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ABSTRACT

Predictive analytics play an important role in the management of decentralised energy systems. Pre-
diction models of uncontrolled variables (e.g., renewable energy sources generation, building energy
consumption) are required to optimally manage electrical and thermal grids, making informed decisions
and for fault detection and diagnosis. The paper presents a comprehensive study to compare tree-based
ensemble machine learning models (random forest — RF and extra trees — ET), decision trees (DT) and
support vector regression (SVR) to predict the useful hourly energy from a solar thermal collector system.
The developed models were compared based on their generalisation ability (stability), accuracy and
computational cost. It was found that RF and ET have comparable predictive power and are equally
applicable for predicting useful solar thermal energy (USTE), with root mean square error (RMSE) values
of 6.86 and 7.12 on the testing dataset, respectively. Amongst the studied algorithms, DT is the most
computationally efficient method as it requires significantly less training time. However, it is less ac-
curate (RMSE = 8.76) than RF and ET. The training time of SVR was 1287.80 ms, which was approximately
three times higher than the ET training time.

© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The existing building sector, which is one of the most substantial
consumers of energy, contributes towards 40% of world's total en-
ergy consumption and accounts for 30% of the total CO, emissions
(Ahmad et al., 2016a). Currently, energy systems are predominantly
based on fossils fuels. However, to reduce CO, emissions and tackle
the challenge of mitigating climate change, such systems need to
include a combination of fluctuating renewable energy resources
(RES) such as wind and solar energy, along with residual resources
(e.g., biomass) (Lund et al., 2014). In recent years, more focus is
being placed on increasing the energy efficiency, incorporating
renewable energy generation sources and optimally managing the
fluctuation of energy supply (Mathiesen et al., 2015). Energy gen-
eration through direct harnessing of solar radiation is one of the
largest renewable energy technologies currently exploited world-
wide. Solar energy currently constitutes a significant proportion of
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renewable energy generation in the EU. The majority of this energy
generation is currently harnessed through solar photovoltaic sys-
tems for producing electricity, accounting for around 4.3% of total
installed renewable energy in the EU in 2016 (Eurostat, 2016). In
contrast, solar thermal energy only accounts for around 2% of
installed renewable generation. To ensure a renewable energy
future, it is vital that heating and cooling demands are also met by
renewable energy technologies. It is expected that solar thermal
energy will continue to grow to play a significant future role in this
endeavour. Solar thermal energy is most commonly harvested via
glazed evacuated tube collectors or flat-plate collectors. In a typical
flat-plate collector, solar radiation passes through a transparent
cover. A large portion of this energy is absorbed by a blackened
absorber surface, which is then transferred to a fluid in tubes
(Kalogirou, 2004). Evacuated thermal collectors contain a heat pipe
inside a vacuum-sealed tube. The heat pipe is attached to a black
copper fin that fills the absorber plate. These collectors also contain
a protruded metal tip on top of each tube, which is attached to the
sealed pipe. A small amount of fluid, contained in the heat pipe,
undergoes an evaporating-condensing cycle. The fluid evaporates
and rises to the heat sink region, where it dissipates latent heat, and
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condenses back to the collector to repeat the process (Kalogirou,
2004). Solar thermal energy is most commonly harvested on a
smaller residential scale. However, solar thermal generation is
increasingly being integrated into larger scale projects in combi-
nation with supplementary generation as part of wider, district-
scale energy systems (Sawin et al., 2017). Prediction models, a
core component of smart-grids, of solar thermal systems, could be
used for following applications;

e The comparison of predicted performance with the actual per-
formance of a system could be used as an indication of potential
failure (e.g. shaded solar thermal collector, valve failure, solar
collector fault, etc.). Models can be used to automatically acti-
vate an alarm in case of any problem so that any potential
malfunction could be corrected promptly.

e Optimal control of decentralised energy systems can be ach-
ieved by using prediction models of uncontrolled variables (e.g.,
energy generation from RES, building heating demand, etc.). It
allows building users, owners, mechanical and electrical (M&E)
engineers, thermal-grid operators, etc. to make informed de-
cisions such as shifting energy consumption to off-peak periods,
increasing penetration of RES, etc.

e Prediction models could be used to analyse performance char-
acteristics of different solar collector types such as flat and
evacuated, different system configurations, etc. The models
could be used by engineers, while designing a system, to achieve
maximum efficiency with minimum cost and computational
resources.

1.1. Related work

Prediction and modelling of solar thermal and renewable energy
generation systems have been addressed in the existing body of
literature. Broadly, two methods are available for modelling solar
thermal systems; one is built upon the analytical understanding of
the thermodynamic phenomena within the system, the second is a
rapidly growing field based on computational intelligence tech-
niques. This section will give an overview of the two methods
through reviewing existing studies within the literature as well as
outlining the novelty and originality of the present work.

Calculation of the performance of a solar thermal system is
highly complex when using an analytical modelling approach. An
overview of the theoretical equations governing the thermal dy-
namics of solar thermal collectors can be found in Duffie and
Beckman (2013). Often, computational models are required to
capture the physical phenomena at the expense of a large amount
of computational time and power. A combination of finite differ-
ence and electrical analogy models were used in (Notton et al.,
2013; Motte et al., 2013) to calculate the outlet temperature of a
building integrated solar thermal collector. The accuracy of the
numerical model was validated against experimental data allowing
the authors to simulate future geometric and material design al-
terations to improve the efficiency of the solar collector. A nu-
merical modelling approach was applied to a building integrated,
aerogel covered, solar air collector in Dowson et al. (2012). From
this, the authors were able to calculate outlet temperatures and
collector efficiency from weather conditions. The model outputs
were validated to within 5% of the measured values over a short
measurement period. As a result, the authors could simulate much
longer time periods to demonstrate the potential efficiency and
financial payback of their proposed solution. A numerical model-
ling approach within the MATLAB environment applied to a v-
groove solar collector was developed in Karim et al., (2014). The
resulting model can predict the air temperature at any part of the

solar collector as well as the efficiency to within a 7% relative error.
Whilst the described modelling approaches achieve accurate cal-
culations of solar thermal performance; they do require highly
complex mathematical modelling using thermodynamic principles.
In these cases, the time and effort are justified due to the experi-
mental nature of the solar collectors presented. However, in gen-
eral, analytical models are computationally intensive, and in most
cases, exhaustive exploration of parametric space for online control
is not feasible. Also, most consumers would not require such
detailed modelling of solar thermal collector systems. Therefore,
simpler and more generic modelling approaches are required to be
able to forecast the key variables, namely outlet temperature, and
useful heat energy gain.

Data-driven models are often the preferred choice where fast
responses are required (e.g., near real-time control applications)
and where pertinent information for detailed simulation/numerical
models is not available (Ahmad et al., 2016b). Data-driven models
capture the underlying physical behaviour by identifying trends in
the data and do not require detailed information about system
characteristics. These techniques have been extensively applied to
model or predict several parameters related to energy systems. For
example solar PV generation was predicted in (Kharb et al., 2014;
Yap and Karri, 2015; Yona et al., 2007), wind energy in (Cadenas and
Rivera, 2009; Catalao et al., 2011; Kusiak et al., 2009) and building
energy demand in (Ahmad et al., 2017; Benedetti et al., 2016; Chae
et al., 2016). They have proven accuracy and applicability to energy
scheduling problems with the significant advantage of simplicity
and speed.

