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Abstract	

Targeted	therapies	for	cancer	have	been	developed	that	block	oncogenic	pathways	that	

drive	 tumour	 growth	 (e.g.	 hedgehog,	 mitogen-activated	 protein	 kinases,	 vascular	

endothelial	 growth	 factor,	 and	 the	 Abelson	 tyrosine	 kinase	 and	 the	 chromosome	 22	

break	point	cluster	fusion	gene).	For	inoperable	metastatic	disease,	targeted	therapies	

provide	 rapid	 response,	 but	 in	most	 cases	 are	 associated	with	 eventual	 relapse	with	

more	 aggressive	 disease.	 Basal	 cell	 carcinoma	 (BCC)	 arises	 from	 keratinocytes	 with	

mutations	leading	to	constitutively	active	sonic	hedgehog	(SHh)	growth	factor	signalling.	

Unlike	 the	 multiple	 genetic	 lesions	 required	 during	 stepwise	 carcinogenesis	 in	 many	

other	 cancers,	 SHh	 signalling	 alone	 appears	 to	be	 sufficient	 to	 cause	BCC,	which	may	

explain	 the	 absence	 of	 precursor	 lesions	 and	 also	 why	 BCC	 is	 the	 most	 common	

malignancy	 in	 Caucasians.	 As	 expected	 hedgehog	 (Hh)	 antagonists	 lead	 to	 rapid	

involution	 of	 BCC,	 but	 also	 eventual	 relapse,	 and	 in	 some	 cases	 transformation	 to	

squamous	 cell	 carcinoma.	 Thus,	 BCC	 represent	 an	 ideal	model	 to	 study	 relapse	 after	

targeted	therapy.		

	

We	 show	 that	 the	 TGFβ	 signalling	 pathway	 constituents	 were	 amplified	 in	 BCC,	

consistent	with	increased	signalling.	TGFβ	signalling	was	evident	in	a	third	of	untreated	

BCC	cells	at	the	tumour	periphery.	Cells	at	the	tumour	nodule	periphery	active	for	TGFβ	

signalling	 demonstrated	 lower	 rates	 of	 proliferation,	 and	 upregulation	 of	 TGFβ	

regulated	 epithelial	 mesenchymal	 transition	 (EMT)	 genes	 consistent	 with	 tumour	

invasion.	Intriguingly,	BCC	cancer	stem	cells	that	have	been	previously	identified	at	the	

tumour	 nodule	 periphery	 consistently	 demonstrated	 active	 TGFβ	 signalling	 and	

enhanced	expression	of	TGFβ	dependent	EMT	genes.		

	

We	 show	 that	 as	 expected,	 addition	 of	 Hh	 antagonists	 (GANT-61,	 Vismodegib,	

Sonidegib)	to	primary	BCC	cells	and	three	Hh	driven	tumour	cell	lines	(DAOY,	UW228-2,	

SJSA-1),	had	no	significant	impact	on	cell	proliferation	or	survival	in	vitro.	Interestingly,	

Hh	 antagonist	 treatment	 was	 associated	 with	 increased	 TGFβ	 signalling	 activity	 as	

evidenced	through	nuclear	accumulation	of	pSMAD3	and	expression	of	TGFβ	regulated	

genes.	 However,	 blocking	 the	 TGFβ	 signalling	 pathway,	 both	 on	 its	 own	 and	 in	

combination	with	Hh	antagonists	again	had	no	significant	impact	on	cell	proliferation	or	
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survival	in	the	cell	lines.	When	trying	to	elucidate	the	mechanisms	that	underlie	tumour	

resistance,	we	 found	that	Hh	antagonist-induced	TGFβ	 signalling	was	accompanied	by	

destabilisation	 of	 the	 microtubule	 network.	 This	 could	 subsequently	 lead	 to	 TGFβ-

induced	EMT/invasion	in	either	the	general	cell	population	or	stem	cell	population,	and	

may	 provide	 a	 mechanism	 through	 which	 tumours	 can	 promote	 relapse	 following	

treatment,	 and	 in	 rarer	 cases,	 induce	 transformation	 to	more	 aggressive	 phenotypes	

such	as	SCC.	However,	additional	 studies	are	 required	 to	elucidate	 this	mechanism	of	

action	further.		
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Chapter	1	 Introduction	
	

1.1	Hallmarks	of	Cancer	

	

Throughout	our	 lifetimes	 somatic	mutations	 steadily	 accumulate	within	our	 cells,	 and	

although	the	vast	majority	of	these	are	harmless,	occasionally	a	mutation	affects	a	gene	

or	 regulatory	 element,	which	 leads	 to	 a	 phenotypic	 consequence.	A	 fraction	of	 these	

mutations	are	 ‘driver’	mutations,	 in	that	they	confer	a	selective	advantage	to	the	cell,	

which	in	turn	lead	to	the	preferential	growth	and/or	survival	of	a	clone	(Stratton	et	al.,	

2009).	One	of	 the	end	products	of	 this	evolution	within	somatic	cells	 is	cancer.	 In	 the	

UK,	 cancer	 represents	 the	 most	 common	 cause	 of	 death	 for	 males	 and	 females	

combined	(Office	for	National	Statistics:	Deaths	registered	in	England	and	Wales:	2015;	

National	 Records	 of	 Scotland.	 2015	 Births,	 Deaths	 and	 Other	 Vital	 Events;	 Northern	

Ireland	Statistics	and	Research	Agency.	Registrar	Northern	Ireland	Annual	Report	2014),	

and	 accounts	 for	 roughly	 28%	 of	 all	 deaths	 in	 the	 UK.	 In	 2014,	 there	 were	 163,444	

cancer	deaths	in	the	UK	(86,540	(53%)	in	males	and	79,904	(47%)	in	females),	with	the	

crude	 mortality	 rate	 showing	 that	 cancer	 is	 responsible	 for	 272	 deaths	 for	 every	

100,000	males	in	the	UK,	and	234	deaths	for	every	100,000	females	(CRUK).	However,	

cancer	is	a	global	problem,	with	cancer	responsible	for	25%	of	all	deaths	in	the	United	

States,	and	is	second	only	to	cardiovascular	disease	as	the	leading	cause	of	death	(Jemal	

et	al.,	2008).	Whereas	in	Canada,	cancer	is	the	number	one	cause	of	death,	with	roughly	

45%	 of	men	 and	 39%	 of	 women	 shown	 to	 develop	 cancer	 within	 their	 lifetime,	 and	

about	1	in	4	Canadians	will	die	from	the	disease	(Marrett	et	al.,	2008).		Furthermore,	in	

other	 countries	 such	 as	 in	 India,	 the	mortality	 rate	 attributed	 to	 cancer	 in	 2014	was	

roughly	 6%	 (Dikshit	 et	 al.,	 2012);	 however	 in	 such	 rapidly	 developing	 countries	 the	

incidence	of	cancer	will	almost	certainly	increase	as	the	average	age	of	the	population	is	

set	to	increase,	which	in	turn	will	result	in	more	cancer	related	deaths.		

	

Cancer	in	its	very	basic	sense	is	a	disease	in	which	an	autonomous	clone	of	cells	escape	

from	the	 inbuilt	cellular	mechanisms	that	govern	cell	behaviour	and	proliferation.	The	
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following	 section	 will	 give	 a	 brief	 description	 of	 the	 basic	 biological	 capabilities	 of		

cancer,	 termed	 ‘hallmarks’.	 The	 ‘Hallmarks	 of	 cancer’	 was	 a	 seminal	 peer-reviewed	

article	 published	 in	 Cell	 in	 January	 2000	 by	 Douglas	 Hanahan	 and	 Robert	 Weinberg	

(Hanahan	and	Weinberg,	2000),	 in	which	the	complexity	of	cancer	was	reduced	to	six	

biological	 capabilities	 acquired	 during	 the	multistep	 development	 of	 human	 tumours.	

The	six	hallmarks	are	as	follows:	1)	sustaining	proliferative	signalling,	2)	evading	growth	

suppressors,	 3)	 resisting	 cell	 death,	 4)	 enabling	 replicative	 immortality,	 5)	 inducing	

angiogenesis,	 6)	 activating	 invasion	 and	metastasis.	 In	 2011,	 Hanahan	 and	Weinberg	

published	an	update	(Hanahan	and	Weinberg,	2011),	in	which	they	proposed	four	new	

hallmarks:	1)	 genome	 instability	and	mutation,	2)	 tumour-promoting	 inflammation,	3)	

reprogramming	energy	metabolism	and	4)	evading	immune	destruction.	

	

1.1.1	 Sustaining	proliferative	signalling	

One	 of	 the	most	 important	 attributes	 of	 a	 cancer	 cell	 is	 its	 ability	 to	 sustain	 chronic	

proliferation.	 Normal	 cells	 are	 instructed	 to	 progress	 through	 the	 cell-growth-and-

division	cycle	by	the	production	and	release	of	growth	promoting	signals,	and	thereby	

ensure	 cell	 homeostasis	 within	 the	 tissue.	 By	 deregulating	 these	 signals	 cancer	 cells	

acquire	the	ability	to	sustain	proliferative	signalling,	which	can	be	achieved	in	a	number	

of	 ways	 (Lemmon	 and	 Schlessinger,	 2010;	 Witsch	 et	 al.,	 2010;	 Perona	 et	 al.,	 2006).	

These	include	autocrine	proliferative	signalling,	whereby	cancer	cells	produce	their	own	

ligands,	 and	 can	 respond	 via	 upregulation	 of	 cognate	 receptors.	 Alternatively,	 cancer	

cells	can	send	signals	to	neighbouring	normal	cells	within	the	stroma,	which	reciprocate	

by	supplying	the	cancer	cells	with	growth	factors	(Cheng	et	al.,	2008;	Bhowmick	et	al.,	

2004).	Deregulation	 of	 receptor	 signalling	 can	 also	 occur	 through	 the	 upregulation	 of	

receptor	proteins	at	 the	 cell	 surface	or	even	 through	 structural	 alterations	within	 the	

receptors,	which	render	the	cells	hyper-responsive	to	ligands.	However	more	recently,	

other	mechanisms	have	emerged	allowing	cells	to	be	hyperproliferative.	These	include	

somatic	mutations	that	serve	to	activate	downstream	pathways;	an	example	of	which	

can	be	seen	in	human	melanoma,	where	40%	are	found	to	have	constitutive	activation	

of	 the	MAPK	pathway	 through	mutations	within	 the	B-Raf	gene	 (Davies	and	Samuels,	

2010).	 Defects	 in	 negative	 feedback-loops,	 which	 in	 normal	 tissues	 serve	 to	 dampen	

various	types	of	signalling	and	thereby	ensure	homeostatic	regulation	(Wertz	and	Dixit,	
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2010),	have	also	been	linked	to	hyperproliferation	within	cancer	cells.	A	classic	example	

involves	PTEN	phosphatase,	which	counteracts	PI3K	by	degrading	its	product	PIP3.	Loss-

of-function	 mutations	 within	 this	 phosphatase	 amplify	 PI3K	 signalling	 and	 thereby	

promote	tumour	growth	(Jiang	and	Liu,	2009;	Yuan	and	Cantley,	2008).	

	

1.1.2	 Evading	growth	suppressors	

Cancer	 cells	 must	 also	 be	 able	 to	 circumvent	 programs	 that	 negatively	 regulate	 cell	

proliferation.	 The	 two-prototypical	 tumour	 suppressor	 genes	 encode	 the	 proteins	 RB	

(retinoblastoma)	 and	 TP53,	 and	 are	 critical	 for	 controlling	 the	 decision	 for	 cells	 to	

proliferate,	or	activate	senescence	and	apoptotic	programs,	respectively.		

	

The	RB	protein	 integrates	a	diverse	range	of	extracellular	and	 intracellular	signals	and	

then	decides	whether	to	enter	the	cell	division	cycle	(Deshpande	et	al.,	2005;	Sherr	and	

McCormick,	 2002).	 As	 a	 consequence	 defects	 in	 the	 RB	 pathway	 permit	 persistent	

proliferation	 through	 the	 absence	 of	 this	 critical	 gatekeeper.	 TP53	 receives	 and	

responds	 to	 stress	 and	 abnormality	 sensors	 within	 the	 cell,	 and	 can	 stop	 cell	 cycle	

progression	 until	 the	 conditions	 have	 been	 normalised	 (Zilfou	 and	 Lowe,	 2009).	

Alternatively,	 if	 the	 signals	 received	 cannot	 be	 repaired	 or	 rectified,	 TP53	 can	 trigger	

apoptosis	(Zilfou	and	Lowe,	2009).	Other	mechanisms	that	cancer	cells	must	overcome	

include	 contact	 inhibition.	 When	 normal	 cells	 are	 grown	 in	 2D	 culture,	 the	 cell-cell	

contacts	 that	 form	 in	dense	populations	provide	cues	 that	 stop	cell	proliferation.	This	

contact	 inhibition	 is	 also	 replicated	 in	 vivo,	 where	 it	 serves	 to	 maintain	 tissue	

homeostasis,	 however	 in	 cancer	 cells	 this	 contact	 inhibition	 is	 abolished	 (Wieser	 and	

Oesch,	1986).	Recently	mechanisms	that	underpin	this	abolition	have	begun	to	emerge.	

One	such	mechanism	involves	the	product	of	the	NF2	gene,	Merlin,	which	has	long	been	

implicated	 as	 a	 tumour	 suppressor,	 and	 controls	 contact	 inhibition	 by	 coupling	 cell	

surface	 adhesion	molecules	 to	 transmembrane	 receptor	 tyrosine	 kinases.	 This	 action	

has	consequences	that	are	two-fold:	firstly	Merlin	strengthens	cadherin-mediated	cell-

to-cell	attachments;	secondly,	by	sequestering	growth	factor	receptors,	Merlin	restricts	

their	ability	to	transduce	mitogenic	signals	(Curto	et	al.,	2007;	Okada	et	al.,	2005).		
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TGFβ	 signalling	 is	 best	 known	 for	 its	 anti-proliferative	 effects	 under	 physiological	

conditions;	however	in	late-stages	of	carcinogensis	TGFβ	signalling	is	found	to	activate	a	

cellular	 program	 called	 epithelial	 mesenchymal	 transition	 (EMT)	 (Ikushima	 and	

Miyazono,	2010;	Massague,	2008).					

	 	

1.1.3	 Resisting	cell	death	

Cells	undergoing	programmed	cell	death	via	apoptosis	have	served	as	a	natural	barrier	

to	 cancer	 development	 (Adams	 and	 Cory,	 2007;	 Lowe	 et	 al.,	 2004),	 and	 function	

through	 two	major	mechanisms:	 first	 is	 the	 extrinsic	 apoptotic	 program	 involving	 the	

use	 of	 caspase	 8;	 second	 is	 the	 intrinsic	 apoptotic	 program	 that	 involves	 the	 use	 of	

caspase	 9.	 Both	 programs	 culminate	 in	 the	 activation	 of	 their	 respective	 proteases,	

which	 subsequently	 initiate	 a	 cascade	 of	 proteolysis	 involving	 caspases	 that	 are	

responsible	for	disassembling	the	cell	(Elmore,	2007).	The	apoptotic	trigger	is	controlled	

through	a	balance	of	pro-	and	anti-apoptotic	members	of	the	Bcl-2	family	of	regulatory	

proteins	 (Adams	 and	 Cory,	 2007).	 Although	 the	 cellular	 conditions	 that	 underpin	

apoptosis	remain	to	be	fully	elucidated,	there	are	several	abnormality	sensors	that	play	

crucial	roles	in	tumour	development	(Adams	and	Cory,	2007;	Lowe	et	al.,	2004).		

	

Tumour	cells	have	acquired	a	number	of	strategies	to	restrict	or	circumvent	apoptosis.	

The	most	common	mechanisms	through	which	tumour	cells	achieve	this	is	by	losing	the	

tumour	 suppressor	 function	 of	 TP53	 (Ozaki	 and	 Nakagawara,	 2011).	 Alternatively,	

tumour	cells	can	increase	the	expression	of	anti-apoptotic	regulators	(Bcl-2,	Bcl-xL),	and	

downregulate	pro-apoptotic	factors	(Bax,	Bim,	Puma)	(Kirkin	et	al.,	2004).		

	

Other	more	recent	advances	in	our	understanding	of	resisting	cell	death	pathways	are	

beginning	 to	 be	 unravelled.	One	 example	 of	 this	 includes	 the	 ability	 of	 autophagy	 to	

regulate	both	tumour	cell	survival	and	death.	Autophagy,	like	apoptosis	is	an	important	

physiological	response	that	operates	at	low	basal	levels	in	cells,	but	has	the	capacity	to	

be	 strongly	 induced	 under	 certain	 conditions	 of	 cellular	 stress,	 such	 as	 nutrient	

deficiency	 (Levine	 and	 Kroemer,	 2008;	 Mizushima,	 2007).	 Autophagy	 allows	 cells	 to	

break	 down	 cellular	 organelles	 including	 mitochondria	 and	 ribosomes,	 and	

subsequently	 recycle	 catabolites	 that	 are	 used	 for	 biosynthesis.	 Recent	 studies	 have	
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revealed	 that	 the	 regulatory	 circuits	 that	 govern	 autophagy	 and	 apoptosis	 are	

interconnected	 (Levine	 and	 Kroemer,	 2008;	 Sinha	 and	 Levine,	 2008;	 Mathew	 et	 al.,	

2007).	The	protein,	Beclin-1,	has	been	shown	by	genetic	studies	to	be	necessary	for	the	

induction	of	autophagy	and	is	a	key	protein	for	the	interconnection	between	these	two	

programs	(Mizushima	et	al.,	2007).	Mice	with	 inactivating	alleles	for	Beclin-1	from	the	

autophagy	machinery	have	been	shown	to	exhibit	increased	sensitivity	towards	cancer	

(White	and	DiPaolo,	2009;	Levine	and	Kroemer,	2008).		

	

1.1.4	 Enabling	replicative	immortality	

In	 normal	 cell	 lineages,	 the	 number	 of	 successive	 cell	 growth	 and	 division	 cycles	 is	

limited	 by	 two	 distinct	 barriers:	 firstly,	 senescence,	 which	 is	 the	 entry	 into	 a	 non-

proliferative	 state	 which	 is	 often	 irreversible,	 but	 still	 leaves	 the	 cell	 viable;	 and	

secondly,	crisis,	which	 involves	cell	death	 (Shay	and	Wright,	2011).	When	propagating	

cells	in	culture,	the	repeated	cycles	of	cell	division	lead	initially	to	senescence,	and	then	

for	 cells	 that	 cannot	 overcome	 this	 barrier,	 eventual	 cell	 death	 occurs	 through	 crisis.	

However,	 on	 rare	 occasions,	 cells	 can	 overcome	 the	 crisis	 phase	 and	 emerge	 with	

unlimited	 replicative	 potential,	 termed	 immortalisation.	 There	 are	 multiple	 lines	 of	

evidence	showing	that	cells	obtain	the	ability	to	endlessly	proliferate	through	telomeres	

protecting	 the	 ends	 of	 chromosomes	 (Blasco,	 2005;	 Shay	 and	Wright,	 2000).	 In	 non-

immortalised	 cells	 that	 undergo	 propagation,	 the	 telomeres	 gradually	 shorten,	 until	

they	are	no	longer	able	to	protect	the	ends	of	chromosomes,	which	inevitably	impacts	

on	cell	viability	(Shay	and	Wright,	2011).	Therefore,	the	length	of	telomeric	DNA	within	

a	 cell	 dictates	 how	many	 cycles	 of	 proliferation	 it	 can	undergo	before	 the	 cell	 enters	

crisis.	 The	 enzyme	 telomerase	 is	 responsible	 for	 adding	 telomere	 repeat	 units	 to	 the	

ends	 of	 telomeric	 DNA	 and	 thereby	 lengthening	 it.	 In	 normal	 cells,	 the	 levels	 of	

telomerase	are	very	low,	however	in	spontaneously	immortalised	cells,	roughly	90%	are	

found	to	express	functionally	significant	levels	of	telomerase	(Shay	and	Bacchetti,	1997).	

Therefore	 one	mechanism	 through	which	 cancer	 cells	maintain	 their	 telomere	 length	

and	 thereby	 bypass	 both	 senescence	 and	 crisis	 is	 through	 increased	 levels	 of	

telomerase.	 In	 fact	 experiments	 have	 shown	 that	 in	 mice	 lacking	 telomeres,	

premalignant	 cells	 can	 be	 forced	 into	 senescence,	 which	 ultimately	 contributes	 to	

attenuating	 tumourigenesis	 even	 in	 mice	 genetically	 pre-disposed	 to	 develop	 certain	
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cancers	 (Artandi	 and	 DePino,	 2010).	 However,	 there	 are	 alternative	 mechanisms	

through	 which	 cancer	 cells	 can	 bypass	 cell	 senescence,	 including	 the	 alternative	

lengthening	of	telomeres	(ALT)	pathway,	which	is	a	homology-directed	recombination-

dependent	 replication	 pathway	 (telomere	 maintenance	 mechanism;	 TMM)	 that	 is	

frequently	 adopted	 by	 tumours	 from	 a	 mesenchymal	 and	 neuroepithelial	 origin	

(Sobinoff	and	Pickett,	2017).			

1.1.5	 Inducing	Angiogenesis	

In	a	similar	manner	to	normal	cells,	tumour	cells	require	nutrients	and	oxygen	to	grow	

as	well	as	 the	ability	 to	excrete	metabolic	wastes	and	carbon	dioxide.	Angiogenesis	 is	

the	 process	 by	 which	 tumour	 cells	 generate	 a	 neovasculature	 network	 in	 order	 to	

address	 these	needs.	Angiogenesis	 is	 a	process	 that	 is	 adopted	during	embryogenesis	

where	developing	the	vasculature	involves	the	production	of	new	endothelial	cells	and	

their	subsequent	assembly	into	tubes	(Breier,	2000).	Following	this	early	development,	

the	 normal	 vasculature	 becomes	 mostly	 quiescent,	 and	 is	 only	 turned	 on	 in	 adult	

tissues,	 during	 times	 of	 the	 reproductive	 cycle	 for	 women,	 and	 for	 wound	 healing	

(Fraser	and	Lunn,	2000).	However,	this	angiogenic	switch	is	almost	always	active	during	

tumour	 progression,	 and	 causes	 normally	 quiescent	 vasculature	 to	 help	 in	 sustaining	

the	 growing	 neopasm	 through	 the	 sprouting	 of	 new	 vessels	 (Hanahan	 and	 Folkman,	

1996).		

	

The	angiogenic	switch	is	governed	by	a	number	of	factors	that	either	induce	or	oppose	

angiogenesis	 (Baeriswyl	 and	 Christofori,	 2009;	 Bergers	 and	 Benjamin,	 2003),	 and	 are	

usually	signalling	proteins	that	bind	to	either	stimulatory	or	inhibitory	receptors	on	the	

vascular	endothelial	cells.	For	example,	one	very	well	known	inducer	of	angiogenesis	is	

the	vascular	endothelial	growth	factor-A	(VEGF-A),	whereas	thrombospondin-1	(TSP-1)	

is	 a	well-established	 inhibitor	 of	 angiogenesis.	 The	VEGF-A	 gene	 encodes	 ligands	 that	

are	responsible	for	controlling	the	growth	of	new	blood	vessels	during	embryogenesis,	

homeostatic	 survival	 of	 endothelial	 cells,	 and	 the	 formation	 of	 blood	 vessels	 under	

physiological	 and	 pathophysiological	 conditions	 in	 the	 adult	 (Holmes	 and	 Zachary,	

2005).	 VEGF	 signalling	 is	 transduced	 via	 three	 receptor	 tyrosine	 kinases	 (VEGFR-1-3),	

and	 due	 to	 its	 relative	 complexity,	 is	 regulated	 at	 multiple	 levels.	 The	 expression	 of	

VEGF	can	be	upregulated	by	both	hypoxic	conditions	and	during	oncogenesis	(Ferrara,	
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2009;	Gabhann	and	Popel,	2008).	Furthermore,	other	factors	responsible	for	stimulating	

angiogenesis,	including	the	fibroblast	growth	factor	(FGF)	family,	have	been	chronically	

upregulated	during	times	of	tumour	angiogenesis	(Baeriswyl	and	Christofori,	2009).		

	

1.1.6	 Activating	invasion	and	metastasis	

Invasion	 and	 metastasis	 is	 a	 multistep	 process,	 which	 can	 be	 broken	 down	 into	 a	

sequence	 of	 discrete	 steps,	 termed	 the	 ‘invasion	metastasis	 cascade’	 (Talmadge	 and	

Fidler,	2010;	Fidler,	2003).	This	cascade	involves	a	succession	of	cell	biological	changes	

that	begin	with	local	invasion,	intravasation	by	cancer	cells	into	the	surrounding	blood	

and	lymphatic	vessels,	transit	of	these	cells	through	the	blood	and	lymphatic	systems,	

escape	 of	 these	 cells	 from	 the	 lumina	 of	 the	 vessels	 into	 distant	 tissues,	where	 they	

establish	 to	 form	 small	 tumours,	 before	 finally	 growing	 into	 a	 macroscopic	 tumour	

(colonisation).	The	best	characterised	alteration	in	this	process	is	the	loss	of	the	key	cell	

adhesion	molecule,	 E-cadherin,	 in	 the	 cancer	 cells.	 Under	 physiological	 conditions,	 E-

cadherin	helps	 the	 formation	of	adherens	 junctions	with	adjacent	epithelial	 cells,	 and	

thereby	facilitates	the	assembly	of	epithelial	sheets	that	maintain	cell	quiescence	within	

these	 sheets	 (Pecina-Slaus,	 2003).	 In	 cancer	 cells,	 E-cadherin	 is	 frequently	 found	 to	

either	 be	 downregulated	 or	 in	 rare	 instances	 contain	 loss-of-function	 mutations	

(roughly	 4%	 of	 tumours),	 and	 thereby	 provides	 very	 strong	 evidence	 for	 its	 role	 in	

suppressing	this	hallmark	capability	(Berx	and	van	Roy,	2009;	Cavallaro	and	Christofori,	

2004).	The	 loss	of	E-cadherin	 is	one	of	 the	hallmarks	of	EMT,	a	key	 transition	process	

that	 gives	 cancer	 cells	 the	 ability	 to	 become	 more	 aggressive	 and	 migratory.	 A	 key	

regulator	of	EMT,	notably	during	the	later	stages	of	carcinogenesis	and	tumour	growth,	

is	active	TGFβ	signalling.	EMT	is	characterised	by	loss	of	cell-to-cell	contact	and	the	poor	

correlation	 between	 the	 pattern	 of	 migration	 of	 a	 cell	 and	 its	 neighbour.	 However,	

cancer	cells	can	also	engage	in	amoeboid-like	motility	in	which	cells	have	a	round	cell-

body	phenotype	and	can	dramatically	differ	 in	 their	protrusive	activity.	Amoeboid-like	

migration	manifests	 itself	 in	 a	 number	 of	 different	 forms	within	 cancer	 cells,	 ranging	

from	cells	that	can	achieve	high	migrating	velocities	through	the	presence	of	short	thin	

protrusions	 and	 the	 absence	 of	 blebbing,	 to	 others	 that	move	more	 slowly	 and	 have	

blebbing	morphology	and	are	associated	with	 chaotic	movements	 (Clark	and	Vignjvic,	

2015).							
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1.1.7	 Genome	instability	and	mutation								

In	order	for	cancer	cells	to	acquire	the	multiple	hallmarks	outlined	above,	a	succession	

of	alterations	within	 the	genomes	of	neoplastic	 cells	must	occur.	 In	 its	 simplest	 form,	

certain	 mutant	 genotypes	 confer	 a	 survival	 advantage	 on	 subclones	 of	 cells,	 which	

enables	 them	 to	 eventually	 dominate	 in	 the	 local	 tissue	 environment.	 As	 a	

consequence,	tumour	progression	can	be	depicted	as	a	succession	of	clonal	expansions,	

with	each	one	triggered	by	the	chance	acquisition	of	a	mutational	genotype	that	confers	

an	 advantage	 over	 the	 other	 subclones	 (Diaz-Cano,	 2012).	 However,	 the	 genome	

maintenance	systems	present	within	cells	are	extremely	good	at	detecting	and	resolving	

defects	 within	 the	 DNA,	 therefore	 in	 order	 for	 tumourigenesis	 to	 be	 orchestrated	

through	 the	 accumulation	 of	 mutant	 genes,	 cancer	 cells	 often	 increase	 the	 rates	 of	

mutation	 (Negrini	 et	 al.,	 2010;	 Salk	 et	 al.,	 2010).	 Cancer	 cells	 achieve	 this	 through	 a	

break	 down	 in	 one	 or	 several	 components	 of	 the	 genome	 maintenance	 machinery,	

which	 increases	 the	 sensitivity	of	 the	cells	 to	mutagenic	effects,	and	 thereby	 increase	

the	rates	of	mutation.	Furthermore,	by	compromising	the	surveillance	systems	that	are	

responsible	for	assessing	genome	integrity	and	guiding	damaged	cells	to	senescence	or	

apoptosis,	 cancers	 cells	 can	 accelerate	 the	 accumulation	 of	 these	mutations	 (Jackson	

and	 Bartek,	 2009;	 Kastan,	 2008;	 Sigal	 and	 Rotter,	 2000).	 Cancers	 have	 developed	

through	a	diverse	 range	of	defects	affecting	 the	DNA-maintenance	machinery	 (Kinzler	

and	Vogelstein,	1997).	These	defects	have	been	shown	to	affect	genes	 involved	 in:	1)	

the	DNA	damage	detection	and	repair	machinery,	2)	the	direct	repair	of	DNA	damage,	

and	 3)	 the	 interception	 of	molecules	 before	 they	 cause	 DNA	 damage	 (Negrini	 et	 al.,	

2010;	Ciccia	and	Elledge,	2010;	Harper	and	Elledge,	2007;	Friedberg	et	al.,	2006).	

	

1.1.8	 Tumour-promoting	inflammation	

It	has	long	been	recognised	that	some	tumours	contain	immune	infiltrate	from	both	the	

adaptive	and	innate	immune	systems,	which	mirrors	what	is	observed	in	normal	tissue	

(Dvorak,	1986).	However	with	the	advent	of	improved	cell-type	markers,	we	have	been	

able	to	show	that	nearly	every	tumour	has	immune	infiltrate	to	some	extent	(Pages	et	

al.,	2010).	Such	immune	responses	have	largely	been	thought	to	be	anti-tumourigenic,	
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and	 an	 attempt	 by	 the	 body	 to	 eradicate	 the	 tumour,	 however	 recent	 studies	 have	

shown	that	 in	 some	cancers	 the	 immune	 infiltrate	can	have	pro-tumourigenic	effects,	

and	 contribute	 to	 tumour	progression	 (DeNardo	et	 al.,	 2010;	Qian	 and	Pollard,	 2010;	

Colotta	 et	 al.,	 2009).	 In	 fact,	 inflammation	 has	 been	 shown	 to	 promote	 tumour	

development	by	supplying	the	tumour	microenvironment	with	growth	factors,	survival	

factors,	pro-angiogenic	factors,	and	extracellular	matrix	enzymes	(DeNardo	et	al.,	2010;	

Karnoub	and	Weinberg,	2006-2007).			

	

1.1.9	 Reprogramming	energy	metabolism	

Tumourigenesis	is	also	associated	with	deregulation	in	the	energy	metabolism	pathways	

in	order	to	fuel	growth	and	division.	In	normal	cells	under	aerobic	conditions,	glucose	is	

processed	 to	pyruvate	 via	 glycolysis	 in	 the	 cytosol,	 and	 then	 to	 carbon	dioxide	 in	 the	

mitochondria;	whereas	under	anaerobic	conditions,	 relatively	 little	pyruvate	 is	 sent	 to	

the	 oxygen-consuming	 mitochondria,	 as	 glycolysis	 is	 the	 preferred	 form	 of	 energy	

metabolism.	 However,	 cancer	 cells	 have	 the	 capacity	 to	 reprogram	 their	 energy	

metabolism,	 and	 therefore	 their	 energy	 production,	 in	 the	 presence	 of	 oxygen,	 by	

limiting	their	energy	metabolism	to	predominantly	glycolysis,	termed	aerobic	glycolysis	

(Warburg,	 1930,	 1956a,	 1956b).	 However,	 this	 form	 of	 energy	 metabolism	 is	 rather	

counterintuitive,	 in	 that	ATP	production	produced	by	glycolysis	 is	 roughly	18-fold	 less	

efficient	than	ATP	produced	through	oxidative	phosphorylation	(Hanahan	and	Weinber,	

2011).	In	order	to	compensate	for	this,	cancer	cells	substantially	increase	the	import	of	

glucose	into	the	cytoplasm	through	upregulation	of	glucose	transporters,	such	as	GLUT1	

(Jones	and	Thompson,	2009;	Hsu	and	Sabatini,	2008).	This	increased	uptake	and	usage	

of	 glucose	 has	 been	 observed	 in	many	 tumour	 types	 and	 can	 be	 visualised	 in	 a	 non-

invasive	way	through	positron	emission	tomography	(PET)	with	a	radiolabelled	analogue	

of	glucose	as	a	reporter.	The	usage	of	tumour	cells	to	adopt	such	a	seemingly	inefficient	

means	for	energy	metabolism	may	also	be	explained	in	part	by	the	fact	that	cancer	cells	

are	often	under	hypoxic	conditions,	particularly	at	the	 interior	of	the	tumour,	and	the	

hypoxic	response	system	induces	the	upregulation	of	glucose	transporters	and	multiple	

enzymes	 of	 the	 glycolytic	 pathway	 (Semenza,	 2010a;	 Jones	 and	 Thompson,	 2009).	

Nevertheless,	 the	 functional	 rationale	 for	 cancer	 cells	 using	 glycolysis	 has	 remained	

unclear.	 However,	 one	 hypothesis	 is	 that	 the	 process	 of	 glycolysis	 allows	 the	
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intermediates	 of	 the	 pathway	 to	 be	 diverted	 into	 a	 variety	 of	 biosynthetic	 pathways,	

including	those	 involved	 in	generating	nucleosides	and	amino	acids,	which	 in	turn	can	

be	used	to	generate	macromolecules	and	organelles	required	for	the	production	of	cells	

(Potter,	1958;	Vander	Heiden	et	al.,	2009).	However,	not	all	 cancer	cells	are	 found	 to	

use	 glycolysis	 for	 their	 energy	 production.	 Interestingly,	 studies	 have	 shown	 that	

cancers	 can	 contain	 two	 subpopulations	 that	 are	 distinguished	 from	 one	 another	 by	

their	 ability	 to	 metabolise	 energy.	 In	 this	 manner,	 the	 two	 subpopulations	 function	

symbiotically,	 with	 the	 one	 subpopulation	 generating	 lactate	 through	 the	 glycolytic	

pathway,	and	in	turn	the	lactate	is	then	used	by	the	second	subpopulation	as	its	main	

energy	 source	 in	 the	 citric	 acid	 cycle	 (Kennedy	 and	 Dewhirst,	 2010;	 Feron,	 2009;	

Semenza,	2008).						

	

1.1.10		Evading	immune	destruction	

The	long-standing	theory	of	immune	surveillance	is	that	the	cells	and	tissues	within	our	

body	 are	 constantly	 being	 monitored	 by	 our	 immune	 system,	 and	 is	 responsible	 for	

recognising	and	destroying	the	majority	of	cancer	cells	and	therefore	tumour	initiation.	

However,	if	this	is	true,	then	any	tumours	that	do	appear	have	successfully	evaded	the	

immune	 system	 or	 have	 limited	 the	 extent	 of	 immunological	 killing.	 The	 role	 of	 the	

immune	system	may	be	seen	by	the	significant	increases	observed	in	some	tumours	in	

patients	with	compromised	immune	systems	(Vajdic	and	van	Leeuwen,	2009);	however	

the	majority	of	 these	are	virus-induced.	However,	even	 in	non-viral	 induced	 tumours,	

there	is	a	growing	body	of	evidence	mostly	generated	from	mouse	genetic	studies	and	

clinical	 epidemiology	 to	 suggest	 that	 the	 immune	 system	 does	 in	 fact	 serve	 as	 a	

significant	 barrier	 to	 the	 formation	 and	 progression	 of	 tumours.	 For	 example	 in	mice	

genetically	engineered	to	lack	various	cell	populations	of	the	immune	system,	tumours	

were	 shown	 to	 arise	 more	 frequently,	 and	 grew	 more	 rapidly	 in	 comparison	 to	 the	

immunocompetent	 mice	 (Shankaran	 et	 al.,	 2001;	 Kim	 et	 al.,	 2007).	 In	 particular,	

deficiencies	 in	both	the	T-	and	NK-cell	populations	were	 linked	to	an	 increased	risk	of	

cancer	development,	and	therefore	indicate	in	part	the	reliance	on	both	the	innate	and	

adaptive	 arms	of	 the	 immune	 system	 for	 immune	 surveillance	 and	 as	 a	 consequence	

tumour	 eradication	 (Teng	 et	 al.,	 2008;	 Kim	 et	 al.,	 2007).	 Furthermore,	 both	 of	 these	

studies	 highlighted	 a	 process	 known	 as	 immune	 editing,	 whereby	 in	 an	 immune	
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competent	host,	highly	 immunogenic	cancer	clones	are	eradicated,	 leaving	behind	the	

weakly	immunogenic	clones	that	are	capable	of	growing	in	both	immunocompetent	and	

immunodeficient	mice;	 conversely	when	 such	 cancer	 clones	 arise	 in	 immunodeficient	

mice,	 the	 highly	 immunogenic	 clones	 are	 not	 selectively	 destroyed,	 and	 therefore	

prosper	along	with	 the	weakly	 immunogenic	 clones.	However,	when	 these	 clones	are	

transplanted	 into	a	syngeneic	host	they	are	 immediately	rejected	as	they	encounter	a	

fully	functioning	immune	system	for	the	first	time	and	therefore	do	not	develop	(Smyth	

et	al.,	2006;	Teng	et	al.,	2008;	Kim	et	al.,	2007).		

	

Cancers	 can	 also	 co-opt	 immune-checkpoint	 pathways	 as	 a	 mechanism	 of	 evading	

immune	responses,	particularly	against	T	cells,	which	are	specific	for	tumour	antigens.	

With	regard	to	T	cells,	the	quality	and	amplitude	of	the	immune	response	is	governed	

through	the	recognition	and	binding	of	a	T	cell	receptor	(TCR)	to	an	antigen	displayed	in	

the	major	 histocompatibility	 complex	 (MHC)	 on	 the	 surface	 of	 an	 antigen	 presenting	

cell.	Under	physiological	 conditions	 immune	checkpoints	are	essential	 for	maintaining	

self-tolerance	 (preventing	 autoimmunity)	 and	 serve	 to	 protect	 the	 tissue	 from	 harm	

when	 the	 immune	 system	 is	 responding	 to	 infection.	 However,	 some	 cancers	 can	

acquire	 immune	 system	 resistance	 through	 the	 deregulation	 of	 immune-checkpoint	

proteins.	 In	 the	 context	 of	 clinical	 cancer	 therapy,	 the	 two	 immune	 checkpoint	

receptors	 that	 have	 been	 most	 intensely	 studied	 are	 the	 cytotoxic	 T-lymphocyte-

associated	 antigen	 4	 (CTLA4)	 and	 programmed	 cell	 death	 protein	 1	 (PD1),	 which	 are	

negative	 regulators	 of	 T	 cell	 immune	 function.	 Therefore	 inhibition	 of	 these	 immune	

checkpoint	inhibitors	has	led	to	the	approval	of	several	new	drugs,	which	have	in	some	

instances	proven	to	be	effective	in	cancer	treatment	(Pardoll,	2016).						

	

1.1.11		Therapeutic	targeting	

The	description	of	hallmark	principles	has	and	is	continuing	to	inform	the	development	

of	 therapies	and	will	 likely	continue	to	do	so	 in	 the	 future.	The	vast	majority	of	drugs	

targeting	 cancer	 have	 been	 directed	 towards	 specific	 molecular	 targets	 that	 are	

involved	 in	 one	 or	 at	 most	 only	 a	 few	 of	 the	 hallmark	 processes	 outlined	 above.	

Targeted	 therapies	 have	 their	 advantages	 in	 that	 they	 present	 inhibitory	 activity	

towards	a	target,	while	at	the	same	time	having	very	few	off	target	effects	which	as	a	
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consequence	 limits	 non-specific	 toxicity.	 However,	 resulting	 clinical	 responses	 of	

targeted	 therapies	 have	 been	 largely	 transitory,	 followed	 by	 an	 almost-inevitable	

relapse	 of	 the	 tumour.	 One	 reason	 for	 this	 relapse	 however	 is	 that	 a	 targeted	

therapeutic	 agent	may	 not	 be	 capable	 of	 completely	 inhibiting	 a	 hallmark	 capability,	

since	each	of	the	core	hallmark	processes	are	regulated	by	partially	redundant	signalling	

pathways.	This	therefore	allows	some	cancer	cells	to	survive	with	residual	function	until	

they	or	even	their	progeny	adapt	to	the	selective	pressure	applied	through	therapy,	by	

mutation,	epigenetic	reprogramming	or	remodelling	of	the	surrounding	stroma,	thereby	

permitting	 growth	 and	 subsequent	 relapse.	 Since	 the	 number	 of	 parallel	 signalling	

pathways	driving	tumour	growth	is	limited,	it	is	likely	that	future	therapeutic	strategies	

will	target	all	of	the	supportive	pathways	and	thereby	prevent	this	resistance.		
		

1.2	Cancer	Driver	Mutations	

Cancer	is	a	genetic	disease	caused	by	inherited	and	or	somatic	DNA	mutations,	of	which	

the	 latter	 can	be	 triggered	by	endogenous	or	 exogenous	 carcinogens.	 The	number	of	

DNA	 mutations	 required	 to	 transform	 cells	 was	 initially	 debated	 in	 the	 1990’s.	 Carl	

Nordling,	who	had	shown	that	cells	can	acquire	mutations	during	normal	cell	division,	

proposed	 that	more	 rapidly	 dividing	 tissues	 acquire	 the	 necessary	mutations	 quicker	

and	 hence	 cancers	 develop	 earlier	 in	 life	 (Nordling,	 1953).	 In	 1971	 Alfred	 Knudson	

proposed	 the	 ‘two-hit	 hypothesis’,	 in	which	 the	potent	 tumour	 suppressor	 gene,	 RB1	

required	 two	 mutational	 events	 and	 therefore	 inactivation	 in	 both	 alleles	 (Knudson,	

1971).	 Much	 later,	 it	 was	 realised	 that	 retinoblastoma	 progression	 also	 requires	

additional	mutations	 consistent	 with	 Nordling’s	 proposal	 (Laurie	 et	 al.,	 2006).	 This	 is	

consistent	 with	 epidemiological	 studies	 that	 suggest	 that	 cancers	 ordinarily	 require	

between	5-8	genomic	hits	(Armitage	and	Doll,	2004).			

