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Abstract  

In order to thrive, viruses have evolved to manipulate host cell machinery for 

their own benefit. One major obstacle faced by pathogens is the immunological 

synapse.  To enable efficient replication and latency in immune cells viruses have 

developed a range of strategies to manipulate cellular processes involved in IS 

formation to evade immune detection and control T-cell activation. 

In vitro, viruses such as HIV-1 and HTLV-1 utilise structures known as 

virological synapses to aid transmission of viral particles from cell-to-cell in a process 

termed trans-infection. The formation of the virological synapse provides a gateway 

for virus to be transferred between cells avoiding the extracellular space, preventing 

antibody neutralisation or recognition by complement.  

This review looks at how viruses are able to subvert intracellular signalling to 

modulate immune function to their advantage and explores the role synapse 

formation has in viral persistence and cell-cell transmission.  
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1 INTRODUCTION 

The adaptive immune response is essential for the control of pathogen 

invasion and is regulated by co-ordinated communication between immune cells. 

This contact is directed either via membrane-bound receptors or via the secretion of 

cytokines and lytic granules in response to chemokines on the surface of Antigen 

Presenting Cells (APCs). The interaction has been termed the immunological synapse 

(IS), a specialised zone of contact between two immune cells to allow the exchange 

of materials. Synapses can be formed between two cells, T-cell-T-cell (Dustin et al., 

1998, Monks et al., 1998), T-cell-B-cell (Batista et al., 2001) and APC-T-cell (Grakoui 

et al., 1999), however the majority of work has centred on the latter. Numerous 

viruses including Human Immunodeficiency Virus (HIV), Respiratory Syncytial Virus 

(RSV) and Herpesvirus have evolved to express viral proteins that specifically target 

components of the IS with particular emphasis on the T-cell receptor (TCR) signalling 

cascade and lymphocyte function-associated antigen 1 (LFA-1) clustering, both 

essential for IS formation. 

Classically, viruses initiate contact with a host cell via attachment to a specific 

receptor on the target cell surface, initiating viral uptake, viral replication and the 

production of progeny virus for onward release. Some T-lymphotropic viruses have 

developed a strategy to form a stable adhesive junction between an infected cell 

(effector) and uninfected cell (target), termed a virological synapse (VS). No fusion 

events take place between the cells; instead a junction is formed to transfer intact 

viral particles or genetic material. This process is termed trans-infection (Geijtenbeek 

et al., 2000) and has been found to be significantly more efficient than infection via 

cell free virus in vitro (Sourisseau et al., 2007).  HIV-1 and Human T-Lymphotropic 
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Virus type 1 (HTLV-1) are two examples of viruses that trigger the polarisation of 

cellular machinery and cytoskeleton to form the VS at the cellular interface (Igakura 

et al., 2003, Jolly et al., 2007a). Transmission of virus from cell to cell in this manner 

allows the efficient infection of target cells without exposure to the immune system. 

In this review we discuss the methods used by viruses to modulate host 

cellular machinery and signalling cascades to create a balance between rapid viral 

replication and establishment of latency.  We go on to detail how HIV-1 and HTLV-1 

use the VS to transfer virus cell to cell and the importance of this in vivo, and briefly 

look at how other viruses may use similar methods of cell-to-cell spread. 

 

2 IMMUNOLOGICAL SYNAPSE 

T-cell activation is dependent on the formation of the IS, once bound to an 

APC the T-cell is able to detect specific peptide-MHC complexes (Xie et al., 2013) and 

respond by polarising receptors and directing membrane trafficking to the site of 

contact. The two cells form a stable but transient junction via receptor engagement.  

The synapse allows the secure secretion of cytokines and lytic granules to mount a 

tailored immune response to pathogens, used as a platform for the release of 

microvesicles to induce activation of signalling pathways (reviewed in (Dustin et al., 

2016)) and the extraction of pMHC from APC by T-cells during trogocytosis (Osborne 

et al., 2012). Recognition of APC by T-cells results in the reorientation of the 

microtubule organising centre (MTOC), Golgi and endosomal compartments to the 

contact site along with receptors, co-receptors and adhesion molecules including T-

cell receptor (TCR), CD4 or CD8, and the integrin’s LFA-1 and intercellular adhesion 

molecule (ICAM)-1, respectively. Filamentous actin and actin interacting proteins 
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including talin are also found to accumulate at the junction (Dustin et al., 2016). Due 

to the redirection of membrane trafficking to this contact site the IS becomes a focal 

point for both exocytosis and endocytosis regulating the transfer of cellular 

components (Griffiths et al., 2010). 