Application of machine learning algorithms for solar thermal
collectors is so far limited and most of the previous research studies
are focused on using artificial neural networks. A recent article by
Reynolds et al. (2018) provides an overview of different modelling
techniques for solar thermal energy systems. An adaptive neuro-
fuzzy inference system (ANFIS) modelling approach was applied
to a solar thermal system in (Yaici and Entchev, 2016). The model
used time, ambient temperature, solar radiation, and stratification
tank temperatures at the previous to predict the heat input from
the solar thermal collector and tank temperature at the next
timestep. The resulting predictions were compared with an ANN
based on the same data and found both models performed
comparably. Similarly, Géczy-Vig and Farkas (2010) used an ANN to
model the temperature at different layers of a solar-connected
stratification tank using temperatures from the previous timestep
as an input as well as mass flow rate and solar radiation. The model
achieved accurate predictions with an average deviation of 0.2°C
but only predicted 5 minutes ahead. An ANN was used in (Kalogirou
et al., 2014) to allow prediction of daily energy gain and resulting
thermal storage tank temperature of a large-scale solar thermal
systems. Several combinations of input data were trialled including
daily solar radiation, average ambient temperature, and storage
tank initial conditions. Results on test data achieved an R? value of
around 0.93 although a total daily figure is less likely to be useful
than a daily profile with hourly or sub-hourly resolution. Both
(Caner et al., 2011; Esen et al., 2009) applied ANN to calculate the
efficiency of experimental solar air collectors. Both of these studies
achieved high R? values, however, both case studies have a limited
amount of training data. Therefore, required many, potentially
difficult to monitor, input features. Sozen et al. (2008) also aimed to
calculate the efficiency of a solar thermal collector using an ANN.
More generic inputs were used such as solar radiation, surface
temperature, and tilt angles. The model could accurately predict the
efficiency of a solar thermal collector with a maximum deviation of
2.55%. The authors argued that the resulting, more generic, model
can therefore be used throughout the region to calculate the effi-
ciency of any similar flat plate collector. Kalogirou et al. (2008)



812 M.W. Ahmad et al. / Journal of Cleaner Production 203 (2018) 810—821

utilised ANN prediction of solar thermal system temperatures to
develop an automatic fault diagnosis module. The ANN models
were trained using fault free TRNSYS simulation data. The pre-
dictions of fault free temperature resulting from the trained ANN
were compared to the real system data from which the likelihood of
system failure could be determined. The fault detection system was
shown to effectively detect three types of failure relating to the
collector, the pipe insulation, and the storage tank. Liu et al. (2015)
tested the applicability of two types of ANN, multi-layer feed-for-
ward neural networks (MLFN) and general regression neural net-
works (GRNN) as well as a support vector machines (SVM) model to
calculate the heat collection rate and heat loss coefficient of solar
thermal systems. They aimed to allow calculation using simple,
portable test instruments rather than the current method which
requires deconstruction of the entire system. They find that the
MLEFN is best suited to predicting the heat collection rate but the
GRNN performed better at predicting the heat loss coefficient.
Table 1 summarizes previous work on modelling solar thermal
energy systems.

1.2. Motivation, objectives and contributions

Thermal performance analyses of the solar thermal system are
too complex; analytical models are computationally intensive and
require a considerable amount of computational time to accurately
model these systems. On the other hand, data-driven approaches

are seldom used and most of the used data-driven approaches are
based on artificial neural networks or its variants. To the best of
authors’ knowledge, there are not any studies that investigated the
applicability of tree-based methods and in particular tree-based
ensemble methods for modelling solar thermal systems. From the
literature, it was also found that some of the most widely used
machine learning algorithms (e.g. artificial neural networks, deci-
sion trees) are prone to be unreliable due to their instability issues
(Breimanet al., 1996). The instability of these algorithms may result
in large variations in the model output due to small changes in the
input data (Breimanet al., 1996; Wang et al., 2018). As highlighted in
the above section, the developed models from this research could
be used for real-time optimisation, fault detection and diagnosis.
Therefore, instability of models could cause failure of the prediction
models as these application rely on the accuracy of the developed
models. In the early 1990s, more advanced machine learning
techniques, ensemble learning, were developed to overcome these
instability issues (Wang et al., 2018; Hansen and Salamon, 1990).
Ensemble-based methods generally perform better than the
individual learners that construct them, as they overcome their
limitations and there might not be enough data available to train a
single model with better generalisation capabilities (Dietterich,
2000; Fan et al., 2014). The paper compares the accuracy in pre-
dicting hourly useful solar thermal energy (USTE) by using four
different machine learning algorithms: random forest (RF),
extremely randomised trees/extra tree (ET), decision trees (DT) and

Table 1
Review summary of solar thermal system modelling techniques.

Ref Method Input Parameters Output Parameters Model Accuracy Location

(Notton et al., 2013) Numerical Modelling ~ Thermodynamic parameters, Component temperatures 5—10% Relative RMSE France
weather conditions

(Dowson et al., 2012) Numerical Modelling ~ Thermodynamic parameters, Solar thermal outlet - UK
weather conditions, inlet temperature
temperature

(Karim et al., 2014) Numerical Modelling ~ Thermodynamic parameters, Component temperatures, air <7% Relative Error -
weather conditions, inlet temperatures, efficiency
conditions

(Yaici and Entchev, 2016) ANFIS Ambient temperature, solar Tank temperature, heat input, 1-9% Relative Error Canada
radiation, previous tank solar fraction
temperatures

(Géczy-Vig and Farkas, 2010)  ANN Ambient temperature, solar Tank temperature at 8 layers 0.24° Average Error Hungary
radiation, mass flow rate,
previous tank temperature

(Kalogirou et al., 2014) ANN Average daily temperature, Daily energy output, final tank r=95-96% —
total daily solar radiation, temperature
starting tank temperature

(Caner et al., 2011) ANN Date, time, inlet and outlet Collector efficiency R% = 0.9967, Turkey
collector temperature, tank RMSE = 1.73%
temperature, ambient and
surface temperature, solar
radiation

(Esen et al., 2009) WNN, ANN Ambient temperature, solar Efficiency, outlet temperature R? =0.9992/0.9994, Turkey
radiation, absorbing plate RMSE = 0.0094/0.0034
temperatures

(Sozen et al., 2008) ANN Date, time, surface Efficiency R%=0.983 Turkey
temperature, solar radiation,
declination, azimuth and tilt
angles

(Kalogirou et al., 2008) ANN Global radiation, beam Collector inlet and outlet R? =0.9920, 0.9996, Cyprus
radiation, ambient temperature, storage inlet and 0.8823, 0.9504
temperature, incidence angle, outlet temperature
wind speed, humidity, flow
availability, input temperature

(Liu et al.,, 2015) MLFN, GRNN, SVM Tube length, number and Heat collection rate, heat loss RMSE = 0.14/0.73 China

radius, hot water mass,
collector area, tilt angle, final
temperature

coefficient

(MLEN), = 0.33/0.71

(GRNN), = 0.29/0.73 (SVM)

Note - ANFIS (Adaptive Neuro-Fuzzy Inference System), ANN (Artificial Neural Network), WNN (Wavelet Neural Network), MLEN (Multi-Layer Feed-Forward Neural Network),
GRNN (General Regression Neural Network), SVM (Support Vector Machine), RMSE (Root Mean Squared Error).
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support vector regression (SVR). The work also does not take into
account system control variables as input features, which increases
the complexity of the problem. Furthermore, the models developed
in this study can provide a 24-h ahead prediction of USTE at an
hourly time-step rather than the total daily sum or parameters with
limited applicability such as efficiency.

The research presented in this paper mainly addresses the
following aspects;

o the use of ensemble-based techniques for solar thermal systems
as current application of machine learning algorithms are
limited and most of the previous research work are focussed on
artificial neural networks and its variants,

o the use of tree-based ensemble methods to provide insight into
the analysis of the variable importance of each input feature, i.e.
using them as feature selection tools. In most of the existing
research, domain knowledge is widely used to reduce input
variable space. The presented analysis will allow researchers to
gain better understanding of the modelled systems, and,

o to demonstrate that tree-based ensemble methods can improve
the prediction and stability of the developed model. Also, they
are more computationally efficient as compared to the con-
ventional methods used in the literature (for example, support
vector regression in our case).

