
 ORCA – Online Research @ Cardiff

This is a n  Op e n  Acces s  doc u m e n t  dow nloa d e d  fro m  ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry:h t t p s://o rc a.c a r diff.ac.uk/id/ep rin t/11 4 6 7 1/

This  is t h e  a u t ho r’s ve r sion  of a  wo rk  t h a t  w as  s u b mi t t e d  to  / a c c e p t e d  for

p u blica tion.

Cit a tion  for  final p u blish e d  ve r sion:

Ben n a s ar, M,  Hicks,  Y. A. , Clinch,  S. P., Jones ,  P  , Hol t ,  C , Ross er, A a n d  Buss e-

Mo r ris , M. 2 0 1 8.  Auto m a t e d  a s s e s s m e n t  of m ove m e n t  imp ai r m e n t  in H u n tin g ton ' s

dis e a s e .  IEEE Tra n s a c tions  on  N e u r al  Sys t e m s  a n d  Re h a bili t a tion  E n gin e e ring  2 6

(10) , p p .  2 0 6 2-2 0 6 9.  1 0 .11 0 9/TNSRE.201 8.2 8 6 8 1 7 0  

P u blish e r s  p a g e:  h t t p://dx.doi.o rg/10.11 0 9/TNSRE.201 8.2 8 6 8 1 7 0  

Ple a s e  no t e:  

Ch a n g e s  m a d e  a s  a  r e s ul t  of p u blishing  p roc e s s e s  s uc h  a s  copy-e di ting,  for m a t ting

a n d  p a g e  n u m b e r s  m ay  no t  b e  r eflec t e d  in t his  ve r sion.  For  t h e  d efini tive  ve r sion  of

t his  p u blica tion,  ple a s e  r efe r  to  t h e  p u blish e d  sou rc e .  You a r e  a dvis e d  to  cons ul t  t h e

p u blish e r’s ve r sion  if you  wis h  to  ci t e  t his  p a p er.

This  ve r sion  is b eing  m a d e  av ailabl e  in a cco r d a nc e  wi th  p u blish e r  policies.  S e e  

h t t p://o rc a .cf.ac.uk/policies.h t ml for  u s a g e  policies.  Copyrigh t  a n d  m o r al  r i gh t s  for

p u blica tions  m a d e  av ailabl e  in  ORCA a r e  r e t ain e d  by t h e  copyrigh t  hold e r s .



First Author et al.: Title 3 

 
Abstract— Quantitative assessment of movement 

impairment in Huntington’s disease (HD) is essential to 
monitoring of disease progression. This study aimed to 
develop and validate a novel low cost, objective automated 
system for the evaluation of upper limb movement 
impairment in HD in order to eliminate the inconsistency of 
the assessor and offer a more sensitive, continuous 
assessment scale. Patients with genetically confirmed HD 
and healthy controls were recruited to this observational 
study. Demographic data including age (years), gender and 
Unified Huntington’s Disease Rating Scale Total Motor 
Score (UHDRS-TMS) were recorded. For the purposes of 
this study a modified upper limb motor impairment score 
(mULMS) was generated from the UHDRS-TMS. All 
participants completed a brief, standardized clinical 
assessment of upper limb dexterity whilst wearing a tri-
axial accelerometer on each wrist and on the sternum. The 
captured acceleration data were used to develop an 
automatic classification system for discriminating between 
healthy and HD participants and to automatically generate 
a continuous Movement Impairment Score (MIS) that 
reflected the degree of the movement impairment. Data 
from 48 healthy and 44 HD participants was used to validate 
the developed system, which achieved 98.78% accuracy in 
discriminating between healthy and HD participants. The 
Pearson correlation coefficient between the automatic MIS 
and the clinician rated mULMS was 0.77 with a p-value < 
0.01. The approach presented in this study demonstrates 
the possibility of an automated objective, consistent and 
sensitive assessment of the HD movement impairment.  

