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ABSTRACT 

MCR-1-positve Escherichia coli (MCRPEC) have been reported in humans worldwide; however, thus 

far, their prevalence is low and potential sources for human mcr-1 carriage have not yet been 

identified. Here, we analyse a nationwide epidemiological dataset on MCRPEC in humans throughout 

China and assess the factors associated with MCRPEC carriage using natural and national 

anthropogenic data. We identified 774 non-duplicate MCRPEC isolates from 774 stool samples 

collected from 5,159 healthy individuals in 30 provinces and municipalities in 2016, with a prevalence 

of MCRPEC ranging from 3.7 to 32.7% (average: 15.0%)—substantially higher than previously 

reported. MCRPEC carriage was associated with provincial regions, the production of sheep and 

freshwater aquaculture, annual consumption of total meat, pork and mutton, and daily intake of 

aquaculture products. MCRPEC was significantly more prevalent in provinces with higher aquaculture 

industries. Whole-genome sequencing analysis revealed that the MCRPEC isolates were clustered into 

four distinct lineages, two of which were dominant and harboured most of the MCRPEC isolates. The 

high prevalence of MCRPEC in the community poses a substantial risk for colistin usage in clinical 

practice and suggests the need for intestinal screening of mcr-1 carriers in intensive care units in 

Chinese hospitals. Furthermore, our data suggest that aquaculture is a significant reservoir of  mcr-1. 

Since the discovery of the plasmid-mediated colistin resistance determinant MCR-1 in 

Enterobacteriaceae in 2015, it has been reported globally in over 50 countries on 5 continents within 2 
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years1,2. So far, nine mcr-1 variants (mcr-1.2 to mcr-1.10)3,4,5,6 have been reported. Additionally, 

mcr has been identified in extensively drug resistant Enterobacteriaceae isolates carrying plasmid-

borne carbapenemase and ESBL genes7. Given that polymixins are a last-resort treatment for 

extensively drug resistant bacterial infections, the spread of mcr across pathogenic bacterial clones is 

likely to pose a serious public health crisis. In July 2016, the European Medicines Agency updated the 

risk level of colistin resistance transfer from low to high.  In November 2016, the Ministry of 

Agriculture of China (article number 2428) withdrew colistin as a feed additive and growth promoter, 

and this was officially enforced in April 20178. In February 2017, the Department of Livestock 

Development in Thailand also banned the use of colistin as a feed additive. Despite these regulatory 

edicts, colistin is still widely used in animal production and will continue to be used in farms either 

metaphylactically or for treating individual animals. 

Unlike the high detection rates of MCR-positive Enterobacteriaceae (MCRPE) in animals7,9, in human 

populations, MCRPE has been reported to be substantially lower. Among Escherichia coli isolates 

associated with human infections, 1.3–1.7% have been found to be positive for mcr-1 2,10,11, while only 

0.2–0.7% of clinical K. pneumoniae isolates have been found to harbour mcr-1 1,2,10,11. For E. 

coli isolates derived from human colonization, the prevalence of mcr-1-positve E. coli (MCRPEC) 

varies between inpatients (0.4–2.9%)2,12 and healthy individuals (0.7–6.2%)2,13,14. Most of these 

studies focused on MCRPE from clinical samples in inpatients, while the studies on MCRPE were  

from healthy individuals and of a small sample size involving one or two hospitals2,14. Recently, we 

reported the widespread distribution of MCRPEC among Chinese farms and proposed the term 

‘phantom resistome’—a phenomenon where mcr-1 rates are considerably higher in DNA extracted 

from samples than isolates grown on media containing colistin15. A recent study examining the 

acquisition of MCRPE when travelling to India used an enrichment method and showed higher rates 

than non-enrichment methods, which may, in part, explain the ‘phantom resistome’16. 