The rest of the paper is organised as follows: Section 2 describes
the principles of random forest, extra trees, decision trees and
support vector regression. The methodology of the developed
prediction models is presented in Section 3, along with feature
selection process and results. Prediction results and discussion are
detailed in Section 4, whereas concluding remarks and future
research directions are presented at the end of the paper.

2. Machine learning methods

Four data-driven algorithms for predicting useful solar thermal
energy are introduced in this section. These algorithms include
extra trees (ET), random forest, decision trees, and support vector
regression (SVR).

2.1. Support vector machines

Support vector machine is one of the most widely used
computational intelligence technique applied in building energy
and renewable energy generation prediction and modelling appli-
cations. It provides a sparse pattern of solutions and flexible control
on the model complexity (Deng et al., 2018), making it highly
effective in solving non-linear problems even with a small sample
of training datasets. SVM adopts the structure risk minimisation
(SRM) principle; which instead of only minimising the training
error (this the principle of traditional empirical risk minimisation),
minimises an upper bound of the generalisation error consisting of
the sum of the training error and a confidence interval (Dong et al.,
2005). SVM is commonly applied with different kernel functions to
map the input space into a higher dimensional feature space, which
introduces the non-linearity in the solution, and to perform a linear
regression in the feature space (Li et al., 2009; Vapnik, 2013).
Assuming normalised input variables consist of a vector X;, and Y; is
the useful solar thermal energy (i represents the i data-point in
the dataset). In this case, a set of data points can be defined as
{(X,-,Y,-)}f’:], where N is the total number of samples. An SVM
regression approximates the function using the form given in
Equation (1) (Dong et al., 2005; LIN et al., 2006).

Y=fX)=W-@X)+b (1)

A

Observed

Predicted i

\/

X

Fig. 1. The parameters of the support vector regression. Source (Dong et al., 2005; Li
et al.,, 2009).

In Equation (1), @(X) denotes the high-dimensional space. A
regularised risk function, given in Equation (2), is used to estimate
coefficients W and b (Li et al., 2009).

Minimise : %kuz +c% izN]:Le(Yiaf(Xi)) (2)
0, Yi —fXp)| <e
Le(Yi.f (X)) = { Y — F(X)| — e, l)thers( ! (3)

|W|1? is known as regularised term and C is the penalty parameter
to determine the flexibility of the model. The second term of
Equation (2) is the empirical error and is measured by the e-in-
tensity loss function (Equation (3)). This defines a e tube shown in
Fig. 1. If the predicted value is within the tube, then the loss is zero.
Whereas if it is outside the tube, then the loss is the magnitude of
the difference between the predicted value and the radius ¢ of the
tube (Li et al., 2009). To estimate W and b, the above equation is
transformed into the primal objective function given by Equation
(4) (Li et al., 2009).

Minimise 1 1q ;
w2 WP+ Cy Y G- @)

YifW'Q(Xi)beSJrQ
W-g(x)+b<e+(j, i=12....N
(>0 >0

Subject to:

In the above equations, {; and {j are the slack variables. By
introduction of kernel function k(X;, X;), Equation (4) is written as
bellow;

Minimise 1 L & X i
(e fa) ©2 2 2 (@ 90 (6~ ) 06
e (5)
N N
—e> (a5 —af) +> Yi(a — af)
i=1 i=1
N
Subject to: 12::1 (0 ) =0
a;, 05 €0,C]

In Equation (5) «;,«; are Lagrange multipliers, i and j are
different samples. Therefore, Equation (1) becomes (Li et al., 2009);
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N
Y=FX)=>_ (4 — i) k(X;, Xj) + b (6)
i=1

1

2.2. Random forest

A random forest (RF) is a tree-based ensemble method and was
developed to address the shortcomings of traditional Classification
and Regression Tree (CART) method. RF consists of a large number
of weak decision tree learners, which are grown in parallel to
reduce the bias and variance of the model at the same time
(Breiman, 2001). For training a random forest, N bootstrapped
sample sets are drawn from the original dataset. Each bootstrapped
sample is then used to grow an unpruned regression (or classifi-
cation) tree. Instead of using all available predictors in this step,
only a small and fixed number of randomly sampled K predictor are
selected as split candidates. These two steps are then repeated until
C such trees are grown, and new data is predicted by aggregating
the prediction of the C trees. RF uses bagging to increase the di-
versity of the trees by growing them from different training data-
sets, and hence reducing the overall variance of the model
(Rodriguez-Galiano et al., 2015). A RF regression predictor can be
expressed as;

~c 1&
fre(X) = EZ Ti(x) (7)
i-1

Training dataset

K features

! |

Sample 1

where X is the vectored input variable, C is the number of trees, and
T;(x) is a single regression tree constructed based on a subset of
input variables and the bootstrapped samples. RF can natively
perform out-of-bag error estimation in the process of constructing
the forest by using the samples that are not selected during the
training of the i-th tree in the bagging process. This subset is called
out-of-bag, which can compute an unbiased estimation of gener-
alisation error without using an external text data subset (Breiman,
2001). RF also enables assessment of relative importance of input
features, which is useful for dimensionality reduction to improve
model's performance on high-dimensional datasets (Ahmad et al.,
2017). The RF switches one of the input variables while keeping
the remaining constant, and measures the mean decrease in
model's prediction accuracy, which is then used to assign relative
importance score for each input variable (Breiman, 2001). Fig. 2
shows the structure of random forest algorithm.

2.3. Extra trees

Extremely randomised trees (or extra trees) (Geurts et al., 2006)
algorithm is a relatively recent machine learning techniques and
was developed as an extension of random forest algorithm, and is
less likely to overfit a dataset (Geurts et al., 2006). Extra tree (ET)
employs the same principle as random forest and uses a random
subset of features to train each base estimator (John et al., 2016).
However, it randomly selects the best feature along with the cor-
responding value for splitting the node (John et al., 2016). ET uses
the whole training dataset to train each regression tree. On the
other hand, RF uses a bootstrap replica to train the model.

Bootstrap N samples

N
O
inBagN || OOBN |q@

Tree T¢

Terminal nodes/leaves of a tree

Tree nodes except leaves of a tree

Building C regression trees

—

Final predicted value

Fig. 2. Structure of random forest.
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2.4. Decision trees

A decision tree (DT) is an efficient algorithm for classification
and regression problems. The basic idea of the decision tree algo-
rithm is to split a complex problem into several simpler problems,
which might lead to a solution that is easier to interpret (Xu et al.,
2005). A DT represents a set of conditions, which are hierarchically
organised and successively applied from root to leaf of the tree
(Breiman et al., 1984). DTs are easy to interpret and their structure is
transparent. DTs produce a trained model that can represent logical
rules, which can then be used to predict new dataset through the
repetitive process of splitting (Ahmad et al., 2017). According to
Breiman et al. (1984); in a decision tree method, features of data are
referred as predictor variables whereas the class to be mapped is
the target variable. For regression problems, the target variables are
continuous.

To train a DT model, recursive partitioning and multiple re-
gressions are performed from the training dataset. From the root
node of the tree, the data splitting process in each internal node of a
rule of the tree is repeated until the stopping criterion is met
(Rodriguez-Galiano et al., 2015). In DT algorithm, each leaf node of
the tree contains a simple regression model, which only applies to
that leaf only. After the induction process, pruning can be applied to
improve the generalisation capability of the model by reducing the
tree's complexity (Rodriguez-Galiano et al., 2015). For a solar
thermal collector application, a simple example of decision tree to
predict USTE is depicted in Fig. 3. The output of the decision tree is
the useful solar thermal energy. It is worth mentioning that the
decision tree is only for demonstration purpose and the actual DT
used in the analysis is more complex (i.e., more than two features
are considered when looking for best split and the tree is deeper).
The decision tree shown in Fig. 3 only considers solar radiation and
outdoor dry-bulb air temperature as input variables, and the
maximum depth of the tree is restricted to 3.

