

ORCA - Online Research @ Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository:https://orca.cardiff.ac.uk/id/eprint/114738/

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:

Pallett, M. A., Crepin, V. F., Serafini, N., Habibzay, M., Kotik, O., Sanchez-Garrido, J., Di Santo, J. P., Shenoy, A. R., Berger, C. N. and Frankel, G. 2017. Bacterial virulence factor inhibits caspase-4/11 activation in intestinal epithelial cells. Mucosal Immunology 10, pp. 602-612. 10.1038/mi.2016.77

Publishers page: http://dx.doi.org/10.1038/mi.2016.77

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.

Bacterial Virulence Factor Inhibits Caspase-4/11 Activation in Intestinal Epithelial Cells

Mitchell A. Pallett¹, Valerie F. Crepin¹, Nicolas Serafini^{2,3}, Maryam Habibzay¹, Olga Kotik¹, Julia Sanchez-Garrido⁴, James P. Di Santo^{2,3}, Avinash R. Shenoy⁴, Cedric N. Berger¹, Gad Frankel^{1#}

¹Department of Life Sciences, and ⁴Department of Medicine, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, UK; ²Innate Immunity Unit, Institut Pasteur, Paris, France; ³Inserm U668, Paris, France

The authors declare no conflict

Acknowledgements

We thank Guy Frankel for making the CRΔ*nleF* mutant. We are grateful to Dr. Bernhard Ryffel (TAAM-CDTA, Orelans, France) and Dr. Mohamed (Lamkanfi, VIB Inflammation Research Center, Ghent University, Belgium) for providing us with the Casp *I/11*-/- and *Casp11*-/- mice. This project was supported by grants to GF from the Biotechnology and Biological Sciences Research Council (BBSRC), the Wellcome Trust and the Medical Research Council (MRC). ARS acknowledges funds from the Royal Society (RG130811) and the Wellcome Trust (108246/Z/15/Z). JPD and NS are supported by grants from the Institut Pasteur, Inserm and Danone.

Key words: Caspase-4/11, Citrobacter rodentium, NleF, type III secretion system, intestinal epithelial cells

#Corresponding author

Gad Frankel, MRC CMBI, Flowers Building, Imperial College, London, SW7 2AZ g.frankel@imperial.ac.uk

1 Abstract

The human pathogen enteropathogenic Escherichia coli (EPEC), as well as the mouse 2 pathogen Citrobacter rodentium, colonize the gut mucosa via attaching and effacing lesion 3 4 formation and cause diarrheal diseases. EPEC and C. rodentium type III secretion system (T3SS) effectors repress innate immune responses and infiltration of immune cells. 5 Inflammatory caspases such as caspase-1 and caspase-4/11 are crucial mediators of host 6 defense and inflammation in the gut via their ability to process cytokines such as IL-1\beta and 7 IL-18. Here we report that the effector NleF binds the catalytic domain of caspase-4 and 8 9 inhibits its proteolytic activity. Following infection of intestinal epithelial cells (IECs) EPEC inhibited caspase-4 and IL-18 processing in an NleF-dependent manner. Depletion of 10 caspase-4 in IECs prevented the secretion of mature IL-18 in response to infection with 11 12 EPECΔ*nleF*. NleF-dependent inhibition of caspase-11 in colons of mice prevented IL-18 secretion and neutrophil influx at early stages of C. rodentium infection. Neither wild-type C. 13 rodentium nor C. rodentiumΔnleF triggered neutrophil infiltration or IL-18 secretion in 14 Cas11 or Casp1/11 deficient mice. Thus, IECs play a key role in modulating early innate 15 immune responses in the gut via a caspase-4/11 - IL-18 axis, which is targeted by virulence 16 17 factors encoded by enteric pathogens.

Introduction

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

Central to the infection strategy of the extracellular pathogens enteropathogenic Escherichia coli (EPEC), enterohaemorrhagic E. coli (EHEC)⁽¹⁾ and Citrobacter rodentium⁽²⁾ is injection of type III secretion system effectors into intestinal epithelial cells (IECs) where they target diverse signalling pathways, particularly innate immune signaling. NleC and NleD are Zndependent endopeptidases that specifically cleave and disable RelA (p65) and JNK, respectively, thus blocking NF-kB and AP-1 activation⁽³⁾. NleE is a methyltransferase that specifically modifies a cysteine in the zinc finger domain of TAB2 and TAB3 thus also blocking NF-kB signalling⁽⁴⁾. NleB, which also inhibits NF-kB, has an N-acetylglucosamine transferase activity that specifically modifies Arg 117 in the death domain of FADD^(5,6) and NleH is a serine/threonine kinase that inhibits the RPS3/NF-κB pathway via phosphorylation of CRKL (v-Crk sarcoma virus CT10 oncogene-like protein)⁽⁷⁾. Inhibition of innate immunity by EPEC and EHEC is needed to counter its activation by the T3SS, flagellins and lipopolysaccharides (LPS), which are readily detected by sensors and receptors in mammalian hosts. In response to infection, some sensors assemble macromolecular complexes called inflammasomes to stimulate the protease activity of caspase-1. The proteolytic processing and release of interleukin (IL)-1β and IL-18, and the induction of pyroptotic cell death triggered by caspase-1 can prevent the establishment and spread of microbial pathogens^(8,9). In addition, the single mouse caspase-11 and the related human caspase-4 and caspase-5 act as cytosolic receptors, which bind LPS directly via their N-terminal caspase activation and recruitment domains (CARD, p22 domain). LPS binding induces oligomerization and autoproteolytic activation of caspase-4/5/11 into their active p20/p10 fragments and subsequent pyroptotic lysis of bacterially infected host cells⁽¹⁰⁾. In human and mouse phagocytic cells LPS is detected by caspase-4/11, which stimulate caspase-1-dependent maturation of IL-1 β and IL-18 via the NLRP3-ASC inflammasome (11-¹³⁾. However, in IECs caspase-4/11 acts independently of NLRP3 and caspase-1 to directly process IL-18 and induce pyroptosis during Salmonella infection⁽¹⁴⁾. Therefore the detection of Gram-negative bacteria by IECs markedly contrasts that in myeloid cells. However, unlike Salmonella, which are intracellular pathogens, extracellular pathogens use T3SS to prevent death pathways in host cells to which they intimately adhere^(5,6,15). This suggests that EPEC, EHEC and C. rodentium might manipulate caspase-4/11 and/or inflammasome pathways in IECs. Previous work on C. rodentium infections in mice showed that loss of inflammasome signaling related genes such as Nlrp3, Nlrc4, Casp1, Casp11, Il1\beta and Il18 results in enhanced morbidity and inflammatory disease, whereas wild-type mice clear the pathogen within 14-21 days^(16,17). Detection of C. rodentium, EHEC and EPEC in myeloid cells has also been studied previously, and a recent report identified the EPEC NleA T3SS effector protein as an inhibitor of NLRP3-caspase-1 inflammasomes⁽¹⁸⁾. However, as IECs use noncanonical, NLRP3- and caspase-1-independent mechanisms to detect bacteria, we hypothesized that EPEC and C. rodentium subvert caspase-4/11 action in IECs upon initial attachment. Here we report that bacterial T3SS effector NleF is a potent inhibitor of mammalian caspase-4/11 and thus prevents IL-18 secretion from IECs in vitro, and blocks caspase-11 – IL-18 mediated neutrophil influx during infection in vivo.