 
Index Terms— accelerometers, upper-limb assessment, 

Huntington’s disease, movement disorder. 
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I. Introduction 

UNTINGTON’S disease (HD) is an autosomal dominant, 

progressive neurodegenerative genetic disorder, which 

affects 11.2 to 13.5 people per 100,000 of the general 

population. HD is characterised by the development of 

progressive motor impairment, cognitive decline and 

behavioural problems [1], [2], caused by an expanded 

trinucleotide CAG sequence in the Huntingtin (HTT) gene [2]-

[4].  

One of the most prominent motor symptoms in HD is chorea, 

which is used to describe abnormal involuntary movement 

characterized by abrupt, irregular, unpredictable, non-

stereotyped movements, However, other motor abnormalities 

such as dyskinesia, dystonia, rigidity, and bradykinesia are also 

seen. A critical problem for the evaluation of novel therapeutics 

is the acknowledged lack of objective clinical measures suitable 

for evaluating the components of the movement disorder. The 

Unified Huntington’s Disease Rating Scale (UHDRS) [5] is 
currently the gold standard to assess disease symptoms in HD. 

However, UHDRS assessment is limited by inter- and intra-

rater variability, subjective bias, and categorical design. 

Furthermore, the UHDRS score does not relate motor 

impairment to function in daily life, which is desirable in HD 

assessment [6].  

Over the past twenty years there has been significant 

progression in human motion recording and analysis over a 

wide range of applications, including orthopaedic and 

neurological rehabilitation. Such analysis requires highly 

accurate motion tracking made possible using, for example, 

camera-based systems (e.g. Qualisys, Sweden and Vicon, UK). 

Unfortunately such systems are expensive, difficult to transport, 

and require dedicated laboratory space, although low-cost but 

less accurate motion capture devices such as Kinect are also 

becoming popular in motion analysis research [7]. 

More recently, there have been a number of attempts to 

evaluate chorea, dystonia and bradykinesia in people with 

movement disorders using Inertial Measurement Units (IMUs) 

or electromagnetic motion sensors [6], [8]-[13]. The majority 
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have relied on statistical methods to assess movement 

impairment [10], [11], however more recently machine-

learning techniques are being applied to the data to achieve 

automated assessment of the presence or absence of the 

symptoms or their severity [9], [13]-[15]. Application of 

machine learning methods for wearable sensor data in 

Parkinson’s disease (PD) was advocated and explained in detail 
in a recent review where the possibility of using wearable 

sensor data for clinical PD measurement was also highlighted 

[16]. Specifically, the main stages in applying machine learning 

techniques to the analysis of the sensor data were identified as 

feature extraction, which summarises sensor data into a small 

set of features; dimensionality reduction, which further reduces 

the number of features for ease of analysis and to retain only the 

most significant information; and supervised or unsupervised 

learning which finds patterns in the sensor data.  In particular, 

supervised learning learns a model (relationship) between 

inputs (a set of feature values) and outputs (for example, 

symptom severity classification) from a set of examples, and 

uses this model to predict outputs given a new set of input 

values. At the same time, common pitfalls of machine learning 

such as overfitting and underfitting a model were noted along 

with possible remedies, such as model complexity control 

through the use of, for example, cross-validation model testing.  

There has been a fair amount of research in the area of 

applying machine learning methods for the automatic 

assessment of the movement disorders associated with PD, 

particularly tremor and bradykinesia [14], [15], [17]-[19]. At 

the same time, there were only two reports on the application of 

these methods in HD [9], [13]. In the two latter studies, machine 

learning techniques were used to automatically classify people 

into HD and healthy controls groups based on gait analysis [9] 

or arm movements [13] and data from IMUs. However, these 

studies are still falling short of proposing an automatic system 

capable of assessing HD movement impairment using a more 

sensitive, continuous scale necessary for monitoring the disease 

progression. 