3. Material and methods

This section details the training and testing datasets, feature
selection process and results. The section also details metrics used
for assessing models’ predictive performance. The implementation
of extra trees, random forest, support vector regression included in
the scikit-learn (Pedregosa et al., 2011) module of python pro-
gramming language was used for all developmental and experi-
mental work. The work was carried out on a personal computer
(Intel Core i5 2.50 GHz with 16 GB of RAM).

3.1. Data description

The studied solar thermal system is installed at an experimental
facility in Chambéry, France and has a total area of 400 m?. The solar
loop contains a mixture of 60% and 40% water-glycol, and has a
density of 1044 kg/m>. The mass flow rate, supply and return
temperatures are monitored every minute. The building also has an
on-site weather station; which monitors outdoor dry-bulb air
temperature, solar radiation, wind speed and direction, relative
humidity and atmospheric pressure. In total, after removing out-
liers and missing values, the training and testing datasets contained
5580 data samples. The data was collected from 01st April 2017 to
25th January 2018. Predicting USTE is a challenging task as none of
the system variables (i.e. mass flow rate, supply and return tem-
perature) are considered as input variables. The system variables
are not available in advance and therefore are not suitable for future
predictions (unless separate models are developed for those vari-
ables). Also, USTE did not exhibit any clear pattern as opposed to
solar PV prediction (which is almost directly related to solar radi-
ation), as it would also depend on energy load on thermal storage.
Training data is taken as 70% of the whole dataset, and remaining
data samples were used as testing dataset. Fig. 4 displays the scatter
plots for each of the input variables with USTE. It is clear that any

Sol rad.<=563.8
Samples = 3906

Value = 16.185
I
v v
Sol rad.<=396.3 Sol rad.<=721.3
Samples = 3353 Samples = 553
Value = 4.31 Value = 88.21
| |
v v v v
Sol rad.<=213.3 Out Temp.<=14.8 Sol rad.<=630.6 Out Temp.<=23.0
Samples = 3117 Samples = 236 Samples = 191 Samples = 362
Value = 1.82 Value = 37.21 Value = 68.09 Value = 98.82
| |
v v v v
Samples = 2808 Samples = 309 Samples = 137 Samples = 225
Value = 0.62 Value = 12.70 Value = 108.35 Value = 93.02
* v v *
Samples = 58 Samples =178 Samples = 74 Samples = 117
Value = 47.44 Value = 33.88 Value = 57.29 Value = 74.93

Fig. 3. Decision tree for predicting energy gain from solar collector. Note: Sol rad.: solar radiation, Out Temp.: outdoor dry-bulb air temperature.
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Fig. 4. Scatter plot demonstrating the relation between input and output variables.

relationship of input features and the output variable is not trivial,
and simple learners may not be able to accurately predict USTE. It is
also important to mention that features were normalised before
applying SVR to avoid features in greater numeric ranges domi-
nating those in smaller numeric ranges. In this paper, we will focus
on developing machine learning models for useful solar thermal
energy (Qc), without using system controlled and uncontrolled
variables (i.e. mass flow rate, and supply and return temperature).
The absorption heat transfer rate or USTE, Q,, can be calculated by
using Equation (8) (Karsli, 2007).

Qc =mx Cp X (Tout — Tip) (8)

In Equation (8), m is the mass flow rate, C, is the specific heat of
the solar collector fluid, and T;, and Ty, are the inlet and outlet
temperatures of the solar collector.

3.2. Uncertainty analysis

To assess the performance of developed models on training and
testing datasets; root mean square error (RMSE), mean absolute
error (MAE) and the determination coefficient (R%) were calculated.
The determination coefficient was adopted to measure the corre-
lation between the actual and estimated USTE values. The former
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Mon mCorrelation BET @RF
Day z]
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RH =

DBT !
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Pearson correlation/feature importance

Fig. 5. Feature importance and Pearson correlation for solar thermal useful energy
prediction. Notes: Pres.: atmospheric pressure, Mon: month of the year, Day: day of the
week, Hr: hour of the day, WD: wind direction, WS: wind speed, Rad: Solar radiation,
RH: Outdoor air relative humidity, DBT: outdoor air dry-bulb temperature.

two indicators are defined as below;

(9)

1
MAE:ﬁElYi*Yi\ (10)

where y; is the predicted value, y; is the actual value, and N is the
total number of samples. In this work, root mean squared error
(RMSE) is used as the primary metric.

3.3. Feature subset selection

Feature selection is an important step in the development of
machine learning models. The number of input features may vary
from two to hundreds of features, among them many may be un-
important or have lower correlation with the target variables.
Previous research works have demonstrated that prediction
models are often affected by high variance in the training dataset
(Neupane et al., Aung). Feature selection methods increase models'
performance on high-dimensional datasets by reducing training
time, enhancing model's generalization capability, improving
interpretability of the models (Ahmad et al., 2017). Random forest
and extra trees also allow the estimation of the importance of each
feature in the model. Fig. 5 shows the results of internal calculation
carried out by ET and RF algorithms, as well as features' Pearson
correlation with hourly useful thermal energy gain. It is interesting
to notice that each of the machine learning models has different
variable importance score for some of the input features. As an
example; for the ET model, outdoor relative humidity has a variable
importance score of 0.072. Whereas, RF has a low score for relative
humidity (i.e. 0.0058). Solar radiation was considered as the most
important feature by both algorithms. As expected, Outdoor dry-
bulb air temperature, solar radiation and hour of the day present
a positive correlation with the useful solar thermal energy, as
demonstrated by their Pearson correlation coefficients. On the
other hand, outdoor relative humidity, wind speed, wind direction,
the month of the year and atmospheric pressure are negatively
related to the useful solar thermal energy. Later in the results, we
will discuss that the prediction of USTE could be improved by
integrating demand load prediction. The prediction could also be
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improved by considering previous hour useful solar thermal en-
ergy. However, in the current work, previous hour values are not
considered and will need to be investigated in future.

4. Prediction results and discussion

This section details the prediction results obtained with tree-
based ensemble machine learning methods (random forest and
extra trees), support vector regression and decision trees; which
are described in Section 2. This section also details an assessment of
the impact of different hyper-parameters on model's performance.

4.1. Hyper-parametric tuning

Model's hyper-parameters has a great influence on its predictive
performance, robustness and generalization capability. This section
details the selection of optimal hyper-parameters of studied algo-
rithms. For this purpose, a stepwise searching method is used to
find optimal values of model's hyper-parameters. In order to pre-
vent over-fitting problems and analyse models' performance on
unknown data, a cross-validation approach is used to select optimal
hyper-parameters. In k-fold cross-validation, the training dataset is
divided into k subsets of equal size. Each k subset is used as a
validation dataset, whereas the remaining k-1 subsets are used as
training dataset. In this study, five-fold validation is performed for
selecting optimal hyper-parameters.

4.1.1. Support vector regression

Different factors affect the generalisation capabilities of support
vector regression, i.e. to predict unseen data after learning carried
out on training dataset. SVR needs the adjustment of (a) kernel
function — linear, polynomial, sigmoid and radial-basis (RBF); (b)
gamma of the kernel function, except for linear kernel function; (c)
degree of the polynomial kernel function; (d) bias on the kernel
function, only applicable to the sigmoid and polynomial kernels; (e)
penalty parameter (C) of the error term and; (f) radius (e). These
parameters need to be tuned to make sure that the developed
models do not under fit or over fit data.