Our previous MCRPEC data showed that carriage among humans had a weak but positive association 

with living distance from commercial animal (pig and poultry) farms, but is not associated with diet 

preference (vegetarian versus non-vegetarian)2. These findings suggest a possible link of MCRPEC 

colonization and carriage between humans and animals, but this link remains unproven due to the 

limited sampling size and narrow geographic scope of previous studies2,12. Accordingly, we have 

determined the prevalence and molecular epidemiology of MCRPEC carriage in healthy individuals 

across 30 (out of 34) provinces and municipalities in China using an enrichment method to capture a 

larger sector of the ‘phantom resistome’ and a truer prevalence of human carriage. Furthermore, given 

the potential spread of MCRPEC in Chinese communities, we analysed the anthropogenic and 
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environmental factors associated with human MCRPEC carriage. In addition, as mcr genes may have 

originated in aquatic environments17,18, the 30 Chinese provinces and municipalities were further 

divided into low, medium and high areas of aquaculture industrial intensity19, to access the impact of 

aquaculture-associated anthropogenic factors on MCRPEC carriage. 

RESULTS 

Distribution of mcr-1 

Our inclusion and exclusion criteria for subjects, and criteria for processing of samples. From 1 June 

to 30 September 2016, we collected 5,159 rectal swabs from healthy individuals across 30 provinces 

and municipalities in China. Zhejiang and Beijing contributed the largest numbers of samples (both 

>470). Sichuan province and Shanghai contributed the smallest (both ≤50). The ratio of males to 

females in this study was 1.2:1. The age of subjects ranged from 12 to 89 years and 83.8% were 

between 21 and 50 years old (Table 1). A total of 774 faecal samples were positive for the mcr-1 gene 

(15.0%), and MCRPEC (774 non-duplicate isolates) from each sample were further characterized. 

Liaoning province displayed the highest mcr-1 prevalence of 32.7% (95% confidence interval (CI): 

20.7–46.7%), while Ningxia province showed the lowest prevalence of 3.7% (95% CI: 1.5–7.6%). The 

mean positive prevalence of mcr-1 carriages was 15.0% (95% CI: 14.0–16.0%) among the 30 

provinces and municipalities (Figure 1). 

Correlation of mcr-1 carriages with environmental and anthropogenic factors 

Given that previous studies have suggested that MCRPEC started and spread within Chinese farming 

communities, we analysed the potential association of mcr-1 carriage with behavioural and non-

behavioural factors, including environmental and anthropogenic factors. When analysed by univariable 

analysis, 18 of 27 associations were shown to be significant (P ≤ 0.05; Table 1). No observable 

difference was seen between males and females (odds ratio (OR) = 1.0, 95% CI: 0.9–1.2). The odds of 

MCRPEC for ages 81 to 90 (OR = 3.9, 95% CI: 1.1–14.5) were significantly higher than for other age 

brackets, but accounted for 0.2% of the samples. After removing highly correlated variables, 13 

remained, 7 of which were significantly (P < 0.05) associated with mcr-1 positivity by multivariable 

logistic analysis (Table 2). In this model, geographical zones with low aquaculture industry had 

significantly lower odds (OR = 0.5, 95% CI: 0.3–0.7) of mcr-1 positivity compared with those with 

higher aquaculture activity. Populations with lower levels (≤100 g d–1) of aquatic food intake also had 

significantly lower odds (OR = 0.6, 95% CI: 0.5–0.7) of mcr-1 positivity. Unsurprisingly, the 

consumption of meat—especially pork and mutton—was significantly associated with higher mcr-

1 prevalence (Table 2). The Hosmer–Lemeshow ‘goodness-of-fit test’ (χ 2 = 0.6, d.f. = 8, P = 1 > 0.05) 
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indicated that the model was a robust fit for the data. The estimated area under the receiver operating 

characteristic curve was 0.65, indicating good predictability. 