The T-cell TCR engages with the APC Major Histocompatibility complex 

(pMHC) triggering IS assembly by forming a TCR/pMHC microcluster (MCs) at the 

contact site.  The MC forms the centre of central supramolecular activation 

complexes (cSMAC). The peripheral supramolecular activation cluster (pSMAC) 

consisting of LFA-1/ICAM-1 forms a ring around the cSMAC. An additional distal layer 

(dSMAC) surrounds the pSMAC formed by f-actin associated with CD45.  Additional 

proteins are recruited such as protein tyrosine kinases, Lck, ZAP-70 and PCKθ and 

adaptor protein talin through interaction with LFA-1 (Figure 1a). TCR engagement 

with pMHC induces transcriptional up regulation in naïve or resting T-cells, resulting 

in T-cell activation and proliferation (Dustin et al., 2010).  

 

2.1 Viral Manipulation of the Immunological Synapse 

In order to establish an infection within a host, pathogens must adapt to the 

hostile environment imposed by the immune system by evading detection by 

surveilling immune cells. Viruses have evolved multiple strategies to hijack and 

manipulate host cell signalling and machinery to aid their own propagation and 

persistence.  T-lymphotropic viruses are able to strike a balance between subversion 

of intracellular signalling and trafficking to impair IS formation and T-cell activation, 

whilst still allowing sufficient T-cell activation to maintain viral replication. Viruses 

such as retroviruses, herpesviruses and paramyxoviruses have developed specific 
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mechanisms to alter TCR regulated pathways resulting in inhibition of IS formation 

and immune detection, whilst promoting viral replication and release of progeny 

virus.  

2.1.1 HIV-1 NEF 

HIV-1 and primate Simian Immunodeficiency Viruses (SIV) genomes encode 

several accessory proteins (nef, vif, vpu, vpr and in the case of SIV vpx). Vif, vpu, vpr 

and vpx are linked to the subfamily of ubiquitin ligases and induce the proteosomal 

degradation of cellular restriction factors, suppressing antiviral activity to allow 

efficient viral propagation and release. Nef is a key viral protein that is expressed in 

early infection and determines viral pathogenicity in vivo (Kestler et al., 1991).  

Nef has been found to regulate several aspects of the host cell including the 

intracellular trafficking and downregulation of cellular surface proteins. CD4 (Piguet 

et al., 1999), CCR5 (Michel et al., 2005) MHC1 and II (Piguet et al., 2000), CD28 

(Swigut et al., 2001) and SERINCs (Rosa et al., 2015, Usami et al., 2015) are down 

regulated, whereas dendritic cell-specific ICAM grabbing non-integrin (DC-SIGN) is 

upregulated (Sol-Foulon et al., 2002). However, LFA-1, ICAM-1 and ICAM-2 appear to 

remain unaffected (Thoulouze et al., 2006).  This approach allows HIV-1 to remain 

hidden in infected cells by controlling how the cell communicates with the rest of the 

immune system. An additional advantage to the downmodulation of the expression 

of viral receptors on the cell surface, such as CD4, help prevent subsequent re-

infection with a closely related viral strain, avoiding ‘superinfection’ of the cell. 