The aim of this study was to apply signal processing and 

machine learning techniques in the development and validation 

of a low cost, objective automated system for the evaluation of 

upper limb movement impairment in HD.  Data from 48 healthy 

and 44 manifest stage HD participants were collected and used 

to design and validate the proposed system.  Signal processing 

techniques were used to extract time and frequency domain 

features from the acceleration signals; a feature selection 

method was used to determine the features important for 

distinguishing HD patients from healthy controls. The selected 

features were subsequently used in the classification and 

quantitative assessment tasks. An ensemble classifier was 

proposed to distinguish between healthy individuals and those 

with a diagnosis of HD, which significantly improved the 

accuracy of the previously proposed simple SVM classifier 

[13]. Linear regression model was created to generate 

continuous scale sensitive assessment of movement impairment 

in HD, which has not been attempted in previous research.  

In this research, we limited our focus to the upper limbs 

during the performance of a functional task both to minimise 

error in placement of accelerometers during movement and to 

ensure ease of clinical application of the automated assessment 

in the future.   

II. MATERIALS AND METHODS 

A. Participants and Setting 

Participants with manifest HD and healthy controls were 

recruited to this observational study. All participants were 

provided with a written information sheet describing the 

research, and their consent was obtained before any data 

collection. HD participants were eligible if they had a 

genetically confirmed diagnosis of HD with score of four on the 

motor diagnostic confidence scale of the UHDRS, were over 18 

years of age and recruited onto Enroll-HD, which is a global 

observational study that provides researchers with access to 

non-identifiable clinical information (https://www.enroll-

hd.org/). They were not eligible if they were unable to provide 

informed consent. Ethical approval was granted for this study 

by the South East Wales Research Ethics committee (REC 

reference: 14/WA/1195) and Cardiff University School of 

Engineering.  

B. Assessments  

Demographic data including age (years), gender and 

UHDRS-TMS [5] were recorded from the most recent annual 

Enroll-HD assessment. The UHDRS-TMS provides a clinician 

observed rating of oculomotor function, dysarthria, chorea, 

dystonia, rigidity, bradykinesia, balance and gait. Each item 

was rated by a rater certified clinician on a scale of 0-4, where 

0 is equivalent to no impairment. The maximum possible score 

of all items is 124 (indicating maximum disability). For the 

purposes of this study a modified upper limb motor impairment 

score (mULMS) was generated from the UHDRS-TMS as the 

sum of items assessing left and right upper limb dystonia, trunk 

chorea, and left and right upper limb chorea. Thus mULMS can 

vary between zero for no impairment to a maximum of 20 

representing severe motor impairment.  

 

 
Fig. 1 The MBT test enclosed in the case when not in use 

(left) and open ready for testing (right). 

 

All participants completed the Money Box Test (MBT) [13], 

[20] - a functional upper limb dexterity assessment involving a 

series of token transfer tasks (Fig. 1). The tasks increase in 

difficulty (baseline simple, baseline complex and a dual task). 

In the baseline simple task, eight blank tokens of varying size 

are presented and positioned in designated slots, vertically, in 

size order. The participant is asked to pick up each token 

individually with their non-dominant hand, transfer it to their 

dominant hand and place into the moneybox, starting with the 

https://www.enroll-hd.org/
https://www.enroll-hd.org/
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largest token and finishing with the smallest. For the baseline 

complex task, a different set of tokens, with one of the eight 

values printed on them (1, 2, 5, 10, 20, 50, 100, and 200) is used.  

In this task, the tokens are positioned in order of size. The 

participant is asked to transfer the tokens into the moneybox in 

decreasing value order. The dual task consisted of the same test 

procedure as the baseline complex, with the participants 

additionally asked to recite the alphabet simultaneously while 

transferring the tokens to the moneybox. 

C. Accelerometes 

Three triaxial GENEactiv accelerometers (Activinsights, UK) 

were placed on the participant during the performance of the 

MBT, one on each wrist to record the acceleration of the hands, 

and one on the chest to capture the movement of the trunk (Fig. 

2). Each GENEactiv sensor incorporates three accelerometers, 

where the accelerometers are orthogonally aligned to each 

other. The technical specifications of the accelerometers are as 

following: unit mass 16g, unit size 43mm x 40mm x 13mm, 

sample frequency up to 100Hz, acceleration range ±8g, where 

g =9.81 m/s2. Before the accelerometers were fixed on the 

participant, their time settings were synchronized with those of 

the computer using GENEactive PC software application. The 

accelerometers did not require any additional calibration. All 

data were recorded at frequency of 100Hz.  