Minimum inhibitory concentration profiles of MCRPEC 

We tested the antimicrobial susceptibility of all MCRPEC isolates from the 30 provinces and 

municipalities to 9 clinical antibiotics (cefepime, amikacin, piperacillin/tazobactam, ceftazidime, 

ticarcillin/clavulanic acid, ciprofloxacin, imipenem, colistin and cefoperazone/sulbactam). In general, 

MCRPEC was more commonly resistant to ticarcillin/clavulanic acid (57.88%) and ciprofloxacin 

(38.89%) than the other antimicrobial agents, and only a small number of mcr-1-positive isolates were 

resistant to amikacin (1.16%), imipenem (1.29%) and cefoperazone/sulbactam (2.32%). Significant 

differences in the minimum inhibitory concentration profiles among the three aquaculture conditional 

areas were only found for cefepime (P = 0.002), ceftazidime (P = 0.018) and ciprofloxacin (P = 0.011). 

Relationship of the MCRPEC isolates determined by whole-genome sequencing 

The core-genome-based phylogenetic analysis, together with Bayesian analysis of the population 

structure (BAPS) was employed to define lineages within the 287 sequenced MCRPEC isolates from 

30 provinces and municipalities across China. Genomic data from an additional 16 clinical MCRPEC 

isolates from Asia, Europe, and North and South America were added for comparison. The BAPS 

analysis revealed four distinct lineages among the 287 MCRPEC isolates (Figure 3). The main 

lineages, L3 (n = 78) and L4 (n = 183), comprised MCRPEC isolates from 29 (except Xinjiang 

province) and 30 provinces, respectively. The additional 16 international MCRPEC isolates fell into 

lineages L1 (n = 3), L3 (n = 7) and L4 (n = 6), and displayed high similarity to the isolates analysed in 

this study. There was no obvious correlation between lineages and provinces. Notably, the isolates 

from the low, medium and high aquaculture areas correlated within lineages L3 and L4, in which three 

highly homologous sublineages, S1, S2 and S3, harboured 19, 13 and 17 MCRPEC isolates from 15, 9 

and 10 provinces, respectively. Two isolates, each from the USA and the Netherlands, also fell into 

cluster S2 (Figure 3). 

Distribution of antibiotic-resistance and virulence-associated genes among MCRPEC isolates 

Antibiotic resistance genes (ARGs) and virulence-associated genes (VAGs) in the 287 MCRPEC 

isolates were determined from whole-genome sequences. A heat map showing the percentages of both 

ARGs and VAGs for each province or municipality was constructed (Fig. 4). No obvious association 

of ARGs or VAGs was found between provinces. Noticeably, most isolates belonged to phylogenetic 

group A and only a few isolates belonged to phylogroups B2 and D, but phylogroup B2 and D isolates 
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harboured a larger number of VAGs than those from groups A and B1. ARGs of the isolates from 

groups B2 and D were not strongly associated with VAGs of isolates from the same groups (Fig.  4 ). 

For VAGs, the mcr-1 gene co-existed more with hcpA/B/C (which encodes the haemorrhagic pilus 

of E. coli), ecpA(common pilus), hlyE/clyA (haemolysin/cytolysin A), espL/R/X (type III secretion 

system), fimH (type I fimbriae) and ibeB/C, whereas VAGs of pathogenic E. coli, such as ETEC, 

EAEC, EIEC, EPEC, EHEC, DAEC and so on, were rarely found in MCRPEC isolates from our study. 

In addition, resistance (floR) to florfenicol—a veterinary drug—was commonly associated with mcr-1. 

Associations of tetracycline ARGs (tetA and tetR), plasmid-mediated quinolone-resistance genes 

(oqxA/B), the β-lactamase ARG (bla TEM) and some aminoglycoside ARGs (aadA, strA/B and aph(3’)-

Ia) with mcr-1 were higher than with other ARGs; namely, other β-lactamase ARGs 

(bla CTX, bla OXA, bla CMY, bla SHV and so on) and carbapenem ARGs (bla KPC and bla NDM) (Figure 4). 

Diversity of MCRPEC isolates and plasmid Inc types 

MLST (multi-locus sequence type) groups of MCRPEC were assessed using minimum spanning trees 

for all 287 isolates from the 30 provinces and municipalities, which were divided into three sectors 

according to distinct aquaculture activities. The 287 MCRPEC strains were separated into 135 MLST 

clades showing marked diversity across each province. ST10 was the dominant clade, containing 46 

(16.0%) MCRPEC strains, while other MLST clades, including ST48, ST206, ST93, ST101, ST1684 

and ST216, were also widely distributed across low, medium and high regions of aquaculture industry. 