	

The	 progression	 to	 cancer	 through	 acquisition	 of	 multiple	 DNA	 mutations	 is	 best	

observed	 in	 the	 colon,	 wherein	 screening	 colonoscopy	 allowed	 for	 determination	 of	

mutation	in	pre-malignant	and	malignant	lesions.	Vogelstein	proposed	a	multistep	basis	

for	 colon	 cancer,	 which	 included	 the	 following	 salient	 features:	 firstly,	 colorectal	

tumours	 arise	 initially	 from	 a	 combination	 of	 mutational	 activation	 of	 oncogenes	
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coupled	with	the	 loss	of	 tumour	suppressor	genes;	secondly,	 for	a	 tumour	to	become	

malignant,	mutations	 in	 at	 least	 four	 to	 five	 genes	 are	 required;	 thirdly,	 the	 tumours	

biological	properties	are	determined	by	the	total	accumulation	of	changes,	rather	than	

the	 order	 of	 changes	 with	 respect	 to	 one	 another;	 and	 fourthly,	 in	 some	 instances,	

tumour	 suppressor	 genes	 may	 not	 be	 recessive	 at	 the	 cellular	 level,	 and	 therefore	

appear	to	exert	a	phenotypic	effect	even	when	present	in	a	heterozygous	state	(Fearon	

and	Vogelstein,	1990).		

	

Comparative	cancer	genome	sequencing	has	revealed	that	common	solid	tumours,	such	

as	those	derived	from	the	colon,	breast,	brain,	or	pancreas,	harbour	on	average	33	to	66	

gene	mutations	 that	would	be	expected	 to	alter	 their	protein	products,	with	 the	vast	

majority	of	these	found	to	be	single	base	substitutions	(~95%)	(Vogelstein	et	al.,	2013).	

However,	 some	 tumours	 have	 been	 shown	 to	 contain	 over	 200	 non-synonymous	

mutations,	most	 notably	melanoma	and	 lung	 cancer,	which	 are	 likely	 associated	with	

exposure	 to	 potent	 environmental	 carcinogens,	 such	 as	 ultraviolet	 light	 and	 cigarette	

smoke,	 respectively.	 Consequently,	 lung	 cancers	 from	 patients	 who	 smoked	 have	 10	

times	 as	many	 somatic	mutations	 as	 those	 from	non-smokers.	 In	 contrast,	 paediatric	

tumours	 and	 leukaemia	 on	 average	 harbour	 10	 mutations	 per	 tumour.	 These	

observations	 are	 consistent	with	Norling’s	 earlier	 prediction,	whereby	 the	 number	 of	

mutations	 in	 certain	 tumours	 of	 self-renewing	 tissues	 is	 directly	 correlated	 with	 age	

(Tomasetti	et	al.,	2013).	

	

The	 rate-limiting	 step	 in	 the	 acquisition	 of	 DNA	mutations	 for	 lesions	 to	 evolve	 from	

benign	 to	malignant	 tumours	 is	determined	by	 the	 timing	of	 “gatekeeper	mutations”,	

for	example	the	RB1	gene.	Gatekeeper	mutations	provide	a	selective	growth	advantage	

over	 the	 surrounding	 normal	 tissue	 cells,	 allowing	 for	 expansion	 into	 a	 microscopic	

clone	 (Nowell,	 1976;	 Kinzler	 and	 Vogelstein,	 1997).	 In	 the	 colon,	 APC	 (Adenomatous	

polyposis	 coli)	 is	 the	 tumour	 suppressor	 gene	 that	 is	 the	 gatekeeper	mutation,	 after	

which	 a	 second	 mutation	 in	 the	 KRAS	 gene	 unleashes	 a	 second	 round	 of	 clonal	

expansion.	However,	there	are	many	mutations	within	the	tumour	that	do	not	influence	

protein	 structure	 and	 so	 have	 no	 functional	 significance,	 these	 are	 called	 “passenger	

mutations”.	 Even	 within	 genes	 that	 confer	 a	 selective	 growth	 advantage,	 so	 called	
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“driver	 genes”,	 passenger	mutations	 occur	 frequently	 so	 as	 not	 to	 interfere	with	 the	

gene	 function.	 For	 example,	 driver	 mutations	 in	 the	 APC	 gene	 result	 in	 N-terminus	

protein	 truncation.	 These	 driver	 mutations	 initially	 however,	 only	 provide	 a	 small	

selective	advantage	to	the	cell,	with	an	increase	in	the	difference	between	cell	birth	and	

death	 in	 the	 order	 of	 0.4%.	 However,	 through	 cell	 divisions,	 this	 slight	 increase	 can	

result	in	a	large	mass,	containing	billions	of	cells	(Bozic	et	al.,	2010).			

	

Tumour	 suppressors	 are	proteins	 that	normally	 function	 to	 limit	 cell	 proliferation,	 for	

example	 cell	 cycle	 checkpoint	 proteins,	 and	 cancer	 driver	 mutations	 cause	 their	

functional	 loss.	 Oncogenes	 encode	 proteins	 in	 growth	 factor	 signal	 transduction	

pathways	and	so	promote	cell	proliferation,	therefore	oncogene	driver	mutations	result	

in	 increased	 activity.	 As	 many	 amino	 acids	 and	 their	 configuration	 are	 required	 for	

function	of	a	protein,	driver	mutations	in	tumour	suppressor	genes,	such	as	in	the	gene	

patched	 (PTCH),	 occur	 throughout	 the	 gene	 length	 and	 result	 in	 protein-truncating	

alterations	(Nanni	et	al.,	1999).	In	contrast,	driver	mutations	in	oncogenes,	for	example	

in	 the	 gene	 smoothened	 (SMO),	 occur	 at	 fixed	 positions	 within	 the	 gene.	 Using	 this	

knowledge	 Vogelstein	 et	 al.	 sought	 to	 determine	 a	 list	 of	 oncogenes	 and	 tumour	

suppressors	 from	 the	 Catalogue	 of	 Somatic	 Mutations	 in	 Cancer	 (COSMIC)	 database	

based	on	the	principles	that;	(1)	for	oncogenes	that	>20%	of	the	recorded	mutations	in	

the	 gene	 are	 at	 recurrent	 positions	 and	 are	missense	 and	 (2)	 for	 tumour	 suppressor	

genes	>20%	of	 the	 recorded	mutations	 in	 the	gene	are	 inactivating	 (Vogelstein	et	al.,	

2013)	 (Appendix;	 Table	 1).	 This	 analysis	 identified	 54	 oncogenes	 and	 71	 tumour	

suppressor	genes.	The	key	growth	factor	pathways	perturbed	in	cancer	identified	were:	

Wnt,	hedgehog,	Notch,	RAS-MAP	kinase,	PI3K,	STAT	and	TGFβ.	Additionally	there	were	

13	genes	not	found	to	be	point	mutated,	but	were	associated	with	amplifications	for	10	

oncogenes	(e.g.	MYC	family	genes)	while	the	remaining	three	were	tumour	suppressor	

genes	containing	homozygous	deletions	(e.g.	MAP2K4)	(Table	1.1).	However,	for	some	

cancers	 fusion	 genes	 are	 found	 to	 be	 important	 drivers	 (Table	 1.2).	 Thus,	 a	 limited	

number	 of	 cellular	 signalling	 pathways	 confer	 a	 growth	 advantage,	 which	 can	 be	

broadly	 divided	 into	 those	 that	 influence	 cell	 fate,	 cell	 survival	 and	 genome	

maintenance.		

	



	 	 Chapter	1:	Introduction	

	
	

16	

Table	1.1:	Driver	genes	affected	by	amplification	or	homozygous	deletion	(Taken	from	

Vogelstein	et	al.,	2013)	

Gene	

Symbol	

Genetic	alteration	 Classification	 Core	Pathway	 Process	

CCND1	 Amplification	 Oncogene	 Cell	Cycle/Apoptosis	 Cell	Survival	

CDKN2C	 Homozygous	deletion	 TSG	 Cell	Cycle/Apoptosis	 Cell	Survival	

IKZF1	 Homozygous	deletion	 TSG	 Transcriptional	Regulation	 Cell	Fate	

LMO1	 Amplification	 Oncogene	 Transcriptional	Regulation	 Cell	Fate	

MAP2K4	 Homozygous	deletion	 TSG	 MAPK	 Cell	Survival	

MDM2	 Amplification	 Oncogene	 Cell	Cycle/Apoptosis	 Cell	Survival	

MDM4	 Amplification	 Oncogene	 Cell	Cycle/Apoptosis	 Cell	Survival	

MYC	 Amplification	 Oncogene	 Cell	Cycle/Apoptosis	 Cell	Survival	

MYCL1	 Amplification	 Oncogene	 Cell	Cycle/Apoptosis	 Cell	Survival	

MYCN	 Amplification	 Oncogene	 Cell	Cycle/Apoptosis	 Cell	Survival	

NCOA3	 Amplification	 Oncogene	 Chromatin	Modification	 Cell	Fate	

NKX2-1	 Amplification	 Oncogene	 PI3K;	MAPK	 Cell	Survival	

SKP2	 Amplification	 Oncogene	 Cell	Cycle/Apoptosis	 Cell	Survival	

	

Table	1.2:	Rearrangements	in	carcinomas	(Taken	from	Vogelstein	et	al.,	2013)	

Gene	Fusion	 Tumour	type	 Core	Pathway	 Process	

TMPRSS2:ERG	 prostate	 Transcriptional	Regulation	 Cell	Fate	

CRTC1:MAML2	 salivary	gland	 NOTCH	 Cell	Fate	

PAX8:PPARG	 thyroid	 Transcriptional	Regulation	 Cell	Fate	

SLC45A3:ERG	 prostate	 Transcriptional	Regulation	 Cell	Fate	

TPM3:NTRK1	 colon	 MAPK	 Cell	Survival	

TMPRSS2:ETV1	 prostate	 Transcriptional	Regulation	 Cell	Fate	

BRD4:C15orf55	 midline	organs	 Cell	Cycle/Apoptosis	 Cell	Survival	

CD74:ROS1	 lung	 PI3K;	RAS	 Cell	Survival	

CRTC3:MAML2	 salivary	gland	 NOTCH	 Cell	Fate	

MYB:NFIB	 salivary	gland	 Transcriptional	Regulation	 Cell	Fate	

PRCC:TFE3	 kidney	 TGF-b;	APC	 Cell	Fate/Cell	Survival	

FGFR1:PLAG1	 salivary	gland	 Transcriptional	Regulation	 Cell	Fate	

TMPRSS2:ETV4	 prostate	 Transcriptional	Regulation	 Cell	Fate	

SLC45A3:ELK4	 prostate	 MAPK	 Cell	Survival	

HMGA2:WIF1	 salivary	gland	 APC	 Cell	Fate	

TPR:NTRK1	 thyroid	 MAPK	 Cell	Survival	

PTPRK:RSPO3	 large	intestine	 APC	 Cell	Fate	
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SLC34A2:ROS1	 lung	 PI3K;	RAS	 Cell	Survival	

CHCHD7:PLAG1	 salivary	gland	 Transcriptional	Regulation	 Cell	Fate	

LIFR:PLAG1	 salivary	gland	 Transcriptional	Regulation	 Cell	Fate	

TFE3:ASPSCR1	 kidney	 TGF-b;	APC;	PI3K	 Cell	Fate/Cell	Survival	

VTI1A:TCF7L2	 large	intestine	 APC	 Cell	Fate	

NDRG1:ERG	 prostate	 Transcriptional	Regulation	 Cell	Fate	

SDC4:ROS1	 lung	 PI3K;	RAS	 Cell	Survival	

SFPQ:TFE3	 kidney	 TGF-b;	APC	 Cell	Fate/Cell	Survival	

	

	

	

The	 vast	 majority	 of	 genetic	 alterations	 within	 cancer	 disrupt	 the	 precise	 balance	

between	 differentiation	 and	 division,	 favouring	 the	 latter	 process,	 which	 ultimately	

confers	a	selective	growth	advantage,	as	differentiating	cells	eventually	die	or	become	

quiescent.	 Cell	 fate	 pathways	 that	 function	 through	 this	 process,	 include	 APC,	 Hh	

(Hedgehog),	and	NOTCH,	and	are	well	known	to	control	cell	 fate	 in	organisms	ranging	

from	 worms	 to	 mammals	 (Perrimon	 et	 al.,	2012).	 Signalling	 through	 these	 pathways	

allows	cancer	cells	to	maintain	a	proliferative	state	and	in	the	context	of	the	cancer	SC	

theory	(discussed	later)	maintenance	of	SC	fate	is	essential	for	the	growth	of	cancer.		

	

Cell	 survival	 is	 maintained	 by	 receiving	 growth	 signals	 and	 through	 cell	 cycle	

progression.	Although	 cancer	 cells	 divide	 in	 an	uncontrolled	manner,	 the	 surrounding	

stromal	cells	are	normal	and	therefore	are	unable	to	match	the	demand	for	nutrients.	In	

order	to	compensate	for	this,	tumour	cells	have	abnormal	vasculature.	The	vasculature	

in	 normal	 tissues	 is	 well	 ordered	 and	 can	 tightly	 control	 nutrient	 concentrations,	

however	the	vasculature	associated	with	tumours	 is	 tortuous	and	 lacking	 in	structural	

uniformity	 (Kerbel,	 2008,	 Chung	 and	 Ferrara,	 2011).	 In	 normal	 tissues	 cells	 tend	 to	

always	be	within	100uM	of	blood	vessels	 for	 their	nutrient	 supply,	 however	 this	 isn’t	

the	case	in	cancer	cells	(Baish	et	al.,	2011).	As	a	consequence	cancer	cells	that	acquire	

mutations	that	permit	them	to	proliferate	under	nutrient	deficient	conditions	will	have	

a	 selective	 growth	 advantage.	Mutations	 that	 support	 cell	 survival	 in	 cancers	 include	

EGFR,	HER2,	FGFR2,	PDGFR,	TGFBRII,	MET,	KIT,	RAS,	RAF,	PIK3CA,	and	PTEN	(Hynes	and	

Lane,	2005;	Turner	and	Grose,	2010).	For	example,	KRAS	and	BRAF	mutations	provide	
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cells	with	a	survival	advantage	by	allowing	them	to	grow	in	glucose	concentrations	that	

would	be	 too	 low	 for	normal	 cells	or	 cancer	 cells	 lacking	 these	mutations	 (Yun	et	al.,	

2009;	Ying	et	al.,	2012).	Also	included	in	this	category	are	genes	that	promote	cell	cycle	

and	 simultaneously	 block	 apoptosis,	 such	 as	 CDKN2A,	 MYC,	 and	 BCL2.	 Finally,	 VHL	

stimulates	angiogenesis	by	inducing	vascular	endothelial	growth	factor	secretion.		

	

Genome	 maintenance	 is	 essential	 for	 cancer	 cell	 survival	 as	 they	 must	 reside	 in	 a	

genotoxic	 environment	 and	 acquire	 additional	 mutations	 from	 constant	 proliferation	

(Kwak	 et	 al.,	 2004).	 Thus,	 mutations	 in	 genes	 such	 as	 TP53	 and	 ATM,	 abrogate	

checkpoints	that	would	otherwise	stop	the	cell	from	entering	the	cell	cycle	and	induce	

apoptosis,	 (Derheimer	 and	 Kastan,	 2010).	 There	 is	 also	 an	 indirect	 advantage	 that	 is	

conferred	 to	 cells	 harbouring	 mutations	 within	 these	 genes,	 as	 they	 allow	 cells	 that	

have	 a	 gross	 chromosomal	 change	 favouring	 growth,	 to	 survive	 and	 divide.	

Unsurprisingly,	mutations	within	genes	that	control	point	mutation	rates,	such	as	MLH1	

and	 MSH2,	 are	 also	 found	 in	 cancer,	 and	 serve	 to	 accelerate	 the	 acquisition	 of	

mutations	within	genes	that	function	to	regulate	cell	fate	and/or	survival.					

	

In	summary,	the	cancer	hallmarks	discussed	earlier	are	the	result	of	DNA	mutations	in	

key	 genes	 that	 allow	 cells	 to	 proliferate	 and	 survive,	 hence	 providing	 a	 growth	

advantage	 over	 their	 normal	 tissue	 cell	 counterparts.	 These	 mutations	 are	 acquired	

from	environmental	factors	and	during	cell	division	through	imperfect	DNA	replication.	

Mutations	 in	 gatekeeper	 genes	 facilitate	 this	 process	 by	 initiating	 a	 local	 growth	

advantage,	with	 subsequent	mutations	 influencing	 cell	 fate,	 cell	 survival	 and	 genome	

maintenance.				

1.3	Targeted	Therapies	

The	 advance	 in	 next	 generation	 sequencing	 has	 helped	 define	 driver	mutation,	most	

notably	 in	 oncogenes.	 The	 term	 "oncogene	 addiction"	 has	 been	 used	 to	 describe	

tumours	 that	 are	 dependent	 on	 a	 continued	 activity	 of	 a	 mutated	 constitutively	

activated	 oncogene	 for	 their	 maintenance	 (Weinstein,	 2002).	 The	 identification	 of	

oncogenic	drivers	of	cancer	has	led	to	the	development	of	targeted	therapies.	In	some	
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cases,	 the	 drug	 target	 is	 a	 specific	 mutated	 protein;	 such	 as	 drugs	 that	 block	 the	

BRAFV600E	mutation.	More	 commonly,	 targeted	 therapies	 have	 successfully	 blocked	

oncogenic	 pathways	 at	 multiple	 different	 levels:	 at	 the	 receptor	 (e.g.	 trastuzumab	

(herceptin)	HER2	receptor	antagonist),	receptor	tyrosine	kinase	(e.g.	imatinib	mesylate	

(gleevec)	 the	 BCR-ABL	 oncogene),	 and	 signal	 transduction	 intermediaries	 (e.g.	

vismodegib	(Erivedge)	a	smoothened	antagonist).	Despite	their	advance	and	successes,	

targeted	 therapies	 have	 not	 been	 a	 cancer	 cure	 (discussed	 in	 detail	 below	 sections);	

although,	 immunotherapies	may	prove	 to	be	an	exception.	Briefly,	 the	 field	of	 cancer	

immunotherapy	 has	 been	 re-energized	 by	 the	 development	 of	 immune	 checkpoint	

inhibitors	and	chimeric	antigen	receptor	(CAR)	T	cell	therapies,	which	have	yielded	very	

promising	results	and	will	be	described	briefly.	

As	highlighted	both	CTLA4	and	PD-1	are	 immune	checkpoint	receptors	that	negatively	

regulate	T	cell	function	and	have	been	the	subject	of	much	interest	for	the	development	

of	drugs	that	block	CTLA-4	and	PD-1	binding	and	thereby	stimulate	a	T	cell	response	and	

target	 cancer	 cells	 for	destruction.	 The	 rationale	 for	 investigating	 immune	 checkpoint	

inhibition	 has	 been	 provided	 by	 pre-clinical	 studies	 showing	 a	 reduction	 in	 tumour	

growth	 and	 improved	 survival	 following	 blockade	 of	 the	 CTLA-4	 and	 PD-1	 pathways	

(Leach	 et	 al.,	 1996;	 Hirano	 et	 al.,	 2005).	 Monoclonal	 antibodies	 that	 block	 these	

pathways	 have	 now	 been	 approved	 for	 the	 treatment	 of	melanoma	 (Nivolumab	 and	

Pembrolizumab)	and	lung	cancer	(Ipilimumab).	Perhaps	even	more	exciting	is	the	use	of	

peripheral	blood	T	cells	that	have	been	genetically	modified	to	express	CAR	genes	and	

are	 subsequently	 infused	 into	patients	 and	 are	directed	 against	 specific	 antigens	 that	

can	mount	an	immune	response	against	a	cancer.	This	adoptive	transfer	of	CAR	T	cells	

has	 demonstrated	 remarkable	 success	 when	 treating	 haematologic	 cancers	 such	 as	

acute	and	chronic	B	cell	 leukaemia	(Davila	and	Sadelain,	2016).	This	proof	of	principle	

has	let	to	intense	focus	on	the	treatment	of	solid	cancers	using	this	approach.	However	

solid	 tumours	 present	 barriers	 that	 are	 not	 present	 in	 haematologic	malignancies,	 in	

that	 CAR	 T	 cells	 must	 be	 able	 to	 exit	 the	 blood	 and	 access	 the	 tumour	 in	 spite	 of	

potential	 mismatches	 between	 T	 cell	 chemokine	 receptors	 and	 tumour-derived	

chemokines.	 Furthermore,	 even	 if	 these	 barriers	 are	 overcome	 the	 CAR	 T	 cells	must	

then	 be	 able	 to	 infiltrate	 the	 stromal	 elements	 of	 the	 tumour	 in	 order	 to	 elicit	

cytotoxicity,	 and	 tolerate	 the	 potentially	 hostile	 tumour	 microenvironment	
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characterised	 by	 oxidative	 stress,	 nutritional	 depletion,	 acidic	 pH	 and	 hypoxia	

(Buchbinder	and	Desai,	2016;	Newick	et	al.,	2017).				

	

1.3.1	 BCR-ABL	

The	 germline	 chromosome	 translocation	 t(9;22),	 known	 as	 the	 Philadelphia	

chromosome,	is	associated	with	the	development	of	leukaemia,	and	is	the	hallmark	of	

chronic	 myeloid	 leukaemia	 (CML).	 The	 Philadelphia	 chromosome	 is	 also	 observed	 in	

acute	 myelogenous	 leukaemia	 (occasionally)	 and	 adult	 and	 childhood	 acute	

lymphoblastic	leukaemia	(ALL),	25–30%	and	2–10%	respectively	(Kurzrock	et	al.,	2003).	

The	 Philadelphia	 chromosomal	 translocation	 results	 in	 a	 fusion	 gene	 BCR-ABL,	 which	

encodes	an	oncogenic	protein	Bcr-abl	 fusion	protein.	The	p190	and	p210	variants	are	

unregulated	 tyrosine	 kinases	 that	 have	 the	 capacity	 to	 transform	 cells	 (Lichty	 et	 al.,	

1998)	(Figure	1.1).			
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Figure	1.1:	Signal	transduction	pathways	affected	by	Bcr-Abl	and	sites	of	inhibition.		

	

Imatinib	 mesylate	 (Gleevec,	 Novartis)	 is	 a	 small	 molecule	 inhibitor	 that	 binds	 the	

inactive	form	of	the	enzyme	and	has	significantly	improved	survival	in	CML	(Deininger	et	

al.,	2005).	Although	developed	to	target	the	BCR-ABL	tyrosine	kinase	domain,	imatinib	

has	 a	 small	 effect	 on	 other	 tyrosine	 kinases.	 A	 second-generation	 small	 molecule	

inhibitor	BCR-ABL,	dasatinib	(Sprycel,	Bristol-Myers	Squibb)	has	much	broader	tyrosine	

kinase	inhibition	including	the	Src	family,	c-Kit,	platelet-derived	growth	factor	receptor	

and	 EphA2	 (Zhang	 et	 al.,	 2009).	 Tyrosine	 kinase	 inhibitors	 (such	 as	 imatinib	 and	

sunitinib)	 are	 important	 drugs	 against	 a	 variety	 of	 cancers	 including	 CML,	 renal	 cell	

carcinoma	 (RCC)	 and	 gastrointestinal	 stromal	 tumours	 (GISTs),	 hypereosinophilic	

syndrome,	systemic	mastocytosis,	and	dermatofibrosarcoma	protuberance.	

Imatinib	 does	 not	 appear	 to	 cure	 the	 disease	 with	 eventual	 relapse	 of	 the	 disease.		

Mechanisms	 for	 resistance	 and	 relapse	 include:	 mutations	 within	 BCR-ABL,	

overexpression	of	BCR-ABL	by	amplification,	and	enrichment	of	CML	SC	progenitors	that	

are	 resistant	 to	 BCR-ABL	 directed	 therapies	 (Deininger,	 2008).	 As	 with	 imatinib	

resistance	in	CML,	GIST	patients	also	develop	drug	resistance	(Mahadevan	et	al.,	2007).			

	

1.3.2	 Epidermal	growth	factor	receptors		

The	human	epidermal	growth	factor	receptors	(HER1,	2,	3,	and	4)	are	receptor	kinases	

belonging	to	the	epidermal	growth	factor	receptor	(HER/EGFR/ERBB)	family	(Coussens	

et	 al.,	 1985).	 Approximately	 30%	 of	 breast	 cancer	 patients	 demonstrate	 HER2	

amplification	 or	 over-expression	 of	 this	 oncogene,	 which	 is	 often	 associated	 with	

aggressive	and	progressive	disease	(Burstein,	2005).	Trastuzumab	(Herceptin)	binds	the	

extracellular	domain	of	HER2	 to	block	 signalling	and	 is	approved	 for	 the	 treatment	of	
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HER2+	 metastatic	 breast	 cancer	 and	 HER2+	 metastatic	 gastric	 or	 gastroesophageal	

junction	adenocarcinoma	(Brand	et	al.,	2006)	(Figure	1.2).		

Other	HER	 family	members	 are	 overexpressed	 (HER1,	 2,	 and	 3;	 lung,	 head	 and	 neck,	

breast,	 and	 prostate	 cancers)	 or	mutated	 (HER1	 and	 2;	 lung	 cancer	 and	 glioblastoma	

multiforme	 [GBM]),	 leading	 to	 constitutive	 activation	 in	 multiple	 malignancies.	 The	

HER1/HER2	heterodimer	strongly	activates	RAS-MAPK	and	STAT	pathways	(Yarden	and	

Sliwkowski,	 2001).	 In	 contrast,	 the	 HER3	 receptor	 activates	 the	 PI3K/AKT	 survival	

pathway	(Yarden	and	Sliwkowski,	2001).	A	second	HER2-targeting	monoclonal	antibody,	

pertuzumab,	binds	the	HER2/HER3	heterodimer	and	also	 inhibits	HER3	overexpressing	

tumours	 (ovary,	 breast,	 prostate,	 colon,	 lung)	 by	 abrogating	 the	 activation	 of	 the	

PI3K/AKT	 pathway	 (Johnson	 and	 Janne,	 2006).	 HER2	 antagonists	 originally	 developed	

for	the	treatment	of	breast	cancer	appear	to	also	be	effective	at	treating	other	cancers,	

most	notably	non-small	cell	lung	cancer.	
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Figure	1.2:	ERK	arm	of	the	human	epidermal	growth	factor	receptor	pathway	and	sites	

of	inhibition	

The	human	epidermal	growth	factor	receptor-signalling	pathway	is	one	of	the	most	

important	pathways	for	the	regulation	of	cell	growth,	survival,	proliferation	and	

differentiation.	This	signalling	pathway	is	comprised	of	four	tyrosine	kinase	receptors,	

however	this	schematic	only	outlines	EGFR	(Her1)	and	ErbB-2	(HER2),	along	with	the	

Ras/Raf/MEK/ERK	and	phospholipase	Cγ	signalling	arms	downstream	of	these	receptors.	

In	reality	this	pathway	is	far	more	complex	and	has	other	signalling	arms,	including	the	

PI3K/AKT,	STAT	and	Nck/PAK	signalling	cascades,	which	are	not	outlined	in	this	

schematic.				

	

Gefitinib	(Iressa,	AstraZeneca)	 is	a	small	molecule	inhibitor	that	specifically	targets	the	

HER1	ATP-binding	site,	leading	to	inhibition	of	the	Ras	signal	transduction	cascade	and	

subsequent	 cell	 growth	 (Ma	 et	 al.,	 2015).	 It	 is	 currently	 approved	 for	 NSCLC	 with	

mutations	in	the	EGFR	tyrosine	kinase	domain	(Rusnak	et	al.,	2001).	

However,	 HER	 targeted	 therapy	 eventually	 leads	 to	 drug	 resistance,	 from	 secondary	

mutations	 in	 the	 HER1	 TK	 domain	 (T790M,	 D761Y)	 (Sharma	 et	 al.,	 2007),	 KRAS	

mutations	(Van	et	al.,	2015),	and	amplification	and	overexpression	of	c-Met	(Bean	et	al.,	

2007)	and	HER3	(Sergina	et	al.,	2007).	In	summary,	HER	antagonists	although	effective,	

eventually	are	associated	with	resistance	and	relapse.	

1.3.3	 B-RAF	

The	 RAS/RAF/MEK/ERK	 proteins	 represent	 an	 important	 signal	 transduction	 pathway	

that	is	activated	by	a	number	of	growth	factor	receptors	through	RAS	phosphorylation.	

Oncogenic	mutations,	most	 notably	 the	 BRAF	 V600E	mutation,	 constitutively	 activate	

ERK	 signalling	 that	 induces	 proliferation	 and	 promotes	 transformation	 (Davies	 et	 al.,	

2002).	 The	 BRAF	 V600E	 driver	 mutation	 is	 detected	 in	 melanoma	 (50-70%),	 primary	

thyroid	 carcinoma	 (36-69%),	 clear	 renal	 cell	 carcinoma	 (5-12%),	 and	 NSCLC	 (1-4%)	

(Davies	et	al.,	2002).	
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Sorafenib	 targets	 multiple	 tyrosine	 kinases,	 with	 binding	 to	 B-RAF,	 VEGFR-2/3,	 c-Kit,	

PDGFR,	Flt-3,	and	FGFR1.	It	is	approved	for	advanced	RCC	and	HCC	(Ma	and	Adjei,	2009;	

Halilovic	 and	 Solit,	 2008).	 However,	 sorafenib	 only	 showed	 modest	 activity	 in	

melanoma,	with	no	correlation	to	BRAF	mutational	status	(Halilovic	and	Solit,	2008).		

Vemurafenib	(Zelboraf)	inhibits	the	active	"DFG-in"	form	of	the	kinase;	firmly	anchoring	

itself	 in	 the	 ATP-binding	 site,	 thus	 selectively	 inhibits	 the	 proliferation	 of	 cells	 with	

unregulated	BRAF	 (Bollag	et	al.,	2012).	Vemurafenib	 is	approved	 for	 the	 treatment	of	

metastatic	 melanoma.	 In	 a	 Phase	 III	 clinical	 study,	 it	 improved	 survival	 to	 53%,	

compared	 to	 7-12%	 with	 the	 former	 best	 chemotherapeutic	 treatment,	 dacarbazine	

(Chapman	 et	 al.,	 2011).	 In	 spite	 of	 the	 high	 efficacy,	 all	 tumours	 eventually	 develop	

resistance	to	vemurafenib.		

1.3.4	 Hedgehog	(see	section	1.4)	

Sonic	hedgehog	 ligand	binding	of	 the	patched	 receptor	 leads	 to	 translocation	of	SMO	

from	the	cell	membrane	to	the	primary	cilium,	where	it	replaces	patched	(Rohatgi	et	al.,	

2007).	 After	 cellular	 delocalisation,	 SMO	must	 additionally	 be	 activated	 by	 a	 distinct	

mechanism	in	order	to	stimulate	hedgehog	signal	transduction,	but	that	mechanism	is	

unknown	 (Arensdorf	 et	 al.,	 2016;	 Rohatgi	 et	 al.,	 2009).	 Mutations	 in	 SMO	 itself	 can	

mimic	 the	 ligand-induced	 conformation	 of	 SMO	 and	 activate	 constitutive	 signal	

transduction	(Arensdorf	et	al.,	2016).	In	addition	to	Patched	mutations,	activating	SMO	

mutations	 can	 lead	 to	 unregulated	 hedgehog	 signalling	 in	 cancers	 such	 as	

medulloblastoma,	basal-cell	 carcinoma,	pancreatic	 cancer,	and	prostate	cancer	 (Wang	

et	al.,	2009;	Xie	et	al.,	1998).	

1.3.5	 Other	targeted	therapies	

There	are	number	of	targeted	therapies	in	development	targeting	individual	aspects	of	

the	 cancer	 hallmarks:	 epigenetics,	 angiogenesis,	 cell	 stress,	 neovascularisation,	

apoptosis,	cell	cycle,	tumour	invasion	and	immunity.	Below	I	have	discussed	those	with	

established	therapies.			
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1.3.5.1	 Epigenetic	modification		

Tumour	suppressors	within	cancers	are	 frequently	silenced	by	epigenetic	modification	

of	the	DNA	and/or	histones.		

DNA	 methyltransferase	 (DNMT)	 enzymes	 cause	 covalent	 modification	 of	 DNA	 by	

methylation	at	the	5-position	of	cytosine	bases	after	DNA	synthesis	reaction	(Bird	et	al.,	

2002).	Thus,	aberrant	DNA	methylation	is	associated	with	gene	silencing	in	malignancies	

(Issa	et	al.,	2005).		Two	DNA	hypomethylating	agents,	5-azacytidine	(azacitidine)	and	5-

aza-2'-deoxycytidine	 (decitabine)	have	been	approved	for	 the	treatment	of	higher-risk	

myelodysplastic	 syndrome	 (MDS)	 (Silverman	 et	 al.,	 2002;	 Kantarjian	 et	 al.,	 2006;	

Steensma	et	al.,	2009).		

Histone	 acetyltransferases	 (HATs)	 and	 histone	 deacetylases	 (HDACs)	 catalyse	 the	

reversible	acetylation	of	histones.	 In	malignancies,	HDACs	drive	the	equilibrium	of	this	

reaction	 in	 favour	 of	 deacetylation,	 causing	 tightening	 of	 histones	 and	 epigenetic	

silencing	 (Marson,	 2009).	 Vorinostat	 (suberoylanilide	 hydroxamine	 acid)	 is	 a	 HDAC	

inhibitor	 to	 be	 approved	 for	 the	 treatment	 of	 advanced	 cutaneous	 T-cell	 lymphoma	

(CTCL)	 (Mann	 et	 al.,	 2007).	 However,	 more	 recently	 the	 HDAC	 inhibitors,	 decitabine	

(Kantarjian	 et	 al.,	 2006),	 belinostat	 (O’Connor	 et	 al.,	 2015),	 and	 panobinostat	 (San-

Miguel	et	al.,	2014)	have	been	approved	for	the	treatment	of	multiple	myeloma	and	T	

cell	 lymphoma,	and	have	also	shown	to	be	effective	in	the	treatment	of	solid	tumours	

(San-Miguel	et	al.,	2014).	

1.3.5.2	 Anti-angiogenesis	therapy	

Angiogenesis	 defines	 the	 growth	 of	 new	 blood	 vessels,	 a	 hallmark	 of	 cancer.	 The	

controlled	physiological	development	of	new	blood	vessels,	such	as	after	injury,	reflects	

a	 balance	 between	 proangiogenic	 and	 antiangiogenic	 factors.	 However,	 cancers	 also	

rely	on	angiogenesis	for	growth	and	therefore	therapies	have	been	developed	targeting	

this	process.		

The	 vascular	 endothelial	 growth	 factor	 (VEGF,	 previously	 known	 as	 vascular	

permeability	factor)	family	is	composed	of	6	secreted	ligands	(VEGF-A,	B,	C,	D,	and	E	and	

placental	 growth	 factor)	 and	 3	 receptor	 tyrosine	 kinases	 (VEGFR-1,	 2,	 3).	 Ligand	
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receptor	 interaction	results	 in	changes	to	the	endothelial	cell	cytoskeleton,	 facilitating	

migration	and	proliferation	 	 (Dvorak	et	al.,	1995).	VEGF-A	 is	 the	main	 factor	 in	cancer	

angiogenesis	 and	 the	 targeting	monoclonal	 antibody	 bevacizumab	 is	 licensed	 for	 the	

treatment	of	renal	cancer,	NSCLC,	breast	cancer	and	glioblastoma	multiforme	(Ferrara	

et	al.,	2003).	Platelet-derived	growth	factor	also	plays	a	significant	role	in	the	formation	

of	blood	vessels	and	is	a	potent	mitogen	for	cells	of	mesenchymal	origin.	Several	VEGFR	

antagonists	 have	 been	 developed	 and	 FDA	 approved,	 including	 pazopanib	 for	 the	

treatment	of	renal	cell	carcinoma	in	2009	(Hurwitz	et	al.,	2009),	and	regorafenib	for	the	

treatment	of	colorectal	cancer	in	2012	(Mross	et	al.,	2012).							

1.3.5.3	 Stress	Response	

DNA	 damage	 and	 replication	 stresses	 add	 to	 cancer	 cell	 mutagenesis,	 but	 can	 be	

therapeutically	exploited	and	two	approaches	are	currently	 licensed	for	the	treatment	

of	cancer:	proteasome	inhibitors	and	mTOR	inhibitors.				

1.3.5.4	 Proteasome	inhibitors	

The	proteasome	complex	is	a	multi-subunit	4	ring	structure	responsible	for	intracellular	

proteolysis.	Unfolded	or	mis-folded	intracellular	proteins	become	ubiquinated	and	thus	

targeted	 for	 proteasomal	 degradation	 (Adams,	 2002).	 Cancer	 cells	 exhibit	 increased	

amounts	 of	 abnormal	 cellular	 proteins,	 thus	 inhibition	 of	 this	 pathway	 can	 cause	

selective	 cancer	 cell	 killing	 (Adams,	 2004).	 Bortezomib	 is	 a	 proteasome	 inhibitor	

licenced	 for	 the	 treatment	 of	 multiple	 myeloma	 and	 mantle	 cell	 lymphoma	 in	

combination	 with	 melphalan	 and	 prednisolone	 (San	 Miguel	 et	 al.,	 2008).	 Although	

bortezomib	 has	 been	 associated	 with	 good	 clinical	 responses	 in	 the	 treatment	 of	

multiple	 myeloma,	 it	 has	 been	 associated	 with	 resistance	 and	 tumour	 relapse.	

Furthermore,	 up	 to	 80%	 of	 patients	 with	 the	 disease	 develop	 any	 grade	 neuropathy	

(Richardson	et	al.,	2010),	and	thrombocytopenia	(Lonial	et	al.,	2005).	These	issues	have	

led	 to	 the	 development	 of	 second-generation	 proteasome	 inhibitors,	 such	 as	 the	

epoxyketones,	which	unlike	boronates	such	as	bortezomib,	can	form	irreversible	bonds	

with	 the	 N-terminal	 threonine	 residues	 within	 catalytic	 proteasome	 subunits	

responsible	for	the	cleavage	of	peptide	bonds,	and	therefore	have	longer	durations	of	

inhibition	One	such	epoxyketone	 is	carfilzomib,	which	has	shown	to	be	both	tolerable	
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and	active	against	relapsed	and/or	refractory	multiple	myeloma,	even	in	patients	who	

have	 previously	 received	 bortezomib	 (O’Connor	 et	 al.,	 2009;	 Alsina	 et	 al.,	 2012;	

Manasanch	and	Orlowski,	2017).	

1.3.5.5	 mTOR	inhibitors	

Expression	of	the	hypoxia	inducible	factor	HIF-1a	is	upregulated	in	many	cancers,	most	

notably	 in	renal	cell	carcinoma	(Otrock	et	al.,	2009).	HIF-1a	 is	a	downstream	target	of	

the	PI3K-AKT	cell	survival	pathway.	Downstream	of	AKT	in	the	PI3K	pathway	is	mTOR,	a	

cytosolic	serine	threonine	kinase	that	can	exist	in	two	complexes:		TORC1	(mTOR,	raptor	

PRAS40,	mLst8)	and	TORC2	(mTOR,	rictor,	Sin1,	mLst8,	mAvo3)	(Bhaskar	and	Hay,	2007).	

The	TORC1	complex	is	regulated	by	cellular	stress,	controls	the	G1	to	S	phase	transition,	

cap-dependent	 translation,	 membrane	 trafficking,	 protein	 degradation,	 ribosome	

biogenesis,	 proliferation,	 and	 survival.	 Importantly,	 the	 TORC1	 complex	 regulates	

transcription	of	HIF-1a	(Dowling	et	al.,	2009).	Several	TORC1	inhibitors	are	licenced	for	

the	treatment	of	renal	cell	carcinoma:	rapamycin,	everolimus	and	temsirolimus	(Meric-

Bernstam	and	Gonzalez-Angulo,	 2009).	However,	 recently	mTOR	 resistance	mutations	

have	 been	 identified	 in	 both	 rapalogs	 (rapamycin	 and	 its	 derivatives)	 and	 and	 kinase	

inhibitors	 of	mTOR	 (Rodrik-Outmezguine	et	 al.,	 2016).	 To	 overcome	 this	 resistance,	 a	

third	 generation	of	mTOR	 inhibitors	 have	been	developed,	 called	Rapalink,	which	 are	

single	molecules	containing	both	rapamycin	crosslinked	with	a	kinase	inhibitor	of	mTOR	

(Rodrik-Outmezguine	et	 al.,	 2016).	 Rapalink	 is	 still	 only	 in	 its	 experimental	 stages	but	

has	however	been	 shown	 to	have	better	 efficacy	 than	 rapamycin,	 and	potently	 block	

cancer-derived,	activating	mutants	of	mTOR	in	glioma	mouse	models	(Fan	et	al.,	2017).			

Over	 the	 last	decade	 there	have	been	many	 targeted	 therapies	 in	early-phase	 clinical	

trials,	 including	 those	 targeting	 oncogene	 and	 non-oncogene	 addicted	 signalling	

pathways.	 While	 the	 advent	 of	 growth	 factor/oncogene	 driven	 targets	 has	 led	 to	

dramatic	 anti-cancer	 response,	 as	 illustrated	above	eventual	 relapse	and	 resistance	 is	

common.	Determining	the	basis	for	resistance	and	utilising	synergistic	killing	may	prove	

a	useful	strategy	to	improve	the	efficacy	of	oncogene	targeting	therapies.				
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1.4	 Hedgehog	Pathway	

	

Hedgehog	 (Hh)	 was	 initially	 identified	 as	 a	 ‘segment-polarity’	 gene	 (Nusslein-Volhard	

and	 Wieschaus,	 1980).	 The	 human	 homologue	 Hh	 was	 identified	 in	 the	 early	 1990s	

(Echelard	et	al.,	1993;	Krauss	et	al.,	1993;	Riddle	et	al.,	1993;	Chang	et	al.,	1994;	Roelink	

et	al.,	1994).	The	Hh	signalling	pathway	is	evolutionary	conserved	and	is	essential	during	

development	(Ingham	and	McMahon,	2001;	Weedon	et	al.,	2008;	Zhao	et	al.,	2009).		