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

Results

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

NleF binds human caspase-4

The highly conserved effector NleF was previously reported to bind the active site and to inhibit the activity of caspase-9, caspase-8 and caspase-4, however, whether NleF affects inflammasome signaling and the innate immune response to bacterial infection in vivo has not been tested⁽¹⁹⁾. By employing a yeast-2-hybrid screen (Table S1) and a direct yeast-2-hybrid (DYH) assay (Fig. 1A) we confirmed that human caspase-4 is an interacting partner of EPEC NleF (NleF_{EPEC}). Truncation analyses revealed an interaction between NleF_{EPEC} and the p30 catalytic domain of caspase-4 (Fig. 1B). Deletion of four C-terminal residues in NleF_{EPEC} (NleF_{1-185_EPEC}) abrogates its binding to caspase-9⁽¹⁹⁾, and similar defects were seen in binding to caspase-4 (Fig. 1B). Mutation of the substrate-binding pocket of caspase-4 (R152A, W313A and R314A) also abolished NleF-caspase-4 interaction (Fig. 1B). To confirm that the binding is direct, the caspase-4 p20 subunit (22 kDa; His tagged), p10 subunit (10 kDa) and NleF_{EPEC} (65 kDa; MBP fusion) were co-expressed, purified by tandem affinity chromatography and analyzed by gel filtration. Three chromatographic peaks corresponding to free MBP-NleF_{EPEC}, free His-p20, and a complex containing NleF_{EPEC}, p20 and p10 subunits were observed (Fig. 1C). NleF_{EPEC} and caspase-4 subunits co-purified and co-eluted as a macromolecular complex with an apparent molecular weight (MW) of ~230 kDa (Fig. 1C-D).

NleF inhibits human caspase-4 and mouse caspase-11

Recombinant caspase-4 underwent auto-proteolytic activation presumably as a consequence of LPS binding when purified from $E.\ coli.$ Wild-type caspase-4, but not a catalytic dead mutant (caspase-4C285S), underwent auto-proteolysis to the active p20 form and hydrolyzed the caspase-4 fluorogenic substrate peptide (Ac-LEVD-AFC; Fig. 2A). Recombinant NleF_{EPEC} inhibited the activity of caspase-4 in a dose-dependent manner with an IC₅₀ of 5 nM

(Fig. 2B), comparable to 14 nM previously measured for NleF_{EHEC} by Blasche et al. (19). Despite not binding caspase-4 in DYH, NleF₁₋₁₈₅ EPEC, which was pulled down with caspase-4 at low levels (data not shown), was able to inhibit caspase-4 activity although at an IC₅₀ of 25.5 nM (Fig. 2B). C. rodentium NleF (NleF_{CR}), which shares 84% amino acid identity with NleF_{EPEC}, strongly inhibited the proteolytic activity of mouse caspase-11 (IC₅₀ of 13 nM; Fig. 2C-D) revealing an evolutionarily conserved functional property. Importantly, we found that NleF_{EPEC} inhibits caspase-4 more efficiently than NleF_{CR} (Fig. 2C), while NleF_{CR} inhibits caspase-11 more efficiently than caspase-4 (Fig. 2F).

NleF inhibits h-caspase-4 activation during infection

To investigate if NleF_{EPEC} targets caspase-4 during infection of human IECs, Caco-2 cells were infected with the wild-type (WT) EPEC and EPECΔ*nleF*; both strains adhered to the cultured cells equally (Fig. 3A). However, while secreted caspase-4 was absent following infection with WT EPEC, the active p30 fragment of caspase-4 was found in the supernatants of cells infected with EPECΔ*nleF* (Fig. 3B). Addition of the caspase-4 inhibitor Ac-LEVD-CHO complemented the EPECΔ*nleF* phenotype in a dose dependent manner (Fig. 3B).

NleF_{EPEC} did not affect the expression of pro-IL-18, which was similar in uninfected cells and those infected with all the EPEC strains (Fig. 3C). While secretion of pro-IL-18 was detected upon infection with WT EPEC and EPECΔ*nleF*, pro-IL-18 was only processed into the active form following infection with EPECΔ*nleF* (Fig. 3D). Secretion of mature IL-18 (mIL-18), induced by EPECΔ*nleF*, was not detected when this strain was complemented with a plasmid encoding NleF_{EPEC} (pNleF_{EPEC}) (Fig. 3D).

To confirm that inhibition of caspase-4 by NleF was sufficient to block processing of IL-18, we generated Caco-2 cells depleted of caspase-4 using miRNA30E based stable shRNA expression (Fig. 4A). EPECΔ*nleF* infection of Caco-2 cells silenced for caspase-4 expression

(C4) did not secrete mIL-18, as measured by both western blotting (Fig. 4B) and ELISA (Fig. 4C), clearly pointing to a requirement of caspase-4 in IL-18 processing during EPEC infection of IECs. Importantly, no cell death was detectable by measuring LDH release or PI uptake following infection of control or caspase-4-depleted Caco-2 cells (Fig. 4D); this is likely due to EPEC T3SS effectors (e.g. NleH, NleB), which inhibit cell death^(5,6,15). Thus, in human IECs, pro-IL-18 processing during EPEC infection is caspase-4 dependent and the bacterially injected NleF specifically inhibits this process.

C. rodentium inhibits IL-18 secretion in vivo in an NleFcr-dependent manner

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

To test the role of NleF during infection in vivo we infected C57BL/6 mice with WT C. rodentium, C. rodentium $\Delta nleF$ or C. rodentium $\Delta nleF$ complemented with pnleF_{CR}. Colonization (Fig. 5A) and colonic crypt hyperplasia (Fig. 5B) were similar between the different C. rodentium strains (Fig. 5). We quantified levels of IL-18 and IL-1β secreted from colonic explants, and the inflammasome-independent chemokine CXCL1 as a control, on days 4 and 8 post-infection (p.i.). On day 4 post infection of C57BL/6 mice with C. $rodentium\Delta nleF$ we detected a significantly increased colonic secretion of IL-18, while mock-infected (PBS) or WT C. rodentium-infected colons released similarly low levels of IL-18 (Fig. 5C). Complementing the C. rodentium $\Delta nleF$ mutant with a plasmid encoding NleF_{CR} restored the inhibition of IL-18 secretion (Fig. 5C); secreted IL-1β was below the detectable limit (data not shown). Secretion of CXCL1 was similar in colons extracted from mice treated with PBS or infected with WT C. rodentium or C. rodentium $\Delta nleF$ (Fig. 5D). Complementing the C. rodentium $\Delta nleF$ mutant with a plasmid encoding NleF_{CR} resulted in a significantly increased CXCL1 secretion (Fig. 5D), which is consistent with our recent finding that over expression of NleF_{EPEC} activates NF-κB in cultured cells⁽²⁰⁾. Importantly, NleF-dependent inhibitory effects were only observed early during infection (day 4 p.i.), and

IL-18 secretion was similar following WT *C. rodentium* or *C. rodentium* $\Delta nleF$ infection on day 8 p.i. (Fig. 5E).

