in complete linkage equilibrium with 

all other markers within 1cM), is defined as the inflation due to residual population 

structure (λLDSC). The slope of this regression line provides an estimate of the SNP-

heritability explained by the variants included in the LD score estimation (Bulik-

Sullivan et al., 2015b). 

In addition, the LDSC software package has the ability to calculate genetic 

correlations between pairs of traits (Equation 2.6; Bulik-Sullivan et al. (2015a)). The 

SNP-heritabilities for the respective traits are taken from the LD score regression 

method described above.  
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Equation 2.6: Estimating Genetic Correlation using LDSC. rg = genetic correlation; 
= genetic covariance;  = SNP-heritability for trait i (Bulik-Sullivan et al., 2015a). 

2.3.3 Meta-analysis of GWAS Results 

As individual investigations may lack the necessary statistical power to detect 

associations due to their sample size, meta-analyses have often been performed in 

order to combine the results of independent individual studies, therefore improving 

the ability to detect associations (Evangelou and Ioannidis, 2013). For the meta-

analyses performed in the following chapters, the METAL software application was 

used (Willer, Li and Abecasis, 2010). METAL combines association test summary 

statistics using a fixed-effects, inverse variance weighted approach. This method 

weights effect sizes by their respective standard errors as outlined in Figure 2.1. 

Figure 2.2 demonstrates a meta-analysis of a single variant across four simulated 

studies. Weights for each study were calculated according to the inverse variance 

weighted method as outlined in Figure 2.1, in order to then calculate the meta-

analysed effect size, its respective standard error and p-value. Also included in 

Figure 2.2 is a Forest Plot that displays the effect sizes and their respective 95% 

confidence intervals for this specific variant in each of the studies included in the 

meta-analysis. Based on a nominal significance threshold of P = 0.05, the individual 

studies each appear to have non-significant results (described visually as the error 

bars crossing the vertical line of no effect), yet when meta-analysed according to 
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the inverse variance weighted approach, the effect of this variant becomes 

statistically non-zero (Effect (SE) = 0.115 (0.037), P = 1.89 x 10-3). 

This inverse variance weighted method assumes effect sizes and their respective 

standard errors to be consistent across studies. An alternative fixed-effects meta-

analysis method, particularly useful if effect sizes were not reported using 

consistent units of measurement, weights studies according to their respective 

sample sizes (Willer et al., 2010). 
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Figure 2.1: Flow diagram of METAL inverse variance weighted meta-analysis 
procedure. Adapted from Willer et al. (2010). 

INPUT DATA: Effect sizes (βi) and standard errors (SEi) 
for each study (i)

Weight (wi) = the reciprocal of the variance (SEi
2) for 

study (i)

Meta-analysed SE = 

Meta-analysed β = 

Z-statistic = 

Negate and double the absolute Z-statistic value and 
look up its corresponding p-value based on a standard 

normal distribuition (N(0,1))

Repeat for all other variants
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Figure 2.2: Meta-analysis for a single, simulated variant with Forest Plot. SE = standard error. Meta-analysed values were calculated according 
to the values from the four contributing studies and the inverse variance weighted procedure outlined in Figure 2.1. Forest Plot circles denote 
effect size; diamond denotes meta-analysed effect size; all error bars denote 95% confidence intervals. 
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The meta-analyses performed here utilised a fixed effects model; however, an 

alternative random effects model can sometimes be more appropriate for the set of 

study data to be meta-analysed. Random effects models take into consideration the 

degree of heterogeneity (inconsistency) of effect sizes between studies which may 

influence results of meta-analyses (DerSimonian and Laird, 1986; Magi and Morris, 

2010). This heterogeneity is considered in software applications such as GWAMA 

(Magi and Morris, 2010) by inclusion of the Cochran’s Q statistic for each variant 

when calculating study weights, however, it should be noted that inclusion of this 

extra parameter does increase the variance of the estimated meta-analysed effect 

size (Magi and Morris, 2010), thus reducing the strength of the meta-analysed 

association signal. Therefore, use of a random effects model is appropriate in 

situations where there is known variability in the design of the contributing studies 

and the distribution of effect sizes is more important than identification of a single, 

precise effect size that can be applied to all studies (Munafo and Flint, 2004). 

2.3.4 Conditional Analysis 

To ascertain whether loci achieving genome-wide significant association were 

driven by a single causal variant or by multiple causal variants in the region, 

conditional analyses were performed on the single marker test summary statistics 

using GCTA-COJO (Yang et al., 2012). The variant demonstrating the strongest 

degree of association at a genome-wide significant locus was included as a covariate 

in the association test model and the association analysis repeated for all variants 

within ±1 Mb of this marker. The association signals obtained in the conditional 

analysis would be greatly diminished compared to the original analysis in the event 
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of there being only a single causal locus. In the presence of multiple causal variants 

at a locus, variants tagging additional causal variants, independent of the 

conditioned variant would continue to demonstrate significant association in the 

GCTA-COJO analysis. 

2.3.5 Gene-based and Gene-set Analyses 

Many GWAS investigations have primarily concentrated on single marker tests. 

However, translating the association signals identified by a GWAS into potential 

causal mechanisms or biological functions is not straightforward. Combining test 

results across whole genes or collections of genes, aims to provide greater 

understanding of the functional consequences of genetic variants with respect to 

the trait of interest (Neale and Sham, 2004; Cantor, Lange and Sinsheimer, 2010). 

Two main software applications available to perform gene-based association tests 

using association test summary statistics are VEGAS2 and MAGMA (de Leeuw et al., 

2015; Mishra and Macgregor, 2015). For analyses undertaken here, both 

applications were employed. 

For both software applications, genes were defined according to NCBI build 37 

(hg19/GRCh37) coordinates, which is the corresponding build to which all variants 

were mapped to during their respective imputation phases. Furthermore, flanking 

regions of 50 kb (unless otherwise stated) were appended to the gene transcription 

start and stop sites. These flanking regions were included as variants in these 

regions can have an effect on gene regulation and expression, not only for the 
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nearest gene but other nearby genes too (Guo and Jamison, 2005; Schork et al., 

2013; Brodie, Azaria and Ofran, 2016; Corradin et al., 2016). For both applications, 

LD patterns between variants included in the analysis for each gene were estimated 

using an ancestry matched reference panel (see below). 

2.3.5.1 VEGAS2 

Developed by Liu et al. (2010b) and updated by Mishra and Macgregor (2015), 

VEGAS2 (VErsatile Gene-based Association Study 2) computes gene-based test 

statistics by initially converting single marker association test p-values into upper 

tail χ2 test statistics with 1 degree of freedom before summating for all variants 

within each gene locus to give a single value. This gene-based χ2 test statistic with n

degrees of freedom, with n defined as the number of variants within the gene locus, 

is then examined under the null hypothesis of no association. However, variants 

within a gene locus are rarely in complete linkage equilibrium (i.e. independent of 

each other) and therefore, this correlation between variants also needs to be 

considered. These LD patterns (Σ) are considered using an n x n matrix of pairwise 

LD values which are estimated from an ancestry matched reference panel. In order 

to obtain p-values for the gene-based association tests, VEGAS2 performs a two-

step process. Firstly, values following a multivariate normal distribution with a 

mean of zero and covariance matrix (Σ) are simulated by the software. These 

simulated values are then compared against the summated gene-based χ2 test 

statistic described above. Gene-based p-values are defined as the proportion of 

simulations where the simulated test statistic is greater than the original (observed) 

gene-based test statistic (Equation 2.7).  
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Equation 2.7: VEGAS2 Gene-Based P-value Calculation. 

As the observed gene-based test statistic is based on the upper tail of the χ2

distribution, few simulations would be expected to have greater χ2 values in the 

event that the gene is associated with the trait of interest. 

It is important to note that VEGAS2 uses simulations rather than permutations to 

determine the association signal. Before the development of VEGAS, gene-based 

association tests such as those performed by PLINK [command --set-test] were 

computationally intensive. In the method implemented by PLINK (Purcell et al., 

2007), rather than performing simulations to generate alternative χ2 test statistics 

to compare against, individual’s phenotype data was permuted over 1000s of 

iterations to generate several single marker association test statistics which were 

subsequently used to generate a single gene-based test statistic. As with VEGAS, the 

proportion of permuted gene-based χ2 test statistics greater than the observed χ2

test statistic was defined as the gene-based p-value. 

In order to maximise efficiency, the number of simulations performed varies 

depending on the p-value obtained after each round of simulations. Initially, 1000 

simulations are performed before generating the gene-based p-value for a 

particular gene. If this p-value is less than 0.1, 10,000 simulations are performed 

before reviewing again. If this new gene-based p-value is less than 0.001, 1 million 

simulations are performed. In the event that no simulated test statistics are greater 
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than the observed test statistic after 1 million simulations, no further simulations 

are performed and the gene is assigned a reported p-value of P < 1 x 10-6. This is 

because the Bonferroni adjusted p-value threshold has already been crossed (0.05 / 

number of genes) and this is known to be an overly conservative threshold due to 

gene regions not being fully independent of each other since some variants may 

contribute to more than one gene (Liu et al., 2010b). 

Definitions of gene loci and reference files for estimating LD patterns were built in 

to the VEGAS2 software application. Specifically, gene loci were defined according 

to a list of all RefSeq genes obtained from the UCSC table browser (Karolchik et al., 

2004), and LD patterns were estimated by VEGAS2 using reference files composed 

of data for the 379 unrelated individuals of European ancestry from Phase 1, 

Version 3 of the 1000 Genomes Project (The 1000 Genomes Project Consortium et 

al., 2012; Mishra and Macgregor, 2015). The European ancestry dataset was used 

specifically as the cohorts included in these analyses were restricted to those of 

European ancestry only. The 1000 Genomes Project reference dataset is notably 

larger than the previously used HapMap2 reference dataset as utilised in the initial 

release of VEGAS (379 vs. 90 individuals), therefore providing greater accuracy 

when estimating LD patterns (Mishra and Macgregor, 2015). 

2.3.5.2 MAGMA 

Unlike VEGAS2, gene definitions and reference files for estimating the LD structure 

of variants are not built in to the MAGMA  (Multi-marker Analysis of GenoMic 

Annotation; de Leeuw et al. (2015)) software application, however these files are 
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available for download from the MAGMA website (URL: 

https://ctg.cncr.nl/software/magma). From here, gene definitions (to build 37 

coordinates) originally obtained from the NCBI Entrez Gene database (Maglott et 

al., 2011) were downloaded, alongside reference files for European ancestry 

individuals from the 1000 Genomes Project. 

An initial “Annotation” step must be run in MAGMA in order to assign variants to 

genes for gene-based analyses. It is at this stage that flanking regions can be 

appended to the gene transcription start and stop sites so that variants that may 

affect a particular gene’s regulatory processes are also included.

As GWAS summary statistics (variant ID labels and association test p-values) from 

single marker tests were used as input data in the absence of raw genotype data, as 

was the case in Chapter 4, the “snp-wise=mean” model was implemented by 

default. All variants assigned to a specific gene from the annotation step were 

included in the analysis of that gene with its observed gene-based test statistic 

determined by converting the respective variant p-values to -log10 values (i.e. a 

variant with P = 1 x 10-6 would be converted to a value of 6) before summating. The 

respective gene-based p-values are subsequently computed by MAGMA using these 

gene-based test statistics, the LD structure of the variants analysed and a sampling 

distribution appropriate for the test statistic as determined by MAGMA. 

MAGMA also implements gene-set analysis which facilitates assessment of 

collections of genes that contribute to a common feature (e.g. a biological 

https://ctg.cncr.nl/software/magma
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pathway). For the gene-set analyses undertaken in the following chapters, 

“competitive” gene-set analysis was performed with Z-statistics from the MAGMA 

gene-based analysis used as input data. From the Molecular Signatures Database 

(MSigDB) (Subramanian et al., 2005), all gene-sets and their definitions (i.e. which 

genes contribute to each gene-set) were downloaded and used in these gene-set 

analyses.

In competitive gene-set analysis implemented by MAGMA, a linear regression is 

performed with genes coded as “1” if they are in the gene-set analysed or “0” if 

they are not, and the outcome taken as the gene-based Z-statistic. The mean 

difference in association between genes within the gene-set and those outside of it 

(βS) is tested against the null hypothesis of no difference in association (H0: mean βS 

= 0) (Equation 2.8; de Leeuw et al. (2015)). 

Equation 2.8: Computing test statistics for competitive gene-set analyses in 
MAGMA. Z = gene-set test statistic; β0 = intercept of the linear regression model; S
= number of genes in the gene-set; βS = difference in association between genes 
within the gene-set and those outside it; βC = matrix of covariates (e.g. no. of 
variants within a gene); ε = residuals with correlations aligned with the gene-gene 
correlations to accounts for LD between genes (de Leeuw et al., 2015). 

2.3.6 SNP-Heritability 

SNP-heritability estimates were calculated using Genome-wide Complex Trait 

Analysis (GCTA) (Yang et al., 2011a). In the most commonly-employed analysis 

approach, GCTA is used to estimate the proportion of trait variance due to additive 

effects of commonly occurring SNPs (h2
SNP) (GCTA-GREML). This is done by 
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considering pairwise relatedness between individuals (in the form of a GRM) as a 

random effect in a mixed linear model fitted using restricted maximum likelihood 

(REML) (Yang et al., 2011a). The model fitted is equivalent to the mixed linear 

model described in Equation 2.4 and allows for the inclusion of covariates; however 

the variance of the trait due to genetic effects (σ2
g) from this model is of interest. 

Here, the trait variance (VP) is defined as the sum of the variance due to genetic 

variants included in estimation of the GRM whilst considering the variance-

covariance structure of the genetic variants between individuals (Agσg
2) and the 

residual variance which is attributable to non-genetic effects (Iσε
2) (Equation 2.9; 

Yang et al. (2011a)). If multiple GRMs are fitted as in the case of a joint analysis, 

Agσg
2 becomes ΣAiσi

2, whereby i denotes the individual variance components with a 

single GRM is constructed for each (Ai). 

Equation 2.9: Estimating trait variation using GCTA. VP = trait variance; Ag = genetic 
relationship matrix (GRM); σg

2 = variance due to variants contributing to the GRM; 
I = identity matrix of residual effects (diagonal elements = 1, off diagonal elements = 
0); σ2

ε = variance due to non-genetic effects (Yang et al., 2011a). 

In order to construct the GRM required to estimate variance due to additive genetic 

effects, a relatedness coefficient between each pair of individuals was calculated 

using Equation 2.10, which provides a weighted count of how many variant 

genotypes are common to both individuals. A relatedness coefficient of less than 

0.025, which corresponds to the level of genetic similarity expected for second or 

third cousins, is generally used to define “unrelated” individuals (Yang et al., 2010).  
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Equation 2.10: Determining genetic relatedness between two individuals, j and k.
A = genetic relationship coefficient, i = variant number (1, 2, 3… N), pi = frequency of 
the reference allele of variant i, xij genotype of individual j at variant i, xik genotype 
of individual k at variant i (Yang et al., 2011a). 

To determine whether SNP-heritability estimates are greater than zero, since 

heritability is restricted to a continuous scale of values between 0 and 1; p-values 

are determined by halving the p-value obtained using the LRT (likelihood ratio test) 

statistic based on a one-tailed χ2 test with 1 degree of freedom. This LRT statistic is 

computed by GCTA during analysis however it can be closely approximated by: 

(estimated h2 / SE)2 (Yang et al., 2011a). 

2.3.6.1 Observed to Liability Scale Conversion 

As heritability is traditionally estimated on the ‘observed scale’ (see below for 

definition), conversion to the ‘liability scale’ was required for the heritability 

estimates of the different dichotomous traits to be compared either against each 

other or across different case threshold definitions (Lee et al., 2011). The liability 

scale is a continuous scale used for discrete variables, for example cases and 

controls for a particular phenotype. It is assumed that the liability is normally 

distributed across the study sample, with the area under the normal distribution 

curve representing the sample (Figure 2.3). 
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Figure 2.3: The normal probability density function for transformation from the 
observed scale to the liability scale. If cases account for 20% of the individuals 
sampled (shaded area), the height of the function at the threshold value, t (edge of 
shaded area) is 0.28 (z, denoted by dotted line). Adapted from Lee et al. (2011).

The threshold value (t) on the liability scale is set according to the prevalence of the 

phenotype, i.e. the number of cases relative to the sample size. For example, if a 

particular phenotype is presumed to have a prevalence of 20%, the threshold on 

the liability scale is set such that the 20% of the area under the curve is set to the 

right of the threshold value with the remaining 80% of the area under the curve to 

the left of the threshold value (Figure 2.3). This transformation allows a 

dichotomous trait to be accurately expressed on a continuous scale, which is the 

same type of scale used when estimating heritability. As a result, ‘heritability on the 
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liability scale’ is independent of the prevalence of the investigated phenotype 

(Falconer and Mackay, 1996). It has been reported by Lee et al. (2011) that without 

such a conversion, heritability estimates for dichotomous traits are prone to a 

downward bias due to uncorrected measurement errors. Transformation to the 

liability scale is performed automatically by GCTA for dichotomous traits (based on 

Equation 2.11; (Lee et al., 2011)). 

Equation 2.11: Transformation from heritability on the observed scale ( ) to 
heritability on the liability scale ( ) with consideration of ascertainment bias. K = 
population prevalence, P = sample prevalence, z = height of the standard normal 
probability density function at threshold t (Lee et al., 2011).

This transformation also takes into consideration ascertainment bias whereby there 

is a difference between the population and sample prevalence rates. 

2.3.6.2 Consideration of Uncorrected Population Effects 

Effects such as population stratification and cryptic relatedness within a sample may 

affect the results and interpretations of genetic studies if not accounted for. The 

major principal components have commonly been included as covariates when 

performing such studies to adjust for population stratification (Price et al., 2006; 

Price et al., 2010). However, mixed linear models like those utilised by GCTA, can 

also be used to account for uncorrected population stratification and cryptic 

relatedness (Yu et al., 2006; Kang et al., 2010; Zhang et al., 2010). 
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For SNP-heritability estimation using GCTA or equivalent methods, there is no 

general consensus regarding the inclusion or exclusions of principal components to 

account for population stratification within the examined sample. However, some 

authors have suggested that the inclusion of principal components may not fully 

account for population stratification, and may in fact make SNP-heritability 

estimates less accurate due to over-fitting (Browning and Browning, 2011; Goddard 

et al., 2011; Dandine-Roulland et al., 2016; Krishna Kumar et al., 2016). 

Strategies have been proposed to estimate the degree of inflation of SNP-

heritability estimates due to uncorrected population stratification and cryptic 

relatedness, based on the principle that genetic regions (e.g. chromosomes) are 

independent of each other if there are no related individuals present and the 

sample is homogenous (Yang et al., 2011b). If related individuals are present and/or 

a non-homogenous sample is analysed, these regions will no longer be independent 

since there will be some correlation between them through ancestry informative 

markers (AIMs). AIMs are variants whose allele frequencies are highly correlated 

within population subgroups. For example, if there are loci where particular alleles 

are found at high frequency in individuals of European ancestry, yet these same 

alleles are much rarer in all other population subgroups, these alleles would be 

deemed to be specific to individuals of European ancestry. It is expected that these 

AIMs are randomly distributed throughout the genome; hence, regions will be 

correlated with each other due to these population effects if left unaccounted for 

(Yang et al., 2011b). Thus, SNP-heritability estimates from an individual region 

(h2
sep) would be inflated due to correlation from variants outside this region in 
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individual analyses; yet, when all regions are combined in a joint analysis, these 

correlated effects are taken into consideration as estimates for each region (h2
joint) 

are obtained by conditioning on all other regions. As are result, estimates for each 

region would be independent of all other regions included in the model and 

inflation from these population effects would be eliminated (Yang et al., 2011b). 

To ascertain the extent to which SNP-heritability estimates obtained may be biased 

(inflated) due to uncorrected population stratification or residual cryptic 

relatedness, the method proposed by Yang et al. (2011b) was utilised. First, the 

genome was split into individual chromosomes, with SNP-heritability estimated for 

each chromosome separately and then jointly for all chromosomes. The difference 

between the heritability estimates for the individual and joint analyses for each 

chromosome was regressed against chromosome length (obtained from UCSC 

Genome Browser (Kent et al., 2002) to NCBI human genome build 37 (hg19 / 

GRCh37) coordinates) (Figure 5.1). Finally, an estimate for the proportion of 

variance attributable to population structure across the whole genome was 

obtained by applying Equation 2.12 (Yang et al., 2011b): 

Equation 2.12: Estimating the proportion of variance attributable to population 
structure across the whole genome. b0 = intercept; b1 = gradient; C = chromosome; 
LC = chromosome length (Yang et al., 2011b). 
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2.3.6.3 Quantification of Dominance Effects 

In addition, GCTA can be used to estimate the proportion of trait variance due to 

partitioned additive and dominance effect components (GCTA-GREMLd) (Zhu et al., 

2015). Here, separate GRMs are constructed by GCTA prior to SNP-heritability 

estimation; one based on additive effects and another based on dominance effects 

(Equations 2.10 and 2.13). As with the aforementioned joint analysis for estimating 

uncorrected population effects, a joint analysis is performed in order to partition 

the overall genetic component of trait variance into these two constituent parts. 

In order to compute the GRM based on dominance effects, Equation 2.10 is 

adjusted to account for the recoded genotypic values (for the genotypes AA, AB and 

BB respectively: additive effects (x) = 0, 1, 2; dominance effects (x’D) = 0, 2p, or (4p –

2) whereby p  is the frequency of allele B) thus becoming Equation 2.13: 

Equation 2.13: Determining genetic relatedness between two individuals, j and k, 
based on dominance effects. D = genetic relationship coefficient, i = variant number 
(1, 2, 3… N), pi = frequency of the reference allele of variant i, x’D(ij) genotype of 
individual j at variant i, x’D(ik) genotype of individual k at variant i (Zhu et al., 2015). 

As a result, Equation 2.9 becomes:  

Equation 2.14: Estimating trait variation due to additive and dominance effects 
using GCTA-GREMLd. VP = trait variance; A = additive effects GRM; σA

2 = variance 
due to additive effects of variants contributing to the GRM; D = dominance effects 
GRM; σD

2 = variance due to dominance effects of variants contributing to the GRM; 
I = identity matrix of residual effects (diagonal elements = 1, off diagonal elements = 
0); σ2

ε = variance due to non-genetic effects (Zhu et al., 2015). 
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2.3.7 Multiple Testing Correction 

When performing a large number of independent statistical tests, many tests would 

achieve p-values lower than the nominal significance threshold of P = 0.05 by 

chance alone. As a result of this multiple testing, significance thresholds are 

typically adjusted (or alternative methods of defining noteworthy results are 

utilised) in order to account for this. The main methods of multiple testing 

correction are outlined below. 

2.3.7.1 Bonferroni Adjustment 

The Bonferroni adjustment is the simplest method of multiple testing correction. 

This method takes the nominal significance threshold and divides it by the number 

of tests performed in that analysis. For example, if 100 genetic variants were tested 

for association with a given trait and the nominal significance threshold was defined 

as 0.05, the adjusted significance threshold should be 0.05/100, which is 0.0005. 

Therefore, if a particular variant achieved an association test p-value of 0.0034 

(which would be deemed a “significant” result if using the nominal threshold of 0.05 

without considering the other 99 tests performed); this same variant would be 

deemed as a non-significant association after Bonferroni adjustment, as its p-value 

is above the adjusted threshold of 0.0005. 

2.3.7.2 Genome-wide Significance Threshold 

The genome-wide significance threshold of P = 5 x 10-8 is commonly applied for 

genome-wide association studies (Sham and Purcell, 2014). This choice of 

significance threshold is based on the expected number of independent variants in 
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the genome, the number of variants tested for association, and the linkage 

disequilibrium (LD) structure of human populations (Risch and Merikangas, 1996; 

Dudbridge and Gusnanto, 2008; Hoggart et al., 2008). Generally, p-values less than 

1 x 10-5 have been proposed to demonstrate suggestive association (Welter et al., 

2014). Such variants may not attain genome-wide significance due to an insufficient 

sample size, yet they may be candidates worthy of follow-up analyses in an 

independent cohort. 

2.3.7.3 False Discovery Rates 

False discovery rates (FDRs), as outlined by Benjamini and Hochberg (1995), are an 

alternative method to account for multiple tests performed. Rather than 

determining the likelihood of the null hypothesis of no association being accepted 

(i.e. a true positive result) as is the case in the previous methods, use of a false 

discovery rate controls for the proportion of occasions where there is an incorrect 

rejection of the null hypothesis. In other words, use of false discovery rates allows 

for control over the proportion of false positive results. This procedure determines 

likely associations by initially sorting the results for all association tests (e.g. for all 

genes) in ascending order of association test p-value (P). For all genes, the ranking 

(position) of the gene in this sorted list (i) is noted and multiplied by the pre-defined 

false discovery rate (q), generally 0.05 (5%), before dividing by the total number of 

genes in the list (m). This value (iq/m) is defined as the critical value for that gene. 

The lowest gene in the list whereby P ≤ critical value and all others above it are 

defined as demonstrating likely association with the trait of interest. Of the genes 
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demonstrating this level of association, no more than q (i.e. 5%) will be false 

positive results. 

Table 2.3 demonstrates a simulated scenario where false discovery rates have been 

utilised. In this example, 10 genes were tested for association with a particular trait 

and their gene-based association test p-values were sorted in ascending order of 

association test p-value. The column labelled “Rank” denotes the position of the 

genes in this sorted list (i). If the pre-defined false discovery rate (q) is 0.05, the 

lowest ranked gene with an association test p-value less than its respective row’s 

critical value of 0.005i is gene H (0.019 < (4 x 0.05) / 10). Thus, genes J, F, C and H 

would be deemed to be noteworthy associations. 

Table 2.3: Example of false discovery rates in action. Number of genes in the list 
(m) = 10; False discovery rate (q) = 0.05; iq/m = critical value; FDR = Pm/i. Genes in 
bold = significant associations based on FDR. 

Gene P-value Rank iq/m FDR
J 0.002 1 0.005 0.015
F 0.002 2 0.010 0.008
C 0.017 3 0.015 0.024
H 0.019 4 0.020 0.048
E 0.116 5 0.025 0.231
B 0.129 6 0.030 0.215
A 0.500 7 0.035 0.715
I 0.518 8 0.040 0.648
G 0.780 9 0.045 0.867
D 0.954 10 0.050 0.954

For analyses where false discovery rates have been utilised, results have displayed 

the calculated false discovery rate (e.g. Table 2.3, column “FDR”) for each test (e.g. 

each gene). These were obtained by rearranging the equation such that the 
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unknown variable is the false discovery rate (q). Genes with calculated values of q 

that were less than the pre-defined false discovery rate threshold of 0.05 (unless 

otherwise stated) were deemed as significant associations. 
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Chapter 3 X-Chromosome Wide 
Association Study for Refractive Error 
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Chapter 3 X-Chromosome Wide Association Study for Refractive 

Error 

3.1 Introduction 

With the exception of the study by Pickrell et al. (2016), which investigated variants 

associated with self-reported myopia, GWAS for refractive error have solely 

concentrated on autosomal variants with no consideration of variants on 

chromosome X, despite knowledge that three loci associated with non-syndromic 

myopia have been identified on this chromosome (MYP1, MYP13 and MYP26) 

(Zhang et al., 2006; Zhang et al., 2007; Guo et al., 2010; Ratnamala et al., 2011; Xiao 

et al., 2016). As outlined below, this is mostly due to the difficulties of running an 

association study for chromosome X (Wise, Gyi and Manolio, 2013). Firstly, there 

are two copies of each autosomal chromosome in an individual; however, males 

only have one copy of the X-chromosome, and therefore the standard GWAS 

analysis method needs to be modified in order to account for this. In addition, 

whilst females have two copies of the X-chromosome, it is often the case that one 

copy is inactivated, yet this inactivation is variable and may not be complete (Carrel 

and Willard, 2005; Konig et al., 2014).

The aim of this investigation is to perform a chromosome X-wide association study, 

using a population-based sample of unrelated individuals, to identify potential 

susceptibility loci for mean spherical equivalent (MSE) at age 15 years. 
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3.2 Methods 

Participants were from the Avon Longitudinal Study of Parents and Children 

(ALSPAC), a population-based birth cohort study (Boyd et al., 2013). After exclusion 

of participants who had withdrawn consent, the sample for this current 

investigation consisted of 8,935 individuals with genotype data, of whom 4,577 

were males and 4,358 females. Of these individuals, 4,070 had measures of MSE at 

age 15 years, obtained through non-cycloplegic autorefraction (Table 3.1). 

Table 3.1: Summary of refractive error in the XWAS analysis sample. 

Males Females Total
N total (%) 4,577 (51.2%) 4,358 (48.8%) 8,935
N with MSE at age 15 years (%) 1,924 (47.3%) 2,146 (52.7%) 4,070
Mean MSE (SD) (D) -0.370 (1.30) -0.392 (1.26) -0.382 (1.28)

Phenotyping, genotyping and imputation were carried out by members of the 

ALSPAC team and as outlined in Section 2.1. 

After imputation, genotypes were available for 1,250,218 variants across 

chromosome X. All variants were mapped to NCBI build 37 genome coordinates. 

3.2.1 Quality Control 

To maintain a high level of data quality, quality control was performed on all 

variants for all genotyped individuals. Individuals missing information for 10% or 

more of the variants were excluded from the analysis. Variants were excluded from 

the analysis if they were not genotyped successfully in at least 95% of individuals, 

their imputation quality (IMPUTE2 INFO) metric was < 0.5, their MAF was < 0.01 or 
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their HWE p-value in females was < 1 x 10-6. As regards HWE, it should be noted 

that the comparatively lenient threshold applied was chosen since it takes into 

consideration the very high number of variants tested; an analogous value has been 

utilised in other investigations, e.g. Davidson et al. (2014). Furthermore, if variants 

are in HWE in females and allele frequencies are equal between males and females 

then allele frequencies should remain constant through future generations (Zheng 

et al., 2007). In order to verify this assumption, the correlation in MAFs between 

males and females was confirmed to be high, as shown in Figure 3.1 (r = 0.998; 95% 

CI: 0.998-0.998). 

3.2.2 Single Marker Tests 

For all variants passing quality control, tests for association were performed 

separately for males and females using a frequentist linear regression model and 

expected counts used in the presence of missing genotypes, implemented in 

SNPTEST v2.5. Genotypes for males were coded as 0, 2 (AA, BB); whereas females 

were coded as 0, 1, 2 (AA, AB, BB). As the ALSPAC cohort of children was age 

matched by design, and non-ancestry matched individuals were excluded by 

ALSPAC researchers, additional covariates were not included in analyses. 

The separate association test results for males and females were then combined in 

a fixed effects, standard error-weighted meta-analysis using METAL (Willer et al., 

2010). Manhattan and quantile-quantile (QQ) plots were generated using the 

summary statistics generated from each stage of analysis. 
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Figure 3.1: Plot of minor allele frequencies (MAFs) between males and females. 
Red line = line of unity (Females MAF = Males MAF). N = 4,070 across 267,185 
variants.

3.2.3 Sex-Specific Effects 

In order to evaluate sex-specific effects, the separate male and female association 

test results were further analysed using the R package EasyStrata (Winkler et al., 

2015). This evaluation took the beta estimates and their standard errors from each 

SNPTEST analysis to generate a Z-statistic value (Equation 3.1). From this test 

statistic, a p-value was obtained for each locus relating to the difference in beta 

estimates between the two sexes (i.e. the likelihood of beta estimates being 
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identical between males and females), based on a standard normal distribution. 

Lower p-values signified loci whose beta estimates were more likely to be different 

between males and females. A false discovery rate of 5% was applied in order to 

define whether a sex based effect was present after accounting for multiple testing. 

Equation 3.1: Calculating the test statistic determining differences in beta estimates 
between males and females (Z). β = beta (effect) estimate; SE = standard error from 
association test summary statistics. 

3.2.4 Gene-based and Gene-set Analyses 

Gene-based tests were subsequently performed for this data set using VEGAS2 and 

MAGMA (outlined in Section 2.3.5). In both instances, LD patterns were estimated 

using European ancestry reference panels, specifically reference files composed of 

data for the 379 unrelated individuals of European ancestry from Phase 1, Version 3 

of the 1000 Genomes Project (The 1000 Genomes Project Consortium et al., 2012). 

Potential functional properties of X-chromosome genes associated with myopia in 

the MAGMA analysis were further investigated using competitive gene-set analysis 

in MAGMA (as outlined in Section 2.3.5.2). Adjustment for multiple testing was 

applied using a false discovery rate of 5% for these gene-based and gene-set test 

results. 
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3.2.5 Power Calculation 

In order to determine how much statistical power this current investigation had, a 

power calculation was performed using QUANTO (Gauderman, 2002). The following 

assumptions were applied when performing the calculation: a type I error rate () 

of 5 x 10-8, an effect size of 0.10 D, a MAF range between 0.01 and 0.50, a sample 

size of 4,070 individuals, and that MSE had a normal distribution with a mean (SD) 

of -0.382 (1.28) D. The Type I error rate was selected to match the p-value required 

to declare significance for the association test performed after adjustment for 

multiple testing and accounting for LD. The effect size estimate was based on the 

average effect size from a meta-analysis for refractive error undertaken by the 

CREAM consortium (Verhoeven et al., 2013). Sample size and MSE estimates were 

obtained from the ALSPAC sample used for this investigation. 

An additional power calculation was performed in order to determine the minimum 

sample size required in order to have 60-80% power to detect an effect size of 

0.10 D. As above, the population MSE estimate was based on the ALSPAC sample 

mean (SD) of -0.382 (1.28) D.  
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3.3 Results 

After performing quality control on the study data, no individuals were excluded 

based on the filter of having at least 90% of variants genotyped successfully. At the 

marker level, 839,176 variants had poor imputation quality (IMPUTE2 INFO < 0.5), 

957,399 variants had minor allele frequencies (MAFs) below 0.01, and three 

variants had HWE p-values below 1 x 10-6 in females. As a result, 983,033 variants 

were excluded from analysis due to being outside these quality control thresholds, 

leaving 267,185 variants passing quality control. 

3.3.1 Single Marker Tests 

Linear regression was performed separately for males and females for each of the 

267,185 chromosome X variants that passed quality control. In these individual 

analyses, no variants achieved genome-wide significant association (P < 5 x 10-8). A 

single variant (rs188930264) demonstrated a p-value of less than 1 x 10-5 for 

association with MSE at age 15 years for females (Table 3.2). No variants 

demonstrated P < 1 x 10-5 in the male-only analysis. 
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Table 3.2: Summary of results for variants on chromosome X achieving association test P-values less than 1 x 10-5 (FEMALES). EAF =: effect 
allele frequency; Effect = effect size per copy of Effect Allele; SE: standard error of beta estimate; N = 2,146.

Variant Position Effect Allele Other Allele EAF Effect SE P-value Nearest Gene
rs188930264 11510031 T A 0.015 0.921 0.201 4.63 x 10-6 ARHGAP6
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Figure 3.2: Chromosome X quantile-quantile plot from sex-specific linear 
regression association tests with MSE at age 15 years. Blue squares = males; red 
circles = females. Y-axis shows observed negative log10 p-values and X-axis shows 
expected negative log10 p-values according to the null hypothesis of no genetic 
association. Red line: line of unity (observed = expected).

Genomic inflation factors (λGC) for males and females were 0.912 and 1.092 

respectively. This can be partially observed by the slight deviation of observed p-

values from the red line (null hypothesis) in the quantile-quantile plot, which shows 

a graphical summary of the sex-specific association test results for all variants 

examined (Figure 3.2). Due to this relatively large discrepancy in λGC values between 

the sexes, further investigations were conducted to identify a possible cause. Firstly, 
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as MSE was originally analysed as a quantitative trait, the analysis was repeated 

with MSE coded as a binary trait, with cases defined as individuals with MSE of 

≤-1.00 D as used in previous investigations of children from this cohort 

(Guggenheim et al., 2012; Guggenheim et al., 2013b; Guggenheim et al., 2014; Shah 

et al., 2017). Tests for association were repeated for this binary trait using logistic 

regression, with λGC values now 1.044 and 1.003 for males and females, 

respectively. In addition, an alternative, hypothetical, quantitative trait was 

simulated for the 4070 individuals included in the original XWAS. This new trait was 

designed to follow a standard normal distribution, centred on a mean of zero and 

standard deviation of one. This simulated trait breaks the relationship between 

genotype and phenotype; thus, the resulting association test p-values would be 

expected to follow the null hypothesis of being uniformly distributed (λGC = 1). The 

λGC values for the simulated quantitative trait were 1.016 and 1.021 for males and 

females respectively. Together, the above results for the binary trait and the 

simulated quantitative trait support the validity of the methods used to calculate 

λGC values for this XWAS investigation. Thus, the observed discrepancy in λGC

between the sexes (0.912 vs. 1.092) is likely to be a chance finding. 

In the meta-analysis of the XWAS summary statistics for males and females, no 

marker achieved P < 5 x 10-8 (Table 3.3, Figure 3.3). 
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Table 3.3: Summary of results for variants on chromosome X from meta-analysis of association tests for MSE at age 15 years (P < 1 x 10-5). 
EAF = effect allele frequency; Effect = effect size per copy of allele B; SE = standard error of beta estimate; N = 4,070 for all variants.

Variant Position Effect Allele Other Allele EAF Effect SE P-value Nearest Gene
rs145471572 128366278 G C 0.012 -0.654 0.134 1.04 x 10-6 RPS26P56
rs189623102 118251135 C T 0.010 -0.579 0.120 1.41 x 10-6 KIAA1210
rs58142779 118182646 A C 0.012 -0.541 0.119 5.27 x 10-6 LOC727838
rs147218029 118330315 A G 0.010 -0.671 0.151 8.67 x 10-6 ARL5AP1
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Figure 3.3: Chromosome X Manhattan and Quantile-Quantile plots from meta-analysed results. Panel A: Horizontal blue line denotes an 
arbitrary threshold for declaring “suggestive” evidence of association (P = 1 x 10-5). Panel B: Y-axis shows observed negative log10 p-values and 
X-axis shows expected negative log10 p-values according to the null hypothesis of no genetic association. Red line = line of unity (observed = 
expected). 
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3.3.2 Sex-Specific Effects 

Figure 3.4 shows a graphical summary of the sex-specific association test results for 

all variants examined. This plot appears to be generally symmetrical between the 

upper and lower sections, representing females and males respectively. However, 

some variants appeared to demonstrate stronger association with MSE in one sex 

than the other, as shown by asymmetry of the peaks in the figure. Closer inspection 

of effect sizes (beta) estimated from the individual association tests showed 

virtually no correlation between males and females (r = -0.016; Figure 3.5). 

Moreover, Welch’s unpaired samples t-test identified no significant difference in 

mean effect size between males and females (t = -0.769, df = 498,640, P = 0.442). 

Further evaluation of these differences in effect size between the sexes showed 

that, for a false discovery rate of 5%, there were no significant differences. The ten 

variants demonstrating the greatest difference in effect size between the sexes are 

shown in Table 3.4. 
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Figure 3.4: Chromosome X Miami plot from sex-specific linear regression association tests for MSE at age 15 years. Upper portion (red) = 
females; lower portion (blue) = males. Horizontal yellow lines denote suggestive association threshold of P = 1 x 10-5.
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Figure 3.5: Differences in effect size (beta) estimates for males and females from 
individual chromosome X association tests. Plot of beta estimates for males vs. 
females from individual chromosome X association tests. Red line = line of unity 
(Females Beta = Males Beta). N = 4,070 across 267,185 variants.
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Table 3.4: Summary of the 10 variants demonstrating the greatest difference in effect size (beta) between the sexes. EAF = effect allele 
frequency; SE = standard error of beta estimate; P SexDiff = p-value from the test for male and female beta estimates being identical. 