In the literature, RBF kernel has been widely used for regression
problems as it non-linearly maps samples into a high dimensional
space, and can easily handle the non-linear relationship between
class labels and attributes (Dong et al., 2005). A polynomial kernel
function has more hyper-parameters to tune as compared to RBF.
Due to its wide use and lower complexity (fewer hyper-parameters
to consider), RBF was selected for this study. For RBF, there are three
hyper-parameters to tune, i.e., kernel coefficient (y), penalty
parameter of the error term (C) and radius (e). According to the
definition of the kernel coefficient by Chang and Lin (2011), —y =
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1/K, where K is the number of input features. Therefore, for this
paper, v = 1/5 was used to estimate outlet temperature and useful
energy from a solar thermal heating system. Penalty parameter (C)
of the error term is used to find the trade-off between the model
complexity and the degree to which deviations larger than ¢ are
tolerated in the optimisation formulation (represented by Equation
(4)). A small value of C will place a small weight on the training data
and therefore will result in an under-fit model. On the contrary, a
too large value of C will only minimise the empirical risk, and hence
will under-fit the training dataset. In this study, a step wise search
was used to find optimal values of C and e. Initially, £ was fixed at 0.1
while varying C over the range of 2~7 and 27. From results in Fig. 6, it
is evident that initially there was significant improvement in the
performance of the model with an increase of C. However, from the
results, it was found that higher values of C did not significantly
improve the performance and also it was computationally intensive
process to train SVR with larger C values. Therefore, a value of
C=25 was selected for further experiments. Too large values of
parameter e also deteriorate model's accuracy as it controls the
width of the e-intensive zone (Dong et al., 2005). Values of ¢ were
varied over the range of 2710 and 2°, while keeping C=2. It is
evident from Fig. 6 that larger values drastically reduce the accu-
racy of the model. From the results, a value of e = 27 was selected
as it provided best results.

4.1.2. Random forest, extra trees and decision trees

Tree-based ensemble methods (extra trees and random forest)
need the adjustment of three hyper-parameters, i.e. number of
trees (M), number of minimum samples required for splitting a
node (ny;,) and attribute selection strength parameter (K).
Parameter M represents the total number of trees in the forest and
is directly related to the computational cost. Therefore, a reason-
able number of trees need to be selected to find a trade-off between
predictive power and computational time. For this paper, 100
number of trees were selected in the forest as increasing the
number of trees to greater than 100 did not significantly improve
prediction results. K denotes the number of randomly selected
features at each node during the tree growing process, and de-
termines the strength of variable selection process. For most
regression problems, this parameter is set to p, where p is the
dimension of input features vector (Geurts et al., 2006).

For ET, DT and RF, it was found that n,;, did not significantly
enhance the performance of the models and therefore a default
value of 2 was selected for this parameter. K values were varied in
the range of (Ahmad et al, 2016a; Kalogirou, 2004) (i.e. total
numbers of features selected for model construction process). For
ET and DT, K=5 resulted in better results. Whereas, for RF, K=2
produced optimal results. It is worth mentioning that for RF and ET,
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Fig. 6. (a) The results of various C, where ¢ =0.1 and (b) the results of various , where C=2°.
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Table 2
Results of various dpy for ET, RF and DT.

dmin Extra trees Random forest Decision Tree
R?(-) RMSE (kWh) MAE (kWh) R?(-) RMSE (kWh) MAE (kWh) R?(-) RMSE (kWh) MAE (kWh)

1 0.7634 16.1055 10.5532 0.5226 22.8774 15.9858 0.7819 15.4619 8.6532
3 0.8944 10.7576 5.1266 0.8982 10.5639 5.9474 0.9081 10.0368 4.5962
5 0.9317 8.6529 3.8446 0.9397 8.1295 40182 0.9300 8.7570 3.4668
7 0.9443 7.8122 3.3374 0.9513 7.3028 3.2673 0.9248 9.0782 3.4126
9 0.9523 7.2327 2.9462 0.9552 7.0041 3.0218 0.9239 9.1292 3.3824
10 0.9538 7.1187 2.8737 0.9570 6.8647 29168 0.9239 9.1322 3.3420
11 0.9536 7.1287 2.8534 0.9570 6.8660 2.8971 0.9184 9.4566 3.4448
12 0.9537 7.1252 2.8249 0.9560 6.9443 2.9236 0.9201 9.3552 3.3994
13 0.9529 7.1854 2.8382 0.9567 6.8874 2.8882 0.9194 9.3982 3.4511
15 0.9524 7.2227 2.8225 0.9570 6.8680 2.8643 09173 9.5232 3.5334
20 0.9526 7.2080 2.8242 0.9553 7.0002 2.8986 0.9099 9.9370 3.6294

Notes— For RF: ny,;, =2, K=2, M=100; for ET: ny;, =2, K=5, M=100; and for DT: n,;;, =2, K=5.

Table 3
Comparison of models on full training and testing datasets.
Model Training dataset Testing dataset Training time (ms)
R?(-) RMSE (kWh) MAE (kWh) R?(-) RMSE (kWh) MAE (kWh)
DT 0.957 6.780 2.908 0.930 8.758 3.467 16.00
ET 0.987 3.791 1.630 0.954 7.119 2.874 421.00
SVR 0917 9.460 4.459 0.903 10.287 4.755 1287.80
RF 0.985 3.955 1.796 0.957 6.8651 2917 491.60
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Fig. 7. Prediction results from DT, ET, RF and SVR models on testing data samples.

K parameter did not drastically enhance the results. On the con-
trary; for DT, K significantly enhance the prediction results, i.e. for
values of K equals to 1 and 5, models has R? values of 0.8577 and
0.9140, respectively. Table 2 shows the dependence of models’
performance on maximum tree depth. Generally, deeper trees
resulted in better performance. For ET and RF, trees deeper than 10
started to deteriorate and led to under-fitting. A maximum depth of
5 levels produced marginally better results for DT. From the results,
it is evident that for the studied tree-based ensemble algorithms,
default parameters are near-optimal and could result in a robust
prediction model.

4.2. Model analytical results

Table 3 presents the RMSE, R?, and MAE on training and testing
datasets for predicting USTE. Generally, errors on the testing
dataset show the generalisation capabilities of the developed
models. On the other hand, errors on the training dataset show the
goodness-of-fit of the developed models. Results in Table 3 suggest
that RF and ET achieved the best performance across training and
testing datasets. RF achieved RMSE values of 3.96 and 6.86 on
training and testing datasets, respectively. Whereas, ET has RMSE
values of 3.79 on training and 7.12 on testing datasets. The results
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showed that tree-based ensemble methods have nearly compara-
ble performance. SVR has the highest training and testing errors,
while DT has achieved marginally better performance as compared
to SVR. Fig. 7 illustrates the plot for hourly USTE values predicted by
all studied machine learning models vs measured data. It can be
concluded that both ET and RF showed strong non-linear mapping
generalisation ability, and can be effective in predicting hourly
USTE. It was found that best performing methods, RF and ET, over
predicted some of the values. Even though the solar radiation
values were higher and it was expected to have higher values of
USTE. However, the difference between supply and return tem-
perature was small, and therefore the actual value of USTE was
lower. In the future work, this problem will need to be tackled, and
it is envisaged that considering thermal load on the storage tank as
an input variable will further improve models' accuracy. SVR al-
gorithm did not capture the peaks values of USTE and therefore
produced worse results as compared to other algorithms. RF closely
followed the USTE pattern and therefore performed better on the
testing dataset. Also, ET algorithm had the lowest training time
(421 ms) than RF (491.60 ms) and SVR (1287.80 ms). Among all
studied algorithms, DT was found to be the least computationally
intensive. However, this comes at the expense of model's accuracy,
as DT has a lower training and testing performances as compared to
ET and RE.