To validate that NleF_{CR} inhibits IL-18 secretion via the inflammasomes, we first infected Casp1/11 deficient mice with C. rodentium and C. $rodentium\Delta nleF$. As expected, loss of Casp1 and Casp11 abolished IL-18 secretion from colonic explants after infection with WT C. rodentium or C. rodentium $\Delta nleF$ (Fig. 5C); CXCL1 secretion was similar in $Casp1/11^{-/-}$ mice infected with the two strains (data not shown). In order to confirm that the phenotype was due to caspase-11, we next infected $Casp11^{-/-}$ mice with C. rodentium or C. rodentium $\Delta nleF$. This showed that while WT C. rodentium and C. $rodentium\Delta nleF$ colonized the $Casp11^{-/-}$ mice at comparable levels (Fig. 5F), secretion of IL-18 was extremely low and similar to that in $Casp1/11^{-/-}$ mice (Fig. 5C). We therefore concluded that caspase-11 is responsible for secretion of IL-18 following infection with C. rodentium $\Delta nleF$.

IL-18 is essential for the recruitment of neutrophils early during C. rodentium infection

As IL-18 facilitates neutrophil and leukocyte recruitment to sites of inflammation⁽²¹⁾, we investigated the effect of NleF_{CR} on immune cell recruitment. Infection of C57BL/6 mice for 4 days with *C. rodentium*Δ*nleF* resulted in a significant increase in neutrophil recruitment in comparison to WT *C. rodentium*-infected or PBS-treated mice (Fig. 6B). Infection with the *C. rodentium* Δ*nleF* p*nleF*_{CR} strain restored the inhibition of neutrophil recruitment (Fig. 6B). No significant differences were observed for other myeloid or lymphocyte cell type analyzed, including macrophages, ILC, B-cells and T-cells (data not shown). Furthermore, correlating with similar IL-18 secretion, no difference in neutrophil recruitment was observed at day 8 post infection (Fig. 6C), suggesting that NleF_{CR} plays a specific role during early immune responses to *C. rodentium*. Enhanced neutrophil influx was *Casp1/11* dependent; absence of these caspases abolished the increase in neutrophil recruitment during infection with *C. rodentium*Δ*nleF* (Fig. 6B). Similar results were obtained following infection of *Casp11*^{-/-}

mice (Fig. 6B). Thus NleF_{CR} is a virulence factor responsible for early inhibition of the host inflammasomes, and that the inflammasome is essential for early neutrophil recruitment in response to *C. rodentium* infection.

Discussion

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

Inflammasome dependent cytokines and pyroptosis have important antimicrobial functions^(8,9). It is therefore not surprising that pathogenic bacteria have evolved mechanisms to prevent inflammasome activation⁽²²⁾. For example, Yersinia uses YopK to prevent detection of its T3SS⁽²²⁾, and bacteria modify their LPS to evade detection by caspase-11⁽²³⁾. The Shigella flexneri effector OspC3 sequesters caspase-4 activity by binding the caspase-4 p20 subunit to prevent p10 binding and oligomerization⁽²⁴⁾. Here we demonstrate that a virulence factor of A/E pathogens, NleF, targets the heterotetramer complex of caspase-4 via its C-terminal motif, underlining the importance of caspase-4 inhibition during the course of infection. In agreement with our biochemical analyses, EPEC was able to inhibit caspase-4 in IECs in an NleF-dependent manner, while recent reports showed that infection of cultured cells with either Salmonella or EPEC led to caspase-4 activation (24) and caspase-4-dependent induction of IL-18 release⁽¹⁴⁾. Taken together, our data suggest that while EPEC can initiate caspase-4 activation and IL-18 processing, NleF dampens this response. Previous studies have shown that Nlrp3, Nlrc4, Casp1 and Casp11 are important in protection against C. rodentium infection $^{(16,25)}$. Loss of inflammasome-related genes results in significantly increased C. rodentium bacterial load in the intestine late in infection, which may partly explain the enhanced inflammation in inflammasome-deficient mice infected with C. rodentium. Loss of inflammasome-dependent IL-1\beta and IL-18 also results in enhanced bacterial burdens at late stages of infection and susceptibility to C. rodentium infection of Il1b^{-/-} and Il18^{-/-} mice⁽¹⁶⁾. Our studies establish that NleF functions at early stages of infection of mucosal surfaces by inhibiting the inflammasome and preventing release of IL-18 by epithelial cells.

We also found that NleF_{CR} inhibited caspase-11-dependent neutrophil recruitment. IL-18 is a key regulator of the adaptive immune response, stimulates the migration of innate and adaptive immune cells^(21,26,27), and controls intestinal epithelial cell turnover and protects against damage in the intestine⁽²⁸⁾. During the early stages of infection, IL-18 is largely secreted by epithelial cells⁽¹⁷⁾. Current data⁽¹⁶⁾, including the secretion of IL-1β which is not expressed in non-hematopoietic cells⁽²⁹⁾, suggests that at later time points during C. rodentium infection colonic IL-18 secretion may switch to be myeloid cell dependent⁽¹⁶⁾. Therefore, myeloid cell secretion of the IL-1 family cytokines may not be subverted by NleF_{CR} and would become the pre-dominant source of IL-18 and IL-1β at the peak of infection. Similarly secretion of IL-22 is switched from ILC3 at early phase of infection to IL-22-producing T cells at later time points (> 7 days)⁽³⁰⁾. The study demonstrates a pathway during infection of IECs, which leads to the activation of caspase-11, secretion of IL-18 and recruitment of neutrophil. In addition, we show that inhibition of caspase-11 by bacterial NleF blocks this pathway in the host. Our findings are consistent with the recent study on the epithelial cell caspase-11-IL-18 axis during Salmonella infection, which reported significant neutrophil influx in infected gall bladder epithelia of wild-type mice, but no neutrophil influx in Casp11^{-/-} mice⁽³¹⁾. Recent studies have revealed the contribution of non-inflammasome and inflammasomeforming NLRs in the non-hematopoietic compartment for intestinal homeostasis and the host mediated clearance and protection against enteric pathogens⁽³⁵⁾. Mice deficient in NLRP6 have impaired goblet cell mucus exocytosis and display a microbiome exposed epithelial cell layer and persistence of C. rodentium infection⁽³⁶⁾. Moreover, NLRP12 is a checkpoint for non-hematopoietic non-canonical NF-κB activation⁽³⁷⁾, and acts as a negative regulator of colitis and colitis-associated colon cancer. Furthermore, IEC-expressed NLRC4 mediates early innate immune responses against C. rodentium via an unknown mechanism independent