Variant Position Effect Allele Other Allele
Males Females

P SexDiff
N EAF Beta SE N EAF Beta SE

rs194287 119052285 T C 1924 0.145 0.077 0.042 2146 0.150 -0.223 0.054 1.13 x 10-5 
rs194289 119053638 A G 1924 0.145 0.077 0.042 2146 0.150 -0.222 0.054 1.17 x 10-5 
rs194284 119050148 C T 1924 0.181 0.087 0.040 2146 0.188 -0.196 0.051 1.24 x 10-5 
rs5910718 119087645 A G 1924 0.169 -0.067 0.039 2146 0.167 0.214 0.051 1.30 x 10-5 
rs5910714 119083274 C T 1924 0.169 -0.067 0.039 2146 0.167 0.214 0.051 1.31 x 10-5 
rs138808720 119096689 C G 1924 0.244 -0.064 0.035 2146 0.239 0.186 0.046 1.50 x 10-5 
rs194320 119078123 T C 1924 0.170 0.069 0.039 2146 0.167 -0.209 0.051 1.52 x 10-5 
rs74945102 119039414 G A 1924 0.297 0.110 0.033 2146 0.303 -0.122 0.043 2.02 x 10-5 
rs5910730 119101709 C T 1924 0.175 -0.059 0.040 2146 0.171 0.219 0.052 2.25 x 10-5 
rs5910728 119101395 G A 1924 0.235 -0.066 0.035 2146 0.229 0.176 0.046 2.60 x 10-5 
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3.3.3 Gene-based and Gene-set Analyses 

Gene-based test were performed using VEGAS2 and MAGMA. The 10 genes 

demonstrating strongest association are presented in Tables 3.5 and 3.6, 

respectively. Both methods produced similar results as to identifying which genes 

were most likely to be associated with MSE at age 15 years. However, after 

adjusting p-values for multiple testing using a FDR of 5% (0.05), the strength of 

association signal differed between the two methods. Specifically, no genes from 

the VEGAS2 analysis demonstrated evidence of association, yet MAGMA analysis 

suggested the genes GPM6B, PRPS1, ZNF449 and NRK as likely candidate genes. 

A competitive gene-set analysis was also performed using MAGMA. In this analysis, 

in which 10,468 gene-sets were tested for association with MSE at age 15 years, a 

total of 13 gene sets achieved a FDR < 0.05. Of these 13 gene sets, five had 

association test p-values < 0.05 after Bonferroni correction (Table 3.7). The gene 

GPM6B was common to all of the five aforementioned gene-sets. 
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Table 3.5: The 10 genes demonstrating strongest association from the VEGAS2 gene-based association test. Start and stop positions listed 
include ±50 kb flanking regions. nSNPs = number of variants included in gene region; Test Statistic = gene-based χ2 test statistic with nSNPs
degrees of freedom; P-value = obtained from Test Statistic and adjusting for LD between variants; FDR = false discovery rate; Lead Variant = 
variant within gene locus with strongest association signal from previous SNP-based association test. Total number of genes tested = 1,252.

Gene Start Stop nSNPs Test Statistic P-value FDR Lead Variant
GPM6B 13739061 14006831 468 1514.83 2.59 x 10-4 0.324 rs6633386
ZNF449 134428695 134547338 131 701.04 9.60 x 10-4 0.411 rs5930699
ZNF75D 134332535 134528012 177 794.71 1.30 x 10-3 0.411 rs5975507
PRPS1 106821653 106944256 49 254.12 1.60 x 10-3 0.411 rs9887704
BCORL1 129089163 129242058 94 279.94 1.64 x 10-3 0.411 rs875080
MIR6086 13558410 13658465 159 524.77 2.43 x 10-3 0.507 rs3747418
LOC100129520 124403968 124506950 151 933.25 3.19 x 10-3 0.571 rs3135278
LOC100506790 134480353 134581672 97 411.68 4.04 x 10-3 0.632 rs5930699
KIAA1210 118162597 118334542 178 485.18 6.18 x 10-3 0.640 rs189623102
FRMPD3 106715679 106898474 35 95.19 6.43 x 10-3 0.640 rs66874155
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Table 3.6: The 10 genes demonstrating strongest association from the MAGMA gene-based association test. Start and stop positions listed 
include ±50 kb flanking regions. nSNPs = number of variants included in gene region; Z-Statistic = gene-based test statistic; P-value = obtained 
from Z-Statistic under the assumption of a normally distributed model; FDR = false discovery rate. Total number of genes tested = 803.

Gene Start Stop nSNPs Z-Statistic P-value FDR
GPM6B 13739062 14006861 479 3.82 6.59 x 10-5 0.045
PRPS1 106821654 106944256 52 3.58 1.74 x 10-4 0.045
ZNF449 134428696 134547338 157 3.57 1.79 x 10-4 0.045
NRK 105016536 105252602 201 3.51 2.22 x 10-4 0.045
ZNF75D 134369719 134528034 185 3.33 4.29 x 10-4 0.069
LOC100129520 124403698 124509063 160 2.85 2.22 x 10-3 0.296
FRMPD3 106719819 106898474 37 2.76 2.91 x 10-3 0.334
BCORL1 129064277 129242058 132 2.64 4.11 x 10-3 0.413
CTAG1A 153763418 153865075 41 2.47 6.74 x 10-3 0.559
KIAA1210 118162598 118334542 196 2.43 7.45 x 10-3 0.559
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Table 3.7: Gene-sets demonstrating FDR < 0.05 from MAGMA gene-set association test. nGenes = number of genes included in gene set; Beta 
= gene-set test statistic; SE = standard error; FDR = false discovery rate; Bonferroni Adjusted P-value = P-value multiplied by the number of 
gene-sets tested. Total number of gene-sets tested = 10,468.

Gene-set nGenes Beta SE P-value FDR Bonferroni
Adjusted P-value

CEBALLOS_TARGETS_OF_TP53_AND_MYC_DN 2 3.80 0.778 6.45 x 10-7 0.002 0.007
WALLACE_PROSTATE_CANCER_DN 1 3.94 0.808 7.08 x 10-7 0.002 0.007
ROSS_LEUKEMIA_WITH_MLL_FUSIONS 1 3.94 0.808 7.08 x 10-7 0.002 0.007
PLASARI_TGFB1_SIGNALING_VIA_NFIC_10HR_UP 1 3.94 0.808 7.08 x 10-7 0.002 0.007
RNTCANNRNNYNATTW_UNKNOWN 3 2.59 0.574 3.73 x 10-6 0.008 0.039
GSE15324_NAIVE_VS_ACTIVATED_ELF4_KO_CD8_TCELL_DN 2 2.45 0.563 7.68 x 10-6 0.013 0.080
GSE43955_TGFB_IL6_VS_TGFB_IL6_IL23_TH17_ACT_CD4_TCELL_60H_UP 4 1.77 0.409 8.89 x 10-6 0.013 0.093
GCM_AQP4 2 2.60 0.605 1.04 x 10-5 0.014 0.109
FINETTI_BREAST_CANCERS_KINOME_BLUE 1 2.33 0.565 2.15 x 10-5 0.023 0.226
GSE41867_DAY6_VS_DAY15_LCMV_CLONE13_EFFECTOR_CD8_TCELL_UP 5 1.57 0.382 2.21 x 10-5 0.023 0.232
HADDAD_B_LYMPHOCYTE_PROGENITOR 3 2.06 0.51 2.89 x 10-5 0.027 0.302
GSE3920_IFNA_VS_IFNB_TREATED_ENDOTHELIAL_CELL_DN 6 1.53 0.394 5.49 x 10-5 0.048 0.575
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3.3.4 Power Calculation 

The power to detect associations in this current investigation was calculated in 

order to identify likely causes for the lack of evidence supporting variation on 

chromosome X with MSE at age 15 years. Table 3.8 shows that based on the sample 

size used for the current investigation, there was only 2.72% power to detect 

variants with an effect size of 0.10 D and MAF of 0.50 at p-value < 5 x 10-8. The 

power to detect associations decreased steadily for less common variants (Table 

3.8, Figure 3.6A). 

As the desired power to detect variants with true associations is typically defined as 

80% (Cohen, 1992; Hong and Park, 2012), the power calculation was repeated to 

identify the sample size required to achieve this level of power. As shown in Figure 

3.6B, a sample of approximately 35,000 individuals would have the ability to 

successfully detect 80% of true associations across variants with MAF > 0.1. A 

sample size of approximately 70,000 individuals would be required to detect 

variants with a MAF of 5%. To achieve 60% power for variants with MAF of 5%, the 

sample size required would be just over 55,000 individuals. 
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Table 3.8: Power (β) to detect an effect size of 0.10 D for variants with MAFs 
ranging between 0.01 and 0.50. Based on a sample size of N = 4,070 for a normally 
distributed trait with mean (SD) = -0.382 (1.28) D and Type I error rate (α) of 
5 x 10-8. MAF = minor allele frequency.

MAF Power (%) MAF Power (%)
0.01 < 0.01 0.26 0.92
0.02 < 0.01 0.27 1.02
0.03 < 0.01 0.28 1.12
0.04 < 0.01 0.29 1.22
0.05 < 0.01 0.30 1.32
0.06 0.01 0.31 1.43
0.07 0.01 0.32 1.53
0.08 0.02 0.33 1.64
0.09 0.03 0.34 1.74
0.10 0.04 0.35 1.84
0.11 0.06 0.36 1.94
0.12 0.08 0.37 2.04
0.13 0.10 0.38 2.13
0.14 0.13 0.39 2.22
0.15 0.17 0.40 2.30
0.16 0.21 0.41 2.37
0.17 0.25 0.42 2.44
0.18 0.31 0.43 2.50
0.19 0.36 0.44 2.56
0.20 0.43 0.45 2.61
0.21 0.50 0.46 2.65
0.22 0.57 0.47 2.68
0.23 0.65 0.48 2.70
0.24 0.74 0.49 2.71
0.25 0.83 0.50 2.72
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Figure 3.6: Power calculations. Panel A: Power to detect variants with an effect size of 0.10 D for the ALSPAC sample with MAFs ranging 
between 0.01 and 0.50. Based on a sample size of N = 4,070 for a normally distributed trait with mean (SD) = -0.382 (1.28) D and Type I error 
rate (α) of 5 x 10-8. MAF = minor allele frequency. Panel B: Minimum sample sizes required to detect variants with effect sizes of 0.10 D with 60-
80% power. Based on a normally distributed trait with mean MSE (SD): -0.382 (1.28) D and Type I error rate of 5 x 10-8. MAF = minor allele 
frequency. 
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3.4 Discussion 

In summary, no variants on chromosome X demonstrated evidence of association 

with MSE at age 15 years in this sample of 4,070 unrelated individuals. However, 

the genes GPM6B, PRPS1, ZNF449 and NRK should be considered as potential 

candidates warranting further investigation. 

GPM6B (Neuronal membrane glycoprotein M6-b), located at Xp22.2, has been 

associated with extracellular matrix assembly, negative regulation of focal adhesion 

assembly, positive regulation of bone mineralisation and regulation of actin 

cytoskeleton organisation (Drabek et al., 2011). Located at Xq22.3 are the genes 

PRPS1 (Phosphoribosyl Pyrophosphate Synthetase 1) and NRK (Nike Related 

Kinase). PRPS1 is associated with X-linked recessive Charcot-Marie-Tooth disease-5 

(Kim et al., 2007) and non-syndromic deafness (Liu et al., 2010c); while NRK is

known to be expressed during the latter stages of embryogenesis (Nakano et al., 

2000). In addition, zinc finger proteins 449 and 75 (ZNF449 and ZNF75D) appear to 

play roles as transcription factors with both genes located at Xq26.3 (Luo et al., 

2006) and in the list of the ten most highly-ranked genes from gene-based analyses 

(Tables 3.5 and 3.6). These genes reside close to the known myopia susceptibility 

locus, MYP13 (Xq23-25).

Although not highlighted as a suggestive association in the gene-based test, the 

gene, CHRDL1 (Xq23) resides within the highlighted gene-set 

RNTCANNRNNYNATTW_UNKNOWN. CHRDL1 is known to be expressed in the retina 

during ocular development and has been associated with megalocornea (Webb et 
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al., 2012; Davidson et al., 2014). A CHRDL1 gene knockdown investigation in 

Xenopus observed increased eye size as a feature in some cases (Pfirrmann et al., 

2015). 

The gene-sets demonstrating strongest association are related to cell 

differentiation, transcription factors and growth factors. As myopia is most 

commonly characterised by an axial elongation of the eye, alterations to these 

biological processes are plausible causes for myopia development. 

A key consideration for this study is the use of non-cycloplegic autorefraction. 

Whilst the ideal scenario is to use cycloplegia when obtaining refractive error 

measures in children (Fotedar et al., 2007; Sankaridurg et al., 2017), longitudinal 

studies such as ALSPAC that investigate a wide range of traits, not just ocular traits, 

require methods that retain the near visual acuity of participants after their ocular 

assessment. Such studies also need to minimise dropout rates over time, and this is 

helped by avoidance of cycloplegic drops. However, the lack of cycloplegia can 

increase the variability in autorefraction results due to the retained accommodative 

response, which also results in a myopic shift and reduced repeatability of non-

cycloplegic autorefraction readings (Williams et al., 2008a). A previous comparison 

of non-cycloplegic autorefraction and spectacle prescriptions from optometrists in 

this sample of ALSPAC children found a mean difference (± SD) of -0.22 ± 0.84 D 

(Northstone et al., 2013). This comparison suggests that this myopia shift using non-

cycloplegic autorefraction should not greatly influence the mean spherical 

equivalent measures of the cohort overall; however, the relatively high variability in 
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these measures does further reduce the power of this study to detect likely 

associated variants. 

Although Bonferroni adjustment is the simplest method of applying multiple testing 

correction to association test p-values, its primary assumption is that all association 

tests are independent of each other. Thus, this method of adjustment is overly 

conservative in genetic studies as variants and genes are not independent entities 

but are related to each other through patterns of LD. Hence, the genome-wide 

significance p-value threshold of 5 x 10-8 was chosen to define sufficiently strong 

association for SNP-based tests and a FDR of 5% was applied for gene-based tests. 

Additionally, it is often the case that association studies apply adjustment for 

genomic inflation arising due to population stratification or other unaccounted 

confounding (Price et al., 2010). However, genomic control correction was not 

performed in this investigation, since there was no evidence for inflation of p-

values; and this adjustment has been shown to be overly simplistic as it involves 

applying the same level of correction to all variants, whereas in reality variants are 

affected to different extents (Price et al., 2006; Schork et al., 2013). 

Gene-based tests can be more powerful than single variant tests for complex traits 

where multiple variants are likely to be causal (Neale and Sham, 2004). On their 

own, individual variants exert a very small effect on phenotype, yet it is often the 

case that associated variants are enriched in specific regions. Therefore, pooling 

variants within a defined locus combines their individual effects and increases the 
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likelihood of a true association being detected. In addition, as the number of genes 

is considerably less than the number of individual variants, fewer tests are 

performed. Thus less stringent multiple testing correction is required for gene-

based tests (Liu et al., 2010b). 

Gene-based tests performed using VEGAS2 and MAGMA yielded results with 

different strength association signals after adjustment for multiple testing. It is 

important to note that despite both methods using 1000 Genomes project 

reference data mapped to NCBI build 37 coordinates, subtle differences could have 

arisen from the use of differing releases of the same genome build. Here, this 

genome build-related phenomenon led to different numbers of genes being tested 

for association with VEGAS2 (1,252 genes) and MAGMA (803 genes). The two gene-

based tests also use different methods to account for LD between SNPs in each 

gene. 

Whilst this XWAS failed to demonstrate association of variants on chromosome X 

with MSE at age 15 years, this is most likely due to the relatively small sample size 

used (Figure 3.6). As there were over 260,000 variants included in the SNP-based 

test after quality control and approximately 1000 genes in the gene-based 

investigations, stringent multiple testing correction was required to determine 

whether the association signal detected was likely to represent a true association 

between variant/gene and phenotype. 
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GWAS that have successfully identified variants associated with refractive error 

have analysed sample sizes from 4,270 to 45,771 (Hysi et al., 2010; Solouki et al., 

2010; Kiefer et al., 2013; Verhoeven et al., 2013). As demonstrated by the second 

power calculation (Figure 3.6B), a sample of approximately 150,000 individuals 

would be required to detect successfully 80% of true associations across variants 

with MAF > 0.1 and effect size > 0.10 D. With ever-increasing sample sizes, this 

ability to detect true associations extends to rarer variants. As data from larger 

cohorts, for example UK Biobank (Sudlow et al., 2015), become available, power to 

detect true associations of variants on chromosome X with MSE will improve 

considerably. 

Despite this current investigation having failed to identify any genetic variants on 

chromosome X associated with myopia, there are potential candidate loci 

warranting further investigation for their role in myopia development in the general 

population (Craddock, O'Donovan and Owen, 2008). Thus, it is anticipated some of 

the X-chromosome variants associated with refractive error will be detected when a 

GWAS is repeated using data from the UK Biobank. 



101 

Chapter 4 CREAM Corneal 
Astigmatism GWAS Meta-analysis 
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Chapter 4 CREAM Consortium GWAS Meta-analysis for Corneal 

Astigmatism 

4.1 Introduction 

Despite knowledge that genetic factors make a notable contribution to the 

development of corneal and refractive astigmatism, with the proportion of trait 

variance attributable to genetic effects (heritability) estimated at 50-65% (Clementi 

et al., 1998; Hammond et al., 2001; Dirani et al., 2006; Grjibovski et al., 2006; Kim et 

al., 2013), genome-wide association studies for astigmatism have lagged behind 

those for spherical equivalent refractive error and myopia. 

Early GWAS for corneal astigmatism showed promise with identification of a single 

locus in the promoter region of PDGFRA on chromosome 4 (lead variant: rs7677751, 

P = 7.87 x 10-9) associated with this trait in 8,513 individuals of Asian ancestry by 

Fan et al. (2011). One other study has successfully replicated association of this 

locus with corneal astigmatism in a European ancestry cohort (Guggenheim et al., 

2013a); however, no other loci have demonstrated genome-wide significant 

association (P < 5 x 10-8) with this trait. A large-scale GWAS for the related trait of 

refractive astigmatism undertaken by the Consortium for Refractive Error and 

Myopia (CREAM) in 45,931 individuals identified only a single locus demonstrating 

genome-wide significant association, near the NRXN1 gene on chromosome 2 (lead 

variant: rs1401327, P = 3.92 x 10-8) (Li et al., 2015a). These results are in contrast to 

those for the highly heritable refractive traits of spherical equivalent and myopia, 

for which over a hundred variants demonstrating genome-wide significant 
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association have been identified (Kiefer et al., 2013; Verhoeven et al., 2013; Pickrell 

et al., 2016).  

Since refractive astigmatism is a combination of corneal and lenticular influences, it 

could be argued that this paucity in identifying genome-wide significant variants 

may be due to phenotypic uncertainty. As a result, the CREAM consortium 

organised a GWAS meta-analysis study for corneal astigmatism, using the same 

phenotype definitions as the earlier study by Fan et al. (2011) in order to identify 

novel susceptibility loci for this trait. I carried out the work described in this chapter 

on behalf of CREAM. 
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4.2 Methods 

This investigation followed an analysis plan that was agreed upon by members of 

CREAM before starting work. The plan was designed to standardise methods across 

participating CREAM groups in order to facilitate meta-analysis. All study groups 

known to CREAM with relevant genotype and phenotype data were invited to 

contribute to the study.  

4.2.1 Study Cohorts 

A total of 31,370 individuals participated in this meta-analysis of corneal 

astigmatism and their demographics are summarised in Table 4.1. This sample 

consisted of 22,250 individuals of European ancestry from 14 studies and 9,120 

individuals of Asian ancestry from 8 studies. Of these individuals, 5,470 European 

and 947 Asian participants were under 25 years of age. 

Acknowledgements and study information for each of the participating cohorts in 

this meta-analysis are included in Appendix A. Ethical approval for the study was 

obtained locally by each CREAM study group, and participants gave informed 

consent. All phenotyping, genotyping, imputation and individual GWAS were 

undertaken by the respective study groups prior to submission of their summary 

statistics to a central site for meta-analysis.
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Table 4.1: Subject demographics of participating CREAM study groups. 

Study Ancestry N (Cases/Controls) %Female
Age (Years) Corneal Astigmatism (D)
Mean (SD) Median (IQR) Range

ALSPAC European 2279 (985/1294) 53.1 15.5 (0.3) 0.683 (0.469-0.959) 0.000-5.680
BMES European 1238 (720/518) 41.8 73.3 (7.6) 0.863 (0.565-1.295) 0.155-8.615
EPIC European 857 (456/401) 58.5 68.7 (7.4) 0.780 (0.527-1.152) 0.075-3.997
FITSA European 127 (62/65) 100 67.9 (3.1) 0.733 (0.530-1.033) 0.270-2.020
GenerationR European 2071 (981/1090) 49.9 6.09 (0.4) 0.725 (0.480-0.995) 0.000-3.370
GHS11 European 2398 (1003/1395) 48.7 55.9 (10.8) 0.650 (0.400-0.950) 0.050-4.350
GHS21 European 851 (383/468) 50.9 55.1 (10.8) 0.650 (0.450-1.000) 0.050-3.800
RAINE European 1028 (407/621) 50.9 20.0 (0.4) 0.649 (0.445-0.905) 0.280-2.440
Rotterdam-I European 5537 (2064/3473) 59.3 69.5 (9.2) 0.601 (0.334-1.007) 0.000-9.663
Rotterdam-II European 1982 (633/1349) 53.8 64.8 (8.0) 0.539 (0.294-0.884) 0.000-6.789
Rotterdam-III European 2925 (1180/1745) 56.2 57.0 (6.9) 0.618 (0.356-1.019) 0.000-4.869
OGP-A2 European 92 (37/55) 44.6 16.0 (4.5) 0.682 (0.512-0.942) 0.185-3.070
OGP-B2 European 446 (181/265) 43.7 50.6 (15.4) 0.650 (0.430-0.970) 0.130-4.240
TwinsUK European 419 (201/218) 92.7 64.0 (10.5) 0.729 (0.476-1.105) 0.000-5.432
BES-610K3 Asian 553 (240/313) 65.6 62.1 (8.4) 0.666 (0.407-1.056) 0.000-3.620
BES-OmniE3 Asian 469 (208/261) 60.1 64.7 (9.5) 0.676 (0.429-1.016) 0.000-5.082
SCES-610K3 Asian 1745 (787/958) 48.7 57.6 (9.0) 0.703 (0.476-1.060) 0.109-5.868
SCES-OmniE3 Asian 545 (257/288) 48.6 59.2 (8.8) 0.723 (0.470-1.065) 0.117-5.404
SCORM Asian 947 (768/179) 48.6 10.8 (0.8) 1.205 (0.851-1.624) 0.138-3.911
SIMES Asian 1778 (750/1028) 51.7 59.5 (10.8) 0.662 (0.432-1.016) 0.078-5.618
SINDI Asian 2261 (814/1447) 48.6 56.5 (9.1) 0.614 (0.411-0.912) 0.115-4.727
STARS Asian 822 (525/297) 50.0 38.5 (5.3) 1.000 (0.625-1.380) 0.125-3.875
1Association tests were undertaken separately for samples recruited in different waves.
2Association tests were undertaken separately for different age strata (stratum A, age > 3 and < 25 years; stratum B, age  25 years).
3Association tests were undertaken separately for samples genotyped on different platforms.
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4.2.1.1 Phenotypes 

Anterior corneal curvature was measured using keratometry (the keratometer used 

by each CREAM study group is listed in Table 4.2), with corneal astigmatism defined 

as the difference in corneal curvature between the steepest and flattest meridians. 

Corneal astigmatism was averaged between the two eyes, except for individuals 

with data available for only one eye. To convert keratometry readings from 

millimetres to dioptres, a conversion factor of 332 divided by the keratometry 

reading (in mm) was applied (Bennett and Rabbetts, 1989). Individuals known to 

have keratoconus, corneal scarring, ocular surgery, or any corneal/ocular condition 

that would impair keratometry were excluded from the analysis.  

Table 4.2: Instrument for measuring corneal curvature. 

Study Instrument
ALSPAC IOLmaster
BMES IOLmaster
EPIC IOLmaster

FITSA IOLmaster
GenerationR IOLmaster

GHS 1 Lenstar LS 900
GHS 2 Lenstar LS 900
RAINE IOLmaster

Rotterdam-I Javal Keratometer/Lenstar LS 900
Rotterdam-II Javal Keratometer/Lenstar LS 900
Rotterdam-III Javal Keratometer/Lenstar LS 900

OGP-A IOLmaster
OGP-B IOLmaster

TwinsUK Visionix VX-120
BES-610K Lenstar LS 900

BES-OmniE Lenstar LS 900
SCES-610K IOLmaster

SCES-OmniE IOLmaster
SCORM Canon RK-5
SIMES IOLmaster
SINDI IOLmaster
STARS IOLmaster
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As per Fan et al. (2011), corneal astigmatism was considered as a dichotomous trait 

with cases defined as individuals with corneal astigmatism > 0.75 D, and controls 

defined as those with corneal astigmatism ≤ 0.75 D.  

4.2.1.2 Genotyping and Imputation 

DNA samples were extracted from blood or saliva and genotyped on a high-density 

SNP platform, as described by Li et al. (2015a). Imputation was subsequently 

performed by each participating study group using an ancestry matched reference 

panel from the 1000 Genomes Project and the IMPUTE2 or Minimac software 

packages (Howie et al., 2009; Li et al., 2010). All variants for all cohorts were 

mapped to NCBI Build 37 coordinates. 

Quality-control filtering of variants was performed following Fan et al. (2016). In 

general, variants with per-study missingness > 0.05, minor allele frequency (MAF) 

< 0.05, Hardy–Weinberg disequilibrium test p-value < 1 × 10−6, poor imputation 

quality (IMPUTE2 info ≤ 0.5 or Minimac Rsq ≤ 0.5) were excluded, along with 

samples with per-study missingness > 0.05, extreme heterozygosity, sex mismatch, 

and those with unaccounted-for relatedness or outlying ancestry.  

4.2.1.3 Genome-wide Association Studies 

Participating study groups performed genome-wide single marker association tests 

using logistic regression models in their respective cohorts for the phenotype of 

corneal astigmatism case/control status. If genetic variants were coded as 0, 1 or 2, 

the analysis was performed using PLINK (Purcell et al., 2007); however, if variants 
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were coded as imputed dosages on the 0-2 scale, the mach2dat (Li et al., 2010) or 

ProbABEL (Aulchenko, Struchalin and van Duijn, 2010) software packages were 

employed. Age was included as a continuous covariate and sex as a binary covariate 

in analyses. If individual studies had evidence of population stratification from Q-Q 

plots or the genomic control inflation factor (λGC), the first five major principal 

components were also included as continuous covariates. For cohorts including 

related individuals, genetic background was accounted for by treating this as a 

random effect in the analysis model. GWAS were performed separately for 

individuals in the younger (3 years < age < 25 years) and older (age ≥ 25 years) age 

groups and for individuals of European and Asian ancestries. 

4.2.2 Quality Control 

Prior to meta-analysis, all GWAS summary statistics received were reviewed to 

ensure all marker-level quality control had been performed as requested (i.e. 

exclusion of variants with MAF < 0.05, imputation quality score < 0.5, HWE test p-

value < 1 × 10−6). 

Following this initial quality control procedure, all summary statistics underwent 

study-wide quality control procedures as implemented in EasyQC (Winkler et al., 

2014). Quality control plots and metrics were generated and evaluated including 

effect allele frequency (EAF) plots, p-value versus Z-score (P-Z) plots, standard error 

versus sample size (SE-N) plots, and genomic control inflation factors (Appendix B). 

Queries regarding the summary statistics were resolved through discussion with 
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study group analysts, and, where indicated, imputation or association testing was 

repeated by the respective study groups. 

4.2.3 Meta-analysis of GWAS Results 

Meta-analyses were initially performed separately according to ancestry and age 

group as performed by Li et al. (2015a), namely: European ancestry under 25 years 

old (4 cohorts), European ancestry over 25 years-old (10 cohorts), Asian ancestry 

under 25 years old (1 cohort), and Asian ancestry over 25 years-old (7 cohorts). In 

all instances, a fixed-effects, inverse variance weighted approach was used in 

METAL as outlined in Section 2.3.3. To determine whether association signals were 

significant, a p-value of 5 × 10-8 was adopted for declaring genome-wide significant 

association in the GWAS meta-analyses (Section 2.3.7). Regional association plots 

for genome-wide significant loci were created using LocusZoom (Pruim et al., 2010). 

Conditional analysis was performed on the summary statistics from meta-analysis 

using GCTA-COJO (Yang et al., 2012) as outlined in Section 2.3.4. 

4.2.3.1 Power Calculation 

The statistical power of the all-cohorts meta-analysis was calculated using the 

software application QUANTO (Gauderman, 2002). This power calculation was 

based on an unmatched case-control design, with a case:control ratio of 1:2.3, as 

determined from the all-cohorts meta-analysed sample data. The following 

assumptions were applied when performing the calculation: a type I error rate (α) 

of 5 x 10-8, an odds ratio of 1.1, a MAF range between 0.01 and 0.50, a sample size 

of 31,370 individuals, and a population trait prevalence of 43.5%. The sample size 
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was taken as that used for this meta-analysis, with the population prevalence 

calculated as the average for all of the population-based studies contributing to this 

analysis. 

4.2.4 Gene-based and Gene-set Analyses 

Gene-based tests were subsequently performed for individuals of European 

ancestry using VEGAS2 and MAGMA (outlined in Section 2.3.5). In both instances, 

LD patterns were estimated using European ancestry reference panels, specifically 

reference files composed of data for the 379 unrelated individuals of European 

ancestry from Phase 1, Version 3 of the 1000 Genomes Project (The 1000 Genomes 

Project Consortium et al., 2012). These analyses were restricted to individuals of 

European ancestry since gene-based tests require consideration of LD patterns 

between variants within gene regions, which vary for different ancestries. In 

addition, the sample size contributing to the European ancestry meta-analysis was 

much greater than for the respective Asian ancestry meta-analysis (22,250 vs. 9,120 

individuals). In addition to inclusion of 50 kb flanking regions to the gene 

transcription start and stop sites, exploratory analyses using flanking regions of 200 

kb were also conducted in gene-based tests using MAGMA. 

Potential functional properties of genes associated with corneal astigmatism in the 

MAGMA analysis were further investigated using competitive gene-set analysis in 

MAGMA. Adjustment for multiple testing was applied using a false discovery rate of 

5% for these gene-based and gene-set test results. 
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4.2.5 SNP-Heritability and Genetic Correlation 

Using LDSC (Bulik-Sullivan et al., 2015a; Bulik-Sullivan et al., 2015b), the shared 

genetic contributions (i.e. genetic correlation) between corneal astigmatism and the 

two related traits of refractive astigmatism and spherical equivalent refractive error 

were quantified (see Section 2.3.2.2 for details of the LD score regression 

technique). The heritability explained by commonly-occurring genetic variants 

(SNP-heritability) for each of the three traits was also estimated, as part of the LDSC 

analysis. GWAS summary statistics for refractive error and refractive astigmatism 

were obtained from previous CREAM meta-analysis studies of these traits 

(Verhoeven et al., 2013; Li et al., 2015a). The LDSC analyses were restricted to 

individuals of European ancestry since large sample sizes are required and reference 

LD scores need to be obtained from an ancestry-matched reference panel. As 

analyses of corneal astigmatism and refractive astigmatism were performed as 

dichotomous trait studies, their respective case prevalences in the general 

population were required. These were taken as 42% and 26% respectively, and 

were calculated as the average for the European ancestry population-based studies 

contributing to the respective analyses. 
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4.3 Results 

4.3.1 Meta-analysis of GWAS Results 

Inverse variance weighted meta-analyses were performed for each of the four 

strata (age under/over 25 years and European/Asian ancestry) across approximately 

six million genetic variants. In each of the four strata, no locus achieved the pre-

defined genome-wide significant level of association (P < 5 x 10-8) (Tables 4.3-4.6, 

Figure 4.1 and Figure 4.2). 

Figure 4.1: Quantile-quantile plots for the separate ancestry/age strata fixed 
effects meta-analyses. Panel A: European ancestry, aged > 25 years; Panel B: 
European ancestry, aged < 25 years; Panel C: Asian ancestry, aged > 25 years; Panel 
D: Asian ancestry, aged < 25 years. Y-axes show observed negative log10 p-values 
and X-axes show expected negative log10 p-values according to the null hypothesis 
of no genetic association. Red line: line of unity (observed = expected). 
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Figure 4.2: Manhattan plots for the separate ancestry/age strata fixed effects meta-analyses. Panel A: European ancestry, aged > 25 years; 
Panel B: European ancestry, aged < 25 years; Panel C: Asian ancestry, aged > 25 years; Panel D: Asian ancestry, aged < 25 years. Y-axes show 
negative log10 p-values and X-axes show genomic position. Red line corresponds to P = 5 x 10-8, blue line corresponds to P = 1 x 10-5. 
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Table 4.3: The 10 variants demonstrating strongest association in each region in the GWAS meta-analysis of all European ancestry 
participants aged > 25 years. EAF = effect allele frequency; OR = odds ratio. NB: variants within ±500 kb of listed (lead) variant are not included 
in this list.

Variant Chromosome Position Effect Allele Other Allele EAF OR (95% CI) P-value Nearest Gene
rs1620100 2 36179888 T C 0.41 0.91 (0.87-0.94) 1.14 x 10-6 MRPL50P1
rs138222255 4 113801232 A T 0.89 0.82 (0.76-0.89) 2.52 x 10-6 ANK2
rs73076614 12 22633729 T C 0.95 1.24 (1.13-1.36) 3.32 x 10-6 C2CD5
rs10187347 2 227348324 T C 0.47 0.91 (0.88-0.95) 3.58 x 10-6 MIR5702
rs11183146 12 46024937 A G 0.54 0.84 (0.78-0.90) 3.82 x 10-6 LINC00938
rs4804959 19 31803331 T C 0.61 1.12 (1.07-1.17) 3.95 x 10-6 TSHZ3
rs9393856 6 27767825 T G 0.08 0.82 (0.75-0.89) 4.37 x 10-6 TRNAQ10
rs2184695 10 89890390 A C 0.53 0.91 (0.87-0.95) 4.66 x 10-6 MED6P1
rs35587414 1 153174958 T C 0.15 1.15 (1.08-1.23) 4.84 x 10-6 LELP1
rs5806282 13 102849565 I R 0.75 1.12 (1.07-1.17) 5.41 x 10-6 FGF14
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Table 4.4: The 10 variants demonstrating strongest association in each region in the GWAS meta-analysis of all European ancestry 
participants aged < 25 years. EAF = effect allele frequency; OR = odds ratio. NB: variants within ±500 kb of listed (lead) variant are not included 
in this list. 

Variant Chromosome Position Effect Allele Other Allele EAF OR (95% CI) P-value Nearest Gene
rs6005414 22 27783185 A G 0.53 0.80 (0.74-0.87) 5.83 x 10-8 LINC02554
rs17056435 5 158453783 A G 0.05 2.19 (1.64-2.92) 1.14 x 10-7 EBF1
rs2596618 3 24221506 A G 0.11 1.38 (1.22-1.57) 3.16 x 10-7 THRB
rs12859952 13 26381179 A G 0.77 0.77 (0.69-0.85) 3.61 x 10-7 ATP8A2
rs9652372 14 75377345 T C 0.09 0.70 (0.61-0.81) 7.43 x 10-7 RPS6KL1
rs139812140 8 118821440 D R 0.16 0.75 (0.67-0.85) 1.34 x 10-6 EXT1
rs7702605 5 2653180 C G 0.88 0.75 (0.67-0.85) 1.66 x 10-6 IRX2
rs12130807 1 82036836 A C 0.09 0.71 (0.61-0.82) 3.43 x 10-6 ADGRL2
rs202172201 4 40109940 I R 0.09 1.41 (1.22-1.62) 3.79 x 10-6 N4BP2
rs9581136 13 19639265 T C 0.06 0.65 (0.54-0.78) 4.20 x 10-6 GTF2IP3
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Table 4.5: The 10 variants demonstrating strongest association in each region in the GWAS meta-analysis of all Asian ancestry participants 
aged > 25 years. EAF = effect allele frequency; OR = odds ratio. NB: variants within ±500 kb of listed (lead) variant are not included in this list. 

Variant Chromosome Position Effect Allele Other Allele EAF OR (95% CI) P-value Nearest Gene
rs16875983 8 108285287 T G 0.25 1.22 (1.13-1.32) 2.14 x 10-7 ANGPT1
rs67687099 3 152747454 D R 0.20 1.37 (1.22-1.55) 3.25 x 10-7 HMGN2P13
rs35026266 15 48769044 T C 0.31 0.84 (0.79-0.91) 2.52 x 10-6 FBN1
rs10809667 9 1209532 A T 0.23 1.20 (1.11-1.30) 3.37 x 10-6 RPS27AP14
rs56738713 5 29586419 A G 0.08 1.37 (1.20-1.57) 5.17 x 10-6 UBL5P1
rs3924436 1 24908959 A G 0.41 0.86 (0.81-0.92) 5.42 x 10-6 NCMAP
rs1687660 16 86416646 C G 0.52 0.86 (0.81-0.92) 6.11 x 10-6 LINC00917
rs58435984 4 55127990 T C 0.78 0.84 (0.77-0.90) 8.58 x 10-6 PDGFRA
rs141310268 18 45633672 D R 0.14 0.80 (0.72-0.88) 9.87 x 10-6 ZBTB7C
rs817755 7 98202672 A C 0.91 1.42 (1.21-1.65) 1.00 x 10-5 NPTX2
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Table 4.6: The 10 variants demonstrating strongest association in each region in the GWAS meta-analysis of all Asian ancestry participants 
aged < 25 years. EAF = effect allele frequency; OR = odds ratio. NB: variants within ±500 kb of listed (lead) variant are not included in this list. 

Variant Chromosome Position Effect Allele Other Allele EAF OR (95% CI) P-value Nearest Gene
rs72971923 18 69822333 A G 0.15 0.32 (0.21-0.50) 2.68 x 10-7 LOC101927537
rs2069368 5 162870726 C G 0.94 7.30 (3.28-16.26) 1.14 x 10-6 CCNG1
rs7905017 10 92868457 A G 0.62 1.98 (1.50-2.62) 1.63 x 10-6 LINC00502
rs11079429 17 59472403 A G 0.29 0.48 (0.35-0.65) 2.23 x 10-6 BCAS3
rs9957 5 179290154 C G 0.74 1.92 (1.47-2.53) 2.48 x 10-6 TBC1D9B
rs17072824 18 62003510 A G 0.10 0.35 (0.23-0.54) 2.80 x 10-6 LINC01924
rs779593 3 118029874 T C 0.69 1.81 (1.41-2.32) 2.95 x 10-6 LOC101926968
rs143004236 7 135420794 A G 0.05 0.13 (0.06-0.31) 3.00 x 10-6 FAM180A
rs11085245 19 18859757 A G 0.83 0.45 (0.32-0.63) 3.31 x 10-6 CRTC1
rs12144639 1 213817311 A G 0.22 0.53 (0.40-0.70) 4.75 x 10-6 PROX1-AS1
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Thus, to increase the ability to detect weak association signals, a meta-analysis was 

performed using data from all four ancestry/age strata (22 cohorts, N = 31,370) 

based on the assumption that the genetic determinants of corneal astigmatism are 

consistent across ancestry groups and lifespan. This all-cohorts meta-analysis 

identified 49 variants demonstrating genome-wide significant association, all of 

which were located in a narrow interval close to the PDGFRA gene on chromosome 

4 (Figure 4.3 and Figure 4.4), replicating the previous findings of Fan et al. (2011). 

Table 4.7 lists the strongest associated (lead) variants in regions demonstrating 

suggestive association (P < 1 × 10−5) from this all-cohorts meta-analysis, with regions 

defined as ±500 kb of the lead variant. 