	

In	 vertebrates	 the	 pathway	 is	 activated	 by	 three	 secreted	 hedgehog	 ligands:	 Sonic	

Hedgehog	 (SHh),	 Indian	Hedgehog	 (IHh)	 and	Desert	Hedgehog	 (DHh),	with	 SHh	being	

the	key	morphogenetic	factor	(Mann	and	Beachy,	2004).	All	three	ligands	bind	a	single	

twelve-transmembrane	receptor	protein,	Patched	(PTCH),	on	the	recipient	cell	(Hooper	

and	Scott,	1989).	In	the	absence	of	ligand	binding,	PTCH	acts	as	a	negative	regulator	of	a	

seven-transmembrane	G-protein	coupled	 receptor	 (GPCR)	smoothened	 (SMO)	 (Alcedo	

et	al.,	1996;	van-den-Heuval	and	Ingman,	1996;	Stone	et	al.,	1996;	Ingman	et	al.,	1991).	

However	 upon	 binding	 of	 Hh,	 PTCH	 relinquishes	 inhibition	 of	 SMO	 leading	 to	 SMO	

phosphorylation	by	CK1	and	GRK2,	which	is	aided	by	the	co-receptor	Cdo	(Denef	et	al.,	

2000;	Zheng	et	al.,	2010).	

	

1.4.1	 Smoothened	phosphorylation	

	

Mammalian	SMO	is	regulated	through	multi-site	phosphorylation	in	a	dose-dependent	

manner,	which	 regulates	 both	 the	 subcellular	 localization	 and	 conformation	 (Chen	 et	

al.,	 2011).	 The	 kinases	 CK1	 and	GRK2	 are	 both	 required	 for	 the	 phosphorylation	 and	

activation	of	SMO	at	six	Serine/Threonine	clusters	found	in	the	SMO	C-terminus	(Chen	

et	al.,	 2004,	Meloni	et	al.,	 2006,	Chen	et	al.,	 2011).	 This	phosphorylation	 induces	 the	

ciliary	 localization	of	SMO	through	the	recruitment	of	β-arrestins	that	 link	SMO	to	the	

anterograde	kinesin-II	motor	(Chen	et	al.,	2011,	Kovacs	et	al.,	2008).	However,	pathway	

activation	 also	 induces	 a	 conformational	 switch,	 which	 is	 governed	 by	 CK1/GRK2-

mediated	 phosphorylation	 of	 the	 C-terminus	 that	 results	 in	

dimerization/oligomerisation	 of	 the	 SMO	 C-tail	 (Zhao	 et	 al.,	 2007).	 In	 the	 absence	 of	
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ligand,	 SMO	 adopts	 an	 inactive	 conformation,	 which	 masks	 the	 kinase	 binding	 sites	

from	CK1/GRK-2	(Chen	et	al.,	2011).	A	possible	explanation	for	observing	much	higher	

levels	of	Hh	signalling	activity	in	the	primary	cilia	is	that	fact	that	CK1	is	accumulated	in	

the	primary	cilia	in	response	to	Hh	ligand,	and	therefore	enhances	the	phosphorylation	

of	SMO	(Chen	et	al.,	2011).	

	

1.4.1.1	 Signalling	downstream	of	mammalian	SMO									
	

The	negative	regulator,	suppresor	of	fused	(Sufu),	forms	complexes	with	GLI	proteins	to	

inhibit	their	ability	to	localize	within	the	nucleus	and	drive	gene	transcription	(Barnfield	

et	al.,	2005;	Ding	et	al.,	1999;	Cheng	and	Bishop,	2002;	Merchant	et	al.,	2004).	However,	

upon	 Hh	 ligand	 binding,	 this	 complex	 dissociates	 and	 thereby	 relinquishes	 the	 full-

length	GLI	proteins	(Humke	et	al.,	2010,	Tukachinsky	et	al.,	2010).	Several	kinases	have	

been	implicated	in	the	regulation	of	GLI	activity,	including	Cdc211,	which	acts	upstream	

of	GLI	and	downstream	of	Smo,	and	 is	a	positive	regulator	of	Hh	signalling	capable	of	

associating	with	 Sufu	 and	 thereby	 repressing	 it’s	 inhibitory	 actions	 (Evangelista	et	 al.,	

2008).	An	additional	mechanism,	through	which	SHh	can	regulate	Sufu	and	its	complex	

with	 Gli,	 is	 through	 the	 ubiquitin/proteasome	 pathway	 (Yue	 et	 al.,	 2009),	 and	 also	

through	phosphorylation	at	Serine342/346	by	PKA	(Chen	et	al.,	2011).	Kif7	on	the	other	

hand	 plays	 both	 a	 positive	 and	 negative	 role	 in	 Hh	 signalling	 (Cheung	 et	 al.,	 2009;	

Endoh-Yamagami	et	al.,	2009;	Liem	et	al.,	2009).	Studies	have	shown	that	Kif7	can	be	a	

positive	 regulator	 of	 the	 pathway	 by	 destabilizing	 Sufu	 and	 limiting	 its	 ciliary	

accumulation	 (Hsu	 et	 al.,	 2011);	 and	 also	 be	 a	 negative	 regulator	 by	 inhibiting	 the	

transcriptional	activity	of	Gli,	independent	of	Sufu	(Liem	et	al.,	2009;	Hsu	et	al.,	2011).	

	

	

The	 Hh	 signal	 transduction	 pathway	 culminates	 in	 the	 activation	 of	 GLI	 zinc-finger	

transcription	 factors.	 In	 vertebrates,	 there	 are	 three	 GLI	 proteins.	 GLI2	 and	 3	 are	

activated	 by	 SMO,	 while	 GLI1	 is	 transcriptionally	 induced	 by	 pathway	 activation	 and	

therefore	 acts	 in	 a	 positive	 feedback	 loop	 to	 reinforce	 GLI	 activity	 (Hui	 and	 Angers,	

2011).	Both	GLI2	and	3	contain	activator	and	repressor	domains	and	in	the	absence	of	
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ligand,	undergo	proteolytic	processing	into	a	truncated	form	(GliR),	which	also	functions	

as	 a	 transcriptional	 repressor	 (Figure	 1.3A).	 This	 proteolytic	 processing	 is	 achieved	

through	the	phosphorylation	of	GLI2	and	3	which	promotes	the	recognition	by	the	F-box	

protein	 β-TRCP	 which	 targets	 them	 for	 proteasome	 processing	 (Wang	 et	 al.,	 2006;	

Bhatia	et	 al.,	 2006).	 The	processing	of	GLI2	 is	 very	 inefficient,	with	 the	 small	 amount	

that	 is	processed	rapidly	degraded,	resulting	 in	very	 little	cleaved	GLI2	within	the	cell.	

Conversely,	 GLI3	 is	 very	 efficiently	 processed	 into	 its	 repressor	 form,	 and	 as	 a	

consequence	GLI2	functions	predominantly	as	an	activator,	while	GLI3	is	predominantly	

a	repressor.	GLI1	does	not	harbour	the	same	domains	and	therefore	does	not	undergo	

the	same	processing	as	GLI2	and	3,	but	is	instead	regulated	by	sequestration	(Kogerman	

et	al.,	1999;	Liu	et	al.,	2014;	Ding	et	al.,	1999).	In	the	absence	of	ligand,	SuFu	complexes	

with	GLI1	and	prevents	it	from	entering	the	nucleus,	however	upon	signal	activation	this	

complex	 dissociates	 allowing	 GLI1	 to	 enter	 the	 nucleus	 and	 drive	 gene	 transcription	

(Tukachinsky	et	al.,	2010).	Hedgehog	signalling	inhibits	GLI	processing	and	converts	the	

full	 length	 GliF	 into	 the	 active	 form	 GliA,	 which	 then	 acts	 as	 a	 transcription	 factor	

inducing	downstream	target	genes	(e.g.	GLI	1,	GLI2,	K17,	PDGFRα,	PTCH1,	BCL2)	(Figure	

1.3B).	 Furthermore,	GLI	 activation	 is	 prevented	by	 a	 complex	 consisting	 of	 Kif7,	 Sufu,	

and	 several	 Serine/Threonine	 kinases,	 which	 include	 PKA,	 GSK3	 and	 CK1	 (Chen	 and	

Jiang,	2013).	 In	the	mammalian	system	GLI	activity	 is	mostly	blocked	by	Sufu	and	to	a	

lesser	extent	Kif7	(Svard	et	al.,	2006;	Chen	et	al.,	2009).		
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Figure	1.3:	Hedgehog	growth	factor	signalling	pathway	in	vertebrate	cells.		

(A)	 Core	 Hh	 components	 localize	 to	 the	 primary	 cilium.	 In	 the	 absence	 of	 Hh	 ligand,	

PTCH	 localizes	 to	 the	 primary	 cilium	 where	 it	 prevents	 activation	 of	 SMO,	 which	 is	

sequestered	 into	endocytic	 vesicles	 (circle).	Microtubule	motors	within	 the	 cilium	 form	

the	intraflagellar	transport	(IFT)	machinery	responsible	for	shuttling	components	of	the	

Hh	signalling	pathway,	 including	small	amounts	of	GLI,	 in	and	out	of	the	cilium.	At	the	

base	of	the	cilium	in	this	inactive	state,	protein	kinase	A		(PKA),	kinesin	family	member	7	

(Kif7),	 and	 casein	 kinase	 1	 (CK1)	 promote	 the	 proteolytic	 processing	 of	 GLI3	 into	 its	

repressive	form	GLIR,	which	serves	to	suppress	the	expression	of	Hh	target	genes	within	

the	 nucleus.	 In	 addition	 to	 this,	 SuFu	 stabilizes	 GLI	 proteins	 thereby	 inhibiting	 the	

transcriptional	 activity	 of	 GLI2,	while	 PKA	 and	 Kif7	 prohibit	 the	 accumulation	 of	 GLIFL	

within	the	cilium.	(B)	Hh	ligand	binds	to	PTCH	and	its	co-receptors	Boc/Cdon,	leading	to	

the	 internalisation	 of	 PTCH	 which	 stops	 PTCH	 inhibition	 of	 SMO	 through	

phosphorylation,	 and	 results	 in	 SMO	 accumulation	within	 the	 cell	membrane	 through	

both	lateral	transport	and	the	secretory	pathways.	Loss	of	PTCH	inhibition	on	SMO	leads	

to	a	conformational	change	within	SMO	causing	it	to	reveal	sites	that	are	subsequently	

phosphorylated	by	CK1	and	G-protein	couples	receptor	2	(GRK2).	This	in	turn	leads	to	the	

abrogation	of	PKA	function	and	promotes	the	movement	of	 the	SuFu-GLI	complex	and	

Kif7	 to	 the	 ciliary	 tip	 where	 dissociation	 of	 SuFu	 and	 GLIFL	 is	 thought	 to	 occur.	 The	

accumulation	of	GLIFL	in	the	ciliary	tip	is	associated	with	the	production	of	GLI	activators	

(GLIA),	 which	 are	 the	 processed	 forms	 of	 GLIFL.	 GLIA	 can	 then	 accumulate	 within	 the	

nucleus	to	drive	transcription	of	Hh	target	genes.	

	

1.4.1.2	 Hedgehog	signalling	occurs	in	the	primary	cilium	
	

In	 the	 mammalian	 systems	 Hh	 signalling	 is	 dependent	 on	 the	 primary	 cilium,	 a	

microtubule	based	membrane	protrusion	 that	 is	present	 in	almost	all	 vertebrate	 cells	

(Goetz	 and	 Anderson,	 2010).	Major	 Hh	 signalling	 components	 are	 present	within	 the	

primary	cilia	 complex,	 including	PTCH,	Smo,	Kif7,	 Sufu,	PKA	and	GLI	proteins	 (Chen	et	

al.,	 2009;	 Corbit	et	 al.,	 2005,	Haycraft	et	 al.,	 2005,	 Rohatgi	et	 al.,	 2007,	 Tuson	et	 al.,	
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2011,	 Tukachinsky	 et	 al.,	 2010).	 Hh-PTCH	 binding,	 promotes	 ciliary	 exit	 of	 PTCH	 and	

accumulation	 of	 SMO	 from	 the	 cell	 surface.	 Pathway	 activation	 also	 results	 in	

accumulation	of	GLI	proteins	at	the	cilium	tip	(Huangfu	and	Anderson,	2005;	Haycraft	et	

al.,	2005;	Liu	et	al.,	2005).	Thus,	 the	primary	cilium	functions	as	a	signalling	centre	 to	

control	the	molecular	events	that	lead	to	GLI	processing.		

	

Disruption	 of	 primary	 cilia	 prevents	 the	 formation	 of	 GliR	 and	 GliA.	 Furthermore,	 GLI	

phosphorylation	by	PKA	occurs	within	the	cilia	base	(Tuson	et	al.,	2011).		

	

GLI3	is	a	negative	regulator	of	the	Hh	pathway.	Both	Sufu	and	Kif7	are	required	for	GLI3	

processing,	 with	 Sufu	 phosphorylating	 GLI3	 through	 recruitment	 of	 GSK3	 (Kise	 et	 al.,	

2009).	The	formation	of	this	complex	is	inhibited	upon	activation	of	Hh	signalling	by	SHh	

(Humke	et	al.,	2010;	Tukachinsky	et	al.,	2010,	Kise	et	al.,	2009).								

1.4.2	 Hh	pathway	physiological	function	

	
The	hedgehog	pathway	has	important	functions	in	cell	growth,	survival	and	fate;	and	is	

also	 essential	 during	 development,	 and	 in	 SC	 maintenance.	 Under	 physiological	

conditions	paracrine	signalling	is	essential	for	development	and	for	maintaining	various	

epithelial	tissues	(Ingham	and	McMahon,	2001;	Vheunissen	and	de	Sauvage,	2009).	

	

Hh	 proteins	 act	 as	 morphogens	 and	 are	 responsible	 for	 controlling	 multiple	

developmental	processes.	All	 three	mammalian	Hh	proteins,	Sonic,	 Indian,	 and	Desert	

Hh,	have	similar	physiological	effects	in	development,	with	the	differences	in	their	roles	

due	to	the	diverse	patterns	of	expression	(McMahon	et	al.,	2003;	Sagai	et	al.,	2005).	The	

expression	of	DHh	is	predominantly	found	within	the	gonads,	including	the	sertoli	cells	

of	 the	 testis	 and	 the	granulosa	 cells	of	ovaries	 (Bitgood	et	al.,	 1996;	Yao	et	al.,	 2002;	

Wijgerde	et	al.,	2005).	As	a	consequence	of	this	restricted	expression,	mice	deficient	in	

DHh	do	not	show	any	noticeable	phenotypic	effects,	with	the	exception	of	males	being	

infertile	due	to	the	absence	of	mature	sperm	(Bitgood	et	al.,	1996).	Like	DHh,	IHh	is	also	

expressed	in	specific	tissue	types,	including	the	primitive	endoderm	(Dyer	et	al.,	2001),	

gut	 (van	 den	 Brink,	 2007)	 and	 chondrocytes	 within	 the	 growth	 plates	 of	 bones	

(Vortkamp	 et	 al.,	 1996).	 In	 humans,	 hypomorphic	 mutations	 within	 IHh	 cause	
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acrocapitofemoral	 dysplasia,	 which	 is	 a	 congenital	 condition	 characterised	 by	 bone	

defects	(Hellemans	et	al.,	2003).	SHh	on	the	other	hand	is	broadly	expressed,	and	has	a	

crucial	 role	 in	 early	 embryogenesis.	 For	 example,	 SHh	 is	 responsible	 for	 the	

development	 of	 midline	 tissue,	 such	 as	 the	 node,	 notochord,	 and	 floor	 plate,	 and	

controls	patterning	of	the	L-R	and	A-V	axes	of	the	embryo	(Sampath	et	al.,	1997;	Pagan-

Westphal	and	Tabin,	1998;	Schilling	et	al.,	1999).	SHh	is	also	expressed	within	the	zone	

of	polarising	activity	of	the	limb	bud	and	is	pivotal	in	patterning	of	the	distal	elements	of	

the	limbs	(Riddle	et	al.,	1993;	Marti	et	al.,	1995).	SHh	also	has	an	important	role	in	later	

stages	of	development,	particularly	in	organogenesis	where	it	affects	the	development	

of	most	epithelial	tissues.	Due	to	its	important	role	in	development,	loss	of	SHh	can	lead	

to	cyclopia,	along	with	defects	in	ventral	neural	tube,	somite	and	foregut	patterning.	

	

Therefore,	 Hh	 signalling	 is	 essential	 during	 embryogenesis	 but	 is	 mostly	 quiescent	

during	 adulthood,	 and	 in	 adult	 tissues	 remains	 active	 in	 discrete	 populations	 of	 SCs	

found	 within	 a	 number	 of	 organs	 including	 the	 skin	 (Brownell	 et	 al.,	 2011),	 muscle	

(Koleva	et	al.,	 2005)	and	gut	 (van	Dop	et	al.,	 2009;	Kang	et	al.,	 2009)	 (Saqui-Salces	&	

Merchant,	2010).	Normal	 skin	contains	multiple	populations	of	phenotypically	distinct	

lineage-restricted	 SCs	 (Solanas	 and	 Benitah,	 2013).	 SHh	 is	 the	 main	 Hh	 ligand	 that	

predominates	within	postnatal	skin.	During	the	anagen	phase	(growth)	of	the	hair	cycle,	

the	lower	end	of	the	hair	follicle	can	be	found	to	express	SHh,	whereas	the	downstream	

effectors	 PTCH	 and	GLI1	 are	more	 broadly	 expressed	 (Brownell	et	 al.,	 2011;	Oro	 and	

Higgins,	 2003).	As	 a	 consequence,	 it	 has	been	demonstrated	 that	 anagen	progression	

and	subsequent	hair	growth	can	be	blocked	in	mice	using	an	anti-SHh	blocking	antibody	

(Wang	et	al.,	2000),	which	suggests	that	SHh	is	required	for	adult	bulge	SC	regeneration.	

Conversely,	 the	opposite	has	 also	been	 shown,	whereby	anagen	 can	be	 stimulated	 in	

resting	 hair	 follicles	 following	 exogenous	 administration	 of	 SHh	 (Sato	 et	 al.,	 1999).	 A	

recent	study	has	revealed	a	positive	 feedback	mechanism	 in	the	hair	 follicle,	whereby	

SHh+	progenitor	cells	signal	to	the	parental	quiescent	SC	located	in	the	bulge	region	and	

trigger	SC	activation	and	proliferation	 (Hsu	et	al.,	2014).	Although,	during	 the	 telogen	

phase	 (rest)	 of	 the	 hair	 cycle	 SHh	 expression	 is	 not	 detected	 at	 significant	 levels,	

additionally,	 both	 GLI2	 and	 3	 are	 broadly	 expressed	 both	 in	 the	 follicle	 and	 the	

neighbouring	 dermis.	 In	 contrast,	 the	 expression	 of	 GLI1	 and	 PTCH1	 is	 found	 to	 be	
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restricted	 to	 two	distinct	 SC	 domains:	 a	 K15-negative	 domain	within	 the	 upper	 bulge	

region,	and	a	K15/LGR5-positive	domain	within	the	lower	bulge	region	(Brownell	et	al.,	

2011).	Finally,	consistent	with	the	role	of	Hh	signalling	in	stimulating	cell	proliferation,	

loss-of-function	mutations	within	SMO,	or	gain-of-function	mutations	within	PTCH1	can	

give	 rise	 to	 BCC-like	 skin	 lesions	when	 induced	 in	 hair	 follicle	 SCs	 (discussed	 in	more	

detail	later	on)	(Youssef	et	al.,	2010;	Youssef	et	al.,	2012).		

	

Skeletal	muscle	 is	almost	unique	 in	 that	 it	 is	one	of	 the	 few	adult	mammalian	organs	

capable	 of	 almost	 complete	 regeneration	 following	 injury,	 which	 is	 made	 possible	

through	 the	 presence	 of	 satellite	 cells	 (muscle	 SC	 population)	 (Lepper	 et	 al.,	 2011).	

Under	normal	conditions	these	cells	remain	largely	inactive,	however	upon	injury,	they	

can	give	rise	to	myogenic	cells	 that	are	capable	of	reconstituting	the	myofibrils	of	 the	

muscle	(Yin	et	al.,	2013).	Hh	signalling	has	been	shown	to	function	as	a	pro-survival	and	

proliferation	 factor	 in	 adult	mouse	 satellite	 cells	 (Koleva	 et	 al.,	 2005).	 Intriguingly,	 in	

adult	 fully	differentiated	muscle,	both	SHh	and	PTCH	upregulation	has	been	observed	

upon	 the	 induction	 of	 regeneration	 following	 ischemic	 injury.	 During	 this	 process	 of	

regeneration,	Hh	plays	a	pivotal	role	in	promoting	both	angiogenesis	and	increasing	the	

number	of	satellite	cells	at	the	affected	site	(Pola	et	al.,	2001;	Pola	et	al.,	2003;	Straface	

et	 al.,	 2009).	 As	 a	 result,	 inhibiting	 Hh	 signalling	 has	 been	 shown	 to	 induce	 muscle	

fibrosis	and	increase	inflammation	in	injured	animals	(Straface	et	al.,	2009).		

	

Throughout	the	adult	GI	tract	of	both	humans	and	rodents,	the	expression	of	SHh	and	

IHH	 is	 expressed,	 and	 has	 been	 shown	 to	 signal	 to	 the	 Gli-expressing	 mesenchyme	

(Kolterud	et	al.,	2009;	van	den	Brink	et	al.,	2002;	van	Dop	et	al.,	2009).	Within	the	adult	

colonic	 mesenchyme,	 activation	 of	 Hh	 signalling	 through	 the	 conditional	 removal	 of	

PTCH1	 results	 in	 the	depletion	of	 the	 epithelial	 precursor	 cell	 pool	 due	 to	 premature	

differentiation	 (van	 Dop	 et	 al.,	 2009).	 Furthermore,	 during	 repair	 following	 the	

induction	of	gastric	ulcers,	Hh	signalling	has	been	shown	to	be	downregulated,	whereas	

SMO	 inhibition	 via	 an	 antagonist	 has	 shown	 to	 further	 inhibit	 gastric	 progenitor	 cell	

differentiation	 within	 these	 mice	 (Kang	 et	 al.,	 2009).	 Finally,	 mouse	 models	 of	 Hh	

pathway	 inhibition	 have	 demonstrated	 the	 loss	 of	 villus	 smooth	 muscle	 cells,	 which	

caused	 atrophy	 of	 the	 small	 intestine	 villi,	 accompanied	 with	 inflammation	 and	 an	
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increase	 in	 the	 proliferation	 of	 the	 epithelial	 compartment	 (van	 Dop	 et	 al.,	 2010;	

Zacharias	et	al.,	2010).	

	

In	summary,	Hh	signalling	is	essential	not	only	during	early	embryogenesis,	but	also	in	

adult	tissue	homeostasis,	where	high	levels	of	Hh	signalling	are	observed	within	specific	

cell	 populations,	 many	 of	 which	 have	 stem	 and	 progenitor	 cell	 properties.	 Following	

injury,	Hh	signalling	is	capable	of	stimulating	SCs	and	other	resident	cells	to	contribute	

to	 the	 repair	 of	 the	 tissue;	 however,	 given	 its	 essential	 role	 in	 SC	 maintenance,	

perturbations	within	the	Hh	signalling	pathway	can	contribute	to	disease	states	such	as	

cancer.		

					

	

1.4.3	 Hh	pathway	in	cancer	

	
One	quarter	of	all	cancers	exhibit	activation	of	the	Hh	growth	factor	pathway,	of	which	

the	 archetypal	 cancer	 is	 BCC.	 Constitutive	 activation	 of	 the	 Hh	 pathway	 has	 been	

identified	 in	 multiple	 tumour	 types,	 including	 lung	 (Watkins	 et	 al.,	 2003),	 stomach	

(Berman	et	al.,	2003),	pancreas	(Thayer	et	al.,	2003),	prostate	(Karhadkar	et	al.,	2004)	

and	 the	 brain	 (Clement	 et	 al.,	 2007).	 There	 are	 three	 basic	 models	 for	 Hh	 signalling	

activity	 in	 cancer:	 1)	 Type	 I	 –	 ligand	 independent,	 mutation	 driven;	 2)	 Type	 II	 –	

autocrine,	ligand	dependent;	3)	Type	III	–	paracrine,	ligand	dependent.		

	

The	type	I	model	for	Hh	signalling	activity	drives	many	cancers.	For	example,	mutations	

have	 been	 identified	 in	 a	 small	 percentage	 of	 BCC	 (discussed	 in	 more	 detail	 later),	

medulloblastoma,	 rhabdomyosarcoma	 and	 osteosarcoma.	 Loss-of-function	 mutations	

within	the	negative	regulators,	PTCH	and	Sufu	have	been	identified	in	cancer	formation,	

with	 Sufu	mutations	 identified	 in	medulloblastoma	 patients	 (Taylor	et	 al.,	 2002),	 and	

PTCH	mutations	 found	 in	 patients	with	 basal-cell-nevus	 syndrome	 (discussed	 in	more	

detail	 later)	 (Johnson	et	al.,	 1996;	Hahn	et	al.,	 1996).	 Furthermore,	 sporadic	BCC	and	

medulloblastoma	 are	 often	 characterised	 by	 inactivation	 of	 PTCH1	 or	 constitutive	

activation	of	SMO	(Wolter	et	al.,	1997;	Xie	et	al.,	1997;	Xie	et	al.,	1998;	Riefenberger	et	
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al.,	 1998).	 However,	 mutations	 within	 the	 Hh	 signalling	 pathway	 have	 only	 been	

identified	in	BCC,	medulloblastoma	and	rhabdomyosarcoma.							

	

Most	Hh	driven	epithelial	malignancies	demonstrate	elevated	levels	of	Hh	ligand	and/or	

ectopic	PTCH	and	GLI	expression.	This	ectopic	ligand	production	can	either	occur	within	

all	 tumour	 cells	 or	 a	 subset	 of	 tumour	 SCs	 and	 serve	 to	 support	 tumour	 growth	 and	

survival	 of	 surrounding	 cells.	 However,	 it	 is	 important	 to	 note	 that	 the	 exact	

mechanisms	 by	 which	 this	 pathway	 affects	 tumour	 survival	 and	 growth	 are	 not	 fully	

understood.	The	autocrine	model	of	 tumour	growth	occurs	through	the	production	of	

Hh	 ligands	by	 tumour	 cells	which	act	on	neighbouring	 tumour	 cells	 to	 stimulate	 their	

growth	 and	 survival.	 This	 mode	 of	 Hh	 pathway	 activation	 is	 found	 in	 breast	 cancer	

(Mukherjee	et	al.,	2006),	NSCLC	(Singh	et	al.,	2011),	and	colorectal	cancer	(Gulino	et	al.,	

2009).	 However,	 some	 groups	 have	 identified	 potential	 mechanisms	 involved	 in	 Hh	

driven	 tumours.	 For	 example,	 Chan	 et	 al.	 (2014)	 used	 a	 mouse	 model	 with	 partial	

upregulation	of	Hh	 signalling	 in	mature	osteoblasts,	 and	 found	 that	 it	was	 capable	of	

inducing	osteosarcoma	development	through	the	overexpression	of	Yap1	(Chan	et	al.,	

2014).				

	

Paracrine	Hh	signalling	is	also	an	important	mechanism	in	cancer	and	comprises	tumour	

cells	 secreting	 Hh	 ligands	 that	 bind	 to	 receptors	 on	 the	 neighbouring	 stroma	 and	

thereby	 activate	 stromal	 Hh	 signalling	 (Jiang	 and	 Hui,	 2008;	 Yauch	 et	 al.,	 2008).	

Paracrine	 signalling	 functions	 to	 stimulate	 mesenchyme	 proliferation.	 The	 paracrine	

mechanism	 for	Hh	signalling	was	originally	 shown	 in	prostate	cancer;	wherein	patient	

derived	xenografts	induced	elevated	levels	of	PTCH	and	GLI1	within	the	murine	stroma	

(Fan	et	al.,	2004).	Hh	ligand	expressing	cancers	are	refractory	to	the	ligand,	whereas	the	

surrounding	 stroma	 is	 responsive	 (Nolan-Stevaux	 et	 al.,	 2009;	 Theunissen	 and	 de	

Sauvage,	2009;	Tian	et	al.,	2009;	Yauch	et	al.,	2008).	Furthermore,	paracrine	signalling	

has	 also	 been	 identified	 in	 pancreatic	 cancer,	 where	 it	 regulates	 metastasis	 and	

lymphogenesis	(Tian	et	al.,	2009).	

	

Another	alternative	mechanism	by	which	Hh	signalling	can	induce	tumour	development	

is	 through	 its	ability	 to	act	on	cancer	stem	cells	 (CSCs)	 that	have	 the	capability	of	not	
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only	self-renewal,	but	also	differentiation	among	multiple	 lineages,	 that	enables	 them	

to	potentially	repopulate	a	tumour	following	treatment.	CSCs	have	been	identified	in	a	

wide	 range	of	 solid	 tumours,	 including	 breast,	 pancreas,	 skin,	 and	brain	 (discussed	 in	

more	detail	later)	(Al-Hajj	et	al.,	2003;	Ignatova	et	al.,	2002;	Singh	et	al.,	2004;	Collins	et	

al.,	 2005;	 Fang	 et	 al.,	 2005;	 Li	 et	 al.,	 2007;	 Colmont	 et	 al.,	 2013).	 Sustained	 Hh-GLI	

signalling	has	shown	to	be	required	for	the	clonogenicity	and	tumuorigenicity	of	human	

glioma	CSCs	 (Clement	et	al.,	2007).	Furthermore,	 the	role	of	Hh	signalling	 in	CSCs	has	

also	 been	 suggested	 in	 other	 tumours	 such	 as	 breast	 (Liu	 et	 al.,	 2006)	 and	multiple	

myeloma	(Peacock	et	al.,	2007).					

	

Although	 there	 are	 only	 a	 limited	 number	 of	 autocrine	 and	 paracrine	 signalling	

mechanisms	that	have	been	elucidated	to	date	in	tumour	development,	the	role	of	Hh	

driven	tumour	cell	lines	has	been	a	valuable	tool	for	beginning	to	unravel	the	underlying	

mechanisms.	There	are	a	number	of	cell	lines	that	have	been	characterised	as	Hh	driven	

(Arnhold	et	al.,	2016).	Hh	signalling	has	been	shown	to	be	a	key	contributor	in	many	of	

the	 paediatric	 tumours	 mentioned	 previously;	 notably	 medulloblastoma,	

rhabadomyosacroma	 and	 osteosarcoma,	 and	 although	 to	 date	 there	 is	 no	 cell	 line	

known	to	stem	from	tumours	with	activating	Hh	mutations	they	have	nevertheless	been	

shown	to	have	high	 levels	of	Hh	signalling	activity.	There	are	44	medulloblastoma	cell	

lines,	and	only	18	of	these	have	been	subtyped.	Through	gene	expression	profiling,	four	

main	 subtypes	of	medulloblastoma	were	 identified:	WNT,	 SHH,	 group	3	 and	 group	4.	

The	SHH	group	of	medulloblastoma	is	driven	by	aberrantly	activated	Hh	signalling,	and	

is	 composed	 of	 four	 cell	 lines:	 DAOY,	 UW228-2,	 ONS-76	 and	 UW426,	 with	 DAOY	

(Jacobsen	et	al.,	1985;	Saylors	et	al.,	1991;	Triscott	et	al.,	2013;	Lacroix	et	al.,	2014)	and	

UW228-2	 (Keles	et	 al.,	 1995;	 Triscott	et	 al.,	 2013;	 Kunkele	et	 al.,	 2012;	 Lacroix	et	 al.,	

2014)	being	the	most	extensively	used	for	research	(Ivanov	et	al.,	2016).	qPCR	analysis	

of	 osteosarcoma	 cell	 lines	 revealed	 an	 overexpression	 of	 the	 key	 Hh	 pathway	

components,	 PTCH1,	 SMO,	 and	 GLI	 (Hirotsu	 et	 al.,	 2010).	 The	 SJSA-1	 cell	 line	 in	

particular	has	a	15-fold	upregulation	of	GLI1	(Khatib	et	al.,	1993).	Other	cell	 lines	with	

notable	Hh	 activity	 include	 the	 Ewing	 sarcoma	 tumour	 cell	 lines,	 CADO-ES1,	 STA-ET1,	

and	 VH-64	 (Arnhold	 et	 al.,	 2016;	 Spaniol	 et	 al.,	 2011),	 along	 with	 the	

rhabadomyosarcoma	cell	lines	RD	and	RH-30	(Arnhold	et	al.,	2016;	Spaniol	et	al.,	2011).			
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1.4.4	 Basal	cell	nevus	(Gorlins)	syndrome	

	
Basal	cell	nevus	syndrome	(BCNS)	is	an	autosomal	dominant	disorder,	and	predisposes	

individuals	with	the	disease	to	craniofacial	and	skeletal	abnormalities	(Gorlin	and	Goltz,	

1960;	Kimonis	et	al.,	1997).	Patients	with	basal	cell	nevus	syndrome	are	at	increased	risk	

of	 developing	 BCC	 and	 medulloblastoma.	 Basal	 cell	 nevus	 syndrome	 is	 caused	 by	 a	

germline	mutation	 in	 the	PTCH1	gene	 resulting	 in	active	Hh	 signalling	 (Aszterbaum	et	

al.,	1998;	Hahn	et	al.,	1996).	Within	basal	cell	nevus	syndrome,	tissue	specific	somatic	

mutations	 within	 the	 normal	 PTCH1	 allele	 leads	 to	 the	 development	 of	 BCCs,	

medulloblastomas,	meningiomas,	and	rhabdomyosarcomas	(Colmont	et	al.,	2013).	The	

incidence	of	BCC	in	individuals	with	BCNS	is	about	50%	in	patients	>20	years,	and	up	to	

90%	by	the	age	of	40	(Evans	et	al.,	1993;	Endo	et	al.,	2012).		As	mentioned	previously,	

SMO	 is	 a	 GPCR	 and	 represents	 the	 obligatory	 signal	 transducer	 in	 the	 canonical	 Hh	

signalling	 pathway.	 Therefore	 it	 comes	 as	 no	 surprise	 to	 find	 that	 constitutively	

activating	mutations	within	SMO	contribute	to	the	development	of	carcinomas,	namely	

BCC	(Hahn	et	al.,	1996;	Johnson	et	al.,	1996)	and	medulloblastoma	(Jiang	and	Hui,	2008;	

Xie	 et	 al.,	 2008).	 More	 recently,	 mutations	 of	 PTCH1,	 SMO,	 and	 SUFU	 have	 been	

identified	in	sporadic	BCC	and	medulloblastoma	(Epstein,	2008;	Kool	et	al.,	2008).	In	the	

case	 of	 sporadic	 BCC,	 nearly	 all	 tumours	 show	 evidence	 of	 constitutive	 Hh	 pathway	

activity,	with	90%	exhibiting	 loss	of	PTCH1	 (Gailani	et	al.,	 1996;	Kim	et	al.,	 2002)	 and	

10%	with	activating	mutations	in	SMO	(Xie	et	al.,	1998;	Reifenberger	et	al.,	1998).		

	

1.4.5	 Prototypic	cancer:	Basal	Cell	Carcinoma	

	
BCC	was	first	described	in	1827	by	Jacob	(Jacob,	1827).	BCC	keratinocytes	morphological	

resemble	 epidermal	 basal	 layer	 keratinocytes.	 BCC	 lesions,	 particularly	 in	 the	 early	

stages,	 appear	 as	 small,	 translucent	 or	 pearly	 lesions,	 with	 the	 distribution	 of	 small-

dilated	blood	vessels	over	their	surface.	The	development	of	BCC	can	occur	at	different	

anatomical	sites,	however	80%	are	found	on	the	head	and	neck,	(particularly	the	face),	

with	 the	 remainder	 found	 on	 the	 trunk	 and	 limbs	 (Rubin	 et	 al.,	 2005).	 BCC	 usually	

manifests	as	an	asymptomatic	slow	growing	translucent	raised	nodule,	which	over	the	
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period	of	1-2	years	may	reach	a	diameter	of	half	a	centimetre	before	more	rapid	growth	

occurs	leading	to	central	ulceration.		

	

BCC	 is	 classified	 based	 on	 the	 pattern	 of	 growth	 into	 four	main	 categories:	 Nodular,	

superficial,	 infiltrative	and	morphoeic	 (Figure	1.4)	 (Rippey	and	Rippey,	1997;	Lang	and	

Maize,	1986).	Nodular	BCC	is	the	most	common	type	(50%	of	cases),	and	presents	as	a	

raised	 nodule	 with	 dilated	 blood	 vessels	 on	 the	 surface,	 which	 sometimes	 forms	 a	

central	depression	that	may	ulcerate,	bleed	or	scab.	Under	the	microscope,	nodular	BCC	

can	 be	 seen	 to	 have	 both	 small	 and	 large	 nests	 of	 tumour	 cells,	 with	 peripheral	

palisading	growth	from	the	epidermis	to	the	dermis.	Superficial	BCC	represents	15%	of	

the	 cases,	 and	 is	mainly	 found	on	 the	 trunk.	 They	 are	 characteristically	 sow	 growing,	

and	 are	 often	 scaly,	 flat	 erythematous	 plaques	 which	 can	 easily	 be	 mistaken	 for	

psoriasis,	 discoid	eczema,	or	Bowen’s	disease.	Histologically,	 they	are	 confined	 to	 the	

papillary	 dermis	 and	 are	 found	 to	 have	 numerous	 small	 islands	 of	 basaloid	 cells	

attached	 to	 the	 epidermis.	 In	 fact	 patients	 that	 present	 with	 BCC	 on	 the	 trunk,	 are	

usually	more	prone	to	developing	multiple	BCCs	which	are	seen	to	develop	at	a	faster	

rate	than	BCCs	found	on	other	regions	of	the	body	(Lear	et	al.,	1998).	Morphoeic	BCC	

represents	10%	of	the	cases,	and	presents	as	a	flat,	atrophic,	hard	white	or	red	plaque.	

The	edges	are	not	 clear	 and	are	often	much	 larger	 than	what	 is	 seen	on	 the	 surface.	

Histologically,	 morphoeic	 BCC	 has	 small	 root-like	 projections	 that	 extend	 deep	 into	

dermis,	and	are	surrounded	by	a	dense	cellular	stroma.			

	

BCC	rarely	metastasize,	with	estimations	showing	that	it	occurs	less	than	0.0028%	of	the	

time,	which	as	a	consequence	means	the	overall	mortality	from	BCC	remains	very	low	

(Rubin	et	al.,	2005).	However,	BCC	 is	associated	with	significant	morbidity,	through	 its	

ability	to	invade	locally	into	vital	structures	such	as	cartilage	and	bone,	thereby	causing	

cosmetic	disfigurement.	However,	in	instances	where	BCCs	are	neglected,	they	have	the	

potential	to	grow	very	large,	and	have	been	known	to	invade	into	the	orbit	and	cranium	

(Madan	et	al.,	2010).			
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Figure	1.4:	Three	main	categories	of	BCC.		

Clinical	 and	 histological	 appearances	 of	 (A,	 D)	 nodular,	 (B,	 E)	 superficial,	 and	 (C,	 F)	

morpheaform	BCCs.	Taken	from	online	source	(GERIATRICS	&	AGING,	September	2009,	

Volume	12,	Number	8)(SCRIPTA	MEDICA	(BRNO)	–	79(5-6):261-270,	December	2006)		

	

1.4.5.1	 Epidemiology	

	
Amongst	fair-skin	coloured	individuals	BCC	is	the	most	common	skin	cancer,	which	is	in	

contrast	to	black-skinned	individuals,	where	NMSC	is	rarely	seen	to	develop	(Halder	and	

Bang,	1988).	The	estimated	lifetime	risk	of	developing	BCC	in	Caucasians	is	between	28-

33%.	Men	are	shown	to	have	a	slightly	higher	incidence	of	BCC,	which	maybe	because	

there	is	a	statistically	increased	likelihood	of	working	outdoors,	and	therefore	becoming	

exposed	to	UV	(Miller	and	Weinstock,	1994).	In	the	UK,	56%	of	men,	and	44%	of	women	
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will	 develop	 BCC,	 a	male:female	 ratio	 of	 1.5:1	 (Lear	 et	 al.,	 2007).	While	 elderly	men	

represent	 the	 highest	 rates	 of	 BCC,	 there	 is	 a	 trend	 over	 the	 past	 decade	 towards	

increasing	 BCC	 incidence	 among	 young	 women	 who	 use	 sunbeds	 or	 tan	 excessively	

(Christenson	et	al.,	2005;	de	Vries	et	al.,	2004;	Epstein,	2008;	Karagas	et	al.,	2002).	For	

BCC	 and	 SCC,	 the	 average	 age-standardised	 rate	 per	 100,000	 is	 98.6	 and	 22.7%	

respectively,	however	as	many	as	one	third	of	diagnoses	may	go	unregistered	(Andl	et	

al.,	2004;	Lomas	et	al.,	2012;	Musah	et	al.,	2013).	Between	2000-2002	and	2008-2010,	

the	 recorded	 incidence	 of	 BCC	 increased	 by	 around	 a	 third	 in	 England,	 Scotland,	

Northern	 Ireland,	and	Ireland	combined	(National	Cancer	 Intelligence	Network	(NCIN).	

Non-melanoma	skin	cancer	in	England,	Scotland,	Northern	Ireland,	and	Ireland:	London:	

NCIN;	2013).	This	 is	 in	 contrast	 to	 the	overall	 cancer	diagnoses	over	 the	past	decade,	

where	there	was	only	a	modest	increase	of	3%	men	and	6%	in	women	observed.	Thus	

the	 true	 socioeconomic	 burden	 of	 BCC	 is	 not	 known,	 as	 the	 cancer	 registry	 does	 not	

collect	data	pertaining	to	BCC	(Goodwin	et	al.,	2004).		

	

The	 main	 causative	 factor	 in	 the	 pathogenesis	 of	 BCC	 is	 exposure	 to	 UV	 radiation,	

consistent	with	 this	 is	 the	observation	 that	 the	 incidence	of	BCC	varies	geographically	

and	globally,	with	Australia	having	 the	highest	 rates	of	BCC	 in	 the	world	 (Gallagher	et	

al.,	1995;	Marks	et	al.,	1993).	BCC	development	is	also	linked	to	exposure	to	other	well-

known	 carcinogens,	 including	 arsenic,	 coal	 tar,	 and	 ionizing	 radiation	 (Diepgen	 and	

Mahler,	 2002).	 Furthermore,	 there	 is	 an	 association	 between	 smoking	 and	 the	

development	 of	 skin	 cancer,	 particularly	 amongst	 young	 women	 (Boyd	 et	 al.,	 2002).	