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

of IL-1 family cytokine secretion⁽³⁸⁾. Here we show that the caspase-4/11 dependent IECs inflammasome is crucial for IL-18 cytokine maturation and the early innate immune response to EPEC/ *C. rodentium*. Consistently with this, Song-Zhao et al.⁽¹⁷⁾ recently suggested, based on studies of *Nlrp3*-/- and *Asc*-/- mice, that early protection to *C. rodentium* infection is mediated by IECs independently of NLRP3 activation. Taken together, our study identifies a fundamental and novel role for the T3SS effector NleF in the pathogenesis and virulence of A/E pathogens through the inhibition of the newly characterized IECs caspase-4/11 dependent inflammasome.

Methods

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Strains, oligonucleotides, plasmids and antibodies

Strains, plasmids and primers used in this study are listed in Tables S2-S3 respectively. *nleF* was amplified from EPEC E2348/69 and *C. rodentium* ICC169 genomic DNA by PCR. Site-directed mutagenesis was carried out by inverse PCR using KOD Hot Start polymerase and mismatch primers. All constructs were confirmed by sequencing (GATC biotech). For Western Blot, Mouse monoclonal anti-caspase-4 clone 4B9 (sc-56056; Santa Cruz), anti-α-Tubulin clone DM1A (T6199), mouse polyclonal antibody anti-caspase-11 p20 clone A-2 (sc-374615; Santa cruz) and anti-pro-IL-18 (CPTC-IL18-1; DSHB), the rabbit monoclonal anti-IL-18 (PM014; MBL), anti-caspase-5 (4429; Cell signalling) and the rabbit polyclonal antibody anti-GFP (Ab290; Abcam) were used as primary antibodies. Horse radish peroxidase (HRP)-conjugated goat anti-rabbit IgG (Fc fragement; catalog no.111-035-008; Jackson immunoresearch) and HRP-conjugated goat anti-mouse IgG (Fc fragement; catalog no.115-035-008; Jackson immunoresearch) were used as secondary antibodies.

Retroviral transductions and stable knockdown cell lines

Micro-RNA30 based (miR-30; Table S1) gene silencing constructs were generated in pMX-233 CMV-YFP using one-step sequence and ligation independent cloning (SLIC) (36) following 234 the optimized miR-30E vector design⁽³⁹⁾. Sequences were as follows: CASP4 -235 CGACTGTCCATGACAAGAT; 236 and LacZ (non-targeting negative control) 237 ACGTCGTATTACAACGTCGTGA. The miR-30E plasmids were transfected using Lipofectamine 2000 (Invitrogen), along with the packaging plasmids pVSV-G and pCMV-238 MMLV-pack⁽⁴⁰⁾ into HEK293E cells to produce a VSV-G pseudotyped retroviral particles for 239 240 transduction. After 48 h supernatants were filtered through 0.45 □m syringe filters and added directly to pre-seeded Caco-2 TC7 cells. Transduced cells were selected by puromycin 241 (Gibco Invitrogen) at 10 μg.ml⁻¹ and knockdown was confirmed by western blotting. 242

EPEC infection, ELISA and Western blotting

Caco-2 TC7 cells (ATCC) were seeded at $7.5 \times 10^4/\text{ml}$ and upon reaching confluence (7 days) the medium was changed every day for 7 the following 7 days. Before infection the cells were starved for 3 h in serum free DMEM. Monolayers were infected with primed EPEC⁽²⁰⁾ at an MOI of 1:10 for 3 h. The cells were then washed twice in PBS and the medium was replaced with serum free DMEM-high glucose plus penicillin and streptomycin at 100 U/ml and 100 µg/ml, respectively. After 1 h cells were washed and either processed for Western Blot (total IL-18) or incubated for a further 17 h (secreted caspase-4 and IL-18) with or without Ac-LEVD-CHO (Enzo Lifesciences). Supernatants were collected, cleared by centrifugation at 13000 rpm at 4 0 C for 10 min and precipitated for Western blotting with the addition of 10 % (v/v) trichloroacetic acid for 17 h at 4 $^{\circ}$ C. The concentration of IL-18 in cell supernatant (MBL) was determined by ELISA according to the manufacturer's protocol.

Cell adhesion and cytotoxicity assays

Caco-2 TC7 were infected with the WT EPEC, EPEC $\Delta nleF$ and the complemented strain (pnleFEPEC) for 3 h. The monolayers were lysed in 1 % PBS/triton X-100 and EPEC attachment was enumerated by serial dilution on LB-Agar and calculation of colony forming units (CFU).

Supernatants of uninfected cells or cell infected with EPEC for 21 h were harvested and the level of LDH release was measured using CytoTox 96® Non-Radioactive Cytotoxicity Assay (Promega). As a control for total LDH, cell lysis buffer (1 % Triton-X100/ PBS) was added for 30 min at 37 °C directly to the medium and cell layer. Absorbance was measured at 490 nm using the FluoStar Omega plate reader and results are displayed as percentage of total release corresponding to the LDH measured in the supernatant divided by the total LDH.

Alternatively the media was removed and cell layers were incubated in 3.3 μ g/ml propidium iodide (Invitrogen) in warm PBS (PI/PBS) for 15 min and fluorescence was measured at an excitation of 510 nm and emission of 610 nm using the FluoStar Omega plate reader. As a control PI/PBS alone was measured or cell lysis buffer (0.05 % Triton X-100/PBS) supplemented with 3.3 μ g/ml propidium iodide was added for 15 min at 37°C. Results are displayed as a percentage of total PI uptake.

Yeast-2-hybrid screen and yeast direct hybrids

A yeast-2-hybrid screen was conducted using pGKBT7-*nleF*_{EPEC} and the HeLa cell cDNA Library following the manufacturer's Handbook (Clontech). AH109 were co-transformed with pGBT9-*bait* and pGADT7-*prey* (Table S3) and plated onto Difco Yeast Nitrogen Base without amino acids (SD) agar supplemented with 2% glucose, 20 mg/L adenine hemisulfate, 20 mg/L arginine HCl, 20 mg/L histidine HCl monohydrate, 30 mg/L isoleucine, 30 mg/L lysine HCl, 20 mg/L methionine, 50 mg/L phenylalanine, 200 mg/L threonine, 30 mg/L tyrosine, 20/L mg uracil, 150 mg/ml valine and lacking tryptophan and leucine (Double Drop-out; DDO) for selection of transformed clones. Clones positive for both plasmids were re-streaked on to SD DDO and SD QDO /-His/-Ade supplemented with 40 mg/L x-α-gal (SD QDO) for selection of positive interactions.