Reviewed in (Nethe et al., 2005). 
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Figure 1. Schematic representation of immunological (IS) and virological synapses (VS). 
(a) Immunological Synapse. In the target cells TCR interacts with pMHC on the effector cells to form a 
Microcluster (MC) or cSMAc. The pSMAC is formed via interaction of LFA-1/talin and ICAM1. Actin 
makes up the dSMAC. CD4/CD8, Lck, Zap-70 are also recruited to the contact sites of the target cells. 
(b) Virological synapse between T-cells. CD4 and CXCR4 expressed on the cell surface on the target 
cell interacts with viral Env presented at the plasma membrane of the effector cell and LFA-1 engages 
ICAM-1.  Virus buds from the effector cell across the synapse and fuses with target T- cell. (c) 
Virological synapse between DC and T-cells.  Actin, ICAM-1 and tetraspanins (CD81, CD63, CD9, and 
CD82) concentrate on the DC side, whereas CD4, CXCR4/CCR5 and LFA-1 polarise to the T-cell contact 
site.  In immature DC, virus is captured via DC-SIGN and redistributed to the VS.  Membrane 
extensions form between cells through the activation of Cdc42 through Env interaction with DC-SIGN.  
In mature DC, GM3 incorporated into the viral particles is targeted to Siglec-1 (CD169) trafficking virus 
to the plasma membrane. mDC extend actin membrane sheets around T-cell (target). (d) Potential 
drug delivery via the VS using nanoparticle technology. GM3 containing nanoparticles bind to Siglec-1 
and induce VS formation therefore can be used for targeted drug delivery to T-cells via the VS. 
Liposomes coated in antibodies against LFA-1 containing siRNA against CCR5 can reduce HIV viral 
load. 
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Nef also targets intracellular signalling and protein trafficking pathways by 

interacting with various components of the TCR signalling cascade such as Vav-1 

(Fackler et al., 1999), Erk (Schrager et al., 2002), PAK-2 (Renkema et al., 1999) and 

PKθ (Smith et al., 1996). The impeded trafficking of TCR receptor from the cell 

surface leads to retention in recycling endosomes along with Lck (Thoulouze et al., 

2006). In conjunction with downregulation of CD4 and CD28 (Brady et al., 1993, 

Swigut et al., 2001) and Nef’s ability to disassociate CD4 from Lck and target it for 

degradation (Kim et al., 1999) the targeted attack on TCR signalling reduces 

clustering at the IS and results in inefficient IS formation.  

Nef is also an important regulator of actin cytoskeleton dynamics, through 

interactions with the GTPase exchange factor (GEF) Vav1, prompting cytoskeleton 

rearrangements and activation of c-Jun N-terminal kinase/stress-activated protein 

kinase cascade (Fackler et al., 1999). Furthermore, Nef interacts with PAK-2 

inhibiting the activity of neural Wiskott-Aldrich syndrome protein and Rac-1, both 

regulators of actin polymerization and T-cell activation (Haller et al., 2006).   

HIV has developed multiple strategies to alter receptor expression, signalling 

pathways and cytoskeleton rearrangements resulting in the inefficient formation of 

the IS. Non-pathogenic SIV is a prime example of how an efficient block to T-cell 

activation promotes viral persistence through immune evasion. SIV Nef disrupts the 

formation of IS between APC and T-cells through the efficient downregulation of TCR 

and CD28 therefore blocking T-cell responses to virally infected cells and avoiding 

apoptosis.   In the case of HIV-1, some studies suggest Nef is less efficient at 

preventing IS formation due to a weaker downregulation of TCR and CD28 resulting 

in increased levels of T-cell activation and apoptosis (Arhel et al., 2009). Thus, 
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successfully blocking T-cell activation reduces viral replication permitting prolonged 

viral production and persistence within the host, whereas failure to actively control 

T-cell activation increases replication ultimately resulting in increased pathogenicity 

and disease progression.  

2.1.2 What methods do other viruses use to modulate TCR signalling pathways? 

The paramyxovirus, human RSV is a causative agent of respiratory infections 

worldwide. The nonstructural genes carried by the virus control DC maturation and 

reduce antigen presentation to T-cells.  The N protein is transported to the cell 

surface of the APC where it interacts in trans with TCR molecules. This interaction is 

believed to inhibit T-cell activation by downregulating TCR signalling and pMHC 

clustering resulting in inhibition of IS formation, reviewed by (Canedo-Marroquin et 

al., 2017).  

HTLV-1 has the ability to control T-cell activation for its own requirements.  

The HTLV protein P12I expressed in early infection is capable of inducing T-cell 

activation by the activating transcription activator nuclear factor of activated T-cells 

and Interleukin-2 production (Albrecht et al., 2002, Ding et al., 2002, Ding et al., 

2003, Kim et al., 2003). In addition, viral protein Tax is able to bypass TCR signalling 

and activate CD28, CD69 and CD5 expression (Chlichlia et al., 1995) promoting T-cell 

activation. Conversely, HTLV-1 reduces TCR cell surface expression via 

downregulation of TCR genes (de Waal Malefyt et al., 1990) and similarly blocks 

transcription of Lck (Koga et al., 1989) thus controlling IS formation and activation of 

T-cells. 