Both the European and Asian meta-analyses contributed to the association signal at 

the PDGFRA locus. The variant demonstrating strongest association in the all-

cohorts meta-analysis, rs7673984, had an effect size (odds ratio) of OR = 1.15 (95% 

CI: 1.07-1.24; P = 1.76 × 10−4) for the Asian ancestry cohort meta-analysis, OR = 1.11 

(95% CI: 1.06-1.16; P = 5.64 × 10−6) for the European ancestry cohort meta-analysis, 

and OR = 1.12 (95% CI: 1.08-1.16; P = 5.55 × 10−9) in the all-cohorts (Asians and 

Europeans combined) meta-analysis. The association of rs7673984 in the individual 

cohorts examined is summarised in Figure 4.5. Conditional analysis using GCTA-

COJO yielded no additional association signals at the PDGRFA locus independent of 

rs7673984. 
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Figure 4.3: Manhattan and Quantile-Quantile plots for fixed effects meta-analysis of European and Asian participants of all ages combined 
(N = 31,370). Panel A: Manhattan plot: Red line indicates P = 5 x 10-8; blue line indicates P = 1 x 10-5. Panel B: Quantile-Quantile plot: Y-axis 
shows observed negative log10 p-values and X-axis shows expected negative log10 p-values according to the null hypothesis of no genetic 
association. Red line: line of unity (observed = expected).
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Figure 4.4: Region plot for the locus demonstrating strongest association in the GWAS fixed-effects meta-analysis for European and Asian 
participants of all ages combined (N = 31,370). Symbol colours denote linkage disequilibrium (r2) values of variants with respect to the lead 
variant rs7673984 (highlighted in purple). 
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Table 4.7: Variants demonstrating association signals of P < 1 x 10-5 in each region in the GWAS meta-analysis of all samples (Europeans and 
Asians of all ages combined). EAF = effect allele frequency; OR = odds ratio. NB: variants within ±500 kb of listed (lead) variant are not included 
in this list. 

Variant Chromosome Position Effect Allele Other Allele EAF OR (95% CI) P-value Nearest Gene
rs7673984 4 55088761 T C 0.22 1.12 (1.08-1.16) 5.55 x 10-9 PDGFRA
rs34751092 4 24129037 A G 0.28 1.09 (1.05-1.13) 6.07 x 10-7 PPARGC1A
rs630203 5 141444269 T G 0.74 0.92 (0.88-0.95) 8.83 x 10-7 MRPL11P2
rs75607298 8 128611496 A G 0.72 1.14 (1.08-1.21) 2.28 x 10-6 CASC11
rs62401199 6 43813341 T C 0.14 1.15 (1.09-1.22) 3.29 x 10-6 LINC01512
rs753992 11 47349846 A G 0.29 0.91 (0.87-0.95) 3.48 x 10-6 MADD
rs3214101 11 114009408 A T 0.68 1.08 (1.05-1.12) 3.75 x 10-6 ZBTB16
rs10985068 9 123629724 C G 0.12 1.13 (1.07-1.19) 5.87 x 10-6 PHF19
rs62128379 2 26960055 T C 0.85 1.13 (1.07-1.19) 6.00 x 10-6 KCNK3
rs9939114 16 84023972 A G 0.05 0.54 (0.41-0.70) 6.01 x 10-6 NECAB2
rs60083876 7 34228819 A T 0.95 1.31 (1.17-1.48) 6.53 x 10-6 BMPER
rs859362 1 175495090 T C 0.19 1.10 (1.05-1.15) 7.14 x 10-6 TNR
rs11775037 8 108317615 A G 0.20 1.10 (1.05-1.14) 7.31 x 10-6 ANGPT1
rs7036824 9 96149894 T C 0.94 0.83 (0.77-0.90) 8.78 x 10-6 C9orf129
rs142168171 7 71253651 I R 0.09 1.37 (1.19-1.57) 9.14 x 10-6 CALN1
rs7278671 21 41047876 A G 0.51 0.93 (0.90-0.96) 9.31 x 10-6 B3GALT5
rs191640722 1 119264997 C G 0.09 0.87 (0.82-0.93) 9.53 x 10-6 LOC100421281
rs36107906 2 44162800 D R 0.29 1.09 (1.05-1.13) 9.61 x 10-6 LRPPRC
rs4896367 6 138807281 T C 0.72 1.09 (1.05-1.14) 9.75 x 10-6 NHSL1
rs35587414 1 153174958 T C 0.15 1.13 (1.07-1.20) 9.79 x 10-6 LELP1
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Figure 4.5: Forest plot and summary table for lead variant rs7673984 across all cohorts. Studies listed above the dotted line are new cohorts 
not included in the only prior GWAS for corneal astigmatism (Fan et al., 2011). EAF = effect allele frequency; OR = odds ratio. Horizontal bars 
denote 95% confidence intervals. rs7673984 was excluded from the Rotterdam-I cohort analysis during quality control filtering.
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4.3.1.1 Power Calculation 

As this meta-analysis of all samples did not identify any novel loci associated with 

corneal astigmatism, the power to detect associations in this investigation was 

calculated. Table 4.8 shows that based on the sample size used for this meta-

analysis; there was at least 80% power to detect variants with an odds ratio of 1.1 

and MAF ≥ 0.17 at p-value < 5 x 10-8. The power to detect associations decreased 

steadily for less common variants with power being only 35% for variants with a 

MAF of 0.1 (Table 4.8, Figure 4.6). 

Table 4.8: Power (β) to detect an odds ratio of 1.1 for variants with MAFs ranging 
between 0.01 and 0.50. Based on a sample size of N = 31,370, a case:control ratio 
of 1:2.3, a trait population prevalence of 43.5% and Type I error rate (α) of 5 x 10-8. 
MAF = minor allele frequency.

MAF Power (%) MAF Power (%)
0.01 0.01 0.26 97.50
0.02 0.10 0.27 97.98
0.03 0.52 0.28 98.36
0.04 1.63 0.29 98.66
0.05 3.89 0.30 98.90
0.06 7.58 0.31 99.09
0.07 12.82 0.32 99.24
0.08 19.43 0.33 99.36
0.09 27.07 0.34 99.46
0.10 35.30 0.35 99.54
0.11 43.66 0.36 99.60
0.12 51.76 0.37 99.65
0.13 59.31 0.38 99.70
0.14 66.13 0.39 99.73
0.15 72.11 0.40 99.76
0.16 77.24 0.41 99.78
0.17 81.57 0.42 99.80
0.18 85.16 0.43 99.82
0.19 88.10 0.44 99.83
0.20 90.49 0.45 99.84
0.21 92.41 0.46 99.85
0.22 93.94 0.47 99.85
0.23 95.16 0.48 99.86
0.24 96.13 0.49 99.86
0.25 96.89 0.50 99.86
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Figure 4.6: Power calculation. Power to detect variants with an odds ratio of 1.1 for 
this meta-analysed sample with MAFs ranging between 0.01 and 0.50. Based on a 
sample size of N = 31,370, a case:control ratio of 1:2.3, a trait population prevalence 
of 43.5% and Type I error rate (α) of 5 x 10-8.  MAF = minor allele frequency.

4.3.2 Gene-based and Gene-set Analyses 

In order to identify potential candidate genes and biological mechanisms enriched 

with variants attaining low but not necessarily genome-wide significant p-values 

from GWAS, gene-based and gene-set tests were performed using VEGAS2 and 

MAGMA. As these gene-based analyses require ancestry-matched reference panels, 
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these analyses were conducted using the results from the meta-analysis of all 

European ancestry cohorts of all ages. No genes demonstrated significant 

association from the VEGAS2 analyses. The 10 genes demonstrating strongest 

association from this analysis are shown in Table 4.9. From the MAGMA analysis, 17 

genes demonstrated significant association (FDR < 0.05; Table 4.10). Despite the 

difference in strength of association, there was a high degree of overlap between 

the results of the two programs, with the genes ACP2, CLDN7, ELP5, and CTDNEP1 

demonstrating the strongest association in both analyses (Table 4.9 and Table 4.10). 

In the MAGMA gene-based test, these four genes and TNFAIP8L3 achieved P < 0.05 

after stringent Bonferroni correction, whereas this was not the case for VEGAS 

(Table 4.9 and Table 4.10). Quantile-Quantile plots for the respective VEGAS2 and 

MAGMA gene-based analyses (Figure 4.7) show results from both methods follow 

similar distributions at higher –log10 p-values and no systematic inflation of p-values 

from the MAGMA gene-based analysis. 

A further exploratory gene-based analysis that included markers up to 200 kb 

upstream or downstream of each gene – an approach that has been successful for 

certain traits (Brodie et al., 2016) – failed to identify any additional genes associated 

with corneal astigmatism (at a FDR < 0.05) (Appendix C). 
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Table 4.9: The 10 genes demonstrating strongest association from the VEGAS2 gene-based association test. Start and stop positions listed 
include ±50 kb flanking regions. nSNPs = number of variants included in gene region. Test Statistic = gene-based χ2 test statistic with nSNPs
degrees of freedom. P-value = obtained from Test Statistic and adjusting for LD between variants. FDR = false discovery rate. Lead Variant = 
variant within gene locus with strongest association signal from previous single marker based association test. Genes shown in bold were also 
identified in the 10 strongest associated genes using MAGMA (Table 4.10). Total number of genes tested = 24,232. 

Gene Chromosome Start Stop nSNPs Test Statistic P-value FDR Bonferroni Adjusted P-value Lead Variant
ACP2 11 47210852 47320457 175 1680.63 1.00 x 10-5 0.097 0.242 rs3758670
MADD 11 47240926 47401582 271 2472.89 1.10 x 10-5 0.097 0.267 rs2697920
NR1H3 11 47219850 47340584 191 1929.38 1.20 x 10-5 0.097 0.291 rs3758670
DDB2 11 47186492 47310769 193 1638.98 2.00 x 10-5 0.097 0.485 rs3758670
CLDN7 17 7113221 7216512 123 980.06 2.00 x 10-5 0.097 0.485 rs222836
CTDNEP1 17 7096905 7205259 114 1013.67 2.90 x 10-5 0.111 0.703 rs222836
ELP5 17 7105371 7213259 123 1012.32 3.20 x 10-5 0.111 0.775 rs222836
GABARAP 17 7093737 7195753 96 952.50 4.10 x 10-5 0.118 0.994 rs222836
TYR 11 88861039 89078927 402 3017.77 4.40 x 10-5 0.118 1 rs12808354
PHF23 17 7088346 7192825 104 903.47 7.90 x 10-5 0.174 1 rs222836
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Table 4.10: Genes demonstrating strongest association from the MAGMA gene-based association test (FDR < 0.05). Start and stop positions 
listed include ±50 kb flanking regions. nSNPs = number of variants included in gene region. Z-Statistic = gene-based test statistic. P-value = 
obtained from Z-Statistic under the assumption of a normally distributed model. FDR = false discovery rate. Genes shown in bold were also 
identified in the 10 strongest associated genes using VEGAS2 (Table 4.9). Total number of genes tested = 18,418. 

Gene Chromosome Start Stop nSNPs Z-Statistic P-value FDR Bonferroni Adjusted P-value
ELP5 17 7105372 7213259 123 4.71 1.23 x 10-6 0.009 0.023
CLDN7 17 7113222 7216863 124 4.69 1.39 x 10-6 0.009 0.026
CTDNEP1 17 7096906 7205259 114 4.67 1.50 x 10-6 0.009 0.028
TNFAIP8L3 15 51298798 51447473 212 4.59 2.26 x 10-6 0.009 0.042
ACP2 11 47210853 47320457 175 4.56 2.52 x 10-6 0.009 0.046
GABARAP 17 7093738 7195753 96 4.45 4.23 x 10-6 0.013 0.078
PHF23 17 7088347 7192825 104 4.36 6.59 x 10-6 0.017 0.121
DVL2 17 7078661 7187867 112 4.27 9.80 x 10-6 0.021 0.181
SLC2A4 17 7134986 7241367 155 4.22 1.21 x 10-5 0.021 0.223
ACADVL 17 7070444 7178586 104 4.22 1.22 x 10-5 0.021 0.224
NR1H3 11 47219851 47340584 191 4.21 1.29 x 10-5 0.021 0.238
MADD 11 47240927 47401582 271 4.19 1.40 x 10-5 0.021 0.258
DLG4 17 7043209 7173369 139 4.18 1.45 x 10-5 0.021 0.267
YBX2 17 7141571 7247876 158 4.16 1.59 x 10-5 0.021 0.292
DDB2 11 47186493 47310769 193 4.14 1.74 x 10-5 0.021 0.321
PSMD5 9 123528331 123655299 148 4.03 2.77 x 10-5 0.032 0.510
EIF5A 17 7160318 7265782 179 3.95 3.89 x 10-5 0.042 0.717
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Figure 4.7: Quantile-quantile plots for VEGAS2 and MAGMA gene-based analyses. Y-axis shows observed negative log10 p-values and X-axis 
shows expected negative log10 p-values according to the null hypothesis of no genetic association. Red line: line of unity (observed = expected).
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Using these results from the MAGMA gene-based test (with either ±50 kb or ±200 

kb flanking regions), gene-set analysis was performed using MAGMA for the 

European ancestry cohorts (Appendix C). However, no gene sets were identified as 

demonstrating a greater level of association with corneal astigmatism than would 

be expected by chance. 

4.3.3 SNP-Heritability and Genetic Correlation 

LDSC was used to quantify SNP-heritability and the genetic correlation between 

corneal astigmatism and two related traits, refractive astigmatism and spherical 

equivalent refractive error (Table 4.11 and Table 4.12). The SNP-heritability (h2
SNP) 

estimates for corneal and refractive astigmatism (h2
SNP = 0.056 and 0.014, 

respectively) were considerably lower than for spherical equivalent (h2
SNP = 0.233). 

Furthermore, the SNP-heritability estimates for each of these astigmatism traits 

were not significantly different from zero (P > 0.05).  

Table 4.11: SNP-heritability estimated in samples of European ancestry from the 
CREAM consortium using LDSC. h2

SNP = SNP-heritability; SE = standard error; P-value 
= test of the null hypothesis (h2

SNP = 0). 

Trait No. of Variants Sample Size h2
SNP SE P-value

Corneal Astigmatism 1,024,525 22,250 0.056 0.038 0.15
Refractive Astigmatism 1,056,658 31,968 0.014 0.022 0.53
Spherical Equivalent 1,056,658 37,382 0.233 0.018 2.60 x 10-40

The genetic correlation analysis suggested there was a high genetic correlation 

between spherical equivalent and refractive astigmatism but weak correlation 

between spherical equivalent and corneal astigmatism (Table 4.12); however due to 

the high standard errors between all pairs of traits, these estimates were very 
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imprecise. The lack of precision in genetic correlation estimates from LDSC may be 

due to the low (and not significantly different from zero) SNP-heritability estimates 

for the respective astigmatism traits. Therefore, considerably larger sample sizes 

and/or a more homogenous sample may be required to improve precision when 

estimating SNP-heritability and genetic correlation. 

Table 4.12: Genetic correlations between pairs of refractive error traits in samples 
of European ancestry from the CREAM consortium using LDSC. RA = refractive 
astigmatism; CA = corneal astigmatism; MSE = mean spherical equivalent. P-values 
refer to the null hypothesis of zero correlation between traits.

Trait Pairs No. of Variants Genetic Correlation (SE) P-value
RA and CA 934,512 0.233 (0.70) 0.741
MSE and CA 1,024,525 -0.024 (0.16) 0.882
RA and MSE 1,056,658 0.773 (0.65) 0.235
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4.4 Discussion 

This meta-analysis of GWAS for corneal astigmatism in a combined sample of 

Europeans and Asians identified a single genome-wide significant locus in the 

promoter region of the PDGFRA gene, thus replicating the previous discovery of this 

corneal astigmatism associated locus in a predominantly Asian sample by Fan et al. 

(2011). Despite a fourfold increase in sample size (N = 31,370 versus N = 8,513) 

compared to the only previous GWAS meta-analysis for corneal astigmatism (Fan et 

al., 2011), the standard, single marker analysis performed here did not identify any 

novel loci. GWAS for spherical equivalent and other morphological traits in 

equivalently sized samples have identified dozens of independent risk loci (Kiefer et 

al., 2013; Verhoeven et al., 2013), yet this paucity of genome-wide significant loci 

for corneal astigmatism mirrors that observed in a previous large-scale GWAS for 

refractive astigmatism conducted by  Li et al. (2015a). 

SNP-heritability (h2) estimates for corneal and refractive astigmatism from LD Score 

regression were 0.056 and 0.014 respectively. These are the first reported estimates 

for these respective traits and are much lower than those obtained for spherical 

equivalent (h2 = 0.233), therefore suggesting that additive genetic effects of 

commonly occurring variants make a relatively small contribution to the variation of 

astigmatism between individuals. It should be noted that these SNP-heritability 

estimates are considerably lower than those reported from family and twin studies 

since SNP-heritability refers to the contribution of the variants tested rather than all 

sources of genetic variation as is the case in family and twin studies of heritability. 
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In the study by Fan et al. (2011) that originally identified the association between 

variants close to the PDGFRA gene and corneal astigmatism, the authors speculated 

that the underlying causal mechanism was common to populations of diverse 

ancestry and not specifically to those of Asian ancestry. This was based on the 

knowledge that their investigation included individuals of Indian ancestry, who are 

more closely genetically related to Europeans than East Asians (Fan et al., 2011). 

The results from the investigation conducted here support this theory. 

Association of genetic variants in the PDGFRA gene region with corneal astigmatism 

have been successfully replicated in a European ancestry cohort by Guggenheim et 

al. (2013a) (N = 1968); however there was a failure to replicate in a smaller study of 

Australians of European ancestry (N = 1013; Yazar et al. (2013b)). Guggenheim et al. 

(2013a) also identified this locus to be associated with axial length and corneal 

curvature in their European ancestry cohort. Furthermore, the association of 

variants in the PDGFRA region with corneal curvature has been identified in 

additional European and Asian ancestry cohorts (Han et al., 2011; Mishra et al., 

2012); however, a large-scale meta-analysis of GWAS for refractive astigmatism 

failed to demonstrate genome-wide significant association with this locus (N = 

45,287; Li et al. (2015a)). The investigation undertaken here adds to this complex 

body of evidence in support of genetic variants in the vicinity of the PDGFRA gene 

influencing eye size and corneal astigmatism, not just in Asian ancestry populations 

but also in European ancestry populations, however, the underlying mechanism of 

action remains uncertain. 
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In contrast to the single marker analyses, gene-based analyses have provided new 

insight into the genetic basis of corneal astigmatism, implicating the genes ACP2, 

CLDN7, CTDNEP1, ELP5, and TNFAIP8L3. Three of these five genes: CLDN7, 

CTDNEP1, and ELP5, are tightly clustered on chromosome 17, with their respective 

gene-based association signals sharing many variants in common. Therefore, a 

parsimonious interpretation is that only one of the genes has a causal association 

with astigmatism with the other two genes likely false-positive associations 

identified due to the contribution of overlapping variants that influence the causal 

gene. Of these three genes, CLDN7, which encodes the claudin-7 membrane protein 

(Hewitt, Agarwal and Morin, 2006), appears to be the most biologically plausible 

candidate. Claudins are responsible for tight junction formation and function 

(Tsukita and Furuse, 2000), with claudin-7 being the subtype present in human 

corneal epithelium and endothelium (Inagaki et al., 2013). At present, the 

mechanism by which claudin-7 may contribute to the development of corneal 

astigmatism is unclear. The acid phosphatase 2, lysosomal gene (ACP2), located on 

chromosome 11, codes for the beta subunit of the degradative enzyme, lysosomal 

acid phosphatase (LAP). Activity of the LAP enzyme has been identified to be 

enhanced in keratoconic corneas (Sawaguchi et al., 1989; Maruyama et al., 2001). 

The TNFAIP8L3 gene on chromosome 15 codes for TNF alpha-induced protein 8 like 

3, which is preferentially expressed in secretory epithelial cells (Cui et al., 2015). 

TNFAIP8L3 is implicated as a negative regulator of inflammation (and 

carcinogenesis) through its role in TNFα and phospholipid signalling. Based on this 

evidence, the CLDN7, ACP2, and TNFAIP8L3 genes are promising susceptibility genes 

for corneal astigmatism. It is important to note that whilst statistical support for the 
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above three genes was much stronger in the MAGMA analysis than in the VEGAS2 

analysis, the two software applications similarly ranked the genes demonstrating 

strongest association. This commonality between the MAGMA and VEGAS2 gene-

based test results provides greater confidence that these findings are robust than 

would be the case for findings identified using either software program alone, as 

the statistical models and hypothesis tests used by the two programs differ (see 

Section 2.3.5 for how these respective tests work). In addition, the increased 

number of genes tested in the VEGAS2 analysis compared to that in the MAGMA 

analysis means that there is a greater multiple testing penalty applied to the 

VEGAS2 gene-based test results. 

The strengths of this investigation are that this meta-analysis included data from 

multiple population samples, with follow-up gene-based and gene-set analyses 

undertaken in order to identify novel biological insights into the genetics of 

astigmatism. Weaknesses were, firstly, that despite the inclusion of both European 

and Asian ancestry cohorts, trans-ethnic meta-analysis (Wang et al., 2013) was not 

performed due to the small size of the Asian ancestry sample compared to the 

European ancestry sample. Trans-ethnic meta-analysis takes into consideration 

heterogeneity in effect sizes between cohorts; however this approach also factors 

in correlated effect sizes within ancestry groups such that variants demonstrating 

association in one ancestry group but not in another are still identifiable as true 

associations when meta-analysed (Wang et al., 2013). A second weakness of this 

investigation was the broad age spectrum of the participants (cohort mean age 

range = 6 to 73 years). This latter point is an important consideration since 
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astigmatism (both corneal and refractive) does not remain constant during life, with 

changes in orientation occurring with age (Read et al., 2007). For example, in child-

hood, astigmatism tends to be with-the-rule (WTR), whereas in older adults this 

orientation typically changes to against-the-rule (ATR) (Sanfilippo et al., 2015; Shao 

et al., 2017). This change in orientation is more notable for corneal astigmatism 

than for refractive astigmatism. Furthermore, the magnitude of corneal astigmatism 

has a tendency to be greater in the youngest (under 10 years-old) and oldest age 

groups (over 80 years-old) but it generally stable for most of life unlike refractive 

astigmatism which tends to increase from middle-age (over 50 years-old) (Sanfilippo 

et al., 2015). To overcome much of this variation, the design of this study was such 

that only the magnitude of corneal astigmatism was considered (i.e. no 

consideration of astigmatism axis) and utilisation of a case-control classification, 

thus reducing the impact of subtle changes in astigmatism that commonly occurs 

with age. 

The effect of spherical refractive error was not considered in this analysis despite it 

being shown previously that increasing magnitudes of astigmatism are correlated 

with increasing magnitudes of spherical refractive error (Kronfeld and Devney, 

1930; Guggenheim and Farbrother, 2004). However, the potential common role of 

refractive error associated genetic variants with astigmatism was unclear at the 

time of planning, but has since been suggested as a possibility from the results of 

the refractive astigmatism meta-analysis conducted by the CREAM consortium (Li et 

al., 2015a). Furthermore, inclusion of spherical equivalent (or the spherical 

refractive component only) as an additional covariate would reduce the statistical 
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power to detect corneal astigmatism associated variants, and therefore, a 

parsimonious model was favoured for this study. 

In conclusion, this GWAS meta-analysis for corneal astigmatism has replicated the 

discovery of a genome-wide significant locus near the PDGFRA gene (Fan et al., 

2011) and provided strong evidence that this locus is relevant in both Asians and 

Europeans (Table 4.7, Figure 4.5). Three novel candidate genes, CLDN7, ACP2, and 

TNFAIP8L3, have been identified using gene-based analyses, utilising data from 

across genomic regions rather than examining one genetic variant at a time. These 

novel genes warrant further investigation in order to understand their potential role 

in the pathogenesis of corneal astigmatism. Lastly, utilising the recently developed 

LD Score regression method to estimate SNP-heritability, it has been revealed that 

SNP-heritability of corneal (and refractive astigmatism) is considerably lower than 

that for spherical equivalent refractive error (Table 4.11). This implies that rare 

variants and/or non-genetic (environmental) factors have a greater influence on 

astigmatism than spherical equivalent, or that non-additive genetic effects make a 

substantial contribution to the heritability of astigmatism as suggested in previous 

studies (Hammond et al., 2001; Dirani et al., 2006; Grjibovski et al., 2006). 
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Chapter 5 Estimating SNP-heritability 
of Refractive Errors
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Chapter 5 Estimating SNP-heritability of Refractive Errors 

5.1 Introduction 

In Chapter 4, SNP-heritability estimates for corneal and refractive astigmatism 

estimated using summary statistics from the respective CREAM GWAS, were found 

to be low: h2
SNP = 0.056 and 0.014, respectively. The subsequent availability of 

genetic data from the UK Biobank enabled an opportunity to further explore and 

replicate these SNP-heritability analyses in this new sample. 

In addition, the investigation performed here aimed to test the hypothesis that 

SNP-heritability for spherical equivalent refractive error is mostly due to additive 

effects whereas dominance effects are the main contributors to the SNP-heritability 

of corneal and refractive astigmatism. The hypotheses were tested using the 

software application GCTA, in a sample of individuals of White European ancestry 

with genotype data available from the UK Biobank interim release (N = 141,751). In 

addition, the investigation aimed to provide “optimal classification criteria” for 

defining cases of corneal and refractive astigmatism based on these heritability 

estimates, which could then be applied in subsequent GWAS of these respective 

traits (Chapter 6). 
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5.2 Methods 

Analyses were restricted to the individuals of White European ancestry with genetic 

data available from the UK Biobank interim data release as outlined in Section 2.2.2. 

Individuals were excluded from analyses if they had, or reported having, any eye 

problems or disorders that could bias or invalidate autorefraction or keratometry 

(see Section 2.2.3 for further details). Individuals missing covariate data were also 

excluded. 

5.2.1 SNP-Heritability Estimation 

SNP-heritability (h2
SNP) estimates were obtained for all three phenotypes (corneal 

astigmatism, refractive astigmatism and spherical equivalent; N = 27,737 for corneal 

astigmatism, and 28,403 for refractive astigmatism and spherical equivalent) using 

the list of approximately 890,000 “high-confidence” variants (defined in Section 

2.2.5) and the GCTA software application (Yang et al., 2011a). Phenotypes were 

considered as continuous traits or as dichotomous traits defined using each of the 

following case thresholds: 0.50 D to 1.50 D, in 0.25 D steps for corneal and 

refractive astigmatism; and -0.50 D to -1.50 D, in 0.25 D steps for spherical 

equivalent. Sample prevalences for the respective traits and case thresholds are 

listed in Table 5.3. Discrete covariates included in SNP-heritability estimation were: 

genotyping array and sex. The mean age of the participant when eye measures 

were recorded was included as a quantitative covariate. Mean spherical equivalent 

was included as an additional quantitative covariate for all analyses of corneal and 

refractive astigmatism (as outlined in Section 2.2.4). 
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5.2.2 Observed to Liability Scale Conversion 

As heritability is estimated on the ‘observed scale’ (see Section 2.3.6 for definitions), 

conversion to the ‘liability scale’ was required for the heritability estimates of the 

different dichotomous traits to be compared either against each other or across 

different case threshold definitions (Lee et al., 2011). To facilitate this, approximate 

population prevalence estimates were obtained from the full sample of UK Biobank 

individuals with valid phenotype measures available, irrespective of ancestry or 

exclusion criteria. Sample prevalences, defined as the proportion of cases in the 

investigated sample relative to the total investigated sample size, were calculated 

by GCTA during analysis. As both sample and population prevalences were included, 

this transformation automatically took into consideration the presence of any 

ascertainment bias, although this would be negligible since the population 

prevalence was obtained from the full UK Biobank dataset. 

5.2.3 Consideration of Uncorrected Population Effects 

To gauge the extent to which SNP-heritability estimates obtained here may be 

biased (inflated) due to uncorrected population stratification or residual cryptic 

relatedness, the method proposed by Yang et al. (2011b) was utilised (see Section 

2.3.6). To facilitate this, individual GRMs were generated using PLINK 1.9 for each of 

the 22 autosomal chromosomes using individuals who were included in both GRMs 

for corneal astigmatism and the refractive phenotypes (N = 25,900). For this 

analysis, all traits were considered in their continuous form only. 
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5.2.4 Quantification of Dominance Effects 

Additional SNP-heritability estimates were obtained in an attempt to partition SNP-

heritability into separate additive and dominance components. GCTA-GREMLd (Zhu 

et al., 2015) was used to generate additive and dominance GRMs for corneal 

astigmatism and the refractive phenotypes using the same unrelated individuals as 

used for the initial SNP-heritability estimation (N = 27,737 and 28,403 respectively). 

For this analysis, all traits were considered in their continuous form only. 
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5.3 Results 

5.3.1 Consideration of Uncorrected Population Effects 

In order to test for inflation of SNP-heritability estimates due to uncorrected 

population stratification or cryptic relatedness, the following linear regression was 

performed: the difference between heritability estimates from individual analyses 

of each chromosome versus a joint analysis of all chromosomes (h2
sep – h2

joint), was 

regressed on chromosome length (Table 5.1, Figure 5.1). In the case of no cryptic 

relatedness or population stratification being present, the intercept and gradient 

would each equal zero. Conversely, in the presence of uncorrected cryptic 

relatedness or population stratification, the intercept or gradient of the regression 

line would be greater than zero, respectively. From the joint analyses, SNP-

heritability estimates obtained using the “high-confidence” variants (see Section 

2.2.5) and individuals present in both initial GRMs for corneal astigmatism and the 

refractive phenotypes (N = 25,880) were h2
SNP = 0.074, 0.049 and 0.391 for corneal 

astigmatism, refractive astigmatism and spherical equivalent respectively. As listed 

in Table 5.1, the respective intercepts and gradients were 2.25 x 10-4 (P = 0.377) and 

2.92 x 10-6 (P = 0.109) for corneal astigmatism; 1.67 x 10-4 (P = 0.647) and 4.60 x 10-6 

(P = 0.082) for refractive astigmatism; and 1.86 x 10-3 (P = 0.009) and 8.87 x 10-6 (P = 

0.062) for spherical equivalent. By applying Equation 2.12, the total proportions of 

phenotypic variance attributable to population structure (cryptic relatedness + 

population stratification) were 6.36 x 10-4 (2.35 x 10-4 + 4.01 x 10-4), 8.06 x 10-4

(1.75 x 10-4 + 6.31 x 10-4) and 3.17 x 10-3 (1.95 x 10-3 + 1.22 x 10-3) for corneal 

astigmatism, refractive astigmatism and spherical equivalent, respectively (Table 

5.1). Despite the non-zero intercept value for spherical equivalent (P < 0.05), its 
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effect on the overall trait variance can be considered as negligible as variation due 

to population effects is less than 1% of the SNP-heritability estimated for this trait. 

In summary, the SNP-heritability estimates for corneal astigmatism, refractive 

astigmatism and spherical equivalent obtained here do not appear to be notably 

inflated due to unadjusted population structure. Thus, inclusion of principal 

components for population stratification adjustment was not deemed necessary for 

these traits in this sample. 

5.3.2 Quantification of Dominance Effects 

Since twin and family studies have suggested the presence of dominance effects 

contributing to the variance of astigmatism (Hammond et al., 2001; Dirani et al., 

2006; Grjibovski et al., 2006), GREMLd analyses were performed to partition SNP-

heritability estimates into separate additive and dominance components. For all 

three traits, estimates for additive effects were in line with the h2
joint estimates 

obtained previously; however, the contribution of dominance effects appeared to 

be negligible (Table 5.2). 
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Figure 5.1: Estimating the proportion of h2
SNP that is inflated due to uncorrected cryptic relatedness and population stratification. h2

sep = 
SNP-heritability estimated from the individual chromosome tests; h2

joint = Total SNP-heritability estimated from the joint test (all chromosomes 
pooled together). Blue lines denote linear regression lines.
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Table 5.1: Estimating the proportion of h2
SNP that is inflated due to uncorrected cryptic relatedness and population stratification. 

Abbreviations: h2
joint = Total SNP-heritability estimated from the joint test; P-value = probability of h2= 0; VPOP = proportion of phenotypic 

variance attributed to population structure (cryptic relatedness and population stratification); VCR = proportion of phenotypic variance 
attributed to cryptic relatedness only; VPS = proportion of phenotypic variance attributed to population stratification only. N = 25,880. 

Trait h2
joint 95% CI Intercept P-value Gradient P-value VPOP (VCR + VPS)

Corneal Astigmatism 0.074 0.030-0.119 2.25 x 10-4 0.377 2.92 x 10-6 0.109 6.36 x 10-4 (2.35 x 10-4 + 4.01 x 10-4)
Refractive Astigmatism 0.049 0.006-0.093 1.67 x 10-4 0.647 4.60 x 10-6 0.082 8.06 x 10-4 (1.75 x 10-4 + 6.31 x 10-4)
Spherical Equivalent 0.391 0.344-0.437 1.86 x 10-3 0.009 8.87 x 10-6 0.062 3.17 x 10-3 (1.95 x 10-3 + 1.22 x 10-3)

Table 5.2: Partitioning trait variance into additive, dominance and environmental components using GREMLd. 

Trait Sample Size Additive 95% CI Dominance 95% CI Environment
Corneal Astigmatism 27,714 0.056 0.015-0.096 0.000 0.000-0.036 0.944
Refractive Astigmatism 28,378 0.046 0.007-0.085 0.000 0.000-0.035 0.954
Spherical Equivalent 28,378 0.368 0.326-0.411 0.000 0.000-0.033 0.632
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5.3.3 Determining Optimal Trait Definitions 

Refractive errors have often been considered as dichotomous traits in genetic and 

epidemiological studies; however, the choice of the threshold used to define 

case/control status has varied from study to study (Hammond et al., 2001; He et al., 

2004; Quek et al., 2004; Huynh et al., 2007; Vitale et al., 2008; Dirani et al., 2010; 

Fan et al., 2011; Li et al., 2015a). In order to determine an optimal trait definition 

for detecting commonly-occurring genetic variants with additive effects on 

refractive errors, SNP-heritability estimates were calculated with GCTA for corneal 

astigmatism, refractive astigmatism and spherical equivalent classified either as 

continuous or dichotomous traits, and using a grid of case thresholds for the latter 

(namely, 0.50, 0.75, 1.00, 1.25 and 1.50 D of astigmatism or -0.50, -0.75, -1.00, -1.25 

and -1.50 D of spherical equivalent). Following previous precedents (Schulze and 

McMahon, 2004; Corvin, Craddock and Sullivan, 2010; Koran et al., 2014), this 

approach was predicated on the assumption that the trait definition capturing the 

greatest SNP-heritability would be the one most likely to highlight genome-wide 

significant loci in subsequent GWAS of these traits. 

For corneal astigmatism, SNP-heritability was greatest using a case definition 

threshold of 0.50 D (h2
SNP = 0.094) and negligible for a case threshold of 1.50 D 

(Table 5.3). However, there appeared to be no meaningful difference in 

SNP-heritability across the range of trait definitions tested, since all of the 

confidence intervals overlapped (Table 5.3, Figure 5.2). For refractive astigmatism, 

SNP-heritability estimates were generally higher than those for corneal astigmatism 

(h2
SNP: range 0.015-0.158; Table 5.3, Figure 5.2). Using case thresholds of increasing 
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magnitude between 0.50 D and 1.25 D inclusive yielded increasing SNP-heritability 

estimates, although the large standard errors meant that, again, there was no 

statistical support for meaningful differences across the range of case thresholds 

tested. SNP-heritability estimates for spherical equivalent were similar for all case 

thresholds of examined (h2
SNP: range 0.462-0.491; Table 5.3, Figure 5.2) with 

considerable overlap between estimates. Estimates of SNP-heritability were 

numerically lower but with much narrower standard errors when astigmatism and 

spherical equivalent were modelled as continuous traits compared to dichotomous 

trait analyses (continuous trait h2
SNP (SE): corneal astigmatism = 0.061 (0.021); 

refractive astigmatism = 0.046 (0.020); spherical equivalent = 0.387 (0.022)), 

although once more, not to a sufficient extent to attain statistical support (Table 

5.3, Figure 5.2). 
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Table 5.3: Estimates of SNP-heritability (h2
SNP) for corneal astigmatism, refractive astigmatism and spherical equivalent. Analyses were 

conducted using GCTA-GREML. h2
SNP = SNP-heritability; SE = standard error; P-value = test of the null hypothesis (h2

SNP = 0).

Trait Case Threshold (D)
Case Prevalence

h2
SNP SE P-value

Population Sample

Corneal Astigmatism
(N = 27,707)

Continuous - - 0.061 0.021 1.19 x 10-3 
0.50 0.72 0.70 0.094 0.036 3.53 x 10-3 
0.75 0.46 0.45 0.053 0.033 0.051
1.00 0.28 0.27 0.086 0.038 9.86 x 10-3 
1.25 0.17 0.17 0.042 0.046 0.175
1.50 0.11 0.10 0.000 0.057 0.500

Refractive Astigmatism
(N = 28,378)

Continuous - - 0.046 0.020 7.74 x 10-3 
0.50 0.73 0.71 0.015 0.035 0.332
0.75 0.47 0.45 0.091 0.032 2.00 x 10-3 
1.00 0.30 0.28 0.105 0.036 1.45 x 10-3 
1.25 0.19 0.18 0.158 0.045 1.24 x 10-4 

1.50 0.12 0.11 0.057 0.055 0.143

Spherical Equivalent
(N = 28,378)

Continuous - - 0.387 0.022 5.05 x 10-85

-0.50 0.35 0.33 0.462 0.036 2.61 x 10-43

-0.75 0.30 0.29 0.469 0.038 1.74 x 10-41

-1.00 0.27 0.27 0.491 0.039 7.04 x 10-42

-1.25 0.25 0.24 0.463 0.040 1.30 x 10-34

-1.50 0.23 0.22 0.476 0.042 2.20 x 10-33
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Figure 5.2: Estimates of SNP-heritability (h2
SNP) using GCTA. Error bars represent the standard error of the h2

SNP estimate. 
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5.4 Discussion 

This investigation of SNP-heritability in a large European ancestry cohort 

demonstrated that corneal and refractive astigmatism have low SNP-heritabilities 

(h2
SNP = 0.06 and 0.05 respectively), while spherical equivalent demonstrated a 

moderate SNP-heritability (h2
SNP = 0.39). For all three traits, the SNP-heritability 

models best supported additive effects predominantly contributing to trait variation 

with a negligible contribution from dominance effects. 

The lack of statistical support in favour of a particular threshold for defining 

astigmatism cases and controls (or myopic vs. non-myopic individuals) (Table 5.3) 

meant that the selection of an optimal threshold for subsequent GWAS analyses 

had to made arbitrarily. Hence, a threshold value of 1.00 D of astigmatism was 

adopted to define case status, since this value has been widely used in the literature 

(Huynh et al., 2007). The smaller standard errors obtained for analyses of 

astigmatism and spherical equivalent when analysed as continuous traits suggest 

that this coding scheme, i.e. continuous traits rather than dichotomous traits, 

should be used as the primary outcome for GWAS to be conducted using the full 

genetic data release from the UK Biobank. 

With regard to spherical equivalent, the estimate of SNP-heritability obtained here 

(h2
SNP = 0.387; P < 1 x 10-10) was slightly greater than a previously published 

estimate, which suggested a SNP-heritability of 0.35 (Guggenheim et al., 2015). It is 

important to note that the sample used to generate this previous estimate 

consisted of children aged 7-15 years-old whereas the current investigation utilised 
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a much older sample (40-69 years old) and heritability estimates are sensitive to 

population demographics and changes in environmental exposures, such as age and 

amount of time spent outdoors (Visscher et al., 2008). More recently, the CREAM 

consortium estimated SNP-heritability to be between 0.17 and 0.21 in their 

European ancestry cohorts, but much lower at ~0.05 in their Asian ancestry sample 

(Tedja et al., 2018). The samples included in the investigation by Tedja et al. (2018) 

were all aged 25 years and above but were obtained from study groups in various 

locations globally, thus resulting in reduced homogeneity in their sample compared 

to the UK Biobank White British sample. To date, no additional estimates of SNP-

heritability for spherical equivalent / myopia or astigmatism have been published, 

apart from conference abstracts (Miyake et al., 2013; Hysi et al., 2014). 