ST410 (n = 5) and ST155 (n = 9) were not identified in the medium-to-high regions of aquaculture 

activity, while ST189 (n = 5) and ST58 (n = 5) were not present in low areas of aquaculture. 

Furthermore, mcr-1 was identified in plasmids containing a variety of different Inc (incompatible) 

types; that is, IncX4-type (n = 83, 28.9%), IncI2-type (n = 60, 21.0%), IncHI2-type (n = 23, 8.0%), 

IncP-type (n = 8, 2.8%), IncY-type (n = 8, 2.8%), IncF-type (n = 1) and syncretic plasmids (n = 9, 

3.1%). 

Distinct prevalence of MCRPEC isolates of human and chicken origin 

Given the significant correlation between MCRPEC carriage in humans and the animal food chain, as 

shown above, we attempted to further analyse the association between human MCRPEC isolates and 

other MCRPEC isolates of animal origin using whole-genome phylogenetic analysis. However, in the 

National Center for Biotechnology Information (NCBI) database, we only found 88 whole genomes of 

MCRPEC isolates from Chinese chickens in previous studies15,20 (all sequences are available in NCBI 

under BioProject accession numbers PRJNA349231 and PRJNA417344). Unfortunately, there are no 

MCRPEC whole-genome sequences available for swine, sheep, cattle or fish from China. Although 
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MLST diversity was also found in MCRPEC isolates from chickens, minimum spanning tree analysis 

showed distinct clustering between human and chicken isolates. ST10 was also the dominant clade, 

with 46 and 5 MCRPEC isolates from humans and chickens, respectively. However, ST10 MCRPEC 

isolates were more common in human carriage than in chickens (16.0 versus 5.7%, P = 0.013). In 

contrast, ST156 was more prevalent in chicken carriage than from human intestines (23.9 versus 

1.0%, P < 0.0001). Interestingly, several sequence-type clades, each containing five or more isolates, 

were only observed in human carriage, such as ST155, ST58, ST189, ST410, ST216, ST2705 and 

ST1684. Core-genome phylogenetic analysis supported the commonality of ST156 clades among 

disparate origins, provinces and even countries. ST345 and ST101 also overlapped for  MCRPEC 

isolates from humans and chickens. 

DISCUSSION 

A key finding of this study is the high prevalence of MCRPEC carriage as human normal flora 

(15.0%), which is considerably higher than was previously reported (0.7–6.2%)2,13,14. Our results 

suggest that the true prevalence of MCRPEC was previously underestimated, probably as a 

consequence of directly screening for mcr-1-positive Enterobacteriaceae without an enrichment step. 

In contrast with previous studies, we first determined the presence of mcr-1 by PCR, and then isolated 

MCRPEC with an enrichment step using selective media with colistin, which resulted in a significant 

increase in MCRPEC detection. The higher MCRPEC prevalence will have major clinical implications 

as nosocomial outbreaks of MCRPEC are likely to occur if appropriate screening in Chinese intensive 

care units, high-dependency units, and transparent and haematology units is not enforced. Although 

few isolates were from phylogenetic group B2, patients presenting with significant co-morbidities will 

be at risk of infection and there is the high possibility of mcr-1 transfer in vivo into B2 pathogens. 

Given that polymyxin B has recently been approved for use in human medicine by the China Food and 

Drug Administration (5 January 2017) further studies are urgently needed to assess the impact of 

MCRPEC carriage prevalence on endogenous infections and treatment failure.  