Recombinant Protein expression and purification

E. coli BL21 Star expressing pET28-NleF_{EPEC} (pICC1659), pET28-NleF_{1-185-EPEC} (pICC1660) and pET28-NleF_{CR} (pICC1839) were cultured for 16 h in LB at 37 °C at 200 rpm. Bacteria were sub-cultured at 1:100 into 1 L LB supplemented with 50 μg/ml kanamycin and incubated at 37°C at 200 rpm until OD₆₀₀ of 0.4-0.6. Cultures were then induced with 0.5 mM IPTG for 18 h at 18°C. Cells were harvested by centrifugation at 10000 rpm for 20 min and re-suspended in 30 ml ice cold His-lysis buffer (20 mM Tris-HCl pH 7.9, 0.5 M NaCl,

and 5 mM Imidazole). The cells were lysed by Emulsiflex following the manufacturer's instructions (Emulsiflex-B15; Avestin) and centrifuged at 14000 rpm for a further 30 mins at 4°C. Supernatant was removed and applied to 5 ml His resin (Novagen) pre-charged in 5 mM NiSO₄ and pre-equilibrated in His-lysis buffer and rocked at 4°C for 1.5 h. Samples were applied to a Poly-Prep Chromatography column (Qiagen) and flow-through was collected. The column was washed twice with 20 ml His-lysis buffer and once in 20 ml wash buffer (Tris-HCl pH 7.9, 0.5 M NaCl, and 60 mM Imidazole). His-tagged fusion proteins were eluted with 10 x 1 ml elution buffer (His-lysis buffer supplemented with 1 M Imidazole). Fractions containing His-purified NleF were checked by SDS-PAGE gel electrophoresis and further purified by size exclusion (Akta prime) with a Superdex75 column (GE Healthcare; 10/300GL).

Co-purification of the caspase-4-NleF_{EPEC} complex

BL21 Star cells were co-transformed with pACYC-DUET-1-*CASP4*^{C258S} His-p20/p10 and pMAL-c2x-*nleF*_{EPEC}. Bacterial pellets were re-suspended in 20mM Tris-HCl pH 7.4, 250 mM NaCl and lysed by sonication and purified by amylose affinity chromatography. Bacterial lysates were incubated with amylose resin for 1.5 h at 4 °C and then washed with 50 ml wash buffer (20 mM Tris-HCl pH 8.0, 250 mM NaCl and eluted with wash buffer supplemented with 10 mM maltose. The co-elute was dialysed and then purified further by IMAC talon affinity chromatography, as described previously⁽⁴¹⁾. Complex formation was analysed by size exclusion (Akta prime) with a Superdex200 column (GE Healthcare) using the Gel Filtration Markers Kit for Protein Molecular Weights 12,000-200,000 Da (Sigma-Aldrich) to determine complex size. Size exclusion fractions were verified by SDS PAGE gel and confirmed by Mass spectrometry.

Caspase activity assays

BL21 star were transformed with pET28a-empty, pET28a-*CASP4*, pET28a-*CASP4* C258S or pET28a-*Casp11*. Soluble lysates at 200 μg/ml were incubated with or without 50 μM Ac-LEVD-AFC (Enzo Life Sciences) in 20 mM PIPES, 100 mM NaCl, 10 mM DTT, 1 mM EDTA, 0.1% CHAPS, 10% sucrose pH 7.2 or 20 mM Tris, 250 mM NaCl pH 7.4 for caspase-11 and caspase-4, respectively. Purified recombinant His-NleF derivatives were added at varying concentrations from 50 nM to 1 pM. Fluorescence was measured in 5 min intervals at 37 °C using an excitation of 410 nm and emission of 520 nm using the FLUOstar Omega plate reader (BMG Labtech).

Construction of C. rodentium mutant

C. rodentium strain ICC169 $\triangle nleF$ (ICC1129) was generated using a modified version of the lambda red-based mutagenesis system⁽⁴²⁾. Briefly, the nleF gene and its flanking regions were PCR-amplified from WT C. rodentium ICC169 genomic DNA using the primers pair NleF-up-Fw/NleF-down-Rv and cloned into pC-Blunt-TOPO vector (Invitrogen). The nleF gene was then excised using inverse-PCR (primers NleF-up-Rv-BamHI/NleF-down-Fw-BamHI) and the resulting linear product was BamHI digested, allowing insertion of the non-polar $aphT^{(43)}$, cassette, resulting in plasmid pICC1674. After verifying for correct orientation of the kanamycin cassette, the insert was PCR-amplified using NleF-up-Fw and NleF-down-Rv primers. The PCR products were electroporated into wild type C. rodentium expressing the lambda red recombinase from pKD46 plasmid. The deletion was confirmed by PCR and DNA sequencing amongst the kanamycin resistant clones (primers NleF-up-Fw-check and NleF-down-Fw-check).

Oral infection of mice

Pathogen-free female C57BL/6 mice were either purchased from Charles River or sourced from BIME Institut Pasteur. Casp1/11^{-/-} mice were generously provided by Bernhard Ryffel (TAAM-CDTA, Orelans, France) and *Casp11*^{-/-} were generously provided by Mohamed Lamkanfi (Ghent University, Belgium). All animals were housed in individually HEPA-filtered cages with sterile bedding and free access to sterilized food and water. Independent infection experiments for wild-type C57BL/6, *Casp1/11*-/- and Casp11-/- mice were performed using 3 to 8 mice per group. Mice were infected and followed for shedding as described⁽⁴⁴⁾. Briefly, mice were infected via oral gavage with 10⁹ WT *C. rodentium* or *C. rodentium* ΔnleF as described previously. For control, mice were gavaged with sterile PBS. The number of viable bacteria used as inoculum was determined by retrospective plating onto LB agar containing antibiotics. Stool samples were recovered aseptically at various time points after inoculation and the number of viable bacteria per gram of stool was determined by plating onto LB agar⁽⁴⁴⁾.

Sample collection and colonic crypt hyperplasia measurement

Segments of the terminal colon (0.5 cm) of each mouse were collected, flushed and fixed in 10% neutral buffered formalin. Formalin fixed tissues were then processed, paraffinembedded, sectioned at 5 µm and stained with haematoxylin and eosin (H&E) using standard techniques. H&E stained tissues were evaluated for colonic crypt hyperplasia microscopically without knowledge of the treatment condition used in the study and the length of at least 100 well-oriented crypts from each section from all of the mice per treatment group (n=4-6) were evaluated. H&E stained tissues were imaged with an Axio Lab.A1 microscope (Carl Zeiss MicroImaging GmbH Germany), images were acquired using an Axio Cam ERc5s colour camera, and computer-processed using AxioVision (Carl Zeiss MicroImaging GmbH, Germany).