However,	 although	 cumulative	 carcinogen	 exposure	 (i.e	 UV	 light)	 in	 adulthood	 is	 an	

important	 factor	 contributing	 to	 BCC,	 intrinsic	 factors	 to	 the	 individual	 are	 equally	

important.	Intrinsic	factors	such	as	fair	skin,	red	or	blonde	hair,	light	coloured	eyes,	and	

childhood	 freckling,	 are	 all	 factors	 that	 are	 associated	with	 greater	 risk	 towards	 BCC	

development	 (Daya-Grosjean	and	Couve-Privat,	2005;	Rubin	et	al.,	 2005;	Wong	et	al.,	

2003).	 Also	 there	 is	 a	 strong	 relationship	 between	 BCC	 development	 and	 individuals	

with	a	positive	family	history	of	skin	cancer	(Corona	et	al.,	2001).	BCC	can	also	be	seen	

more	frequently	amongst	individuals	with	a	high	dietary	intake	coupled	to	low	vitamin	

intake	 (Gallagher	 et	 al.,	 1996;	 Yamada	 et	 al.,	 1996).	 The	 incidence	 of	 BCC	 has	 been	

reported	 to	 be	 much	 higher	 in	 patients	 who	 have	 been	 on	 long-term	
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immunosuppressive	 therapy	 when	 compared	 to	 the	 general	 population,	 with	 renal	

transplant	 and	heart	 transplant	 patients	 shown	 to	 be	 10	 and	 21	 times	more	 likely	 to	

develop	BCC	than	 their	normal	counterparts	 (Ong	et	al.,	1999).	 It	 is	believed	 that	 this	

increase	 is	 due	 to	 the	 immunosuppressive	 drugs	 dampening	 down	 the	 immune	

surveillance	and	thereby	allowing	mutated	cells	to	progress	to	cancer	(Tilli	et	al.,	2005).		

	

Meta-analyses	have	 shown	 that	patients	who	have	developed	a	BCC	are	 at	 increased	

risk	of	developing	 further	BCCs,	with	 three-year	cumulative	 risks	varying	 from	33-77%	

(Stern	and	Lang,	1988).	Additionally,	studies	have	shown	that	the	risk	of	developing	SCC	

and	malignant	 melanoma	 are	 also	 increased	 in	 individuals	 who	 have	 developed	 BCC	

(Boyd	et	al.,	2002;	Gallagher	et	al.,	1995).		

	

1.4.5.2	 Pathogenesis		

	

Mouse	models	 of	 BCC	 support	 the	 role	 of	 the	Hh	 pathway	 in	 the	 pathogenesis.	Wild	

type	mice	rarely	develop	BCCs	even	following	treatment	with	UV	or	ionizing	radiation.	

However,	when	applying	UV	radiation	to	a	mouse	with	a	PTCH+/-	genetic	background,	

BCC	development	is	common	(Aszterbaum	et	al.,	1999).	Interestingly,	if	these	mice	are	

kept	 under	 normal	 conditions,	 they	 rarely	 develop	 BCCs,	 thereby	 showing	 the	

importance	 of	 UV	 exposure	 in	 generating	 additional	 PTCH	 mutations	 in	 the	 normal	

allele	 in	the	development	of	BCC	(Mancuso	et	al.,	2004).	Furthermore,	overexpression	

of	Hh	signalling	pathway	members	(Hh,	SMO,	GLI1	and	GLI2)	has	been	shown	to	result	

in	BCC	development	in	murine	skin	and/or	in	human	skin	grafted	onto	mice	(Fan	et	al.,	

1997;	Oro	et	al.,	1997;	Grachtchouk	et	al.,	2000).	The	situation	 in	medulloblastoma	 is	

less	uniform,	with	up	 to	30%	of	 tumours	 showing	a	gene	expression	 signature	 that	 is	

indicative	of	hedgehog	pathway	activation,	but	only	50%	of	these	were	associated	with	

loss	of	PTCH1,	loss	of	SUFU	or	gain-of-function	SMO	mutations.		

	

The	 vast	majority	 of	 BCCs	 occur	 sporadically,	 however,	 as	mentioned	 earlier	 Gorlin’s	

syndrome	 is	 a	 rare	 inherited	 disorder	 that	 predisposes	 these	 individuals	 to	 BCC	

development.	For	many	years	it	has	been	thought	that	the	development	of	BCC	occurs	

through	a	 combination	of	mutations	 tumour	 suppressor	genes,	p53	and	PTCH	via	 the	
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targeting	of	UV.	A	mutation	within	these	genes	drives	cell	proliferation	and	subsequent	

BCC	development	(Kastan	et	al.,	1991).		

	

Even	though	BCC	is	the	most	common	neoplasm	in	humans,	its	precise	origins	are	still	

unknown.	Recent	publications	suggest	that	it	develops	from	keratinocyte	SCs	of	the	hair	

follicle	bulge	(Youssef	et	al.,	2010;	Wang	et	al.,	2011),	however	this	will	be	discussed	in	

more	detail	in	section	1.5.	

	

1.4.5.3	 Molecular	landscape	of	BCC	
	

Exposure	to	UV	is	the	most	important	risk	factor	in	BCC,	and	as	mentioned	previously,	

the	 Hh	 signalling	 pathway	 is	 essential	 for	 its	 development.	 Numerous	 studies	 have	

reported	 point	 mutations,	 copy-loss	 of	 heterozygosity	 and	 copy-neutral	 loss	 of	

heterozygosity	 within	 PTCH1	 in	 sporadic	 BCC	 (Teh	 et	 al.,	 2005;	 Santos	 et	 al.,	 2011).	

However,	 the	 mutation	 of	 the	 gene	 TP53	 is	 an	 equally	 important	 event	 in	 the	

pathogenesis	 of	 BCC,	 with	mutations	 found	 anywhere	 from	 30-70%	 of	 BCCs	 (Lacour,	

2002;	 Reifenberger	et	 al.,	 2005;	 Tang,	 2011).	 In	 spite	 of	 this	 there	 are	 only	 a	 limited	

number	of	key	mutations	found	to	be	required	for	the	development	of	BCC,	and	yet	of	

all	 the	 tumours,	 BCC	 has	 been	 found	 to	 have	 the	 highest	 mutation	 rate	 (65	

mutations/Mb)	 (Jayaraman	et	al.,	 2014;	Bonilla	et	al.,	 2016).	Beyond	both	PTCH/SMO	

and	TP53	mutations,	other	 tumour	suppressor	genes	and	proto-oncogenes	have	been	

implicated	 in	 the	pathogenesis	of	BCC	 including	members	of	 the	RAS	proto-oncogene	

family	(van	der	Schroeff	et	al.,	1990;	Pierceall	et	al.,	1991;	Jayaraman	et	al.,	2014).	In	a	

recent	 study	 by	 Bonilla	 et	 al.	 (2016),	 293	 BCC	 tumours	were	 genetically	 profiled	 and	

additional	 driver	 mutations	 were	 identified	 in	 other	 cancer-related	 genes	 including	

MYCN	(30%),	PPP6C	(15%),	PTPN14	(23%),	STK19	(10%),	and	LATS1	(8%)	(Bonilla	et	al.,	

2016).	Furthermore,	consistent	with	these	mutational	profiles,	both	N-Myc	(MYCN)	and	

Hippo-YAP	(PTPN14	and	LATS1)	pathway	target	genes	were	upregulated.	Recent	studies	

have	 also	 shown,	 in	 approximately	 50%	 of	 BCC	 the	 presence	 of	 UV-induced	 somatic	

mutations	 within	 the	 telomerase	 reverse	 transcriptase	 (TERT)	 gene,	 which	 leads	 to	

increased	 expression	 of	 telomerase,	 thereby	 allowing	 cells	 to	 divide	 indefinitely,	 and	

avoid	senescence	and	apoptosis	 (Griewank	et	al.,	2013;	Scott	et	al.,	2014).	Therefore,	
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although	aberrant	activation	of	Hh	signalling	is	a	hallmark	of	BCC	development,	recent	

genomic	 studies	 have	 discovered	 additional	 signalling	 pathways	 associated	 with	 the	

pathogenesis	of	BCC.	

	

	

1.4.5.4	 Management	

	

Non-melanoma	 skin	 cancers	 (NMSC),	 including	 BCC	 are	 usually	 treated	 at	 the	 early	

stages.	BCC	management	is	usually	surgical	excision	(Ceilley	and	Del	Rosso,	2006).		

	

1.4.5.4.1	 Surgery	
	

Due	to	 it	being	a	highly	effective	 form	of	 therapy	 for	primary	BCC,	surgical	excision	 is	

the	preferred	method	of	 treatment,	 and	 it	 gives	 surgeons	 the	opportunity	 to	 confirm	

complete	 excision	 by	 studying	 the	 histology	 of	 the	 tumour.	 Providing	 surgery	 is	

performed	with	clear	histological	margins,	there	is	a	<2%	recurrence	rate	after	5	years,	

with	 increasing	peripheral	margins	found	to	 increase	the	cure	rate	further	(Griffiths	et	

al.,	2005;	Walker	and	Hill,	2006).	However,	incomplete	excision	or	border	that	are	very	

close	 to	 the	 tumour,	 are	 frequently	 associated	with	 recurrence	 (Sussman	and	 Liggins,	

1996).	This	is	seen	frequently	in	sites	where	skin	preservation	is	important,	such	as	the	

‘T’	zone	of	the	face,	as	there	is	often	a	balance	between	excising	the	tumour	completely	

so	that	it	doesn’t	grow	back,	and	ensuring	that	the	patient	isn’t	left	too	disfigured	due	

to	 skin	 removal	 (Kumar	et	 al.,	 2000).	 In	 the	 instances	where	 re-excision	 is	 necessary,	

Mohs	micrographic	surgery	(MMS)	is	the	treatment	most	often	adopted.	Although	MMS	

is	 an	 excellent	 treatment	 for	 high	 risk	 BCC	with	 very	 high	 cure	 rates,	 it	 remains	 very	

costly	to	perform	and	time	consuming	and	is	therefore	reserved	for	managing	high-risk	

sites.	 In	 contrast,	 in	 other	 modes	 of	 surgery	 in	 which	 histology	 is	 not	 used	 to	

demonstrate	 eradication,	 such	 as	 cryosurgery,	 curettage,	 and	 photodynamic	 therapy,	

higher	 recurrence	 rates	 are	 observed	 (Chiller	et	 al.,	 2000;	 Holt,	 1988;	 Johnson	 et	 al.,	

1991).			
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1.4.5.4.2	 Topical	Therapies	

	

The	 immune-modulator	 imiquimod	stimulates	toll	 like	receptors	and	thereby	activates	

the	 immune	system	and	subsequently	 release	of	pro-inflammatory	cytokines	 (Vidal	et	

al.,	2004).	More	than	90%	clearance	of	superficial	BCC	has	been	achieved	following	bi-

daily	 treatment	of	 imiquimod	 for	6-12	weeks	 (Marks	et	al.,	2001).	However,	 its	use	 is	

often	 limited	 due	 to	 potentially	 serious	 side	 effects	 such	 as	 marked	 inflammatory	

reaction,	and	although	it	has	proven	useful	for	the	treatment	of	superficial	BCC,	it	is	not	

suitable	for	invasive	BCC.	Furthermore,	a	number	of	Hh	pathway	inhibitors	are	currently	

in	 clinical	 trials	 for	 a	 variety	 of	 malignancies,	 and	 this	 year	 the	 National	 Institute	 of	

Clinical	Excellence	(NICE)	approved	the	SMO	inhibitor,	vismodegib	for	the	treatment	of	

inoperable	 and	metastatic	 BCC.	 However,	 clinical	 studies	 already	 suggest	 that	 a	 BCC	

sub-population	 is	 resistant	 to	 vismodegib,	 discussed	 later	 (Von	 Hoff	 et	 al.,	 2009;	

Metcalfe	 &	 de	 Sauvage,	 2011;	 Skvara	 et	 al.,	 2011;	 Sekulic	 et	 al.,	 2012).	 Of	 note	 the	

relapse	 is	 associated	 with	 regrowth	 of	 the	 original	 tumour	 nodules,	 suggesting	 the	

presence	of	a	 residual	and	 resistant	 tumour	cell	population	 that	 is	able	 to	 repopulate	

the	tumour;	by	definition	CSC	(discussed	later).	

	

1.4.5.4.3	 Radiotherapy	

	
In	 the	 case	 of	 primary	 and	 metastatic	 BCC,	 radiotherapy	 has	 been	 shown	 to	 be	 an	

effective	therapy,	and	in	some	instances	even	against	recurrent	BCC	(Al-Othman	et	al.,	

2001;	Caccialanza	et	al.,	 2001).	 The	overall	 5-year	 cure	 rates	being	91.3%	 for	primary	

BCC	and	90.2%	for	recurrent	disease	(Rowe	et	al.,	1989).	This	form	of	treatment	is	very	

helpful	for	people	who	are	unable	to	tolerate	surgery.	For	lesions	up	to	6	mm	in	depth,	

170KV	may	be	used,	and	for	tumours	invading	deeper,	electron	beam	radiotherapy	may	

be	used.	However,	in	order	to	avoid	radionecrosis	of	underlying	tissues	(particularly	at	

the	eyelids	and	bridge	of	the	nose	where	the	skin	is	thin),	the	dose	has	to	be	carefully	

titrated	 (Telfer	et	al.,	2008).	An	 important	point	 to	make	 is	 that	 radiotherapy	 induces	

mutations	 in	 surrounding	 tissues,	 and	 as	 such	 should	 be	 avoided	 in	 patients	 with	

xeroderma	pigmentosa	and	basal	cell	nevus	syndrome	(Caccialanza	et	al.,	2004).						
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1.4.5.4.4	 Photodynamic	Therapy	(PDT)	

	
PDT	 is	 a	 medical	 therapy	 based	 on	 the	 activation	 of	 chemical	 substances	 called	

photosensitizers	 by	 a	 light	 source	 emitting	 radiation	 of	 an	 appropriate	 wavelength,	

which	 have	 the	 capacity	 to	 selectively	 concentrate	 in	 neoplastic	 cells,	 and	 allow	 the	

energy	they	capture	to	pervade	into	surrounding	tumour	tissue	(Matei	et	al.,	2013).	This	

triggers	 photodynamic	 changes	 that	 result	 in	 the	 destruction	 of	 the	 tumour.	 BCC	

responds	very	well	to	this	form	of	therapy	(Matei	et	al.,	2013).	

	

	

1.4.6	 Development	of	Hh	antagonists		

1.4.6.1	 Natural	 Compounds	 (Alkaloids,	 sesquiterpenes	 and	
physalins)		
	
Cyclopamine	 and	 jervine	 (steroidal	 alkaloids)	 are	 naturally	 occurring	 Hh	 inhibitors,	

isolated	from	the	corn	lily	Veratrum	californicum.	Cyclopamine	blocks	the	Hh	pathway	

at	the	level	of	SMO	and	inhibits	the	transcription	of	Hh	target	genes	(Chen	et	al.,	2002).	

Following	 oral	 administration	 of	 cyclopmaine,	 the	 growth	 of	 UV-induced	 BCCs	 in	

PTCH1+/-	mouse	model	was	reduced	by	90%	and	also	there	was	a	50%	reduction	in	new	

tumours	(Athar	et	al.,	2004).	However,	due	to	its	poor	pharmacokinetic	properties,	low	

potency	 (EC50	 300nM)	 and	 cytotoxicity,	 cyclopamine	 has	 never	 been	 developed	 in	

clinical	 trials.	Other	natural	 compounds	 that	 inhibit	Hh	 signalling	 include:	 zerumbone,	

physalin	B,	physalin	F	and	staurosporine	(Stanton	et	al.,	2009).			

	

	

1.4.6.2	 Synthetic	Compounds	

	

Vismodegib	 is	 licenced	 for	 the	 treatment	 of	 locally	 aggressive	 BCC	 that	 are	 not	

amenable	 to	 surgical	 resection	 and	 metastatic	 disease.	 Von-Hoff	 and	 colleagues	

conducted	a	two-stage	phase	1	trial	on	33	patients	with	metastatic	or	locally	advanced	

BCC,	 and	 assessed	 the	 response	 of	 these	 tumours	 to	 the	 small-molecule	 inhibitor	 of	
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SMO,	vismodegib	 (Von-Hoff	et	al.,	2009).	They	 found	that	of	33	BCC	patients	 treated,	

only	 two	 had	 a	 complete	 response,	 while	 18	 had	 an	 objective	 response,	 and	 the	

remaining	15	had	either	 stable	disease	or	progressive	disease	 (Von-Hoff	et	al.,	2009).	

They	later	performed	a	larger	2-cohort	nonrandomized	study	on	104	patients	(71	locally	

advanced	 BCC	 and	 33	 metastatic	 BCC),	 and	 found	 that	 vismodegib	 treatment	 was	

associated	with	 tumour	 responses	 in	 43%	of	 patients	with	 locally	 advanced	BCC,	 and	

30%	of	patients	with	metastatic	BCC	 (Sekulic	et	al.,	 2012).	The	efficacy	of	 vismodegib	

was	 also	 evaluated	 in	 patients	 with	 BCNS	 in	 a	 randomised,	 double	 blind,	 placebo-

controlled	trial,	and	was	shown	to	reduce	the	tumour	burden	and	block	growth	of	new	

BCCs;	 however	 drug	 treatment	 was	 discontinued	 in	 54%	 of	 patients	 due	 to	 adverse	

effects	of	the	drug	(Tang	et	al.,	2012).		

	

When	 assessing	 the	 efficacy	 of	 vismodegib	 on	 medulloblastoma,	 Von-Hoff	 and	

colleagues	 presented	 a	 case	 report	 of	 a	 26-year-old	 man	 diagnosed	 with	

medulloblastoma	confined	to	the	cerebrum,	at	the	age	of	22.	The	patient	demonstrated	

a	good	 initial	 response	 to	 the	drug,	although	 this	was	only	 transient,	 and	 the	 tumour	

rapidly	developed	resistance	to	the	drug	and	relapse	occurred	approximately	3	months	

after	 the	 initiation	 of	 the	 therapy	 and	 the	 patient	 died	 a	 further	 2	months	 after	 this	

(Rudin	 et	 al.,	 2009).	 A	 biopsy	 of	 one	 of	 the	 tumours	 revealed	 that	 resistance	 was	

attributed	to	D473H	mutation	within	SMO	(Yauch	et	al.,	2009;	Dijkgraaf	et	al.,	2011).		

	

LDE-225/Sonidegib	 (Novartis)	 is	 a	 recently	 licenced	 potent,	 orally	 bioavailable	 SMO	

antagonist.	 Sonidegib	 was	 found	 to	 impair	 medulloblastoma	 cell	 growth	 when	

combined	with	PI3K	 inhibitors	(Buonamici	et	al.,	2010),	and	was	also	found	to	reverse	

Taxane	resistance	in	a	model	for	ovarian	cancer	(Steg	et	al.,	2012).	However,	in	phase	II	

trials,	Sonidegib	showed	only	a	partial	response	to	treatment	with	Gorlin	syndrome	and	

BCC	(Skvara	et	al.,	2011).		

	

Therefore,	taken	together	Hh/SMO	antagonists	have	shown	some	reasonable	responses	

to	 the	 treatment	 of	 Hh	 driven	 tumours,	 but	 have	 also	 been	 faced	 with	 tumour	

unresponsiveness	and	even	relapse/resistance	(Skvara	et	al.,	2011;	Sekulic	et	al.,	2012).	
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Therefore	it	will	be	important	to	better	understand	the	mechanisms	of	resistance	that	

underlie	the	failure	of	the	drugs.			

	

1.4.7	 Development	of	resistance	to	Hh	antagonists		

	

Vismodegib	inhibits	SMO	and	despite	it	being	active	in	advanced	BCC,	more	than	50%	of	

such	 lesions	 have	 demonstrated	 resistance	 to	 vismodegib	 (Ransohoff	 et	 al.,	 2015;	

Metcalfe	and	de	Sauvage,	2011);	the	mechanisms	of	such	resistance	will	be	discussed.	

Atwood	et	al.	(2015)	and	Sharp	et	al.	(2015)	used	a	large	collection	of	tumour	samples	

to	 identify	 specific	 mutations	 within	 SMO	 that	 were	 responsible	 for	 conferring	

resistance	to	vismodegib	(Atwood	et	al.,	2015;	Sharpe	et	al.,	2015).	A	similar	mechanism	

for	resistance	was	also	identified	in	medulloblastoma	treated	with	vismodegib	(Yauch	et	

al.,	2009).	Both	studies	demonstrated	similar	findings	in	that	in	spontaneous	BCCs,	15-

33%	 were	 found	 to	 have	 SMO	 mutations,	 whereas	 this	 rose	 to	 69-77%	 in	 resistant	

tumours.	 The	authors	were	also	 able	 to	 separate	 the	 resistance-associated	mutations	

into	 two	 groups	 by	 aligning	 the	 mutations	 with	 the	 crystal	 structure	 of	 the	 SMO	

transmembrane	domain.	Group	1	mutations	were	found	within	or	immediately	adjacent	

to	the	ligand/drug-binding	pocket,	whereas	the	group	2	mutations	were	found	at	more	

distant	sites	within	SMO.							

	 	

1.4.7.1	 Transformation	of	BCC	into	more	aggressive	phenotypes	
	
Several	cases	of	SCC	arising	from	the	same	tumour	bed	as	the	original	BCC	during	and	

after	 treatment	 have	 been	 documented	 (Ransohoff	 et	 al.,	 2015;	Mohan	 et	 al.,	 2016;	

Aasi	et	 al.,	 2013;	Orouji	et	 al.,	 2014;	 Zhu	et	 al.,	 2014;	 Chang	et	 al.,	 2012;	 Zhu	et	 al.,	

2014).	Whether	the	SCC	is	related	to	the	BCC	clone	or	simply	rose	independently	in	the	

same	stroma	bed	is	not	always	determined	in	many	of	these	clinical	reports.	However,	

Ransohoff	et	al.,	(2015)	provided	genetic	evidence	of	phenotype	switching	form	BCC	to	

SCC	during	vismodegib	treatment.	In	this	instance	DNA	was	obtained	from	the	primary	

basal-cell	lesion	before	vismodegib	therapy,	and	from	the	recurring	squamous	cells,	and	

underwent	 exome	 sequencing.	 Sequencing	 identified	 identical	 PTCH1	 and	 TP53	

mutations	within	both	tumours	sequenced,	with	the	recurrent	SCC	found	to	have	a	very	
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similar	 mutation	 rate	 of	 35	 mutations	 per	 mega-base	 and	 shared	 a	 90%	 genomic	

identity	 with	 the	 original	 BCC	 (Ransohoff	 et	 al.,	 2015).	 In	 an	 attempt	 to	 identify	 the	

mechanisms	 underpinning	 this	 conversion	 following	 treatment,	 they	 found	 that	 the	

recurrent	 SCC	 showed	 no	 signs	 of	 acquired	 SMO	 mutations	 but	 still	 demonstrated	

maintained	 Hh	 signalling	 pathway	 activity.	 Another	 study	 identified	 the	 onset	 of	

keratoacanthomas	 (KAs)	 in	 two	 patients	 with	 no	 history	 of	 developing	 KAs	 or	 SCCs,	

following	 treatment	 of	 locally	 advanced	 BCC	 with	 vismodegib	 (Aasi	 et	 al.,	 2013).	

Furthermore	 in	 a	 study	 by	Mohan	 et	 al.	 (2016)	 on	 a	 cohort	 of	 180	 patients	 (BCC=55	

cases;	 Controls=125	 cases),	 patients	 exposed	 to	 vismodegib	 had	 an	 increased	 risk	 of	

developing	cutaneous	SCC	(Mohan	et	al.,	2016).										

1.5	 Stem	Cells	

	
Tissues	such	as	the	skin	epidermis	continuously	self-renew	through	the	dedicated	

activity	of	adult	tissue-specific	SCs	(SC)	(Fuchs	and	Chen,	2013).	Adult	tissue	SCs	are	

long-lived	and	produce	progeny	that	are	function-specific	and	short-lived.	SCs	represent	

a	rare	population	of	cells,	which	in	mammals	can	be	divided	into	two	main	categories:	i)	

embryonic	SCs	and	ii)	adult	SCs.	Embryonic	SCs	are	capable	of	giving	rise	to	all	cell	

lineages,	and	under	normal	conditions	are	unable	to	revert	back	to	a	pluripotent	state	

(Mitalipov	and	Wolf,	2009).	Following	embryonic	development,	embryonic	SCs	lose	

their	plasticity,	however	tissue	specific	adult	SCs	remain.	These	adult	tissue	SCs	are	

responsible	for	the	maintenance	and	repair	of	many	tissues,	including	the	skin,	brain,	

digestive	tract	and	haematopoietic	system	(Wagers	and	Weissman,	2004).	Within	these	

tissues,	SCs	are	found	at	the	top	of	the	cellular	hierarchy,	and	are	defined	by	their	long-

term	self-renewal	capacity,	and	ability	to	produce	cells	capable	of	differentiation,	which	

ensure	the	specific	functions	of	the	tissue.	Self-renewal	is	the	cardinal	property	of	a	SC,	

in	which	cell	division	produces	one	(asymmetric)	or	two	(symmetric)	daughters	that	

retain	the	ability	to	self-renew,	and	thereby	maintain	and/or	expand	the	SC	population	

(Yamashita	et	al.,	2010;	Fuchs	and	Chen,	2013).	Schofield	et	al.	(1978)	proposed	that	

SCs	reside	in	a	specific	anatomical	compartment	within	the	tissue	that	promotes	the	

maintenance	of	SC	properties,	termed	the	‘SC	niche’.	These	niches	are	essential	for	

normal	SC	function,	and	are	as	varied	as	the	SCs	they	support,	with	studies	showing	that	
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tissues	contain	distinct	functional	SC	niches,	each	designed	to	support	the	specialized	

role	of	that	tissue	(Morrison	and	Spadling,	2008;	Plaks	et	al.,	2015;	Lane	et	al.,	2014).	

Interestingly,	there	is	increasing	evidence	to	show	that	deregulation	of	these	SC	niches	

is	implicated	in	numerous	pathologies	associated	with	tissue	degeneration	and	

tumourigenesis	(Plaks	et	al.,	2015).			  

 

1.5.1	 Haematopoietic	SCs	and	Leukaemia	initiating	cells	

	
In	1961,	Till	and	McCulloch	published	the	first	in	a	series	of	groundbreaking	experiments	

that	went	on	to	demonstrate	that:	1)	the	existence	of	clonal	haematopoietic	cells	in	the	

bone	marrow	could	give	rise	to	mixed	myeloerythroid	progeny,	2)	some	of	these	cells	

had	the	capacity	to	make	more	of	themselves,	and	3)	in	the	spleens	of	these	mice,	there	

were	cells	that	had	the	capacity	to	make	lymphocytes	(Till	and	McCulloch,	1961;	Becker	

et	 al.,	 1963;	 Siminovitch	 et	 al.,	 1963;	Wu	 et	 al.,	 1967;	Wu	 et	 al.,	 1968).	 In	 the	 early	

1990’s	 Dick	 and	 colleagues	 utilising	 a	 similar	 approach	 found	 that	 most	 subtypes	 of	

acute	myeloid	leukaemia	(AML)	could	engraft	reliably	in	immunodeficient	mice	(Lapidot	

et	al.,	1994;	Bonnet	and	Dick,	1997).	They	successfully	showed	that	leukaemia-initiating	

cells	 (LICs)	 were	 enriched	 within	 the	 CD34+	 CD38-	 fraction	 and	 that	 the	 leukaemia	

initiating	cell	frequency	was	approximately	1	per	250,000	tumour	cells.	Transcriptional	

profiling	 of	 these	 LICs	 revealed	 that	 they	were	 similar	 to	 normal	 haematopoietic	 SCs	

(Eppert	et	al.,	2011).	However	studies	have	shown	that	by	transplanting	sorted	fractions	

of	 primary	NPM-mutated	 AML	 into	 immunodeficient	 mice,	 LICs	 were	 present	 in	 the	

CD34-	 fraction	also	 (Taussig	et	al.,	2008).	Table	1.3	outlines	 the	multiple	cell	 fractions	

that	 have	 been	 identified	 as	 capable	 of	 initiating	 leukemia	 in	 both	 primary	 and	

secondary	 recipients.	 Interestingly,	 the	cell	of	origin	 for	most	LICs	 is	not	entirely	clear	

(Dick,	2008;	Clarke	et	al.,	2006),	with	one	hypothesis	 that	LICs	only	arise	 from	normal	

haematopoietic	SCs	(HSCs)	and	not	from	committed	progenitors,	whereas	the	other	 is	

that	 transformation	 may	 occur	 in	 a	 variety	 of	 cell	 types	 within	 the	 haematopoietic	

hierarchy.	LICs	derived	from	HSCs	is	supported	by	the	observation	that	they	both	share	

numerous	characteristics	such	as	their	capacity	to	self	renew	and	be	quiescent	(Terpstra	

et	 al.,	 1996;	 Lessard	 and	 Sauvageau,	 2003;	 Yilmaz	 et	 al.,	 2006).	 However,	 there	 is	

experimental	evidence	in	mice	to	support	the	alternative	hypothesis,	with	LSCs	shown	
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to	arise	from	a	variety	of	target	cell	populations	following	neoplastic	changes	(Wang	et	

al.,	2010;	Huntly	et	al.,	2004;	Kvinlaug	et	al.,	2011).	However	some	neoplastic	changes	

including	 those	 in	MOS-TIF,	MLL-AF9	and	MLL-ENL	are	 capable	of	 inducing	 LICs	when	

expressed	 in	both	HSC	and	progenitor	cell	populations	(Krivstov	et	al.,	2006;	Cozzio	et	

al.,	2003),	whereas	other	neoplastic	changes	such	as	those	in	BCR-ABL,	FLT3-ITD,	Hoxa9	

and	Meis1	have	only	been	found	to	induce	LICs	when	expressed	in	HSCs	only	(Wang	et	

al.,	2010;	Kvinlaug	et	al.,	2011).	

	

Table	 1.3:	Markers	 of	 Leukemia	 initiating	 cell	 populations	 (Taken	 from	 Stahl	 et	 al.,	

2016)	

	

Cell	Surface	Markers	 Patient	Samples	Used	 Mouse	Model	 References	
CD34+CD38-	 FAB	M1,	M4,	M5	 NOD/SCID	 Bonnet	and	Dick,	

1997;	Lapidot	et	
al.,	1994	

CD34+CD38+	 CN-AML,	MLL-ENL	 NOD/SCID+IVIG	
or	anti-CD122	

McKenzie	et	al.,	
2006;	Taussig	et	
al.,	2008;	Civin	et	
al.,	1996;	Hogan	et	
al.,	2002	

CD34-CD38+	 AML	with	NPM1	
mutation	

NOD/SCID	IL2	
receptor	

Taussig	et	al.,	
2008	

CD34+CD123+	 FAB	M1,	M2,	M4	 NOD/SCID	 Jordan	et	al.,	2000	
CD34+CD38-CD96+	 CK-AML,	CBFB-MYH11	 Rag2-/-,	IL2RG-

/-	
Hosen	et	al.,	2007	

CD34+CLL1+	 AMLs	with	FLT3-ITD	 NOD/SCID	 van	Rhenen	et	al.,	
2007	

TIM3+	 FAB-M1,	M2,	M4	 NOD/Rag1-/-,	
IL2RG-/-	

Kikushige	et	al.,	
2010	

CD34+CD38-	 CN-AML	 NOD/SCID	 Taussig	et	al.,	
2005	

CD33+CD13+	 CBF-AML,	MLL-ENL	 NOD/SCID	 Taussig	et	al.,	
2005	
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1.5.2	 Keratinocyte	SCs	

	

The	concept	that	the	epithelium	of	the	skin	contains	SCs	arose	from	the	patterns	of	

proliferation	observed	within	the	morphological	units	of	structure,	termed	epidermal	

proliferative	units	(EPUs)	(Mackenzie	et	al.,	1969;	Mackenzie	et	al.,	1985;	Potten	et	al.,	

1974).	Within	the	epidermis,	tissue	homeostasis	and	wound	repair	is	governed	by	these	

adult	SCs,	which	as	previously	described	are	found	within	a	specific	niche	known	as	the	

microenvironment,	responsible	for	hosting	and	maintaining	SCs.	It	is	thought	that	the	

stemness	of	SCs	is	preserved	through	their	infrequent	cycling,	and	ability	to	self-renew	

and	remain	undifferentiated	over	time.	The	epidermis	is	able	to	achieve	this	

homeostasis	when	the	number	of	cell	divisions	within	the	tissue	compensates	the	

number	of	cells	that	are	lost	(Xie	&	Spradling,	2000).	Two	distinct	models	have	been	

proposed	to	explain	the	behaviour	of	basal	cells.	In	the	hierarchical	model,	the	

epidermis	is	organized	into	discrete	proliferative	units,	containing	slow-cycling	SCs	that	

give	rise	to	transit-amplifying	cells	capable	of	departing	the	basal	layer	after	several	

divisions,	to	subsequently	generate	columnar	units	of	differentiating	cells.	Whereas	in	

the	stochastic	model,	a	single	type	of	proliferative	progenitor	comprises	the	basal	layer,	

whose	daughter	cells	randomly	choose	one	of	two	fates,	either	to	remain	as	a	

progenitor,	or	to	differentiate.		

	

In	early	studies,	[3H]	thymidine	labelling	was	used	to	show	that	basal	cells	located	at	

the	periphery	of	the	EPU	were	readily	labelled,	and	were	frequently	shown	to	have	

mitotic	figures,	whereas	the	central	cells	within	the	EPU	required	continuous	labelling	

and	were	termed	label	retaining	cells	(LRCs)	because	they	were	seen	to	persist	within	

the	EPU	for	weeks	to	months	after	labelling	(Mackenzie	et	al.,	1969;	Mackenzie	et	al.,	

1985).	These	observations	suggested	that	the	central	cells	have	SC	properties.	However,	

more	recently	when	evaluating	the	contribution	of	SCs	to	tissue	homeostasis,	lineage	

tracing	has	proven	a	very	powerful	method.	Lineage	tracing	involves	the	genetic	

marking	of	one	or	even	a	group	of	cells,	such	that	their	progeny	retain	marker	

expression	and	can	be	subsequently	followed	over	time.	Numerous	groups	have	used	

this	method	to	study	the	fate	of	cells	within	the	epidermis,	and	have	generated	

conflicting	results.	For	example	some	groups	have	generated	clonal	fate	data,	from	the	
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long	term	labelling	of	basal	cells	in	tail,	ear,	or	hind	paw	epidermis	in	mice,	and	found	

that	it	was	compatible	with	the	stochastic	model	(Fuchs,	2016;	Clayton	et	al.,	2007;	

Doupe	et	al.,	2010;	Lim	et	al.,	2013).	However,	one	important	unresolved	issue	with	

these	aforementioned	studies	is	whether	they	randomly	or	selectively	mark	the	basal	

cells.	In	contrast,	other	studies	who	have	generated	data	to	support	the	hierarchical	

model.	An	example	includes	the	study	by	Mascre	et	al.	(2012),	where	they	used	two	

inducible	Cre-Lineage	tracers,	the	first	of	which	was	driven	by	the	K14	promoter	and	

was	active	in	all	basal	cells,	while	the	second	was	driven	by	an	Involucrin	promoter,	

which	was	present	in	a	distinct	subset	of	K14+	basal	cells	(Mascre	et	al.,	2012).	They	

demonstrated	that	basal	cells	marked	by	K14-CreER	behaved	like	long-lived	SCs,	which	

subsequently	gave	rise	to	a	subset	of	more	committed	basal	progenitors	marked	by	

Involucrin-CreER	(Mascre	et	al.,	2012).	Although	the	exact	number	and	characteristics	of	

epidermal	SCs	is	still	not	known,	their	reliance	on	the	surrounding	niche	is	beginning	to	

be	unravelled.	Epidermal	SCs	were	first	functionally	demonstrated	in	the	1970s	through	

in	vitro	studies,	which	showed	that	human	keratinocytes	could	be	successfully	

maintained	and	propagated	for	many	generations	without	losing	stemness	(Rheinwald	

and	Green,	1975).	Furthermore	when	expanding	epidermal	cultures	from	an	unaffected	

region	of	a	burns	patient,	it	was	found	that	they	could	be	engrafted	onto	the	damaged	

skin,	which	some	30	years	on	have	not	developed	cancer	or	other	abnormalities,	

thereby	indicating	that	under	the	right	conditions	SC	expansion	and	differentiation	

could	be	achieved	without	deleterious	consequences,	when	co-culturing	with	irradiated	

dermal	fibroblasts	(Gallico	et	al.,	1984).	This	requirement	for	surrounding	dermal	cells	

highlighted	the	need	for	SCs	to	crosstalk	with	their	niche.														

	

Under	physiological	conditions,	active	hair	growth	takes	place	in	the	lower	hair	follicle	

(HF)	through	cycles	of	hair	growth	(anagen),	destruction	(catagen),	and	rest	(telogen)	

(Alonso	and	Fuchs,	2006).	The	emergence	of	the	new	hair	follicle	takes	place	next	to	the	

old	hair,	which	persists	into	the	next	cycle,	thereby	creating	a	protrusion	or	bulge.	

Cotsarelis	et	al.	(1990)	extended	the	LRC	concept	to	the	HF,	and	found	that	LRCs	where	

present	in	the	bulge	(Cotsarelis	et	al.,	1990).	Studies	have	shown	that	the	bulge	contains	

slow	cycling	label	retaining	cells,	which	sometime	later	were	isolated	and	characterized,	

and	shown	to	be	capable	of	long-term	self-renewal,	contributing	to	the	HF	cell	lineages	
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and	wound	repair	(Cotsarelis	et	al.,	1990;	Morris	et	al.,	2004;	Blanpain	et	al.,	2004;	

Claudinot	et	al.,	2005).	Furthermore,	SCs	within	the	bulge	region	of	the	HF	are	

responsible	for	driving	hair	growth.	Such	studies	include	Oshima	et	al.	(2001)	who	

through	a	combination	of	micro-dissecting	hair	follicles	and	grafting	techniques,	

demonstrated	that	within	the	cutaneous	epithelium,	bugle	cells	were	capable	of	

differentiating	into	all	cell	types	(Oshima	et	al.,	2001).	Within	the	HF	there	exist	multiple	

cell	populations	with	SC	properties,	with	each	having	distinct	cell	surface	markers	and	

locations	within	the	follicle	(Singh	et	al.,	2012).	FACS	along	with	cell	culture	have	been	

very	important	techniques	for	identifying	keratinocyte	SCs	within	the	cutaneous	

epithelium.	A	number	of	studies	have	adopted	these	approaches,	including	Jones	and	

Watt	(1993),	who	demonstrated	that	keratinocyte	SCs	could	be	isolated	by	their	

relatively	high	levels	of	β1	integrin	expression	(Jones	and	Watt,	1993).	β1	integrin	

expression	was	also	used	by	Bickenbach	and	Chism	(1998)	to	enrich	LRCs	due	to	their	

greater	adhesiveness	to	type	IV	collagen	(Bickenbach	and	Chism,	1998).	Small	and	

relatively	undifferentiated	keratinocytes	that	later	turned	out	to	be	LRCs,	were	

identified	by	Tani	et	al.	(2000)	based	on	α6	integrin	expression	along	with	a	reduction	

in	the	expression	of	CD71	(Tani	et	al.,	2000).	α6	integrin	expression	has	also	been	used	

alongside	CD34	(a	haematopoietic	stem	and	progenitor	marker),	by	Trempus	et	al.	

(2003),	to	identify	cells	within	the	hair	follicle	bulge	that	were	enriched	for	LRCs	in	

culture	(Trempus	et	al.,	2003).	Another	group	also	isolated	hair	follicle	bulge	cells,	but	

this	time	used	a	strategy	that	enriched	the	cells	based	on	histone	H2b-Green	

Fluorescent	Protein	expression.	CD34	was	used	by	Blanpain	et	al.	(2004)	for	FACS	

sorting,	and	identified	two	cell	populations	based	on	the	presence	or	absence	of	

immunoreactivity	with	α6-integrin	(Blanpain	et	al.,	2004).		

	

Furthermore,	within	the	bulge	region	of	the	HF,	a	population	has	been	identified	

expressing	both	CD34	and	Lgr5	(originally	identified	as	an	intestinal	SC	marker),	and	is	

capable	of,	reconstituting	all	of	the	epidermal	lineages	in	reconstitution	assays	and	

maintaining	HF	lineages	under	steady	state	conditions	(Jaks	et	al.,	2008).	Located	just	

above	the	CD34+	bulge	region	are	quiescent,	clonogenic	LRCs	that	express	the	MTS24	

epitope	and	α6	integrin	(but	not	K15	or	CD34)	(Nijhof	et	al.,	2006).	There	exists	yet	

another	SC	population	between	the	bulge	region	and	infundibulum,	that	expresses	
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MTS24,	and	α6	integrin,	but	lacks	CD34	and	sca-1	expression,	and	is	capable	of	

reconstituting	the	interfollicular	epidermis,	HF,	and	sebaceous	glands	(Jensen	et	al.,	

2008).	Flow	sorting	has	proven	very	successful	for	isolating	SCs	within	the	bulge	region	

of	the	HF;	however,	sorting	interfollicular	SCs	has	proven	more	difficult.	Nevertheless,	

Lrig1	is	another	SC	marker	that	has	been	used	to	characterize	adult	interfollicular	SCs	in	

humans,	and	the	HF	junctional	zone	adjacent	to	the	sebaceous	glands	and	infundibulum	

in	mice	(Jensen	et	al.,	2009).		

	

Finally	 lineage-tracing	 strategies	 as	mentioned	 earlier,	 have	 also	 been	 very	 useful	 for	

visualising	the	fate	of	cells	from	the	HF	bulge.	Both	Tumbar	et	al.	(2004)	and	Morris	et	

al.	(2004)	found	that	bulge	cells	contributed	towards	HF	cycling,	but	made	much	less	of	

a	contribution	towards	epidermal	and	sebaceous	gland	homeostasis.	Furthermore,	the	

Tumbar	et	al,	2004	 found	 that	 the	bulge	environment	was	growth	and	differentiation	

restricted.	Levy	et	al.	 (2005)	used	a	different	transgenic	mouse	model,	and	found	that	

follicular	 cells	expressing	SHh	contributed	 to	 the	epidermis	and	sebaceous	gland.	This	

finding	 was	 expanded	 by	 Ito	 et	 al.	 (2005),	 and	 found	 that	 K15	 expressing	 SCs	

contributed	to	early	phase	of	wound	healing,	but	did	not	persist	in	the	wound	when	it	

was	healed,	thereby	indicating	no	or	little	involvement	in	epidermal	homeostasis.						

	

1.5.3	 Cancer	Stem	Cells	and	tumour	heterogeneity	

	
The	cancer	SC	(CSC)	theory	states	that	tumour	growth	has	a	similar	hierarchy,	in	which	

tumour	 growth	 is	 maintained	 by	 a	 small	 population	 of	 long-lived	 cells	 called	 CSCs.	