Using microbiological and anthropogenic data, we identified possible associations with human 

MCRPEC carriage. The positive correlation between human MCRPEC carriage and the consumption 

of total meat, pork and sheep is in accordance with the notion that the spread of mcr-1 probably 

occurred from farm animals to humans1,9.  However, the identification of aquatic food as a correlated 

factor of MCRPEC was unexpected. Although colistin is not officially used in Chinese aquaculture, 

the aquatic environment is likely to be contaminated by colistin through contamination from farms as 

the drug is very poorly absorbed after oral administration in pigs and poultry21, and can be excreted in 
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high-levels with mcr-1/MCRPEC from the animal faeces22.  Consequently, when manure is used for 

irrigation in agriculture, to feed farmed fish or directly discharged into the aquatic environment it will 

pollute rivers and lakes with MCRPEC. The high stability of colistin in water23 will further exacerbate 

the persistence and dissemination of MCRPEC in the aquatic environment by providing a selective 

pressure. Aquatic food produce may also be contaminated by MCRPEC, which is supported by the 

daily intake of aquatic food products as a correlated factor for MCRPEC carriage.  

The high diversity of sequence-type clades of MCRPEC across China further confirms the wide 

distribution of mcr-1-carrying E. coli and that colistin resistance is mediated more by plasmids than 

dominant bacterial clones. The unique main sequence-type clusters in humans (ST10) and chickens 

(ST156) implied a different colonized MCRPEC and transmission route from each origin, but this 

finding might be restricted by the limited animal sampling size and locations in the two previous 

studies15,20.  However, all MCRPEC isolates were restricted to a limited number of distinct  E. 

coli lineages; the 375 examined isolates (287 from humans and 88 from chickens) can be placed into 4 

broad lineages (Figure 3). This limited diversity contrasts with the transmission of the bla NDM gene, 

which was found in eight distinct E. coli lineages from a single poultry production chain in one 

province (Shandong)15. These data suggest that the host spectrum of mcr-1-carrying plasmids is 

considerably narrower than bla NDM-carrying plasmids, which would also suggest why mcr-1 is mainly 

found in E. coli and has yet to be reported outside Enterobacteriaceae. The predominant association 

of mcr-1 with narrow-host types of plasmids; for example, IncI2, IncHI2 and IncX47, is also likely to 

contribute to the limited number of clusters of MCRPEC isolates in China and worldwide.  

Although this is the largest and most comprehensive analysis of its type, we acknowledge several 

limitations in this study. First, for the sampling, we only utilized one hospital per province, which may 

not be fully congruent with the socioeconomic parameters representative of each province. Second, 

total meat consumption consisted of all meat types, not just pork; however, pork accounted for 62.4% 

of the annual consumption of total meat in China24.  Third, the possible transmission of MCRPEC to 

humans through aquatic food was only identified by correlation analysis, and has not been proven by 

detailed epidemiological data. However, it has been hypothesized that mcr-1 originated from an 

aquacultural environment17,18, and several recent studies have reported the widespread distribution of 

the waterborne mcr-1 gene in Asia, Europe and South America7,25,26.  Fourth, all human MCRPEC 

isolates analysed in this study were collected in 2016; however, most of the environmental and 

anthropogenic data were from 2015, although we would anticipate little variation. Lastly, we collected 

774 MCRPEC isolates from 30 provinces and municipalities, but only provide complete genomic data 

for 37.1% of the isolates (n = 287). 
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Despite these limitations, our study provides new evidence on a China-wide scale that foodborne 

transmission of MCRPEC is a major correlated factor for human carriage. We would suggest that the 

methods applied in this study be fully adopted to understand the true prevalence of MCRPEC not just 

in China, but globally. It is hoped that the newly released polices on the withdrawal of colistin as a 

feed addictive, in combination with prudent colistin usage as a disease treatment in farm animals, 

might reduce the risk of MCRPEC in humans. We have shown that aquatic food production - a 

previously unknown mcr-1 source—is significantly associated with human MCRPEC carriage, 

highlighting the need for a broader one-health approach to AMR studies. Hitherto, the primary focus 

of mcr surveillance programmes has been pig and poultry farms; thus, in China, Southeast Asia and 

South America, regions of freshwater and marine food produce should be incorporated into future 

surveillance programmes25.  The clinical impact of the high MCRPEC carriage in healthy people 

remains unknown and should be examined further, not least to inform current Chinese hospital 

infection control programmes and screening programmes supporting high-risk Chinese patients. 