Sample collection for cytokine analysis and flow cytometry

Isolation of colonic cells and flow cytometry were performed as described⁽⁴⁴⁾. After a PBS wash, the 5^{th} cm of the distal colon was incubated in RPMI containing penicillin, streptomycin, gentamicin and FBS at 37° C for 24 h. The concentrations of IL-18 (eBioscience, #BMS618/3), IL-1 β and KC (CXCL1; R&D Systems) were determined by ELISA according to the manufacturer's protocols.

Statistics

All data was analyzed using GraphPad Prism software, using the Mann-Whitney test and represented as the mean +/- standard error of mean or standard deviation. A P value less than 0.05 (P<0.05) was considered statistically significant.

370 References

- 372 (1) Croxen, M.A., Law, R.J., Scholz, R., Keeney, K.M., Wlodarska, M. & Finlay, B.B.
- 373 Recent advances in understanding enteric pathogenic Escherichia coli. Clin. Microbiol. Rev.
- 374 26, 822-880 (2013).
- 375 (2) Collins, J.W., Keeney, K.M., Crepin, V.F., Rathinam, V.A., Fitzgerald, K.A., Finlay,
- 376 B.B., et al. Citrobacter rodentium: infection, inflammation and the microbiota. Nat. Rev.
- 377 *Microbiol.* 12, 612-623 (2014).
- 378 (3) Baruch, K., Gur-Arie, L., Nadler, C., Koby, S., Yerushalmi, G., Ben-Neriah, Y., et al.
- Metalloprotease type III effectors that specifically cleave JNK and NF-kappaB. EMBO J. 30,
- 380 221-231 (2011).
- 381 (4) Zhang, L., Ding, X., Cui, J., Xu, H., Chen, J., Gong, Y., et al. Cysteine methylation
- disrupts ubiquitin-chain sensing in NF-κB activation. *Nature* 481, 204-208 (2011).
- 383 (5) Pearson, J.S., Riedmaier, P., Marchès, O., Frankel, G. & Hartland, E.L. A type III effector
- protease NleC from enteropathogenic *Escherichia coli* targets NF-?B for degradation. *Mol.*
- 385 *Microbiol.* 80, 219-230 (2011).
- 386 (6) Li, S., Zhang, L., Yao, Q., Li, L., Dong, N., Rong, J., et al. Pathogen blocks host death
- 387 receptor signalling by arginine GlcNAcylation of death domains. Nature 501, 242-246
- 388 (2013).
- 389 (7) Pham, T.H., Gao, X., Singh, G. & Hardwidge, P.R. Escherichia coli virulence protein
- 390 NleH1 interaction with the v-Crk sarcoma virus CT10 oncogene-like protein (CRKL)

- 391 governs NleH1 inhibition of the ribosomal protein S3 (RPS3)/nuclear factor kappaB (NF-
- 392 kappaB) pathway. J. Biol. Chem. 288, 34567-34574 (2013).
- 393 (8) von Moltke, J., Ayres, J.S., Kofoed, E.M., Chavarria-Smith, J. & Vance, R.E. Recognition
- of bacteria by inflammasomes. Annu. Rev. Immunol. 31, 73-106 (2013).
- 395 (9) Eldridge, M.J. & Shenoy, A.R. Antimicrobial inflammasomes: unified signalling against
- diverse bacterial pathogens. *Curr. Opin. Microbiol.* 23, 32-41 (2015).
- 397 (10) Shi, J., Zhao, Y., Wang, Y., Gao, W., Ding, J., Li, P., et al. Inflammatory caspases are
- innate immune receptors for intracellular LPS. *Nature* 514, 187-192 (2014).
- 399 (11) Kayagaki, N., Warming, S., Lamkanfi, M., Vande Walle, L., Louie, S., Dong, J., et al.
- 400 Non-canonical inflammasome activation targets caspase-11. *Nature* 479, 117-121 (2011).
- 401 (12) Casson, C.N., Yu, J., Reyes, V.M., Taschuk, F.O., Yadav, A., Copenhaver, A.M., et al.
- 402 Human caspase-4 mediates noncanonical inflammasome activation against gram-negative
- 403 bacterial pathogens. *Proc. Natl. Acad. Sci. U. S. A.* 112, 6688-6693 (2015).
- 404 (13) Rathinam, V.A., Vanaja, S.K., Waggoner, L., Sokolovska, A., Becker, C., Stuart, L.M.,
- 405 et al. TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-
- 406 negative bacteria. *Cell* 150, 606-619 (2012).
- 407 (14) Knodler, L.A., Crowley, S.M., Sham, H.P., Yang, H., Wrande, M., Ma, C., et al.
- Noncanonical inflammasome activation of caspase-4/caspase-11 mediates epithelial defenses
- against enteric bacterial pathogens. Cell. Host Microbe 16, 249-256 (2014).

- 410 (15) Hemrajani, C., Berger, C.N., Robinson, K.S., Marches, O., Mousnier, A. & Frankel, G.
- 411 NleH effectors interact with Bax inhibitor-1 to block apoptosis during enteropathogenic
- 412 Escherichia coli infection. Proc. Natl. Acad. Sci. U. S. A. 107, 3129-3134 (2010).
- 413 (16) Liu, Z., Zaki, M.H., Vogel, P., Gurung, P., Finlay, B.B., Deng, W., et al. Role of
- 414 inflammasomes in host defense against Citrobacter rodentium infection. J. Biol. Chem. 287,
- 415 16955-16964 (2012).
- 416 (17) Song-Zhao, G.X., Srinivasan, N., Pott, J., Baban, D., Frankel, G. & Maloy, K.J. Nlrp3
- activation in the intestinal epithelium protects against a mucosal pathogen. *Mucosal Immunol*.
- 418 7, 763-774 (2014).
- 419 (18) Yen, H., Sugimoto, N. & Tobe, T. Enteropathogenic Escherichia coli Uses NleA to
- 420 Inhibit NLRP3 Inflammasome Activation. *PLoS Pathog.* 11, e1005121 (2015).
- 421 (19) Blasche, S., Mortl, M., Steuber, H., Siszler, G., Nisa, S., Schwarz, F., et al. The E. coli
- 422 Effector Protein NleF Is a Caspase Inhibitor. *PLoS ONE* 8, e58937 (2013).
- 423 (20) Pallett, M.A., Berger, C.N., Pearson, J.S., Hartland, E.L. & Frankel, G. The type III
- 424 secretion effector NleF of enteropathogenic Escherichia coli activates NF-kappaB early
- during infection. *Infect. Immun.* 82, 4878-4888 (2014).
- 426 (21) Dinarello, C.A. & Fantuzzi, G. Interleukin-18 and host defense against infection. J.
- 427 Infect. Dis. 187 Suppl 2, S370-84 (2003).
- 428 (22) Brodsky, I.E., Palm, N.W., Sadanand, S., Ryndak, M.B., Sutterwala, F.S., Flavell, R.A.,
- 429 et al. A Yersinia effector protein promotes virulence by preventing inflammasome
- recognition of the type III secretion system. *Cell. Host Microbe* 7, 376-387 (2010).