4.3. Number of training samples

The number of training samples has two impacts on machine
learning algorithms; 1) with the increase in the number of training
samples, it is expected that the training time and memory usage
during the training phase will increase, and 2) it will increase
prediction accuracy of the model. It is worth mentioning here that
the training time could also depend on many factors, e.g the
implementation of an algorithm in the programming library,
number of input features used, model complexity, feature extrac-
tion, input data representation and sparsity (Ahmad et al., 2017).
For tree-based ensemble methods, this would also depend on other
factors, e.g. number of trees in the forest, maximum depth of a tree,
etc. (Ahmad et al., 2017). To demonstrate the sensitivity of machine
learning models to the training dataset size and time required to
construct a model, different experiments were performed. Fig. 8(a)
shows the effect of the number of training data samples on models’
predictive performance. Generally, all developed models react in a
gradual way to an increase in the training sample size. For all
studied algorithms, it was found that increasing the number of
samples increases the models' generalisation ability (i.e., increased
performance on the unseen testing dataset). It can be seen in Fig. 8
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that both RF and ET showed almost same behaviour on training and
testing datasets. Their accuracy significantly increased between
n =100 and n = 500. SVR showed relatively lower accuracy on both
training and testing datasets as compared to ET, RF, and DT. It is also
important to mention that for tree-based algorithms; the accuracy
on training dataset reduced with an increase in the training dataset.
For SVR; initially there was a decrease in the accuracy on training
dataset, which started to increase after n = 500. Fig. 8(b) shows the
SVR has significantly higher training time as compared to RFand ET.
Please note that DT training time is considerably small and there-
fore we have not considered it in Fig. 8(b). SVR training time
increased exponentially with an increase in the training data
samples. ET and RF algorithms have comparable training time on
lower number of training samples. However, RF has marginally
higher training time for n> 1500. In this work, we analysed the
impact of number of samples on models' performance and training
time. However, in future, training time dependency on algorithm's
hyper-parameter will be explored.

5. Conclusions

The paper details the feasibility of using machine learning al-
gorithms to predict hourly useful solar thermal energy. For this
purpose, a solar thermal system installed at Chambéry, France was
used as a case study. Experiments were performed over the period
of April 2017 through January 2018 to gather experimental data for
training and testing machine learning models. Different statistical
measures were used to appraise the models’ prediction perfor-
mance. The capability of decision tree-based ensemble methods for
predicting the USTE has been verified with better accuracy as
compared to decision trees and support vector regression. The re-
sults also demonstrated that ET and RF algorithms have signifi-
cantly lower training time, i.e., 421 ms and 491.60 ms, respectively
as compared to 1287.80 ms for SVR.

The developed tree-based ensemble methods improved the
prediction results and have RMSE values of 6.87 and 7.12 for RF and
ET, respectively. Both of these methods were developed to over-
come shortcomings of CART, e.g. final tree is not guaranteed to be
the optimal tree and generate a stable model. Simple regression
trees are not effective for predicting hourly USTE. However, en-
sembles of these trees have significantly improved models’ per-
formance. Tree-based ensemble methods discussed in this paper
require fewer tuning parameters and in most cases default hyper-
parameters can result in satisfactory performance. The developed
models only used weather and time information to predict hourly
USTE. To the best of our knowledge, previous works also considered
system control variables as inputs to the model. The system
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Fig. 8. a) Effect of number of training data samples on prediction accuracy, b) Effect of number of training data samples on training time.
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variables are not available in advance and therefore are not suitable
for future predictions (unless separate models are developed for
these variables). The developed tree-based ensemble methods can
achieve accurate and reliable hourly prediction and could be used
for fault detection and diagnosis (e.g., solar collector fault, shaded
collector area, value fault, etc.), making informed decisions and
operational optimisation of multi-vector energy systems. In future
work, another promising emerging technique, deep learning, will
need to be investigated for solar thermal collectors. Machine
learning models for different types of solar collectors and solar
collector based systems will need to be developed to cover a wide
range of systems. The performance of models will be enhanced in
future by incorporating storage load predictions.
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Nomenclature

4.4 slack variables

aj, o Lagrange multipliers
b .

|| Euclidean norm

k(X;, X;)  kernel function

€ precision parameter/radius

C Number of trees/penalty parameter

Y RBF kernel coefficient

M number of trees in a forest

X inputs

N number of training samples for SVR

G specific heat

Tout outlet temperature of the solar collector

Abbreviations

ANFIS adaptive neuro-fuzzy inference system

CART classification and regression trees

ET extra trees

MAE mean absolute error

RBF radial basis function

RF random forest

SVR support vector regression

WNN wavelet neural network

b bias term

Nimin number of minimum samples required for splitting a
tree node

@(X) non-linear transformation

W weight vector

Ti regression tree

f,iF random forest regression predictor

K attribute selection parameter

N number of training samples

y outputs

m mass flow rate

Tin inlet temperature of the solar collector

ANN artificial neural network

DT decision tree

GRNN general regression neural network

PV photovoltaic

RES renewable energy resources
RMSE root mean square error
USTE useful solar thermal energy
References

Ahmad, M.W.,, Mourshed, M., Mundow, D., Sisinni, M., Rezgui, Y., 2016a. Building
energy metering and environmental monitoring — a state-of-the-art review
and directions for future research. Energy Build. 120 (Suppl. C), 85—102. ISSN
0378-7788, secondoftwo doi: https://doi.org/10.1016/j.enbuild.2016.03.059.

Ahmad, M.W., Mourshed, M., Yuce, B., Rezgui, Y., 2016b. Computational intelligence
techniques for HVAC systems: a review. Building Simulation 9 (4), 359—398.
https://doi.org/10.1007/s12273-016-0285-4 secondoftwo doi:

Ahmad, M.W., Mourshed, M., Rezgui, Y., 2017. Trees vs Neurons: comparison be-
tween random forest and ANN for high-resolution prediction of building energy
consumption. Energy Build. 147 (Suppl. C), 77—89. https://doi.org/10.1016/
j.enbuild.2017.04.038. ISSN 0378-7788, secondoftwo doi:

Benedetti, M., Cesarotti, V., Introna, V., Serranti, J., 2016. Energy consumption
control automation using Artificial Neural Networks and adaptive algorithms:
proposal of a new methodology and case study. Appl. Energy 165, 60—71.
https://doi.org/10.1016/j.apenergy.2015.12.066 secondoftwo doi:

Breiman, L., 2001. Random forests. Mach. Learn. 45 (1), 5—32.

Breiman, L., Friedman, J., Stone, CJ., Olshen, R.A., 1984. Classification and Regression
Trees. CRC press.

Breiman, L., et al., 1996. Heuristics of instability and stabilization in model selection.
Ann. Stat. 24 (6), 2350—2383.

Cadenas, E., Rivera, W., 2009. Short term wind speed forecasting in La Venta,
Oaxaca, México, using artificial neural networks. Renew. Energy 34 (1),
274—278. https://doi.org/10.1016/j.renene.2008.03.014 secondoftwo doi:

Caner, M., Gedik, E., Kegebas, A., 2011. Investigation on thermal performance
calculation of two type solar air collectors using artificial neural network.
Expert Syst. Appl. 38 (3), 1668—1674. https://doi.org/10.1016/j.eswa.2010.07.090
secondoftwo doi:

Catalao, J. P. d. S., Pousinho, H.M.L,, Mendes, V.M.E,, 2011. Short-term wind power
forecasting in Portugal by neural networks and wavelet transform. Renew.
Energy 36 (4), 1245—-1251. https://doi.org/10.1016/j.renene.2010.09.016 sec-
ondoftwo doi:

Chae, Y.T.,, Horesh, R., Hwang, Y., Lee, Y.M., 2016. Artificial neural network model for
forecasting sub-hourly electricity usage in commercial buildings. Energy Build.
111, 184—194. https://doi.org/10.1016/j.enbuild.2015.11.045 secondoftwo doi:

Chang, C.-C,, Lin, C.-],, 2011. LIBSVM: a library for support vector machines. ACM
Trans. Intell. Syst. Technol. (TIST) 2 (3), 27.

Deng, H., Fannon, D., Eckelman, M., 2018. Predictive modeling for US commercial
building energy use: a comparison of existing statistical and machine learning
algorithms using CBECS microdata. Energy Build. 163, 34—43. https://doi.org/
10.1016/j.enbuild.2017.12.031. ISSN 0378-7788, secondoftwo doi:

Dietterich, T.G., 2000. Ensemble methods in machine learning. In: International
Workshop on Multiple Classifier Systems, vols. 1—15. Springer.