METHODS 

Subject enrolment 

We undertook a cross-sectional study from 1 June to 30 September 2016 to investigate the prevalence 

of MCRPEC isolates from humans in China. A total of 30 hospitals from 30 provincial capital cities 

were recruited to the study, which covered all Chinese provinces and municipalities except 

Chongqing, Hong Kong, Macao and Taiwan. Hospital staff were asked to enrol subjects over a five-

day period. We included healthy individuals attending routine physical examinations, during which 

stool samples were collected. The inclusion criteria were subjects who were considered generally 

healthy and consented to the study. Exclusion criteria included neonates, pregnancy, gastroenteritis 

and subjects presenting with chronic illnesses; for example, cancer. Vegetarians were also excluded, in 

keeping with data from previous studies2. Ethical permission for the study was agreed on 22 February 

2016 by the Zhejiang University ethics committee under the project DETER-XDR-China. A brief 

survey of the selected individuals was conducted regarding meat consumption and antibiotics used in 

the past three months. Individual consent forms were translated into Mandarin and consent was 

obtained for all healthy individuals. Due to uneven economic and social development in different 

provinces in China, the numbers of individuals attending physical examinations during a five -day 

period varied significantly between different provinces. Therefore, the numbers of samples from each 

province varied too. 

https://www.nature.com/articles/s41564-018-0205-8#ref-CR25
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Sample collection 

All colistin-resistant isolates were recovered from rectal swabs following three steps. First, stool 

samples were cultured in lysogeny broth (Luqiao) and DNA was extracted from the enriched broth 

using the boiling method. Second, the broth suspension of mcr-1-positive samples was enriched using 

Enterobacteriaceae enrichment broth (Luqiao) and enrichments were inoculated onto MacConkey agar 

(Luqiao) plates containing 2 mg l–1 colistin. Third, colonies on selected agar were confirmed for 

the mcr-1 gene by PCR, and the species were identified by matrix-assisted laser desorption/ionization 

time-of-flight mass spectrometry (Bruker Daltonik)27. 

Antimicrobial susceptibility testing 

Antimicrobial susceptibility testing of all non-duplicated MCRPEC isolates to nine clinical 

antimicrobial agents (cefepime, amikacin, piperacillin/tazobactam, ceftazidime, ticarcillin/clavulanic 

acid, ciprofloxacin, imipenem, colistin and cefoperazone/sulbactam), all of which are often prescribed 

to patients as part of the Chinese national formulary, was undertaken via the broth microdilution 

method using ATCC25922 as a quality control strain. Results were interpreted according to the 

European Committee on Antimicrobial Susceptibility Testing clinical breakpoints (version 6.0) and 

the Clinical and Laboratory Standards Institute document M100-S2528. 

Molecular analysis 

We selected 287 MCRPEC isolates from all 30 provinces and municipalities, and sequenced 10 from 

each (if available). Genomic DNA of the selected isolates was extracted using the Wizard Genomic 

DNA Purification Kit (Promega) following the manufacturer’s instructions. Indexed DNA libraries 

were constructed using KAPA HyperPrep Kit Illumina platforms (Roche) with standard protocols, and 

were sequenced on an Illumina HiSeq X Ten platform with the 150-base pair paired-end strategy 

(Annoroad). The draft genomes were assembled using SPAdes version 3.9.0 29, and MLST typing, 

ARGs and VAGs were identified by using the SRST2 toolkit version 0.230. A minimum spanning tree 

of all sequence types was generated using BioNumerics version 7.0 (Applied Maths) using the BURST 

algorithm for related sequence types between different backgrounds. All assembled genomes were 

used for core-genome alignments to produce a phylogenetic tree using the Harvest package version 

1.1.2 31, and the corresponding features of each isolate were visualized using the online tool iTOL 332. 

The lineages of the phylogenetic tree were defined using BAPS version 6.0 33. The mcr-1-carrying 

contigs generated by Illumina sequencing were examined for Inc types using PlasmidFinder version 

1.334. The heat map was generated using R 3.3.2 (R Foundation for Statistical Computing) using the 
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gplots 3.0.1 package (https://cran.r-project.org/web/packages/gplots/). All whole-genome sequencing 

data have been deposited in the NCBI database BioProject: PRJNA400107. 