- 431 (23) Hagar, J.A., Powell, D.A., Aachoui, Y., Ernst, R.K. & Miao, E.A. Cytoplasmic LPS
- activates caspase-11: implications in TLR4-independent endotoxic shock. Science 341, 1250-
- 433 1253 (2013).
- 434 (24) Kobayashi, T., Ogawa, M., Sanada, T., Mimuro, H., Kim, M., Ashida, H., et al. The
- 435 Shigella OspC3 effector inhibits caspase-4, antagonizes inflammatory cell death, and
- promotes epithelial infection. Cell. Host Microbe 13, 570-583 (2013).
- 437 (25) Gurung, P., Malireddi, R.K., Anand, P.K., Demon, D., Vande Walle, L., Liu, Z., et al.
- 438 Toll or interleukin-1 receptor (TIR) domain-containing adaptor inducing interferon-beta
- 439 (TRIF)-mediated caspase-11 protease production integrates Toll-like receptor 4 (TLR4)
- 440 protein- and Nlrp3 inflammasome-mediated host defense against enteropathogens. J. Biol.
- 441 Chem. 287, 34474-34483 (2012).
- 442 (26) Verri, W.A., Jr, Cunha, T.M., Ferreira, S.H., Wei, X., Leung, B.P., Fraser, A., et al. IL-
- 443 15 mediates antigen-induced neutrophil migration by triggering IL-18 production. Eur. J.
- 444 *Immunol.* 37, 3373-3380 (2007).
- 445 (27) Canetti, C.A., Leung, B.P., Culshaw, S., McInnes, I.B., Cunha, F.Q. & Liew, F.Y. IL-18
- enhances collagen-induced arthritis by recruiting neutrophils via TNF-alpha and leukotriene
- 447 B4. J. Immunol. 171, 1009-1015 (2003).
- 448 (28) Dupaul-Chicoine, J., Yeretssian, G., Doiron, K., Bergstrom, K.S., McIntire, C.R.,
- 449 LeBlanc, P.M., et al. Control of intestinal homeostasis, colitis, and colitis-associated
- 450 colorectal cancer by the inflammatory caspases. *Immunity* 32, 367-378 (2010).

- 451 (29) Daig, R., Rogler, G., Aschenbrenner, E., Vogl, D., Falk, W., Gross, V., et al. Human
- 452 intestinal epithelial cells secrete interleukin-1 receptor antagonist and interleukin-8 but not
- 453 interleukin-1 or interleukin-6. *Gut* 46, 350-358 (2000).
- 454 (30) Basu, R., O'Quinn, D.B., Silberger, D.J., Schoeb, T.R., Fouser, L., Ouyang, W., et al.
- 455 Th22 cells are an important source of IL-22 for host protection against enteropathogenic
- 456 bacteria. *Immunity* 37, 1061-1075 (2012).
- 457 (31) Knodler, L.A., Crowley, S.M., Sham, H.P., Yang, H., Wrande, M., Ma, C., et al.
- Noncanonical inflammasome activation of caspase-4/caspase-11 mediates epithelial defenses
- against enteric bacterial pathogens. Cell. Host Microbe 16, 249-256 (2014).
- 460 (32) Verri, W.A., Jr, Cunha, T.M., Ferreira, S.H., Wei, X., Leung, B.P., Fraser, A., et al. IL-
- 461 15 mediates antigen-induced neutrophil migration by triggering IL-18 production. Eur. J.
- 462 *Immunol.* 37, 3373-3380 (2007).
- 463 (33) Canetti, C.A., Leung, B.P., Culshaw, S., McInnes, I.B., Cunha, F.Q. & Liew, F.Y. IL-18
- enhances collagen-induced arthritis by recruiting neutrophils via TNF-alpha and leukotriene
- 465 B4. J. Immunol. 171, 1009-1015 (2003).
- 466 (34) Spehlmann, M.E., Dann, S.M., Hruz, P., Hanson, E., McCole, D.F. & Eckmann, L.
- 467 CXCR2-dependent mucosal neutrophil influx protects against colitis-associated diarrhea
- caused by an attaching/effacing lesion-forming bacterial pathogen. J. Immunol. 183, 3332-
- 469 3343 (2009).
- 470 (35) Elinav, E., Henao-Mejia, J. & Flavell, R.A. Integrative inflammasome activity in the
- 471 regulation of intestinal mucosal immune responses. *Mucosal Immunol.* 6, 4-13 (2013).

- 472 (36) Włodarska, M., Thaiss, C.A., Nowarski, R., Henao-Mejia, J., Zhang, J.P., Brown, E.M.,
- 473 et al. NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating
- 474 goblet cell mucus secretion. *Cell* 156, 1045-1059 (2014).
- 475 (37) Allen, I.C. Non-Inflammasome Forming NLRs in Inflammation and Tumorigenesis.
- 476 Front. Immunol. 5, 169 (2014).
- 477 (38) Nordlander, S., Pott, J. & Maloy, K.J. NLRC4 expression in intestinal epithelial cells
- mediates protection against an enteric pathogen. *Mucosal Immunol.* 7, 775-785 (2014).
- 479 (39) Fellmann, C., Hoffmann, T., Sridhar, V., Hopfgartner, B., Muhar, M., Roth, M., et al.
- 480 An optimized microRNA backbone for effective single-copy RNAi. Cell. Rep. 5, 1704-1713
- 481 (2013).
- 482 (40) Shenoy, A.R., Wellington, D.A., Kumar, P., Kassa, H., Booth, C.J., Cresswell, P., et al.
- 483 GBP5 promotes NLRP3 inflammasome assembly and immunity in mammals. Science 336,
- 484 481-485 (2012).
- 485 (41) Kotik-Kogan, O., Valentine, E.R., Sanfelice, D., Conte, M.R. & Curry, S. Structural
- analysis reveals conformational plasticity in the recognition of RNA 3' ends by the human La
- 487 protein. Structure 16, 852-862 (2008).
- 488 (42) Datsenko, K.A. & Wanner, B.L. One-step inactivation of chromosomal genes in
- 489 Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. U. S. A. 97, 6640-6645
- 490 (2000).
- 491 (43) Galan, J.E., Ginocchio, C. & Costeas, P. Molecular and functional characterization of
- the Salmonella invasion gene invA: homology of InvA to members of a new protein family.
- 493 *J. Bacteriol.* 174, 4338-4349 (1992).

- 494 (44) Crepin, V.F., Habibzay, M., Glegola-Madejska, I., Guenot, M., Collins, J.W. & Frankel,
- 495 G. Tir Triggers Expression of CXCL1 in Enterocytes and Neutrophil Recruitment during
- Citrobacter rodentium Infection. *Infect. Immun.* 83, 3342-3354 (2015).