Recent	 papers	 have	 shown	 the	 presence	 of	 CSCs	 through	 lineage	 tracing	 and	 cell	

ablation	 in	 intact	 tumours	 (Driessens	et	 al.,	 2012;	 Schepers	et	 al.,	 2012;	 Kozar	et	 al.,	

2013;	Zomer	et	al.,	2013;	Chen	et	al.,	2012).	 In	 this	 section	 I	discuss	 the	basis	 for	 the	

cancer	SC	theory	and	its	relevance	to	therapy.	

	

Tumour	 heterogeneity	 was	 first	 observed	 by	 pathologists	 over	 a	 century	 ago	 and	 is	

often	 the	 basis	 for	 pathological	 diagnosis	 (Heppner,	 1984).	 Cutaneous	 squamous	 cell	

carcinoma	(SCC)	demonstrates	keratinisation	or	stratification	and	thus	tumours	contain	

so	called	“keratin	pearls”(Petter	et	al.,	1998).	Even	BCC	consists	of	HF	outer	root	sheath	
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basaloid	 cells,	 albeit	 representing	 a	 more	 subtle	 histological	 feature	 (Colmont	 et	 al.,	

2013;	 Morgan	 et	 al.,	 2018	 (Manuscript	 under	 review)).	 The	 tumour	 heterogeneity	

associated	 differentiated	 cells	 are	 of	 prognostic	 value,	 since	 tumours	 that	 maintain	

normal	 tissue	 architecture	 are	 classed	 as	 “well	 differentiated”	 and	 so	 have	 a	 good	

prognosis	 (Brantsch	et	 al.,	 2008;	 Cox	et	 al.,	 2006).	 Conversely	 “poorly	 differentiated”	

tumours	 with	 loss	 of	 normal	 tissue	 architecture	 are	 associated	 with	 a	 worse	 clinical	

outcome.	 In	 this	 static	 view	 of	 cancer	 growth	 all	 histologic	 features	 of	 their	 parent	

tissue	maybe	lost	resulting	in	“de-differentiated”	tumours,	leading	some	to	suggest	that	

the	 tumour	 tissue	 has	 regressed	 to	 a	more	 primitive	 cell	 type	 (Morgan	 et	 al.,	 2008).	

Consistent	with	the	poor	prognosis	associated	with	poor	or	de-	differentiated	cancers,	

these	tumours	have	a	high	mitotic	rate	while	at	the	same	time	switch	off	the	mutually	

exclusive	process	of	terminal	differentiation	(Brantsch	et	al.,	2008;	Cox	et	al.,	2006).	

	

Interrogation	 using	 molecular	 biology	 has	 demonstrated	 heterogeneity	 in	 the	

expression	 of	 cell	 surface	 markers	 (Dexter	 et	 al.,	 1978;	 Poste	 et	 al.,	 1980)	 and	 the	

presence	 of	 multiple	 sub-populations	 within	 many	 cancers,	 such	 as	 melanoma	 (Gray	

and	Pierce,	1964),	breast	cancer	(Dexter	et	al.,	1978)	and	intestinal	cancer	(Dexter	et	al.,	

1979).	 These	 sub-populations	 exhibit	 unique	DNA	 aberrations	 (Mitelman	et	 al.,	 1972;	

Shapiro	et	al.,	 1981),	 growth	 rates	 (Danielson	et	al.,	 1980)	 and	 relevant	 to	 this	 thesis	

response	 to	 therapeutics	 (Barranco	 et	 al.,	 1972).	 As	 such,	 tumour	 heterogeneity	 aids	

diagnosis	and	may	account	for	variable	response	to	conventional	anti-cancer	therapies.		

	

	

	

1.5.4	 Clonal	versus	cancer	Stem	Cell	theories	

	
Using	 radiolabelling	 of	 mouse	 squamous	 cell	 carcinoma,	 Pierce	 and	Wallace	 in	 1971	

showed	 that	 pulse	 radiolabelling	 occurred	 almost	 exclusively	 within	 undifferentiated	

cells.	At	 later	 time	points,	 the	DNA	 label	 appeared	also	within	 the	well-differentiated	

cells,	 suggesting	 that	 they	 were	 derived	 from	 undifferentiated	 cells.	 These	 well-

differentiated	cells	did	not	form	tumours	when	transplanted	into	compatible	hosts,	only	

the	undifferentiated	cells	could	reform	SCC	(Pierce	and	Wallace,	1971).	These	and	other	



	 	 Chapter	1:	Introduction	

	
	

58	

experimental	 findings	 led	Pierce	 to	 frame	 the	CSC	 concept:	 “a	 concept	of	 neoplasms,	

based	 upon	 developmental	 and	 oncological	 principles,	 states	 that	 carcinomas	 are	

caricatures	of	tissue	renewal,	in	that	they	are	composed	of	a	mixture	of	malignant	SCs,	

which	have	a	marked	capacity	for	proliferation	and	a	limited	capacity	for	differentiation	

under	 normal	 homeostatic	 conditions,	 and	 of	 the	 differentiated,	 possibly	 benign,	

progeny	of	these	malignant	cells.”	(Pierce	and	Speers,	1971).	This	and	other	such	similar	

findings	 raised	 concern	 over	 the	 pervading	 theorem	 of	 clonal	 evolution	 of	 cancer	

(Figure	1.5).		

	

	

	

	

Figure	1.5:	A	timeline	highlighting	some	of	the	major	discoveries	in	stem	cell	research.	

A	timeline	highlighting	some	of	the	major	discoveries	in	the	fields	of	clonal	evolution	

(shown	on	the	left)	and	cancer	SCs	(shown	on	the	right).	Adapted	from	Clevers,	2013.	
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The	central	tenets	of	the	CSC	theory	of	tumour	growth	based	on	existing	assays	are:	

1.	Tumour	heterogeneity	arises	from	hierarchical	growth.	

2.	CSC’s	are	a	rare	self-renewing	population	at	 the	hierarchical	apex.	CSC’s	have	 long-

term	 proliferative	 capacity,	 usually	 quiescent,	 while	 progeny	 undergo	 short-term	

proliferation	prior	to	terminal	differentiation.	

3.	Differentiation	is	unidirectional,	with	limited	plasticity.	

4.	 CSC’s	 are	 resistant	 to	 conventional	 treatment,	 radiotherapy	 and	 chemotherapy,	

which	preferentially	 target	 fast	dividing	cells	 i.e.	progeny.	Thus	CSC’s	are	the	basis	 for	

relapse	and	metastasis.	

	

The	CSC	hypothesis	was	developed	to	distinguish	between	the	clonal	and	CSC	models	of	

tumour	 growth.	 The	 CSC	 hypothesis	 is	 used	 to	 test	 the	 presence	 of	 tumour	 initiating	

cells	and	states	that	only	a	small	population	of	cancer	cells	have	the	capacity	to	recreate	

tumour	growth	 in	vivo.	 Implicit	 in	this	 is	that	the	remaining	tumour	cells	regardless	of	

how	many	cells	are	implanted	do	not	have	the	capacity	to	recreate	tumour	growth.	In	

the	 clonal	 (stochastic)	 model	 of	 tumour	 growth,	 the	 majority	 of	 the	 cells	 would	 be	

expected	to	be	able	to	recreate	tumour	growth.	

	

	

1.5.5	 Cancer	stem	cells	in	solid	malignancies	

	
Many	 solid	 cancers	have	been	 identified	as	 exhibiting	CSCs,	 utilising	 in	 vivo	 xenograft	

assays	to	demonstrate	self-renewal	(Table	1.4).	In	their	landmark	paper	in	2003,	Clarke	

and	 colleagues	 were	 able	 to	 demonstrate	 CSCs	 in	 breast	 cancer,	 with	 as	 few	 as	 100	

CD44+CD24-/low	cells	able	to	demonstrate	mammary	fat	pad	engraftment,	whereas	the	

bulk	population	was	unable	to	do	so	(Al-Hajj	et	al.,	2003).	Hence	using	immunodeficient	

mouse	assays,	multiple	solid	cancers	have	been	found	to	demonstrate	CSC	dependent	

growth.	

	

Table	 1.4:	 Cancer	 SC	 populations	 identified	 in	 a	 number	 of	 human	 cancers	 using	 in	

vivo	assays	(only	cell	surface	markers	are	described)	
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Human	tumour	

Normal	

adult	

tissue	

SC	

marker	

Tumour	

initiating	

cell	marker	

Model	

used	for	

validation	

Percentage	

of	marker	

+ve	cells	in	

tumour	

References	

Acute	Myeloid	

Leukaemia	

CD34+	

CD38-	

CD90+	

CD45RA-

Lin-		

CD34+	

CD38-	

SCID	 &	

NOD	SCID	

0.1%	 Lapidot	 et	 al.,	 1994;	

Bonnet	 and	 Dick,	

1997;	 Doulatov	 et	

al.,	2012	

Chronic	Myeloid	

Leukaemia	

CD34+	

CD38-	

NOD	SCID	 0.1%	 Doulatov	 et	 al.,	

2012;	 Wang	 et	 al.,	

1998	

Breast	Cancer	

CD49f+	

CD24-	

ESA+	 CD44+	

CD24-/low	

NOD	SCID	 12-35%	 Al-Hajj	 et	 al.,	 2003;	

Peterson	and	Polyak,	

2010	

Meduloblastoma	 CD133+		 CD133+	 NOD	SCID	 6-21%	 Singh	 et	 al.,	 2004;	

Uchida	et	al.,	2000	Glioblastoma	

Multiforme	

CD133+	 19-29%	

Colon	Cancer	

Lgr5+		 CD133+	 NOD	SCID	 1.1-24.5%	 O’Brien	 et	 al.,	 2007,	

Ricci-Vitiani	 et	 al.,	

2007,	 Barker	 et	 al.,	

2007	

Colorectal	

Cancer	

EpCAMhi	

CD44+	

NOD	SCID	 0.03-38.7%	 Dalerba	et	 al.,	 2007;	

Barker	et	al.,	2007	

Pancreatic	

Cancer	

Not	

defined	

ESA+	 CD44+	

CD24+	

NOD	SCID	 0.2-0.8%	 Kajstura	et	al.,	2011	

Head	and	Neck	

SCC	

CD29hi	

CD44+	

CD44+	Lin-	 NOD	SCID	 <10%	 Prince	 et	 al.,	 2007,	

Jensen	et	al.,	2008	

Melanoma	

Not	

defined	

ABCB5	

CD271+	

CD20+HMW-

NOD	 SCID	

&	

	Rag2-/-

1.6-20.4%	

2.5-41%	

Schatton	 et	 al.,	

2008;	 Boiko	 et	 al.,	

2010;	
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1.5.6	 Keratinocyte	cancer	Stem	Cells	

	
The	concept	that	CSC	are	the	cancer	 initiating	cells	 in	skin	caner	 is	not	new,	however,	

there	 is	 now	 specific	 evidence	 to	 show	 that	 this	 is	 indeed	 the	 case	 in	 the	 cutaneous	

epithelium.	A	small	number	of	cells	were	identified	in	the	middle,	permanent	region	of	

hair	follicles	by	Morris	and	Potten	(1999),	and	shown	to	retain	[3H]	thymidine	label	for	

more	than	a	year	and	remained	following	plucking,	and	even	proliferated	in	response	to	

it.	A	previous	study	by	Morris	et	al.	(1986)	found	that	the	central	[3H]	thymidine	LRCs	

within	the	EPUs	were	capable	of	retaining	the	carcinogen	label	[14C]	benzo[a]pyrene	for	

up	to	a	month.	These	observations	identified	the	SC	populations	as	potentially	relevant	

to	the	initiation	of	two-stage	carcinogenesis.	Further	studies	provided	more	evidence	to	

suggest	 that	 LRCs	 are	 important	 players	 in	 skin	 cancer,	 in	 that	 LRCs	 were	 shown	 to	

proliferate	in	response	to	the	mouse	skin	tumour	promoter	12-O-tetradecanoylphorbol-

13-acetate	(TPA),	whereas	the	more	mature	keratinocytes	did	not	(Morris	et	al.,	1985).	

MAA+	 γϲ-/-	 Boonyaratanakornkit	

et	al.,	2010;	Schmidt	

et	al.,	2011		

Lung	
CD117+	 CD133+	 NOD	SCID	 0.3-22%	 Eramo	et	al.,	2008;	Li	

et	al.,	2007	

Ovarian	
Not	

defined	

CD133+	 NOD	SCID	 0.3-35%	 Curley	et	al.,	2009	

Hepatocellular	

Cancer	

CD90+	

CD34+	

CD90+	

CD45-	

SCID	

beige	

0.03-6.2%	 Yang	 et	 al.,	 2008;	

Masson	et	al.,	2006	

SCC	

CD49hi	

CD71lo	

CD133+	

CD45-	

Nude	

with	

stromal	

bed	

0.1-1.7%	 Patel	 et	 al.,	 2012;	

Kaur	 and	 Potten,	

2011	

BCC	

CD200+	 CD200+	 Nude	

with	

stromal	

bed	

0.1-3.9%	 Colmont	et	al.,	2013	
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They	also	observed	that	following	their	division,	LRCs	and	their	daughters	remained	on	

the	 basal	 layer	 to	 again	 take	 up	 a	 central	 position	 within	 the	 EPU,	 whereas	 pulse-

labelled	 cells	 rarely	 divided	 and	 instead	 underwent	 displacement	 and	 subsequent	

terminal	differentiation	from	the	basal	layer.	These	findings	showed	that	LRCs	were	not	

only	capable	of	retaining	carcinogen-DNA	adducts,	but	also	responded	to	TPA	treatment	

by	 proliferating,	 which	 is	 a	 necessary	 event	 for	 tumour	 promotion.	 Further	 findings	

included	 the	 study	by	Morris	et	al.	 (1991)	where	 through	 the	use	of	density	 gradient	

sedimentation	of	freshly	harvested	keratinocytes	into	heavy	and	light	populations,	they	

found	 that	 the	 smallest	 and	 most	 dense	 subpopulation	 was	 enriched	 for	 clonogenic	

keratinocytes	 in	 vitro.	 These	 findings	 were	 important	 as	 they	 demonstrated	 that	 the	

cells	 relevant	 to	 skin	 carcinogenesis	 differed	 from	 the	 other	 less	 dense	 keratinocytes	

both	 in	 vitro	 and	 in	 vivo	 (Morris	 et	 al.,	 1991).	 A	 later	 study	 by	 Morris	 et	 al.	 (1997)	

investigated	the	SC	properties	of	initiated	keratinocytes	through	the	treatment	of	mice	

both	before	and	after	exposure	to	5-fluorouracil	(an	agent	known	to	kill	cycling	but	not	

quiescent	cells).	Due	to	 its	effects	on	cycling	cells,	 treated	mice	experienced	profound	

epidermal	atrophy,	but	despite	this	damage,	both	papilloma	and	carcinoma	responses	

were	 surprisingly	 similar	 between	 treated	 and	 vehicle	 controls,	 suggesting	 that	 the	

initiating	 cells	 were	 quiescent	 rather	 than	 cycling	 (Morris	 et	 al.,	 1991).	 Although	

previous	 studies	 suggest	 that	 keratinocyte	 SCs	 are	 quiescent	 or	 slow	 cycling,	 more	

recent	 evidence	 is	 suggesting	 the	 co-existence	 of	 two	 distinct	 SC	 populations:	 i)	

quiescent	 cells	 and	 cells	with	 a	 low	metabolic	 state,	 and	 ii)	 active	 SCs,	 such	 as	 those	

entering	 the	 cell	 cycle	 that	 are	 unable	 to	 retain	 the	DNA	 label.	 This	 co-existence	 has	

been	observed	in	a	number	of	tissues	including	HF,	intestine	and	bone	marrow	(Li	and	

Clevers,	 2010).	 In	 particular	 the	 HF	 has	 been	 shown	 to	 contain	 both	 slow	 cycling	

(CD34+Lgr5-)	and	actively	cycling	(CD34+Lgr5+)	cell	populations	next	to	the	bulge	area,	

which	is	consistent	with	Lgr5+	SCs	(actively	cycling)	 located	adjacent	to	the	LRCs	(slow	

cycling)	 (Jaks	et	al.,	2008;	Zhang	et	al.,	2006).	Therefore	 it	 seems	that	 the	hair	 follicle	

contains	both	quiescent	and	actively	cycling	cells	in	distinct	yet	adjacent	locations.		

	

The	 precise	 identification	 of	 CSCs	 along	 with	 the	 mechanisms	 that	 underlie	 tumour	

initiation	 in	 the	 non-melanoma	 skin	 cancers,	 SCC	 and	 BCC	 has	 remained	 largely	

unknown.	 However,	 more	 and	 more	 evidence	 is	 showing	 that	 in	 both	 of	 these	
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malignancies	 the	 major	 target	 cell	 for	 carcinogenesis	 lies	 in	 the	 epithelial	 SC	

compartment	(Gerdes	and	Yuspa,	2005;	Perez-Losada	and	Balmain,	2003;	Kangsamaskin	

et	 al.,	 2007;	 Singh	 et	 al.,	 2012).	 Primary	 human	 SCC	 is	 a	 heterogeneous	 tumour	

organized	 in	 a	 hierarchy	 of	 both	 proliferating	 and	 differentiating	 keratinocytes	 that	

recapitulates	normal	epidermal	development.	Since	keratinocyte	SCs	are	responsible	for	

reconstituting	 the	 cellular	 hierarchy	within	 the	 normal	 epidermis,	 it	 is	 highly	 possible	

that	 SCCs	 are	 also	 initiated	 by	 CSCs.	 For	 primary	 human	 SCC,	 in	 vivo	 tumour	 growth	

demonstrated	dose	dependent	tumour	growth,	with	assured	engraftment	if	>	3x106	SCC	

cells	 were	 implanted,	 irrespective	 of	 the	 original	 SCC	 histological	 grade	 (Patel	 et	 al.,	

2012a;	Patel	et	al.,	2012b).	Based	upon	a	limiting	dilution	calculation,	it	was	possible	to	

estimate	 the	 tumour	 initiating	 cell	 frequency	within	 the	unsorted	SCC	 cell	 suspension	

was	 1	 in	 106.	 After	 CD133	 sorting,	 the	 CD133+	 CD45-	 population	 could	 recreate	 SCC	

growth	 in	vivo	with	as	 few	as	one	hundred	cells,	albeit	 reproducibly	with	104	CD133+	

CD45-	sorted	SCC	cells.	 Intriguingly	once	tumours	had	formed	from	the	CD133+	CD45-	

sub-population	 the	 CD133+	 fraction	 remained	 at	 1%,	 similar	 to	 the	 original	 SCC.	 Yet	

despite	implanting	over	3	million	CD133-	CD45-	SCC	cells,	this	subpopulation	was	unable	

to	give	rise	to	tumour	growth.	 In	 line	with	other	human	tumour	 initiating	cell	studies,	

tumour	 cells	 derived	 from	 CD133+	 CD45-	 had	 recreated	 the	 original	 tumour	

heterogeneity,	 including	 the	 requisite	 CD133-	 cells	 (Patel	 et	 al.,	 2012a;	 Patel	 et	 al.,	

2012b).	 Additional	 studies	 include	 Li	 et	 al.	 (2013)	 who	 observed	 the	 ability	 of	 K15	

expressing	 bulge	 SCs	 within	 the	 hair	 follicle	 towards	 the	 development	 of	 squamous	

papilloma	 in	a	Krt1-15CrePR1;R26R	bigenic	mouse	model.	Firstly,	 they	 found	 that	K15	

expressing	 cells	 contributed	 to	 papilloma	 development	 following	 TPA	 promotion;	

secondly,	the	K15	cells	where	shown	to	persist	in	papillomas	for	many	months	following	

the	induction	of	the	reporter	gene	(Li	et	al.,	2013).	These	findings	indicated	that	these	

K15	expressing	hair	 follicle	 cells	 contributed	 to	 the	development	of	 these	papillomas.	

However,	the	contribution	of	SCs	cannot	be	ignored	in	other	NMSC	such	as	BCC.	

	

The	 identity	 of	 the	 disease-initiating	 cells	 and	 the	 compartments	 has	 been	

controversial;	however	recent	publications	are	shedding	more	light	on	these	matters.	In	

particular,	 there	 have	 been	 a	 number	 of	 publications	 that	 have	 demonstrated	 the	

pivotal	contribution	of	SCs	in	BCC	development.	A	recent	study	by	Peterson	et	al.	(2015)	
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used	 several	 inducible	 Cre	 drivers	 to	 delete	 PTCH	 in	 different	 cellular	 compartments	

within	mice	skin,	and	found	that	there	were	a	number	of	SC	populations	within	the	HF	

that	were	capable	of	driving	tumour	growth.	Conversely,	 these	SCs	 located	within	the	

interfollicular	epidermis	were	unable	to	drive	tumour	growth.	 In	particular	they	found	

that	 Gli-expressing	 progenitors	 within	 mechanosensory	 touch	 dome	 epithelia	 where	

highly	 tumourigenic.	However,	 these	 findings	are	 in	contradiction	to	 that	observed	by	

Youssef	et	al.	(2010),	who	constitutively	activated	Hh	signalling	in	mice	by	conditionally	

expressing	an	active	Smoothened	mutant	 (SmoM2)	 in	different	cellular	compartments	

of	the	skin	epidermis.	Here	they	found	that	SCs	within	the	bulge	region	were	unable	to	

drive	 tumour	 growth,	 whereas	 long-term	 progenitor	 cells	 within	 the	 interfollicular	

epidermis	 and	 upper	 infundibulum	 did.	 Therefore,	 both	 studies	 present	 data	 with	

conflicting	views	on	where	BCC	originates,	but	both	are	unanimous	in	relaying	the	need	

for	SCs	in	BCC	tumour	initiation.	Whereas	the	previous	studies	were	undertaken	in	the	

mouse	 system,	 Colmont	 et	 al.	 (2013)	 used	 human	 BCC	 samples	 to	 demonstrate	 the	

need	 for	 SCs	 to	 initiate	 tumour	 growth	 by	 using	 the	 cell	 surface	 marker,	 CD200,	 to	

identify	 CSCs.	 They	 showed	 that	 all	 BCC	 samples	 contain	 a	 small	 CD200+	 tumour	 cell	

population,	1.63	+/-	1.11%	(range	3.96	to	0.05%	(n=21)),	irrespective	of	the	histological	

type	(Colmont	et	al.,	2013).	When	105	flow-sorted	cells	were	plated	from	five	different	

BCC	 samples,	 CD200+	 CD45-	 sorted	 cells	 gave	 rise	 to	 3-fold	 more	 colonies	 than	 the	

CD200-	 CD45-	 subpopulation	 (p<0.005),	 which	 also	 gave	 rise	 to	 fewer	 colonies	 than	

unsorted	 cells	 (p<0.01).	 	Most	 BCC	 cells,	 defined	 by	 a	 CD200-	 CD45-	 phenotype,	 also	

expressed	the	transcription	factor	KLF4	and	were	therefore	were	considered	committed	

to	 terminal	differentiation.	Using	a	novel	 reproducible	 in	vivo	 xenograft	growth	assay,	

they	determined	that	CSC	frequencies	are	approximately	1	per	1.5	million	unsorted	BCC	

cells.	Their	 findings	establish	 that	CD200+	CD45-	BCC	subpopulations	are	enriched	 for	

BCC	 CSC.	 In	 summary,	 both	 cutaneous	 keratinocyte	 tumours,	 similar	 to	 the	 normal	

epidermis	and	hair	 follicle,	demonstrate	hierarchical	growth	with	the	presence	of	rare	

CSC.	Therefore,	although	unsubstantiated	it	may	be	that	these	TIC	originated	from	the	

bulge	region	of	the	HF	also.	

	
CSC	have	also	been	identified	 in	melanoma	with	the	first	marker	 identified	 in	2005	by	

Fang	et	al.	(2005)	who	showed	that	a	subpopulation	of	CD20+	cells	harboured	stem-like	

properties	 in	metastatic	 human	melanoma	 (Fang	 et	 al.,	 2005).	 Schatton	 et	 al.	 (2008)	
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later	 used	 the	 expression	 of	 the	 ATP-binding	 cassette	 (ABC)	 transporter,	 ABCB5,	 to	

characterise	 the	 melanoma	 SC	 population,	 which	 demonstrated	 the	 capacity	 to	 self-

renew	and	differentiate	following	serial	transplantation	in	NOD/SCID	mice	(Schatton	et	

al.,	 2008).	 CD271	 (Boiko	 et	 al.,	 2010;	 Civenni	 et	 al.,	 2011)	 and	 ALDH	

(Boonyaratanakornkit	 et	 al.,	 2010;	 Luo	 et	 al.,	 2012)	 have	 also	 been	 used	 to	 identify	

melanoma	SC	populations	with	the	capacity	to	self-renew	and	differentiate.	

	

1.5.7	 Lineage	tracing	and	lineage	ablation	of	cancer	stem	cells	

	
Lineage	tracing	has	allowed	visualisation	of	CSC	enriched	populations	and	has	provided	

us	 with	 a	 tool	 to	 explore	 the	 fate	 of	 tumour	 cells	 in	 their	 native	microenvironment.	

Using	 the	 same	 principles	 of	 label	 retaining	 cells,	 three	 papers	 have	 used	 mouse	

genetics	 to	 determine	 the	 presence	 of	 quiescent	 long-lived	 CSC	 in	 skin,	 intestine	 and	

breast	 cancers.	 Blanpain	 and	 colleagues	 combined	 inducible	 clonal	 tracing	 using	

K14CREER/Rosa-YFP	 mice	 to	 study	 the	 effect	 on	 two-step	 chemical	 carcinogenesis	

(Driessens	et	al.,	2012).	Only	a	small	fraction	of	tumour	cells	could	propagate	tumours	

upon	serial	passage	and	these	label	retaining	cells	behaved	similar	to	normal	epidermal	

keratinocyte	SCs.	Similarly,	Clevers	and	colleagues	used	an	Lg5CREER/APC-Rosa-Confetti	

mouse	to	study	intestinal	cancer	(Schepers	et	al.,	2012;	Kozar	et	al.,	2013).	They	showed	

that	 Lgr5	 identified	 20%	 of	 tumour	 cells	 and	 that	 only	 these	 cells	 were	 able	 to	 re-

populate	 tumour	growth.	 Lineage	 tracing	of	breast	 cancer	 in	 the	MMTV-PyMT	mouse	

also	demonstrated	dominant	clones	consistent	with	the	CSC	theory	(Zomer	et	al.,	2013).	

Hence,	mouse	genetics	have	conclusively	shown	that	oncogene	driven	tumour	growth	

results	 in	 tumour	 heterogeneity	 that	 is	 consistent	 with	 the	 CSC	 model	 of	 tumour	

growth.		

	

Mouse	models	 that	 enable	 lineage	 ablation	 have	 been	 used	 to	 demonstrate	 tumour	

growth	 dependence	 on	 a	 small	 sub-population	 of	 CSC.	 Ablation	 of	 the	 Nestin+	 sub-

population	within	glioblastoma	multiforme	using	 the	HSV	tyrosine	kinase	suicide	gene	

significantly	 improved	survival,	demonstrating	the	importance	of	Nestin+	CSC	(Chen	et	

al.,	 2012).	 Intestinal	 tumour	 deleting	 of	 Dclk1+,	 a	 putative	 marker	 of	 CSC,	 using	

diphtheria	 toxin,	 led	 to	 tumour	 regression	 (Nakanishi	et	 al.,	 2013).	 A	 recent	 study	 by	
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Sanchez-Danes	et	al.	(2016)	used	lineage	tracing	to	assess	the	impact	of	Hh	signalling	in	

distinct	cell	populations	and	their	capacity	to	induce	BCC.	They	found	that	only	CSCs	and	

not	 committed	 progenitors	 were	 capable	 of	 initiating	 tumour	 formation	 upon	

constitutive	activation	of	Hh	signalling,	which	was	attributed	to	a	higher	p53-dependent	

resistance	to	apoptosis	in	the	SC	population	(Sanchez-Danes	et	al.,	2016).	

	

In	summary,	both	mouse	genetics	in	established	tumour	models	has	demonstrated	the	

presence	of	CSC	based	tumour	growth	by	both	lineage	tracing	and	ablation.	

	

1.5.8	 Cancer	stem	cells	as	mediators	of	drug	resistance	

	
It	 follows	 therefore	 that	 cancer	 relapse	 after	 therapy	would	 be	 dependent	 upon	 CSC	

survival	 and	 proliferation.	 It	 has	 been	 argued	 that	 conventional	 therapies	 that	 target	

rapidly	dividing	cancer	cells,	such	as	radiotherapy	and	chemotherapy,	 fail	 to	eradicate	

CSC.		

	

Like	their	normal	tissue	SC	counterparts,	CSC	are	resistant	to	the	DNA	damaging	effects	

of	 radiotherapy	as	 a	 consequence	of	 lower	 levels	of	 induced	 reactive	oxygen	 species,	

activation	of	DNA	checkpoints	and	efficient	DNA	repair	(Diehn	et	al.,	2009;	Sotiropoulou	

et	al.,	2010;	Bao	et	al.,	2006).	As	a	consequence,	after	 radiotherapy	there	has	been	a	

relative	 increase	 in	 CSC,	 for	 example	 in	 breast	 cancer	 and	 glioblastoma	 multiforme	

(Diehn	et	al.,	2009;	Bao	et	al.,	2006).	 Intrinsic	resistance	to	conventional	radiotherapy	

may	allow	CSC	to	survive	and	proliferate,	resulting	in	disease	relapse.	

	

CSCs	 also	 demonstrate	 chemotherapy	 resistance	 through	 a	 variety	 of	 mechanisms,	

including	 expression	 of	 multidrug	 resistance	 cell	 surface	 proteins	 or	 detoxification	

proteins.	The	drug	efflux	ability	of	CSC	has	been	utilised	to	isolate	enriched	populations	

of	 normal	 tissue	 SCs	 and	 CSC	 by	 flow	 sorting	Hoechst	 dye.	 Gliomas	 that	 exhibit	 PI3K	

pathway	activation	express	 the	ABCG2	protein	 leading	 to	 resistance	 to	 temozolomide	

(Bleau	et	al.,	2009).	Our	group	has	previously	shown	that	BCC	CSC	both	constitutively	

and	 induce	 ABCG2	 expression	 (Colmont	 et	 al.,	 2014).	 Likewise,	 the	 enzyme	 that	

catalyses	 aldehyde	 oxidation,	 ALDH,	 has	 also	 been	 used	 to	 define	 CSC	 enriched	
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populations	most	notably	 in	the	breast	(Ginestier	et	al.,	2007).	As	such,	ALDH	positive	

cells	 have	 been	 shown	 to	 effectively	 demonstrate	 drug	 resistance	 in	 lung	 and	 breast	

cancers	(Huang	et	al.,	2013;	Cojoc	et	al.,	2015).	As	alluded	to	earlier	(section	1.3),	CSCs	

may	 also	 resist	 killing	 by	 growth	 factor	 pathway	 inhibitors,	 and	 subsequently	 expand	

and	cause	tumour	relapse.	For	example,	Shlush	et	al.	(2014)	showed	that	highly	purified	

HSC,	 progenitor	 and	 mature	 cell	 fractions	 obtained	 from	 the	 blood	 of	 AML	 patients	

harboured	 recurrent	 DNMT3a	 mutations	 (DNMT3amut),	 and	 demonstrated	 that	 in	

xenograft	experiments,	DNMT3amut-bearing	HSC	were	capable	of	repopulating	multiple	

lineages	in	comparison	to	non-mutated	HSC,	thereby	establishing	their	identity	as	pre-

leukemic-HSC.	 Importantly,	 these	pre-leukemic-HSCs	were	 found	 in	 remission	samples	

indicating	that	they	survive	chemotherapy	(Shlush	et	al.,	2014).	Lung	CSC	are	enriched	

and	 expanded	 after	 gefitinib	 (Shien	 et	 al.,	 2013).	 Glioblastoma	multiforme	 CSC	 were	

similarly	 enriched	 and	 expanded	 after	 bevacizumab	 (Hamerlik	 et	 al.,	 2012).	We	 have	

previously	 observed	 that	 BCC	 CSCs	 are	 resistant	 to	 treatment	 with	 Hh	 antagonists,	

cyclopamine	and	vismodegib	 (Colmont	et	al.,	 2013).	 In	 summary,	CSC	exhibit	 intrinsic	

modes	 of	 resistance	 to	 therapies	 and	 importantly	 their	 subsequent	 enrichment	 may	

result	in	relapse	with	potential	for	more	aggressive	disease.		

	

TGFβ	 associated	 EMT	 is	 a	 phenotype	 associated	 with	 more	 invasive	 malignancies.	

Cancer	cells	that	have	undergone	EMT	are	often	more	likely	to	demonstrate	resistance	

to	therapy	(Cojoc	et	al.,	2015).	TGFβ	signalling,	a	hallmark	of	EMT,	in	CSC	increases	their	

resistance	to	cisplatin	via	the	Nrf2/p21	pathway,	by	enhancing	glutathione	metabolism	

of	 the	drug	 (Oshimori	et	al.,	 2015).	A	downstream	 target	of	TGFβ	 is	 an	EMT	 inducing	

transcription	factor	Zeb1,	which	increases	stemness	and	also	promotes	drug	resistance	

(Oskarsson	et	 al.,	 2014;	 Siebzehnrubl	et	 al.,	 2013).	 Interestingly,	 Zeb1	 is	 regulated	by	

miR-203	 and	 the	 histone	 deacetylase	 inhibitor	 mocetinostat	 restores	 miR-203	

expression	 that	 in	 turn	 represses	 Zeb1	and	 restores	 treatment	 sensitivity	 (Meidhof	et	

al.,	2015).	Our	microarray	analysis	of	BCC	treatment	with	Hh	antagonists	demonstrated	

an	 increase	 in	TGFβ	regulated	genes,	 suggesting	 that	 this	pathway	maybe	responsible	

for	EMT	and	drug	resistance	in	BCC.			
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1.5.9	 Limitations	of	the	cancer	stem	cell	theory	

1.5.9.1	 Xenograft	models	

	

In	 the	 absence	 of	 homotransplantation,	 the	 identification	 of	 human	 CSC	 is	 reliant	 on	

mouse	 xenograft	 models;	 as	 such	 xenografting	 is	 central	 to	 the	 CSC	 model.	 Murine	

linage	 tracing	 and	 ablation	 experiments	 outlined	 above	 obviate	 the	 need	 for	

xenografting	and	support	the	existence	of	CSC.	In	the	case	of	solid	cancers,	such	tumour	

initiating	experiments	also	rely	on	tumour	dissociation	with	the	added	risk	that	stromal	

context	is	lost.	Moreover,	prolonged	exposure	to	dissociation	enzymes	may	lead	to	cell	

surface	protein	expression	change.	Therefore,	one	potential	 concern	 is	 that	 the	harsh	

processes	 involved	 in	 generating	 single	 cells	 from	 whole	 tissue	 may	 select	 for	 only	

robust	cells	and	not	faithfully	recreate	the	in	situ	biology.		

	

The	xenograft	assay	raises	concerns	relating	to	host	specific	selection	bias.	For	example	

the	 tumour	microenvironment	maybe	 significantly	different	 and	 some	murine	growth	

factors	are	not	cross-species	reactive,	as	is	the	case	of	tumour	necrosis	factor	(Bossen	et	

al.,	2006).	Orthotic	transplantation	is	important,	for	example	breast	cancers	are	grafted	

into	the	mammary	fat	pad	(Kuperwasser	et	al.,	2004)	although	this	is	relatively	easy	for	

skin	cancer	 (Morgan	et	al.,	2018b;	Olivero	et	al.,	2018).	The	 importance	of	which	was	

evident	 in	the	 identification	of	 leukaemia	 initiating	cells,	where	 intra-femoral	 injection	

of	 tumour	 cells	 was	 important	 (Eppert	 et	 al.,	 2011).	 In	 addition,	 models	 have	

necessitated	 the	 creation	 of	 a	 tumour	 specific	 stromal	 bed	 to	 facilitate	 engraftment	

(Kuperwasser	 et	 al.,	 2004;	 Patel	 et	 al.,	 2012;	 Colmont	 et	 al.,	 2013).	 Thus	 careful	

attention	to	the	tumour	microenvironment	is	often	required	for	accurate	recreation	of	

in	situ	tumour	growth.			

	

Quintana	et	 al.	 (2010)	 showed	 that	melanoma	growth	 could	be	 achieved	 from	1	 in	 4	

melanoma	 cells	 without	 sorting	 in	 a	 “permissive”	 xenograft	 model	 (Quintana	 et	 al.,	

2010).	Growth	of	melanoma	cells	in	this	in	vivo	model	was	facilitated	by	use	of	severely	

immunodeficient	mice,	growth	factor	laden	cell	matrix,	and	the	duration	the	xenograft	
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was	allowed	to	grow.	In	the	absence	of	immune	editing,	tumour	cells	that	are	passaged	

in	 highly	 immunocompromised	 (NOD/SCID/IL2rγ	 (null)	 mice,	 or	 in	 natural	 killer	 cell-

depleted	nude	or	NOD/SCID	mice	lose	their	original	markers,	and	no	longer	phenocopy	

the	 original	 tumour,	 and	 become	more	 readily	 propagated	 through	 in	 vivo	 selection	

(Civenni	et	al.,	2011;	Boiko	et	al.,	2010).	Therefore,	the	use	of	mouse	models,	such	as	

the	 one	we	 have	 described,	 remains	 a	 necessary	 evil	 in	 CSC	 research	 that	 has	 to	 be	

factored	into	the	interpretation	of	findings	(Eaves,	2008;	Fukunaga-Kalabis	et	al.,	2011).			

	

1.5.9.2	 Stem	cell	and	cancer	stem	cell	plasticity	

	
Lineage	tracing	and	ablation	studies	have	revealed	the	potential	for	committed	cells	to	

move	 both	 up	 and	 down	 the	 differentiation	 hierarchy	 and	 so	 undergo	 de-

differentiation.	 This	 plasticity	 has	 been	 observed	 following	 the	 deletion	 of	 intestinal	

crypt	 LGR5+	 SCs,	which	was	 found	 to	 stimulate	 the	 establishment	 of	multipotent	 SCs	

from	the	secretory	and	enterocyte	lineages	to	subsequently	re-occupy	the	niche	(Tian	et	

al.,	2011;	van	Es	et	al.,	2012;	Buczacki	et	al.,	2013;	Tetteh	et	al.,	2016).	To	understand	

this	 phenomenon	 the	 SC	 niche	 theory	 of	 neutral	 competition	 has	 been	 proposed	 in	

which	SC	progeny	compete	to	occupy	the	niche	(Clayton	et	al.,	2007;	Doupe	et	al.,	2010;	

Lopez-Garcia	et	al.,	2010).	Plasticity	has	also	been	observed	in	breast	CSC	(Gupta	et	al.,	

2011)	 and	 colon	 cancer	 (Shimokawa	 et	 al.,	 2017;	 Gupta	 et	 al.,	 2011).	 Although	 in	

glioblastoma	multiforme	 the	 hierarchy	 appears	 to	 be	more	 rigid	 (Chen	 et	 al.,	 2012).	

Other	 studies	 have	 shown	 through	 a	 combination	 of	 genetic	 lineage	 tracing	 and	

targeted	 expression	 of	 oncogenes	 and/or	 deletion	 of	 tumour	 suppressor	 genes	 in	

different	cell	 lineages	within	 the	same	tissue,	 that	SCs	and	not	 transit	amplifying	cells	

are	 capable	 of	 tumour	 formation	 when	 targeted	 with	 particular	 oncogenic	 hits	

(Blanpain,	 2013).	 In	 the	 skin	 epidermis,	 studies	 have	 shown	 that	 targeted	deletion	of	

Kras	and	p53	 to	 short	 lived	 rapidly	proliferating	matrix	 cells	of	 the	HF	did	not	 lead	 to	

tumour	formation,	whereas	when	these	same	genes	were	deleted	in	the	SC	population,	

rapid	 tumour	 formation	 occurred	 (Lapouge	 et	 al.,	 2011;	 White	 et	 al.,	 2011).	 As	

mentioned	previously,	one	of	the	essential	properties	that	a	CSC	exhibits	is	its	ability	to	

reform	 a	 tumour	 that	 exhibits	 the	 same	 heterogeneity	 as	 the	 primary	 tumour.	

Therefore,	 in	 theory,	 if	 CSC	 differentiation	 is	 unidirectional,	 then	 the	 progeny	 should	
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have	limited	capacity	if	any	to	give	rise	to	tumour	populations.	However,	experimentally	

this	 situation	 is	 frequently	 not	 observed,	 with	 a	 number	 of	 papers	 demonstrating	 a	

certain	degree	of	cell	plasticity	within	tumours	(Gupta	et	al.,	2011).	 In	some	instances	

cellular	markers	can	be	reversibly	expressed	by	tumour	cells	with	CD271-	cells	shown	to	

give	rise	to	CD271+	cells	in	melanoma	mouse	models	(Boiko	et	al.,	2010;	Civenni	et	al.,	

2011),	and	CD34-	cells	found	to	reform	secondary	tumours	with	both	CD34+	and	–	cells	

in	SCC	mouse	models	(Malanchi	et	al.,	2008;	Beck	et	al.,	2011).	Thus,	a	major	limitation	

of	 the	 CSC	 theory	 is	 that	 xenografting	 experiments	 rely	 on	 a	 fixed	 CSC,	 wherein	

plasticity	is	not	evaluated	and	may	account	as	to	why	not	all	cancers	contain	CSC.	

	

1.6	 TGFβ 	Signalling	Pathway		

	

TGFβ	 signalling	 is	 responsible	 for	 controlling	 a	 diverse	 set	 of	 functions	 notably	 in	 cell	

proliferation,	development,	differentiation,	during	adult	homeostasis	and	disease.	The	

TGFβ	 superfamily	 of	 cytokines	 are	 secreted	 by	many	 cell	 types	 and	 the	 pathway	 has	

overlapping	receptor	usage,	which	means	the	role	of	this	pathway	is	long	reaching	and	

complex	 (Massague,	 1998).	 However,	 it	 is	 important	 to	 note	 that	 TGFβ	 signalling	 is	

context	 dependent,	 in	 that	 at	 the	 transcriptional	 level,	 the	 collaboration	 of	 SMADs	

(which	 are	 signal	 driven	 TFs),	 and	 lineage-determining	 TFs	 (LDTF)	 (which	 specify	 cell	

identity	and	determine	the	binding	of	SMADs	to	loci	within	the	genome).	Therefore,	by	

sensing	 the	 chromatin	 status	 at	 these	 loci	 along	with	 the	 cooperation	of	 other	 signal	

driven	 TFs,	 SMADs	 are	 capable	 of	 integrating	 these	 inputs	 to	 produce	 a	 contextual	

response	to	TGFβ	family	signals	(David	and	Massague,	2018).				