 

 
 

Fig. 2 The placement and orientation of accelerometers on the 

wrists and chest of a participant. In the image, the x-axis is 

red, y-axis is blue and z-axis is green. The z-axis for the chest 

sensor (green) is pointing away from the viewer. 

 

D. Automatic Classification Sysem 

An early version of the system proposed in this article was 

presented in [13]. In comparison to the full system presented in 

this article, the system described in [13] was based on a simple 

SVM classifier and temporal features only and was used to 

distinguish between HD patients and healthy controls. 

The fully developed system presented in this article consists of 

three main modules: signal processing and feature extraction 

including both temporal and frequency domain features, 

ensemble classifier to distinguish between HD patients and 

healthy controls during the performance of three different MBT 

tasks, and a linear regression model to generate continuous 

scale sensitive assessment of movement impairment in HD 

(Fig. 3). In this study, both ensemble classifier and the linear 

regression model are implemented using supervised learning 

techniques. 

E. Signal Processing 

In this part of the system, a range of signal processing 

techniques are applied to the accelerometer data in order to 

extract informative features, which potentially could be used for 

continuous quantification of the movement impairment typical 

of HD, such as chorea and dystonia, i.e. the abruptness and 

irregularity of movement and twisting body movements. Each 

of three MBT tasks consists of eight repeated sub-tasks of 

transferring a coin from its position to the moneybox, which 

results in eight observable cycles in motion acceleration data 

for a healthy person, but not for HD patients, whose motion is 

characterized by jerky, sudden movements (Fig. 4) [20]. Time 

and frequency domain features measuring the degree of 

repeatability, regularity, and recurrence are extracted from the 

accelerometer data as explained in detail below. 

F. Time domain features 

This set of features (Table I) includes several features derived 

directly from the raw accelerometer signals without any 

filtration or down sampling to ensure that no important 

information related to the movement impairment is lost. 

These features include simple time domain features such as 

signal mean and standard deviation as well as correlation 

between the acceleration signals along different axes. Other 

time domain features used in this study are derived using 

Recurrence Quantification Analysis of Nonlinear Dynamical 

Systems (RQA) [21], which quantifies the recurrences of a 

dynamical system. The values of RQA are expected to be higher 

for HD than for healthy participants. In addition, Lyapunov 

exponent (LE) [22] is used to measure the degree of chaos in 

the signal. As the acceleration signals are less regular and more 

chaotic for HD patients, a significant difference between the LE 

values can be expected for these two groups. Sample entropy is 

used to assess the complexity and regularity within the time 

series data, as it measures the degree of dependency of a given 

data point on a number of previous data points [23]. Finally, 

permutation entropy [24] is used to measure the regularity in 

the time series data by measuring the existence or absence of 

permutation patterns within it. 

G. Frequency domain features 

Frequency domain features are expected to change depending 

on the presence of involuntary jerky movements in the 

acceleration data, so short-time Fourier Transform (STFT) is 

employed to transform the acceleration data to frequency 

domain. There are eight clearly observable cycles in the 

acceleration data for a healthy person resulting from the activity 

of transferring eight coins (Fig. 4). On average, for healthy 

volunteers, each of the transfer cycles lasts 2 seconds. 

Therefore, a decision was made to use a sliding window of 2
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Fig. 3 Above: classification system; below: ensemble classifier. 

 
TABLE I.  

TIME DOMAIN FEATURES 
 

Feature 
No. of attributes 

per subject 
Feature description 

Recurrence rate 9 

Recurrence rate in the signal, i.e. 

the probability that any state will 

recur again 

R
Q

A
 

R_ Entropy 9 
Measurement of the recurrence 

structure complexity 

Determinism 9 The ratio of recurrence points 

Average diagonal 

line 
9 

Average time that signal 

segments remain the same. 