Herpes viruses establish lifelong latent infections in host cells. Human Herpes 

Virus 6 (HHV6) and HHV7 are able to subvert TCR signalling and intracellular 
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trafficking of receptors TCR and CD4, but do not affect levels of Lck (Furukawa et al., 

1994, Secchiero et al., 1997).  This activity has been attributed to HHV6 U24, which 

blocks TCR receptors access to recycling endosomes (Sullivan et al., 2008) and 

therefore prevents recycling back to the cell surface. Similarly, Herpes simplex virus 

(HSV) has also developed strategies to remodel TCR signalling to selectively activate 

TCR pathways.  HSV ORF5 is tyrosine phosphorylated upon TCR stimulation, and able 

to interact with SH2- signalling proteins including Lck, which in turn activates TCR 

signal transduction to promote gene expression and persistent infection (Lee et al., 

2004). 

Herpes Samari (HVS) is an oncogenic simian gamma 2 herpesvirus able to 

immortalise human T lymphocytes. HVS has multiple viral proteins aimed at TCR 

signalling inhibition. The viral protein Tip (tyrosine kinase interacting protein) 

interacts with Lck, and sequesters it along with TCR and LFA-1 in vesicular 

compartments (Jung et al., 1995, Park et al., 2003, Cho et al., 2004, Cho et al., 2006). 

Moreover, Tip interaction with the lysosomal protein p80, results in the degradation 

of the sequestered Lck (Park et al., 2002) preventing downstream signalling events. 

Tip is also responsible for the downregulation of CD4 and TCR at the cell surface 

(Park et al., 2003, Cho et al., 2006), interfering with TCR signalling cascade and IS 

formation (Cho et al., 2004).  

Numerous other viruses have been reported to modulate the TCR signalling 

pathway to strike a balance between prompting replication and evading detection in 

the host. To date these include, Measles, Hepatitis C (Hep C), Vaccina virus (VV), and 

Epstein-Barr virus (EBV). For example, DC infected by Measles virus have been found 

to form unstable IS with T-cells (Shishkova et al., 2007). Through the MV and F/H 
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complex T-cell activation is suppressed (Dubois et al., 2001) and actin remodelling, T-

cell polarisation and TCR clustering is inhibited at the IS (Niewiesk et al., 1999, Muller 

et al., 2006, Shishkova et al., 2007). Similarly, HCV is reported to downregulate TCR 

in peripheral T-lymphocytes (Maki et al., 2003), VV VH1 protein can block TCR 

activation of the IL-2 promoter (Alonso et al., 2002), whereas EBV latent membrane 

protein LMP2A can bind to Lck, Fyn and ZAP-70 downregulating TCR and attenuated 

TCR signalling (Katzman et al., 2004), reviewed in (Jerome, 2008).  

Viruses have dedicated multiple specialised proteins to the modulation of 

TCR signalling showing how integral the IS is in pathogen recognition and killing. For 

many T-lymphotropic and APC viruses it is essential to replicate efficiently and 

rapidly but go undetected by the host immune system. These two requirements 

have evolved into controlled modulation of components of the IS and downstream 

T-cell activation. Viruses such as those mentioned strike this perfect balance, 

increasing T-cell activation at low levels to aid infection and replication whilst 

prevent TCR signalling and complete T-cell activation, to prevent over expression of 

viral proteins and apoptosis of the host cell. 

 

3 VIROLOGICAL SYNAPSE 

The first details of VS were reported in HTLV-1 transfer between T-cells 

(Bangham, 2003) and has subsequently been a central topic of HIV-1 research in 

regard to transmission between T-cells (Jolly et al., 2004) and Dendritic Cell (DC) to 

T-cell (McDonald et al., 2003, Arrighi et al., 2004, Turville et al., 2004). In fact, HIV 

infected CD4+Tcells are reported to transmit virus via VS across penile urethral 

epithelium to macrophages within an in vitro reconstructed mucosal system where a 
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latent infection could be established (Real et al., 2018). The VS forms between an 

infected and uninfected cell forming a transient but stable junction to allow the 

transfer of viral particles. Although VS and IS share a similar structure, the VS has 

several unique features. The most important of which is that TCR is not found at the 

VS (Jolly et al., 2004) and the VS lacks the defined MC or dSMAC of the mature IS 

(reviewed in (Vasiliver-Shamis et al., 2010). 