		

1.6.1	 TGFβ 	Growth	Factor	Signalling	Pathway	

1.6.1.1	 TGFβ 	ligands	and	receptors		

	

In	 mammals	 the	 TGFβ	 superfamily	 of	 growth	 factors	 contains	 over	 30	 members	

including	TGFβs,	BMPs,	GDFs,	Activins,	and	Nodal,	and	is	vital	for	the	development	and	
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homeostasis	 of	 metazoans	 (Massague,	 1998;	McCartney-Francis	 et	 al.,	 1998;	 Feng	 &	

Derynck,	 2005).	 The	 ligands	 and	 their	 downstream	 pathway	 components	 regulate	

diverse	 cellular	 functions	 including	 growth,	 adhesion,	 migration,	 apoptosis,	 and	

differentiation.	TGFβ	 is	 a	pleiotropic	growth	 factor	 responsible	 for	 the	 regulation	of	a	

wide	variety	of	fundamental	biological	processes	 including	cell	growth,	differentiation,	

ECM	remodelling,	migration	and	apoptosis	 (Matsuura	et	al.,	2010;	Burch	et	al.,	2011).	

Cytokines	 that	 are	 part	 of	 the	 TGFβ	 superfamily	 of	 ligands	 are	 initially	 secreted	 as	

precursor	 proteins,	 which	 undergo	 proteolytic	 cleavage	 and	 subsequently	 reach	

maturation	 to	 create	 a	 functional	 form.	 Within	 mammals	 there	 are	 three	 related	

ligands,	 termed	 TGFβ1,	 2,	 and	 3,	 which	 contain	 390,	 412,	 and	 412	 amino	 acids	

respectively,	and	are	70-80%	similar	in	their	sequence	homology.	The	active	form	of	the	

TGFβ	 ligand	 is	 a	 12-15	 kDa	 homo-dimer	 stabilized	 by	 a	 ‘cysteine	 knot’,	 which	 is	 a	

hydrophobic	disulfide-rich	core	(Sun	and	Davies,	1995).	The	next	step	is	the	cleavage	of	

covalent	bonds	between	the	pro-peptide	and	the	mature	ligand,	which	is	facilitated	by	a	

furin-like	 convertase	 (Derynck	 et	 al.,	 1985;	Miyazono	 et	 al.,	 1988).	 The	 resulting	 two	

polypeptides	formed	by	cleavage	remain	intact	through	non-covalent	interactions,	and	

are	subsequently	secreted	as	a	latent	complex.	The	propeptide	portion	of	this	complex,	

termed	 the	 latency-associated	protein	 (LAP)	 keeps	 the	mature	propeptide	biologically	

inactive	by	restricting	its	access	to	membrane	receptors	(Lee	and	McPherron,	2001).	In	

some	 instances,	 the	 LAP	 remains	 the	 predominant	 non-covalent	 partner	 in	 the	

secretory	pathway	of	 the	TGFβ	 ligand.	However,	 the	alternative	 route	 is	 that	 the	 LAP	

complex	binds	to	 large	secretory	glycoproteins	known	as	 latent	TGFβ	binding	proteins	

(LTBPs),	which	have	been	shown	to	aid	the	secretion	and/or	activation	of	the	LAP-ligand	

complex.	Proteolytic	processing	of	the	LAP	is	responsible	for	the	release	of	biologically	

active	TGFβ	ligands	from	latent	complexes	(Massague	and	Chen,	2000).	

	

There	are	a	variety	of	membrane	proteins	that	enhance	the	binding	of	ligands	to	their	

receptors.	 In	 particular,	 TGFBRIII	 (membrane-anchored	 proteoglycan)	 binds	 and	

presents	TGFβ	to	the	TGFBRII,	and	also	mediates	the	binding	of	the	activin	antagonist,	

inhibin,	to	activin	receptors	(Wrana	et	al.,	1992).	TGFBRIII	is	generally	considered	to	be	

inhibitory	towards	the	TGFβ	signalling	pathway	(Lewis	et	al.,	2000).	Whereas	there	are	

proteins	 that	 facilitate	 the	 binding	 of	 ligands	 to	 receptors,	 there	 is	 also	 a	 structurally	
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diverse	group	of	proteins	that	‘trap’	members	of	the	TGFβ	family,	and	limit	their	access	

to	membrane	receptors.	Examples	include	the	previously	mentioned	latency-associated	

protein	 (LAP),	 which	 sequesters	 TGFβ	 to	 the	 extracellular	 matrix	 in	 the	 form	 of	 a	

complex	using	latent	TGFβ-binding	proteins	(LTBP1-4).	Furthermore,	other	proteins	are	

capable	 of	 trapping	 ligands,	 including	 noggin,	 chordin,	 gremlin,	 and	 follistatin,	 which	

trap	BMP	ligands,	and	nodals,	which	trap	activins	by	DAN/Cerberus	(Shi	and	Massague,	

2003).		

	

The	 receptor	 system	 for	 the	entire	 TGFβ	 family	 is	made	up	of	 combinations	of	 seven	

type	 I	 receptors	 (TGFβRI,	also	known	as	activin	 receptor-like	kinase	 (ALK1-7))	and	 five	

type	 II	 receptors	 (TGFβRII)	 (Manning	 et	 al.,	 2002),	 whose	 differential	 affinities	 for	

individual	 ligands	 contributes	 to	 signalling	 specificity	 (Figure	 1.6)	 (Nickel	et	 al.,	 2009).	

Most	members	of	the	TGFβ	superfamily	share	several	type	I	and	II	receptors,	with	TGFβ	

being	the	exception,	 in	that	among	the	type	II	receptors,	only	the	constitutively	active	

transmembrane	 serine/threonine	 kinase,	 TGFBRII,	 can	bind	 to	 TGFβ	 (Lin	et	 al.,	 1992).	

The	TGFBRII-TGFβ	interaction	then	recruits	and	activates	one	of	three	potential	TGFBRI,	

including	 ALK1,	 2,	 or	 5	 (Kang	 et	 al.,	 2009).	 This	 complex,	 which	 is	 composed	 of	 two	

receptor	type	I	(TGFβRI,	also	known	as	ALK5)	and	two	receptor	type	II	family	members	

has	 serine/threonine	 kinase	activity	which	 initiates	 intracellular	 signalling	 through	 the	

phosphorylation	of	the	GS	regulatory	domain	of	TGFBRI	by	TGFBRII	(Wrana	et	al.,	1994;	

Wieser	 et	 al.,	 1995).	 This	 active	 form	 of	 TGFBRI	 is	 the	 principle	 component	 of	 the	

receptor	 complex	 and	 downstream	 signals	 can	 be	 transmitted	 in	 a	 manner	 that	 is	

dependent	 on	 SMAD	 transcription	 factors	 (canonical	 TGFβ	 signalling)	 (Heldin	 and	

Moustakas,	 2012)	 or	 independent	 of	 SMAD	 transcription	 factors	 (non-canonical	 TGFβ	

signalling)	(Mu	et	al.,	2012).																		
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Figure	1.6:	Receptor	system	for	the	TGFβ	signalling	family.		

Complex	 relationship	between	TGFβ	 ligands,	 ligand-binding	 traps,	accessory	 receptors,	

with	type	I	and	II	receptors	in	vertebrates.	Adapted	from	Shi	and	Massague,	2003.	

	

	

1.6.1.2	 Mechanisms	 of	 receptor	 and	 SMAD	 activation/SMAD-

dependent	TGFβ	signalling			

	

The	 human	 genome	 encodes	 for	 eight	 SMAD	 proteins,	 which	 can	 be	 subdivided	 into	

three	classes;	 receptor	 regulated	SMADs	 (R-SMADs),	 SMAD1,	2,	3,	5	and	8,	which	are	

the	 substrates	 for	 the	TGFβ	 family	of	 receptors	 (Massague	et	al.,	 2005);	 the	common	

mediator,	 SMAD4	 (Co-SMAD)	 (Shi	 et	 al.,	 1997);	 and	 the	 inhibitory	 SMADs	 (I-SMADs),	

SMAD6	and	7	(Itoh	et	al.,	2001).	Following	activation	of	TGFBRI,	this	receptor	recognizes	

receptor	regulated	SMADs	(RSMADs)	with	the	aid	of	the	adaptor	protein	SARA	(SMAD	
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anchor	for	receptor	activation)	(Wu	et	al.,	2000),	and	subsequently	phosphorylates	the	

serine	residues	 located	at	the	carboxy	terminus	end	of	the	SMAD	proteins	 in	order	to	

transmit	the	signal	(Attisano	and	Wrana,	2000).	Once	activated	SMAD2	and/or	3	form	a	

heterodimeric	or	heterotrimeric	complex	with	SMAD4,	also	known	as	the	cooperating-

SMAD	 (Co-SMAD),	 before	 subsequently	 accumulating	 in	 the	 nucleus	 where	 they	

regulate	the	transcription	of	a	 large	set	of	 target	genes	 (Figure1.7)	 (Chen	et	al.,	2002;	

Derynck	et	al.,	1998;	Derynck	and	Zhang,	2003;	Gomis	et	al.,	2006).	SMAD	proteins	are	

400-500	 amino	 acids	 in	 length	 and	 are	 composed	 of	 three	 distinct	 regions	 (Shi	 and	

Massague,	 2003).	 R-SMADs	 are	 composed	 of	 two	 highly	 conserved	 domains	 that	 are	

separated	 from	one	 another	 by	 a	 less	 conserved	 proline-rich	 region	 (Shi	et	 al.,	 1998;	

Martin-Malpartida	et	al.,	2017),	and	are	termed	the	MAD-homology	1	(MH1)	and	MAD-

homology	2	 (MH2)	domains	 (Figure	1.8).	The	MH1	domain	 is	 found	at	 the	N-terminus	

and	 harbours	 a	 DNA-interaction	 region	 while	 the	 MH2	 domain	 is	 found	 at	 the	 c-

terminus	 and	 is	 responsible	 for	 mediating	 subcellular	 localization	 and	 transcriptional	

regulatory	activity	(Hill,	2009;	Wu	et	al.,	2000).	The	MH1	domains	within	SMAD3	and	4	

allow	for	binding	to	the	specific	DNA	sequences	containing	5’-AGAC-3’,	termed	SMAD-

binding	 elements	 (SBE)	 (Zawel	 et	 al.,	 1998).	 The	 C-terminal	MAD-homology	 2	 (MH2)	

domain	binds	 to	 the	 TGFBRI,	which	 enables	 SMAD	homo-	 and	hetero-oligomerisation	

along	with	 transactivation	of	nuclear	SMAD	complexes	 (Moustakas	and	Heldin,	2009).	

SMAD	 proteins	 exist	 in	 a	 very	 dynamic	 activation-deactivation	 cycle,	 which	 is	 as	 a	

consequence	of	the	opposing	actions	of	kinases	and	phosphatases.	In	a	steady	state,	R-

SMADs	 are	 found	 predominantly	 in	 the	 cytoplasm	 in	 their	 inactive	 forms,	 whereas	

SMAD4	 is	 distributed	 throughout	 the	 cytoplasm	 and	 nucleus.	 Unlike	 the	 R-SMADs,	

SMAD2,	 and	 3,	 SMAD6	 and	 7	 are	 inhibitory	 SMADs	 (I-SMADs)	 that	 in	 response	 to	

feedback	 loops	 and	 antagonistic	 signals,	 control	 TGFβ	 pathway	 activity.	 SMAD6	 has	

been	found	to	compete	with	SMAD4	for	the	receptor	activated	SMAD1,	and	SMAD7	is	

capable	of	recruiting	ubiquitin	ligase-Smurf	to	TGFβ	and	BMP	receptors	for	inactivation	

(Kavsak	et	al.,	2000).	This	shuttling	of	R-SMADs	between	the	cytoplasm	and	the	nucleus	

following	their	activation	is	controlled	by	the	reciprocal	functions	of	importin.	Importin	

is	 a	 transporter	 that	 binds	 to	 nuclear	 localization	 sequences	 (NLS)	 and	 subsequently	

carries	 cargo	 into	 the	 nucleus.	 CRM1	 is	 an	 importin-like	 adaptor	 protein	which	 binds	

nuclear	export	sequences	present	on	SMAD4	to	mediate	their	export	from	the	nucleus	
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(Xiao	et	al.,	2000;	Xiao	et	al.,	2003).	Both	SMAD2	and	3	do	not	require	CRM1	for	nuclear	

export	(Pierreux	et	al.,	2000;	Xu	et	al.,	2002).	However,	it	is	important	to	note	that	the	

dynamics	of	SMAD	shuttling	between	the	nucleus	and	cytoplasm	is	far	more	complex.	

For	 example,	 sorting	nexin	9	 (SNX9)	 is	 a	 structurally	 related	 trafficking	protein	 that	 is	

required	for	SMAD3-dependent	responses,	with	SNX9	shown	to	interact	with	pSMAD3	

independent	of	 SMAD2	or	4	and	mediate	 the	association	of	pSMAD3	with	 importin	8	

(Imp8)	 (Wilkes	et	 al.,	 2015).	 Inman	et	 al.	 (2002a)	 showed	 that,	 following	 the	 nuclear	

accumulation	 of	 R-SMAD-SMAD4	 complexes	 (due	 to	 TGFβ	 pathway	 activation),	 the	

export	 of	 SMAD4	 could	 be	 blocked	 when	 using	 the	 CRM1	 blocker,	 LMB,	 whereas	

SMAD2	could	still	be	 redistributed	 to	 the	cytoplasm	when	using	 the	 receptor	blocker,	

SB431542	(Inman	et	al.,	2002a).	Furthermore,	since	the	stabilisation	of	R-SMAD-SMAD4	

complexes	 occurs	 through	 the	 C-terminal	 phosphorylation	 of	 R-SMADs,	 the	 data	

suggests	 that	 these	 complexes	 dissociate	 in	 the	 nucleus	 as	 a	 result	 of	 R-SMAD	

dephosphorylation,	 and	 that	 the	 resulting	 monomeric	 R-SMADs	 and	 SMAD4	 are	

exported	 via	 separate	 mechanisms.	 Importantly,	 recent	 evidence	 has	 challenged	 the	

linear	 view	 of	 the	 TGFβ	 signalling	 pathway,	 with	 studies	 showing	 that	 even	 in	 an	

unstimulated	cell,	SMAD2	and	4	are	continuously	shuttled	between	the	cytoplasm	and	

nucleus,	 and	 in	 the	 case	 of	 SMAD2	 and	 3	 can	 even	 freely	 diffuse	 in	 and	 out	 of	 the	

nucleus	 (Inman	 et	 al.,	 2002a;	 Xu	 et	 al.,	 2002;	 Schmierer	 and	 Hill,	 2005).	 The	

accumulation	 of	 SMAD	2,	 3	 and	 4	 in	 the	 nucleus	 occurs	 at	 a	 relatively	 slow	 rate	 and	

reaches	a	maximum	level	at	approximately	45	min	after	pathway	activation	(Inman	et	

al.,	2002a),	which,	once	accumulated,	will	mostly	remain	for	roughly	4	–	5	hours,	after	

which	 they	 begin	 to	 relocalise	 to	 the	 cytoplasm	 (Pierreux	 et	 al.,	 2000).	 Following	

inhibition	 of	 the	 pathway	 using	 the	 ALK5	 inhibitor,	 SB-431542,	 they	 showed	 an	

immediate	 decrease	 in	 the	 nuclear	 levels	 of	 SMADs,	 resulting	 in	 the	 bulk	 of	 SMADs	

relocating	 to	 the	 cytoplasm	 (Inman	 et	 al.,	 2002b).	 In	 order	 to	 explain	 how	 nuclear	

SMADs	 coud	 detect	 the	 inactivation	 of	 the	 receptor,	 photobleaching	 and	

photoactivation	 experiments	 using	 GFP	 fusion	 of	 SMAD2	 directly	 demonstrated	 the	

continuous	 shuttling	 of	 SMADs	 in	 and	 out	 of	 the	 nucleus	 even	 in	 active	 cells,	 which	

serves	to	connect	events	at	the	plasma	membrane	with	the	nucleus	(Batut	et	al.,	2007;	

Nicolas	et	al.,	2004;	Schmierer	and	Hill,	2005).																	
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Figure	1.7:	Canonical	TGFβ	signal	transduction	from	the	cell	membrane	to	the	nucleus.	

Adapted	from	Shi	and	Massague,	2003.			
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Figure	1.8:	Structure	of	SMAD	proteins.		

Structural	organisation	and	role	of	the	SMAD	domains,	along	with	candidate	target	sites	

for	kinase	pathways	(e.g.	Erk	MAPK	and	JNK,	aswell	as	CamKII	and	PKC).	Adapted	from	

Shi	and	Massague,	2003.	

	 	

	

	

1.6.1.3	 Target	gene	activation	by	SMADs			

	

The	 recruitment	 of	 R-SMADs	 to	 DNA	 is	 the	 crucial	 step	 in	 the	 modulation	 of	 gene	

transcription	following	TGFβ	induced	pathway	activation.	This	activation	of	transcription	

through	TGFβ	proteins	occurs	through	the	physical	interaction	of	SMADs	along	with	the	

functional	 cooperation	 of	 sequence-specific	 transcription	 factors	 and	 the	 coactivators	

CBP	and	p300	(Massague,	2000;	Itoh	et	al.,	2000;	Moustakas	et	al.,	2001;	and	Zawel	et	

al.,	 1998).	 R-SMADs	 (with	 the	 exception	of	 SMAD2)	 and	 SMAD4	bind	 to	 specific	DNA	

sequences	 at	 an	 affinity	 100-fold	 lower	 than	 the	 DNA	 transcription	 factors	 (which	 is	

required	for	transcriptional	activation)	(Derynck	and	Zhang,	2003).	SMADs	are	capable	
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of	functionally	interacting	with	a	vast	number	DNA-binding	transcription	factors,	and	to	

add	 an	 extra	 layer	 of	 complexity,	 multiple	 signalling	 pathways	 often	 regulate	 them.	

Furthermore,	 aside	 from	 the	 main	 coactivators,	 CBP	 and	 p300,	 the	 level	 of	

transcriptional	 activation	 can	 be	 defined	 by	 other	 coactivators	 and	 corepressors	

interacting	 with	 SMADs.	 Even	 SMAD4	 can	 act	 as	 a	 coactivator	 by	 stabilizing	 the	

interaction	 of	 R-SMADs	 with	 DNA	 and	 CBP/p300	 to	 enhance	 ligand-induced	

transcription	(Massague,	2000;	Itoh	et	al.,	2000;	Moustakas	et	al.,	2001).								

	

1.6.2	 Non-canonical	TGFβ	Signalling		
	
In	 addition	 to	 the	 canonical	 SMAD-driven	 side	 of	 TGFβ	 signalling,	 TGFβ	 is	 capable	 of	

transducing	the	signal	 in	a	SMAD-independent	manner	(Zhang,	2009).	TGFβ	 is	capable	

of	activating	various	branches	of	the	MAP	kinase	pathways,	Rho-like	GTPase	signalling	

pathways,	and	phosphatidylinositol-3-kinase/AKT	pathways.		

	

1.6.2.1	 TGFβ	induced	Erk	activation	and	tyrosine	phosphorylation	
	
MAPKs	 comprise	 a	 large	 family	 of	 serine/threonine	 kinases,	 that	make	up	 at	 least	 11	

members	 which	 can	 be	 subdivided	 into	 6	main	 groups:	 1)	 ERK	 (ERK1	 and	 2);	 2)	 JNK	

(JNK1,	2,	and	3);	3)	p38	(p38α,	β,	γ	and	δ);	4)	ERK5;	5)	ERK3	(ERK3,	p97	MAPK	and	ERK4);	

and	6)	ERK7	(ERK7	and	8)	(Teramoto	and	Gutkind,	2013).	The	most	prominent	members	

of	the	MAPK	pathway	are	ERK1/2,	JNK	and	p38	(Johnson	and	Lapadat,	2002),	with	ERK	

implicated	 in	 cell	 growth	 responses	 (Kamimura	 et	 al.,	 2004),	 while	 JNK	 and	 p38	 are	

traditionally	 linked	 with	 stress	 related	 signalling	 that	 involves	 apoptosis	 and	

inflammatory	 cytokines	 (Zhou	 et	 al.,	 2007;	 Yogi	 et	 al.,	 2006).	 The	 ability	 of	 TGFβ	 to	

induce	rapid	activation	of	p21	(Ras)	in	rat	intestine	(Mulder	et	al.,	1992)	and	mink	lung	

epithelial	cells	(Yan	et	al.,	1994)	was	the	first	indication	that	TGFβ	can	activate	the	Erk	

MAPK	 pathway.	 Engel	 et	 al.,	 1999	 performed	 studies	 using	 SMAD4-deficient	 cells,	 or	

dominant-negative	SMADs	to	support	the	ability	of	TGFβ	signalling	to	activate	the	MAPK	

pathway	 independently	 of	 the	 SMADs.	 Although	 TGFBRI	 and	 II	 are	 very	 well	 defined	

serine-threonine	 kinases,	 TGF	 βRII	 is	 capable	 of	 undergoing	 auto-phosphorylation	 on	

the	tyrosine	residues:	Y259,	336	and	424	(Lawler	et	al.,	1997).	Src,	a	non-RTK,	is	capable	
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of	 phosphorylating	 TGFBRII	 on	 Y284,	 which	 can	 serve	 as	 a	 docking	 site	 for	 the	

recruitment	of	the	signalling	molecules	growth	factor	receptor	binding	protein	2	(Grb2)	

and	Shc	(Galliher	et	al.,	2007).	TGFBRI	can	also	be	tyrosine	phosphorylated	upon	TGFβ	

stimulation,	and	subsequently	recruit	and	directly	phosphorylate	ShcA	on	tyrosine	and	

serine	 residues,	 which	 promotes	 the	 formation	 of	 an	 ShcA/Grb2/Sos	 complex.	 The	

formation	 of	 this	 complex	 leads	 to	 the	 sequential	 activation	 of	 c-Raf,	 MEK,	 and	 Erk	

through	the	activation	of	Ras	at	the	plasma	membrane	(Lee	et	al.,	2007).						

	

1.6.2.2	 TGFβ	induced	JNK/p38	activation	
	

Of	all	the	non-SMAD	pathways,	it	is	the	JNK/p38	MAPK	signalling	cascades	that	are	the	

best	 characterized.	 Similar	 to	 Erk,	 JNK	 and	 p38	 represent	 the	 tertiary	 layer	 of	MAPK	

cascades,	 and	 are	 activated	 by	 the	 MAP	 kinase	 kinases	 (MKK),	 MKK4	 and	 MKK3/6,	

respectively	(Weston	and	Davis,	2007).	In	various	cell	lines,	TGFβ	is	capable	of	activating	

JNK	through	MKK4	(Frey	and	Mulder,	1997;	Engel	et	al.,	1999;	Hocevar	et	al.,	1999),	and	

p38	MAPK	through	MKK3/6	(Hanafusa	et	al.,	1999;	Sano	et	al.,	1999;	Bhowmick	et	al.,	

2001).	 A	 demonstration	 of	 SMAD-independence	 was	 observed	 through	 the	 use	 of	 a	

mutant	TGFBRI,	which	rendered	the	receptor	unable	 to	bind	and	activate	SMADs,	but	

still	 retain	 an	 intact	 kinase	 activity.	 This	 mutant	 type	 I	 receptor	 was	 still	 capable	 of	

activating	 JNK	 and	 p38	MAPK	 in	 a	 TGFβ	 induced	manner	 (Yu	et	 al.,	 2002;	 Itoh	et	 al.,	

2003).	MKKs	can	also	be	activated	further	upstream	by	the	MAP3Ks,	which	in	the	cases	

of	MKK3/6	and	MKK4	is	performed	by	TGFβ-activated	kinase	1	(TAK1),	a	kinase	found	to	

activate	and	be	activated	by	TGFβ	signalling	(Yamaguchi	et	al.,	1995).	The	physiological	

significance	of	 this	 kinase	 in	TGFβ	 signalling	was	elucidated	 in	mouse	genetic	 studies,	

whereby	TAK1-deficient	embryos	exhibited	phenotypes	strikingly	similar	to	that	of	loss-

of-function	mutations	in	genes	encoding	the	type	I	receptor,	ALK1	(Jadrich	et	al.,	2006).	

TAK-1	has	also	been	shown	 to	be	 required	 for	TGFβ-induced	 JNK	and	NFκB	activation	

(Shim	et	 al.,	 2005),	 and	 shortly	 after	 a	 direct	 interaction	between	 TAK-1	 and	 TGFBRII	

was	identified	(Watkins	et	al.,	2006).											
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1.6.2.3	 Rho-like	GTPases	in	TGFβ	signalling	
	

The	Rho-like	GTPases,	 including	RhoA,	Rac	and	Cdc42,	have	 important	roles	 to	play	 in	

cytoskeletal	organization,	 cell	motility,	 and	gene	expression	 through	a	wide	variety	of	

effectors	(Jaffe	and	Hall,	2005).	In	a	similar	manner	to	MAPK	pathways,	TGFβ	is	capable	

of	 activating	 RhoA-dependent	 signalling	 pathways	 to	 induce	 the	 formation	 of	 stress	

fibres	 and	 mesenchymal	 characteristics	 in	 epithelial	 cells	 and	 primary	 keratinocytes	

(Bhowmick	et	al.,	2001;	Edlund	et	al.,	2002).	TGFβ	stimulation	is	capable	of	inducing	the	

assembly	and	accumulation	of	TGFBRI-TGFBRII	complexes	at	tight	junctions,	where	the	

scaffolding	protein	 that	 regulates	epithelial	 cell	polarity,	Par6,	gets	phosphorylated	by	

TGFBRII	 at	 serine	 residue	 345	 (Ozdamar	 et	 al.,	 2005).	 Following	 this	 phosphorylation	

Par6	 recruits	 Smurf1	 to	 the	 activated	 TGFBRI	 and	 II	 complex	 at	 tight	 junctions	 in	

polarized	epithelial	cell	sheets.	The	Par6-Smurf1	complex	then	enables	TGFβ-dependent	

dissolution	 of	 tight	 junctions	 (a	 pre-requisite	 of	 EMT),	 by	 mediating	 the	 localized	

ubiquitination	and	turnover	of	RhoA	at	cellular	protrusions	(Ozdamar	et	al.,	2005).	TGFβ	

can	also	 induce	 the	activation	of	 the	Cdc42	GTPase	 (Wilkes	et	al.,	2003),	and	physical	

interactions	 between	 Cdc42	 and	 cell	 surface	 TGFβ	 receptor	 complexes	 have	 been	

identified	(Barrios-Rodiles	et	al.,	2005).									

	

	

1.6.2.4	 TGFβ	induced	PI3K/Akt	pathway	activation	
	

There	have	been	a	large	number	of	findings	to	support	the	ability	of	TGFβ	signalling	to	

induce	 PI3K/Akt	 activation.	 Firstly,	 TGFβ	 is	 capable	 of	 activating	 the	 PI3K	 pathway,	

through	the	phosphorylation	of	Akt,	which	is	downstream	(Bakin	et	al.,	2000;	Shin	et	al.,	

2001;	Vinals	 and	Pouyssegur,	 2001;	 Lamouille	 and	Derynck,	 2007),	 and	appears	 to	be	

independent	 of	 SMAD2/3	 activation	 (Wilkes	 et	 al.,	 2005).	 Secondly,	

immunoprecipitation	 experiments	 have	 shown	 that	 TGFBRII	 was	 constitutively	

associated	with	the	regulatory	subunit	of	PI3K,	p85,	while	association	between	TGFBRI	

and	p85	required	TGFβ	stimulation	(Yi	et	al.,	2005).	Consequently	chemical	inhibition	of	

TGFBRI	activity	was	found	to	prevent	TGFβ-induced	activation	of	Akt	by	PI3K	(Bakin	et	

al.,	2000;	Lamouille	and	Derynck,	2007).	Furthermore,	the	PI3K/Akt	pathway	is	another	
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non-SMAD	dependent	 pathway	 that	 is	 capable	 of	 contributing	 to	 TGFβ-induced	 EMT.	

Studies	using	chemical	inhibitors	have	shown	that	PI3K	is	implicated	in	TGFβ	mediated	

actin	filament	reorganization	and	cell	migration	(Edlund	et	al.,	2004;	Bakin	et	al.,	2000).	

Evidence	suggests	that	the	involvement	of	the	PI3K/Akt	pathway	in	TGFβ-mediated	EMT	

could	in	part	be	due	to	mammalian	target	of	rapamycin	(mTOR),	which	is	a	downstream	

effector	of	Akt,	and	a	key	regulator	of	protein	synthesis	via	phosphorylation	of	S6	kinase	

(S6K)	 and	 eukaryotic	 initiation	 factor	 4E-binding	 protein	 1	 (4E-BP1)	 (Lamouille	 and	

Derynck,	2007).												

	

	

1.6.3	 SMAD-dependent	 TGFβ	 signalling,	 independent	 of	 TGFβ	 receptor-

ligand	interactions		

	

C-terminal	phosphorylation	by	the	TGFBRI	is	the	key	event	in	SMAD	activation;	however	

other	 kinase	 pathways	 are	 capable	 of	 regulating	 SMAD	 signalling	 further.	 In	 some	

instances,	 SMAD	 transcription	 factors	 are	 capable	 of	 transducing	 signal	 via	 gene	

transcription	 and	 regulation	 in	 a	manner	 that	 is	 independent	 of	 the	 upstream	 TGFβ-

TGFBR	 interaction.	 There	 are	 a	 number	 of	 non-SMAD	 signalling	 proteins/kinases	 that	

have	the	ability	to	modulate	SMAD	activity	through	phosphorylation	of	the	SMAD	linker	

region.		

	

1.6.3.1	 Cyclin-dependent	kinases	(CDKs)	

	

Cyclin-dependent	 kinases	 (CDK)	 comprise	 a	 family	 of	multifunctional	 serine/threonine	

kinase	 enzymes	 involved	 in	 cell	 cycle	 progression	 and	 transcription.	 CDK	 has	 been	

shown	to	phosphorylate	the	SMAD	linker	regions	in	bovine	endothelial	cells	(Kamato	et	

al.,	2014),	while	SMAD3	is	phosphorylated	by	CDK2	and	4in	Mv1Lu	mink	lung	epithelial	

cells,	acting	as	a	key	regulator	in	the	anti-proliferative	effects	of	TGFβ	(Matsuura	et	al.,	

2004).	 In	 the	 case	 of	 SMAD3,	 CDK2	 and	 4	 are	 capable	 of	 phosphorylating	 9	 of	 14	

residues,	 and	 inhibiting	 SMAD3	 anti-proliferative	 function	 (Matsuura	 et	 al.,	 2004;	 Liu	

and	Matsuura,	2004).	CDK8	and	9	have	also	been	 shown	 to	phosphorylate	 the	SMAD	
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linker	 region	 at	 Thr179,	 Ser208	 and	 Ser213	 in	 SMAD2	 and	 3	 which	 targets	 these	

activated	 SMADs	 for	 proteosomal	 degradation	 through	 the	 recognition	 of	 the	 E3	

ubiquitin	ligase,	Nedd4L	with	the	phospho	T-P-Y	motif	in	the	linker	region	of	SMAD2/3	

(Gao	et	 al.,	 2009).	 However,	 CDK8	 and	 9	 can	 also	 phosphorylate	 the	 linker	 region	 of	

SMAD1,	 which	 results	 in	 the	 recruitment	 of	 YAP,	 which	 enhances	 SMAD-mediated	

transcription	 via	 interaction	 with	 the	 cofactor,	 Pin1,	 until	 this	 phosphorylated	 linker	

region	 is	 ultimately	 recognised	by	 Smurf1	 and	 subsequently	 degraded	 (Alarcon	et	 al.,	

2009;	 Aragon	 et	 al.,	 2011).	 Therefore,	 there	 is	 a	 functional	 switch	 from	 initial	 SMAD	

activation	 to	 subsequent	 degradation,	 which	 occurs	 following	 a	 switch	 in	 the	

recognition	 between	 SMAD	 phosphoserines	 of	 both	 transcription	 factors	 and	 E3	

ubiquitylating	ligases.	For	example,	SMAD3	phosphorylation	by	CDK8/9	following	TGFβ	

pathway	 activation	 creates	 binding	 sites	 for	 WW	 domains	 of	 Pin1,	 and	 subsequent	

phosphorylation	 by	 GSK3,	 adds	 binding	 sites	 for	 Smurf1	 WW	 domains,	 thereby	

switching	off	Pin1	binding	and	targeting	SMAD3	for	degradation	(Aragon	et	al.,	2011).		

	

1.6.3.2	 Mitogen-activated	protein	kinases	(MAPK)	

	

Numerous	studies	have	identified	the	crosstalk	that	exists	between	the	TGFβ	and	MAPK	

pathways	(Wrighton	et	al.,	2009;	Burch	et	al.,	2010;	Yue	and	Mulder,	2001).	One	of	the	

first	instances	of	such	regulation	was	the	ability	of	the	ERK-mediated	phosphorylation	of	

specific	 serine	 residues	 in	 the	 linker	domain	of	R-SMADs,	which	blocked	 their	nuclear	

translocation	 and	 transcription	 (Kretzschmar	 et	 al.,	 1997).	 In	 addition	 MSK1	 kinase,	

which	 is	 a	 p38	 substrate,	 was	 shown	 to	 regulate	 SMAD3	 transcriptional	 activity	 by	

promoting	its	association	with	co-activator	p300	(Abecassis	et	al.,	2004).	Massague	and	

colleagues	(Kretzschamer	et	al.,	1997)	demonstrated	the	ability	of	EGF,	an	activator	of	

MAPK,	to	phosphorylate	cluster	sites	within	the	linker	regions	of	SMADs.	Interestingly,	

tyrosine	kinase	receptors	for	EGF	and	hepatocyte	growth	factor	signalling	are	capable	of	

inducing	SMAD2	phosphorylation	and	transcription	(de	Caestecker	et	al.,	1998).		
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1.6.3.3	 Phosphoinositide	3-kinases	(PI3K)	

	

PI3K	are	a	highly	conserved	 family	of	kinases	harbouring	dual	protein	and	 lipid	kinase	

activity,	 and	 can	be	 subdivided	 into	 three	main	 groups	 (I,	 II	 and	 III).	 Class	 I	 PI3Ks	 are	

heterodimers	composed	of	a	catalytic	(p110α,	β,	γ	and	δ)	and	regulatory	subunit	(p85	or	

p101	 family)	 (Morello	 et	 al.,	 2009).	 Studies	 using	 chemical	 inhibitors	 of	 the	 PI3K-Akt	

pathway	 were	 shown	 to	 affect	 SMAD-dependent	 transcriptional	 responses	 in	 mouse	

mammary	epithelial	cells	(NMuMG),	suggesting	a	potential	involvement	of	PI3K	and/or	

Akt	 is	 TGFβ	 signal	 transduction	 (Sansal	 and	 Sellers,	 2004).	 Furthermore,	 studies	 in	

mesangial	cells,	have	demonstrated	the	ability	of	phosphoinositide-dependent	kinase	1	

(PDK1),	 a	 member	 of	 the	 PI3K	 pathway,	 to	 phosphorylate	 SMAD3	 and	 enhance	 its	

transcriptional	 activation	of	 the	 collagen	 I	 gene	 following	 TGFβ	 activation	of	 the	PI3K	

signalling	pathway	(Runyan	et	al.,	2004).			

1.6.3.4	 Glycogen	synthase	kinase-3	(GSK-3)	

	
In	 1980,	 Embi	 et	 al.	 identified	 a	 proline-directed	 serine/threonine	 kinase,	 designated	

glycogen	synthase	kinase	3,	which	was	shown	to	have	the	ability	to	phosphorylate	and	

subsequently	inactivate	the	enzyme	glycogen	synthase,	therefore	giving	it	the	ability	to	

regulate	 glycogen	 metabolism.	 Within	 mammals,	 there	 are	 two	 isoforms	 of	 GSK3,	

GSK3α	(51KDa),	and	β	 (47KDa),	with	both	 isoforms	shown	to	be	highly	conserved	and	

widely	expressed	(Yao	et	al.,	2002).	In	fact,	more	recently	GSK3	has	established	itself	as	

a	multi-faceted	kinase,	with	functions	in	many	signalling	pathways,	including	the	insulin,	

Wnt/β-catenin,	 Notch,	 and	 Hedgehog	 pathways	 which	 are	 capable	 of	 determining	

cellular	 fate	 and	morphology	 (Doble	 and	Woodgett,	 2003).	A	number	of	 studies	have	

demonstrated	 the	 ability	 of	GSK3	 to	 interact	with	 SMADs.	 For	 example,	 in	 the	 heart,	

pro-fibrotic	TGFβ1-SMAD3	signalling	is	inhibited	through	the	ability	of	GSK3β	to	interact	

with	the	SMAD3	linker	region	and	c-terminus	(Lal	et	al.,	2014).	In	this	study,	inhibition	

of	 GSK3β	 was	 shown	 decrease	 phosphorylation	 at	 the	 linker	 region	 (Ser204),	 and	

increase	phosphorylation	at	the	c-terminus	(Ser423/425).								
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1.6.3.5	 Rho-associated	protein	kinase	(ROCK)	

	
Rho-associated	 protein	 kinase	 (ROCK)	 is	 a	 kinase	 that	 belongs	 to	 the	 AGC	

(PKA/PKG/PKC)	 family	 of	 serine/threonine	 kinases,	 and	 in	 mammals	 there	 are	 two	

forms	 (ROCK1	 and	 2).	 ROCK1	 has	 a	 molecular	 weight	 of	 158	 kDa	 and	 is	 the	 main	

downstream	effector	of	the	small	GTPase	RhoA	(Hahmann	and	Schroeter,	2010).	One	of	

the	 primary	 functions	 of	 ROCK	 is	 to	 regulate	 the	 shape	 and	 movement	 of	 cells	 by	

interacting	with	 the	 cytoskeleton	 (Riento	 and	Ridley,	 2003).	 A	 couple	 of	 studies	 have	

highlighted	 the	 ability	 of	 Rho/ROCK	 to	 regulate	 SMAD	 activity	 through	 linker	 region	

phosphorylation	 (Chen	et	 al.,	 2006A;	 Kamaraju	 and	 Roberts,	 2005).	 The	 regulation	 of	

SMAD	activity	by	Rho/ROCK	was	first	established	by	Chen	et	al.,	following	TGFβ-induced	

smooth	 muscle	 differentiation	 (Chen	 et	 al.,	 2006B).	 Furthermore,	 during	 EMT	 and	

cytoskeletal	arrangements,	the	induction	of	TGFβ	signalling	has	been	shown	to	greatly	

influence	 activation	 of	 the	 Rho/ROCK	 pathway	 (Bhowmick	 et	 al.,	 2003;	 Lee	 and	

Helfman,	2004).	In	fact,	a	study	demonstrated	the	ability	of	the	microtubule	disruptor,	

colchicine,	to	stimulate	the	phosphorylation	of	SMAD2	and	3	in	a	Rho/ROCK-dependent	

mechanism	that	is	independent	of	TGFβ	ligand	and/or	receptor	activity	(Samarakoon	et	

al.,	2009).	Conversely,	the	inverse	has	also	been	demonstrated,	with	p38	and	Rho/ROCK	

pathways	 found	 to	 greatly	 impact	 the	 anti-proliferative	 effects	 of	 TGFβ	 signalling	

(Kamaraju	and	Roberts,	2005).		

	

1.6.4	 Context	dependent	signal	readout	
	

Although	 the	 identification	and	 structural	 characterisation	of	 the	 core	 components	of	

the	TGFβ	signalling	pathway	have	been	important	for	developing	our	understanding	of	

the	signal	transduction	process,	it	is	insufficient	in	explaining	how	TGFβ	ligands	activate	

different	 genes	 within	 the	 same	 cell	 or	 how	 the	 same	 SMADs	 can	 activate	 different	

genes	 in	 different	 contexts.	 The	 concepts	 that	 provide	 the	 basis	 for	 explaining	 the	

versatility	of	the	TGFβ	signalling	pathway	will	be	briefly	discussed.	One	example	of	this	

is	the	ability	of	SMADs	to	bind	to	common	DNA	motifs.	As	mentioned	previously,	both	

TGFβ	 and	BMP	 initiate	direct	 responses	by	 the	activation	of	different	SMADs.	SMAD3	

and	4	bind	the	palindromic	duplex	5’-GTCTAGAC-3’,	and	X-ray	crystal	structures	of	the	
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SMAD1,	 3	 and	 4	MH1	domains	 shown	 to	 be	 bound	 to	 this	 sequence	 showed	 that	 all	

three	 SMADs	 recognised	 the	 GTCT	 motif	 or	 its	 complementary	 extended	 sequence	

CAGAC	(Shi	et	al.,	1998;	BabuRajendran	et	al.,	2010).	SMAD1	and	4	were	also	found	to	

bind	to	GC-rich	motifs	(Kusanagi	et	al.,	2000;	Labbe	et	al.,	1998;	Morikawa	et	al.,	2011),	

which	 led	to	the	proposal	 that	 these	GC-rich	motifs	serve	as	BMP	response	elements,	

whereas	 the	 CAGAC	 motifs	 functioned	 as	 SBE	 for	 the	 TGFβ	 family.	 Therefore,	 there	

appears	 to	 be	 a	 dichotomy	 between	 the	 SMADs,	 given	 the	 sequence	 identity	 of	 the	

MH1	 domain	 β-haripin	 (an	 element	 required	 for	 DNA	 binding).	 More	 recent	 studies	

have	 shown	 that	 SMAD1,	 3,	 4	 and	 5	 recognise	 the	 common	 consensus	 sequence	

GGCGC,	 referred	 to	 as	 the	 5GC	 SBE	 motif	 (Martin-Malpartida	 et	 al.,	 2017).	 X-ray	

crystallography	on	SMAD	MH1	domains	bound	to	these	5GC	SBEs	has	shown	that	the	β-

hairpin	 has	 a	 high	 degree	 of	 conformational	 flexibility,	 and	 that	 in	 target	 genes,	 the	

SMAD	binding	promoter	and	enhancer	elements	are	enriched	 in	clusters	of	5GC	SBEs.	

Therefore,	it	appears	that	TGFβ	induced	SMAD3	and	BMP	induced	SMAD1/5	recognise	

common	DNA	motifs	but	yet	regulate	different	target	genes.		