LE 9 

Lypaunov exponent, measures 

the level of chaos in the time 

series signal 

 

Sample entropy 9 
Assesses the complexity of the 

time series signal 

 

 

Permutation 

entropy 

 

9 
Assesses the complexity of the 

time series signal 

 

Standard deviation 9 
The standard deviation of the 

time series signal 

 

Mean 9 The mean of acceleration signal  

Correlation 

between axes 
9 

Correlation between each pair of 

axes for each accelerometer 

 

 

seconds length and 50% overlap for STFT. In this study, a 

simple rectangular window followed by a low-pass filter was 

used. As explained below, only the first five low frequency 

components are to be used in further calculations, and thus 

applying a smoothing window such as Hanning was deemed 

unnecessary. 

Three sets of frequency features are extracted from the result of 

STFT, namely, spectral energy, component entropy, and the 

average magnitudes of each of the first five STFT components 

over all windows in each of the tests. These features were 

chosen as they had been reported to provide good results for 

movement recognition on the basis of accelerometer signals 

 
                      (a) 

 
            (b) 
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Fig. 4 Examples of accelerometer data for the non-dominant 

hand for: (a) healthy control participant; (b) manifest stage HD 

patient. 

 

 

and thus potentially could contain information useful for 

measuring the degree of movement impairment in HD patients 

[25]. Wavelet Packet Decomposition (WPD) is also used to 

extract a number of time-frequency features from the signals. 

The decision to employ WPD was made on the basis of its 

ability to describe signals containing numerous frequency 

changes over time [26]. In this study, the accelerometer signals 

are decomposed into five levels using Daubechies 2 wavelets.  

The six wavelet features used in this study are defined as the 

sum of the absolute values of coefficients at levels 1-5; these 

features were chosen as they have been reported to have good 

ability to capture the patterns of the low frequency movements 

in the accelerometer signals, which should be suitable for HD 

data [24]. Table II shows a summary of the extracted frequency 

domain features.  

 
TABLE II.  

FREQUENCY DOMAIN FEATURES 
 

Feature 

No. of 

attributes 

per subject 

Description of the feature 

Frequency domain 

entropy  

 

         

         9 Entropy of STFT components  

Spectral energy           9 Sum of STFT coefficients  

Average magnitude 

of 5 SFFT  

 

45 

 

The average magnitude of the first 

5 STFT components for each axis 

 

Magnitude 

coefficients of 

wavelet 

 

63 

The sum of squared wavelet 

coefficients from level 1 to 6 

 

Wavelet energy 

9 Sum of squared wavelet 

coefficients 

 

Wavelet entropy 
9 Entropy of wavelet component 

 

 

H. Feature selection 

Following the initial feature extraction, when a total of 234 time 

and frequency domain feature values are extracted from the 

signals of the three sensors for each participant and each MBT 

task, a feature selection method is used to select the most 

relevant and non-redundant features for discriminating between 

HD and healthy participants and thus to reduce the 

dimensionality of the data set. In this study the Joint Mutual 

Information Maximisation (JMIM) [27] feature selection 

method is chosen as it relies on an objective function to select 

the most informative features from a set and has been reported 

to outperform the other state of the art methods. Continuous 

features are discretized using Equal Width Discretization 

method (EWD) [28] before JMIM is applied to all features. 

I. Ensemble classifier 

The goal of this part of the system is to distinguish between HD 

patients and healthy participants, for which an ensemble 

classifier is created. A supervised learning approach is followed 

to create an ensemble classifier, the inputs for which are the 

values of the selected features, and the output takes on one of 

the two values: HD or healthy control. To make the classifier 

more sensitive to the detection of HD patients at the early 

manifest stage of HD, the data from all three MBT tasks (if 

available) is used for all HD and healthy participants. For each 

MBT task, a Support Vector Machine (SVM) classifier with 

radial basis function (RBF) kernel [29] is trained using a 

number of the most significant features extracted from the 

corresponding dataset (Fig. 3). Thus the first classifier is trained 

on the selected features for the baseline simple dataset, the 

second classifier is trained on the selected features for the 

baseline complex dataset and the third classifier is trained on 

the selected features for the dual task dataset. Finally, the results 

of the three classifiers are combined in an ensemble classifier. 