In general, SNP-heritability estimates for spherical equivalent have been reported to 

be approximately a third to half of heritability estimates obtained from twin studies 

(Hammond et al., 2001; Dirani et al., 2006); however, SNP-heritability estimates for 

corneal and refractive astigmatism from this study are approximately a tenth of 

heritability estimates reported from twin studies of these respective traits 

(Hammond et al., 2001; Dirani et al., 2006; Grjibovski et al., 2006). This large 

difference in heritability estimate between the SNP-based study conducted here 

and prior twin studies for the astigmatism traits may be due to the differences in 

the variants investigated by these two methods. Heritability in twin studies captures 

the effects of all variants, irrespective of their allele frequency and effect size, 

whereas rare variants are excluded from SNP-heritability estimation (Yang et al., 

2017). Therefore, it is likely that genetic contribution to variance of astigmatism is 
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predominantly due to rare variants (MAF < 0.01), gene-gene or gene-environment 

interaction effects, or shared environment effects. 

Previously, twin studies have suggested the heritability of corneal and refractive 

astigmatism to be predominantly due to dominance effects (Hammond et al., 2001; 

Dirani et al., 2006; Grjibovski et al., 2006). However, the investigation conducted 

here failed to reveal the presence of a non-zero dominance effects component for 

the SNP-heritability of either trait. Zhu et al. (2015) and Nolte et al. (2017) obtained 

similar results across a wide range of traits when using GCTA-GREMLd, i.e. the 

dominance effects component of SNP-heritability was negligible despite prior 

evidence for the presence of a dominance effects component in twin studies of 

these traits. Using an alternative method, Zaitlen et al. (2013) also suggested 

dominance effects made only a small contribution to heritability estimates across 

several traits, however, the exact contribution could not be fully quantified. 

Considering these dominance effects results for other complex traits, the causes 

behind them and those from the investigation here can be rationalised in several 

ways. One of the simpler arguments is that the sample sizes used in these more 

recent studies were insufficient to deliver the necessary level of statistical power to 

detect a non-zero dominance effects component (Zhu et al., 2015); however, the 

sample sizes used in the analyses here were more than double those of the other 

studies using these methods, thus boosting the ability to detect a non-zero 

dominance effects component of SNP-heritability. Another possible explanation for 

the lack of a dominance effects component relates to the model used to calculate 

the SNP-heritability estimates. As suggested by Huang and Mackay (2016), the 
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partitioning of trait variance into its separate components is dependent on the 

model(s) applied, since effects of one variance component can also contribute to 

another component, for example some dominance effects can be misallocated as 

additive effects. 

The models applied when using GCTA-GREMLd utilise the classical interpretations of 

additive and dominance effects (Huang and Mackay, 2016); however, use of 

alternative, albeit arbitrarily defined definitions, could be utilised as suggested by 

Huang and Mackay (2016). With these alternative definitions, the presence of a 

statistically supported non-zero dominance effects component to SNP-heritability 

may become evident for the traits examined here. 

The first part of this investigation interrogated the extent to which uncorrected 

population effects inflated SNP-heritability estimates. Although the results appear 

reassuring at first glance, when interpreting these results more generally it is 

important to note the potential limitations and the assumptions that were made. 

Firstly, it must be remembered that the SNP-heritability estimates presented here 

refer to the contribution of a subset of genetic variants to phenotypic variance, and 

thus would be likely to be lower than twin / family study estimates whereby all 

genetic contributors are considered. Furthermore, should an alternative selection of 

variants be used, such as using only directly genotyped variants, there is potential 

for SNP-heritability estimates to differ. Secondly, the population prevalences used 

when converting from the observed to the liability scale were obtained from the full 

UK Biobank sample. This is not the ideal approach, as population prevalences 
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should be obtained from an independent, ancestry matched source; however no 

single study has reported population-based prevalence values for each of the 

thresholds tested here. Vitale et al. (2008) reported 31% prevalence for refractive 

astigmatism ≥1.00 D in non-Hispanic white ancestry individuals aged ≥40 years. 

However, when that sample was split by age into those aged 40-59 years and ≥60 

years, there was a considerable difference in refractive astigmatism prevalence 

(28% vs. 50%). In a meta-analysis of European population cohorts, Williams et al. 

(2015b) reported a lower prevalence of refractive astigmatism ≥1.00 D (mean age-

standardised prevalence 24%); however, there was a notable increase in prevalence 

with age throughout their age ranges (median age 62 years). Collier Wakefield, 

Annoh and Nanavaty (2016) investigated corneal astigmatism in pre-operative 

cataract patients in the UK. Here, higher prevalences of corneal astigmatism were 

reported for all thresholds, however their sample was of an older age range (mean 

age 72 years) than other published studies and that of the UK Biobank sample (UK 

Biobank median age 58 years). These previously published prevalence estimates for 

astigmatism suggest that using population prevalences based on the full UK Biobank 

cohort can be justified since these prevalences are not markedly different after 

considering the increasing magnitude of astigmatism with age. 

With respect to heritability, from the evidence presented both here and in previous 

publications, it appears that the partitioning of variance into separate genetic 

components lacks sufficient accuracy to be meaningful and any inferences based on 

heritability should ideally be confined to the total genetic contribution rather than 

the partitioned components. As SNP-heritability estimation methods have stated 
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previously, using an additive effects model (as is most commonly done), captures 

almost all of the total genetic contribution of the considered variants to trait 

variation and should be deemed sufficient for this approach (Polderman et al., 

2015; Huang and Mackay, 2016). 

Overall, this investigation of SNP-heritability in a large European ancestry cohort 

demonstrated that both corneal and refractive astigmatism have a low 

SNP-heritability, whereas spherical equivalent has a moderate SNP-heritability. 

Furthermore, for all of the traits examined here, the SNP-heritability appears to be 

of an additive nature with a negligible contribution from dominance effects. 
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Chapter 6 UK Biobank GWAS for Corneal and Refractive 

Astigmatism 

6.1 Introduction 

Considering the paucity of loci demonstrating genome-wide significant association 

with either corneal or refractive astigmatism in previous GWAS for these respective 

traits, it was earlier speculated whether this may be overcome using a larger and/or 

more homogenous sample (Section 4.3.3). 

The availability of the full release of genotype data for the UK Biobank cohort (N = 

488,377), approximately 23% of whom had data on corneal and/or refractive 

astigmatism from non-cycloplegic autorefraction, has provided an opportunity to 

identify genetic variants associated with corneal or refractive astigmatism using a 

comprehensive approach and at a larger scale than had been possible previously. 
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6.2 Methods 

6.2.1 UK Biobank Sample 

Analyses were restricted to the individuals of White British ancestry with genetic 

data available from the full data release as outlined in Section 2.2.2. Individuals 

were excluded from analyses if they had, or reported having, any eye problems or 

disorders that could impair autorefraction or keratometry (see Section 2.2.3 for 

further details), any missing covariate data, or they had withdrawn consent from 

participating in the UK Biobank study (Table 6.1). 

Table 6.1: Summary of exclusions from the UK Biobank Sample for GWAS of 
Corneal and Refractive Astigmatism. MSE = mean spherical equivalent.

Total No. of Participants 502,633
Corneal 

Astigmatism
Refractive 

Astigmatism
Genotype data available (full release) a 409,728 409,728
Phenotype data available b 113,189 116,046
Withdrawn consent 14 14
Individuals with both genotype and 
phenotype data available 86,422 88,072

Excluded for missing sex covariate data 63 67
Excluded for missing MSE covariate data 24 0
Final Sample Size 86,335 88,005
a After restricting to self-reported White British ancestry and non-outlier for 
heterozygosity (see Section 2.2.2)
b After excluding for unreliable readings, ocular pathology / eye surgery (see Section 
2.2.3)

The demographics of the analysed samples and the distribution of the corneal 

astigmatism and refractive astigmatism phenotypes are summarised in Table 6.2 

and Figure 6.1. 
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Table 6.2: Participant demographics and distribution of corneal and refractive astigmatism in the analysed UK Biobank sample. 

Trait N % Female
Age (Years) Astigmatism Power (D)

Mean (SD) Median (IQR) Range
Corneal Astigmatism 86,355 54.1 58.1 (7.9) 0.695 (0.460-1.038) 0.000-9.627
Refractive Astigmatism 88,005 53.0 58.0 (7.8) 0.698 (0.470-1.062) 0.052-8.897
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Figure 6.1: Distribution of Corneal and Refractive Astigmatism in the analysed UK Biobank sample (N = 86,335 and 88,005 respectively). 
Lower panels are boxplots representing their respective distributions (upper). Diamond symbol = mean astigmatism power.
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6.2.2 Consideration of Astigmatism Axis 

Astigmatism, whether corneal or refractive, is a vectorial variable: the cylindrical 

power and its axis. As discussed in Section 4.4, the axes of corneal and refractive 

astigmatism typically change from WTR to ATR with increasing age. This 

phenomenon was verified in the UK Biobank cohort using data for the individuals 

available for inclusion in the single marker tests of corneal and refractive 

astigmatism (N = 86,335 and 88,005 respectively). WTR astigmatism was defined as 

negative cylindrical power axes between 0-30° and 150-180°. ATR astigmatism was 

defined as negative cylindrical power axes between 60-120°. All other axes were 

defined as oblique astigmatism. For cylindrical powers recorded using positive 

power notation, the reverse definitions applied for WTR and ATR astigmatism. “NA” 

astigmatism axis values were recorded if the cylindrical power was recorded as 0 or 

“NA” during keratometry/autorefraction.

The cylindrical power and its axis can be decomposed into a pair of dioptric values 

using vector notation (Thibos, Wheeler and Horner, 1997). The resultant values, J0

and J45, were considered as alternative traits for genetic analysis. J0 refers to the 

horizontal-vertical (WTR-ATR) component of astigmatism, whereas J45 refers to 

oblique astigmatism. Positive J0 values represent WTR astigmatism, with negative J0

values representing ATR astigmatism. To obtain these vector transformed values, 

Equation 6.1 was applied to each individual measurement before taking the mean J0

and J45 values for each eye individually across assessment centre visits: 
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Equation 6.1: Vector transformation of astigmatism power and axis to its 
respective J0 and J45 components. C = cylindrical (astigmatism) power (including its 
sign);  = axis of cylindrical power, C. Adapted from Thibos et al. (1997).

6.2.3 Single Marker Tests 

Genome-wide single marker association tests were undertaken for corneal 

astigmatism (N = 86,335) and for refractive astigmatism (N = 88,005), each 

considered as continuous traits using the standard “infinitesimal” mixed linear 

model approach implemented in BOLT-LMM v2.3 (Loh et al., 2015; Loh et al., 2018). 

This approach was utilised since mixed linear models provide greater power in 

association tests than standard linear regression (Yang et al., 2014). Residual 

population structure and cryptic relatedness were accounted for as random effects 

in this approach using binary genetic data files (PLINK format .bed, .bim and .fam 

files) for the “high-confidence” variants genotyped or imputed in these individuals 

(Section 2.2.5). Therefore, related individuals were not excluded from the BOLT-

LMM analyses. Regional association plots for genome-wide significant loci were 

created using LocusZoom (Pruim et al., 2010). Conditional analysis was performed 

on the summary statistics from these BOLT-LMM analyses using GCTA-COJO as 

outlined in Section 2.3.4. 

As corneal and refractive astigmatism are not normally distributed traits, analyses 

were also performed using BOLT-LMM after applying an inverse normal 

transformation to the phenotypes of the individuals included in the respective 

single marker tests. The inverse normal transformation was applied as this rank-
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based method tends to provide better approximations of normality in comparison 

to alternative transformation methods such as Box-Cox and log-transformation 

(Goh and Yap, 2009). Sensitivity analyses were performed using PLINK 2.0, with 

corneal and refractive astigmatism considered as continuous traits (as in BOLT-LMM 

analyses) and then by classifying astigmatism as a dichotomous trait using a 

threshold value of astigmatism  1.00 D to define case status. As PLINK 2.0 used 

linear/logistic regression methods to run association analyses, these tests were 

restricted to unrelated individuals. A pairwise relatedness threshold of 0.025 was 

applied to remove one of each pair of related individuals from these PLINK 2.0 

analyses. In total, 69,140 and 70,505 unrelated individuals were tested for 

association with corneal astigmatism and refractive astigmatism respectively in 

these PLINK 2.0 analyses. Case prevalences were 0.27 and 0.28 respectively for 

these dichotomous trait analyses. Sensitivity analyses were also performed for any 

identified genome-wide significant loci using the above samples of unrelated 

individuals to determine whether these associations were driven by individuals with 

extreme phenotypes or anisometropia. Individuals with more than a 2 D difference 

in astigmatism power between the two eyes or mean astigmatism power greater 

than 4 D were excluded, with corneal and refractive astigmatism considered as 

continuous traits (as in BOLT-LMM analyses). 

For all analyses, variant filtering followed the approach of Fan et al. (2016), whereby 

variants with missingness > 0.01, MAF < 0.01, Hardy-Weinberg disequilibrium test p-

value < 1 x 10-6 or imputation quality < 0.4 were excluded, along with samples with 

missingness > 0.05. In all instances, covariates included were: genotyping array, sex, 
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the mean age of the participant when eye measures were recorded, and mean 

spherical equivalent (as outlined in Section 2.2.4 and implemented in the SNP-

heritability estimation of the interim sample from the UK Biobank (Chapter 5)). 

Inflation of test statistics due to unadjusted population effects were determined by 

calculating genomic inflation factors and the intercept from LD Score regression as 

outlined in Section 2.3.2. 

For loci achieving the genome-wide significance threshold of P < 5 x 10-8, previously 

identified associations with other ocular traits were identified via the NHGRI-EBI 

Catalog of published genome-wide association studies (MacArthur et al., 2017). 

6.2.4 Gene-based and Gene-set Analyses 

Gene-based and gene-set tests were performed using MAGMA (outlined in Section 

2.3.5). Genes were defined according to NCBI build 37 (hg19/GRCh37) coordinates, 

with the inclusion of a 50 kb flanking region added to the transcription start/stop 

positions. LD patterns were estimated by MAGMA using an ancestry matched 

reference file, specifically the reference files composed of data for the 503 

unrelated individuals of European ancestry from Phase 3 of the 1000 Genomes 

Project. For the gene-based tests, multiple testing was accounted for by applying a 

false discovery rate threshold of 5%. 

Potential functional properties of genes associated with corneal astigmatism in the 

MAGMA analysis were further investigated using competitive gene-set analysis in 
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MAGMA. Adjustment for multiple testing was applied using a false discovery rate of 

5% for these gene-based and gene-set test results.

6.2.5 SNP-Heritability and Genetic Correlation 

Using LDSC (Bulik-Sullivan et al., 2015a; Bulik-Sullivan et al., 2015b), the 

SNP-heritabilities of corneal astigmatism and refractive astigmatism were quantified 

using summary statistics from the single marker association tests conducted using 

BOLT-LMM. Genetic correlations between pairs of the three refractive error traits: 

corneal astigmatism, refractive astigmatism and spherical equivalent were also 

quantified using this method. Summary statistics for spherical equivalent were 

obtained from single marker association tests conducted using BOLT-LMM for the 

same variants and individuals as performed for refractive astigmatism. In all 

instances reference LD scores were obtained for individuals of European ancestry. 

6.2.6 Phenotypic Correlation 

Pearson correlation coefficients were calculated for all unrelated individuals 

included in the single marker association tests who had data available for all 

refractive error traits investigated (i.e. corneal astigmatism, refractive astigmatism 

and spherical equivalent; N = 63,466). 
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6.3 Results 

6.3.1 Consideration of Astigmatism Axis 

Changes in astigmatism power and axis with increasing age were examined in the 

UK Biobank sample using data for the individuals available for inclusion in the single 

marker tests of corneal and refractive astigmatism (N = 86,335 and 88,005 

respectively). For both corneal and refractive astigmatism, the proportion of 

individuals with WTR astigmatism decreased with increasing age, while the 

proportion of individuals with ATR astigmatism simultaneously increased (Table 6.3, 

Figure 6.2). The proportion of individuals with oblique axes remained relatively 

constant with age for both corneal and refractive astigmatism, with any changes in 

these proportions likely due to individuals transitioning between WTR and ATR 

classifications. The apparent increase in individuals classified as “NA” is due to 

increasing numbers of individuals with phenotype data available for only a single 

eye. 
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Table 6.3: Proportion of individuals with corneal and refractive astigmatism described as with-the-rule, against-the-rule and oblique; 
stratified by age in the UK Biobank sample. WTR = with-the-rule astigmatism; ATR = against-the-rule astigmatism. For negative cylindrical 
powers, WTR = axis 0-30° or 150-180°; ATR = axis 60-120°; oblique = all other angles. The reverse applies for positive cylindrical powers.

Corneal Astigmatism

Age Group (Years) Sample Size
Right Eye (%) Left Eye (%)

WTR Oblique ATR NAa WTR Oblique ATR NAa

Overall 86,335 43.9 17.5 29.8 8.8 45.5 17.3 27.2 10.0
40-44 6,705 60.2 14.6 19.2 6.0 62.2 14.0 16.8 7.0
45-49 9,996 56.6 16.1 20.4 6.9 58.5 15.2 18.1 8.2
50-54 12,167 52.0 17.0 23.4 7.6 52.8 16.9 21.5 8.8
55-59 15,052 45.6 18.0 27.7 8.7 47.2 17.7 25.3 9.8
60-64 23,210 39.7 18.0 32.9 9.5 41.1 18.1 29.9 10.8
65-69 17,884 31.1 18.7 39.8 10.5 32.7 18.8 36.9 11.6
70+ 1,321 21.5 17.5 49.2 11.8 23.2 17.2 45.6 13.9

Refractive Astigmatism

Age Group (Years) Sample Size
Right Eye Left Eye

WTR Oblique ATR NAa WTR Oblique ATR NAa

Overall 88,005 41.2 22.9 35.4 0.5 41.6 22.8 34.8 0.8
40-44
45-49
50-54
55-59
60-64
65-69
70+

6,929 50.4 23.0 26.1 0.4 52.4 22.4 24.4 0.7
10,320 49.7 22.7 27.2 0.4 51.0 22.8 25.7 0.5
12,590 46.7 23.5 29.5 0.4 47.7 22.8 28.8 0.7
15,532 42.9 23.1 33.4 0.6 43.2 23.2 32.9 0.7
23,715 37.8 23.3 38.5 0.5 38.0 23.3 38.0 0.8
17,687 32.8 21.8 44.8 0.6 31.9 22.2 44.9 1.0
1,232 29.5 21.4 48.1 1.0 28.7 20.7 49.2 1.5

a “NA” astigmatism axis values were recorded if the cylindrical power was recorded as 0 or “NA” during keratometry/autorefraction
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Figure 6.2: Prevalence of with-the-rule and against-the-rule astigmatism as a 
function of age. Astigmatism was defined as with-the-rule when the negative 
cylindrical power was at an angle of 0-30° or 150-180°, against-the rule for angles 
60-120°, and oblique for all other angles. The reverse applied for positive cylindrical 
powers. ATR = against the rule; WTR = with-the-rule. “NA” values denote individuals 
with no recorded astigmatism axis. Corneal astigmatism: N = 86,335; Refractive 
Astigmatism: N = 88,005. 
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In addition, vector transformation was applied to corneal and refractive 

astigmatism for this sample in order to combine their respective magnitude and 

direction parameters. As shown in Table 6.4 and Figure 6.3, the magnitude of 

corneal astigmatism tended to remain stable with increasing age (mean: 0.831   

0.845 D); however, it did appear to increase in the oldest (70+) age group. After 

vector transformation, the J0 component of corneal astigmatism was found to 

gradually decrease with age and change from WTR (positive J0 values) to ATR 

(negative J0 values). The J45 component of corneal astigmatism appeared to remain 

relatively stable with increasing age. 

Conversely, for refractive astigmatism, there was a gradual increase in magnitude 

with age from a mean of 0.73 – 0.87 D up to 1.10 – 1.17 D. The J0 and J45 vector 

components of refractive astigmatism followed similar patterns as their corneal 

counterparts with a gradual decrease in the J0 component, changing from WTR 

(positive J0 values) to ATR (negative J0 values) and relative stability in the J45 vector 

component with increasing age (Table 6.4, Figure 6.3). 

As vector transformed values of astigmatism only provide detail regarding specific 

meridians (i.e. J0 = the horizontal-vertical aspect and J45 = the oblique aspect of 

astigmatism), performing analyses on one component would result in loss of 

information regarding the other contributing component. As a result, subsequent 

analyses of corneal and refractive astigmatism in the UK Biobank sample were 

restricted to their respective magnitudes, irrespective of axis. 
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Table 6.4: Summary of corneal and refractive astigmatism and their respective J0 and J45 components stratified by age in the UK Biobank 
sample. 

Corneal Astigmatism (D)
Age Group

(Years) Sample Size
Right Eye Left Eye

Mean (SD) Mean J0 (SD) Mean J45 (SD) Mean (SD) Mean J0 (SD) Mean J45 (SD)
Overall 86,335 0.831 (0.636) 0.127 (0.439) 0.025 (0.250) 0.845 (0.644) 0.151 (0.438) -0.033 (0.254)
40-44 6,705 0.856 (0.638) 0.265 (0.399) 0.029 (0.231) 0.888 (0.656) 0.290 (0.403) -0.029 (0.237)
45-49 9,996 0.846 (0.644) 0.244 (0.401) 0.028 (0.245) 0.866 (0.649) 0.268 (0.398) -0.030 (0.245)
50-54 12,167 0.825 (0.636) 0.203 (0.411) 0.033 (0.240) 0.851 (0.648) 0.225 (0.412) -0.034 (0.251)
55-59 15,052 0.812 (0.619) 0.148 (0.419) 0.027 (0.246) 0.829 (0.642) 0.170 (0.423) -0.036 (0.252)
60-64 23,210 0.826 (0.636) 0.091 (0.444) 0.025 (0.251) 0.833 (0.647) 0.117 (0.441) -0.035 (0.260)
65-69 17,884 0.832 (0.642) 0.002 (0.452) 0.014 (0.263) 0.835 (0.631) 0.022 (0.450) -0.029 (0.260)
70+ 1,321 0.898 (0.689) -0.135 (0.457) 0.016 (0.290) 0.894 (0.620) -0.103 (0.458) -0.044 (0.263)

Refractive Astigmatism (D)
Age Group

(Years) Sample Size
Right Eye Left Eye

Mean (SD) Mean J0 (SD) Mean J45 (SD) Mean (SD) Mean J0 (SD) Mean J45 (SD)
Overall 88,005 0.872 (0.695) -0.052 (0.466) 0.037 (0.289) 0.860 (0.702) -0.029 (0.463) 0.011 (0.297)
40-44
45-49
50-54
55-59
60-64
65-69
70+

6,929 0.743 (0.682) 0.053 (0.424) 0.037 (0.259) 0.729 (0.693) 0.080 (0.419) 0.008 (0.261)
10,320 0.756 (0.677) 0.050 (0.423) 0.047 (0.265) 0.756 (0.692) 0.069 (0.421) 0.007 (0.278)
12,590 0.800 (0.666) 0.028 (0.434) 0.047 (0.273) 0.798 (0.692) 0.042 (0.437) 0.006 (0.286)
15,532 0.849 (0.690) -0.018 (0.459) 0.043 (0.285) 0.841 (0.698) 0.001 (0.458) 0.004 (0.291)
23,715 0.907 (0.693) -0.086 (0.473) 0.037 (0.295) 0.895 (0.699) -0.059 (0.470) 0.008 (0.304)
17,687 0.994 (0.703) -0.180 (0.481) 0.023 (0.314) 0.967 (0.701) -0.150 (0.476) 0.027 (0.318)
1,232 1.166 (0.781) -0.297 (0.516) 0.003 (0.356) 1.103 (0.720) -0.253 (0.492) 0.021 (0.345)
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Figure 6.3: Corneal astigmatism, refractive astigmatism and their respective 
vector transformed values as a function of age in the analysed UK Biobank 
sample. Astigmatism magnitude = yellow squares, J0 (horizontal-vertical 
astigmatism component) = red circles; J45 (oblique astigmatism component) = 
orange triangles. Horizontal dashed lines denote Astigmatism Power = 0 D. Points 
denote mean values for each age group. Error bars denote 95% confidence 
intervals.  
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6.3.2 Single Marker Tests 

After restricting the analysis sample to individuals of White British ancestry and 

applying exclusions for missing covariates and eye disorders with the potential to 

alter the level of astigmatism, there were 86,355 individuals available for inclusion 

in the GWAS for corneal astigmatism and 88,005 individuals in the GWAS for 

refractive astigmatism. After applying marker restrictions, there were 5,901,671 and 

5,900,115 variants available for inclusion in the corneal and refractive astigmatism 

analyses, respectively. 

For the primary analyses using the infinitesimal mixed linear model approach 

implemented in BOLT-LMM, GWAS analyses identified 89 and 45 variants achieving 

genome-wide significant association (P < 5 x 10-8) for corneal astigmatism and 

refractive astigmatism respectively (Table 6.5). Specifically, for corneal astigmatism, 

genome-wide significant variants clustered in four regions (Table 6.6, Figure 6.4, 

Figure 6.5), while for refractive astigmatism, they clustered in three regions (Table 

6.8, Figure 6.6, Figure 6.7). Note that regions were defined as ±500 kb of the lead 

variant. 
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Table 6.5: Summary of GWAS undertaken. λGC = genomic inflation factor; λLDSC = intercept from LD Score regression. The number of 
independent loci was identified using GCTA-COJO. INT = inverse normal transformed (continuous). 

Trait Method No. of 
Variants

Sample 
Size λGC λLDSC

No. of Genome-wide 
Significant Variants

(P < 5 x 10-8)

No. of Independent 
Genome-wide Significant Loci

Corneal 
Astigmatism

Continuous BOLT-LMM 5,901,671 86,335 1.094 1.023 89 4
INT BOLT-LMM 5,901,671 86,335 1.045 1.020 64 4

Continuous PLINK 2.0 5,921,785 69,140 1.057 1.020 54 4
Cases ≥1.00 D PLINK 2.0 5,921,785 69,140 1.030 1.001 49 3

Refractive 
Astigmatism

Continuous BOLT-LMM 5,900,115 88,005 1.045 1.005 45 4
INT BOLT-LMM 5,900,115 88,005 1.045 1.001 60 4

Continuous PLINK 2.0 5,919,636 70,505 1.042 1.003 13 2
Cases ≥1.00 D PLINK 2.0 5,919,636 70,505 1.016 0.997 1 1
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With respect to corneal astigmatism, the nearest gene at each of the four genome-

wide significant loci were ZC3H11B (lead variant: rs12032649, P = 5.00 x 10-14), 

LINC00340 (lead variant: rs196052, P = 7.80 x 10-11), HERC2 (lead variant: 

rs1129038, P = 1.10 x 10-15) and TSPAN10/NPLOC4 (lead variant: rs62075722, P = 

2.20 x 10-13) (Table 6.6, Figure 6.4, Figure 6.5). None of these loci has previously 

shown genome-wide significant association with corneal or refractive astigmatism. 

The most strongly associated marker located within the only previously identified 

genome-wide significant locus for corneal astigmatism, the promoter region of the 

PDGFRA gene at 4q12, was rs4864857 (P = 1.20 x 10-6). Conditional analyses 

conducted by conditioning on the lead variant at each of the four novel genome-

wide significant loci suggested that these four association signals were each driven 

by a single causal variant (Table 6.7). However, the strength of the association signal 

at the HERC2 locus when conditioning on lead variant rs1129038 did yield a 

suggestive association signal within the adjacent OCA2 gene (lead variant: 

rs1800407, P = 9.88 x 10-6). 
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Figure 6.4: Manhattan and Quantile-Quantile plots for GWAS of Corneal Astigmatism using BOLT-LMM. Panel A: Manhattan plot: Red line 
indicates P = 5 x 10-8; blue line indicates P = 1 x 10-5. Panel B: Quantile-Quantile plot: Y-axis shows observed negative log10 p-values and X-axis 
shows expected negative log10 p-values according to the null hypothesis of no genetic association. Red line: line of unity (observed = expected).
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Figure 6.5. Regional association plots for loci demonstrating genome-wide significant association (P < 5 x 10-8) in GWAS for Corneal 
Astigmatism using BOLT-LMM (N = 86,335). In order of chromosome (top row: rs12032649, rs196052; bottom row: rs1129038, rs62075722). 
Symbol colours denote linkage disequilibrium (r2) values of variants with respect to the lead variant (highlighted in purple). NB: rs14879552 is a 
synonym for rs12032649. Larger versions of these individual plots are available in Appendix B. 
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Table 6.6: Variants achieving association test p-values < 1 x 10-5 in GWAS for Corneal Astigmatism analysed as a continuous trait with BOLT-
LMM. EAF = effect allele frequency; HWE P-value = P-value from the Hardy-Weinberg disequilibrium test; SE = standard error. NB: variants 
within ±500 kb of listed (lead) variant are not included in this list.

Variant Chromosome Position Effect Allele Other Allele EAF HWE P-value Effect (SE) P-value Nearest Gene
rs1129038 15 28356859 C T 0.215 0.621 -0.028 (0.003) 1.10 x 10-15 HERC2
rs12032649 1 219778959 T G 0.614 0.138 -0.022 (0.003) 5.00 x 10-14 ZC3H11B
rs62075722 17 79611271 A G 0.358 0.594 0.022 (0.003) 2.20 x 10-13 TSPAN10
rs196052 6 22057200 T A 0.622 0.477 0.019 (0.003) 7.80 x 10-11 LINC00340
rs61935843 12 116617757 C A 0.918 0.873 0.028 (0.005) 1.00 x 10-7 MED13L
rs1579050 2 153364527 A G 0.425 0.017 0.015 (0.003) 3.00 x 10-7 FMNL2
rs10993820 9 136707730 A G 0.791 0.803 -0.018 (0.003) 4.20 x 10-7 VAV2
rs9517490 13 99584305 T C 0.300 0.703 0.015 (0.003) 6.80 x 10-7 DOCK9
rs1353386 4 81947080 A C 0.148 0.808 0.019 (0.004) 1.00 x 10-6 BMP3
rs7931326 11 130276347 C G 0.935 0.716 -0.028 (0.006) 1.10 x 10-6 ADAMTS8
rs4864857 4 55089814 T C 0.784 0.166 -0.017 (0.003) 1.20 x 10-6 PGDFRA
rs112947941 12 6997808 A G 0.931 0.074 0.028 (0.006) 1.20 x 10-6 DSTNP2
rs12473604 2 232401893 G A 0.775 0.258 -0.016 (0.003) 1.50 x 10-6 NMUR1
rs35313216 11 66224195 G A 0.928 0.304 0.026 (0.005) 2.20 x 10-6 LOC100505524
rs11084579 19 31802723 G A 0.666 0.270 0.014 (0.003) 2.20 x 10-6 TSHZ3
rs10279904 7 36806587 C T 0.987 0.363 -0.058 (0.0012) 2.20 x 10-6 AOAH
rs138016380 10 34449466 C A 0.976 0.821 -0.044 (0.009) 2.40 x 10-6 PARD3
rs11639295 15 67460757 C T 0.706 0.902 0.015 (0.003) 2.70 x 10-6 SMAD3
rs16971637 16 19155288 A C 0.959 0.931 -0.033 (0.007) 3.00 x 10-6 ITPRIPL2
rs117023057 7 158823501 G A 0.984 0.092 -0.054 (0.012) 3.20 x 10-6 VIPR2
rs2445565 11 86803194 G C 0.470 0.119 -0.013 (0.003) 4.20 x 10-6 TMEM135
rs12551905 9 7760772 T C 0.985 0.908 -0.054 (0.012) 4.50 x 10-6 C9orf123
rs149846728 8 36770379 G A 0.949 0.332 0.030 (0.006) 5.40 x 10-6 KCNU1
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Variant Chromosome Position Effect Allele Other Allele EAF HWE P-value Effect (SE) P-value Nearest Gene
rs62169220 2 145225071 A G 0.850 0.354 -0.018 (0.004) 5.80 x 10-6 ZEB2
rs830557 5 67608743 C T 0.529 0.368 0.013 (0.003) 6.50 x 10-6 PIK3R1
rs56274409 14 96690828 A T 0.944 0.567 -0.028 (0.006) 7.20 x 10-6 BDKRB2
rs6741982 2 117793229 A G 0.961 0.748 -0.033 (0.007) 8.70 x 10-6 MTND2P21
rs6536686 4 163731498 C T 0.192 0.921 0.016 (0.004) 8.80 x 10-6 MIR4454
rs57770499 19 36260996 G A 0.820 0.808 -0.016 (0.004) 1.00 x 10-5 C19orf55
rs13181991 5 146163470 C T 0.917 0.327 0.023 (0.005) 1.00 x 10-5 PPP2R2B

Table 6.7: Conditional analyses performed using summary statistics and conditioning on lead variant – for genome-wide significant 
associated loci from Corneal Astigmatism GWAS. GCTA-COJO Lead Variant: lead variant within ±1 Mb of GWAS Lead Variant location. 

Chromosome GWAS Lead Variant P-value GCTA-COJO Lead Variant P-value
1 rs12032649 5.00 x 10-14 NA (co-linearity error) NA
6 rs196052 7.80 x 10-11 rs114074527 1.84 x 10-4 

15 rs1129038 1.10 x 10-15 rs1800407 9.88 x 10-6 
17 rs62075722 2.20 x 10-13 rs113458760 3.23 x 10-4
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As mentioned above, for refractive astigmatism, variants achieving genome-wide 

significant association clustered in three regions (Table 6.8, Figure 6.6, Figure 6.7): 

LINC00340, (lead variant: rs12196123, P = 1.60 x 10-15), HERC2 (lead variant: 

rs1129038, P = 2.30 x 10-11) and TSPAN10/NPLOC4 (lead variant: rs34635363, P = 

2.00 x 10-9). Notably, all of these loci also demonstrated significant association with 

corneal astigmatism. Conditional analyses for these genome-wide significant loci 

also suggested these association signals were each driven by a single causal marker 

with the exception of the association signal at HERC2 which appeared to be driven 

by an additional independent causal marker within the OCA2 gene at rs1800407 (P

= 9.03 x 10-15) (Table 6.9). Conditioning on both rs1129038 and rs1800407 at the 

HERC2/OCA2 locus resulted in a suggestive association signal at rs7497044 (P = 

1.90 x 10-6), an intronic variant within the nearby GABRG3 gene. In a previous meta-

analysis of GWAS for corneal curvature in European ancestry cohorts from Australia 

(Mishra et al., 2012), marker rs17137734 within GABRG3 achieved suggestive 

association (P = 9 x 10-6). Pairwise LD between variants rs7497044, rs17137734, 

rs1129038 and rs1800407 varies from low to negligible in Europeans (r2 = 0.0-0.1). 
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Figure 6.6: Manhattan and Quantile-Quantile plots for GWAS of Refractive Astigmatism using BOLT-LMM. Panel A: Manhattan plot: Red line 
indicates P = 5 x 10-8; blue line indicates P = 1 x 10-5. Panel B: Quantile-Quantile plot: Y-axis shows observed negative log10 p-values and X-axis 
shows expected negative log10 p-values according to the null hypothesis of no genetic association. Red line: line of unity (observed = expected).
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Figure 6.7: Regional association plots for loci demonstrating genome-wide significant association (P < 5 x 10-8) in GWAS for Refractive 
Astigmatism using BOLT-LMM (N = 88,005). In order of chromosome (top row: rs12196123, rs1129038; bottom row: rs34635363). Symbol 
colours denote linkage disequilibrium (r2) values of variants with respect to the lead variant (highlighted in purple). Larger versions of these 
individual plots are available in Appendix B. 
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Table 6.8: Variants achieving association test p-values < 1 x 10-5 in GWAS for Refractive Astigmatism analysed as a continuous trait with 
BOLT-LMM. EAF: effect allele frequency, HWE P-value: P-value from the Hardy-Weinberg disequilibrium test, SE: standard error. NB: variants 
within ±500 kb of listed (lead) variant are not included in this list.

Variant Chromosome Position Effect Allele Other Allele EAF HWE P-value Effect (SE) P-value Nearest Gene
rs12196123 6 22082263 C T 0.443 0.659 -0.023 (0.003) 1.60 x 10-15 LINC00340 
rs1129038 15 28356859 C T 0.215 0.047 -0.023 (0.004) 2.30 x 10-11 HERC2 
rs34635363 17 79549250 G A 0.641 0.759 -0.018 (0.003) 2.00 x 10-9 NPLOC4 
rs10177414 2 228211470 T C 0.598 0.020 -0.015 (0.003) 1.60 x 10-7 MFF
rs6029691 20 40094364 C G 0.688 0.621 -0.016 (0.003) 3.10 x 10-7 CHD6
rs139743 22 25299429 A G 0.582 0.675 -0.015 (0.003) 3.50 x 10-7 SGSM1
rs77008212 2 239307113 A G 0.913 0.612 -0.026 (0.005) 4.70 x 10-7 TRAF3IP1
rs141045115 21 42387103 G T 0.971 0.795 -0.043 (0.009) 6.00 x 10-7 LINC00323
rs10435539 8 109167551 G A 0.795 0.051 0.018 (0.004) 6.10 x 10-7 AURKBPS1
rs116771750 1 219699050 T C 0.965 0.589 -0.039 (0.008) 6.70 x 10-7 ZC3H11B
rs79999086 20 1058226 T C 0.980 0.245 -0.051 (0.011) 1.20 x 10-6 LCN1P2
rs17172445 7 55189215 G T 0.973 0.687 -0.043 (0.009) 1.20 x 10-6 EGFR
rs11244084 9 136191010 C T 0.926 0.684 -0.027 (0.005) 1.20 x 10-6 PSMF1
rs115732928 1 214154088 A T 0.952 0.115 -0.033 (0.007) 1.30 x 10-6 PROX1-AS1
rs57717978 6 170267973 C T 0.880 0.354 -0.021 (0.004) 1.60 x 10-6 LOC101929541
rs10494951 1 212429259 G A 0.806 0.347 0.018 (0.004) 1.60 x 10-6 LINC00574
rs141720143 9 13237186 A C 0.987 0.349 -0.060 (0.013) 1.70 x 10-6 MPDZ
rs77909168 2 100555866 C G 0.985 0.872 -0.056 (0.012) 2.60 x 10-6 AFF3
rs56288719 8 64825393 T C 0.962 0.207 -0.036 (0.008) 2.70 x 10-6 LOC286184
rs6535231 4 81951911 G A 0.041 0.386 0.034 (0.007) 3.40 x 10-6 BMP3
rs192290664 16 82799444 A G 0.978 0.410 -0.046 (0.010) 3.90 x 10-6 CDH13
rs12547340 8 1149028 G T 0.790 0.445 0.016 (0.004) 4.00 x 10-6 DLGAP2
rs149069109 16 48972368 C T 0.977 0.920 -0.044 (0.010) 5.20 x 10-6 KLF8P1
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Variant Chromosome Position Effect Allele Other Allele EAF HWE P-value Effect (SE) P-value Nearest Gene
rs6434068 2 153357541 G C 0.428 0.647 0.013 (0.003) 6.50 x 10-6 FMNL2
rs891933 5 167591402 C T 0.537 0.329 0.013 (0.003) 7.30 x 10-6 TENM2
rs116945318 9 21638723 A C 0.985 0.779 -0.055 (0.012) 7.50 x 10-6 KHSRPP1
rs974420 13 93152458 G A 0.621 0.012 0.013 (0.003) 8.10 x 10-6 GPC5
rs34314196 8 40998854 T A 0.874 0.724 -0.019 (0.004) 8.20 x 10-6 SFRP1
rs117949737 12 69299466 G A 0.974 0.594 0.040 (0.009) 8.30 x 10-6 CPM
rs8104928 19 42130284 A G 0.972 0.185 -0.039 (0.009) 8.40 x 10-6 CEACAM4
rs75819168 17 19651119 C G 0.984 0.814 -0.051 (0.011) 8.50 x 10-6 ALDH3A1
rs117812342 6 108473446 A C 0.976 0.766 -0.042 (0.009) 8.60 x 10-6 OSTM1-AS1
rs55939894 3 7963288 A G 0.813 0.845 -0.016 (0.004) 8.70 x 10-6 LOC101927394
rs513910 13 69095822 T C 0.726 0.995 0.014 (0.003) 9.10 x 10-6 RPS3AP52
rs62316885 4 75558798 C T 0.962 0.879 -0.033 (0.008) 1.00 x 10-5 AREGB

Table 6.9: Conditional analyses performed using summary statistics and conditioning on lead variant – for genome-wide significant 
associated loci from Refractive Astigmatism GWAS. GCTA-COJO Lead Variant: lead variant within ±1 Mb of GWAS Lead Variant location.