 

3.1 HIV-1 Virological Synapse 

3.1.1 T-cell to T-cell 

The VS is a transient, dynamic structure that forms upon recognition by the 

HIV glycoprotein gp120 expressed in the effector cell by the surface receptor CD4 on 

the target T-cell. The interaction results in the recruitment of the viral Gag 

polyprotein to the contact site (Jolly et al., 2007a) potentially through an interaction 

with the tumor suppressor adenomatous polyposis coli protein that directly binds 

HIV-1 Gag, not only regulating the localization of viral components for HIV-1 

assembly but by enhancing the VS cell-to-cell transmission of HIV-1 (Miyakawa et al., 

2017).  This in turn triggers the recruitment of the HIV co-receptors CCR5 and CXCR4 

along with cellular adhesion molecules ICAM-1 and LFA-1 to the VS. Tetraspanins 

and other surface proteins help form a stable VS to aid viral transmission (Jolly et al., 

2004, Jolly et al., 2007b, Starling et al., 2016). The gp120 interaction with CD4 also 

induces cytoskeleton rearrangements, remodels the actin cytoskeleton and LFA-1 

induces the polarisation of the MTOC to the interface in the infected T-cell (Jolly et 

al., 2007a, Starling et al., 2016).  Jolly et al (2004) observed recruitment of CD4, 

CXCR4, talin, actin and LFA-1 on the target cell when co-cultured with infected T-
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cells. At the same time the recruitment of viral Env and Gag to the VS in the infected 

cell with actin concentrated at the intersection was seen (Figure 1b). More recently, 

a phosphoproteomic approach to analyse mixed populations of infected and 

uninfected T-cells identified over 200 cellular proteins involved in viral transfer. 

Despite the lack of antigen stimulation TCR signalling was identified as the most 

activated pathway in both infected and uninfected T-cells. It was concluded that 

activation of TCR, Lck and Zap70 in infected T-cells mediated by Env was essential for 

viral transfer to target T-cells (Len et al., 2017).  

The transmission of virus is thought to be instigated by direct budding of 

virions from infected to uninfected cells in the synaptic cleft and the probable fusion 

of virions with the plasma membrane of the target cell (Pearce-Pratt et al., 1994, Fais 

et al., 1995, Deschambeault et al., 1999) (Figure 1b). After transfer to the recipient 

cell immature virus has been found to  accumulate in endocytic compartments of the 

target T-cells leading to maturation of virions and viral membrane fusion, concealing 

the virus from detection by neutralising antibodies (Dale et al., 2011). 

3.1.2 DC to T-cell 

 DC reside in the mucosal tissues and include several subpopulations, 

including Langerhans (LC) and myeloid DC.  DC main role is to interact with and 

present pathogen-derived antigens to the adaptive immune system. These APC cells 

are perfectly positioned to encounter HIV in early sexual transmission (Zaitseva et 

al., 1997).  Indeed a subset of Vaginal Epithelial DC appear to be important for viral 

selection during the initial stages of  infection as they preferentially replicate CCR5 

viruses over CXCR4 and were found to be  an important reservoir of infection in vivo 

(Pena-Cruz et al., 2018). Exposure to pathogens results in stimulus of DC and their 
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subsequent maturation and migration to lymphoid tissue where they interact with 

antigen specific T-cells, leading to T-cell activation. 

HIV-1 is able to infect DC; however infection levels are much lower than in 

CD4+ T- cells. DC possess several restriction factors to discourage replication, such as 

dNTP triphosphatase SAMHDI (Berger et al., 2011, Hrecka et al., 2011, Laguette et 

al., 2011, Ryoo et al., 2014), interestingly this is not the case for LC, instead the 

cytokine TGFβ signalling pathway is able to potently restrict replication at the 

transcriptional stage (Czubala et al., 2016).  Uptake in immature DC (iDC) is mediated 

via attachment to CD4, co-receptors CXCR4 or CCR5 and the c-type lectin DC-SIGN 

(Geijtenbeek et al., 2000, Arrighi et al., 2004), whereas LC use alternative c-type 

lectin, langerin (Turville et al., 2002, Hu et al., 2004).  After entry into DC the transfer 

to target T-cells can occur by two main routes.  Firstly, cis- infection which tends to 

occur in iDC and involves the productive replication and release of progeny virus. 