Data collection and statistical analysis 

Natural (annual precipitation in the capital city of each province) and anthropogenic data for the 30 

provinces and municipalities in China were collected from the National Bureau of Statistics of China, 

China Agriculture Yearbook and National Institute for Nutrition and Health, Chinese Center for 

Disease Control and Prevention. The six anthropogenic factors included gross domestic product, 

population (number and density), pollutants (smoke dust, household garbage and industry discharge), 

animal production (farm animals and freshwater aquaculture, mainly including fish and shrimp), 

annual animal-derived food consumption and daily animal-derived food intake. Most of the data were 

from 2015, but the latest population data were taken from the sixth population census of China in 2010 

and the latest data of daily animal-derived food intake were collected from 2010–2012.   Data were 

organized in Excel 2016 (Microsoft). Descriptive analysis on percentages and prevalences (together 

with 95% CIs) were performed using functions provided in Excel 2016 (Microsoft). Univariable 

analysis conducted using SPSS version 22 (IBM) was adopted to select variables with P ≤ 0.05. 

Significant variables (P ≤ 0.05) were subsequently assessed for collinearity via Cramer’s coefficient 

phi (Φ). If a pair of variables was highly correlated (Φ > 0.8), the more biologically plausible variable 

was kept for the multivariable logistic analysis. Significant variables in the univariable analyses were 

kept for the multivariable analysis. Multivariable logistic regression models using a forward stepwise 

process were then adopted for controlling confounders. Variables with P < 0.05 were kept in the final 

model. The goodness of fit to the logistic regression model was tested using the Hosmer–Lemeshow 

goodness-of-fit test. Subsequently, a receiver operating characteristic curve was used to test the 

predictive ability of the mode. 

http://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA400107
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Figure 1 

MCRPEC prevalence among 30 provinces and municipalities in China. 

The sample size is listed in parentheses after the name of each province. Error bars represent 

95% CIs. The dashed line indicates the average prevalence of mcr-1-positive carriages in 

China. The mean and median prevalence are 16.40 and 15.11%, respectively, across China. 

 

 

 

 

  



Figure 2:  

Mapped MCRPEC prevalence, precipitation and freshwater aquaculture production, and intake 

of animal products per province. 

a–d, Prevalence of MCRPEC isolates (a), precipitation and zoning of distinct aquaculture 

conditions (b), freshwater aquaculture production (c) and daily dietary intake of animal 

products (d) among 30 provinces and municipalities in China. In a, the black dots indicate the 

locations of province capital cities and sample collection sites. Mean intakes of aquatic 

products, total meat and eggs were 120.72, 107.32 and 24.44 g d–1, respectively, across 

China. Median intakes of aquatic products, total meat and eggs were 64.68, 112.89 and 

24.95 g d–1, respectively, across China. 

 

 

 

 

 

  



Figure 3 

 Genetic relationships between the MCRPEC isolates. 

Phylogenic tree of 287 MCRPEC isolates from the 30 provinces in China and 16 human-origin 

isolates from other countries. Each isolate is labelled with its province or country and sequence 

type. Isolates from the 14, 11 and 5 provinces or municipalities within the low, medium and high 

aquaculture regions are marked in red, black or green, respectively. Lineage 1, 2, 3 and 4 

branches are coloured blue, purple, red and green, respectively. Red stars represent the 16 

isolates from other countries 

 

 

 

 

 

  



Figure 4 

Distribution of phylogenetic group, Inc type, ARGs and VAGs among MCRPEC isolates from 

30 provinces and municipalities in China. 

The colour of each box represents the percentage of the corresponding item among sequenced 

isolates in the corresponding province. 