499 We thank Guy Frankel for making the $CR\Delta nleF$ mutant. We are grateful to Dr. Bernhard Ryffel (TAAM-CDTA, Orelans, France) and Dr. Mohamed (Lamkanfi, VIB Inflammation 500 Research Center, Ghent University, Belgium) for providing us with the Casp1/11-/- and 501 Casp11-/- mice. This project was supported by grants to GF from the Biotechnology and 502 Biological Sciences Research Council (BBSRC), the Wellcome Trust and the Medical 503 Research Council (MRC). ARS acknowledges funds from the Royal Society (RG130811) and 504 505 the Wellcome Trust (108246/Z/15/Z). JPD and NS are supported by grants from the Institut Pasteur, Inserm and Danone. 506 507 508 **Conflict of interest** 509 The authors declared no conflict of interest. 510 511 512 **Author Contribution** 513 514 MAP, VFP, NS and CNB - plan and conducted experiments and wrote the paper 515 MH, OK and JSG - plan and conducted experiments JPDS, ARS and GF - plan experiments and wrote the paper 516

498

Acknowledgements

Figure legends

Fig. 1. NleF binds caspase-4. (**A**) A direct yeast two hybrid assay revealed that NleF_{EPEC}, but not NleF_{1-185_EPEC}, interacts with full-length and p30 caspase-4. (**B**) Substitution of amino acids R152A, W313A and R314A within the putative caspase-4 substrate domain abrogated the interaction with NleF_{EPEC}. (**C**) Fractions of size exclusion of the chromatographic profile of MBP-NleF_{EPEC} and His-p20/p10 caspase-4 purified by amylose and talon affinity chromatography and (**D**) analyzed by SDS-PAGE gel electrophoresis, revealed that NleF_{EPEC} and caspase-4 subunits co-purified and co-eluted as a macromolecular complex at a MW of ~230 kDa.

Fig. 2. NleF inhibits caspase-4 activity. (A) Recombinant caspase-4, but not caspase-4^{C2588}, is auto-activated (western blot) and cleaves the reporter Ac-LEVD-AFC. Results are plotted as relative fluorescence units (RLU) minus background (No Ac-LEVD-AFC) over time (min). **(B)** Dose-dependent inhibition of caspase-4 Ac-LEVD-AFC cleavage by recombinant NleF_{EPEC}, and NleF_{1-185_EPEC} (shown by Coomassie stained gel). **(C)** NleF_{EPEC} (10 nM) inhibits the activity of caspase-4 more efficiently than NleF_{CR} (10nM) after 30 min incubation in the presence of Ac-LEVD-AFC. **(D)** Recombinant caspase-11 is auto-activated (western blot) and cleaves the reporter Ac-LEVD-AFC. **(E)** Dose dependent inhibition of caspase-11 activity by recombinant NleF_{CR} (shown by Coomassie stained gel). **(F)** NleF_{CR} (50 nM) inhibits the activity of caspase-11 more efficiently than NleF_{EPEC} (50nM) after 30 min incubation in the presence of Ac-LEVD-AFC. Results are expressed as a percentage of wild-type caspase-4 or caspase-11 RLU/min from at least two independent experiments. * indicates P<0.05.

Fig. 3. NleF inhibits secretion of caspase-4 and IL-18 during EPEC infection. (A) Infection of polarized Caco-2 cells with WT EPEC, EPEC $\Delta nleF$ or the complemented strain ($pnleF_{EPEC}$) revealed similar levels of cell adhesion (3 h post infection). (B) Caco-2 cells were infected with WT EPEC or EPEC $\Delta nleF$ in the absence or presence of the inhibitor Ac-LEVD-CHO (total 21 h). Immunoblotting of supernatants (SN) revealed that EPEC inhibits secretion of active caspase-4 (~28 kDa) in an NleF_{EPEC}-dependent manner, assessed by western blots (upper panel) and quantified by densitometry of multiple experiments (lower panel). (C) Infection of Caco-2 cells with WT EPEC, EPEC $\Delta nleF$ or complemented EPEC $\Delta nleF$ ($pnleF_{EPEC}$) had no effect on the levels of total IL-18 at 4 h p.i. (D) NleF is essential for inhibition of IL-18 secretion from infected Caco-2 cells (21 h post infection).

Fig. 4. NleFepec inhibits IL-18 secretion in an caspase-4 dependent manner. (A) Western blots showing knockdown of caspase-4, but not capsapse-5, by miRNA30E. (B) Infection of Caco-2 cells (21 h) depleted of caspase-4 (C4) revealed that it is essential for IL-18 processing in response to infection with EPECΔnleF, assessed by western blots (upper panel) and quantified by densitometry of two independent experiments (lower panel). (C) ELISA from two biological repeats showing specific secretion of IL-18 from control (YFP), but not from C4, Caco-2 cells infected for 21 h with EPECΔnleF. (D) EPEC does not trigger LDH release or PI uptake during infection (21 h) of control or C4 Caco-2 cells, results are represented as a percentage of total uptake or total release and are an average of two biological repeats carried out in triplicate. * indicates P<0.05.

Fig. 5. NleFCR inhibits colonic IL18 secretion 4 days p.i. WT C. rodentium, C. $rodentium\Delta nleF$ and the complemented strain ($\Delta nleF$ pnleFCR) similarly colonized and

triggered colonic hypoplasia in C57BL/6 mice (**A and B**). Each dot in B represents an individual measurement of crypt length (from at least 20 measurements per section per mouse), and horizontal bars represent mean values. Significant increase in secreted IL-18, measured by ELISA, was seen specifically following infection of C57BL/6 with *C. rodentium* $\Delta nleF$ (day 4), but not following infection of either $Casp1/11^{-/-}$ or $Casp11^{-/-}$ mice (day 4) (**C**) or C57BL/6 (day 8) (**E**). Secreted CXCL1 was found in similar levels, except for the complemented strain, which triggered greater secretion of CXCL1 (**D**). No difference in colonization of $Casp11^{-/-}$ mice was seen following infection with WT *C. rodentium* or *C. rodentium* $\Delta nleF$ (E). * indicates P<0.05.

Fig. 6. NleF_{CR} inhibits colonic neutrophil recruitment 4 days p.i. C57BL/6, *Casp1/11*^{-/-} and *Casp11*^{-/-} mice were infected with WT *C. rodentium*, *C. rodentium*Δ*nleF* or complemented *C. rodentium*Δ*nleF* (Δ*nleF* p*nleF*_{CR}). (**A**) Representative image of flow cytometry gating strategy for neutrophils (CD11b+Ly6G+) of control (PBS) and infected C57BL/6 mice. The number of neutrophils (CD11b+Ly6G+) present within the myeloid gate was counted from C57BL/6 (**B-C**, days 4 and 8 post infection), *Casp1/11*^{-/-} or *Casp11*^{-/-} (**B**, day 4 post infection) mice (at least six mice per condition). * indicates P<0.05.