The second is trans-infection where DC capture virions, however productive 

infection is absent and whole intact viral particles are trafficked to T-cells via a 

virological synapse (Piguet et al., 2007, Garcia et al., 2008). Trans-infection is 

associated with mature DC (mDC). Attachment to DC-SIGN allows virus to remain 

infectious for prolonged periods of time in DC (Geijtenbeek et al., 2000) despite the 

fact DC have a highly developed endolysosomal pathway (Blauvelt et al., 1997, 

Turville et al., 2004). This may, at least in part be attributed to the SNARE-associated 

protein Snapin downregulating Toll-like receptor 8 (TLR8) signalling in infected DC 

endosomes (Khatamzas et al., 2017). Instead, virus is sequestered in endosomal 

derived compartments upon maturation (Garcia et al., 2008, Wang et al., 2017a). 

Compartments are found to be rich in tetaspanins such as CD81, CD82, CD9, and 
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CD63 but absent for lysosomal marker LAMP1 (Garcia et al., 2008, Wang et al., 

2017a). In depth imaging studies have revealed these to be continuous with the cell 

membrane (Bennett et al., 2009, Mlcochova et al., 2013, Nkwe et al., 2016), at least 

in the case of macrophages. 

Upon contact of the DC with T-cell the enrichment of HIV near the cell 

surface allows formation of VS (McDonald et al., 2003). Engagement of sialoadhesin 

CD169 (siglec-1) expressed on the surface of mDC with the ganglioside GM-3 

contained in the viral membrane triggers relocation to the cell periphery to initiate 

VS formation (Izquierdo-Useros et al., 2012a, Izquierdo-Useros et al., 2012b, Puryear 

et al., 2012, Puryear et al., 2013a, Puryear et al., 2013b). It has been recently 

reported that the interaction of these molecules alone is enough to initiate VS 

formation (Yu et al., 2015).  In DC there is an enrichment of tetraspanins, actin and 

ICAM-1 at the contact site, whereas adhesion molecule LFA1, HIV receptors CD4 

CXCR4/CCR5 concentrate at the surface on the T-cell side (Geijtenbeek et al., 2000, 

Garcia et al., 2005, Cavrois et al., 2007, Turville et al., 2008, Yu et al., 2008, Felts et 

al., 2010) (Figure 1c). Disruption of actin remodelling and microtubules with 

inhibitors has been shown to prevent VS formation highlighting the importance of 

the role of the actin cytoskeleton in VS formation (Felts et al., 2010, Nikolic et al., 

2011, Menager et al., 2016).  

Imaging of the VS has revealed the presence of extensive filopodial 

extensions extending from CD4+ T-cells to mDC, and evidence for the formation of 

sheet-like membrane extensions that extend around T-cells (Felts et al., 2010, Do et 

al., 2014) (Figure 1c). In iDC the formation of membrane extensions are induced via 

the interaction of HIV Env with DC-SIGN which in turn activates the GTPase CDC42 
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(Nikolic et al., 2011). Furthermore, Tetraspanin TSPAN7 and Dynamin 2 (DNM2) roles 

in actin nucleation and cortical stabilization are essential for maintaining viral 

particles on dendrites (Menager et al., 2016). Membrane extensions are thought to 

allow contact with the uninfected cell and aid the efficient transfer of virus to 

promote infection. 