	

Since	the	differential	DNA	binding	activity	of	SMAD1/5	and	SMAD2/3	does	not	appear	

to	be	a	major	 factor	of	TGFβ	 vs	BMP	subfamily	specificity	 in	 the	 recognition	of	 target	

genes,	then	other	factors	must	determine	this	specificity.	Early	work	on	the	two	LDTFs,	

forkhead	 box	 protein	 H1	 (FOXH1)	 and	 zinc	 finger	 protein	 423	 (ZFP423),	 provided	

examples	of	 the	pivotal	 role	of	 these	 factors	as	 contextual	determinants	of	TGFβ	 and	

BMP	induced	repsonses.	FOXH1	directs	Nodal-activated	SMAD2/3	to	target	promoters	

during	 the	 formation	of	 the	mesendoderm	(Yoon	et	al.,	2015;	Zhang	and	Glass,	2013;	

Chen	et	al.,	1996;	Chen	et	al.,	1997),	whereas	ZFP423	directs	BMP-activated	SMAD1	to	

target	promoters	during	ventral	mesoderm	specification	in	Xenopus	laevis	(Hata	et	al.,	

2000).	 Therefore,	 in	 this	 instance,	 the	 specificity	was	 defined	 by	 FOXH1	 and	 ZFP423,	

which	discriminately	bind	 to	SMAD2/3	and	SMAD1/5,	 respectively,	and	 form	resulting	

complexes	which	target	gene	regulatory	regions	containing	FOXH1	and	ZFP423	binding	

elements	coupled	with	SBEs.	The	analysis	of	genome	bound	SMADs	in	various	cell	types	

shed	more	 light	onto	how	cells	 read	TGFβ	 family	signals.	Mullen	et	al.	 (2011)	showed	

that	 the	binding	pattern	of	 signal-activated	SMAD2/3	was	different	 to	ESCs,	myoblast	

precursors	and	pro-B	cells,	and	that	these	binding	patterns	closely	aligned	with	binding	



	 	 Chapter	1:	Introduction	

	
	

86	

of	highly	expressed	LDTFs	within	each	cell	 lineage	(Mullen	et	al.,	2011).	This	paradigm	

was	also	demonstrated	for	the	binding	patterns	of	BMP-activated	SMAD1	(Trompouki	et	

al.,	 2011),	 and	 in	 sum	 demonstrates	 that	 the	 cell	 type-specific	 and	 pathway-specific	

activity	of	SMADs	is	determined	by	LDTFs.	However,	this	does	not	mean	that	SMADs	are	

passive	 participants,	 since	 LDTF	 guided	 SMADs	 can	 regulate	 the	 expression	 of	 other	

LDTFs.	 Furthermore,	 SMADs	do	not	always	 form	exclusive	partnerships	with	a	master	

TF,	and	LDTFs	are	not	obligatory	partners	of	SMADs.	

	

SMADs	 integrate	 inputs	 from	multiple	 signalling	pathways,	 and	are	broadly	 separated	

into	two	categories:	 i)	regulating	the	strength	and	duration	of	SMAD	signalling	activity	

through	 signal-dependent	 post-translational	 modifications,	 and	 ii)	 the	 response	 of	

signal-driven	TFs	to	specific	cytokines	which	cooperate	with	both	SMADs	and	LDTFs	at	

target	 gene	 loci.	 The	 latter	 ties	 to	 recent	 studies	 that	 have	 identified	 the	 concept	 of	

super-enhancers,	 which	 compared	 to	 regular	 enhancers	 are	 rare	 and	 are	 strongly	

enriched	at	LDTF	loci	(Whyte	et	al.,	2013).	Furthermore,	upon	examination	of	the	DNA	

elements	that	comprise	super-enhancers,	there	was	an	enrichement	 in	both	LDTF	and	

signal-driven	TF	binding	sites	(Hnisz	et	al.,	2015).	Furthermore,	the	TFs	were	associated	

with	 multiple	 pathways,	 which	 overall	 suggests	 that	 the	 control	 of	 cell	 identity	 is	 a	

process	 that	 is	 highly	 cooperative,	 and	 involves	 LDTFs	 and	multiple	 signal-driven	 TFs,	

with	SMAD	proteins	being	prominent	among	them.			

	

	

1.6.5	 Role	of	TGFβ 	signalling	under	physiological	conditions		

1.6.5.1	 Embryonic	development	and	homeostasis			

1.6.5.1.1	 Early	Development:	Axis	Formation,	and	Patterning	

	
In	early	development	(embryogenesis),	members	of	the	Nodal/Activin	and	BMP	families	

have	pivotal	roles	in	the	generation	of	axes	and	in	the	subsequent	patterning	of	tissues	

across	 these	 axes.	 These	morphogens	 are	 capable	of	 providing	positional	 information	

through	the	formation	of	concentration	gradients	 in	a	dose-dependent	manner,	which	

initiate	 downstream	 molecular	 programs	 to	 fields	 of	 cells	 (Wu	 and	 Hill,	 2009).	 In	
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Drosophila	 embryos,	 dorsal-ventral	 (D/V)	 axis	 specification	 and	patterning	 is	 achieved	

through	 the	 BMP	 orthologs	 Decapentaplegic	 (Dpp),	 and	 Screw	 (Scw)	 (Morisato	 and	

Anderson,	1995).	Cells	along	this	D-V	axis	respond	differently	depending	on	the	levels	of	

Dpp	signalling,	with	high	levels	of	signalling	specifying	the	amnioserosa,	lower	levels	of	

signalling	 specifying	 the	 dorsal	 ectoderm	 and	 the	 lack	 of	 signalling	 permitting	 neural	

ectoderm	formation	(O’Connor	et	al.,	2006).	 In	contrast,	unlike	 in	Drosophila,	 the	first	

zygotically	 induced	 axis	 in	 mice	 is	 the	 anterior-posterior	 (A-P)	 axis,	 however,	 again,	

Nodal	 is	 a	 key	 player.	 Nodal,	 whose	 initial	 expression	 occurs	 within	 the	 epiblast,	 is	

involved	with	A-P	 formation	 in	 three-key	steps	 (Schier,	2003;	Yamamoto	et	al.,	2004).	

First,	is	its	requirement	for	induction	of	the	distal	visceral	endoderm	(DVE);	second,	cells	

within	the	visceral	endoderm	secrete	Nodal	antagonists	 (in	 response	to	Nodal),	which	

results	 in	 the	 inhibition	 of	 Nodal-induced	 proliferation	 within	 cells	 close	 to	 these	

antagonists;	and	third,	nodal	 induces	cells	of	the	DVE	to	migrate	towards	the	anterior	

and	 thereby	 create	 an	 A-P	 axis.	 Despite	 these	 slight	 differences,	 the	 molecular	

requirements	 for	 defining	 and	 patterning	 the	D/V	 axis	 are	 highly	 conserved	 between	

vertebrates	and	Drosophila.		

	

1.6.5.1.2	 Germ-Layer	Specification,	Patterning,	and	Gastrulation	

	
Along	 with	 its	 pivotal	 involvement	 in	 axis	 specification,	 Nodal	 is	 also	 required	 in	

vertebrates	of	the	three	germ	layers:	endoderm,	mesoderm,	and	ectoderm	(indirectly).	

Firstly,	different	levels	of	Nodal	signalling	are	required	for	further	patterning,	with	high	

levels	 inducing	 endoderm	 and	 lower	 levels	 inducing	 the	mesoderm	 (Zorn	 and	Wells,	

2007).	The	third	 layer,	ectoderm,	 is	considered	a	default	tissue	type,	as	tissues	absent	

from	 Nodal	 signalling	 become	 ectoderm,	 with	 active	 inhibition	 of	 Nodal	 signalling	

required	 in	 the	embryo	 (Zhang	et	al.,	 1998).	Without	 the	 appropriate	 specification	of	

the	 three	 germ	 layers,	 normal	 gastrulation	 cannot	 occur,	 and	 therefore	 there	 is	 no	

surprise	that	severe	gastrulation	and	primitive	streak	defects	can	occur	following	 loss-

of-function	mutations	within	Nodal	signalling	(Zorn	and	Wells,	2007).		
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1.6.5.1.3	 Left-Right	(L-R)	Asymmetry	

	
After	the	formation	of	A-P	and	D-V	axes,	the	L-R	axis	is	specified,	which	is	important	for	

organ	positioning	and	the	directional	looping	of	tubules	in	the	body	(Wu	and	Hill,	2009).	

Yet	 again	 Nodal	 plays	 a	 key	 role,	 and	 during	 L-R	 axis	 specification,	 is	 dynamic,	 both	

spatially	and	temporally.	BMP	signalling	is	also	involved	in	L-R	patterning,	with	evidence	

from	 mouse	 and	 chick	 revealing	 BMP	 ligands	 to	 have	 differing	 roles,	 with	 BMP4	

repressing	Nodal	expression	in	the	right	lateral	plate	mesoderm	(LPM)	in	mouse	(Mine	

et	al.,	2008)	and	BMP2	inducing	Nodal	expression	on	the	left	side	in	chick	(Schlange	et	

al.,	2002).	Experiments	in	zebra	fish	suggest	that	BMP	signalling	can	temporally	regulate	

these	two	separate	events	(Chocron	et	al.,	2007).		

	

	

	

1.6.5.1.4	 Organogenesis	and	Developmental	Disease	

	
So	far	only	a	few	key	players,	mainly	Nodal	and	several	BMPs	that	are	required	for	early	

embryogenesis,	 and	 their	 ligands	 are	 deployed	 in	 later	 developmental	 processes	 in	

tissue	 morphogenesis	 and	 homeostasis.	 In	 vertebrates	 the	 role	 in	 morphogenesis	 of	

most	organs	is	played	by	a	number	of	TGFβ	superfamily	ligands.	Examples	include	anti-

mullerian	hormone	(AMH),	which	is	a	highly	specialized	member	of	the	TGFβ	family,	and	

is	 required	 for	 a	 number	 of	 processes,	 including	 follicular	 development	 in	 females,	

whose	 expression	 is	 used	 as	 a	marker	 for	 follicular	 reserve	 in	women,	 and	 excessive	

amounts	can	cause	polycystic	ovary	syndrome	(Wang	et	al.,	2007).		

	

Family	 members	 of	 the	 TGFβ	 signalling	 pathway	 are	 well	 known	 for	 their	 ability	 to	

induce	 epithelial-mesenchymal	 transition	 (EMT)	 (Yang	 and	 Weinberg,	 2008),	 which	

allows	polarized	cells	within	an	epithelial	sheet	to	assume	a	spindle-like	mesenchymal	

shape,	migrate	from	site	of	origin	and	invade/colonise	surrounding	tissue.	The	process	

of	 EMT	 is	 essential	 under	 physiological	 conditions	 for	 a	 variety	 of	 developmental	

processes,	 with	 a	 classic	 example	 being	 the	 invasion	 of	 endocardial	 cells	 from	 the	
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atrioventricular	(AV)	canals	into	the	heart	cushion,	which	eventually	gives	rise	to	heart	

valves	(Mercado-Pimentel	and	Runyan,	2007).				

	

1.6.5.2	 Cell	cycle	progression	and	apoptosis		

	

In	 response	 to	 TGFβ	 ligands	 many	 genes	 are	 activated,	 whereas	 others	 are	

transcriptionally	 repressed.	 Under	 physiological	 conditions	 TGFβ	 signalling	 is	

responsible	for	G1-phase	arrest	of	the	cell	cycle	(Ewen	et	al.,	1995;	Geng	and	Weinberg,	

1993;	 Herrera	 et	 al.,	 1996;	 Zhang	 et	 al.,	 1999).	 There	 are	 multiple	 mechanisms	 that	

control	TGFβ	mediated	anti-proliferative	responses.	Various	studies	have	shown	TGFβ	is	

capable	of	inducing	TGFβ	signalling	and	inhibits	cell-cycle	progression	by	regulating	the	

transcription	of	cell	growth	arrest	through	the	upregulation	p15Ink4b	and	p21Cip1	(Polyak	

et	al.,	1994;	Senturk	et	al.,	2010),	which	subsequently	 inhibit	 cyclin-dependent	kinase	

(CDK)-mediated	 phosphorylation	 of	 the	 retinoblastoma	 protein	 (pRb)	 (Florenes	et	 al.,	

1996;	Rich	et	al.,	1999;	Robson	et	al.,	1999).	TGFβ	signalling	is	also	capable	of	inducing	

cell	 cycle	 arrest	 through	 the	 upregulation	 of	 p27Kip1	 or	 through	 the	 inhibition	 of	 CDK	

tyrosine	phosphatase	cdc25A	(Iavarone	and	Massague,	1997).	TGFβ	 impacts	other	cell	

cycle	 regulators;	 among	 them	 include	 c-Myc	 and	 Id	 family	 members,	 which	 are	

downregulated	by	TGFβ	 (Chen	et	al.,	2002;	Kang	et	al.,	2003).	 In	TGFβ	 induced	c-Myc	

downregulation,	SMAD3	represses	its	transcription	in	association	with	the	transcription	

factors	E2F4,	E2F5	and	co-repressors	p107.	This	complex	is	assembled	in	the	cytoplasm	

before	being	translocated	into	the	nucleus	(in	response	to	TGFβ	treatment),	where,	 in	

association	with	SMAD4,	 it	binds	to	the	SMAD-E2F-bidnind	site	 in	the	c-Myc	promoter	

and	 represses	 c-Myc	 expression	 (Chen	 et	 al.,	 2002).	 TGFβ-activated	 SMAD3	 also	

downregulates	 Id1	 activity	 by	 directly	 inducing	 ATF3	 expression,	 before	 forming	 a	

complex	with	ATF3	and	repressing	the	Id1	promoter	(Kang	et	al.,	2003).		

	

TGFβ	family	members	can	also	induce	cell	apoptosis,	which	is	typically	accompanied	by	

growth	arrest.	One	mechanism	by	which	TGFβ	induces	apoptosis	is	through	the	JNK	and	

p38	 pathways,	 mediated	 through	 the	 adaptor	 protein	 Daxx	 (Edlund	 et	 al.,	 2003;	

Perlman	et	al.,	2001).	TGFβ	can	also	induce	programmed	cell	death,	usually	through	the	

accumulation	 of	 reactive	 oxygen	 species	 (Langer	 et	 al.,	 1996),	 downregulation	 of	 Id2	
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(Cao	et	al.,	 2009),	and	 transcriptional	 regulation	of	apoptotic	proteins	BIK	and	BCL-XL	

(Spender	 et	 al.,	 2009).	 Recent	 work	 on	 pre-malignant	 pancreatic	 progenitor	 cells	

harbouring	mutant	 KRAS	 has	 shown	 that	 TGFβ	 induced	 apoptosis	 occurs	 through	 the	

altered	 regulation	 of	 SOX4	 (directly)	 and	 Krueppel-like	 factor	 5	 (KLF5)	 (indirectly)	

through	activation	of	the	EMT	programme	(David	et	al.,	2016).				

	

1.6.5.3	 Epithelial-Mesenchymal	Transition	

	

EMT	is	a	well-coordinated	process	during	embryogenesis	and	a	pathological	feature	in	

neoplasia	 and	 fibrosis.	 Cells	 that	 undergo	 EMT	 begin	 to	 lose	 apical-basolateral	 cell	

polarity,	undergo	actin	reorganization,	and	lose	the	expression	of	E-cadherin	and	ZO-1,	

which	in	turn	causes	them	to	become	more	motile	and	invasive	through	the	production	

of	 a	mesenchymal	 cell	 cytoskeleton	 (Kalluri	 and	Weinberg,	 2009;	 Levayer	 and	 Lecuit,	

2008).	 TGFβ	 induced	 EMT	 has	 been	 demonstrated	 in	 a	 wide	 variety	 of	 cell	 types,	

including	 keratinocytes,	 mammary	 epithelial	 cells	 and	 hepatocytes	 (Cui	 et	 al.,	 1996;	

Davies	et	al.,	2005;	Miettinen	et	al.,	1994;	Sheahan	et	al.,	2008).	EMT	is	driven	by	a	set	

of	 transcription	 factors	 including	 Snail	 and	 Slug	 (zinc-finger	 proteins),	 Twist	 (bHLH	

factor)	(Mani	et	al.,	2007;	Thuault	et	al.,	2006),	ZEB-1	and	-2	(zinc-finger-homeodomain	

proteins),	and	FoxC3	(forkhead	factor)	(Xu	et	al.,	2009).	Through	a	combination	of	direct	

association	with	DNA	and	recruitment	of	a	complex	consisting	of	HDAC,	the	expression	

of	 various	 target	 genes	 are	 regulated	 (e.g	 E-cadherin)	 by	 TGFβ-induced	 Snail	 family	

transcription	 factors	 (Dhasarthy	et	al.,	 2007;	Zavadil	and	Bottinger,	2005).	 In	a	 similar	

fashion	 to	 Snail	 family	 members,	 Zeb	 family	 transcription	 factors	 recognize	 E-box	

elements	 on	 regulatory	 regions	 of	 target	 genes,	 and	 are	 capable	 of	 repressing	 E-

cadherin	through	the	recruitment	of	the	transcriptional	co-repressor	C-terminal	binding	

protein	(CtBP)	(Vandewalle	et	al.,	2005).		
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1.6.6	 TGFβ 	signalling	in	cancer		

1.6.6.1	 Points	of	disruption	in	the	TGFβ	pathway	in	cancer	

	

Due	 to	 the	 diverse	 role	 of	 TGFβ	 signalling	 in	 cellular	 functions,	 disruption	 of	 this	

pathway	 has	 been	 associated	 with	 a	 diverse	 range	 of	 diseases	 including	 cancer,	

atherosclerosis,	and	renal	fibrosis	(Derynck	et	al.,	2001;	Massague	and	Wotton,	2000).	

There	 is	a	growing	body	of	evidence	 that	 implicates	 the	TGFβ	 signalling	pathway	as	a	

point	 of	 disruption	 in	 cancer.	 Bi-allelic	 inactivation	 of	 TGFβRII	 mutations	 that	 either	

truncate	 the	 protein	 or	 inactivate	 its	 kinase	 domain	 have	 been	 shown	 in	 many	

carcinomas	 including	colon,	gastric,	biliary,	pulmonary,	ovarian,	esophageal,	 and	head	

and	 neck	 (Levy	 and	 Hill,	 2006).	 Also,	 germline	mutations	 in	 the	 BMP	 type	 I	 receptor	

BMPRIA	 in	 a	 subset	 of	 individuals	 with	 the	 autosomal	 dominant	 disease,	 Juvenile	

Polyposis	Syndrome	(JPS),	predisposes	them	to	gastrointestinal	polyps	and	cancer	(Zhou	

et	al.,	2001).	There	have	been	a	number	of	instances	whereby	the	ligand	trap	proteins	

are	 linked	 to	 carcinogenesis,	 including	 the	 overexpression	 of	 follistatin	 and	 gremlin-1	

that	have	been	implicated	in	breast	cancer	metastasis	(Kang	et	al.,	2003)	and	skin	basal	

cell	carcinomas	(Sneddon	et	al.,	2006)	respectively.	Surprisingly,	even	though	R-SMADs	

have	such	a	pivotal	 role	 in	connecting	signalling	pathways,	 they	are	 rarely	mutated	 in	

cancer,	with	only	 a	 limited	number	of	 cases	 including	 intragenic	mutations	 in	 SMAD2	

present	in	a	small	proportion	of	colorectal	cancers	(Sjoblom	et	al.,	2006),	and	the	loss	of	

SMAD3	 expression	 being	 found	 in	 gastric	 cancer	 and	 T	 cell	 lymphoblastic	 leukemia	

being	reported	(Levy	and	Hill,	2006).	Unlike	SMAD2	and	3,	SMAD4	is	a	notable	target	for	

inactivation	 in	 cancer	 (Ryan	 et	 al.,	 2014).	 Including,	 SMAD4	 mutations,	 which	 are	

present	 in	more	than	half	of	pancreatic	carcinomas	(close	 in	prevalence	to	KRAS,	p53,	

and	p16INK4A	mutations)	(Jaffee	et	al.,	2002);	SMAD4	is	also	mutated	in	more	than	half	

of	 sporadic	 colorectal	 tumours,	 and	 in	 a	 high	 proportion	 of	 esophageal	 tumours	

(Sjoblom	et	al.,	2006).	Finally,	some	cancers	have	also	been	associated	with	changes	in	

I-SMADs.	 For	 example,	 in	 endometrial	 carcinomas	 and	 thyroid	 follicular	 tumours,	

SMAD7	 overexpression	 and	 therefore	 suppression	 of	 TGFβ	 signalling	 has	 been	 found	

(Cerutti	et	al.,	2003;	Dowdy	et	al.,	2005).	Under	physiological	conditions	SMAD	function	

is	directly	inhibited	by	transcriptional	repressors	such	as	Ski	(SKI)	and	SnoN	(SKIL).	As	a	
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consequence	 SKI	 and	 SKIL	 deletions	 aswell	 as	 amplifications	 have	 been	 observed	 in	

colorectal	and	esophageal	cancers,	which	 interestingly	raises	the	possibility	that	these	

genes	 can	 act	 as	 either	 oncogenes	 or	 tumour	 suppressor	 genes	 depending	 on	 the	

context	(Zhu	et	al.,	2007).					

	

1.6.6.2	 Tumourigenic	Effects	of	TGFβ :	Tumour	Growth,	Invasion,	and	

Immune	Evasion	

	

Although	 implicated	 in	 tumour	 progression,	 the	 role	 of	 TGFβ	 throughout	 the	

development	 of	 a	 cancer	 is	 one	 that	 is	 complex	 and	 context	 dependent,	 with	 TGFβ	

shown	to	be	anti-tumourigenic	at	early	stages	of	tumourigenesis,	and	pro-tumourigenic	

at	 later	 stages	 (Cui	 et	 al.,	 1996;	 Mao	 et	 al.,	 2006;	 Pierce	 et	 al.,	 1995).	 These	 anti-

tumourigenic	effects	deployed	by	TGFβ	are	 the	aforementioned	 roles	of	 this	pathway	

under	 physiological	 conditions,	 including	 inhibition	 of	 cell	 cycle	 progression	 and	

proliferation,	as	well	 as	even	 inducing	apoptosis	 (Pardali	 and	Moustakas,	2007;	 Siegel	

and	 Massague,	 2003)	 in	 addition	 to	 senescence	 in	 certain	 cell	 types	 such	 as	

keratinocytes	(Shukla	et	al.,	2008;	Vijayachandra	et	al.,	2003).				

	

However,	 the	 pro-tumourigenic	 effects	 of	 TGF-β	 signalling	 in	 cancer	 are	 typically	

associated	 with	 increased	 invasiveness	 and	 an	 aggressive	 phenotype.	 This	 is	

predominantly	 achieved	 through	 (1)	 induction	 of	 epithelial-mesenchymal	 transition	

(Heldin	 et	 al.,	 2012),	 (2)	 increased	 proliferation	 arising	 from	 retinoblastoma	 gene	

inactivation	(Donovan	&	Slingerland,	2000),	(3)	autocrine	growth	factor	signalling	(TGF-

beta	 itself	and	PDGF),	 (4)	 release	of	osteoclastic	proteins,	and	 (5)	 immunosuppressive	

effects	(Tian	et	al.,	2011).		

	

1.6.6.3	 Epithelial-Mesenchymal	Transition	

	
In	 transformed	 epithelial	 progenitor	 cells	 with	 tumour-propagating	 abilities,	 TGFβ-

induced	EMT	is	observed,	and	as	such	contributes	to	tumour	invasion	and	dissemination	

owing	to	the	cell	 junction-free,	motile	phenotype	the	cells	acquire	 (Nieto	et	al.,	2016;	
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Mani	 et	 al.,	 2008;	 Puram	 et	 al.,	 2017;	 Ye	 and	 Weinberg,	 2015;	 Diepenbruck	 and	

Christofori,	 2016).	 Tumour	 cells	 with	 such	mesenchymal	 traits	 are	 often	 found	 to	 be	

CSCs,	 and	 are	 observed	 at	 the	 invasion	 front/edge,	 which	 is	 a	 region	 that	 is	 rich	 in	

stromal	 TGFβ	 and	 other	 cytokines	 that	 may	 play	 a	 part	 in	 EMT	 induction.	 TGFβ	 is	 a	

potent	 inducer	 of	 EMT	 (Derynck	 and	 Ackhurst,	 2007;	 Thiery,	 2003),	 and	 its	 role	 in	

human	cancer	has	been	reported	in	tumour-propagating	breast	cancer	cell	populations	

expressing	 the	cell	 surface	markers,	CD44+/CD24low	 (Shipitsin	et	al.,	 2007).	The	gene	

expression	 pattern	 of	 these	 cells	 compared	 to	 the	 bulk	 population	 suggested	 the	

presence	of	an	active	TGFβ	signalling	pathway,	and	that	when	these	cells	were	exposed	

to	a	TGFBRI	blocker,	 they	were	 induced	 to	adopt	a	more	epithelial	 phenotype.	 These	

cells,	 therefore,	 may	 represent	 a	 population	 that	 has	 undergone	 EMT.	 The	 ability	 of	

TGFβ	to	induce	EMT	occurs	through	a	combination	of	SMAD-dependent	transcriptional	

events	and	SMAD-independent	effects	of	cell	junctional	complexes.	The	transcriptional	

events	 include	 the	 induction	 of	 Snail,	 Slug,	 and	 Twist	 through	 SMAD-mediated	

expression	of	HMGA2	(high-mobility	group	A2)	(Thuault	et	al.,	2006),	while	independent	

of	 SMAD	 activity,	 the	 dissolution	 of	 cell	 junction	 complexes	 occurs	 through	 TβRII-

mediated	 phosphorylation	 of	 Par6	 (Ozdamar	 et	 al.,	 2005).	 Of	 further	 note,	 in	mouse	

tumours	 and	 cell	 lines,	 Ras	 signalling	 has	 been	 shown	 to	 enhance	 SMAD-dependent	

TGFβ-induced	EMT	(Derynck	and	Akhurst,	2007).								

		

1.6.6.4	 Loss	of	TGFβ	mediated	G1	arrest	in	cancer	

	
As	previously	described	under	physiological	conditions,	TGFβ	induces	G1	arrest	through	

the	 downregulation	 of	 c-Myc,	 inhibition	 of	 CDKs,	 and	 hypo-phosphorylation	 of	 pRb	

(Fynan	and	Reiss,	1993).	The	cyclin	D1	genes	have	been	shown	to	contribute	 to	TGFβ	

resistance,	with	overexpression	and/or	amplification	of	this	gene	seen	in	40%	of	breast	

cancers	(Lammie	et	al.,	1991;	Buckley	et	al.,	1993).	Increased	expression	of	the	cyclin	E	

protein	 has	 also	 been	 observed	 in	 cancers	 (Porter	 et	 al.,	 1997).	 Amplifications	 and	

activating	 mutations	 in	 the	 Cdk4	 gene	 have	 also	 been	 associated	 with	 cell	 cycle	

progression,	with	 amplifications	 observed	 in	 primary	 breast	 cancers	 (An	et	 al.,	 1999),	

and	 dominant	 active	 mutations	 observed	 in	 individuals	 with	 malignant	 melanoma	

(Bates	 and	 Peters,	 1995).	 There	 are	 a	 number	 of	 mechanisms	 by	 which	 c-Myc	 can	
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contribute	 to	 cell	 cycle	 arrest.	 Overexpression	 of	 c-Myc	 is	 capable	 of	 increasing	 G1	

cyclin	levels,	and	may	indirectly	regulate	the	expression	of	cyclins	D1,	E	and	A	(Jansen-

Durr	et	al.,	1993;	Shibuya	et	al.,	1992),	which	in	turn	leads	to	the	sequestration	of	the	

cell	cycle	inhibitor	p27	away	from	cyclin	E-cdk2,	which	subsequently	activates	cell	cycle	

progression	(Perez-Roger	et	al.,	1991;	Bouchard	et	al.,	1999).			

	

1.6.6.5	 Myofibroblast	Generation	

	
There	 are	 numerous	 publications	 that	 have	 highlighted	 the	 role	 of	 TGFβ	 signalling	 in	

landscaping	 the	tumour	microenvironment	during	 tumour	progression,	with	particular	

attention	 to	 its	 impact	 on	 stromal	 fibroblasts.	 A	 large	 proportion	 of	 colorectal	 and	

pancreatic	 cancers	 avoid	 TGFβ-mediated	 growth	 arrest	 by	 completely	 abolishing	 the	

pathway;	 however,	 this	 apparent	 paradox	 between	 high	 levels	 of	 TGFβ	 and	 poor	

prognosis	 can	 be	 explained	 in	 part	 by	 the	 fact	 that	 the	 tumour	microenvironment	 is	

responsive	to	TGFβ	signalling.	Calon	et	al.	 (2012)	used	an	orthotopic	mouse	model	for	

colorectal	cancer	to	show	that	colorectal	cancer	cells	 increased	the	efficiency	of	organ	

colonisation	due	to	the	activity	of	TGFβ	on	stromal	cells,	and	that	mice	treated	with	a	

TGFBRI	receptor	demonstrated	resilience	to	metastasis	(Calon	et	al.,	2012).	In	a	breast	

cancer	 metastasis	 model	 a	 complementary	 finding	 was	 also	 observed	 where	 TGFβ	

signalling	was	used	by	tumour	SCs	to	infiltrate	the	lungs	and	create	a	metastatic	niche	

(Malanchi	et	al.,	2011).	Therefore	these	findings	support	the	notion	that	at	early	time	

points	 of	 the	metastatic	 process	 the	 TGFβ	 activated	 stroma	 is	 crucial	 to	 facilitate	 the	

colonisation	of	cancer	cells.		

	

Another	significant	component	of	the	pro-invasive	action	of	TGFβ	is	the	mobilization	of	

myofibroblasts.	Myofibroblasts	 are	 highly	motile	 and	have	 features	 of	 fibroblasts	 and	

smooth	muscle	cells,	and	 their	presence	 in	 the	 tumour	stroma	 (aka	cancer-associated	

fibroblasts;	 CAFs)	 facilitates	 tumour	development	 (Allinen	et	al.,	2004;	De	Wever	 and	

Mareel,	 2003).	 CAFs	 may	 arise	 from	 TGFβ	 driven	 differentiation	 of	 resident	 tissue	

fibroblasts	into	activated	fibroblasts	(Evans	et	al.,	2003),	a	process	that	requires	chloride	

intracellular	channel	4	(CLIC4)	(Shukla	et	al.,	2014).	 In	vitro	myofibroblasts	are	capable	

of	 guiding	 colon	 cancer	 cell	 invasion	 into	 a	 collagen	 matrix,	 and	 is	 a	 process	 that	 is	
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constantly	 reliant	 on	 TGFβ.	Myofibroblasts	 promote	 cancer	 cell	 proliferation,	 tumour	

invasion,	 and	 neo-angiogenesis	 through	 the	 production	 of	 matrix	 metalloproteases	

(MMPs),	 cytokines,	 such	 as	 IL-8	 and	 VEGF,	 and	 chemokines	 including	 CXCL12	

(Massague,	 2008).	 The	 crosstalk	 that	 exists	 between	 cancer	 cells	 and	 CAFs	 can	 occur	

through	 either	 cell-cell	 contact	 or	 through	 the	 release	 of	 soluble	 factors.	 Epithelial	

tumours	such	as	prostate	cancer	cells	have	been	shown	to	secrete	sufficient	amounts	of	

TGFβ	 to	 activate	 primary	 fibroblasts	 (Grubisha	 et	 al.,	 2012),	 Furthermore,	 treatment	

with	tumour	cell-derived	conditioned	media	induced	TGFβ	signalling	in	CAFs,	 including	

proteinases	 that	 mediate	 cell	 invasion,	 which	 was	 subsequently	 abolished	 following	

TGFBRI	blockade,	thereby	indicating	a	strong	TGFβ	dependency	(Hawinkels	et	al.,	2014).	

A	 study	 by	 Calon	 et	 al.	 (2015)	 has	 even	 identified	 the	 role	 of	 CAFs	 in	 increasing	 the	

frequency	 of	 tumour-initiating	 cells,	 and	 the	 fact	 that	 TGFβ	 signalling	 dramatically	

enhances	this	process.	Furthermore,	through	the	use	of	patient	derived	organoids	and	

xenografts,	they	found	that	TGFβ	inhibitors	blocked	the	crosstalk	between	cancer	cells	

and	the	microenvironment	and	thereby	halted	disease	progression	(Calon	et	al.,	2015).	

	

1.6.6.6	 Production	of	Autocrine	Mitogens	

	
Tumour	 cell	 proliferation	 is	 promoted	 by	 TGFβ	 through	 the	 stimulation	 of	 the	

production	of	 autocrine	mitogenic	 factors.	An	example	of	 this	 can	be	 seen	 in	 glioma,	

where	the	loss	of	the	TGFβ	tumour	suppressor	arm,	due	to	PI3K	hyperactivation,	loss	of	

p15INK4b,	 or	mutational	 inactivation	 of	 RB,	 allows	 these	 tumour	 cells	 to	 profit	 from	

TGFβ-induced	mitogen	 production	 (Jennings	 and	 Pietenpol,	 1998).	 The	 production	 of	

autocrine	mitogenic	factors	has	also	been	observed	in	a	number	of	other	tumour	types,	

including	 leukemia	 inhibitor	 factor	 (LIF)	 and	 platelet-derived	 growth	 factor	 (PDGF)	

production	 in	 glioblastoma	 (Penuelas	 et	 al.,	 2009),	 angiopoietin-like	 4	 (ANGPTL4)	

production	which	 serves	as	a	mediator	of	 infiltration	of	 circulating	breast	 cancer	 cells	

into	the	lungs	(Padua	et	al.,	2008),	and	expression	of	osteoclast	stimulating	genes	(i.e.	

CTGF)	 for	 bone	 colonisation	 by	 breast	 cancer	 cells	 (Kakonen	et	 al.,	 2002;	 Kang	et	 al.,	

2005;	Sethi	et	al.,2011).			
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1.6.6.7	 Evasion	of	Immunity	

	
A	net	pro-tumourigenic	advantage	may	result	when	the	immunosuppressive	effects	of	

TGFβ	 outweigh	 the	 tumour-suppressive	 benefits	 of	 its	 anti-inflammatory	 action.	

Examples	of	this	have	been	shown	in	mouse	studies,	where	T-cell	specific	expression	of	

a	 dominant-negative	 form	 of	 TGFBRII	 prevented	 the	 growth	 of	 inoculated	melanoma	

(Gorelik	and	Flavell,	2000).	This	effect	has	also	been	demonstrated	 in	glioma	patients,	

whereby	 TGFβ	 has	 been	 shown	 to	 decrease	 the	 expression	 of	 the	 activating	

immunoreceptor	NKG2D	 in	CD8+	T	cells	and	NK	cells,	but	 represses	 the	expression	of	

the	 K+NKG2D	 ligand	 MICA	 (Friese	 et	 al.,	 2004).	 Furthermore	 knocking	 down	 the	

synthesis	 of	 TGFβ	 in	 glioma	 cell	 lines	 prevented	 NKG2D	 downregulation	 and	

subsequently	enhanced	 the	killing	of	glioma	cells	by	CTL	and	NK	cells.	Therefore	both	

the	immunosuppressive	action	of	TGFβ	and	the	TGFβ-induced	production	of	PDGF	may	

be	 essential	 for	 glioma	 development.	 Therefore	 TGFβ	 signalling	 has	 a	 critical	 role	 in	

regulating	 the	 adaptive	 immune	 system.	 TGFβ	 signalling	 has	 been	 shown	 to	 suppress	

the	 expression	 of	 interferon-γ,	 restrict	 the	 expression	 of	 TH1	 cells,	 inhibit	 the	

development	of	memory	T	cells,	and	attenuate	 the	activation	and	cytotoxic	effects	of	

CD8+	 effector	 cells	 (Li	 and	 Flavell,	 2008;	 Gorelik	 and	 Flavell,	 2000;	 Thomas	 and	

Massague,	2005;	Takai	et	al.,	2013).	However,	more	significantly	TGFβ	has	been	shown	

to	induce	the	differentiation	of	regulatory	T	cells	(Tregs),	which	are	a	sub-population	of	

CD4+	T	 cells	 that	 express	CD25	and	 the	 forkhead	box	P3	 (FOXP3)	 transcription	 factor	

(Chen	 et	 al.,	 2003;	 Liu	 et	 al.,	 2007;	 Liu	 et	 al.,	 2009;	 Chen	 et	 al.,	 2005).	 FOXP3	 is	 the	

signature	transcription	factor	that	maintains	the	functional	program	of	the	Treg	lineage,	

and	 TGFβ	 has	 been	 shown	 to	 induce	 the	 expression	 of	 FOXP3	 on	 Tregs	 (Tone	 et	 al.,	

2008;	Hori	et	al.,	2003).	Following	induction	by	TGFβ,	FOXP3	induces	the	expression	of	

CTLA4	and	the	ligand	Galectin-9	(GAL-9),	with	CTLA-4	shown	to	restrain	co-stimulation	

of	 T	 cells	 and	GAL-9	 that	 triggers	 exhaustion	 or	 apoptosis	 of	 effector	 T	 cells	 through	

engaging	 the	 T-cell	 immunoglobulin	 domain	 and	 mucin	 domain-3	 (TIM-3)	 immune-

inhibitor	receptor	(Wing	et	al.,	2008;	Oida	et	al.,	2006;	Zhu	et	al.,	2005).	The	induction	

and	maintainence	of	Tregs	 is	strengthened	in	an	autocrine	positive	feed-forward	loop,	

with	 GAL-9	 shown	 to	 interact	 with	 TGFβ	 receptors	 in	 order	 to	 drive	 more	 FOXP3	

expression	(Wu	et	al.,	2014).	The	functional	orientation	of	tumour-infiltrating	 immune	
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cells	 has	 a	major	 impact	on	a	patients	outcome	with	 cancer,	with	 TH1	 cells,	 cytotoxic	

CD8+	T	cells	and	memory	T	cells	expression	associated	with	longer	disease-free	survival	

and	tumour-infiltrating	Tregs	associated	with	poor	prognosis	in	numerous	cancer	types	

(Dranoff,	2005;	Curiel,	2008;	Tosolini	et	al.,	2011).	Therefore	the	ability	of	TGFβ	to	skew	

CD4+	 T	 cell	 differentiation	 away	 from	 a	 TH1	 phenotype	 towards	 a	 Treg	 lineage	 has	

significant	 clinical	 implications.	 As	 highlighted	 previously,	 clinical	 efforts	 used	 to	

counteract	tumour-induced	immune	tolerance	have	focused	on	the	use	of	monoclonal	

antibodies,	which	are	designed	to	attenuate	T-cell	inhibitory	receptors	that	function	as	

immune	 checkpoints	 (e.g.	 CTLA4	 and	 PD-1/PD-L1).	 One	 potential	 limitation	 of	 using	

immune	 checkpoint	 inhibitors	 is	 in	 the	 case	 of	 tumours	 enriched	 for	 TGFβ,	 and	

therefore	 FOXP3	 expression,	 as	 autocrine	 and	 paracrine	 signalling	within	 the	 tumour	

microenvironment	 could	 skew	 tumour-infiltrating	 T	 cells	 towards	 a	 Treg	 lineage	 and	

away	from	TH1	and	CD8+	 immune	effector	cell	 response.	A	recent	study	by	Ravi	et	al.	

(2018)	 used	 bifunctional	 antibody-ligand	 traps,	 containing	 an	 antibody	 capable	 of	

targeting	 CTLA4	 or	 PD-L1,	 and	 a	 TGFBRII	 ectodomain,	 which	 can	 sequester	 and	

inactivate	 TGFβ	 within	 the	 local	 tumour	 microenvironment	 (Ravi	 et	 al.,	 2018).	 They	

found	that	in	comparison	to	the	CTLA4	antibody,	Ipilimumab,	the	bifunctional	antibody-

ligand	traps	inhibited	tumour	progression	as	a	consequence	of	a	significant	reduction	in	

tumour-infiltrating	 Tregs,	 and	 activating	 antitumour	 immunity	 (Ravi	et	 al.,	 2018).	 The	

role	of	TGFβ	signalling	in	the	ineffectiveness	of	immune	checkpoint	inhibitors	has	been	

reported	 by	 Mariathasan	 et	 al.	 (2018)	 who	 found	 that	 in	 metastatic	 urothelial	

carcinoma,	 an	 increased	 TGFβ	 signature	 was	 associated	 with	 resistance	 to	 PD-L1	

blockade	(Mariathasan	et	al.,	2018).	Another	recent	study	by	Tauriello	et	al.	(2018)	used	

a	 mouse	 model	 of	 metastatic	 colon	 cancer	 to	 show	 that	 in	 cooperation	 with	 PD-L1	

blockade,	 TGFβ	 inhibition	 promoted	 T	 cell-mediated	 clearance	 of	 liver	 metastases	

(Tauriello	et	al.,	2018).																						

	

1.6.7	 Changes	in	TGFβ	and	SMAD	Protein	Expression	During	Mouse	Skin	

Carcinogenesis	
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Significant	alterations	in	the	expression	of	TGFβ	growth	factors	(along	with	other	TGFβ	

components)	 have	 been	 reported	 in	 several	 laboratories	 during	 mouse	 skin	

carcinogenesis.	Early	mouse	studies	showed	the	localized	production	of	TGFβ	in	tumour	

promoter-stimulated	mouse	epidermis	 (Akhurst	et	al.,	1988),	and	that	papillomas	and	

carcinomas	 induced	 in	 vivo	 had	 elevated	 levels	 of	 TGFβ1	 RNA	 within	 the	 basal	

keratinocyte	compartment	(Fowlis	et	al.,	1992).	Furthermore,	Kane	et	al.	(1991)	found	

that	 following	 cutaneous	 injury	 and	 subsequent	 physiological	 changes	 during	 wound	

healing,	changes	in	the	structure	or	conformation	of	TGFβ1,	its	localization	and	perhaps	

its	activity	vary	in	a	spatial	and	temporal	manner	(Kane	et	al.,	1991).	Studies	have	also	

shown	that	the	Ras	signalling	pathway	is	required	for	TGFβ1	stimulation	of	invasiveness	

and	 metastasis	 in	 keratinocytes	 (Santibanez	 et	 al.,	 2000).	 Furthermore,	 crosstalk	

between	Ras	and	SMAD	signalling	pathways,	whereby	SMAD4	attenuates	the	activity	of	

Ras	in	keratinocytes	expressing	the	Ras	oncogene,	and	blockade	of	SMAD4	function	led	

to	 the	 progression	 to	 undifferentiated	 carcinomas	 due	 to	 hyperactivation	 of	 the	

Ras/ERK	 pathway.	 The	 reliance	 of	 Ras	 signalling	 for	 TGFβ1-induced	 EMT	 has	 been	

reported	 in	 a	 number	 of	 epithelial	 cells.	 Interestingly,	 Oft	 et	 al.	 (2002)	 showed	 that	

elevated	 H-Ras	 levels	 were	 required	 for	 nuclear	 translocation	 of	 SMAD2,	 therefore	

inducing	EMT	as	a	consequence.						