Chromosome GWAS Lead Variant P-value GCTA-COJO Lead Variant P-value
6 rs12196123 1.60 x 10-15 rs148281502 2.29 x 10-4 

15 rs1129038 2.30 x 10-11 rs1800407 9.03 x 10-15

17 rs34635363 2.00 x 10-9 rs75248478 9.17 x 10-4 
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Genomic inflation factors (λGC) were 1.094 for corneal astigmatism and 1.045 for 

refractive astigmatism; however when accounting for the polygenic nature of these 

respective traits using the intercepts from LD Score regression (λLDSC), inflation due 

to uncorrected population effects was estimated to be considerably lower for both 

traits (λLDSC = 1.023 and 1.005 for corneal and refractive astigmatism, respectively) 

(Table 6.5). 

Since corneal and refractive astigmatism are not normally distributed traits, inverse 

normal transformations were applied to the phenotype data for the individuals 

included in the BOLT-LMM single marker tests. Results for corneal astigmatism 

revealed no change to the genome-wide significant associations identified 

compared to the untransformed trait (Table 6.10, Figure 6.8). For refractive 

astigmatism, three of the four loci identified previously continued to demonstrate 

genome-wide significant association, the exception being the association signal at 

HERC2, which was independent of the nearby association signal identified at OCA2

for the untransformed trait. Furthermore, a locus at the MPP gene on chromosome 

2 that demonstrated near genome-wide significant association for the 

untransformed refractive astigmatism trait now exceeded this significance 

threshold when tested using the transformed trait (lead variant: rs10177414; 

untransformed trait p-value = 1.60 x 10-7, transformed trait p-value = 5.40 x 10-9) 

(Table 6.11, Figure 6.8). 
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Figure 6.8: Manhattan and Quantile-Quantile plots for GWAS of Corneal and Refractive Astigmatism using BOLT-LMM as inverse normal 
transformed traits. Panels A and B: Corneal Astigmatism; Panels C and D: Refractive Astigmatism. Manhattan plots (A and C): Red line indicates 
P = 5 x 10-8; blue line indicates P = 1 x 10-5. Quantile-Quantile plots (B and D): Y-axis shows observed negative log10 p-values and X-axis shows 
expected negative log10 p-values according to the null hypothesis of no genetic association. Red line = line of unity (observed = expected). 
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Table 6.10: The 10 variants demonstrating strongest association in GWAS for Corneal Astigmatism analysed as an inverse normal 
transformed trait with BOLT-LMM. Effect sizes are in units of standard deviations. NB: variants within ±500 kb of listed (lead) variant are not 
included in this list.

Variant Chromosome Position Effect Allele Other Allele Effect (SE) P-value Nearest Gene
rs1129038 15 28356859 C T -0.043 (0.006) 9.10 x 10-14 HERC2
rs62075722 17 79611271 A G 0.036 (0.005) 7.30 x 10-13 TSPAN10
rs12028838 1 219778675 G T -0.034 (0.005) 9.70 x 10-13 ZC3H11B
rs196052 6 22057200 T A 0.029 (0.005) 7.90 x 10-9 LINC00340
rs9517490 13 99584305 T C 0.026 (0.005) 4.20 x 10-7 DOCK9
rs75261924 9 34210395 T C 0.089 (0.018) 8.30 x 10-7 UBAP1
rs10993820 9 136707730 A G -0.029 (0.006) 9.00 x 10-7 VAV2
rs11251716 10 3141970 C G 0.024 (0.005) 9.90 x 10-7 PFKP
rs61859066 10 33285862 T G -0.044 (0.009) 1.20 x 10-6 LOC101929475
rs4864857 4 55089814 T C -0.028 (0.006) 1.30 x 10-7 PDGFRA
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Table 6.11: The 10 variants demonstrating strongest association in GWAS for Refractive Astigmatism analysed as an inverse normal 
transformed trait with BOLT-LMM. Effect sizes are in units of standard deviations. NB: variants within ±500 kb of listed (lead) variant are not 
included in this list.

Variant Chromosome Position Effect Allele Other Allele Effect (SE) P-value Nearest Gene
rs12196123 6 22082263 C T -0.038 (0.005) 1.90 x 10-16 LINC00340
rs34635363 17 79549250 G A -0.030 (0.005) 2.40 x 10-10 NPLOC4
rs1800407 15 28230318 C T -0.050 (0.008) 9.10 x 10-10 OCA2
rs10177414 2 228211470 T C -0.027 (0.005) 5.40 x 10-9 MFF
rs11244084 9 136191010 C T -0.045 (0.009) 2.70 x 10-7 LCN1P2
rs73792446 6 170265697 C T -0.034 (0.007) 1.20 x 10-6 SGSM1
rs10494951 1 212429259 G A 0.028 (0.006) 1.60 x 10-6 LINC00574
rs1993423 4 154824112 T C 0.022 (0.005) 1.90 x 10-6 SFRP2
rs966122 18 72538519 G T 0.036 (0.007) 2.00 x 10-6 ZNF407
rs6029691 20 40094364 C G -0.023 (0.005) 2.50 x 10-6 CHD6
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As validation for the use of mixed linear models to conduct the association tests, 

analyses were repeated using linear regression (implemented in PLINK 2.0) and an 

identical set of covariates (note that this approach necessitated the analysis of a 

smaller sample of unrelated individuals). For corneal astigmatism, all four loci 

identified using the mixed linear model analysis also demonstrated genome-wide 

significant association using the linear regression model in PLINK, while only two of 

the three loci originally associated with refractive astigmatism (LINC00340 and 

HERC2) continued to demonstrate genome-wide significant association (Tables 6.12 

and 6.13, Figure 6.9). Additional sensitivity analyses were performed using logistic 

regression for the same groups of individuals and covariates as analysed by linear 

regression, with cases defined as individuals with corneal or refractive astigmatism 

≥1.00 D. Here, three of the four previously identified loci, near the genes ZC3H11B, 

HERC2 and TSPAN10/NPLOC4, demonstrated genome-wide significant association 

for corneal astigmatism, while only the LINC00340 locus continued to demonstrate 

genome-wide significant association for refractive astigmatism (Tables 6.14 and 

6.15, Figure 6.10). In all instances, the association signals were reduced using linear 

and logistic regression compared to the mixed linear model analyses. This was likely 

due to the substantial drop in sample size necessitated by standard regression 

based methods, which cannot account for relatedness between individuals. 
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Figure 6.9: Manhattan and Quantile-Quantile plots for GWAS of Corneal Astigmatism using PLINK 2.0 as continuous and dichotomous (cases 
≥1.00 D) traits. Panels A and B: Continuous trait; Panels C and D: Dichotomous trait. Manhattan plots (A and C): Red line indicates P = 5 x 10-8; 
blue line indicates P = 1 x 10-5. Quantile-Quantile plots (B and D): Y-axis shows observed negative log10 p-values and X-axis shows expected 
negative log10 p-values according to the null hypothesis of no genetic association. Red line = line of unity (observed = expected). 
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Table 6.12: The 10 variants demonstrating strongest association in GWAS for Corneal Astigmatism analysed as a continuous trait with PLINK 
2.0. NB: variants within ±500 kb of listed (lead) variant are not included in this list.

Variant Chromosome Position Effect Allele Other Allele Effect (SE) P-value Nearest Gene
rs1129038 15 28356859 T C 0.026 (0.004) 5.73 x 10-12 HERC2
rs12032649 1 219778959 G T 0.021 (0.003) 6.60 x 10-11 ZC3H11B
rs34635363 17 79549250 A G 0.021 (0.003) 7.09 x 10-11 NPLOC4
rs196052 6 22057200 A T -0.018 (0.003) 3.53 x 10-8 LINC00340
rs138016380 10 34449466 A C 0.050 (0.010) 1.40 x 10-6 PARD3
rs142566675 3 35248521 A C 0.077 (0.016) 1.51 x 10-6 LOC101928135
rs75380963 3 181554299 T C 0.079 (0.017) 2.29 x 10-6 LOC101929598 
rs115822495 6 15681708 T C -0.072 (0.015) 2.94 x 10-6 DTNBP1 
rs11955682 5 11416298 T G 0.047 (0.010) 3.15 x 10-6 CTNND2 
rs11639295 15 67460757 T C -0.016 (0.003) 3.24 x 10-6 SMAD3
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Table 6.13: The 10 variants demonstrating strongest association in GWAS for Corneal Astigmatism analysed as a dichotomous trait (cases 
≥1.00 D) with PLINK 2.0. NB: variants within ±500 kb of listed (lead) variant are not included in this list.

Variant Chromosome Position Effect Allele Other Allele Odds Ratio (95% CI) P-value Nearest Gene
rs72629670 1 219768131 G A 0.925 (0.901-0.950) 3.95 x 10-10 ZC3H11B 
rs62075722 17 79611271 G A 1.075 (1.051-1.100) 8.14 x 10-9 TSPAN10 
rs12913832 15 28365618 G A 0.920 (0.891-0.950) 2.96 x 10-8 HERC2 
rs11238956 10 44749854 C T 0.937 (0.912-0.962) 2.89 x 10-7 C10orf142 
rs1623169 11 128584320 T C 1.088 (1.056-1.121) 3.80 x 10-7 FLI1 
rs6434068 2 153357541 C G 1.063 (1.039-1.088) 6.18 x 10-7 FMNL2 
rs11639295 15 67460757 T C 1.069 (1.042-1.095) 8.57 x 10-7 SMAD3 
rs2763272 6 168832091 T C 0.932 (0.904-0.960) 1.19 x 10-6 SMOC2 
rs115822495 6 15681708 T C 1.343 (1.219-1.468) 3.57 x 10-6 DTNBP1 
rs10223780 6 62865025 G C 1.059 (1.035-1.083) 3.90 x 10-6 KHDRBS2 
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Figure 6.10: Manhattan and Quantile-Quantile plots for GWAS of Refractive Astigmatism using PLINK 2.0 as continuous and dichotomous 
(cases ≥1.00 D) traits. Panels A and B: Continuous trait; Panels C and D: Dichotomous trait. Manhattan plots (A and C): Red line indicates P = 5 x 
10-8; blue line indicates P = 1 x 10-5. Quantile-Quantile plots (B and D): Y-axis shows observed negative log10 p-values and X-axis shows expected 
negative log10 p-values according to the null hypothesis of no genetic association. Red line = line of unity (observed = expected).
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Table 6.14: The 10 variants demonstrating strongest association in GWAS for Refractive Astigmatism analysed as a continuous trait with 
PLINK 2.0. NB: variants within ±500 kb of listed (lead) variant are not included in this list.

Variant Chromosome Position Effect Allele Other Allele Effect (SE) P-value Nearest Gene
rs12196123 6 22082263 T C -0.022 (0.003) 1.07 x 10-11 LINC00340 
rs1129038 15 28356859 T C -0.024 (0.004) 3.63 x 10-10 HERC2 
rs10177414 2 228211470 C T -0.018 (0.003) 5.95 x 10-8 MFF 
rs34635363 17 79549250 A G -0.018 (0.003) 1.75 x 10-7 NPLOC4 
rs11244084 9 136191010 T C 0.032 (0.006) 1.78 x 10-7 LCN1P2 
rs139743 22 25299429 G A -0.017 (0.003) 2.03 x 10-7 SGSM1
rs116771750 1 219699050 C T -0.046 (0.009) 2.11 x 10-7 ZC3H11B 
rs2072970 20 40112488 A G -0.017 (0.003) 7.93 x 10-7 CHD6 
rs55939894 3 7963288 G A -0.020 (0.004) 9.09 x 10-7 LOC101927394 
rs17172445 7 55189215 T G -0.049 (0.010) 9.43 x 10-7 EGFR 
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Table 6.15: The 10 variants demonstrating strongest association in GWAS for Refractive Astigmatism analysed as a dichotomous trait (cases 
≥1.00 D) with PLINK 2.0. NB: variants within ±500 kb of listed (lead) variant are not included in this list. 

Variant Chromosome Position Effect Allele Other Allele Odds Ratio (95% CI) P-value Nearest Gene
rs10946507 6 22100367 A G 0.930 (0.906-0.954) 2.15 x 10-9 LINC00340
rs10177414 2 228211470 C T 0.942 (0.918-0.966) 1.34 x 10-6 MFF 
rs11244084 9 136191010 T C 0.898 (0.853-0.942) 2.07 x 10-6 LCN1P2
rs73430835 7 111628421 C T 0.777 (0.673-0.882) 2.19 x 10-6 DOCK4 
rs2026781 10 133841039 C G 1.067 (1.040-1.094) 2.62 x 10-6 JAKMIP3 
rs114330092 5 178661923 T G 0.866 (0.807-0.926) 2.81 x 10-6 ADAMTS2 
rs12051285 16 7460115 G T 1.057 (1.034-1.081) 4.61 x 10-6 RBFOX1 
rs192526513 7 44989410 A G 1.245 (1.150-1.340) 5.54 x 10-6 MYO1G 
rs151198248 20 42389025 T C 1.335 (1.210-1.460) 6.19 x 10-6 LOC101927200 
rs76638496 8 82917849 A G 0.829 (0.748-0.911) 6.39 x 10-6 SNX16 
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Lastly, the possibility of extreme phenotypes or anisometropia driving the identified 

association signals was examined in the samples of unrelated individuals. As shown 

in Table 6.16, for corneal astigmatism, the effect sizes for all variants examined 

decreased after excluding individuals with extreme trait values or anisometropia; 

however, all associations with the exception of the signal identified on chromosome 

6 continued to demonstrate genome-wide significance. For refractive astigmatism, 

there was a greater decrease in effect size for all variants using these stricter 

inclusion criteria, and only the association signal on chromosome 6 continued to 

demonstrate genome-wide significant association (Table 6.17); however, the 

association signal on chromosome 17 did not demonstrate genome-wide 

significance when all unrelated individuals were considered. Based on these 

sensitivity analyses, it appears that the associations identified for corneal 

astigmatism are robust against the presence of extreme phenotype values or 

differences within individuals than refractive astigmatism. This can also be seen in 

the dichotomous trait analyses, whereby cases with astigmatism of 1.25 D or 5.00 D 

were considered equally despite the latter being an extreme trait value. In these 

dichotomous trait analyses, the number of genome-wide significant associations for 

refractive astigmatism reduced to a single genome-wide significant association on 

chromosome 6 (Table 6.15), whereas three of the four loci identified for corneal 

astigmatism continued to demonstrate such strong association (Table 6.13).   
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Table 6.16: Sensitivity analyses investigating the effect of outlier phenotype values on association signals – for genome-wide significant 
associated loci from Corneal Astigmatism GWAS. All Individuals P-value obtained from analyses using PLINK 2.0. Sample sizes: All Individuals = 
69,140; Excluding phenotype extremes / anisometropia = 68,411.

Chromosome GWAS Lead Variant Effect Allele
All Individuals Excluding Phenotype Extremes /

Anisometropia
Effect (SE) P-value Effect (SE) P-value

1 rs12032649 G 0.021 (0.003) 6.60 x 10-11 0.019 (0.003) 4.26 x 10-11

6 rs196052 A -0.018 (0.003) 3.53 x 10-8 -0.015 (0.003) 4.16 x 10-7 
15 rs1129038 C -0.026 (0.004) 5.73 x 10-12 -0.021 (0.003) 4.18 x 10-10

17 rs62075722 A 0.021 (0.003) 1.61 x 10-10 0.019 (0.003) 6.69 x 10-11

Table 6.17: Sensitivity analyses investigating the effect of outlier phenotype values on association signals – for genome-wide significant 
associated loci from Refractive Astigmatism GWAS. All Individuals P-value obtained from analyses using PLINK 2.0. Sample sizes: All Individuals 
= 70,505; Excluding phenotype extremes / anisometropia = 69,304.

Chromosome GWAS Lead Variant Effect Allele
All Individuals Excluding Phenotype Extremes /

Anisometropia
Effect (SE) P-value Effect (SE) P-value

6 rs12196123 C -0.022 (0.003) 1.07 x 10-11 -0.016 (0.003) 6.60 x 10-9 
15 rs1129038 C -0.024 (0.004) 3.63 x 10-10 -0.015 (0.003) 5.06 x 10-6 
17 rs34635363 A 0.018 (0.003) 1.75 x 10-7 0.013 (0.003) 6.63 x 10-6 
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6.3.3 Gene-based and Gene-set Analyses 

In order to identify potential candidate genes and biological mechanisms enriched 

with variants attaining low but not necessarily genome-wide significant p-values 

from GWAS, gene-based and gene-set tests were performed in MAGMA using the 

results of the mixed linear model analyses. The gene-based analysis for corneal 

astigmatism identified 37 genes at a FDR < 0.05. These genes included a cluster of 

nine genes at the TSPAN10/NPLOC4 locus (17q25.3; FDR = 2.10 x 10-6) along with 

the genes HERC2 (15q13.1; FDR = 2.30 x 10-4), PDGFRA (4q12; FDR = 5.21 x 10-4), 

and B3GNT7 (2q37.1; FDR = 3.66 x 10-3) (Table 6.18). For refractive astigmatism, 

gene-based analysis identified 35 genes with FDR < 0.05. Of these genes, seven 

were clustered at the gene dense TSPAN10/NPLOC4 locus (17q25.3; FDR = 

5.00 x 10-3). Additional genes identified included TMEM211 (22q11.23; FDR = 

4.96 x 10-3), PROX1 (1q32.3; FDR = 4.96 x 10-3), HERC2 (15q13.1; FDR = 5.00 x 10-3), 

and PLAUR (19q13.31; FDR = 5.69 x 10-3) (Table 6.19). The VAX2 gene located at a 

suggested susceptibility locus for refractive astigmatism identified by Lopes et al. 

(2013) at (2p13.3) also achieved FDR < 0.05 (FDR = 0.014). 

Gene-set analyses in MAGMA yielded non-significant findings after correction for 

multiple testing for both astigmatism traits. 
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Table 6.18: Genes demonstrating strongest association from the MAGMA gene-based association test (FDR < 0.05) for Corneal Astigmatism 
as a continuous trait. Start and stop positions listed include ±50 kb flanking regions; nSNPs = number of variants included in gene region; Z-
Statistic = gene-based test statistic; P-value = obtained from Z-Statistic under the assumption of a normally distributed model; FDR = false 
discovery rate. 

Gene Chromosome Start Stop nSNPs Z-Statistic P-value FDR Bonferroni Adjusted P-value
NPLOC4 17 79473913 79654138 716 6.34 1.15 x 10-10 2.10 x 10-6 2.10 x 10-6 
TSPAN10 17 79559349 79665779 485 5.71 5.75 x 10-9 5.27 x 10-5 1.05 x 10-4 
PDE6G 17 79567489 79673607 479 5.46 2.36 x 10-8 1.44 x 10-6 4.33 x 10-4 
HERC2 15 28306183 28617313 185 5.33 5.01 x 10-8 2.30 x 10-4 9.19 x 10-4 
CCDC137 17 79583761 79690937 470 5.24 7.88 x 10-8 2.89 x 10-4 1.45 x 10-3 
OXLD1 17 79582066 79683618 476 5.16 1.24 x 10-7 3.78 x 10-4 2.27 x 10-3 
PDGFRA 4 55045264 55214412 324 5.07 1.99 x 10-7 5.21 x 10-4 3.65 x 10-3 
C17orf70 17 79456911 79569429 402 4.93 4.08 x 10-7 9.34 x 10-4 7.47 x 10-3 
HGS 17 79600962 79719151 423 4.82 7.24 x 10-7 1.48 x 10-3 0.013
ARL16 17 79598224 79700954 437 4.68 1.47 x 10-6 2.69 x 10-3 0.027
B3GNT7 2 232210335 232315875 168 4.59 2.19 x 10-6 3.66 x 10-3 0.040
FSCN2 17 79431022 79554156 393 4.57 2.43 x 10-6 3.72 x 10-3 0.045
BMP3 4 81902119 82028685 194 4.40 5.30 x 10-6 7.47 x 10-3 0.097
TUT1 11 62291431 62409109 102 4.10 2.07 x 10-5 0.027 0.380
ISCU 12 108905239 109013160 288 4.08 2.25 x 10-5 0.027 0.413
EML3 11 62319690 62430492 101 4.07 2.33 x 10-5 0.027 0.427
VAV2 9 136577016 136907496 941 4.03 2.80 x 10-5 0.028 0.513
ROM1 11 62330213 62432592 88 4.03 2.84 x 10-5 0.028 0.520
GANAB 11 62342298 62464198 110 4.02 2.87 x 10-5 0.028 0.526
B3GAT3 11 62332768 62439647 97 4.00 3.11 x 10-5 0.028 0.570
MTA2 11 62310675 62419312 90 3.98 3.40 x 10-5 0.030 0.623
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Gene Chromosome Start Stop nSNPs Z-Statistic P-value FDR Bonferroni Adjusted P-value
EEF1G 11 62277073 62391460 103 3.96 3.79 x 10-5 0.030 0.695
ASB1 2 239285382 239410891 300 3.95 3.89 x 10-5 0.030 0.714
ARMC9 2 232013294 232288606 542 3.95 3.93 x 10-5 0.030 0.720
SNED1 2 241888213 242088515 437 3.88 5.19 x 10-5 0.038 0.952
INTS5 11 62364320 62470774 106 3.85 5.93 x 10-5 0.041 1
C2orf83 2 228424806 228548036 508 3.84 6.09 x 10-5 0.041 1
SMAD3 15 67308036 67537533 448 3.82 6.70 x 10-5 0.044 1
C1orf54 1 150194687 150303335 119 3.79 7.42 x 10-5 0.044 1
GLRA3 4 175495367 175800465 769 3.78 7.81 x 10-5 0.044 1
TMEM119 12 108933622 109041894 260 3.78 7.91 x 10-5 0.044 1
NCL 2 232269459 232379208 233 3.77 8.16 x 10-5 0.044 1
APH1A 1 150187799 150291609 99 3.77 8.17 x 10-5 0.044 1
COL6A5 3 130014359 130253690 707 3.76 8.48 x 10-5 0.044 1
MAP2K6 17 67360838 67588470 296 3.76 8.49 x 10-5 0.044 1
CIART 1 150204930 150309505 135 3.75 8.88 x 10-5 0.044 1
LGALS14 19 40144946 40250088 295 3.75 8.94 x 10-5 0.044 1
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Table 6.19: Genes demonstrating strongest association from the MAGMA gene-based association test (FDR < 0.05) for Refractive 
Astigmatism as a continuous trait. Start and stop positions listed include ±50 kb flanking regions; nSNPs = number of variants included in gene 
region; Z-Statistic = gene-based test statistic; P-value = obtained from Z-Statistic under the assumption of a normally distributed model; FDR = 
false discovery rate. 

Gene Chromosome Start Stop nSNPs Z-Statistic P-value FDR Bonferroni Adjusted P-value
TMEM211 22 25281208 25385314 144 4.90 4.72 x 10-7 4.96 x 10-3 8.65 x 10-3 
PROX1 1 214111278 214264853 278 4.88 5.41 x 10-7 4.96 x 10-3 9.92 x 10-3 
HERC2 15 28306183 28617313 186 4.76 9.86 x 10-7 5.00 x 10-3 0.018
TSPAN10 17 79559349 79665779 484 4.74 1.09 x 10-6 5.00 x 10-3 0.020
NPLOC4 17 79473913 79654138 717 4.60 2.15 x 10-6 5.69 x 10-3 0.039
PDE6G 17 79567489 79673607 478 4.60 2.15 x 10-6 5.69 x 10-3 0.039
PLAUR 19 44100247 44224498 254 4.59 2.17 x 10-6 5.69 x 10-3 0.040
OXLD1 17 79582066 79683618 475 4.38 5.87 x 10-6 0.013 0.108
CCDC137 17 79583761 79690937 469 4.35 6.71 x 10-6 0.014 0.123
VAX2 2 71077720 71210576 281 4.33 7.59 x 10-6 0.014 0.139
MFF 2 228139867 228272552 144 4.09 2.13 x 10-5 0.031 0.391
HGS 17 79600962 79719151 278 4.07 2.36 x 10-5 0.031 0.432
MDH1 2 63765743 63884331 186 4.06 2.44 x 10-5 0.031 0.447
ATP6V1B1 2 71112998 71242561 484 4.04 2.65 x 10-5 0.031 0.485
EMC9 14 24558081 24660837 717 4.04 2.67 x 10-5 0.031 0.490
PSME2 14 24562574 24665855 144 4.04 2.68 x 10-5 0.031 0.492
CALR 19 12999414 13105304 278 4.02 2.95 x 10-5 0.032 0.541
FARSA 19 12983284 13094558 186 3.97 3.57 x 10-5 0.035 0.654
ARL16 17 79598224 79700954 484 3.97 3.62 x 10-5 0.035 0.664
ZNF277 7 111796643 112033989 717 3.95 3.92 x 10-5 0.036 0.718
PSME1 14 24555295 24658176 478 3.93 4.28 x 10-5 0.036 0.784
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Gene Chromosome Start Stop nSNPs Z-Statistic P-value FDR Bonferroni Adjusted P-value
ASB1 2 239285382 239410891 254 3.93 4.32 x 10-5 0.036 0.793
RSPO2 8 108861544 109145913 475 3.89 5.06 x 10-5 0.040 0.927
PPP2R5A 1 212408879 212585205 469 3.86 5.60 x 10-5 0.041 1
CYP7B1 8 65458529 65761348 281 3.86 5.63 x 10-5 0.041 1
FAM169A 5 74023399 74213832 144 3.84 6.03 x 10-5 0.043 1
OCA2 15 27950021 28394483 278 3.82 6.57 x 10-5 0.045 1
FITM1 14 24550675 24652058 186 3.81 6.87 x 10-5 0.045 1
ZNF407 18 72215106 72827628 484 3.78 7.84 x 10-5 0.048 1
POGZ 1 151325200 151495753 717 3.78 7.86 x 10-5 0.048 1
SF3A1 22 30677977 30802931 478 3.77 8.17 x 10-5 0.048 1
GFM2 5 73967029 74113196 254 3.76 8.34 x 10-5 0.048 1
RAD23A 19 13006628 13114457 475 3.76 8.58 x 10-5 0.048 1
RNF31 14 24566101 24679870 469 3.75 8.99 x 10-5 0.048 1
PPP1R2 3 195191221 195320224 281 3.73 9.54 x 10-5 0.050 1
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6.3.4 SNP-Heritability and Genetic Correlation 

LD Score regression-based SNP-heritability estimates for corneal and refractive 

astigmatism, calculated from the GWAS summary statistics for the continuous trait 

analyses described above, were 0.036 (SE = 0.006, P = 4.34 x 10-10) and 0.034 (SE = 

0.006, P = 2.71 x 10-9), respectively (Table 6.20). These estimates were lower –

albeit with overlapping 95% confidence intervals – compared to the equivalent 

estimates obtained directly using GCTA (Table 6.20). 

Table 6.20: Estimates of SNP-heritability (h2
SNP) using GCTA and LSDC. h2

SNP = 
SNP-heritability; SE: standard error; P-value = test of the null hypothesis (h2

SNP = 0).

Trait Method No. of 
Variants Sample Size h2

SNP SE P-value

Corneal 
Astigmatism

GCTA 732,404 27,707 0.061 0.021 1.19 x 10-3 
LDSC 864,048 86,355 0.036 0.006 4.34 x 10-10

Refractive 
Astigmatism

GCTA 732,404 28,378 0.046 0.020 7.74 x 10-3 

LDSC 863,851 88,005 0.034 0.006 2.71 x 10-9 

The genetic correlation between corneal and refractive astigmatism, calculated 

using LD Score regression, was 0.851 (SE = 0.068, P = 1.37 x 10-35). In contrast, 

genetic correlations between the astigmatism traits and spherical equivalent were 

much weaker at -0.108 between corneal astigmatism and spherical equivalent; and 

-0.104 between refractive astigmatism and spherical equivalent (Table 6.21). In 

both of these instances, the genetic correlations were not significantly different 

from zero (P = 0.067 and 0.071 respectively; Table 6.21). 

Comparing genotypic correlations for the UK Biobank data against those obtained 

for the CREAM meta-analyses revealed the genetic correlation between corneal and 
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refractive astigmatism was much greater in the UK Biobank dataset (0.851 vs. 

0.233). In addition, the genetic correlation between corneal astigmatism and 

spherical equivalent was in line with that obtained from the CREAM consortium 

data (Section 4.3.3) at -0.108; however the genetic correlation between refractive 

astigmatism and spherical equivalent was much reduced for the UK Biobank data at 

-0.104. A likely explanation for the differences in genetic correlations between the 

two datasets is the greater uncertainty in the SNP-heritability estimation for 

refractive astigmatism in the CREAM consortium data, which is subsequently used 

to calculate genetic correlation. 

All phenotypic correlations were significantly different from the null hypothesis of 

no correlation (Table 6.21). Figure 6.11 shows the distributions of the respective 

refractive errors for all unrelated individuals (N = 63,466). 



204 

Table 6.21: Genetic and phenotypic correlations between pairs of refractive error traits. Genotypic correlations were obtained using LDSC 
and summary statistics from BOLT-LMM analyses (N = 86,335 or 88,005). All phenotypic correlations are Pearson correlations for 63,466 
unrelated individuals included in GWAS for these respective traits and with data available for all three refractive error measures CA = corneal 
astigmatism; RA = refractive astigmatism; MSE = mean spherical equivalent. P-values refer to the null hypothesis of zero genetic correlation 
between traits. 

Trait Pairs No. of Variants Genetic Correlation (SE) P-value Phenotypic Correlation 95% CI
CA and RA 862,521 0.851 (0.068) 1.37 x 10-35 0.615 0.610 to 0.620
CA and MSE 862,524 -0.108 (0.059) 0.067 -0.093 -0.100 to -0.085
RA and MSE 863,831 -0.104 (0.057) 0.071 -0.156 -0.163 to -0.148
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Figure 6.11: Phenotypic correlations between pairs of refractive error traits. Panel A: Corneal Astigmatism and Refractive Astigmatism. 
Diagonal red line = line of unity (Corneal Astigmatism = Refractive Astigmatism); Panel B: Corneal Astigmatism and Spherical Equivalent. 
Horizontal dashed lines denote Spherical Equivalent = 0 D; Panel C: Refractive Astigmatism and Spherical Equivalent. Horizontal dashed lines 
denote Spherical Equivalent = 0 D. All correlations reported are Pearson correlations for respective pairs of refractive error measures in the 
63,466 unrelated individuals included in GWAS for these respective traits who had data available for all three refractive error measures. 
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6.4 Discussion 

The GWAS analyses undertaken here for corneal and refractive astigmatism are the 

largest performed to date, and have led to the discovery of four novel genome-wide 

significant loci associated with corneal astigmatism, and two novel genome-wide 

significant loci associated with refractive astigmatism. 

It is notable that the novel loci for refractive or corneal astigmatism identified in the 

GWAS analyses undertaken here have previously shown association with other 

ocular traits. Variants near the protein coding gene ZC3H11B (zinc finger CCCH-type 

containing 11B) on chromosome 1 (1q41) have previously demonstrated association 

with pathological (high) myopia in Asian ancestry cohorts and with axial length in 

both European and Asian ancestry individuals (Fan et al., 2012; Cheng et al., 2013). 

Ocular expression of ZC3H11B has been identified in human retinal and scleral 

tissues (Fan et al., 2012). LINC00340, also known as CASC15 (cancer susceptibility 

15), is a long, non-coding RNA transcript located on chromosome 6 (6p22.3). In 

previous meta-analysis of GWAS from European and Asian ancestry cohorts, this 

locus demonstrated genome-wide significant association with spherical equivalent 

refractive error (Fan et al., 2016) and suggestive association (P < 1 x 10-5) with 

refractive astigmatism (Li et al., 2015a). For both studies, associations at the locus 

appear to be largely driven by signals from European-ancestry cohorts, with little 

association demonstrated by their Asian ancestry counterparts. The protein coding 

gene HERC2 (HECT and RLD domain containing E3 ubiquitin protein ligase 2) and its 

neighbouring gene OCA2 (Oculocutaneous albinism type 2) on chromosome 15 

(15q13.1) have both previously demonstrated association with eye, skin and hair 
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pigmentation (Kayser et al., 2008; Sturm and Larsson, 2009; Liu et al., 2010a). 

TSPAN10 (Tetraspanin 10), also known as Oculospanin, is a protein coding gene 

located within a gene-dense region on chromosome 17 (17q25.3). This gene 

regulates the transmembrane metalloprotease ADAM10 as part of the Notch 

signalling pathway (Charrin et al., 2014). Ocular expression of TSPAN10 has been 

identified in the iris, ciliary body and retinal pigment epithelium (Wistow et al., 

2002) and this locus has previously demonstrated genome-wide significant 

association with eye colour, myopia and age-related macular degeneration (Liu et 

al., 2010a; Fritsche et al., 2016; Pickrell et al., 2016). 

Table 6.22 contains a summary of the loci achieving genome-wide significant 

association in this investigation and previously identified associations of these loci 

with other ocular traits, as reported in the NHGRI-EBI Catalog of published genome-

wide association studies (MacArthur et al., 2017). With exception of the association 

signal at HERC2/OCA2, the majority of the astigmatism susceptibility loci have 

demonstrated association with refractive error traits in previous GWAS analyses. 

Table 6.22: Previously observed associations with ocular traits at the newly 
discovered susceptibility loci for astigmatism. 

Gene Region Previous Associations References

ZC3H11B 1q41 Axial length
Pathological myopia

Cheng et al. (2013)
Fan et al. (2012)

LINC00340 6p22.3 Refractive astigmatism
Spherical equivalent

Li et al. (2015a)
Fan et al. (2016)

HERC2 15q13.1 Eye colour Kayser et al. (2008)

TSPAN10/NPLOC4 17q25.3

Myopia
Advanced age-related macular 
degeneration
Eye colour

Pickrell et al. (2016)
Fritsche et al. (2016)

Liu et al. (2010a)
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In the earlier GWAS for corneal astigmatism (Chapter 4), conducted using data from 

CREAM, a genome-wide significant locus was identified at the PDGFRA gene. When 

analyses were restricted to individuals of European ancestry, this locus did not 

attain genome-wide significant association but was highly suggestive of association 

with corneal astigmatism (lead variant: rs7673984; OR (95% CI) = 1.11 (1.06-1.16); 

P = 5.64 × 10−6). In analyses of the UK Biobank cohort with corneal astigmatism 

considered as a continuous trait, this locus demonstrated an equivalent degree of 

association (lead variant: rs4864857; effect (SE): 0.017 (0.003); P = 1.20 x 10-6), and 

achieved a false discovery rate of 0.014 (1.4%) in the MAGMA gene-based test. This, 

together with evidence from association studies in other European ancestry cohorts 

(Mishra et al., 2012; Guggenheim et al., 2013a) strongly suggests that the PDGFRA

gene locus should be considered as a susceptibility locus for corneal astigmatism in 

individuals of European ancestry. 

The primary GWAS analyses were conducted using mixed linear models as 

implemented in BOLT-LMM (Loh et al., 2015). Mixed linear models have the 

advantage over standard linear regression that they can correct for residual 

population stratification and relatedness within the study sample, which can 

otherwise lead to reduced power or an excess of false positive association signals 

(Yang et al., 2014). Due to the increased sample size the mixed linear model 

approach allows, the genome-wide significant association signals obtained here 

were stronger than those obtained from standard linear regression. An important 

limitation of using mixed linear models for association studies is that they can 

produce results with high Type I error rates for dichotomous traits (Yang et al., 
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2014; Chen et al., 2016); hence, corneal and refractive astigmatism were only 

considered as continuous traits for the mixed model analyses. Analysis methods 

work under the assumption that the trait is normally distributed; however, 

transforming corneal and refractive astigmatism values using an inverse normal 

transformation produced similar results to those obtained using the untransformed 

traits (Table 6.10, Table 6.11, Figure 6.8). Furthermore, the results were similar to 

those obtained using PLINK 2.0 with corneal and refractive astigmatism considered 

as continuous traits and as dichotomous traits defined using a threshold of 1.00 D 

for assigning case status (Tables 6.12-6.15, Figure 6.9, Figure 6.10).  

Recent attempts have been made by software developers to overcome this Type I 

error rate for dichotomous traits through development of alternative models 

founded on the principles of mixed linear models (Chen et al., 2016; Zhou et al., 

2017a). The alternative models (e.g. GMMAT and SAIGE) require initial fitting of a 

null logistic mixed model to determine model parameters, akin to those for the 

“non-infinitesimal” model from BOLT-LMM, before association test statistics are 

computed. As these models are still in their infancy, they were not utilised here. 

However, should the differences in Type I error rates of these models compared to 

standard logistic regression become comparable to linear regression vs. mixed 

linear models, all traits will benefit from the advantages of mixed model association 

tests. 

As increasing magnitudes of astigmatism are correlated with increasing magnitudes 

of spherical refractive error (Kronfeld and Devney, 1930; Guggenheim and 
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Farbrother, 2004), spherical equivalent was included as a covariate in order to 

negate the effects of this correlation as a potential driver of association signals. 

Using spherical equivalent is more conservative an adjustment than using the 

spherical refractive component only, as this also adjusts for the contribution of 

refractive astigmatism to the overall refractive error of the individual (Guggenheim 

and Farbrother, 2004). 

It should be noted that these genetic analyses of corneal and refractive astigmatism 

have solely considered the magnitude of astigmatism and not its axis. Astigmatism 

axis could be considered in a number of ways, such as analysing the vector 

transformed traits of J0 and J45 or by segregating the sample by astigmatism axis 

category (WTR, ATR or Oblique). However, these methods are not perfect as each 

option results in loss of data that may be considered important in understanding 

the development of astigmatism. In the case of using vector notation, J0 and J45

values tend to be considered together rather than isolation as it may be the case 

that an individual with J0 (or J45) = 0 D may not have 0 D of astigmatism overall. 

Whilst performing analyses using these alternative vector transformed traits may 

give insight into potential genetic variants associated with increased oblique 

astigmatism (J45) or astigmatism favouring the horizontal (or vertical) meridian (J0), 

combining the results of these analyses would provide results in the context of 

magnitude alone, as has been performed in the investigations in this section. 

Alternatively, if the sample were to be segregated by axis category, with analyses 

performed for individuals with WTR astigmatism separately to those with ATR 



211 

astigmatism, variants demonstrating association with one specific category of 

astigmatism may be identified. However, there would be loss of power to detect 

true associated variants due to the reduced sample sizes in each group. A 

compromise could be to include astigmatism axis (either quantitative or categorical) 

as an additional covariate in the analysis model. However, care must be taken if 

analyses are performed using data from both eyes since astigmatism axes are rarely 

identical between eyes of an individual, and tend to follow a mirror symmetry 

pattern (e.g. right eye = 70°, left eye = 110°) (Guggenheim et al., 2008). In this case, 

categorising astigmatism axis would be favoured. However, added complexity arises 

if the axis for one eye is categorised as “WTR” and the other eye is categorised as 

“Oblique”, despite there being only a 1-2° difference in axes between the eyes after 

accounting for mirror symmetry (e.g. right eye = 29°, class = WTR; left eye = 149°, 

class = Oblique).  

Furthermore, there may be individuals in the sample with no astigmatism identified 

(i.e. spherical corneal surface or spherical refractive error only). As these individuals 

would not have data available for astigmatism axis, they would not be included in 

the vector transformed or axis category analyses described above, thus resulting in 

loss of data that may help understanding of why people don’t develop astigmatism. 