Different techniques for combining results of different 

classifiers such as Bayes, majority voting, and decision 

template [30] were tested, from which the majority voting was 

chosen as providing the best results. In some cases, when the 

participant failed to perform the baseline complex or the dual 

task (due to the advanced stage of the disease), the classification 

was performed using only the baseline simple classifier.    

J. Linear regression model 

In this stage, a linear regression model is used to automatically 

generate the Movement Impairment Score (MIS) intended to 

describe the degree of impairment related to the upper limb 

movement. Five of the most significant features extracted from 

the baseline task MBT dataset are used as independent variables 

(inputs) and the mULMS is used as a dependent variable 

(output). SVM linear regression is applied to obtain the 

regression model parameters and leave-one-out cross-

validation is employed to assess the correlation between the 

MIS and the mULMS. 

III. RESULTS 

 

Mean (SD) age in years in HD participants (n=44, 26 males) 

and healthy controls (n=48, 26 males) were 53.49 (13.19) and 

37.38 (13.31) respectively. Mean (SD) scores on the UHDRS-

TMS  and mULMS for HD participants were 36.43(23.16) and 

5.98 (4.17) respectively. Seven HD participants failed to 

perform both the baseline complex and the dual tasks, while 

five other HD participants failed to perform the dual task only. 

The average time taken to perform the test by the HD 

participants was 30.62 seconds. The average time for the 

healthy controls was 13.6 seconds. 

A. Significant features 

The most significant features for discrimination between HD 

and healthy participants were identified using the JMIM 

method for the baseline simple, baseline complex, and dual 

tasks (Tables III-V). The results showed that the recurrence rate 

feature of the non-dominant hand X-axis was significant for 

discriminating between HD patients and healthy controls in all 

three MBT tasks. This can be explained by the fact that most of 

the transfer task was performed by the non-dominant hand with 

the dominant hand remaining close to the moneybox.  The 
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results also showed that time domain features measuring 

regularity, repeatability, and chaos were more significant than 

the frequency domain features, which means that time domain 

features represent the movement patterns specific to chorea and 

dystonia better than other features.  

 

 

 

  
TABLE III 

 
TEN MOST SIGNIFICANT FEATURES FOR DISCRIMINATING BETWEEN HD AND 

HEALTHY CONTROLS IN THE BASELINE SIMPLE TASK 

 

No 

 

Feature 

1 Non-dominant  hand X-axis recurrence rate (RQA) 

2 Non-dominant  hand Y-axis standard deviation 

3 Non-dominant  hand Y-axis recurrence entropy (RQA) 

4 Chest X-axis sample entropy 

5 Dominant hand Z-axis sample entropy 

6 Dominant hand Y-axis mean 

7 Dominant hand Y-axis sample entropy 

8 Dominant hand Y-axis wavelet entropy 

9 Chest correlation between X axis and Z axis 

10 

 

Chest Z-axis sample entropy 

 

 
 

TABLE IV 
TEN MOST SIGNIFICANT FEATURES FOR DISCRIMINATING BETWEEN HD AND 

HEALTHY CONTROLS IN THE BASELINE COMPLEX TASK 

 

No 

 

Feature 

1 Non-dominant hand X-axis recurrence rate 

2 Dominant hand Z-axis sample entropy 

3 Dominant hand Y-axis average diagonal line (RQA) 

4 Dominant hand X-axis CC5 magnitude 

coefficients of wavelet decomposition 

5 Dominant hand Y-axis sample entropy 

6 Dominant hand X-axis Lypaunov exponents 

7 Chest Y-axis sample entropy 

8 Dominant hand Z-axis permutation entropy 

9 Dominant hand X-axis average diagonal line (RQA) 

10 Chest Z-axis mean 

 

 

 
TABLE V 

TEN MOST SIGNIFICANT FEATURES FOR DISCRIMINATING BETWEEN HD AND 

HEALTHY CONTROLS IN THE DUAL TASK 

 

No 

 

Feature 

1 Non-dominant hand X-axis recurrence rate (RQA) 

2 Non-dominant hand Y-axis permutation entropy 

3 Non-dominant hand X-axis average diagonal 

Line (RQA) 

4 Dominant hand Y-axis sample entropy 

5 Dominant hand correlation between Y axis and 

Z axis. 