To date most studies of viral cell to cell transfer have been conducted in vitro, 

therefore the importance of the VS and the spread of virus in vivo is starting to be 

addressed.  In a recent study Murooka et al show HIV-1 infected T-cells contribute to 

the systemic infection in a humanised mouse model where productively infected T-

cells were visualized migrating to lymph nodes. A subset of cells were observed 

forming syncytia and adhering to CD4+ lymph node cells resulting in the formation of 

membrane tethers that may facilitate cell to cell spread (Murooka et al., 2012, 

Sewald et al., 2016). It was later shown that murine leukemia virus (MLV) and HIV-1 

are captured by CD169/Siglec-1 expressed on the cell surface of macrophages.  The 

macrophages formed synapses between B-1 cells that migrate into lymph nodes to 

continue to spread via VS, showing the importance of CD169 in viral spread (Sewald 

et al., 2015). In 2016, Law et al looked at the genetic patterns of HIV-1 infection and 

found the co-transmission of 2 viral genotypes and the micro clustering of infected 

cells formed, harbouring the same genotype within lymphoid tissue. HIV-1 infected 

cells were able to induce the arrest of the interacting CD4+ T-cells through Env 

dependent cell contacts (Law et al., 2016). Understanding cell to cell spread in 

various tissue types will be vital to development of effective anti-viral strategies in 

the future to block viral transmission to target cells. 
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3.2 HTLV-1 Virological Synapse 

Infection with HTLV-1 has been implicated in several diseases including adult 

T-cell lymphoma (ATL) and a range of inflammatory diseases. The primary target of 

HTLV-1 is CD4+ T-cells, however there is evidence for infection of a range of immune 

cells including DC (Macatonia et al., 1992, Knight et al., 1993), macrophages (Nath et 

al., 2003), B-cells (Koyanagi et al., 1993) and CD8+ T-cells (Hanon et al., 2000).  The 

virus is taken into T-cells via the receptor GLUT1 (Manel et al., 2003), however unlike 

HIV-1 transmission HTLV-1 is dependent entirely on cell to cell contact.  Once 

infected, viral transmission is initiated via the binding of adhesion molecule ICAM-1 

on the surface of the infected cell and LFA-1 on the surface of the target cell (Kim et 

al., 2006).  This is in addition to the interaction of the viral Tax protein with ICAM-1 

that appears to promote MTOC polarisation to the contact site (Nejmeddine et al., 

2005). Viral Env glycoprotein, core proteins p19 and p15, and adhesion molecule 

talin all polarise towards the junction with the virus receptor GLUT-1 (Takenouchi et 

al., 2007) which along with neurophilin 1 (Ghez et al., 2006) and heparan sulphate 

proteoglycans (Pinon et al., 2003) are thought to strengthen the cell to cell adhesion. 

Interestingly, the HTLV VS appears to have a more ordered structure than HIV-1 VS, 

due to the recruitment of talin that forms a ring like structure, similar to the pSMAC 

of IS (Igakura et al., 2003). It has been reported that the HTLV-1 protein P8 down 

regulates TCR signalling (Fukumoto et al., 2007, Fukumoto et al., 2009)  increasing 

cell contact through interaction with LFA-1 clustering, controlling membrane 

extensions between T-cells (Van Prooyen et al., 2010). Additionally, there is evidence 

for an alternative route of transmission via extracellular biofilms. The biofilm is 

believed to store virus particles on the cell surface in carbohydrate rich matrices 
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consisting of collagen, agrin, tetherin and galectin which transfer between cells upon 

contact (Pais-Correia et al., 2010). 

Transmission of virus via the VS may provide many advantages to viral 

survival by evading detection by the host immune system and establishing a latent 

reservoir of infection between immune cells. This mode of viral transmission has 

potentially important considerations for existing drug therapies. For example, HIV-1 

transmitted cell-to-cell requires greater concentrations of broadly neutralising 

antibodies (bNabs) to neutralize virus when compared to cell free virus.  In a recent 

study several bNabs were found to have a decreased capacity to neutralise virus 

isolated from HIV-1 patients in a transfer assay compared to cell-free virus (Li et al., 

2017). Moreover, even though virus transferred via VS is still susceptible to anti-

retroviral treatment (ART), it is thought to be less sensitive to some commonly used 

antiretrovirals than cell free virus (Sigal et al., 2011). This reduction in sensitivity has 

been attributed to the accumulation of viral particles at the VS reducing the virus’s 

overall susceptibility to treatment (Duncan et al., 2013). Reduced sensitivity to 

existing treatments could potentially encourage viral immune escape and contribute 

to viral persistence in patients which is an important consideration for future vaccine 

development.  