Dong, B., Cao, C., Lee, S.E., 2005. Applying support vector machines to predict
building energy consumption in tropical region. Energy Build. 37 (5), 545—553.
https://doi.org/10.1016/j.enbuild.2004.09.009. ISSN 0378-7788, secondoftwo
doi:

Dowson, M., Pegg, I, Harrison, D., Dehouche, Z., 2012. Predicted and in situ per-
formance of a solar air collector incorporating a translucent granular aerogel
cover. Energy Build. 49, 173—187. https://doi.org/10.1016/j.enbuild.2012.02.007
secondoftwo doi:

Duffie, J.A., Beckman, W.A., 2013. Solar Engineering of Thermal Processes. John
Wiley & Sons.

Esen, H., Ozgen, F, Esen, M., Sengur, A., 2009. Artificial neural network and wavelet
neural network approaches for modelling of a solar air heater. Expert Syst. Appl.
36 (8), 11240—11248. https://doi.org/10.1016/j.eswa.2009.02.073 secondoftwo
doi:

Eurostat, 2016. Primary Production of Renewable Energy by Type. URL. http://ec.
europa.eu/eurostat/web/energy/data/main-tables.

Fan, C, Xiao, F, Wang, S., 2014. Development of prediction models for next-day
building energy consumption and peak power demand using data mining
techniques. Appl. Energy 127, 1-10. https://doi.org/10.1016/j.ape-
nergy.2014.04.016 secondoftwo doi:

Géczy-Vig, P, Farkas, 1., 2010. Neural network modelling of thermal stratification in
a solar DHW storage. Sol. Energy 84 (5), 801-806. https://doi.org/10.1016/
j.solener.2010.02.003 secondoftwo doi:

Geurts, P, Ernst, D., Wehenkel, L., 2006. Extremely randomized trees. Mach. Learn.
63 (1), 3—42. https://doi.org/10.1007/s10994-006-6226-1 secondoftwo doi:
Hansen, L.K., Salamon, P., 1990. Neural network ensembles. IEEE Trans. Pattern Anal.
Mach. Intell. 12 (10), 993—1001. https://doi.org/10.1109/34.58871 secondoftwo

doi:

John, V., Liy, Z., Guo, C.,, Mita, S., Kidono, K., 2016. Real-time Lane Estimation Using
Deep Features and Extra Trees Regression. Springer International Publishing,
Cham, pp. 721-733. https://doi.org/10.1007/978-3-319-29451-3_57  sec-
ondoftwo doi:

Kalogirou, S.A., 2004. Solar thermal collectors and applications. Prog. Energy
Combust. Sci. 30 (3), 231—295. ISSN 0360-1285, secondoftwo doi. https://doi.
org/10.1016/j.pecs.2004.02.001.


https://doi.org/10.1016/j.enbuild.2016.03.059
https://doi.org/10.1007/s12273-016-0285-4
https://doi.org/10.1016/j.enbuild.2017.04.038
https://doi.org/10.1016/j.enbuild.2017.04.038
https://doi.org/10.1016/j.apenergy.2015.12.066
http://refhub.elsevier.com/S0959-6526(18)32555-1/sref5
http://refhub.elsevier.com/S0959-6526(18)32555-1/sref5
http://refhub.elsevier.com/S0959-6526(18)32555-1/sref6
http://refhub.elsevier.com/S0959-6526(18)32555-1/sref6
http://refhub.elsevier.com/S0959-6526(18)32555-1/sref7
http://refhub.elsevier.com/S0959-6526(18)32555-1/sref7
http://refhub.elsevier.com/S0959-6526(18)32555-1/sref7
https://doi.org/10.1016/j.renene.2008.03.014
https://doi.org/10.1016/j.eswa.2010.07.090
https://doi.org/10.1016/j.renene.2010.09.016
https://doi.org/10.1016/j.enbuild.2015.11.045
http://refhub.elsevier.com/S0959-6526(18)32555-1/sref12
http://refhub.elsevier.com/S0959-6526(18)32555-1/sref12
https://doi.org/10.1016/j.enbuild.2017.12.031
https://doi.org/10.1016/j.enbuild.2017.12.031
http://refhub.elsevier.com/S0959-6526(18)32555-1/sref14
http://refhub.elsevier.com/S0959-6526(18)32555-1/sref14
http://refhub.elsevier.com/S0959-6526(18)32555-1/sref14
https://doi.org/10.1016/j.enbuild.2004.09.009
https://doi.org/10.1016/j.enbuild.2012.02.007
http://refhub.elsevier.com/S0959-6526(18)32555-1/sref17
http://refhub.elsevier.com/S0959-6526(18)32555-1/sref17
http://refhub.elsevier.com/S0959-6526(18)32555-1/sref17
https://doi.org/10.1016/j.eswa.2009.02.073
http://ec.europa.eu/eurostat/web/energy/data/main-tables
http://ec.europa.eu/eurostat/web/energy/data/main-tables
https://doi.org/10.1016/j.apenergy.2014.04.016
https://doi.org/10.1016/j.apenergy.2014.04.016
https://doi.org/10.1016/j.solener.2010.02.003
https://doi.org/10.1016/j.solener.2010.02.003
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1109/34.58871
https://doi.org/10.1007/978-3-319-29451-3_57
https://doi.org/10.1016/j.pecs.2004.02.001
https://doi.org/10.1016/j.pecs.2004.02.001

M.W. Ahmad et al. / Journal of Cleaner Production 203 (2018) 810—821 821

Kalogirou, S., Lalot, S., Florides, G., Desmet, B., 2008. Development of a neural
network-based fault diagnostic system for solar thermal applications. Sol. En-
ergy 82 (2),164—172. https://doi.org/10.1016/j.so0lener.2007.06.010 secondoftwo
doi:

Kalogirou, S., Mathioulakis, E., Belessiotis, V., 2014. Artificial neural networks for the
performance prediction of large solar systems. Renew. Energy 63, 90—97.
https://doi.org/10.1016/j.renene.2013.08.049 secondoftwo doi:

Karim, M., Perez, E., Amin, Z.M., 2014. Mathematical modelling of counter flow v-
grove solar air collector. Renew. Energy 67, 192—201. https://doi.org/10.1016/
j.renene.2013.11.027 secondoftwo doi:

Karsli, S., 2007. Performance analysis of new-design solar air collectors for drying
applications. Renew. Energy 32 (10), 1645—1660. https://doi.org/10.1016/
j.renene.2006.08.005. ISSN 0960-1481, secondoftwo doi:

Kharb, R.K., Shimi, S., Chatterji, S., Ansari, M.F,, 2014. Modeling of solar PV module
and maximum power point tracking using ANFIS. Renew. Sustain. Energy Rev.
33, 602—612. https://doi.org/10.1016/j.rser.2014.02.014 secondoftwo doi:

Kusiak, A., Zheng, H., Song, Z., 2009. Short-term prediction of wind farm power: a
data mining approach. IEEE Trans. Energy Convers. 24 (1), 125—-136. https://
doi.org/10.1109/TEC.2008.2006552 secondoftwo doi:

Li, Q, Meng, Q., Cai, ]., Yoshino, H., Mochida, A., 2009. Applying support vector
machine to predict hourly cooling load in the building. Appl. Energy 86 (10),
2249-2256. https://doi.org/10.1016/j.apenergy.2008.11.035. ISSN 0306-2619,
secondoftwo doi:

LIN, J.-Y., CHENG, C.-T., CHAU, K.-W., 2006. Using support vector machines for long-
term discharge prediction. Hydrol. Sci. J. 51 (4), 599—612. https://doi.org/
10.1623/hysj.51.4.599 secondoftwo doi:

Liy, Z,, Li, H,, Zhang, X,, Jin, G., Cheng, K., 2015. Novel method for measuring the heat
collection rate and heat loss coefficient of water-in-glass evacuated tube solar
water heaters based on artificial neural networks and support vector machine.
Energies 8 (8), 8814—8834. https://doi.org/10.3390/en8088814 secondoftwo
doi:

Lund, H., Werner, S., Wiltshire, R, Svendsen, S., Thorsen, J.E., Hvelplund, F.,
Mathiesen, B.V., 2014. 4th Generation District Heating (4GDH): integrating
smart thermal grids into future sustainable energy systems. Energy 68, 1—11.
https://doi.org/10.1016/j.energy.2014.02.089. ISSN 0360-5442, secondoftwo
doi:

Mathiesen, B.V., Lund, H., Connolly, D., Wenzel, H., @stergaard, P.A., Moller, B.,
Nielsen, S., Ridjan, I, Karnge, P., Sperling, K., Hvelplund, F.X., 2015. Smart Energy
Systems for coherent 100% renewable energy and transport solutions. Appl.
Energy 145, 139—154. ISSN 0306-2619, secondoftwo doi: https://doi.org/10.
1016/j.apenergy.2015.01.075.