6 Non-dominant hand  Z-axis mean 

7 Non-dominant hand  Y-axis determinism (RQA) 

8 Chest X-axis recurrence entropy 

9 Chest Z-axis recurrence rate 

10 Chest Y-axis recurrence rate 

 

 

B. Performance of ensemble classifier 

The performance of each classifier for discriminating between 

healthy controls and HD patients was tested separately as well 

as in combination as an ensemble classifier. The ranking of 

features provided by the feature selection method was used to 

find the best subset of features for each classifier. Five folds 

cross-validation was used to train and test the classifiers. This 

means that the data related to different participants was divided 

randomly into five folds (sets of approximately equal size), with 

four folds used for training and the remaining fold used for 

testing. The cross-validation process was repeated five times 

until each fold was used for testing exactly once. Thus in each 

iteration the training and testing data were different. The 

average accuracy, sensitivity, and specificity over five 

iterations were used as the measure of the classification 

performance. 

In the experiment, the first classifier was trained and tested 

using the baseline simple MBT dataset. For this classifier, a 

combination of 43 most significant features produced the best 

performance with accuracy of 91.11%, sensitivity of 90.38%, 

and specificity of 92.11%. The second classifier was trained and 

tested using the baseline complex MBT dataset, for which the 

best performance was achieved using only three features, with 

the classification accuracy in discriminating between HD 

patients and healthy controls of 93.1%, and sensitivity and 

specificity of 87.76% and 100% respectively. Finally, the third 

classifier was trained and tested using the dual task MBT 

dataset. The best accuracy of 87.8% was achieved using 49 

most significant features. The corresponding values for 

sensitivity and specificity were 81.82%, and 94.74% 

respectively.  

 
Fig. 5. The output of the ensemble classifier vs the mULMS 

for HD patients. 

 

The ensemble classifier obtained by majority voting between 

the above three classifiers achieved the accuracy of 98.8%, 

100% specificity and 97.7% sensitivity with only one out of 44 

HD participants misclassified as a healthy control, and all 

healthy controls classified correctly. This compares well to the 

accuracy of 86.4% reported in [13] in a similar experiment. The 

misclassified HD case had a very low mULMS equal to 2, 

indicative of very subtle motor symptoms, which can explain 

the error, although 11 more patients with the mULMS of 2 or 

lower were classified correctly as HD patients (Fig. 5).  
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Considering that the features related to the chest sensor often 

appeared at the bottom of Tables III-V, it was decided to 

evaluate the performance of the ensemble classifier without the 

features related to the chest sensor in order to test the hypothesis 

that the chest sensor was not needed to achieve accurate 

classification of HD and healthy control participants.  

In this experiment, the best accuracy for the baseline simple 

MBT classifier was achieved using 60 most significant features. 

For the baseline complex MBT classifier, the best accuracy was 

achieved using 49 most significant features, and the best 

accuracy for the dual task MBT classifier was achieved using 

25 most significant features. The achieved accuracy, sensitivity 

and specificity for the ensemble classifier were 86.52%, 

83.78% and 88.46%, which is considerably lower than in the 

previous experiment, and thus the importance of the chest 

sensor for correct discrimination between healthy and HD 

participants was demonstrated. 

 

C. Evaluation of the linear regression model 

The data from baseline simple MBT task for HD patients were 

used in a linear regression model of movement impairment in 

order generate an automatic MIS for new HD patients.  The 

SVM regression algorithm with a linear kernel was used for this 

purpose [29]. Five most significant features from the baseline 

simple MBT classifier were used as independent variables for 

the regression model. Leave one out cross validation was used 

to evaluate the correlation between the automatically produced 

MIS and the mULMS of five chosen items related to chorea and 

dystonia.  