As a result of these considerations, maximising sample size and preference for a 

parsimonious analysis model – thus maximising statistical power, analysis was 

restricted to consideration of astigmatism magnitude alone. 
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In summary, these are the largest genome-wide association studies for corneal and 

refractive astigmatism to date and identified four novel loci for corneal astigmatism, 

two of which are also novel loci for refractive astigmatism. It was notable that all of 

these novel loci have previously been associated with different ocular traits (Table 

6.22), most prominently spherical equivalent refractive error. However, the 

astigmatism association signals were genome-wide significant even after adjusting 

for the effects of spherical equivalent, confirming that they represent independent 

associations, thus lending further support to the concept of shared genetic 

susceptibility for myopia and astigmatism.
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Chapter 7 Investigation of myopic primate retina differentially 

expressed genes in humans 

7.1 Introduction 

The preceding chapters described experiments aiming to identify genetic variants 

associated with the refractive error traits spherical equivalent, corneal astigmatism 

and refractive astigmatism. Despite some successes in identifying candidate loci 

associated with these respective traits, and successful attempts to identify 

candidate genes enriched with variants through gene-based analyses, these 

analyses did not definitively link specific candidate genes to biological processes 

relevant to disease mechanisms. 

One way to examine whether a candidate gene is implicated in the pathogenesis of 

a disorder is to assess changes in the expression level of the gene in individuals 

developing the disease (Westra and Franke, 2014). It follows that identifying 

expression quantitative trait loci (eQTLs), which are genetic variants associated with 

altered expression of specific genes (Nica and Dermitzakis, 2013), could aid 

determining which variants highlighted from GWAS are the true causal variants. 

Knowledge of such causal variants can then aid future development of potential 

genetic therapeutic and preventative interventions. 

A key limitation when conducting analyses of gene expression is that the responses 

are tissue and time dependent (Chowers et al., 2003; Nica and Dermitzakis, 2008; 

Dimas et al., 2009). Thus, samples from which gene expression is examined are best 
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obtained from the appropriate tissue (e.g. retina or cornea, in the case of refractive 

errors) at a time when refractive error development is most active (i.e. 

adolescence). Collecting such samples is unfeasible in humans due to the invasive 

nature of the process; however such samples can be obtained from animal models.  

For example, Tkatchenko et al. (2006) carried out an experiment in which juvenile 

rhesus macaques and green monkeys were form deprived via lid fusion, resulting in 

the induction of myopia in the form-deprived eyes. Significant differential 

expression of 119 genes was identified between the retinas of the lid fused and 

fellow control eyes of these primates.  

The aim of the following investigation was to ascertain whether the human 

orthologues of the candidate genes identified by Tkatchenko et al. (2006) were 

enriched with naturally occurring genetic variants associated with spherical 

equivalent refractive error. The gene-based statistical methods employed in the 

preceding chapters were utilised for this purpose. 
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7.2 Methods 

7.2.1 Study Sample 

Results from a meta-analysis of GWAS for refractive error performed by the 

Consortium for Refractive Error and Myopia (CREAM) were used for this 

investigation (Tedja et al., 2018). The meta-analysis results used were restricted to 

cohorts of European ancestry only. This sample was obtained by Tedja et al. (2018) 

through combining cohorts from study groups known to CREAM and customers 

from the 23andMe genetic testing company database. Variants were included in the 

analysis carried out by Tedja et al. (2018) if they had a MAF ≥ 0.01 in the CREAM 

study cohorts or ≥ 0.005 in the 23andMe cohort, and an imputation quality score 

from IMPUTE2 info ≥ 0.3 or Minimac Rsq ≥ 0.3. 

This resulted in a total of 11,691,823 variants across the genome tested for 

association with refractive error in 148,218 individuals. 

7.2.2 Gene-based Analyses 

To test whether the differentially expressed genes identified by Tkatchenko et al. 

(2006) were human myopia susceptibility genes, gene-based association tests were 

performed using MAGMA (outlined in Section 2.3.5) utilising the data from the 

CREAM refractive error GWAS. The candidate genes investigated were restricted to 

those with human autosomal orthologues, resulting in a total of 111 candidate 

genes. Genes were defined according to NCBI build 37 (hg19/GRCh37) coordinates. 

Due to the wide range of distances between variants and the genes they influence 

(Brodie et al., 2016), analyses were performed using the following flanking regions 
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appended to the gene’s translation start and stop sites: 0 kb, 50 kb and 200 kb. LD 

patterns were estimated by MAGMA using an ancestry matched reference file, 

specifically the reference files composed of data for the 379 unrelated individuals of 

European ancestry from Phase 1, version 3 of the 1000 Genomes Project (The 1000 

Genomes Project Consortium et al., 2012). Multiple testing was accounted for by 

applying a false discovery rate threshold of 5%. Further exploratory analyses were 

also carried out with even larger flanking regions (500 kb 1 Mb and 2 Mb).

7.2.3 Replication in the UK Biobank Study 

Genes demonstrating FDR < 0.05 were examined for replication in the independent, 

UK Biobank study cohort. Here, gene-based analyses were performed using results 

from a GWAS for spherical equivalent for 88,005 White British individuals as 

described in Section 6.2.5. 
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7.3 Results 

7.3.1 Gene-based Analyses 

In order to statistically ascertain whether the candidate genes from Tkatchenko et 

al. (2006) were enriched with variants attaining low but not necessarily genome-

wide significant p-values from the GWAS of refractive error in humans, gene-based 

tests were performed in MAGMA. In total 111 autosomal genes were tested for 

association with refractive error. 

Restricting gene regions to within translation start and stop sites (0 kb flanking 

regions) resulted in four of the 111 candidate genes demonstrating significant 

association (FDR < 0.05). These four genes were LBH, CLU, DDIT4 and SEPT4 (Table 

7.1). 

Initially, a flanking region of 50 kb was appended to the gene transcription start and 

stop sites. This resulted in nine of the candidate genes demonstrating significant 

association with refractive error (FDR < 0.05; Table 7.2). Included in this list of genes 

were the four genes demonstrating association when restricting to variants within 

the gene transcription locus, as well as the genes TSR3, ERLEC1, SNW1, CNTF and 

SPON1 (Table 7.2). 

Increasing flanking regions to include variants 200 kb upstream and downstream of 

gene regions resulted in 17 of the 111 candidate genes demonstrating significant 

association (FDR < 0.05; Table 7.3). Included in these 17 genes were all nine genes 



219 

demonstrating association when tested with the inclusion of the smaller, 50 kb, 

flanking region. 
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Table 7.1: Candidate myopia genes demonstrating strongest association from the MAGMA gene-based association test (FDR < 0.05) for 
Refractive Error. Start and stop positions refer to the respective gene transcription start and stop sites (no flanking region included); nSNPs = 
number of variants included in gene region; Z-Statistic = gene-based test statistic; P-value = obtained from Z-Statistic under the assumption of a 
normally distributed model; FDR = false discovery rate.

Gene Chromosome Start Stop nSNPs Z-Statistic P-value FDR Bonferroni Adjusted P-value
CLU 8 27454434 27472328 40 5.21 9.23 x 10-8 1.02 x 10-5 1.02 x 10-5 
DDIT4 10 74033677 74035797 4 4.60 2.10 x 10-6 8.32 x 10-5 2.31 x 10-4 
LBH 2 30454397 30482899 102 4.59 2.27 x 10-6 8.32 x 10-5 2.50 x 10-4 
SEPT4 17 56597611 56618179 39 4.39 5.72 x 10-6 1.57 x 10-4 6.29 x 10-4 

Table 7.2: Candidate myopia genes demonstrating strongest association from the MAGMA gene-based association test (FDR < 0.05) for 
Refractive Error with the inclusion of 50 kb flanking regions. nSNPs = number of variants included in gene region; Z-Statistic = gene-based test 
statistic; P-value = obtained from Z-Statistic under the assumption of a normally distributed model; FDR = false discovery rate.

Gene Chromosome Start Stop nSNPs Z-Statistic P-value FDR Bonferroni Adjusted P-value
TSR3 16 1349241 1451873 387 5.33 4.83 x 10-8 5.31 x 10-6 5.31 x 10-6 
DDIT4 10 73983677 74085797 221 5.14 1.38 x 10-7 7.60 x 10-6 1.52 x 10-5 
LBH 2 30404397 30532899 386 4.38 5.93 x 10-6 2.18 x 10-4 6.53 x 10-4 
CLU 8 27404434 27522328 392 3.90 4.78 x 10-5 1.27 x 10-3 5.26 x 10-3 
SEPT4 17 56547611 56668179 206 3.86 5.76 x 10-5 1.27 x 10-3 6.33 x 10-3 
ERLEC1 2 53964068 54095956 398 3.07 1.06 x 10-3 0.019 0.117
SNW1 14 78133942 78277542 625 2.93 1.71 x 10-3 0.026 0.188
CNTF 11 58340146 58443206 280 2.90 1.89 x 10-3 0.026 0.207
SPON1 11 13934184 14339679 1192 2.77 2.77 x 10-3 0.034 0.304
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Table 7.3: Candidate myopia genes demonstrating strongest association from the MAGMA gene-based association test (FDR < 0.05) for 
Refractive Error with the inclusion of 200 kb flanking regions. nSNPs = number of variants included in gene region; Z-Statistic = gene-based 
test statistic; P-value = obtained from Z-Statistic under the assumption of a normally distributed model; FDR = false discovery rate.

Gene Chromosome Start Stop nSNPs Z-Statistic P-value FDR Bonferroni Adjusted P-value
DDIT4 10 73833677 74235797 821 5.66 7.40 x 10-9 3.97 x 10-7 8.21 x 10-7 
ANKRD28 3 15508743 16101053 1663 5.65 7.88 x 10-9 3.97 x 10-7 8.74 x 10-7 
CNIH1 14 54690279 55108322 964 5.60 1.07 x 10-8 3.97 x 10-7 1.19 x 10-6 
TSR3 16 1199241 1601873 1765 5.10 1.66 x 10-7 4.44 x 10-6 1.85 x 10-5 
HNRNPA3 2 177876063 178288687 982 5.07 2.00 x 10-7 4.44 x 10-6 2.22 x 10-5 
E2F4 16 67026068 67432821 552 3.69 1.12 x 10-4 1.86 x 10-3 0.012
SNW1 14 77983942 78427542 1978 3.68 1.17 x 10-4 1.86 x 10-3 0.013
SEPT4 17 56397611 56818179 814 3.36 3.85 x 10-4 5.34 x 10-3 0.043
LBH 2 30254397 30682899 1308 3.19 7.10 x 10-4 8.46 x 10-3 0.079
RAB18 10 27593103 28031166 1578 3.17 7.62 x 10-4 8.46 x 10-3 0.085
SPON1 11 13784184 14489679 2031 3.04 1.16 x 10-3 0.012 0.129
DGKE 17 54711460 55146036 1159 2.96 1.55 x 10-3 0.014 0.172
CLU 8 27254434 27672328 1426 2.91 1.78 x 10-3 0.015 0.198
CNTF 11 58190146 58593206 1136 2.83 2.30 x 10-3 0.018 0.256
KIFAP3 1 169690461 170243882 2061 2.78 2.74 x 10-3 0.020 0.304
ERLEC1 2 53814068 54245956 1385 2.76 2.86 x 10-3 0.020 0.318
LRPPRC 2 43913363 44423144 2040 2.51 6.05 x 10-3 0.040 0.672
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7.3.2 Replication in the UK Biobank Study 

With no flanking region applied, the four candidate myopia genes demonstrating 

association (FDR < 0.05) in the CREAM sample were subsequently tested for 

association in an independent replication sample from the UK Biobank study (N = 

88,005. Here, all four genes also demonstrated significant association at FDR < 0.05 

(Table 7.4). 

Examining the flanking region of 50 kb revealed eight of the nine genes replicating 

significant association in the UK Biobank study. The gene failing to replicate in this 

sample was CNTF (Table 7.5). This failure of the CNTF gene to replicate significant 

association in the UK Biobank study was repeated when 200 kb flanking regions 

were applied. With the exception of KIFAP3, all other 15 genes identified in the 

CREAM sample for the 200 kb flanking region successfully replicated in the UK 

Biobank study (Table 7.6). 

Spearman’s rank correlations between the CREAM and UK Biobank –log10 p-values  

obtained from their respective gene-based analyses were moderate but non-zero at 

0.337 (P = 3.62 x 10-4), 0.456 (P = 7.58 x 10-7) and 0.511 (P = 1.87 x 10-8) for the 

results using 0 kb, 50 kb and 200kb flanking regions respectively. Figure 7.1 displays 

a comparison of –log10 p-values from the MAGMA gene-based analyses for the 

CREAM and UK Biobank summary statistics at these three flanking regions.  
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Table 7.4: Testing for replication of the 4 candidate myopia genes demonstrating strongest association from the MAGMA gene-based 
association test (FDR < 0.05) in the UK Biobank study. Start and stop positions refer to the respective gene transcription start and stop sites 
(no flanking region included); nSNPs = number of variants included in gene region; Z-Statistic = gene-based test statistic; P-value = obtained 
from Z-Statistic under the assumption of a normally distributed model; FDR = false discovery rate.

Gene Chromosome Start Stop nSNPs Z-Statistic P-value FDR Bonferroni Adjusted P-value
SEPT4 17 56597611 56618179 36 6.37 9.22 x 10-11 3.69 x 10-10 3.69 x 10-10

LBH 2 30454397 30482899 76 5.28 6.35 x 10-8 1.27 x 10-7 2.54 x 10-7 
DDIT4 10 74033677 74035797 4 5.08 1.88 x 10-7 2.50 x 10-7 7.50 x 10-7 
CLU 8 27454434 27472328 30 3.47 2.56 x 10-4 2.56 x 10-4 1.03 x 10-3 

Table 7.5: Testing for replication of the 9 candidate myopia genes demonstrating strongest association from the MAGMA gene-based 
association test (FDR < 0.05) with the inclusion of 50 kb flanking regions in the UK Biobank study. nSNPs = number of variants included in 
gene region; Z-Statistic = gene-based test statistic; P-value = obtained from Z-Statistic under the assumption of a normally distributed model; 
FDR = false discovery rate.

Gene Chromosome Start Stop nSNPs Z-Statistic P-value FDR Bonferroni Adjusted P-value
SEPT4 17 56547611 56668179 181 5.93 1.56 x 10-9 1.40 x 10-8 1.40 x 10-8 
DDIT4 10 73983677 74085797 157 5.44 2.60 x 10-8 1.17 x 10-7 2.34 x 10-7 
LBH 2 30404397 30532899 227 4.49 3.49 x 10-6 1.05 x 10-5 3.14 x 10-5 
ERLEC1 2 53964068 54095956 340 3.51 2.23 x 10-4 5.02 x 10-4 2.01 x 10-3 
TSR3 16 1349241 1451873 275 2.71 3.34 x 10-3 5.19 x 10-3 0.030
CLU 8 27404434 27522328 246 2.70 3.46 x 10-3 5.19 x 10-3 0.031
SNW1 14 78133942 78277542 531 2.52 5.93 x 10-3 7.62 x 10-3 0.053
SPON1 11 13934184 14339679 878 2.05 0.020 0.023 0.180
CNTF 11 58340146 58443206 256 -0.17 0.568 0.568 1
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Table 7.6: Testing for replication of the 17 candidate myopia genes demonstrating strongest association from the MAGMA gene-based 
association test (FDR < 0.05) with the inclusion of 200 kb flanking regions in the UK Biobank study. nSNPs = number of variants included in 
gene region; Z-Statistic = gene-based test statistic; P-value = obtained from Z-Statistic under the assumption of a normally distributed model; 
FDR = false discovery rate.

Gene Chromosome Start Stop nSNPs Z-Statistic P-value FDR Bonferroni Adjusted P-value
CNIH1 14 54690279 55108322 618 5.58 1.18 x 10-8 1.27 x 10-7 2.01 x 10-7 
LRPPRC 2 43913363 44423144 1408 5.48 2.14 x 10-8 1.27 x 10-7 3.64 x 10-7 
SEPT4 17 56397611 56818179 658 5.47 2.24 x 10-8 1.27 x 10-7 3.81 x 10-7 
DDIT4 10 73833677 74235797 642 4.92 4.36 x 10-7 1.85 x 10-6 7.41 x 10-6 
DGKE 17 54711460 55146036 771 4.57 2.40 x 10-6 8.18 x 10-6 4.09 x 10-5 
ERLEC1 2 53814068 54245956 1077 3.97 3.57 x 10-5 1.01 x 10-4 6.07 x 10-4 
ANKRD28 3 15508743 16101053 1278 3.62 1.45 x 10-4 3.26 x 10-4 2.47 x 10-3 
HNRNPA3 2 1.78E+08 1.78E+08 762 3.61 1.54 x 10-4 3.26 x 10-4 2.61 x 10-3 
LBH 2 30254397 30682899 858 3.53 2.06 x 10-4 3.89 x 10-4 3.50 x 10-3 
SNW1 14 77983942 78427542 1588 3.21 6.71 x 10-4 1.14 x 10-3 0.011
RAB18 10 27593103 28031166 1134 2.75 2.96 x 10-3 4.58 x 10-3 0.050
TSR3 16 1199241 1601873 1110 2.32 0.010 0.013 0.172
E2F4 16 67026068 67432821 465 2.32 0.010 0.013 0.174
SPON1 11 13784184 14489679 1453 2.27 0.012 0.014 0.196
CLU 8 27254434 27672328 1098 2.22 0.013 0.015 0.224
KIFAP3 1 1.7E+08 1.7E+08 1616 0.09 0.466 0.495 1
CNTF 11 58190146 58593206 984 -0.30 0.617 0.617 1
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Figure 7.1: Comparison of –log10 p-values from the gene-based analyses of the 111 candidate myopia genes using GWAS summary statistics 
from the CREAM consortium and UK Biobank with flanking regions of 0 kb, 50 kb and 200 kb. X-axes show expected negative log10 p-values 
from analyses of CREAM consortium summary statistics. Y-axes show negative log10 p-values from analyses of UK Biobank summary statistics. 
Red line: line of unity (CREAM –log10 p-value = UK Biobank –log10 p-value). Dashed lines denote separation between genes that demonstrated 
significant association using the CREAM consortium data (FDR < 0.05; right of lines) and all other candidate genes tested (left of lines). Genes 
tested for replication in the UK Biobank study are located to the right of the dashed lines. 
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7.3.3 Exploration of wider flanking regions 

As an exploratory analysis of wider flanking regions that could harbour variants 

influencing gene enhancers and repressors, wider flanking regions of 500 kb, 1 Mb 

and 2 Mb were applied, initially in the gene-based analyses of the CREAM refractive 

error data. These increased flanking regions outside of the gene transcription start 

and stop sites resulted in 23, 30 and 44 of the 111 candidate genes demonstrating 

association with a FDR < 0.05 respectively (Appendix E). Overall, 52 of the 111 

candidate genes demonstrated significant association (FDR < 0.05) with refractive 

error when tested with any one of the applied flanking regions. Of these genes, 

DDIT4 and SEPT4 demonstrated significant association with refractive error using all 

six of the flanking regions. A table summarising gene-based test results for the 

CREAM refractive data at all 111 candidate genes with all iterations of flanking 

regions can be found in Appendix E. 

Replication analysis performed using data from the UK Biobank study revealed 17 

out of 23 genes, 17 out of 30 genes and 21 out of 44 genes continued to 

demonstrate significant association when the flanking regions of 500 kb, 1 Mb and 2 

Mb respectively were applied. 

Investigation of all 111 candidate myopia genes in UK Biobank identified 15, 20, 30, 

44, 55 and 73 genes demonstrating significant association (FDR < 0.05) with 

spherical equivalent for the respective flanking regions tested (Appendix E). Overall, 

83 out of the 111 genes tested demonstrated significant association when using any 

one of the applied flanking regions. Thirteen genes demonstrated significant 
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association with all six of the applied flanking regions when using data from the UK 

Biobank. Figure 7.2 shows quantile-quantile plots of the results from the respective 

gene-based analyses with each line denoting a specific flanking region. 
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Figure 7.2: Quantile-quantile plots of –log10 p-values from the gene-based analyses of the 111 candidate myopia genes using GWAS 
summary statistics from the CREAM consortium and UK Biobank. Y-axes show observed negative log10 p-values and X-axes show expected 
negative log10 p-values according to the null hypothesis of no genetic association. Black line: line of unity (observed = expected). 
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7.4 Discussion 

Gene-based tests performed using human refractive error GWAS summary statistics 

and restricted to 111 candidate myopia genes suggested positive association of 

several of these genes, as shown by replication in an independent sample. 

In this investigation, candidate genes were examined with six different flanking 

regions appended to their respective transcription start and stop sites (0 kb, 50 kb, 

200 kb, 500 kb, 1 Mb and 2 Mb). Four of the candidate myopia genes demonstrated 

significant association when tested with no flanking region appended (0 kb). It could 

be suggested that the genetic variants influencing these four genes are likely to 

reside within the gene itself, with the causal variant(s) possibly non-synonymous 

variants or splice variants which alter the resultant codon sequence and ultimately 

the end gene product (Hunt et al., 2009). By including flanking regions to the gene 

transcription start and stop sites, variants that may influence gene regulatory 

elements can be captured, alongside variants that may be in LD with an untyped 

causal variant. Often, these variants are located within a few kilobases of the 

transcription start / stop site; however, gene enhancers and repressors have been 

known to be identified hundreds of kilobases away from their target gene and even 

further beyond (Elkon and Agami, 2017). A complication of using wider flanking 

regions however is that the increased number of variants included in the gene-

based test can result in increased statistical “noise” from the uninformative variants 

that are included, thus making it harder for genes influenced by local variants to 

continue to demonstrate significant association. Since refractive error is a 

polygeneic trait, with 167 independent loci demonstrating significant association in 
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the recent GWAS for this trait conducted by the CREAM consortium (Tedja et al., 

2018), it is highly likely that the candidate myopia genes will be under the influence 

of a combination of effects, with some genes influenced by variants in their 

immediate vicinity and other genes influenced by more distal variants. 

Not all of the candidate myopia genes demonstrated significant enrichment of 

refractive error-associated variants in this investigation. A potential explanation for 

this may be that these genes could not demonstrate sufficient statistical support 

due to other, non-informative variants included in the gene-based test masking the 

effects of the true influencing variants. Alternatively, the biological process resulting 

in the altered gene expression in the myopic eyes may be due to a more complex 

mechanism. For example, rather than a variant directly acting on the functional 

properties of a specific gene, the variant may exert its effects via an intermediary 

interacting gene. Alternatively, there may be no naturally-occurring variants in 

some genes with important roles in myopia. In addition, some candidate genes from 

the Tkatchenko et al. (2006) study could have been false-positives with no true 

relationship to myopia. Finally, some of the candidate genes may play an important 

role in emmetropisation in the primate myopia model, but their human orthologues 

may not harbour refractive error associated genetic variants.  

Additionally, some of the candidate myopia genes demonstrating association with 

refractive error in the MAGMA gene-based analysis may have been false positives. 

This is because the flanking regions applied to the gene regions may have captured 

variants that do indeed influence gene expression, but expression of an alternative, 
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nearby gene rather than the specified candidate gene. This reasoning can also be 

applied to the moderate correlation and different numbers of significant 

associations identified between the discovery and replication samples since 

summary statistics were used for two slightly different traits. The summary statistics 

used from the analysis performed by Tedja et al. (2018) refer to a standardised 

refractive error trait, whereas the summary statistics from the UK Biobank data 

refer to the raw spherical equivalent trait. Additional differences in the gene-based 

associations between the discovery and replication samples include the number of 

variants tested for association in their respective GWAS, the origin of the samples 

and the sample size itself, and the power of the respective studies. All of these 

differences influence the respective GWAS and in turn their respective gene-based 

analyses. 

A follow-up investigation by Tkatchenko et al. (2015) of one of the 111 candidate 

genes explored here, APLP2, identified that this gene (and the flanking 100 kb 

region) was indeed enriched with variants associated with refractive error in 

cohorts of children and adults. In the investigation described in this chapter, 

however, APLP2 failed to demonstrate enrichment with refractive error associated 

variants using MAGMA, except when applying a 1-2 Mb flanking region to the gene 

(Appendix E). It should be noted that whilst Tkatchenko et al. (2015) included a 100 

kb flanking region to the gene, a flanking region of 50 kb would be sufficient to 

capture the effects of the cluster of variants at the 5’ promoter region they 

hypothesised to influence the expression of this gene in the retina. 
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It is important to note that the candidate genes investigated here were prioritised 

from an experiment using a form deprivation model of myopia. As the candidate 

genes appearing on such a list are dependent on the biological mechanisms 

influenced by the intervention, the prioritised genes may differ when alternative 

methods of inducing myopic changes in animal models are employed. Such 

methods include using translucent diffusers to induce form deprivation whilst 

maintaining some – albeit reduced – retinal illumination, using defocusing lenses 

which maintain normal levels of retinal illumination and are more realistic of the 

human experience, or using changes to the temporal frequency or chromatic 

content of the illumination (Stone and Khurana, 2010). 

Furthermore, the primate myopia model is an example of environmentally induced 

myopia. Conversely, human refractive error GWAS summary statistics are from 

examination of the association of genetic polymorphisms with refractive error. As a 

result, these two methods are not examining like-for-like biological mechanisms; 

however there is a considerable degree of overlap since both methods capture 

some effects of gene-gene and gene-environment interactions. 

Gene expression is a dynamic process, responding to changes in environment and 

can be variable depending on the tissue, time of day / year, and over the course 

one’s lifespan (Chowers et al., 2003; Lopez-Maury, Marguerat and Bahler, 2008). 

Considering this complex nature of gene expression, the ideal experimental 

scenario would involve gaining access to the tissue of interest (i.e. human retina) at 

the time when trait changes are likely to be greatest (i.e. in adolescence) and 
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investigate the association between expression of genes in these samples and the 

trait of interest (i.e. refractive error). However, in the real world, obtaining such 

biological samples would involve highly invasive procedures with the potential to 

cause long-term harm to individuals taking part, thus rendering such studies 

unfeasible. Animal models therefore provide a valuable opportunity to address 

questions such as those posed here regarding gene expression despite the non-

natural method of trait simulation. 

With the constant growth of open access gene expression databases such as the 

Genotype-Tissue Expression (GTEx) portal (GTEx Consortium, 2017), there are 

increasing numbers of human samples and tissue types with gene expression data 

available and summary statistics from expression quantitative trait loci (eQTL) 

studies. An ideal follow-up investigation would be to use summary statistics from a 

retina eQTL study. Here, variants associated with expression of each of the 

candidate myopia genes identified by Tkatchenko et al. (2006) would be compared 

against variants associated with refractive error. Variants demonstrating significant 

association with both retinal gene expression and refractive error would thus be 

deemed likely candidates underlying the causal mechanism. Such causal gene(s) 

would serve as a potential targets for future genetic intervention methods. This 

approach, also known as summary data–based Mendelian randomisation (SMR) 

analysis, has been proposed by Zhu et al. (2016). They identified 104 genes as being 

likely candidate genes influencing the traits of height, body mass index (BMI), waist-

to-hip ratio adjusted by BMI, rheumatoid arthritis and schizophrenia. They also 

noted that the majority of these candidate genes were not the nearest gene to the 
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GWAS associated variant. However, the lack of an eQTL database for whole retina, 

let alone specific retinal cell types, currently limits the adaptation of this approach 

for refractive error traits.
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Chapter 8 Overall Conclusions 

The investigations conducted in the preceding chapters have identified novel 

candidate susceptibility loci for the refractive error traits of spherical equivalent, 

corneal astigmatism and refractive astigmatism. In addition, utilising recently 

developed techniques to estimate the proportion of variance attributed to genetic 

effects has suggested corneal and refractive astigmatism may be considerably less 

heritable than previously thought, or under greater influence of multiple rare 

genetic variants. 

An important point to remember stemming from the results of the single marker 

tests for astigmatism in the UK Biobank cohort is the potential for shared genetic 

susceptibility to different refractive traits. Much of the focus on myopia research is 

concentrated on retinal changes in gene expression, as highlighted by animal 

models of myopia, and the assumption that the majority of myopic changes occur 

towards the posterior pole (Wallman and Winawer, 2004; Li and Zhang, 2017; 

Wojciechowski and Cheng, 2018). One possible argument for the shared genetic 

susceptibility of astigmatism and myopia is through the concept of visual feedback 

driving changes at the posterior retina and sclera (Wallman and Winawer, 2004). 

However, if genetic variants influenced biological mechanisms that also regulate 

corneal (or lenticular) shape or structural properties, they may also cause altered 

image focusing at the retina. In turn, this blurred image would feedback into the 

visually guided ocular growth mechanism, resulting in physical changes at the level 

of the retina and sclera. 



237 

Despite identification of novel candidate susceptibility loci, the functional 

mechanisms by which these loci influence the development of their respective traits 

remain uncertain. As highlighted in the previous chapter, attempts at bridging the 

gap between genetic variants, genes and biological functions could be undertaken 

through methods such as summary data–based Mendelian randomisation (SMR) 

analysis. At present, it is not yet feasible to run a retinal eQTL study or to use 

summary statistics from a pre-existing study; however tissue specific gene 

expression banks are constantly growing. Donations are generally from older 

persons where typical refractive error development had long ceased, yet 

overlapping results of a retinal eQTL study from this group with results of eQTL 

studies from alternative tissues such as blood or skin in adolescents may still be 

helpful at determining the causal genes influencing refractive errors. 

Complementary to this, a multi-omics approach could be performed whereby 

changes in the epigenome, transcriptome, proteome and metabolome of ocular 

cells are investigated simultaneously in order to identify the biological mechanisms 

that are altered in refractive error development (Ritchie et al., 2015). However, the 

dynamic nature of such processes (Feinberg, 2007) – and the difficulty in obtaining 

appropriate samples from adolescent humans – currently means that such 

approaches are not feasible. Furthermore, the knowledge gained from equivalent 

studies using alternative cell types or samples from older aged groups may be 

limited. 
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The series of investigations conducted throughout this thesis have not considered 

the role of environmental factors. As stated in Section 1.1.3, environmental factors 

such as higher educational attainment and the time spent outdoors are known to 

influence myopia development. Gene-environment interactions, with education 

level as the environment feature investigated, have been identified with respect to 

spherical equivalent refractive error (Fan et al., 2016), yet the biological 

mechanisms underlying how such environmental factors influence myopia 

development are still under investigation. Such interactions are not easily 

identifiable as shown by the limited replication from gene-environment interaction 

GWAS of other complex traits (McAllister et al., 2017); however, interactions and 

their effects may be more apparent when investigating the downstream biological 

processes such as from a multi-omics investigation. 

In addition, these investigations have utilised data from participant samples with a 

wide age range. Refractive errors tend to vary throughout life. These changes start 

from the emmetropisation process during childhood, through to the development 

of myopic changes during adolescence into early adulthood, before stabilising in 

later life. For instance, the X-chromosome wide association study for refractive 

error (Chapter 3) utilised participants from a birth-cohort study. Whilst these 

participating children were all of similar ages (~15 years) at the time when 

refraction data was obtained, for many of them, their refractive development had 

not fully stabilised. As a result, some children in the cohort would still be described 

as “progressing myopes”, and their spherical equivalent refractive error would 

continue to increase in the direction of myopia over the next few years. This may 
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have resulted in fewer genetic variants demonstrating association with refractive 

error due to the trait still developing. In the case of the analyses for corneal and 

refractive astigmatism (Chapters 4-6), these analyses utilised data from studies of 

participants with widely-differing ages. As demonstrated in the UK Biobank sample 

(Section 6.3.1) and other aging cohorts (Asano et al., 2005; Sanfilippo et al., 2015), 

there is a tendency for refractive astigmatism to increase in magnitude with 

increasing age from the age of 40 years, whereas, corneal astigmatism 

demonstrates relative stability in magnitude in adults until 70 years of age. Along 

with the more complex phenotype that is refractive astigmatism, this change in 

magnitude with age may in part explain the higher number of genetic variants 

demonstrating significant association for corneal astigmatism than for refractive 

astigmatism in the UK Biobank sample (Chapter 6). For all refractive error traits, 

analyses would ideally be performed using cohorts of ages where the investigated 

trait is stable. For example, analyses of spherical equivalent refractive error or 

refractive astigmatism may be best performed using cohorts of young adults in the 

age range of 25-40 years. On the other hand, analyses of corneal astigmatism 

magnitude may be performed using a wider age range, including children and adults 

up to 70 years of age. However, if the axis of corneal astigmatism is also to be 

considered in analyses, this age range should be restricted to a maximum age of 40 

years, similar to that suggested for spherical equivalent and refractive astigmatism. 

However, employing such age restrictions on study cohorts can notably reduce the 

available sample size and therefore investigators have to balance the reduced 

statistical power of a smaller sample against the reduction in statistical noise for 

age-dependent traits. Some of these age-related influences can be mediated by 
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inclusion of age as an additional covariate, as has been performed in the analyses 

conducted in this series of investigations. However, there may still be some residual 

effects that have not been fully accounted for. 

Ultimately, identifying the altered biological processes in refractive error 

development, whether they are altered gene transcription or altered expression of 

certain proteins, could serve as potential targets for therapeutic or preventative 

intervention strategies. The findings from the investigations undertaken in this 

thesis are only a starting point in guiding further research into the complex 

biological mechanisms underlying refractive error development.
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Appendix A Acknowledgements and study Information for cohorts 

investigated in Chapter 4   CREAM Corneal 

Astigmatism GWAS Meta-analysis

ALSPAC. The Avon Longitudinal Study of Parents and Children (ALSPAC) team and 

authors are extremely grateful to all the families who took part in this study, the 

midwives for their help in recruiting them, and the whole ALSPAC team, which 

includes interviewers, computer and laboratory technicians, clerical workers, 

research scientists, volunteers, managers, receptionists and nurses. The UK Medical 

Research Council and Wellcome Trust (Grant ref: 102215/2/13/2) and the University 

of Bristol provide core support for ALSPAC. GWAS data was generated by Sample 

Logistics and Genotyping Facilities at Wellcome Sanger Institute and LabCorp 

(Laboratory Corporation of America) using support from 23andMe. This publication 

is the work of the authors and JAG and CW will serve as guarantors for the contents 

of this paper. This research was specifically funded by NIHR Senior Research 

Fellowship SRF-2015–08–005 (CW) and a Wellcome Trust ISSF Populations Pilot 

Award (grant 508353/509506). Ethical approval for the ALSPAC study was obtained 

from the ALSPAC Ethics and Law Committee and the Local Research Ethics 

Committees. Please note that the ALSPAC study website contains details of all the 

data that is available through a fully searchable data dictionary: 

http://www.bris.ac.uk/alspac/researchers/data-access/data-dictionary/. ALSPAC 

children with available genotype data and corneal curvature phenotype information 

formed the GWAS sample (Table 4.1). A description of the ALSPAC study cohort is 

available (Boyd et al., 2013). 
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BES. The Beijing Eye Study (BES) was supported by National Natural Science 

Foundation of China (grant # 81770890). This publication is the work of the authors 

and YXW and JBJ will serve as guarantors for the contents of this paper. The study 

was approved by the Medical Ethics Committee of the Beijing Tongren Hospital. A 

description of the BES study cohort is available (Wang et al., 2014). 

BMES. The Blue Mountains Eye Study (BMES) acknowledge funding from the 

National Health and Medical Research Council of Australia (NHMRC) Senior 

Research Fellowship 1138585 (PNB). The Centre for Eye Research Australia (CERA) 

receives Operational Infrastructure Support from the Victorian Government. Details 

of the BMES cohort have been published previously (Schache et al., 2013). 

EPIC. The European Prospective Investigation of Cancer (EPIC)-Norfolk 

infrastructure and core functions are supported by grants from the Medical 

Research Council (G1000143) and Cancer Research UK (C864/A14136). The clinic for 

the third health examination was funded by Research into Aging (262). Mr Khawaja 

was a Wellcome Trust Clinical Research Fellow at the time of analysis. The EPIC-

Norfolk Eye Study was performed following the principles of the Declaration of 

Helsinki and the Research Governance Framework for Health and Social Care. The 

study was approved by the Norfolk Local Research Ethics Committee 

(05/Q0101/191) and East Norfolk & Waveney NHS Research Governance 

Committee (2005EC07L). All participants gave written, informed consent. A 

description of the EPIC study cohort is available (Khawaja et al., 2013). 
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FITSA. Finnish Twin Study on Aging (FITSA) is a study of genetic and environmental 

effects on the disablement process in older female twins. The study cohort of 

13,888 adult twin pairs started in 1975. Altogether 103 MZ and 114 DZ twin pairs 

(424 individuals, all women of European ancestry) aged 63–76 years living in Finland 

took part in multiple laboratory examinations in 2000 and 2003, and responded in 

questionnaires in 2011. Before the examinations, the subjects provided a written 

informed consent according to the Declaration of Helsinki. The study protocol was 

approved by the ethics committee of the Central Hospital District of Central Finland. 

FITSA was supported by ENGAGE (FP7-HEALTH-F4–2007, 201,413); European Union 

through the GENOMEUTWIN project (QLG2-CT-2002–01254); the Academy of 

Finland Center of Excellence in Complex Disease Genetics (213506, 129680); the 

Academy of Finland Aging Programme; and the Finnish Ministry of Culture and 

Education and University of Jyväskylä, Silmäsäätiö Foundation and Evald & Hilda 

Nissi Foundation. For FITSA the contributions of Emmi Tikkanen, Samuli Ripatti, 

Markku Kauppinen, Taina Rantanen and Jaakko Kaprio are acknowledged. A 

description of the FITSA cohort has been published (Kaprio and Koskenvuo, 2002).  

Generation R. The Generation R study is conducted by the Erasmus Medical Centre 

in close collaboration with the School of Law and Faculty of Social Sciences of the 

Erasmus University Rotterdam, the Municipal Health Service Rotterdam, the 

Rotterdam Homecare Foundation, and the Stichting Trombosedienst & 

Artsenlaboratorium Rijnmond (Star-MDC), Rotterdam. We gratefully acknowledge 

the contribution of the children and parents, as well as the participating general 

practitioners, hospitals, midwives, and pharmacies in Rotterdam. The Generation R 
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study is made possible by financial support from the Erasmus Medical Centre, 

Rotterdam; the Netherlands Organisation for Scientific Research (NWO); the 

Netherlands Organisation for Health Research and Development (ZonMw); the 

Dutch Ministry of Education, Culture and Science; the Dutch Ministry of Health, 

Welfare, and Sports; the European Commission (DG XII); and UitZicht (Grant 2013–

24). The study protocol was approved by the Medical Ethical Committee of the 

Erasmus Medical Centre, Rotterdam (MEC 217.595/2002/20), and written informed 

consent was obtained from all participants. Research was conducted according to 

the declaration of Helsinki. A description of the Generation R study has been 

published (Jaddoe et al., 2006).  

Gutenberg Health Study (GHS 1 and GHS 2). The Gutenberg Health Study is a 

population-based, prospective, observational cohort study in mid-western Germany 

that includes consecutive follow-ups every five years. The primary study aim is to 

evaluate and improve cardiovascular risk stratification and the general health status 

of the population. The baseline examination included a total of 15,010 participants 

aged 35 to 74 years and took place from 2007 to 2012. The participants were 

randomly drawn and equally stratified for sex, residence (urban or rural) and for 

each decade of age. Exclusion criteria were the following: insufficient knowledge of 

German and physical or mental inability to participate in the examinations in the 

study center. The study protocol and study documents were approved by the local 

ethics committee of the Medical Chamber of Rhineland-Palatinate, Germany 

(reference no. 837.020.07; original vote: 22.3.2007, latest update: 20.10.2015). 

According to the tenets of the Declaration of Helsinki, written informed consent 
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was obtained from all participants before their entry into the study. The Gutenberg 

Health Study is funded through the government of Rhineland-Palatinate (“Stiftung 

Rheinland-Pfalz für Innovation,” contract AZ 961–386261/733), the research 

programs “Wissen schafft Zukunft” and “Center for Translational Vascular Biology 

(CTVB)” of the Johannes Gutenberg-University of Mainz, the National Genome 

Network “NGFNplus” by the Federal Ministry of Education and Research, Germany 

(A301GS0833) and its contracts with Boehringer Ingelheim and PHILIPS Medical 

Systems. We thank all study participants for their willingness to provide data for this 

research project and we are indebted to all coworkers for their enthusiastic 

commitment. A description of the ophthalmic arm of the GHS has been published 

(Hohn et al., 2015). 