Motte, F., Notton, G., Cristofari, C., Canaletti, ].-L., 2013. A building integrated solar
collector: performances characterization and first stage of numerical calcula-
tion. Renew. Energy 49, 1-5. https://doi.org/10.1016/j.renene.2012.04.049

secondoftwo doi:

B. Neupane, W. L. Woon, Z. Aung, Ensemble prediction model with expert selection
for electricity price forecasting, Energies 10 (1).

Notton, G., Motte, F,, Cristofari, C., Canaletti, J.-L., 2013. New patented solar thermal
concept for high building integration: test and modeling. Energy Procedia 42,
43-52. https://doi.org/10.1016/j.egypro.2013.11.004 secondoftwo doi:

Pedregosa, F., Varoquaux, G. Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P.,, Weiss, R., Dubourg, V., et al., 2011. Scikit-learn:
machine learning in Python. J. Mach. Learn. Res. 12 (Oct), 2825—2830.

Reynolds, J., Ahmad, M.W., Rezgui, Y., 2018. Holistic modelling techniques for the
operational optimisation of multi-vector energy systems. Energy Build. 169,
397-416. https://doi.org/10.1016/j.enbuild.2018.03.065. ISSN 0378-7788, sec-
ondoftwo doi:

Rodriguez-Galiano, V., Sanchez-Castillo, M., Chica-Olmo, M., Chica-Rivas, M., 2015.
Machine learning predictive models for mineral prospectivity: an evaluation of
neural networks, random forest, regression trees and support vector machines.
Ore Geol. Rev. 71 (804 — 818) https://doi.org/10.1016/j.oregeorev.2015.01.001.
ISSN 0169-1368, secondoftwo doi:

J. L. Sawin, FE. Sverrisson, K. Seyboth, R. Adib, H. E. Murdock, C. Lins, I. Edwards, M.
Hullin, L. H. Nguyen, S. S. Prillianto, et al., reportRenewables 2017 Global Status
Report .

Sozen, A., Menlik, T., Unvar, S., 2008. Determination of efficiency of flat-plate solar
collectors using neural network approach. Expert Syst. Appl. 35 (4), 1533—1539.
https://doi.org/10.1016/j.eswa.2007.08.080 secondoftwo doi:

Vapnik, V., 2013. The Nature of Statistical Learning Theory. Springer Science &
Business Media.

Wang, Z., Wang, Y., Zeng, R, Srinivasan, R.S., Ahrentzen, S., 2018. Random Forest
based hourly building energy prediction. Energy Build. 171, 11-25. https://
doi.org/10.1016/j.enbuild.2018.04.008. ISSN 0378-7788, secondoftwo doi:

Xu, M., Watanachaturaporn, P.,, Varshney, PK. Arora, M.K., 2005. Decision tree
regression for soft classification of remote sensing data. Rem. Sens. Environ. 97
(3), 322—336. https://doi.org/10.1016/j.rse.2005.05.008. ISSN 0034-4257, sec-
ondoftwo doi:

Yaici, W., Entchev, E., 2016. Adaptive Neuro-Fuzzy Inference System modelling for
performance prediction of solar thermal energy system. Renew. Energy 86,
302—-315. https://doi.org/10.1016/j.renene.2015.08.028 secondoftwo doi:

Yap, WK, Karri, V., 2015. An off-grid hybrid PV/diesel model as a planning and
design tool, incorporating dynamic and ANN modelling techniques. Renew.
Energy 78, 42—50. https://doi.org/10.1016/j.renene.2014.12.065 secondoftwo
doi:

Yona, A., Senjyu, T., Saber, A.Y., Funabashi, T., Sekine, H., Kim, C.-H., 2007. Applica-
tion of neural network to one-day-ahead 24 hours generating power fore-
casting for photovoltaic system. In: Intenational Conference on Intelligent
Systems Applications to Power Systems, 2007. ISAP 2007, vols. 1—6. IEEE (r).


https://doi.org/10.1016/j.solener.2007.06.010
https://doi.org/10.1016/j.renene.2013.08.049
https://doi.org/10.1016/j.renene.2013.11.027
https://doi.org/10.1016/j.renene.2013.11.027
https://doi.org/10.1016/j.renene.2006.08.005
https://doi.org/10.1016/j.renene.2006.08.005
https://doi.org/10.1016/j.rser.2014.02.014
https://doi.org/10.1109/TEC.2008.2006552
https://doi.org/10.1109/TEC.2008.2006552
https://doi.org/10.1016/j.apenergy.2008.11.035
https://doi.org/10.1623/hysj.51.4.599
https://doi.org/10.1623/hysj.51.4.599
https://doi.org/10.3390/en8088814
https://doi.org/10.1016/j.energy.2014.02.089
https://doi.org/10.1016/j.apenergy.2015.01.075
https://doi.org/10.1016/j.apenergy.2015.01.075
https://doi.org/10.1016/j.renene.2012.04.049
https://doi.org/10.1016/j.egypro.2013.11.004
http://refhub.elsevier.com/S0959-6526(18)32555-1/sref40
http://refhub.elsevier.com/S0959-6526(18)32555-1/sref40
http://refhub.elsevier.com/S0959-6526(18)32555-1/sref40
http://refhub.elsevier.com/S0959-6526(18)32555-1/sref40
https://doi.org/10.1016/j.enbuild.2018.03.065
https://doi.org/10.1016/j.oregeorev.2015.01.001
https://doi.org/10.1016/j.eswa.2007.08.080
http://refhub.elsevier.com/S0959-6526(18)32555-1/sref45
http://refhub.elsevier.com/S0959-6526(18)32555-1/sref45
https://doi.org/10.1016/j.enbuild.2018.04.008
https://doi.org/10.1016/j.enbuild.2018.04.008
https://doi.org/10.1016/j.rse.2005.05.008
https://doi.org/10.1016/j.renene.2015.08.028
https://doi.org/10.1016/j.renene.2014.12.065
http://refhub.elsevier.com/S0959-6526(18)32555-1/sref50
http://refhub.elsevier.com/S0959-6526(18)32555-1/sref50
http://refhub.elsevier.com/S0959-6526(18)32555-1/sref50
http://refhub.elsevier.com/S0959-6526(18)32555-1/sref50
http://refhub.elsevier.com/S0959-6526(18)32555-1/sref50

	Predictive modelling for solar thermal energy systems: A comparison of support vector regression, random forest, extra tree ...
	1. Introduction
	1.1. Related work
	1.2. Motivation, objectives and contributions

	2. Machine learning methods
	2.1. Support vector machines
	2.2. Random forest
	2.3. Extra trees
	2.4. Decision trees

	3. Material and methods
	3.1. Data description
	3.2. Uncertainty analysis
	3.3. Feature subset selection

	4. Prediction results and discussion
	4.1. Hyper-parametric tuning
	4.1.1. Support vector regression
	4.1.2. Random forest, extra trees and decision trees

	4.2. Model analytical results
	4.3. Number of training samples

	5. Conclusions
	Acknowledgement
	Nomenclature
	References