 

3.3 A COMMON ROUTE OF CELL TO CELL TRANSMISSION? 

The formation of the VS provides a powerful and effective route for viral 

transmission for retroviruses such as HIV-1 and HTLV-1; however recent studies are 

suggesting this maybe a common mode of transmission between immune cells.  A 

good example is the Infection of memory B-cells with EBV which results in the 
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recruitment of adhesion molecules and the transfer of virus to polarised epithelial 

cells (Shannon-Lowe et al., 2011). Recently, Wang et al demonstrate that the 

flavivirus, Japanese encephalitis virus, is taken into DC via DC-SIGN and plays an 

important role in trans-infection to T-cells. Imaging showed the transfer of JEV viral 

particles from DC to T-cells via cell to cell contact and formation of VS (Wang et al., 

2017b). Similarly, Yang et al, demonstrate that SARS coronavirus, which also uses DC-

SIGN as an attachment receptor is transferred between DC and target cells via a 

structure similar to the HIV-1 VS (Yang et al., 2004).  As DC-SIGN has been reported 

as an attachment receptor for several other viruses including Ebola (Alvarez et al., 

2002), Dengue (Tassaneetrithep et al., 2003), Human Cytomegalovirus (hCMV) 

(Halary et al., 2002) HIV-2, SIV (Pohlmann et al., 2001) and HCV (Wang et al., 2004), 

it seems plausible that many more diverse viruses use similar methods for 

transmission to permissible cells.   

 

4 NANOPARTICLES TO MIMICK VIRUSES: POTENTIAL THERAPEUTIC TARGETS? 

In recent years the use of nanoparticles in vaccine delivery has become a 

popular area of research. Drugs, vaccines and even genes can be encapsulated and 

delivered to target sites within the body using vehicles such as liposomes, 

nanospheres/capsules and micelles (Singh et al., 2017, Saravanan et al., 2018). In 

addition, the controlled release, targeted delivery to specific cells or tissues and 

greater efficacy produce a potent cell mediated and humoral response. Advances in 

vaccine development via ligand delivery or creation of virus like particles have led to 

several promising treatments for a range of viral infections including HIV-1, HCV, 
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HBV, HPV, and Influenza. Several reviews on the topic detail the current advances 

(Aikins et al., 2017, Singh et al., 2017, Sulczewski et al., 2018). 

HIV-1 vaccine development has demonstrated that coating nanoparticles in 

the p24 antigen of HIV-1 allows targeted delivery into the dermis, eliciting a strong, 

HIV-1 specific CD4+ T-cell response and B-cell antibody production (Caucheteux et 

al., 2016).  Exploiting the mechanics of VS formation has led to the development of 

ganglioside GM3 membrane wrapped gold nanoparticles that were found to activate 

GM3-CD169 trafficking pathway in mDC.  The addition of GM3 to the virus-like 

nanoparticles was enough to deliver the conjugate to CD81+ compartments that 

accumulated at the junction between mDC and T-cells, resembling the structure of a 

VS (Yu et al., 2015). Another promising approach incorporates the delivery of CCR5 

siRNA encapsulated in liposomes coated in antibodies against LFA-1.  Mice 

challenged with HIV after treatment with the CCR5 liposomes maintained CD4+ cell 

count and a 2-fold reduction in viral load (Kim et al., 2010).  Overall, the targeted 

delivery to immune cells via LFA-1 appears a promising approach at preventing viral 

spread (Figure 1d). 

In respect to the IS, targeted control of the up or down regulation of TCR 

signalling maybe beneficial in a range of diseases such as autoimmune disease or 

chronic infections and therefore a viable therapeutic target (reviewed in Jerome 

2008). The use of this next-generation drug delivery is a very attractive prospect for 

the targeted delivery of vaccines exploiting the IS and VS to illicit specific immune 

responses. 

 

 



 21 

5 CONCLUSION 

The modulation of TCR signalling and VS formation appear to be an effective 

mechanism to disseminate virus to target cells and remain undetected by the host 

immune system. Viruses have evolved to manipulate these cellular adhesions to 

create the VS. Whether this is a specific targeted action or simply exploitation of 

existing pathways within immune cells remains to be determined. Further study into 

these structures and the viruses that utilise them will hopefully lead to more specific 

therapeutic targeting of life limiting infection. 
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