OGP. The Ogliastra Genetic Park (OGP) study authors would like to express their 

gratitude to all the study participants for their contributions, to the municipal 

administrations for their economic and logistic support and, to the whole OGP 

team, which includes interviewers, computer and laboratory technicians, research 

scientists, physicians and nurses. This research was supported by grant from the 

Italian Ministry of Education, University and Research (MIUR) no: 

5571/DSPAR/2002. The research protocol of the study was approved by the 

institutional review board of the Italian Ministry of Education, University and 

Research. It adheres to the tenets of the declaration of Helsinki, furthermore 

written informed consent was obtained from all participants. A description of the 

OGP study cohort has been published (Biino et al., 2010). 
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RAINE (Western Australian Pregnancy Cohort). We are grateful to all the study 

participants. We also thank the Raine Study and Lions Eye Institute (LEI) research 

staff for cohort coordination and data collection. The core management of the 

Raine Study is funded by The University of Western Australia (UWA), The Telethon 

Institute for Child Health Research, Raine Medical Research Foundation, UWA 

Faculty of Medicine, Dentistry and Health Sciences, Women’s and Infant’s Research 

Foundation and Curtin University. Genotyping was funded by Australian National 

Health and Medical Research Council (NHMRC) project grant 1021105. Support for 

the REHS was provided by LEI, the Australian Foundation for the Prevention of 

Blindness and ORIA. SY is supported by NHMRC CJ Martin Early Career Fellowship 

(#1111437). A description of the RAINE Eye Health Study cohort is available (Yazar 

et al., 2013a). 

Rotterdam Study (RS1, RS2, RS3). The Rotterdam Study is a prospective population-

based cohort study in the elderly living in Ommoord, a suburb of Rotterdam, the 

Netherlands. In brief, the Rotterdam Study consists of 3 independent cohorts: RS1, 

RS2, and RS3. For the current analysis, 5,328 residents aged 55 years and older were 

included from RS1, 2,009 participants aged 55 and older from RS2, and 1,970 aged 

45 and older from RS3. 99% of subjects were of European ancestry. Participants 

underwent multiple physical examinations with regular intervals from 1991 to 

present, including a non-dilated automated measurement of refractive error using a 

Topcon RM-A2000 autorefractor. All measurements in RS-1–3 were conducted after 

the Medical Ethics Committee of the Erasmus University had approved the study 

protocols and all participants had given a written informed consent in accordance 
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with the Declaration of Helsinki. The Rotterdam Study was supported by the Dutch 

governmental Innovational Research Incentives Scheme Grant (VICI 91815655); 

Horizon2020 ERC Consolidator Grant (648268); Erasmus Medical Center and 

Erasmus University, Rotterdam, The Netherlands; Netherlands Organization for 

Health Research and Development (ZonMw); UitZicht; the Research Institute for 

Diseases in the Elderly; the Ministry of Education, Culture and Science; the Ministry 

for Health, Welfare and Sports; the European Commission (DG XII); the Municipality 

of Rotterdam; the Netherlands Genomics Initiative/NWO; Center for Medical 

Systems Biology of NGI; Lijf en Leven; Henkes Stichting; Landelijke Stichting voor 

Blinden en Slechtzienden; Oogfonds; MaculaFonds. We acknowledge Ada Hooghart, 

Corina Brussee, Riet Bernaerts-Biskop, Patricia van Hilten, Pascal Arp, Jeanette 

Vergeer, Marijn Verkerk; Sander Bervoets for their valuable contributions. A 

description of the Rotterdam study has been published (Hofman et al., 2015). 

SCES, SIMES and SINDI. The Singapore Chinese Eye Study (SCES), Singapore Malay 

Eye Study (SiMES) and Singapore Indian Eye Study (SINDI) were supported by the 

National Medical Research Council (NMRC), Singapore (grants 0796/2003, 

1176/2008, 1149/2008, STaR/0003/2008, 1249/2010, CG/SERI/2010, 

CIRG/1371/2013, and CIRG/1417/2015), and Biomedical Research Council, 

Singapore (08/1/35/19/550 and 09/1/35/19/616). Ching-Yu Cheng is supported by 

an award from NMRC (CSA/033/2012). Descriptions of the SCES, SIMES and SINDI 

cohorts have been published (Foong et al., 2007; Lavanya et al., 2009; Pan et al., 

2011). 
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SCORM. The Singapore Cohort Study of the Risk Factors for Myopia (SCORM) was 

supported by the Biomedical Research Council (BMRC) 06/1/21/19/466. A 

description of the SCORM cohort has been published (Saw et al., 2006). 

STARS. The Singaporean Chinese in the Strabismus, Amblyopia, and Refractive Error 

Study (STARS) was supported by National Medical Research Council (NMRC), 

Singapore (grants 1176/2008). A description of the STARS cohort has been 

published (Dirani et al., 2010). 

TwinsUK. The TwinsUK adult twin registry based at St. Thomas’ Hospital in London 

is a volunteer cohort of over 10,000 twins from the general population. Twins 

largely volunteered unaware of the eye studies, gave fully informed consent under 

a protocol reviewed by the St. Thomas’ Hospital Local Research Ethics Committee. 

TwinsUK is funded by the Wellcome Trust and the European Community's Seventh 

Framework Programme (FP7/2007–2013). The study also receives support from the 

National Institute for Health Research Clinical Research Facility at Guy's and St. 

Thomas' National Health Service Foundation Trust and National Institute for Health 

Research Biomedical Research Centre at Guy's and St. Thomas' National Health 

Service Foundation Trust and King's College London. Keratometry was obtained 

using the VX-120 ocular diagnostic device (Visionix®, Luneau Technology Group). A 

description of the TwinsUK study cohort is available (Moayyeri et al., 2013). 
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Appendix B EasyQC style plots for study-wide quality control in 

Chapter 4   CREAM Corneal Astigmatism GWAS 

Meta-analysis

B1-2:  Effect Allele Frequency (EAF) plots for each cohort 

B1: EAF plots for the 14 European ancestry cohorts. 

B2:  EAF plots for the 8 Asian ancestry cohorts 

B3-4:  P-value vs. Z-score (P-Z) plots for each cohort 

B3: P-Z plots for the 14 European ancestry cohorts. 

B4:  P-Z plots for the 8 Asian ancestry cohorts 

B5: Standard error vs. sample size (SE-N) plot for all 22 cohorts 

B6: Lambda-N plot for all 22 cohorts 
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B1: Effect Allele Frequency (EAF) plots for each of the 14 European ancestry cohorts. Y-axis: cohort allele frequency of the Effect Allele. 1000G 
Ref EAF: allele frequency of the same Effect Allele in Phase 3 of the 1000 Genomes Project European samples (N = 503). Red line = line of unity 
(Study EAF = 1000 Genomes Reference EAF).
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(B1 continued) 
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B2: Effect Allele Frequency (EAF) plots for each of the 8 Asian ancestry cohorts. Y-axis: cohort allele frequency of the Effect Allele; 1000G Ref 
EAF: allele frequency of the same Effect Allele in Phase 1 of the 1000 Genomes Project East Asian samples (N = 504). Red line = line of unity 
(Study EAF = 1000 Genomes Reference EAF).
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B3: P-value versus Z-score (P-Z) plots for each of the 14 European ancestry cohorts. X-axis: -log10 p-value computed from Z-statistics for each 
variant tested; Y-axis: -log10 p-value reported for each variant tested. NB: Z-statistic for each variant = beta/SE. Red line = line of unity 
(observed p-value = p-value determined from Z-statistics).
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(B3 continued) 
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B3: P-value versus z-score (P-Z) plots for each of the 8 Asian ancestry cohorts. X-axis: -log10 p-value computed from Z-statistics for each 
variant tested; Y-axis: -log10 p-value reported for each variant tested. NB: Z-statistic for each variant = beta/SE. Red line = line of unity 
(observed p-value = p-value determined from Z-statistics).
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B5: Standard error vs. sample size (SE-N) plot for all 22 cohorts. Median(SE) = 
median standard error for variants in the respective study; Nmax = Maximum sample 
size in the respective study. NB: 8.86 = calibration factor based on GWAS chip and 
1000 Genomes reference panel for imputation (obtained from Winkler et al. 
(2014)). With the exception of the TwinsUK study, results from all cohorts follow the 
same linear relationship between standard error and sample size.
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B6: Lambda-N plot for all 22 cohorts. Genomic inflation factor (λGC) plotted against 
the square root of the maximum sample size for the cohort (Nmax). Horizontal yellow 
line (λGC = 1.0) denotes optimal (no) genomic inflation; Horizontal red line (λGC = 1.1) 
denotes upper limit of acceptable genomic inflation. NB: the OGP-A study is based 
on a population isolate and is the smallest cohort in the meta-analysis (N = 92).
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Appendix C MAGMA gene-based and gene-set results from 

Chapter 4   CREAM Corneal Astigmatism GWAS 

Meta-analysis

C1: The 10 genes demonstrating strongest association from MAGMA gene-

based association test. Genes including ±200 kb flanking region to gene 

transcription start and stop sites 

C2-3 The 10 gene-sets demonstrating strongest association from MAGMA gene-

set association test 

C2: Genes included ±50 kb flanking regions to gene start and stop sites 

C3: Genes included ±200 kb flanking regions to gene start and stop sites 
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C1: The 10 genes demonstrating strongest association from the MAGMA gene-based association test. Start and stop positions listed include 
±200 kb flanking regions. nSNPs = number of variants included in gene region; Z-Statistic = gene-based test statistic; P-value = obtained from Z-
Statistic under the assumption of a normally distributed model; FDR = false discovery rate. Total number of genes tested = 18,499. 

Gene Chromosome Start Stop nSNPs Z-Statistic P-value FDR Bonferroni Adjusted P-value
PACSIN3 11 46999073 47408010 529 4.48 3.80 x 10-6 0.070 0.070
TNFAIP8L3 15 51148798 51597473 876 4.33 7.58 x 10-6 0.070 0.140
AP4E1 15 51000780 51498097 984 4.07 2.34 x 10-5 0.144 0.433
ARFGAP2 11 46985849 47399054 525 4.00 3.20 x 10-5 0.148 0.593
DDB2 11 47036493 47460769 631 3.86 5.68 x 10-5 0.210 1
C11orf49 11 46758240 47385932 734 3.76 8.45 x 10-5 0.246 1
NEURL4 17 7018947 7432644 749 3.74 9.31 x 10-5 0.246 1
DSE 6 116401231 116962422 1008 3.69 1.10 x 10-4 0.254 1
FBXW2 9 123319254 123755740 567 3.60 1.58 x 10-4 0.325 1
TSPYL1 6 116396022 116801280 706 3.57 1.81 x 10-4 0.335 1
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C2: The 10 gene-sets demonstrating strongest association from MAGMA gene-set association test. Genes included ±50 kb flanking regions 
added to transcription start and stop sites. nGenes = number of genes included in gene set; Beta = gene-set test statistic; SE = standard error; 
FDR = false discovery rate; Bonferroni Corrected P-value = P-value multiplied by the number of gene-sets tested. Total number of gene-sets 
tested = 13,290.

Gene-set nGenes Beta SE P-value FDR Bonferroni Adjusted P-value
NIKOLSKY_BREAST_CANCER_8Q12_Q22_AMPLICON 130 0.36 0.091 5.08E-05 0.675 0.675
JIANG_CORE_DUPLICON_GENES 7 1.03 0.309 4.32E-04 0.979 1
MYLLYKANGAS_AMPLIFICATION_HOT_SPOT_16 9 0.87 0.264 5.00E-04 0.979 1
V$AR_01 148 0.17 0.054 7.54E-04 0.979 1
GSE24142_EARLY_THYMIC_PROGENITOR_VS_DN3_THYMOCYTE_UP 195 0.14 0.044 7.75E-04 0.979 1
chr8q21 54 0.40 0.127 8.05E-04 0.979 1
GSE5099_DAY3_VS_DAY7_MCSF_TREATED_MACROPHAGE_DN 160 0.15 0.048 8.15E-04 0.979 1
GSE3982_NEUTROPHIL_VS_TH1_UP 189 0.14 0.045 9.53E-04 0.979 1
AACWWCAANK_UNKNOWN 135 0.18 0.058 1.26E-03 0.979 1
TAGGTCA MIR-192 MIR-215 39 0.32 0.109 1.85E-03 0.979 1
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C3: The 10 gene-sets demonstrating strongest association from MAGMA gene-set association test. Genes included ±200 kb flanking regions added 
to transcription start and stop sites. nGenes = number of genes included in gene set; Beta = gene-set test statistic; SE = standard error; FDR = false 
discovery rate; Bonferroni Corrected P = P-value multiplied by the number of gene-sets tested. Total number of gene-sets tested = 13,290.

Gene-set nGenes Beta SE P-value FDR Bonferroni
Adjusted P

BIOCARTA_RARRXR_PATHWAY 15 0.36 0.108 4.01E-04 0.953 1
V$TATA_C 269 0.08 0.025 4.11E-04 0.953 1
NIKOLSKY_BREAST_CANCER_8Q12_Q22_AMPLICON 130 0.25 0.075 4.15E-04 0.953 1
KIM_PTEN_TARGETS_DN 5 0.49 0.145 4.26E-04 0.953 1
MYLLYKANGAS_AMPLIFICATION_HOT_SPOT_16 9 0.51 0.153 4.29E-04 0.953 1
REACTOME_PRE_NOTCH_TRANSCRIPTION_AND_TRANSLATION 26 0.24 0.080 1.33E-03 0.953 1
GSE40068_BCL6_POS_VS_NEG_CXCR5_POS_TFH_DN 190 0.08 0.028 3.13E-03 0.953 1
GSE41978_ID2_KO_VS_ID2_KO_AND_BIM_KO_KLRG1_LOW_EFFECTOR_CD8_TCELL_UP 184 0.08 0.029 3.25E-03 0.953 1
AGGTGCA MIR-500 87 0.12 0.044 3.39E-03 0.953 1
PID_ERB_GENOMIC_PATHWAY 14 0.27 0.098 3.44E-03 0.953 1
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Appendix D Regional association plots for loci demonstrating 
genome-wide significant association (P < 5 x 10-8) in 
Chapter 6   UK Biobank GWAS for Corneal and 
Refractive Astigmatism

D1-4: Regional association plots from GWAS for Corneal Astigmatism using BOLT-

LMM (N = 86,335). 

D1: Centred on lead variant rs12032649 (chromosome 1) 

D2: Centred on lead variant rs196052 (chromosome 6) 

D3: Centred on lead variant rs1129038 (chromosome 15) 

D4: Centred on lead variant rs62075722 (chromosome 17) 

D5-7: Regional association plots from GWAS for Refractive Astigmatism using 

BOLT-LMM (N = 88,005). 

D5: Centred on lead variant rs12196123 (chromosome 6) 

D6: Centred on lead variant rs1129038 (chromosome 15) 

D7: Centred on lead variant rs34635363 (chromosome 17) 
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D1: Regional association plot centred on lead variant rs12032649 (chromosome 1) from GWAS for Corneal Astigmatism using BOLT-LMM 
(N = 86,335). Symbol colours denote linkage disequilibrium (r2) values of variants with respect to the lead variant (highlighted in purple). NB: 
rs14879552 is a synonym for rs12032649.
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D2: Regional association plot centred on lead variant rs196052 (chromosome 6) from GWAS for Corneal Astigmatism using BOLT-LMM (N = 
86,335). Symbol colours denote linkage disequilibrium (r2) values of variants with respect to the lead variant (highlighted in purple).
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D3: Regional association plot centred on lead variant rs1129038 (chromosome 15) from GWAS for Corneal Astigmatism using BOLT-LMM 
(N = 86,335). Symbol colours denote linkage disequilibrium (r2) values of variants with respect to the lead variant (highlighted in purple).
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D4: Regional association plot centred on lead variant rs62075722 (chromosome 17) from GWAS for Corneal Astigmatism using BOLT-LMM 
(N = 86,335). Symbol colours denote linkage disequilibrium (r2) values of variants with respect to the lead variant (highlighted in purple).
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D5: Regional association plot centred on lead variant rs12196123 (chromosome 6) from GWAS for Refractive Astigmatism using BOLT-LMM 
(N = 88,005). Symbol colours denote linkage disequilibrium (r2) values of variants with respect to the lead variant (highlighted in purple).



306 

D6: Regional association plot centred on lead variant rs1129038 (chromosome 15) from GWAS for Refractive Astigmatism using BOLT-LMM 
(N = 88,005). Symbol colours denote linkage disequilibrium (r2) values of variants with respect to the lead variant (highlighted in purple).
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D7: Regional association plot centred on lead variant rs34635363 (chromosome 17) from GWAS for Refractive Astigmatism using BOLT-LMM 
(N = 88,005). Symbol colours denote linkage disequilibrium (r2) values of variants with respect to the lead variant (highlighted in purple).
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Appendix E Summary of MAGMA gene-based results from Chapter 

7   Investigation of myopic primate retina differentially 

expressed genes in humans 

E1-2 MAGMA gene-based association test results for the 111 candidate myopia 

genes using summary statistics from the CREAM meta-analysis of GWAS 

for refractive error 

E1: Genes included ±0 kb, ±50 kb or ±200 kb flanking regions to gene start and 

stop sites 

E2: Genes included ±500 kb, ±1 Mb or ±2 Mb flanking regions to gene start and 

stop sites 

E3-4 MAGMA gene-based association test results for the 111 candidate myopia 

genes using summary statistics from the UK Biobank GWAS for spherical 

equivalent 

E3: Genes included ±0 kb, ±50 kb or ±200 kb flanking regions to gene start and 

stop sites 

E4: Genes included ±500 kb, ±1 Mb or ±2 Mb flanking regions to gene start and 

stop sites 
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E1: MAGMA gene-based association test results for the 111 candidate myopia genes using data from the CREAM refractive error meta-
analysis and the inclusion of 0 kb, 50 kb or 200 kb flanking regions. MAGMA P = obtained from Z-Statistic under the assumption of a normally 
distributed model; Rank = ranking of the gene out of 111 according to gene-based test P-values; FDR = false discovery rate. Highlighted results 
= FDR < 0.05. NB: No variants were mapped within 50 kb of SMN1.

Gene Chr Start Stop 0 kb 50 kb 200 kb
MAGMA P Rank FDR MAGMA P Rank FDR MAGMA P Rank FDR

MINOS1 1 19923471 19956315 0.153 34 0.495 0.022 16 0.143 0.046 27 0.188
CEP85 1 26560644 26605529 0.075 22 0.377 0.090 26 0.382 0.276 47 0.651
STK40 1 36805225 36851525 0.379 52 0.753 0.270 45 0.641 0.237 45 0.583
PTPRF 1 43991708 44089343 0.368 50 0.753 0.410 58 0.777 0.355 52 0.751
JAK1 1 65298906 65432593 0.514 68 0.818 0.450 61 0.797 0.712 84 0.940
SERBP1 1 67873493 67896123 0.459 60 0.812 0.690 86 0.873 0.957 107 0.987
ABCD3 1 94883933 94984219 0.337 48 0.753 0.455 62 0.797 0.774 88 0.968
WDR77 1 111982512 111991915 0.841 98 0.940 0.928 105 0.971 0.844 96 0.971
RPRD2 1 150336624 150449042 0.095 26 0.402 0.130 30 0.454 0.134 39 0.383
DENND4B 1 153901977 153919162 0.186 37 0.553 0.261 43 0.641 0.086 35 0.268
HDGF 1 156711899 156722240 0.070 21 0.367 0.044 19 0.255 0.044 26 0.186
SDHC 1 161284166 161334541 0.382 55 0.753 0.428 59 0.797 0.526 64 0.912
CREG1 1 167510250 167523056 0.383 56 0.753 0.801 96 0.918 0.690 80 0.939
KIFAP3 1 169890461 170043882 0.017 10 0.189 0.011 14 0.083 2.74 x 10-3 15 0.020
NUCKS1 1 205681947 205719372 0.946 105 0.978 0.966 107 0.986 0.155 41 0.419
RNF187 1 228674277 228697598 0.556 73 0.820 0.570 73 0.832 0.773 87 0.968
LGALS8 1 236681514 236716281 0.604 79 0.820 0.538 70 0.832 0.780 89 0.968
RAB10 2 26256729 26360323 0.693 88 0.865 0.819 98 0.919 0.683 79 0.939
LBH 2 30454397 30482899 2.27 x 10-6 3 8.32 x 10-5 5.93 x 10-6 3 2.18 x 10-4 7.10 x 10-4 9 8.46 x 10-3 
LRPPRC 2 44113363 44223144 0.083 24 0.378 0.137 33 0.455 6.05 x 10-3 17 0.040
ERLEC1 2 54014068 54045956 7.74 x 10-3 8 0.106 1.06 x 10-3 6 0.019 2.86 x 10-3 16 0.020
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Gene Chr Start Stop 0 kb 50 kb 200 kb
MAGMA P Rank FDR MAGMA P Rank FDR MAGMA P Rank FDR

CCDC104 2 55746740 55772216 0.057 19 0.330 0.079 24 0.364 0.080 33 0.268
HNRNPA3 2 178076063 178088687 0.315 45 0.753 0.234 39 0.639 2.00 x 10-7 5 4.44 x 10-6 
STRADB 2 202316392 202359501 0.593 76 0.820 0.581 75 0.832 0.312 48 0.702
PKI55 2 217081612 217084915 0.786 94 0.919 0.282 48 0.646 0.187 42 0.494
MRPL44 2 224822121 224832431 0.118 29 0.446 0.200 37 0.594 0.316 50 0.702
BTD 3 15642864 15689147 0.020 11 0.200 8.00 x 10-3 13 0.068 0.011 18 0.068
ANKRD28 3 15708743 15901053 0.049 16 0.330 6.74 x 10-3 12 0.062 7.88 x 10-9 2 3.97 x 10-7 
TOP2B 3 25639396 25706396 0.494 66 0.818 0.306 50 0.673 0.061 31 0.216
SEC61A1 3 127770402 127790526 0.285 42 0.745 0.274 47 0.641 0.359 53 0.751
ATP11B 3 182511291 182639423 0.308 43 0.753 0.233 38 0.639 0.498 61 0.895
CCNI 4 77968308 77998719 0.480 64 0.812 0.544 71 0.832 0.050 29 0.191
CCNA2 4 122737599 122745153 0.597 77 0.820 0.603 79 0.833 0.882 99 0.977
CCNB1 5 68462837 68474072 0.529 70 0.818 0.439 60 0.797 0.612 72 0.939
SMN1 5 70220768 70248839 - - - - - - 0.574 68 0.926
SCAMP1 5 77656339 77776562 0.079 23 0.378 0.106 27 0.428 0.229 44 0.577
ANKS1A 6 34857038 35085802 0.536 72 0.818 0.506 65 0.832 0.597 71 0.933
DST 6 56322785 56819426 0.259 40 0.712 0.322 51 0.689 0.584 70 0.926
EPB41L2 6 131160487 131384462 0.362 49 0.753 0.350 53 0.716 0.500 62 0.895
AKAP12 6 151561134 151679694 0.163 35 0.513 0.182 36 0.557 0.431 58 0.825
VIP 6 153071932 153080900 0.381 54 0.753 0.248 42 0.641 0.037 21 0.180
CBX3 7 26240831 26253227 0.828 97 0.939 0.882 103 0.935 0.693 82 0.939
SEPT7 7 35840596 35946715 0.055 18 0.330 0.053 22 0.264 0.083 34 0.268
CCDC136 7 128431464 128462187 0.801 95 0.927 0.747 92 0.887 0.962 108 0.987
ATP6V1F 7 128502857 128505903 0.381 53 0.753 0.860 100 0.935 0.978 110 0.987
PODXL 7 131185021 131241376 0.863 101 0.940 0.884 104 0.935 0.839 95 0.971
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Gene Chr Start Stop 0 kb 50 kb 200 kb
MAGMA P Rank FDR MAGMA P Rank FDR MAGMA P Rank FDR

CNTNAP2 7 145813453 148118090 0.678 87 0.857 0.677 85 0.873 0.641 75 0.939
LINC00599 8 9757574 9760839 0.230 38 0.667 0.268 44 0.641 0.041 25 0.180
BNIP3L 8 26239894 26270644 0.657 85 0.851 0.663 83 0.873 0.785 90 0.968
CLU 8 27454434 27472328 9.23 x 10-8 1 1.02 x 10-5 4.78 x 10-5 4 1.27 x 10-3 1.78 x 10-3 13 0.015
CALB1 8 91070836 91095107 0.611 82 0.820 0.517 66 0.832 0.404 55 0.807
NTRK2 9 87283417 87641985 0.044 15 0.324 0.109 28 0.428 0.407 56 0.807
IARS 9 94972489 95056038 0.450 59 0.812 0.563 72 0.832 0.671 77 0.939
WDR31 9 116075502 116102620 0.370 51 0.753 0.536 69 0.832 0.056 30 0.209
CAMSAP1 9 138700333 138799060 0.728 90 0.890 0.357 54 0.716 0.494 60 0.895
GDI2 10 5807186 5855512 0.107 28 0.422 0.358 55 0.716 0.424 57 0.825
CELF2 10 10838851 11378674 0.948 106 0.978 0.936 106 0.971 0.947 104 0.987
COMMD3 10 22605312 22609246 0.536 71 0.818 0.367 56 0.720 0.397 54 0.807
RAB18 10 27793103 27831166 0.052 17 0.330 5.75 x 10-3 10 0.062 7.62 x 10-4 10 8.46 x 10-3 
DDIT4 10 74033677 74035797 2.10 x 10-6 2 8.32 x 10-5 1.38 x 10-7 2 7.60 x 10-6 7.40 x 10-9 1 3.97 x 10-7 
ADD3 10 111765627 111895323 0.150 33 0.495 0.141 34 0.455 0.212 43 0.548
SPON1 11 13984184 14289679 6.58 x 10-3 7 0.103 2.77 x 10-3 9 0.034 1.16 x 10-3 11 0.012
CNTF 11 58390146 58393206 4.17 x 10-3 5 0.086 1.89 x 10-3 8 0.026 2.30 x 10-3 14 0.018
MPEG1 11 58975983 58980494 0.479 63 0.812 0.577 74 0.832 0.519 63 0.912
NCAM1 11 112831969 113149158 0.443 57 0.812 0.406 57 0.777 0.568 67 0.926
ARHGEF12 11 120207264 120360645 0.480 65 0.812 0.696 87 0.873 0.889 101 0.977
APLP2 11 129939716 130014706 0.969 109 0.978 0.995 110 0.995 0.956 106 0.987
ACAD8 11 134123428 134135749 0.597 78 0.820 0.529 68 0.832 0.442 59 0.831
WNK1 12 861759 1020618 0.885 103 0.945 0.740 91 0.887 0.691 81 0.939
GABARAPL1 12 10365435 10375727 0.610 81 0.820 0.635 81 0.856 0.644 76 0.939
LYRM5 12 25348150 25357949 0.933 104 0.978 0.977 109 0.986 0.975 109 0.987
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Gene Chr Start Stop 0 kb 50 kb 200 kb
MAGMA P Rank FDR MAGMA P Rank FDR MAGMA P Rank FDR

TMBIM6 12 50135293 50158717 0.878 102 0.945 0.124 29 0.454 0.048 28 0.189
SPRYD3 12 53458100 53473204 0.472 62 0.812 0.473 64 0.814 0.151 40 0.419
CNOT2 12 70636774 70748773 0.811 96 0.929 0.584 76 0.832 0.578 69 0.926
TAOK3 12 118587606 118810750 0.651 84 0.851 0.758 94 0.888 0.849 97 0.971
ZC3H13 13 46528600 46626896 0.781 93 0.919 0.864 101 0.935 0.923 103 0.987
RB1 13 48877883 49056026 0.316 46 0.753 0.272 46 0.641 0.564 66 0.926
PCDH9 13 66876966 67804468 4.67 x 10-3 6 0.086 6.38 x 10-3 11 0.062 0.031 20 0.175
RBM26 13 79885962 79980393 0.023 12 0.210 0.019 15 0.142 0.062 32 0.216
PSMB5 14 23485752 23504429 0.257 39 0.712 0.590 78 0.832 0.885 100 0.977
CNIH1 14 54890279 54908322 0.122 30 0.446 0.132 32 0.454 1.07 x 10-8 3 3.97 x 10-7 
SNW1 14 78183942 78227542 0.015 9 0.178 1.71 x 10-3 7 0.026 1.17 x 10-4 7 1.86 x 10-3 
PAPOLA 14 96968713 97033453 0.962 107 0.978 0.877 102 0.935 0.996 111 0.996
STRC 15 43891685 44002286 0.746 92 0.892 0.814 97 0.919 0.823 93 0.971
CCNB2 15 59397284 59417244 0.740 91 0.892 0.750 93 0.887 0.675 78 0.939
ANP32A 15 69070874 69113261 0.967 108 0.978 0.589 77 0.832 0.704 83 0.940
IDH3A 15 78441698 78462884 0.449 58 0.812 0.735 90 0.887 0.351 51 0.751
TSR3 16 1399241 1401873 0.609 80 0.820 4.83 x 10-8 1 5.31 x 10-6 1.66 x 10-7 4 4.44 x 10-6

ZNF267 16 31885079 31928629 0.528 69 0.818 0.519 67 0.832 0.314 49 0.702
E2F4 16 67226068 67232821 0.061 20 0.334 0.035 18 0.212 1.12 x 10-4 6 1.86 x 10-3 
NFAT5 16 69599869 69738569 0.093 25 0.402 0.065 23 0.309 0.039 22 0.180
COX4I1 16 85833173 85840608 0.669 86 0.856 0.087 25 0.382 0.121 38 0.353
MPRIP 17 16945790 17095962 0.169 36 0.516 0.177 35 0.556 0.618 73 0.939
TVP23B 17 18684458 18710027 0.034 13 0.291 0.048 20 0.260 0.040 23 0.180
NLK 17 26369009 26523407 0.043 14 0.324 0.130 31 0.454 0.249 46 0.602
FAM134C 17 40731526 40761445 0.268 41 0.719 0.236 40 0.639 0.040 24 0.180
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Gene Chr Start Stop 0 kb 50 kb 200 kb
MAGMA P Rank FDR MAGMA P Rank FDR MAGMA P Rank FDR

ATP5G1 17 46970148 46973233 0.700 89 0.865 0.698 88 0.873 0.749 86 0.966
COX11 17 53029259 53046064 0.312 44 0.753 0.456 63 0.797 0.720 85 0.940
DGKE 17 54911460 54946036 0.462 61 0.812 0.238 41 0.639 1.55 x 10-3 12 0.014
SEPT4 17 56597611 56618179 5.72 x 10-6 4 1.57 x 10-4 5.76 x 10-5 5 1.27 x 10-3 3.85 x 10-4 8 5.34 x 10-3 
DHX40 17 57642886 57685713 0.135 32 0.465 0.050 21 0.260 0.095 37 0.286
DDX5 17 62494374 62503042 0.105 27 0.422 0.296 49 0.664 0.539 65 0.921
PRKAR1A 17 66507921 66547457 0.134 31 0.465 0.022 17 0.143 0.030 19 0.175
RBBP8 18 20513295 20606451 0.979 110 0.979 0.969 108 0.986 0.803 92 0.969
OSBPL1A 18 21742009 21977846 0.641 83 0.849 0.792 95 0.917 0.798 91 0.969
RAX2 19 3769087 3772219 0.560 74 0.820 0.835 99 0.928 0.920 102 0.987
CLIP3 19 36505562 36523797 0.512 67 0.818 0.638 82 0.856 0.834 94 0.971
SNAP25 20 10199477 10288068 0.858 100 0.940 0.720 89 0.887 0.953 105 0.987
SYS1 20 43988660 44005442 0.323 47 0.753 0.606 80 0.833 0.869 98 0.977
KCNB1 20 47988505 48099181 0.592 75 0.820 0.676 84 0.873 0.641 74 0.939
OSBPL2 20 60813541 60871269 0.849 99 0.940 0.326 52 0.689 0.087 36 0.268
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E2: MAGMA gene-based association test results for the 111 candidate myopia genes using data from the CREAM refractive error meta-
analysis and the inclusion of 500 kb, 1 Mb or 2 Mb flanking regions. MAGMA P = obtained from Z-Statistic under the assumption of a normally 
distributed model; Rank = ranking of the gene out of 111 according to gene-based test P-values; FDR = false discovery rate. Highlighted results 
= FDR < 0.05

Gene Chr Start Stop 500 kb 1 Mb 2 Mb
MAGMA P Rank FDR MAGMA P Rank FDR MAGMA P Rank FDR

MINOS1 1 19923471 19956315 0.159 49 0.356 0.154 59 0.289 0.033 49 0.075
CEP85 1 26560644 26605529 0.475 74 0.712 0.609 94 0.712 0.633 101 0.696
STK40 1 36805225 36851525 2.70 x 10-3 18 0.017 3.75 x 10-3 24 0.017 0.268 82 0.362
PTPRF 1 43991708 44089343 0.242 56 0.479 0.313 79 0.439 6.27 x 10-3 37 0.018
JAK1 1 65298906 65432593 0.048 33 0.156 0.217 66 0.361 4.95 x 10-3 34 0.016
SERBP1 1 67873493 67896123 0.302 61 0.549 0.018 33 0.059 3.49 x 10-3 33 0.012
ABCD3 1 94883933 94984219 0.014 24 0.065 0.117 54 0.241 0.100 61 0.182
WDR77 1 111982512 111991915 0.813 100 0.897 0.090 50 0.200 6.36 x 10-3 38 0.018
RPRD2 1 150336624 150449042 0.210 52 0.449 0.275 72 0.414 0.278 84 0.365
DENND4B 1 153901977 153919162 0.067 39 0.191 0.039 42 0.102 6.06 x 10-5 18 3.74 x 10-4 
HDGF 1 156711899 156722240 0.061 37 0.183 9.74 x 10-3 27 0.038 4.42 x 10-6 13 3.77 x 10-5 
SDHC 1 161284166 161334541 0.788 97 0.897 0.726 99 0.814 0.707 105 0.748
CREG1 1 167510250 167523056 0.825 102 0.897 0.305 77 0.435 0.518 96 0.599
KIFAP3 1 169890461 170043882 4.93 x 10-4 12 4.56 x 10-3 1.16 x 10-4 14 9.23 x 10-4 1.12 x 10-3 26 4.80 x 10-3 
NUCKS1 1 205681947 205719372 0.141 48 0.327 0.083 48 0.189 3.63 x 10-4 24 1.68 x 10-3 
RNF187 1 228674277 228697598 0.946 109 0.963 0.381 85 0.497 0.011 42 0.030
LGALS8 1 236681514 236716281 0.510 77 0.735 0.518 91 0.632 1.55 x 10-3 28 6.14 x 10-3 
RAB10 2 26256729 26360323 0.679 85 0.886 0.037 40 0.102 6.38 x 10-3 39 0.018
LBH 2 30454397 30482899 0.106 44 0.267 0.106 52 0.227 0.106 63 0.186
LRPPRC 2 44113363 44223144 1.26 x 10-4 10 1.40 x 10-3 1.72 x 10-7 6 3.18 x 10-6 1.70 x 10-5 16 1.18 x 10-4 
ERLEC1 2 54014068 54045956 4.25 x 10-3 19 0.025 0.012 30 0.043 1.66 x 10-3 30 6.14 x 10-3 
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Gene Chr Start Stop 500 kb 1 Mb 2 Mb
MAGMA P Rank FDR MAGMA P Rank FDR MAGMA P Rank FDR

CCDC104 2 55746740 55772216 5.20 x 10-5 8 7.21 x 10-4 8.68 x 10-4 20 4.82 x 10-3 2.95 x 10-4 22 1.49 x 10-3 
HNRNPA3 2 178076063 178088687 7.32 x 10-10 2 4.06 x 10-8 1.07 x 10-23 1 1.19 x 10-21 3.75 x 10-20 1 4.16 x 10-18

STRADB 2 202316392 202359501 0.047 30 0.156 5.84 x 10-4 18 3.60 x 10-3 1.53 x 10-4 20 8.50 x 10-4 
PKI55 2 217081612 217084915 0.125 46 0.302 0.281 74 0.414 0.270 83 0.362
MRPL44 2 224822121 224832431 0.048 32 0.156 0.083 49 0.189 0.383 92 0.458
BTD 3 15642864 15689147 6.22 x 10-8 3 2.30 x 10-6 1.65 x 10-5 9 2.03 x 10-4 5.84 x 10-3 35 0.018
ANKRD28 3 15708743 15901053 1.14 x 10-7 4 2.95 x 10-6 8.45 x 10-5 12 7.82 x 10-4 3.04 x 10-3 32 0.011
TOP2B 3 25639396 25706396 5.90 x 10-3 21 0.031 3.61 x 10-3 23 0.017 1.46 x 10-3 27 6.01 x 10-3 
SEC61A1 3 127770402 127790526 0.047 31 0.156 9.94 x 10-3 29 0.038 2.57 x 10-3 31 9.19 x 10-3 
ATP11B 3 182511291 182639423 0.594 82 0.804 0.745 100 0.827 0.536 98 0.606
CCNI 4 77968308 77998719 0.326 62 0.584 0.326 80 0.448 0.286 86 0.369
CCNA2 4 122737599 122745153 0.779 95 0.897 0.327 81 0.448 0.226 77 0.326
CCNB1 5 68462837 68474072 0.816 101 0.897 0.818 106 0.857 0.461 94 0.543
SMN1 5 70220768 70248839 0.792 98 0.897 0.588 93 0.701 3.89 x 10-5 17 2.54 x 10-4 
SCAMP1 5 77656339 77776562 0.044 29 0.156 0.016 32 0.056 0.058 55 0.117
ANKS1A 6 34857038 35085802 0.520 78 0.736 0.764 101 0.836 0.152 71 0.236
DST 6 56322785 56819426 0.437 72 0.672 0.415 88 0.520 0.027 47 0.063
EPB41L2 6 131160487 131384462 0.724 88 0.886 0.042 43 0.108 8.17 x 10-10 5 1.81 x 10-8 
AKAP12 6 151561134 151679694 1.98 x 10-3 14 0.016 0.073 45 0.177 0.136 69 0.219
VIP 6 153071932 153080900 0.110 45 0.270 0.190 64 0.329 0.038 50 0.084
CBX3 7 26240831 26253227 0.572 81 0.783 0.856 109 0.872 0.934 111 0.934
SEPT7 7 35840596 35946715 0.065 38 0.189 0.100 51 0.218 0.107 64 0.186
CCDC136 7 128431464 128462187 0.724 89 0.886 0.221 68 0.361 0.048 52 0.102
ATP6V1F 7 128502857 128505903 0.695 86 0.886 0.280 73 0.414 0.050 53 0.104
PODXL 7 131185021 131241376 0.375 66 0.631 0.609 95 0.712 0.592 100 0.657
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Gene Chr Start Stop 500 kb 1 Mb 2 Mb
MAGMA P Rank FDR MAGMA P Rank FDR MAGMA P Rank FDR