The Pearson correlation coefficient r between the automatic 

MIS and the mULMS was 0.77, which corresponds to r2 = 0.59 

and r2
adj = 0.53 with a p-value < 0.01 indicating its high 

statistical significance. In addition, the mean absolute error 

(MAE) [31] between the automatic MIS and mULMS was 2.11, 

which corresponds to the normalised MAE of 12.41% with 

respect to the maximum score of 17 in the sample, thus showing 

an ability to predict the clinician rated upper limb chorea and 

dystonia scores with some accuracy. Fig. 6 shows the values of 

the mULMS and the corresponding automatic MIS generated 

by the linear regression model trained on all HD data apart from 

one of the samples used for testing.  

 

 
 

Fig.6 mULMS and corresponding automatic MIS generated 

by the linear regression model trained on all HD baseline 

simple task data apart from one of the samples used for 

testing. 

IV. DISCUSSION 

Here we present a system for an objective and continuous 

assessment of motor impairment during a novel upper limb task 

for HD patients. The system is based on data collected from tri-

axial accelerometers, which were worn during the performance 

of a recently proposed MBT assessment of bilateral, upper 

motor function. Signal processing and machine learning 

methods were applied to the recorded accelerometer signals in 

order to produce an automatic MIS intended to reflect the 

degree of the movement impairment during the performance of 

the MBT.  

A number of features, potentially useful for quantification of 

the movement impairment, were extracted from the 

accelerometer data and their significance in the discrimination 

task between healthy controls and HD participants was 

assessed. The results showed that temporal features were more 

important than frequency features, and in particular, features 

related to the non-dominant hand were just as significant if not 

more significant than those extracted from the data related to 

the dominant hand. 

Before proceeding to the stage of generating an automatic 

MIS for HD patients, the extracted features were tested in a 

simpler discriminative task of differentiating between HD 

patients and healthy controls, in which very encouraging results 

were achieved, further proving that the extracted features 

captured the information relevant to motion impairment of HD 

patients. In this stage, three classifiers, one for each MBT task, 

were trained and tested, with the complex baseline classifier 

producing the best performance among the three classifiers. The 

results produced by the ensemble classifier demonstrate the 

advantage of using three tasks of increasing difficulty when 

performing MBT, with the complex baseline and dual task 

classifiers improving the accuracy of the baseline classifier 

when their results were combined. Given these results, we do 

not believe that the difference in ages between the HD and the 

healthy control groups had a detrimental effect on the ability of 

the assembly classifier to determine the group correctly on the 

basis of the accelerometer data, however will confirm this in 

subsequent studies. Furthermore, the importance of the chest 

sensor was assessed by removing the features related to this 

sensor from the dataset and repeating the above experiments 

and cross-validation using the reduced dataset. The results 

demonstrated significant increase in misclassifications 

indicating that the chest sensor is important in the assessment 

of HD movement impairment.   

The system also produces a continuous value movement 

impairment score (MIS) that is well correlated with the clinician 

rated mULMS reflecting upper body chorea and dystonia. From 

a clinical perspective this is an exciting development in that the 

novel MIS provides a quantitative representation of chorea and 

dystonia of the upper limb in HD that traditionally is very 

difficult to rate reliably. The correlation between the automatic 

MIS and the mULMS demonstrates the viability of using the 

MIS for monitoring the progression of the movement disorders. 
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Nonetheless, further validation of the proposed system is 

required. Special care will need to be taken when comparing the 

automatic MIS and mULMS due to the subjectivity of the latter. 

There is a number of strategies which can be followed to 

address this issue, including testing intra- and inter-rater 

reliability. 

V. CONCLUSIONS 

The approach presented in this study demonstrates the 

possibility of objective, consistent and sensitive assessment of 

the HD movement impairment using the MBT and three low-

cost tri-axial accelerometers. The initial application of this test 

has been in HD: a highly characterised, single gene 

neurodegenerative disease. Given these promising results, we 

are now working to establish proof of concept in other 

neurological conditions such as Parkinson’s disease, tremor and 

dystonia. Future research will focus on combining acceleration 

with orientation data to improve the performance of the system 

and to expand the number of neurological movement disorders 

the system could assess. 
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