 

 

 

 



Table 1 

Descriptive and univariable analysis of the variables of interest  

Variable Category Percentage Prevalence, % (95% CI) (n = 

5,159) 

OR (95% CI) P 

Total samples in study   100 15.0 (14.0–16.0) NA NA 

Gender         0.899 

  Male 53.9 15.1 (13.8–16.4) 1.0 (0.9–1.2)   

  Female 46.1 14.9 (13.5–16.4) 1.0   

Agea         0.048 

  10–20 3.5 12.7 (8.2–18.5) 1.0   

  21–30 26.2 13.8 (12.0–15.7) 1.1 (0.7–1.7)   

  31–40 36.4 15.3 (13.7–17.0) 1.2 (0.8–2.0)   

  41–50 21.2 15.1 (13.0–17.3) 1.2 (0.8–1.9)   

  51–60 7.6 15.7 (12.3–19.7) 1.3 (0.8–2.1)   

  61–70 3.6 18.1 (12.9–24.3) 1.5 (0.9–2.7)   

  70–80 1.2 19.7 (10.6–31.8) 1.7 (0.8–3.6)   

  81–90 0.2 36.4 (10.9–69.2) 3.9 (1.1–14.5)   

Geographical zoning of aquaculture conditionsa         <0.001 

  Low 13.7 10.1 (8.0–12.6) 1.0   

  Medium 43.3 10.6 (9.3–11.9) 1.1 (0.8–1.4)   

  High 43.0 21.0 (19.4–22.8) 2.4 (1.8–3.1)   

Annual freshwater aquaculture production 

(10,000 tonnes)a,b 
        <0.001 

  ≤100 × 10,000 66.3 13.1 (12.0–14.3) 1.0   



Variable Category Percentage Prevalence, % (95% CI) (n = 

5,159) 

OR (95% CI) P 

  >100 × 10,000 33.7 18.8 (17.0–20.7) 1.5 (1.3–1.8)   

Annual aquatic product consumption 

(kg person–1)a,c 
        <0.001 

  ≤10 54.8 11.0 (9.9–12.1) 1.0   

  >10 45.2 19.9 (18.3–21.5) 2.0 (1.7–2.3)   

Daily aquatic product intake (g d–1)a,d         <0.001 

  ≤100 62.5 10.7 (9.7–11.8) 1.0   

  >100 37.5 22.1 (20.3–24.0) 2.4 (2.0–2.8)   

Gross domestic product (100 million RMB)c     0.985 

Population number (10,000)a,e     0.040 

Population density (10,000 km– 2)e     0.580 

Pollutants (10,000 tonnes)c Smoke dusta 0.002 

  Household garbage 0.208 

  Chemical oxygen demand 0.213 

  Ammonia nitrogena 0.018 

  Total nitrogen 0.908 

  Total phosphorus 0.275 

Annual animal production (10,000 tonnes) f Piga <0.001 

  Chickena <0.001 

  Cattle 0.906 

  Sheepa 0.001 

Annual animal-derived food consumption (kg person–1)c Meata <0.001 



Variable Category Percentage Prevalence, % (95% CI) (n = 

5,159) 

OR (95% CI) P 

  Porka <0.001 

  Beef 0.300 

  Muttona <0.001 

  Chicken meata <0.001 

  Egga <0.001 

Daily animal-derived food intake (g d–1)d Total meata <0.001 

  Egga <0.001 

 

 

  



 

Table 2 

Multivariable logistic regression analysis of factors associated with mcr-1 positivity (n = 5,159) 

 

Variable Category OR (95% CI) P 

    

Geographical zoning of aquaculture conditions Lowa 0.5 (0.3–0.7) 0.002 

  Mediuma 0.7 (0.5–0.9) 0.016 

  Higha 1.0 0.005 

Daily aquatic product intake (g d–1)a ≤100a 0.6 (0.5–0.7) <0.001 

  >100a 1.0 <0.001 

Total populationa     0.003 

Annual animal production (10,000 tonnes) Sheepa <0.001 

Annual animal-derived food consumption (kg person–1) Meata <0.001 

    Porka 0.014 

    Muttona 0.003 

                                    aSignificant variable in multivariable logistic regression analysis (P < 0.05). 

 

 