CNTNAP2 7 145813453 148118090 0.734 92 0.886 0.811 105 0.857 0.726 106 0.761
LINC00599 8 9757574 9760839 2.48 x 10-3 16 0.017 2.15 x 10-6 8 2.98 x 10-5 2.82 x 10-6 11 2.85 x 10-5 
BNIP3L 8 26239894 26270644 0.873 103 0.932 0.768 102 0.836 0.384 93 0.458
CLU 8 27454434 27472328 0.049 35 0.156 0.305 78 0.435 0.305 87 0.389
CALB1 8 91070836 91095107 0.277 59 0.521 0.133 57 0.258 0.238 80 0.327
NTRK2 9 87283417 87641985 0.707 87 0.886 0.787 104 0.840 0.835 109 0.850
IARS 9 94972489 95056038 0.499 76 0.729 0.357 83 0.477 0.338 90 0.416
WDR31 9 116075502 116102620 0.161 50 0.356 0.283 76 0.414 0.345 91 0.421
CAMSAP1 9 138700333 138799060 0.730 90 0.886 0.830 107 0.861 0.333 89 0.416
GDI2 10 5807186 5855512 0.224 55 0.451 0.846 108 0.870 0.799 108 0.822
CELF2 10 10838851 11378674 0.742 93 0.886 0.777 103 0.837 0.746 107 0.774
COMMD3 10 22605312 22609246 0.132 47 0.312 0.396 87 0.505 0.689 103 0.743
RAB18 10 27793103 27831166 9.82 x 10-3 23 0.047 0.129 56 0.256 0.657 102 0.714
DDIT4 10 74033677 74035797 1.33 x 10-7 5 2.95 x 10-6 6.82 x 10-7 7 1.08 x 10-5 8.21 x 10-6 15 6.07 x 10-5 
ADD3 10 111765627 111895323 0.437 71 0.672 0.219 67 0.361 0.154 72 0.236
SPON1 11 13984184 14289679 4.54 x 10-3 20 0.025 7.02 x 10-3 26 0.030 0.117 66 0.197
CNTF 11 58390146 58393206 8.51 x 10-5 9 1.05 x 10-3 3.80 x 10-4 17 2.48 x 10-3 3.14 x 10-4 23 1.51 x 10-3 
MPEG1 11 58975983 58980494 0.395 68 0.639 2.34 x 10-4 15 1.73 x 10-3 1.23 x 10-4 19 7.19 x 10-4 
NCAM1 11 112831969 113149158 0.368 64 0.631 0.066 44 0.167 0.024 45 0.059
ARHGEF12 11 120207264 120360645 0.938 108 0.963 0.586 92 0.701 0.124 67 0.205
APLP2 11 129939716 130014706 0.886 105 0.932 5.30 x 10-3 25 0.024 4.73 x 10-11 2 2.62 x 10-9 
ACAD8 11 134123428 134135749 0.391 67 0.639 0.176 62 0.316 0.128 68 0.208
WNK1 12 861759 1020618 0.078 41 0.207 0.196 65 0.334 0.111 65 0.190
GABARAPL1 12 10365435 10375727 0.432 70 0.672 7.50 x 10-4 19 4.38 x 10-3 3.43 x 10-6 12 3.17 x 10-5 
LYRM5 12 25348150 25357949 0.890 106 0.932 0.375 84 0.496 0.103 62 0.184
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Gene Chr Start Stop 500 kb 1 Mb 2 Mb
MAGMA P Rank FDR MAGMA P Rank FDR MAGMA P Rank FDR

TMBIM6 12 50135293 50158717 0.040 28 0.156 0.031 35 0.096 0.076 57 0.146
SPRYD3 12 53458100 53473204 0.264 57 0.515 0.474 90 0.584 0.531 97 0.606
CNOT2 12 70636774 70748773 0.301 60 0.549 0.038 41 0.102 0.160 74 0.240
TAOK3 12 118587606 118810750 0.081 43 0.210 0.163 60 0.300 0.098 60 0.180
ZC3H13 13 46528600 46626896 0.362 63 0.631 3.62 x 10-4 16 2.48 x 10-3 6.97 x 10-3 40 0.019
RB1 13 48877883 49056026 0.882 104 0.932 0.956 111 0.956 0.015 44 0.037
PCDH9 13 66876966 67804468 0.070 40 0.193 0.079 47 0.186 0.086 59 0.161
RBM26 13 79885962 79980393 0.031 27 0.129 0.033 38 0.096 0.236 79 0.327
PSMB5 14 23485752 23504429 0.983 111 0.983 0.649 96 0.747 0.705 104 0.748
CNIH1 14 54890279 54908322 3.42 x 10-19 1 3.80 x 10-17 5.05 x 10-14 2 2.80 x 10-12 6.09 x 10-10 4 1.69 x 10-8 
SNW1 14 78183942 78227542 2.91 x 10-5 7 4.61 x 10-4 1.13 x 10-4 13 9.23 x 10-4 1.64 x 10-3 29 6.14 x 10-3 
PAPOLA 14 96968713 97033453 0.968 110 0.976 0.129 55 0.256 0.318 88 0.401
STRC 15 43891685 44002286 0.927 107 0.962 0.913 110 0.922 0.881 110 0.889
CCNB2 15 59397284 59417244 0.781 96 0.897 0.653 97 0.747 0.236 78 0.327
ANP32A 15 69070874 69113261 0.672 84 0.886 0.109 53 0.228 6.23 x 10-3 36 0.018
IDH3A 15 78441698 78462884 0.221 54 0.451 3.19 x 10-12 3 1.18 x 10-10 5.11 x 10-10 3 1.69 x 10-8 
TSR3 16 1399241 1401873 3.09 x 10-4 11 3.12 x 10-3 3.42 x 10-5 11 3.45 x 10-4 5.67 x 10-6 14 4.50 x 10-5

ZNF267 16 31885079 31928629 0.628 83 0.840 0.187 63 0.329 0.178 76 0.260
E2F4 16 67226068 67232821 2.25 x 10-6 6 4.17 x 10-5 5.47 x 10-9 4 1.52 x 10-7 7.60 x 10-7 9 9.37 x 10-6 
NFAT5 16 69599869 69738569 0.015 25 0.066 0.033 36 0.096 2.23 x 10-6 10 2.48 x 10-5 
COX4I1 16 85833173 85840608 0.273 58 0.521 0.268 70 0.414 0.014 43 0.036
MPRIP 17 16945790 17095962 0.397 69 0.639 0.036 39 0.102 0.029 48 0.068
TVP23B 17 18684458 18710027 0.078 42 0.207 3.31 x 10-3 22 0.017 0.051 54 0.105
NLK 17 26369009 26523407 0.369 65 0.631 0.073 46 0.177 0.025 46 0.060
FAM134C 17 40731526 40761445 2.66 x 10-3 17 0.017 0.026 34 0.086 0.075 56 0.146
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Gene Chr Start Stop 500 kb 1 Mb 2 Mb
MAGMA P Rank FDR MAGMA P Rank FDR MAGMA P Rank FDR

ATP5G1 17 46970148 46973233 0.021 26 0.091 0.033 37 0.096 0.076 58 0.146
COX11 17 53029259 53046064 0.731 91 0.886 0.714 98 0.809 0.147 70 0.234
DGKE 17 54911460 54946036 8.22 x 10-3 22 0.041 9.68 x 10-8 5 2.15 x 10-6 1.71 x 10-7 7 2.71 x 10-6 
SEPT4 17 56597611 56618179 2.26 x 10-3 15 0.017 2.49 x 10-5 10 2.77 x 10-4 1.38 x 10-8 6 2.55 x 10-7 
DHX40 17 57642886 57685713 0.060 36 0.183 0.015 31 0.054 6.56 x 10-7 8 9.10 x 10-6 
DDX5 17 62494374 62503042 0.492 75 0.728 0.390 86 0.504 3.81 x 10-4 25 1.69 x 10-3 
PRKAR1A 17 66507921 66547457 1.16 x 10-3 13 9.87 x 10-3 2.36 x 10-3 21 0.012 8.69 x 10-3 41 0.024
RBBP8 18 20513295 20606451 0.801 99 0.897 0.282 75 0.414 0.239 81 0.327
OSBPL1A 18 21742009 21977846 0.442 73 0.672 0.258 69 0.414 0.540 99 0.606
RAX2 19 3769087 3772219 0.048 34 0.156 0.341 82 0.462 0.039 51 0.084
CLIP3 19 36505562 36523797 0.221 53 0.451 0.417 89 0.520 0.279 85 0.365
SNAP25 20 10199477 10288068 0.754 94 0.890 0.135 58 0.258 0.155 73 0.236
SYS1 20 43988660 44005442 0.531 80 0.736 0.165 61 0.300 0.465 95 0.543
KCNB1 20 47988505 48099181 0.526 79 0.736 0.273 71 0.414 0.172 75 0.254
OSBPL2 20 60813541 60871269 0.201 51 0.437 9.85 x 10-3 28 0.038 1.95 x 10-4 21 1.03 x 10-3 
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E3: MAGMA gene-based association test results for the 111 candidate myopia genes using data from the UK Biobank spherical equivalent 
GWAS and the inclusion of 0 kb, 50 kb or 200 kb flanking regions. MAGMA P = obtained from Z-Statistic under the assumption of a normally 
distributed model; Rank = ranking of the gene out of 111 according to gene-based test P-values; FDR = false discovery rate. Highlighted results 
= FDR < 0.05. NB: No variants were mapped within the COMMD3 gene or within 200 kb of SMN1.

Gene Chr Start Stop
0 kb 50 kb 200 kb

MAGMA P Rank FDR MAGMA P Rank FDR MAGMA P Rank FDR
MINOS1 1 19923471 19956315 0.400 62 0.657 0.476 74 0.700 0.736 102 0.793
CEP85 1 26560644 26605529 0.688 90 0.834 0.517 79 0.713 0.122 51 0.263
STK40 1 36805225 36851525 0.352 57 0.657 0.173 48 0.396 0.279 69 0.445
PTPRF 1 43991708 44089343 3.57 x 10-4 10 3.89 x 10-3 3.95 x 10-4 10 4.34 x 10-3 1.36 x 10-4 10 1.41 x 10-3 
JAK1 1 65298906 65432593 0.737 91 0.871 0.789 101 0.860 0.946 110 0.946
SERBP1 1 67873493 67896123 0.653 88 0.808 0.725 96 0.818 4.55 x 10-3 22 0.023
ABCD3 1 94883933 94984219 0.608 85 0.780 0.699 94 0.818 0.695 99 0.772
WDR77 1 111982512 111991915 0.786 97 0.883 0.803 102 0.866 0.294 72 0.449
RPRD2 1 150336624 150449042 1.25 x 10-4 8 1.71 x 10-3 2.60 x 10-4 9 3.18 x 10-3 7.18 x 10-5 9 8.78 x 10-4 
DENND4B 1 153901977 153919162 0.125 36 0.378 0.152 45 0.371 0.206 62 0.366
HDGF 1 156711899 156722240 3.02 x 10-5 6 5.48 x 10-4 3.48 x 10-3 18 0.021 0.015 31 0.054
SDHC 1 161284166 161334541 0.901 105 0.932 0.922 109 0.930 0.662 96 0.751
CREG1 1 167510250 167523056 0.372 60 0.657 0.832 104 0.880 0.852 105 0.881
KIFAP3 1 169890461 170043882 0.596 83 0.780 0.525 80 0.713 0.466 87 0.583
NUCKS1 1 205681947 205719372 0.607 84 0.780 0.494 77 0.700 0.050 42 0.131
RNF187 1 228674277 228697598 0.454 70 0.695 0.412 72 0.630 0.214 63 0.373
LGALS8 1 236681514 236716281 0.026 23 0.123 3.68 x 10-3 19 0.021 2.23 x 10-3 20 0.012
RAB10 2 26256729 26360323 0.261 48 0.592 0.254 60 0.465 0.060 44 0.146
LBH 2 30454397 30482899 6.35 x 10-8 2 3.46 x 10-6 3.49 x 10-6 5 7.67 x 10-5 2.06 x 10-4 14 1.62 x 10-3 
LRPPRC 2 44113363 44223144 2.39 x 10-5 5 5.21 x 10-4 3.38 x 10-6 4 7.67 x 10-5 2.14 x 10-8 3 6.16 x 10-7 
ERLEC1 2 54014068 54045956 5.05 x 10-4 11 4.87 x 10-3 2.23 x 10-4 7 3.18 x 10-3 3.57 x 10-5 8 4.91 x 10-4 
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Gene Chr Start Stop
0 kb 50 kb 200 kb

MAGMA P Rank FDR MAGMA P Rank FDR MAGMA P Rank FDR
CCDC104 2 55746740 55772216 5.05 x 10-5 7 7.86 x 10-4 5.81 x 10-5 6 1.06 x 10-3 2.46 x 10-4 15 1.80 x 10-3 
HNRNPA3 2 178076063 178088687 0.022 20 0.118 1.63 x 10-3 13 0.014 1.54 x 10-4 12 1.41 x 10-3 
STRADB 2 202316392 202359501 0.186 41 0.493 0.060 34 0.193 0.262 66 0.434
PKI55 2 217081612 217084915 0.489 75 0.711 0.342 67 0.561 0.078 46 0.186
MRPL44 2 224822121 224832431 0.410 67 0.657 0.585 87 0.739 0.588 93 0.696
BTD 3 15642864 15689147 0.025 22 0.123 0.016 24 0.072 8.95 x 10-3 25 0.039
ANKRD28 3 15708743 15901053 0.015 17 0.092 0.012 22 0.061 1.45 x 10-4 11 1.41 x 10-3 
TOP2B 3 25639396 25706396 0.098 35 0.306 0.064 35 0.201 0.017 32 0.058
SEC61A1 3 127770402 127790526 0.171 40 0.467 0.191 50 0.417 0.389 81 0.521
ATP11B 3 182511291 182639423 0.768 96 0.872 0.545 84 0.713 5.75 x 10-3 24 0.026
CCNI 4 77968308 77998719 0.505 77 0.714 0.656 91 0.793 0.466 88 0.583
CCNA2 4 122737599 122745153 0.932 109 0.932 0.729 97 0.818 0.857 107 0.881
CCNB1 5 68462837 68474072 0.855 102 0.913 0.691 93 0.817 0.726 101 0.791
SCAMP1 5 77656339 77776562 0.095 34 0.305 0.079 38 0.229 0.158 56 0.307
SMN1 5 70220768 70248839 - - - - - - - - -
ANKS1A 6 34857038 35085802 5.36 x 10-4 12 4.87 x 10-3 4.90 x 10-4 11 4.90 x 10-3 1.57 x 10-3 19 9.07 x 10-3 
DST 6 56322785 56819426 0.062 30 0.227 0.087 39 0.244 0.110 49 0.248
EPB41L2 6 131160487 131384462 0.041 26 0.168 0.068 36 0.209 0.136 52 0.283
AKAP12 6 151561134 151679694 0.318 53 0.640 0.496 78 0.700 0.288 70 0.449
VIP 6 153071932 153080900 0.575 81 0.774 0.151 44 0.371 0.416 84 0.545
CBX3 7 26240831 26253227 0.403 63 0.657 0.618 89 0.764 0.884 109 0.892
SEPT7 7 35840596 35946715 0.747 92 0.871 0.754 100 0.830 0.577 91 0.696
CCDC136 7 128431464 128462187 0.930 108 0.932 0.904 108 0.921 0.854 106 0.881
ATP6V1F 7 128502857 128505903 0.669 89 0.819 0.887 106 0.920 0.879 108 0.892
PODXL 7 131185021 131241376 0.482 74 0.710 0.731 98 0.818 0.323 74 0.481



321 

Gene Chr Start Stop
0 kb 50 kb 200 kb

MAGMA P Rank FDR MAGMA P Rank FDR MAGMA P Rank FDR
CNTNAP2 7 145813453 148118090 0.139 37 0.409 0.099 41 0.265 0.120 50 0.263
LINC00599 8 9757574 9760839 0.919 106 0.932 0.539 82 0.713 0.157 55 0.307
BNIP3L 8 26239894 26270644 0.384 61 0.657 0.215 55 0.424 0.292 71 0.449
CLU 8 27454434 27472328 2.56 x 10-4 9 3.10 x 10-3 3.46 x 10-3 17 0.021 0.013 30 0.048
CALB1 8 91070836 91095107 0.329 56 0.640 0.374 69 0.596 0.356 77 0.509
NTRK2 9 87283417 87641985 0.042 27 0.168 0.036 30 0.133 0.201 61 0.362
IARS 9 94972489 95056038 0.645 87 0.808 0.317 63 0.554 0.582 92 0.696
WDR31 9 116075502 116102620 0.405 64 0.657 0.193 51 0.417 1.30E-03 18 7.94E-03
CAMSAP1 9 138700333 138799060 0.546 79 0.753 0.074 37 0.221 0.042 41 0.114
GDI2 10 5807186 5855512 0.017 19 0.099 0.041 32 0.142 4.93 x 10-3 23 0.024
CELF2 10 10838851 11378674 0.074 31 0.261 0.096 40 0.263 0.265 67 0.434
RAB18 10 27793103 27831166 0.310 51 0.640 0.044 33 0.148 2.96 x 10-3 21 0.016
DDIT4 10 74033677 74035797 1.88 x 10-7 3 6.81 x 10-6 2.60 x 10-8 2 1.37 x 10-6 4.36 x 10-7 5 9.59 x 10-6 
ADD3 10 111765627 111895323 1.68 x 10-6 4 4.59 x 10-5 3.74 x 10-8 3 1.37 x 10-6 2.69 x 10-9 1 2.96 x 10-7 
COMMD3 10 22605312 22609246 - - - 0.647 90 0.790 0.238 64 0.407
SPON1 11 13984184 14289679 0.149 39 0.417 0.020 25 0.088 0.012 28 0.044
CNTF 11 58390146 58393206 0.853 100 0.913 0.568 86 0.727 0.617 94 0.722
MPEG1 11 58975983 58980494 0.230 44 0.562 0.400 71 0.619 0.391 82 0.521
NCAM1 11 112831969 113149158 0.751 94 0.871 0.329 65 0.555 0.486 90 0.594
ARHGEF12 11 120207264 120360645 0.413 68 0.657 0.219 57 0.424 0.159 57 0.307
APLP2 11 129939716 130014706 0.232 45 0.562 0.466 73 0.700 0.786 103 0.835
ACAD8 11 134123428 134135749 0.595 82 0.780 0.528 81 0.713 0.195 60 0.358
WNK1 12 861759 1020618 0.240 46 0.568 0.166 47 0.388 0.393 83 0.521
GABARAPL1 12 10365435 10375727 0.622 86 0.788 0.214 52 0.424 0.361 78 0.509
LYRM5 12 25348150 25357949 0.408 65 0.657 0.609 88 0.762 0.485 89 0.594



322 

Gene Chr Start Stop
0 kb 50 kb 200 kb

MAGMA P Rank FDR MAGMA P Rank FDR MAGMA P Rank FDR
TMBIM6 12 50135293 50158717 0.328 54 0.640 0.347 68 0.561 0.435 86 0.557
SPRYD3 12 53458100 53473204 3.64 x 10-3 14 0.028 2.00 x 10-3 14 0.016 0.012 29 0.044
CNOT2 12 70636774 70748773 0.048 28 0.187 0.041 31 0.142 0.020 34 0.065
TAOK3 12 118587606 118810750 0.855 101 0.913 0.824 103 0.880 0.373 79 0.519
ZC3H13 13 46528600 46626896 0.462 71 0.695 0.544 83 0.713 0.724 100 0.791
RB1 13 48877883 49056026 0.511 78 0.714 0.393 70 0.617 0.639 95 0.740
PCDH9 13 66876966 67804468 9.89 x 10-4 13 8.29 x 10-3 2.39 x 10-4 8 3.18 x 10-3 2.06 x 10-4 13 1.62 x 10-3 
RBM26 13 79885962 79980393 0.222 43 0.562 0.147 43 0.371 0.052 43 0.134
PSMB5 14 23485752 23504429 0.083 32 0.281 0.215 54 0.424 0.032 38 0.092
CNIH1 14 54890279 54908322 0.146 38 0.417 0.027 28 0.105 1.18 x 10-8 2 6.16 x 10-7 
SNW1 14 78183942 78227542 0.032 24 0.146 5.93 x 10-3 20 0.033 6.71 x 10-4 17 4.34 x 10-3 
PAPOLA 14 96968713 97033453 0.465 73 0.695 0.163 46 0.388 0.089 47 0.207
STRC 15 43891685 44002286 0.035 25 0.152 0.026 27 0.105 0.022 35 0.067
CCNB2 15 59397284 59417244 0.826 99 0.909 0.722 95 0.818 0.667 97 0.751
ANP32A 15 69070874 69113261 0.416 69 0.657 0.252 59 0.465 0.385 80 0.521
IDH3A 15 78441698 78462884 0.561 80 0.764 0.333 66 0.555 0.173 58 0.324
TSR3 16 1399241 1401873 0.408 66 0.657 3.34 x 10-3 16 0.021 0.010 26 0.042
ZNF267 16 31885079 31928629 0.503 76 0.714 0.490 76 0.700 0.136 53 0.283
E2F4 16 67226068 67232821 0.316 52 0.640 0.178 49 0.399 0.010 27 0.042
NFAT5 16 69599869 69738569 0.053 29 0.200 0.021 26 0.091 0.017 33 0.058
COX4I1 16 85833173 85840608 0.804 98 0.895 0.901 107 0.921 0.241 65 0.407
MPRIP 17 16945790 17095962 0.015 18 0.092 0.030 29 0.114 0.060 45 0.146
TVP23B 17 18684458 18710027 0.359 58 0.657 0.121 42 0.316 0.031 37 0.092
NLK 17 26369009 26523407 0.767 95 0.872 0.737 99 0.818 0.669 98 0.751
FAM134C 17 40731526 40761445 0.260 47 0.592 0.217 56 0.424 0.174 59 0.324
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Gene Chr Start Stop
0 kb 50 kb 200 kb

MAGMA P Rank FDR MAGMA P Rank FDR MAGMA P Rank FDR
ATP5G1 17 46970148 46973233 0.276 49 0.614 0.283 61 0.510 0.090 48 0.207
COX11 17 53029259 53046064 0.329 55 0.640 0.317 62 0.554 0.342 75 0.498
DGKE 17 54911460 54946036 0.871 103 0.913 0.967 110 0.967 2.40 x 10-6 6 4.41 x 10-5 
SEPT4 17 56597611 56618179 9.22 x 10-11 1 1.00 x 10-8 1.56 x 10-9 1 1.72 x 10-7 2.24 x 10-8 4 6.16 x 10-7 
DHX40 17 57642886 57685713 0.023 21 0.120 0.013 23 0.061 0.022 36 0.067
DDX5 17 62494374 62503042 0.748 93 0.871 0.673 92 0.805 0.421 85 0.545
PRKAR1A 17 66507921 66547457 0.093 33 0.305 0.011 21 0.055 0.036 39 0.103
RBBP8 18 20513295 20606451 0.196 42 0.507 0.236 58 0.448 0.344 76 0.498
OSBPL1A 18 21742009 21977846 0.294 50 0.640 0.560 85 0.724 0.789 104 0.835
RAX2 19 3769087 3772219 0.923 107 0.932 0.481 75 0.700 0.311 73 0.469
CLIP3 19 36505562 36523797 0.871 104 0.913 0.871 105 0.912 0.156 54 0.307
SNAP25 20 10199477 10288068 0.367 59 0.657 0.215 53 0.424 0.038 40 0.104
SYS1 20 43988660 44005442 0.465 72 0.695 0.324 64 0.555 0.270 68 0.436
KCNB1 20 47988505 48099181 5.00 x 10-3 15 0.036 2.38 x 10-3 15 0.017 4.29 x 10-4 16 2.95 x 10-3 
OSBPL2 20 60813541 60871269 0.012 16 0.081 1.54 x 10-3 12 0.014 1.81 x 10-5 7 2.84 x 10-4 
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E4: MAGMA gene-based association test results for the 111 candidate myopia genes using data from the UK Biobank spherical equivalent 
GWAS and the inclusion of 500 kb, 1 Mb or 2 Mb flanking regions. MAGMA P = obtained from Z-Statistic under the assumption of a normally 
distributed model; Rank = ranking of the gene out of 111 according to gene-based test P-values; FDR = false discovery rate. Highlighted results 
= FDR < 0.05

Gene Chr Start Stop
500 kb 1 Mb 2 Mb

MAGMA P Rank FDR MAGMA P Rank FDR MAGMA P Rank FDR
MINOS1 1 19923471 19956315 0.634 100 0.704 0.268 89 0.334 8.16 x 10-3 64 0.014
CEP85 1 26560644 26605529 0.016 42 0.042 0.050 62 0.089 0.059 80 0.082
STK40 1 36805225 36851525 0.080 59 0.149 0.144 81 0.198 5.50 x 10-3 60 0.010
PTPRF 1 43991708 44089343 3.62 x 10-6 11 3.65 x 10-5 1.26 x 10-5 17 8.24 x 10-5 1.88 x 10-9 14 1.49 x 10-8 
JAK1 1 65298906 65432593 0.988 111 0.988 0.990 111 0.990 0.145 97 0.166
SERBP1 1 67873493 67896123 0.036 51 0.077 0.066 65 0.112 0.071 84 0.094
ABCD3 1 94883933 94984219 0.558 95 0.651 0.808 108 0.829 0.368 108 0.379
WDR77 1 111982512 111991915 0.021 45 0.051 2.73 x 10-4 25 1.21 x 10-3 4.85 x 10-14 6 8.27 x 10-13

RPRD2 1 150336624 150449042 3.22 x 10-4 20 1.79 x 10-3 4.90 x 10-4 31 1.76 x 10-3 1.53 x 10-4 40 4.26 x 10-4 
DENND4B 1 153901977 153919162 0.080 58 0.149 6.37 x 10-3 46 0.015 0.014 68 0.023
HDGF 1 156711899 156722240 0.012 38 0.036 0.039 57 0.075 1.37 x 10-4 38 4.01 x 10-4 
SDHC 1 161284166 161334541 0.458 90 0.564 0.022 55 0.044 3.29 x 10-3 57 6.41 x 10-3 
CREG1 1 167510250 167523056 0.831 108 0.854 0.767 107 0.796 0.541 110 0.546
KIFAP3 1 169890461 170043882 0.210 71 0.324 0.072 67 0.119 0.135 95 0.158
NUCKS1 1 205681947 205719372 4.58 x 10-4 21 2.42 x 10-3 1.71 x 10-3 34 5.59 x 10-3 2.48 x 10-16 3 9.17 x 10-15

RNF187 1 228674277 228697598 0.311 77 0.448 0.453 98 0.513 3.55 x 10-3 58 6.79 x 10-3 
LGALS8 1 236681514 236716281 0.011 37 0.032 9.54 x 10-3 49 0.022 8.06 x 10-5 35 2.56 x 10-4 
RAB10 2 26256729 26360323 0.083 62 0.149 6.30E x 10-3 45 0.015 7.82 x 10-5 34 2.55 x 10-4 
LBH 2 30454397 30482899 7.64 x 10-3 36 0.024 0.025 56 0.050 0.240 102 0.261
LRPPRC 2 44113363 44223144 1.66 x 10-7 7 2.63 x 10-6 4.87E x 10-9 8 6.75 x 10-8 8.36 x 10-9 15 6.18 x 10-8 
ERLEC1 2 54014068 54045956 5.00 x 10-7 9 6.17 x 10-6 5.37 x 10-7 11 5.42 x 10-6 2.27 x 10-8 17 1.48 x 10-7 
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Gene Chr Start Stop
500 kb 1 Mb 2 Mb

MAGMA P Rank FDR MAGMA P Rank FDR MAGMA P Rank FDR
CCDC104 2 55746740 55772216 2.05 x 10-8 5 4.55 x 10-7 5.86 x 10-10 6 1.08 x 10-8 1.43 x 10-15 4 3.97 x 10-14

HNRNPA3 2 178076063 178088687 2.07 x 10-6 10 2.30 x 10-5 3.56 x 10-26 1 3.95 x 10-24 1.36 x 10-25 1 1.51 x 10-23 
STRADB 2 202316392 202359501 0.448 89 0.559 0.519 99 0.582 0.253 104 0.270
PKI55 2 217081612 217084915 0.082 60 0.149 0.080 70 0.127 8.60 x 10-3 65 0.015
MRPL44 2 224822121 224832431 0.655 102 0.713 0.717 106 0.751 0.219 100 0.244
BTD 3 15642864 15689147 6.45 x 10-5 16 4.47 x 10-4 3.09 x 10-4 27 1.27 x 10-3 0.014 69 0.023
ANKRD28 3 15708743 15901053 1.03 x 10-4 18 6.36 x 10-4 9.95 x 10-4 33 3.35 x 10-3 0.019 71 0.029
TOP2B 3 25639396 25706396 4.04 x 10-3 31 0.014 5.43 x 10-4 32 1.88 x 10-3 1.59 x 10-5 30 5.87 x 10-5 
SEC61A1 3 127770402 127790526 0.014 40 0.038 0.014 51 0.031 6.69 x 10-5 33 2.25 x 10-4 
ATP11B 3 182511291 182639423 0.006 33 0.019 0.021 54 0.044 0.042 76 0.062
CCNI 4 77968308 77998719 0.421 85 0.539 0.041 58 0.078 1.50 x 10-6 22 7.56 x 10-6 
CCNA2 4 122737599 122745153 0.839 109 0.855 0.649 102 0.706 0.057 79 0.080
CCNB1 5 68462837 68474072 0.699 105 0.739 0.429 96 0.492 0.555 111 0.555
SCAMP1 5 77656339 77776562 0.072 57 0.141 0.120 78 0.171 0.036 75 0.054
SMN1 5 70220768 70248839 0.409 84 0.539 0.814 109 0.829 1.10 x 10-4 36 3.32 x 10-4 
ANKS1A 6 34857038 35085802 5.98 x 10-4 24 2.76 x 10-3 8.37 x 10-5 19 4.89 x 10-4 1.26 x 10-6 21 6.67 x 10-6 
DST 6 56322785 56819426 0.097 63 0.171 0.099 74 0.149 0.073 85 0.096
EPB41L2 6 131160487 131384462 0.423 87 0.539 8.40 x 10-3 48 0.019 1.51 x 10-9 12 1.40 x 10-8 
AKAP12 6 151561134 151679694 5.89 x 10-3 34 0.019 7.35 x 10-3 47 0.017 0.026 72 0.040
VIP 6 153071932 153080900 0.625 99 0.701 0.674 105 0.712 0.166 98 0.187
CBX3 7 26240831 26253227 0.888 110 0.896 0.671 104 0.712 0.306 105 0.323
SEPT7 7 35840596 35946715 0.151 66 0.251 0.105 75 0.155 0.226 101 0.248
CCDC136 7 128431464 128462187 0.267 74 0.400 2.92 x 10-3 42 7.71 x 10-3 3.72 x 10-4 41 1.01 x 10-3 
ATP6V1F 7 128502857 128505903 0.210 72 0.324 0.018 52 0.038 8.90 x 10-4 49 2.02 x 10-3 
PODXL 7 131185021 131241376 0.071 56 0.140 0.051 63 0.090 3.70 x 10-3 59 6.96 x 10-3 
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Gene Chr Start Stop
500 kb 1 Mb 2 Mb

MAGMA P Rank FDR MAGMA P Rank FDR MAGMA P Rank FDR
CNTNAP2 7 145813453 148118090 0.120 65 0.206 0.083 71 0.128 0.068 83 0.090
LINC00599 8 9757574 9760839 0.036 52 0.077 2.52 x 10-3 41 6.82 x 10-3 9.58 x 10-4 50 2.13 x 10-3 
BNIP3L 8 26239894 26270644 0.205 70 0.324 0.172 82 0.233 2.78 x 10-3 56 5.51 x 10-3 
CLU 8 27454434 27472328 0.051 54 0.105 0.019 53 0.040 0.092 89 0.114
CALB1 8 91070836 91095107 0.151 67 0.251 0.095 73 0.144 0.017 70 0.027
NTRK2 9 87283417 87641985 0.322 78 0.451 0.131 79 0.185 0.029 73 0.045
IARS 9 94972489 95056038 0.599 97 0.679 0.389 93 0.464 0.426 109 0.433
WDR31 9 116075502 116102620 9.41 x 10-4 25 4.18 x 10-3 2.49 x 10-3 39 6.82 x 10-3 0.047 78 0.067
CAMSAP1 9 138700333 138799060 1.31 x 10-5 12 1.21 x 10-4 2.51 x 10-3 40 6.82 x 10-3 8.02 x 10-4 46 1.94 x 10-3 
GDI2 10 5807186 5855512 0.030 48 0.068 0.280 91 0.342 0.142 96 0.164
CELF2 10 10838851 11378674 0.393 82 0.528 0.073 68 0.119 0.250 103 0.269
RAB18 10 27793103 27831166 0.015 41 0.042 3.73 x 10-4 30 1.38 x 10-3 6.19 x 10-3 62 0.011
DDIT4 10 74033677 74035797 1.29 x 10-9 2 5.52 x 10-8 2.89 x 10-9 7 4.59 x 10-8 1.84 x 10-9 13 1.49 x 10-8 
ADD3 10 111765627 111895323 1.65 x 10-8 4 4.55 x 10-7 1.60 x 10-6 14 1.27 x 10-5 4.00 x 10-6 27 1.65 x 10-5 
COMMD3 10 22605312 22609246 1.43 x 10-3 29 5.46 x 10-3 3.30 x 10-4 28 1.28 x 10-3 1.26 x 10-3 52 2.69 x 10-3 
SPON1 11 13984184 14289679 2.50 x 10-5 14 1.98 x 10-4 1.22 x 10-6 12 1.13 x 10-5 3.16 x 10-6 25 1.40 x 10-5 
CNTF 11 58390146 58393206 0.528 93 0.631 0.586 101 0.644 0.046 77 0.066
MPEG1 11 58975983 58980494 0.566 96 0.654 0.430 97 0.492 0.012 67 0.019
NCAM1 11 112831969 113149158 0.422 86 0.539 0.203 85 0.265 0.088 88 0.111
ARHGEF12 11 120207264 120360645 0.176 68 0.287 2.48 x 10-3 38 6.82 x 10-3 1.90 x 10-6 23 9.16 x 10-6 
APLP2 11 129939716 130014706 0.692 104 0.739 9.28 x 10-8 10 1.03 x 10-6 7.09 x 10-15 5 1.57 x 10-13

ACAD8 11 134123428 134135749 0.273 75 0.404 0.107 76 0.157 0.076 86 0.098
WNK1 12 861759 1020618 0.827 107 0.854 0.878 110 0.886 0.311 106 0.326
GABARAPL1 12 10365435 10375727 0.335 81 0.459 0.209 87 0.266 8.20 x 10-4 47 1.94 x 10-3 
LYRM5 12 25348150 25357949 0.682 103 0.735 0.077 69 0.124 2.51 x 10-6 24 1.16 x 10-5 
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Gene Chr Start Stop
500 kb 1 Mb 2 Mb

MAGMA P Rank FDR MAGMA P Rank FDR MAGMA P Rank FDR
TMBIM6 12 50135293 50158717 0.433 88 0.546 0.312 92 0.376 9.61 x 10-3 66 0.016
SPRYD3 12 53458100 53473204 0.027 46 0.066 0.207 86 0.266 0.065 82 0.088
CNOT2 12 70636774 70748773 0.083 61 0.149 0.047 61 0.085 0.167 99 0.187
TAOK3 12 118587606 118810750 0.038 53 0.080 0.113 77 0.163 5.54 x 10-3 61 0.010
ZC3H13 13 46528600 46626896 0.542 94 0.640 0.280 90 0.342 0.088 87 0.111
RB1 13 48877883 49056026 0.647 101 0.711 0.416 94 0.492 7.69 x 10-7 20 4.27 x 10-6 
PCDH9 13 66876966 67804468 5.14 x 10-4 22 2.59 x 10-3 2.05 x 10-4 23 9.91 x 10-4 5.47 x 10-4 43 1.41 x 10-3 
RBM26 13 79885962 79980393 5.65 x 10-4 23 2.72 x 10-3 9.24 x 10-6 16 6.41 x 10-5 1.48 x 10-4 39 4.21 x 10-4 
PSMB5 14 23485752 23504429 0.118 64 0.205 0.061 64 0.105 7.79 x 10-3 63 0.014
CNIH1 14 54890279 54908322 4.89 x 10-18 1 5.43 x 10-16 8.30 x 10-16 2 4.61 x 10-14 1.54 x 10-12 10 1.70 x 10-11

SNW1 14 78183942 78227542 1.42 x 10-4 19 8.30 x 10-4 9.11 x 10-5 20 5.06 x 10-4 8.50 x 10-4 48 1.97 x 10-3 
PAPOLA 14 96968713 97033453 0.013 39 0.037 1.44 x 10-4 22 7.29 x 10-4 1.06 x 10-3 51 2.31 x 10-3 
STRC 15 43891685 44002286 4.59 x 10-3 32 0.016 2.58 x 10-4 24 1.19 x 10-3 3.15 x 10-5 31 1.13 x 10-4 
CCNB2 15 59397284 59417244 0.028 47 0.067 2.14 x 10-3 37 6.43 x 10-3 3.85 x 10-5 32 1.34 x 10-4 
ANP32A 15 69070874 69113261 0.599 98 0.679 0.539 100 0.598 2.29 x 10-3 55 4.62 x 10-3 
IDH3A 15 78441698 78462884 2.43 x 10-3 30 9.00 x 10-3 3.35 x 10-10 4 8.93 x 10-9 1.49 x 10-13 8 2.07 x 10-12

TSR3 16 1399241 1401873 0.322 79 0.451 0.083 72 0.128 0.117 92 0.141
ZNF267 16 31885079 31928629 0.261 73 0.397 0.066 66 0.112 0.121 93 0.145
E2F4 16 67226068 67232821 2.14 x 10-5 13 1.83 x 10-4 4.02 x 10-10 5 8.93 x 10-9 6.75 x 10-11 11 6.81 x 10-10

NFAT5 16 69599869 69738569 6.85 x 10-3 35 0.022 1.85 x 10-3 36 5.70 x 10-3 1.90 x 10-8 16 1.32 x 10-7 
COX4I1 16 85833173 85840608 0.394 83 0.528 0.422 95 0.492 3.81 x 10-4 42 1.01 x 10-3 
MPRIP 17 16945790 17095962 0.033 50 0.073 0.142 80 0.197 0.097 90 0.120
TVP23B 17 18684458 18710027 0.053 55 0.108 3.22 x 10-3 43 8.31 x 10-3 3.93 x 10-6 26 1.65 x 10-5 
NLK 17 26369009 26523407 0.296 76 0.433 0.179 84 0.237 0.064 81 0.087
FAM134C 17 40731526 40761445 0.017 43 0.044 0.011 50 0.025 2.16 x 10-3 54 4.44 x 10-3 
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Gene Chr Start Stop
500 kb 1 Mb 2 Mb

MAGMA P Rank FDR MAGMA P Rank FDR MAGMA P Rank FDR
ATP5G1 17 46970148 46973233 1.49 x 10-9 3 5.52 x 10-8 1.40 x 10-6 13 1.19 x 10-5 5.63 x 10-7 18 3.47 x 10-6 
COX11 17 53029259 53046064 0.181 69 0.291 0.178 83 0.237 5.92 x 10-4 44 1.49 x 10-3 
DGKE 17 54911460 54946036 4.96 x 10-8 6 9.18 x 10-7 7.78 x 10-11 3 2.88 x 10-9 5.22 x 10-14 7 8.2 x 10-13

SEPT4 17 56597611 56618179 2.44 x 10-7 8 3.39 x 10-6 2.61 x 10-8 9 3.22 x 10-7 3.17 x 10-13 9 3.91 x 10-12

DHX40 17 57642886 57685713 0.030 49 0.069 3.35 x 10-4 29 1.28 x 10-3 6.26 x 10-17 2 3.47 x 10-15

DDX5 17 62494374 62503042 0.468 91 0.571 1.14 x 10-4 21 6.03 x 10-4 6.15 x 10-7 19 3.59 x 10-6 
PRKAR1A 17 66507921 66547457 4.69 x 10-5 15 3.47 x 10-4 4.40 x 10-6 15 3.25 x 10-5 8.92 x 10-6 29 3.42 x 10-5 
RBBP8 18 20513295 20606451 0.480 92 0.580 0.659 103 0.710 0.363 107 0.377
OSBPL1A 18 21742009 21977846 0.776 106 0.812 0.044 60 0.081 0.107 91 0.130
RAX2 19 3769087 3772219 1.06 x 10-3 28 4.21 x 10-3 3.30 x 10-3 44 8.33 x 10-3 1.11 x 10-4 37 3.32 x 10-4 
CLIP3 19 36505562 36523797 9.87 x 10-4 26 4.21 x 10-3 3.06 x 10-4 26 1.27 x 10-3 6.44 x 10-4 45 1.59 x 10-3 
SNAP25 20 10199477 10288068 0.018 44 0.046 0.043 59 0.081 0.036 74 0.053
SYS1 20 43988660 44005442 0.325 80 0.451 0.245 88 0.309 0.130 94 0.153
KCNB1 20 47988505 48099181 1.05 x 10-3 27 4.21 x 10-3 1.84 x 10-3 35 5.70 x 10-3 2.09 x 10-3 53 4.37 x 10-3 
OSBPL2 20 60813541 60871269 9.10 x 10-5 17 5.94 x 10-4 2.22 x 10-5 18 1.37 x 10-4 6.51 x 10-6 28 2.58 x 10-5 
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