	

	

1.6.8	 Role	of	TGFβ 	signalling	in	Basal	cell	carcinoma		

	

BCC	 represents	 the	most	 common	 cancer	 in	 humans,	which	 as	 previously	mentioned	

places	 a	 significant	 strain	 on	 healthcare	 services	 worldwide.	 There	 is	 increasing	

evidence	 to	 suggest	 that	 cutaneous	 epithelial	 tumours	 such	 as	 BCC	 are	 linked	 to	

deregulation	of	the	TGFβ	signalling	pathway.	When	taking	a	whole	genome	approach,	a	

number	of	groups	have	performed	microarray	analysis	on	human	basal	cell	carcinoma	in	

an	 attempt	 to	 enhance	 our	 understanding	 of	 the	 genetic	 and	molecular	 basis	 of	 BCC	

(Heller	et	al.,	2013;	Pellegrini	et	al.,	2017).	The	microarray	study	performed	by	Heller	et	

al.,	2013,	compared	human	BCC	tissue	against	site-matched	control	samples,	and	found	

several	 pathways	 to	 be	 significantly	 overrepresented	 in	 BCC,	 including	 PPAR-γ,	 TGFβ	

signalling,	lipid	metabolism	along	with	the	previously	well	established	roles	of	SHh	and	
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p53.	 Other	 groups	 have	 studied	 the	 levels	 of	 mRNA	 and	 protein	 expression	 in	 BCC	

samples	and	 found	a	 significant	overexpression	of	TGFβ1,	SMAD3,	and	SMAD7	mRNA	

levels,	 and	marked	 protein	 overexpression	 of	 SMAD3	 (Gambichler	et	 al.,	 2007).	 BCCs	

are	 unusual	 in	 that	 they	 rarely	 metastasize,	 although	 they	 can	 be	 locally	 invasive.	

However,	BCC	 is	unique	 in	 that	 the	vast	majority	of	mutations	 responsible	 for	driving	

tumour	growth	are	found	solely	within	the	Hh	signalling	pathway,	and	as	a	consequence	

when	 discussing	 the	 role	 of	 TGFβ	 signalling	 in	 BCC,	 it	 is	 important	 to	 consider	 its	

interaction	with	Hh	signalling.			

1.6.9	 Crosstalk	between	the	TGFβ 	and	Hh	signalling	pathways		
	

In	both	normal	and	malignant	tissues,	the	Hh	and	TGFβ	pathways	have	been	shown	to	

directly	regulate	key	components	of	each	other	(Guo	and	Wang,	2009).	TGFβ	has	been	

shown	 to	 induce	 Hh	 expression,	 which	 in	 turn	 activates	 GLI1	 and	 GLI1-dependent	

epithelial	 mesenchymal	 transition	 in	 non-small	 cell	 lung	 cancer	 cells	 (Maitah	 et	 al.,	

2011).	 SHh	 ligand	 has	 been	 shown	 to	 promote	 an	 invasive	 phenotype	within	 human	

gastric	cancer	cells,	mediated	through	the	SHh-induced	expression	of	TGFβ	 ligand	and	

TGFβRI	 (Yoo	 et	 al.,	 2008).	 The	 SMAD	 transcription	 factors	 within	 the	 TGFβ	 pathway	

have	 been	 shown	 to	 interact	 with	 the	 GLI	 transcription	 factors	 in	 the	 Hh	 pathway,	

where	in	several	cell	types,	TGFβ/SMAD3	has	been	demonstrated	to	directly	induce	the	

transcription	of	GLI2,	which	in	turn	upregulates	GLI1	(Dennler	et	al.,	2007)	(Figure	1.9).	

Of	clinical	relevance	 is	 that	TGFβ	blockade	has	been	shown	to	attenuate	Gli-mediated	

Hh	signalling	and	reduce	cell	growth	in	pancreatic	cancer	cells	that	were	resistant	to	Hh	

inhibition	 (Dennler	et	 al.,	 2007).	 Several	 SMAD	proteins	 have	been	 shown	 to	 interact	

with	truncated	form	of	GLI3	(which	is	a	repressor	of	Hh	signalling),	and	thereby	serve	to	

sequester	 this	 repressor	 and	 activate	 Hh	 signalling.	 Furthermore,	 this	 SMAD-GLI3	

complex	was	shown	to	dissociate	following	TGFβ/BMP	treatment,	and	therefore	be	free	

to	 suppress	 Hh	 signalling	 (Liu	 et	 al.,	 1998).	 In	 BCC	 in	 particular,	 the	most	 significant	

pathogenic	event	is	the	upregulation	of	Hh	signalling.	This	crosstalk	has	been	observed	

in	BCC,	 and	has	 led	 to	 the	 identification	of	 increased	expression	of	 TGFβ	 signalling	 in	

untreated	BCC	(Heller	et	al.,	2013;	O’Driscoll	et	al.,	2006).	Furthermore,	TGFβ	signalling	

activation	 is	 required	 for	 tumour	 progression	 in	 a	mouse	model	 of	 BCC	 development	

where	 it	 may	 exert	 immunosuppressive	 activities	 (Fan	 et	 al.,	 2010).	 Furthermore,	
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clinical	benefit	of	blocking	 the	TGFβ	pathway	was	demonstrated	as	BCC	development	

was	prevented	 in	this	model	upon	the	use	of	a	TGFBRI	small	molecule	blocker	(Fan	et	

al.,	2010).	Therefore,	while	TGFβ	likely	contributes	to	the	biological	effects	imparted	by	

Hh	signalling,	it	 is	apparent	that	the	opposite	is	also	true,	and	as	a	consequence	these	

two	pathways	appear	to	demonstrate	a	reciprocal	cycle	of	activation.			

	

	

	

	

Figure	1.9:	Crosstalk	between	TGFβ 	and	Hh	signalling	pathways.		

TGFβ	 ligands	 stimulate	 the	 formation	of	 heteromeric	 serine/threonine	 kinase	 receptor	

complexes,	which	subsequently	phosphorylate	and	activate	R-SMAD	proteins,	which	are	

capable	of	inducing	GLI2	expression.	GLI2	is	then	capable	of	inducing	the	expression	of	

genes	including	those	involved	in	EMT.	Adapted	from	Javelaud	et	al.,	2012.	
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1.6.10		 Role	of	TGFβ	signalling	in	CSC		

	

There	 are	 multiple	 lines	 of	 evidence	 supporting	 the	 role	 of	 TGFβ	 signalling	 in	 the	

regulation	 and	 maintenance	 of	 SCs.	 More	 specifically,	 TGFβ	 signalling	 has	 been	

recognized	for	 its	role	 in	the	maintenance	of	embryonic	stem	(ES)	cells,	adult/somatic	

SCs	(in	a	select	number	of	tissues),	and	more	recently	in	CSCs.		

	

ES	 cells	 are	 derived	 from	 the	 inner	 cell	 mass	 of	 blastocysts,	 which	 are	 multicellular	

structures	derived	 from	multiple	divisions	of	 fertilized	eggs.	One	of	 the	most	defining	

features	of	ES	cells	 is	their	ability	to	produce	identical	progeny	through	symmetric	cell	

divisions.	Mouse	embryos	deficient	in	the	common	mediator	SMAD,	SMAD4,	have	been	

shown	to	have	abnormal	epiblast	proliferation	and	a	delay	in	the	outgrowth	of	the	inner	

cell	 mass	 (Sirard	 et	 al.,	 1998).	 Furthermore,	 pSMAD2	 has	 been	 observed	 within	

undifferentiated	human	ES	cells,	and	was	found	to	decrease	upon	early	differentiation	

(James	et	al.,	2005).	As	a	consequence,	use	of	the	ALK5	inhibitor,	SB431542	(Inman	et	

al.,	2002b),	has	shown	a	decreased	expression	of	the	markers	of	undifferentiated	states	

(James	 et	 al.,	 2005;	 Vallier	 et	 al.,	 2005).	 SB431542	 was	 also	 shown	 to	 dramatically	

reduce	 the	 proliferation	 of	 mouse	 ES	 cells	 without	 impacting	 on	 their	 pluripotency,	

suggesting	 that	 TGFβ	 signalling	 is	 essential	 for	 the	 proliferation	 of	 mouse	 ES	 cells	

(Ogawa	et	al.,	2007).	Therefore,	TGFβ	signalling	plays	an	important	role	in	maintaining	

self-renewal	and	pluripotency	in	human	and	mouse	ES	cells.						

	

The	signals	transduced	by	TGFβ	family	members	have	been	implicated	in	various	types	

of	 somatic/adult	 SCs	 (e.g.	 intestinal	 SCs,	 HF	 epidermal	 SCs,	 neural	 SCs)	 (Watabe	 and	

Miyazono,	2008).		

	

In	intestinal	SCs,	it	is	predominantly	the	BMP	axis	of	the	TGFβ/BMP	signalling	pathway	

that	 plays	 a	 role	 in	 regulating	 this	 SC	 population.	 Within	 the	 intestinal	 crypts,	 BMP	

signalling	acts	as	a	negative	regulator	of	the	SC	population.	BMP-4	 is	highly	expressed	

within	 the	 intravillus	 mesenchyme,	 while	 in	 differentiated	 villus	 epithelial	 cells	 and	

intestinal	SCs	phosphorylation	and	nuclear	accumulation	of	BMP-specific	R-SMADs	has	

been	 observed	 (Haramis	 et	 al.,	 2004).	 This	 suggests	 that	 there	 is	 paracrine	 BMP	
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signalling	from	the	mesenchyme	to	the	neighbouring	SCs.	Exogenous	expression	of	the	

BMP	ligand	Noggin	within	the	mouse	intestine	lead	to	the	ectopic	formation	of	normal	

crypt-villus	units,	and	eventual	formation	of	a	complex	architecture	which	was	similar	to	

human	 juvenile	 polyposis	 (Haramis	 et	 al.,	 2004).	 Furthermore,	 mouse	 studies	 have	

shown	that	deletion	of	the	gene	Bmpr1a	within	the	crypts	disturbs	intestinal	epithelial	

regeneration	 and	 causes	 an	 expansion	 in	 the	 stem	 and	 transient	 amplifying	 cells,	

leading	to	a	type	of	polyposis	(He	et	al.,	2004).	Balancing	the	control	of	SC	self-renewal	

occurs	through	BMP	signalling	inhibiting	the	Wnt	signalling	pathway,	which	it	achieves	

through	the	activation	of	PTEN,	which	 in	turn	decreases	the	 level	of	nuclear	β-catenin	

through	inactivation	of	the	PI3k-Akt	signalling	pathway	(He	et	al.,	2004).	

	

The	role	of	TGFβ	signalling	in	skin	SCs	is	well	documented,	with	studies	showing	that	if	

you	 compromise	 the	 pathway	 is	 comprised	 through	 loss	 of	 TGFBRII,	 epidermal	

homeostasis	is	maintained,	but	the	basal	cell	layer	containing	SCs	undergoes	increased	

proliferation	 and	 apoptosis	 (Guasch	 et	 al.,	 2007).	 TGFβ	 signalling	 is	 a	 key	 pathway	

involved	in	the	formation	of	the	HF,	where	exogenous	TGFβ2	has	been	shown	to	induce	

dermal	papilla	 formation,	which	 is	 sufficient	 to	promote	SC	driven	hair	growth	 (Fuchs	

and	Nowak,	2008).	TGFβ	signalling	is	also	found	to	be	upregulated	in	the	bulge	cells	of	

the	hair	follicle	(Tumbar	et	al.,	2004),	and	is	known	to	dampen	the	cell	cycle	(Massague,	

2007).	 To	 produce	 new	 hairs,	 existing	 HFs	 must	 undergo	 cycles	 of	 growth	 (anagen),	

regression	(catagen)	and	rest	(telogen),	with	the	new	growth	phase	driven	by	SCs.	As	a	

consequence,	the	HF	represents	an	excellent	model	for	looking	at	the	regulation	of	SC	

quiescence	 and	 activation	 (Alonso	 and	 Fuchs,	 2006).	 Importantly,	 TGFβ	 signalling	 is	

found	to	be	a	key	player	in	the	control	of	this	cycle,	with	elevated	TGFβ1	levels	shown	

to	perpetuate	catagen,	while	the	transition	from	catagen	to	telogen	is	linked	to	a	fall	in	

TGFβ1	 (Foitzik	et	 al.,	 2000).	Whereas	 during	 telogen,	 factors	 associated	with	 anagen,	

such	 as	 FGF18	 (Greco	 et	 al.,	 2009)	 and	 TGFβ2	 (Oshimori	 and	 Fuchs,	 2012)	 are	

simultaneously	 downregulated.	 Oshimori	 and	 Fuchs,	 (2012)	 went	 on	 to	 demonstrate	

that	 TGFβ2	 is	 critical	 for	 inducing	 hair	 follicle	 SCs	 (HFSC)	 at	 the	 bulge	 base,	 through	

antagonizing	 BMP	 signalling	 and	 thereby	 lowering	 BMP	 thresholds	 within	 the	 niche	

(Oshimori	and	Fuchs,	2012).	They	also	demonstrated	the	presence	of	nuclear	pSMAD2+	

cells	within	the	HFSC	located	at	the	bulge	base.	
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In	early	development,	the	inhibition	of	TGFβ	family	signalling	results	in	the	formation	of	

embryonic	neural	 SCs	 from	ES	cells	 (Temple,	2001).	These	ES	SCs	are	 then	capable	of	

differentiating	 into	 complex	 arrays	 of	 neurons	 and	 glia	 within	 the	 central	 nervous	

system.	 The	maintenance	 and	 growth	of	 these	neural	 SCs	 is	 controlled	 through	TGFβ	

signals	(Falk	et	al.,	2008).	Within	the	mid/hind	brain,	enhancement	of	self-renewal	but	

not	multipotency	was	observed	in	neural	SCs	following	the	ablation	of	the	TGFβRII	gene,	

resulting	in	the	enlargement	of	the	midbrain.	Within	mutant	brains,	both	FGF	and	Wnt	

signalling	components	have	been	observed,	which	suggests	that	TGFβ	signalling	serves	

to	negatively	regulate	these	pathways	and	therefore	self	renewal	of	neural	SCs	in	order	

to	control	the	size	of	a	specific	area	of	the	brain	(Falk	et	al.,	2008).					

	

Similar	to	its	complex	role	in	cancer,	TGFβ	signalling	has	been	shown	to	have	a	dual	role	

in	the	biology	of	CSCs,	whereby	it	seems	to	be	capable	of	inhibiting	or	sustaining	their	

function	 in	 a	 context	 dependent	manner	 (Bellomo	et	 al.,	 2016).	 An	 example	 of	 TGFβ	

signalling	 inhibiting	CSC	 function	 can	be	 seen	 in	breast	 cancer	whereby	 it	 adopts	 two	

independent	 mechanisms:	 1)	 reducing	 the	 CSC	 pool,	 and/or	 2)	 by	 promoting	 the	

differentiation	 of	 a	 highly	 proliferative	 committed	 progenitor	 population	 to	 a	 more	

differentiated	less	proliferative	state	(Tang	et	al.,	2007).	Cammareri	et	al.	(2016)	found	

that	 in	vemurafenib-induced	skin	 lesions	and	sporadic	cSCC,	both	TGFBRI	and	TGFBRII	

were	frequently	mutated.	They	found	that	these	mutations	eradicated	TGFβ	signalling	

in	 the	 bulge	 SCs	 in	 both	 normal	 human	 and	murine	 skin,	 and	 that	 through	 targeted	

ablation	of	 TGFβ	 signalling	 in	 combination	with	MAPK	pahway	hyperactivation	 to	 the	

LGR5+	SC	population	enabled	the	development	of	cSCC	in	the	mouse	(Cammareri	et	al.,	

2016).	Therefore	under	these	circumstances	the	loss	of	TGFβ	signalling	in	combination	

with	 MAPK	 pathway	 activation	 in	 the	 LGR5+	 SC	 population	 is	 key	 for	 driving	 skin	

carcinogenesis.	However,	the	role	of	TGFβ	signalling	in	CSC	promotion	and	maintenance	

is	well	documented	and	has	been	demonstrated	in	a	number	of	cancer	types,	including	

breast	 cancer	 (Bruna	 et	 al.,	 2012;	 Lo	 et	 al.,	 2012;	 Bhola	 et	 al.,	 2013;	 Shipitsin	 et	 al.,	

2007),	 liver	cancer	(You	et	al.,	2010;	Mima	et	al.,	2012),	glioblastoma	(Ikushima	et	al.,	

2009;	Penuelas	et	al.,	2009)	and	skin	cancer	(Oshimori	et	al.,	2015)	to	name	just	a	few.	

For	example	in	liver	cancer,	TGFβ	has	been	shown	to	increase	the	expression	of	the	SC	
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marker	 CD133,	 through	 promoting	 the	 demethylation	 of	 the	 CD133	 promoter,	 and	

thereby	 enhancing	 the	 tumourigenic	 potential	 of	 the	 population	 in	 vivo	 (You	 et	 al.,	

2010).	 In	 breast	 cancer,	 a	 strong	 TGFβ	 pathway	 signature	 was	 identified	 within	

metastatic	breast	CSCs	(CD44high,	CD24low),	which	were	subsequently	shown	to	adopt	an	

epithelial-like	 structure	 following	 TGFβ	 pathway	 inhibition	 (Shipitsin	 et	 al.,	 2007).	 In	

glioblastoma,	 a	 SMAD-dependent	 induction	 of	 leukaemia	 inhibitory	 factor	 (LIF)	 along	

with	 the	 sequential	 activation	 of	 the	 LIF-Janus	 kinase-STAT	 pathway	 was	 shown	 to	

induce	 self-renewal	 of	 CSC	 but	 not	 normal	 glial	 progenitors	 (Penuelas	 et	 al.,	 2009).	

Studies	have	also	shown	that	the	relationship	between	TGFβ	and	SOX4	is	also	important	

in	glioblastoma	CSC,	with	TGFβ	shown	to	induce	expression	of	SOX2,	which	is	mediated	

by	the	TGFβ	target	gene	SOX4	(Ikushima	et	al.,	2009).	They	found	that	TGFβ	signalling	

inhibitors	drastically	reduced	the	tumourigenicity	of	glioma-initiating	cells	by	promoting	

their	 differentiation,	 a	 process	 that	 could	 be	 attenuated	 when	 these	 cells	 were	

transduced	with	SOX2	or	SOX4	(Ikushima	et	al.,	2009).	Furthermore,	a	study	by	Anido	et	

al.	 (2010)	 found	 that	 the	 treatment	 of	 GBM	 neurospheres	 with	 TGFβ	 increased	 the	

levels	of	 ID1,	 ID2,	 LIF,	SOX2	and	SOX4,	and	 thereby	 indicates	 the	 importance	of	TGFβ	

signalling	in	the	self-renewal	of	a	glioblastoma	CD44high/ID1high	CSC	population	(Anido	et	

al.,	2010).	Furthermore,	 they	demonstrated	that	knocking-down	SOX	2	or	4	 induced	a	

decrease	 in	 the	CD44high	population,	 indicating	 that	 these	proteins	are	 responsible	 for	

the	 maintenance	 of	 this	 population	 (Anido	 et	 al.,	 2010).	 Finally	 in	 squamous	 cell	

carcinoma	(SCC),	Oshimori	et	al.	(2015)	identified	a	non-genetic	mechanism	for	the	role	

of	 TGFβ	 signalling	 in	 driving	 heterogeneity	within	 SCC-CSCs,	 which	 impacted	 on	 drug	

resistance.	 Here	 TGFβ	 supplied	 from	 the	 tumour-vasculature	 bestowed	 slow	 cycling	

properties	to	SCs	nearby;	and	further	played	a	role	in	giving	these	TGFβ	responsive	cells	

resistance	towards	anticancer	drugs	through	transcriptional	activation	of	p21,	which	in	

turn	stabilized	NRF2,	and	subsequently	enhanced	glutathione	metabolism	(Oshimori	et	

al.,	 2015).	 A	more	 recent	 study	 by	 Brown	 et	 al.	 (2017)	 highlighted	 the	 role	 of	 TGFβ	

signalling	 in	 mediating	 chemoresistance	 in	 ‘tumour-propagating	 cells	 (TPCs)’	 in	 SCC	

(Brown	et	al.,	2017).	In	this	study,	Brown	et	al.	(2017)	were	able	to	distinguish	between	

quiescent	and	proliferative	TPCs	using	a	combination	of	H2B-GFP	based	pulse-chasing	

with	cell	surface	markers,	and	found	that	quiescent	TPCs	resist	DNA	damage	and	have	

enhanced	 tumuorigenic	 potential	 following	 chemotherapy	 (Brown	 et	 al.,	 2017).	 This	
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quiescence	 was	 regulated	 by	 TGFβ	 signalling	 and	 they	 found	 that	 TGFβ	 inhibition	

prevented	TPC	entry	into	a	quiescent	state	and	thereby	increased	their	susceptibility	to	

chemotherapy	 (Brown	 et	 al.,	 2017).	 As	 previously	 described,	 numerous	 publications	

have	supported	the	notion	that	BCC	is	a	follicular	disease	and	is	derived	from	SCs	(Wong	

and	Reiter,	2011;	Colmont	et	al.,	2013;	Wang	et	al.,	2011;	Grachtchouk	et	al.,	2011),	and	

more	specifically	derived	from	the	bulge	region	of	the	hair	follicle	(Colmont	et	al.,	2013;	

Wang	 et	 al.,	 2011;	 Grachtchouk	 et	 al.,	 2011).	 Our	 lab	 identified	 a	 CD200+	 CSC	

population	 within	 BCC	 that	 was	 resistant	 to	 chemotherapy,	 which	 was	 intriguing	 as	

CD200	is	also	a	marker	of	SCs	located	within	the	bulge	region	of	the	HF	(Colmont	et	al.,	

2013).				
	

	

Although	highlighted	previously,	it	is	important	to	note	the	role	of	EMT	in	the	context	of	

CSC.	During	cancer	progression,	EMT	confers	malignant	properties,	such	as	invasiveness	

and	motility	 to	 tumour	cells.	TGFβ	 signalling	plays	an	 important	 role	 in	 inducing	EMT,	

most	notably	through	the	ability	of	SMADs	to	interact	with	Zeb	proteins	to	repress	the	

expression	of	E-cadherin	 (Comijn	et	al.,	2001;	Postigo	et	al.,	2003;	Verschueren	et	al.,	

1999).	 Mani	 et	 al.	 (2008)	 found	 that	 SCs	 isolated	 from	 both	 normal	 and	 cancerous	

mammary	 glands	 exhibited	 EMT	 properties	 with	 decreased	 expression	 of	 E-cadherin	

and	increased	expression	of	mesenchymal	markers,	such	as	vimetin	(Mani	et	al.,	2008).	

Therefore	 the	 connection	 between	 EMT	 and	 epithelial	 SC	 properties	 highlights	 how	

malignant	 CSCs	 can	 be	 generated	 in	 cancer	 and	 raises	 the	 possibility	 that	

pharmacological	 intervention	 regulating	 the	 process	 of	 EMT	 may	 have	 a	 role	 in	

regenerative	medicine	through	the	generation	of	normal	epithelial	SCs.							
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	1.7	 Aims	and	Objectives	
	

One	quarter	of	all	cancers	are	dependent	upon	the	hedgehog	growth	factor	signalling	

pathway	to	drive	tumour	growth,	including:	breast,	pancreas,	gastrointestinal,	prostate,	

haematological,	 and	 neural	 malignancies.	 Activating	 mutations	 can	 be	 identified	 in	

100%	 of	 basal	 cell	 carcinoma	 (BCC),	 50%	 of	 medullobastoma,	 29%	 of	

rhabdomyosarcomas,	and	19%	of	breast	cancers..	

	

In	 2012	 the	 National	 Institute	 of	 Clinical	 Excellence	 (NICE)	 approved	 vismodegib,	 a	

potent	 hedgehog	 pathway	 inhibitor,	 for	 the	 treatment	 of	 inoperable	 and	 metastatic	

BCC.	Vismodegib	inhibits	SMO	and,	despite	it	being	active	in	advanced	BCC,	more	than	

50%	of	such	lesions	have	demonstrated	resistance	to	vismodegib.	Atwood	et	al.	(2015)	

and	 Sharp	et	 al.	 (2015)	 used	 a	 large	 collection	of	 tumour	 samples	 to	 identify	 specific	

mutations	within	 SMO	 that	were	 responsible	 for	 conferring	 resistance	 to	 vismodegib	

(Atwood	et	al.,	2015;	Sharpe	et	al.,	2015).	A	similar	mechanism	for	resistance	was	also	

identified	 in	medulloblastoma	 treated	with	vismodegib	 (Yauch	et	al.,	 2009).	However,	

the	 development	 of	 resistance	 towards	 Hh	 pathway	 inhibition	 is	 attributed	 to	 SMO	

mutations	in	roughy	50%	of	the	cases	studied	(Ransohoff	et	al.,	2015;	Metcalfe	and	de	

Sauvage,	2011).	Therefore,	 the	mechanism	that	underlies	resistance	 in	the	rest	of	Hh-

driven	 resistant	 tumours	 remains	 to	 be	 determined.	 As	 previously	 mentioned,	 there	

have	 been	 several	 clinical	 cases	 reporting	 the	 transformation	 of	 BCC	 into	 a	 more	

aggressive	 phenotype,	 such	 as	 an	 SCC,	 following	 treatment	 (Ransohoff	 et	 al.,	 2015;	

Mohan	et	al.,	2016;	Aasi	et	al.,	2013;	Orouji	et	al.,	2014;	Zhu	et	al.,	2014;	Chang	et	al.,	

2012;	Zhu	et	al.,	2014).	Preliminary	microarray	data	already	generated	by	our	 lab	has	

shown	the	enrichement	of	TGFβ	signalling	pathway	components	in	BCC	samples	treated	

with	 vismodegib.	 Given	 these	 findings	 along	 with	 the	 well-established	 crosstalk	

between	 the	 Hh	 and	 TGFβ	 signalling	 pathways	 in	 malignant	 tissues	 (Guo	 and	Wang,	

2009;	 Maitah	 et	 al.,	 2011;	 Yoo	 et	 al.,	 2008;	 Dennler	 et	 al.,	 2007),	 TGFβ	 signalling	 is	

clearly	 an	 important	 pathway	 that	must	 be	 explored	 for	 drug	 resistance	 in	Hh	driven	

tumours.		
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This	 project	will	 build	 on	 our	 studies	 that	 demonstrate	 the	 presence	 of	 BCC	 CSC	 and	

show	that	they	are	both	resistant	to	conventional	chemotherapy	and	vismodegib,	which	

is	sufficient	to	sustain	tumour	recurrence	(Colmont	et	al.,	2014;	Colmont	et	al.,	2013).	

Therefore,	in	this	study	we	will	utilise	primary	human	BCC	samples	along	with	a	panel	of	

Hh	driven	tumour	cell	lines	in	order	to	explore	relevance	of	TGFβ	signalling	in	both	the	

whole	 and	 CSC	 populations	 following	 treatment	 with	 a	 panel	 of	 Hh	 antagonists.	 The	

four	overarching	aims	of	this	project	are	highlighted	below.	

		

Aims:	

1. Identify	differentialy	regulated	pathways	in	BCC	and	normal	skin	

2. Define	the	expression	of	the	TGFβ	pathway	in	human	BCC	CSC	

3. Characterise	the	 induction	of	TGFβ	signalling	 in	BCC	and	Hh	driven	tumour	cell	

lines	resulting	after	Hh	antagonist	treatment	

4. Determine	the	effect	of	blocking	TGFβ	signalling	in	these	Hh	driven	tumours	
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Chapter	2	 Materials	and	Methods		

2.1	 Human	tissue	Sample		
	
Normal	human	skin	and	human	BCC	tissue	was	obtained	after	approval	by	the	NHS	R&D	

(Project	 ID:	 08/DMD/4425)	 and	 ethics	 committee	 (Reference:	 09/WSE02/10).	 After	

gaining	informed	written	consent,	excess	tumour	tissue	or	normal	skin	was	placed	into	

a	tissue	collection	tube	containing	media	and	labelled	with	the	patients’	age,	sex,	body	

site	and	tissue	type.	The	samples	were	then	either	immediately	snap	frozen	and	stored	

at	-80°C	(for	immunolabelling)	or	placed	in	keratinocyte-serum	free	media	(Gibco)	and	

placed	in	the	refrigerator	at	4°C	until	transported	to	the	laboratory.	All	samples	entering	

the	laboratory	were	logged	in	accordance	with	the	Human	Tissue	Act.	All	human	tissue	

was	 processed	 within	 4	 hours	 in	 one	 of	 six	 potential	 ways:	 1)	 Frozen	 for	

immunolabelling	 (Section	 2.1.1),	2)	 RNA	 extraction	 using	 the	Qiagen	 RNeasy	Mini	 Kit	

(Section	2.3.2),	3)	DNA	extraction	using	the	Qiagen	Blood	and	Tissue	Kit	(Section	2.3.6),	

4)	 Tissue	 dissociation	 for	 subsequent	 primary	 culture	 (Section	 2.1.2),	 5)	 Tissue	

dissociation	 and	 Fluorescent	 Activated	 Cell	 Sorting	 (Section	 2.4),	 or	 6)	 Discarded	 if	

sample	too	small	or	infected.	

	

2.1.1	 Tissue	Freezing	and	Cryosectioning		
	
Tissue	samples	were	trimmed,	orientated	in	plastic	moulds	and	embedded	in	Tissue-Tek	

OCTTM	 compound	 on	 dry	 ice.	 Frozen	 samples	 were	 logged	 in	 accordance	 with	 the	

Human	Tissue	Act	and	stored	in	a	freezer	at	-80°C	until	use.		

	

Samples	 were	 cryosectioned	 using	 the	 Leica	 Cryostat	 CM1860	 UV	 (Leica	 Systems,	

England).	 The	 cryostat	 chamber	was	 cleaned	with	 70%	 ethanol;	 frozen	 samples	were	

placed	 into	 the	 chamber	 (set	 at	 -20°C)	 and	 allowed	 to	 acclimatize	 for	 10	 minutes.	

Frozen	sample	was	removed	from	its	plastic	cryomould	and	attached	to	a	metal	chuck	

using	 OCT	 compound.	 The	 chuck	 was	 then	 attached	 to	 the	 instrument,	 and	 tissue	

sectioned	 to	 a	 thickness	 of	 10	 µm	 onto	 ThermoScientific	 superfrost	 ultra	 plus	 glass	

slides	 (#1014356190)	 and	 allowed	 to	 air-dry	 at	 room	 temperature.	 The	 slides	 with	

tissue	 sections	were	wrapped	 in	 aluminium	 foil	 and	 stored	 in	 a	 freezer	 at	 -80°C	until	
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use.	Upon	completion,	the	cryostat	chamber	was	once	more	cleaned	with	70%	ethanol,	

and	exposed	to	DNA	damaging	UV	irradiation	for	one-hour.			

2.1.2	 Tissue	Dissociation		
	
	
Tissue	 was	 dissociated	 into	 a	 cell	 suspension	 in	 a	 laminar	 flow	 class	 2	 tissue	 culture	

hood	for	cell	culture,	flow	cytometric	analysis,	or	flow	sorting,	as	previously	described	

(Colmont	et	al.,	2013).	Briefly,	2	mL	of	Medium	199	was	pipetted	 into	the	centre	of	a	

sterile	 10	 cm2	 petri	 dish.	 Using	 sterile	 forceps	 the	 tissue	 specimen	 was	 dipped	 in	

povidene	iodine	and	then	rinsed	in	HBBS	before	placing	it	 into	the	medium	199	in	the	

petri	dish.	The	tissue	was	then	finely	minced	with	sterile	 iris	scissors,	then	transferred	

into	a	100	mL	sterile	conical	flask,	containing	25	mL	medium	199	with	200U/ml	Dispase	

(Gibco)	 and	 200U/ml	 Ultrapure	 Collagenase	 Type	 IV	 (Worthington),	 together	 with	 a	

magnetic	stir	bar.	

	

The	flask	containing	the	tissue	was	placed	onto	a	magnetic	stir	plate	in	a	tissue	culture	

CO2	 incubator	 and	 incubated	 for	 2	 hours	 at	 37°C.	 The	 semi-dissociated	 mixture	 was	

pipetted	 into	 a	 sterile	 50	mL	 conical	 centrifuge	 tube	 and	 centrifuged	 at	 200xg	 for	 5	

minutes.	 The	 enzyme	mixture	was	 aspirated	 and	 replaced	 by	 10	mL	 of	 trypsin	 0.05%	

with	EDTA	(Gibco)	and	incubated	for	5	minutes	in	a	water	bath	at	37°C.	During	this	time	

the	 tube	was	shaken	every	2	minutes.	The	 tube	contents	were	pipetted	 through	a	40	

µm	cell	strainer	directly	into	a	sterile	50	mL	conical	centrifuge	tube	containing	30	mL	of	

Medium	199	with	5%	FBS.	40	µL	of	the	cell	suspension	was	added	to	a	haemocytometer	

for	enumeration	of	 viable	 cells	by	addition	of	 trypan	blue.	 The	 remaining	 contents	of	

the	50	ml	conical	centrifuge	tube	were	centrifuged	at	200xg	for	5	minutes.	1	mL	of	red	

cell	lysis	buffer	(SC	Technologies)	was	added	and	incubated	at	room	temperature	for	2	

minutes,	 then	 diluted	 out	 with	 9	 mL	 of	 PBS,	 and	 contents	 pelleted	 once	 more	 by	

centrifugation	 at	 200xg	 for	 5	minutes.	 Cells	 were	 then	 resuspended	 for	 downstream	

applications.		
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2.2	Cell	Culture		

2.2.1	 Established	Cell	Lines		
	
The	 cell	 lines	 have	 been	 utilized	 for	 this	 project	 and	 are	 summarised	 in	 Table	 2.1,	

murine	NIH-3T3	 fibroblasts	 (with	 and	without	 transduced	GLI-reporter	 construct),	 the	

human	 keratinocyte	 cell	 line,	 HaCaT,	 the	 osteosarcoma	 cell	 line,	 SJSA-1,	 and	 two	

medulloblastoma	cell	lines,	DAOY	and	UW228-2.	NIH-3T3,	HaCaT,	SJSA-1	and	DAOY	cell	

lines	were	purchased	from	American	Type	Culture	Collection	(ATCC;	HTB-186),	while	the	

UW228-2	cell	 line	was	kindly	provided	by	 the	 laboratory	of	Prof.	Martin	Baumgartner	

(Zurich,	 Switzerland	with	permission	 from	Professor	 John	Silber).	UW228-2	and	DAOY	

cell	lines	were	chosen	as	they	are	both	well-characterized	cell	lines,	and	represent	two	

sides	 of	 the	 spectrum	 of	 medulloblastoma	 tumours	 that	 are	 driven	 by	 hedgehog	

signalling,	 termed	 the	 ‘SHh’	 subtype	 (Table	2.1).	 Furthermore,	both	of	 these	cell	 lines	

have	been	well	characterized	with	regard	to	SC	assays,	allowing	us	to	explore	the	effects	

of	Hh	antagonists	not	only	on	the	whole	cell	population	but	also	on	the	SC	population.	

The	 SJSA-1	 cell	 line	 is	 not	 as	 heavily	 reliant	 on	 Hh	 signalling	 for	 its	 growth,	 but	 it	

nevertheless	does	have	GLI	 amplifications,	which	mean	 that	 it	 in	part	 is	driven	by	Hh	

signalling	(Table	2.1).	Furthermore,	this	cell	line	allows	us	to	explore	the	effects	of	these	

Hh	antagonists	in	another	tumour	type,	and	also	is	wild	type	for	p53	unlike	the	previous	

two-cell	 lines	that	have	mutant	p53.	Finally,	mouse	NIH-3T3	fibroblasts	have	biological	

relevance	 to	 our	 studies	 and	 are	 a	murine	 cell	 line,	 and	 therefore	 can	 be	 used	 as	 a	

negative	 control	 in	 some	of	 our	 experiments.	 Conversely,	HaCaT	 cells	 are	 a	 very	well	

characterized	 cell	 line	 in	 skin	 cancer	 research	 and	 are	 frequently	 used	 as	 positive	

controls	in	publications	related	to	our	research.		

	

Table	 2.1:	 List	 of	 Hh	 driven	 cell	 lines	 along	 with	 their	 mutations	 and	 Hh	 signalling	

pathway	profiles	

	

Cell	Line	 Mutations	 Hh	signalling	

components	(mRNA)	

Sensitive	to	

recombinant	SHh	

References	

DAOY	 TP53;	MYC	

amplification	

High	levels:	SHh,	

PTCH1,	SMO,	GLI1,	

Yes	 Arnhold	et	al.,	

2016	
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GLI2	

UW228-2	 TP53;	MYC	

amplification		

Low	Levels:	SHh,	

PTCH1,	GLI2	

Yes	 Arnhold	et	al.,	

2016	

SJSA-1	 Mutant	P53	 High	levels:	GLI	 N/A	 N/A	

	

	

	

	

2.2.1.1	 HaCaT		
	
HaCaT	cells	represent	a	spontaneously	 immortalized	human	keratinocyte	cell	 line.	The	

cells	 were	 obtained	 in	 1988	 from	 histologically	 normal	 skin,	 distal	 to	 an	 excised	

melanoma	 (Boukamp	et	al.,	1988).	HaCaT	cells	get	 their	namesake	 from	the	 fact	 they	

are	human	adult	skin	keratinocytes,	and	were	grown	in	low	Ca2+	medium	at	an	elevated	

temperature.	HaCaT	cells	have	been	shown	to	be	non-tumourigenic	and	non-invasive,	

and	 like	 normal	 keratinocytes,	 they	 grow	 into	 a	 well-structured	 epidermis	 when	

transplanted	 onto	mice,	 and	 display	 normal	 differentiation,	which	was	maintained	 at	

higher	passages	(Fusenig	et	al.,	1988).							

	

2.2.1.2	 NIH-3T3		
	
The	NIH-3T3	 cells	 are	 an	 adherent	 fibroblast	 cell	 line	 established	 by	George	 Todaro’s	

group	at	the	National	Cancer	Institute	in	Bethesda,	Maryland	from	the	NIH	Swiss	mouse	

embryo	in	1969.	Since	then	the	NIH-3T3	cell	line	has	become	a	standard	fibroblast	cell	

line	 used	 in	 research.	 Since	 they	 have	 the	 ability	 to	 secrete	 growth	 factors	 that	 are	

favourable	for	the	growth	they	have	been	used	as	a	feeder	layer	for	the	cultivation	of	

normal	keratinocytes,	BCC	and	squamous	cell	carcinoma	(Morgan	et	al.,	2018).		

	

2.2.1.3	 DAOY	and	UW228-2	
	
DAOY	are	an	adherent	human	primary	medulloblastoma	cell	line,	established	from	the	

cerebellum	of	a	4-year	old	boy	in	1985,	and	has	a	polygonal	morphology.	UW228-2	is	an	
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adherent	cell	 line	established	alongside	two	other	cell	 lines	 (UW228-1,	and	-3)	 from	a	

posterior	 fossa	 medulloblastoma	 in	 the	 laboratory	 of	 Professor	 John	 Silber	 in	 1995.	

Many	 publications	 have	 investigated	 the	 proteome	 and	 phenotype	 of	 both	 these	 cell	

lines.	In	fact,	the	subtype	and	molecular	classification	of	over	40	medulloblastoma	cell	

lines	 has	 been	 compiled,	 with	 less	 than	 half	 of	 these	 being	 sub	 grouped	 (18/44).	 Of	

these	 18	 cell	 lines,	 4	 have	 been	 classified	 as	 SHh-cell	 lines,	 and	 comprise	 the	 DAOY,	

UW228-2,	ONS-76,	 and	UW426	cell	 lines.	Both	DAOY	and	UW228-2	 cell	 lines	harbour	

TP53	 mutations,	 and	 represent	 high-risk	 aggressive	 medulloblastoma	 (Ivanov	 et	 al.,	

2016).	Although	both	cell	lines	are	‘SHh-subtype’,	they	differ	with	regard	to	their	mRNA	

expression	of	Hh	signalling	components	and	sensitivity	 to	 recombinant	SHh,	such	that	

DAOY	cells	are	characterized	as	having	high	levels	of	SHh,	PTCH1,	SMO,	GLI1,	and	2	and	

were	stimulated	to	grow	with	SHh	ligand	(Arnhold	et	al.,	2016);	whereas	UW228-2	cells	

have	low	levels	of	SHh,	PTCH1	and	2,	and	was	also	shown	to	increase	cell	viability	upon	

addition	of	SHh	ligand	(although	at	a	higher	rate	than	DAOY	cells).	Therefore	we	have	

utilised	well-established	SHh-subtype	cell	lines	that	have	slightly	different	Hh	signalling	

characteristics.		

	

2.2.1.4	 SJSA-1	
	
SJSA-1	is	an	adherent	osteosarcoma	cell	line	established	from	the	primary	tumour	of	a	

19-year-old	 male	 with	 primitive	 multipotential	 sarcoma	 of	 the	 femur	 in	 1982.	 It	 has	

fibroblast	 morphology	 and	 is	 characterized	 with	 expressing	 wild-type	 TP53	 but	 also	

displaying	amplifications	in	MDM2	and	MDMX.	Furthermore,	this	cell	line	also	exhibits	a	

15-fold	amplification	of	the	GLI	proto-oncogene	within	the	Hh	signalling	pathway.				

	

2.2.1.5	 NIH3T3	(transduced	with	GLI-reporter	construct)		
	
The	Gli-Reporter	NIH-3T3	cell	line	(Amsbio,	UK)	was	designed	for	monitoring	the	activity	

of	the	Hh	signalling	pathway.	The	reporter	cell	 line	contains	the	firefly	 luciferase	gene	

under	 the	 control	 of	 GLI	 responsive	 elements	 stably	 incorporated	 into	 NIH-3T3	 cells.	

Luciferase	activity	correlates	with	Hh	signalling	pathway	activity.		
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Cells	were	thawed	at	37°C	in	a	water	bath,	re-suspended	in	a	falcon	tube	containing	10	

mL	 of	 pre-warmed	 DMEM	 (Hyclone	 #SH30243.01),	 10%	 FCS,	 but	 without	 Geneticin	

(Gibco,	UK),	spun	down	at	300×g	for	5	min	to	pellet	cells.	Cell	pellet	was	re-suspended	

in	5	mL	in	media	described	above	and	placed	into	a	T25	tissue	culture	flask.	Cells	were	

grown	 to	 first	 passage,	 where	 they	 were	 switched	 to	 DMEM	 with	 10%	 FCS,	 and	

500µg/mL	 of	 Geneticin	 (Gibco,	 UK).	 Cells	 were	 sub-cultured	 (Section	 2.2.2)	 and	

cryopreserved	(Section	2.2.3)	as	described.				

	

	

2.2.2	 Maintenance	of	Cell	Lines		
	

All	cell	 lines	were	thawed	at	37°C	 in	a	water	bath,	transferred	to	a	15	mL	falcon	tube	

(Corning)	 and	 9	 volumes	 of	 pre-warmed	media	 supplemented	with	 10%	 fetal	 bovine	

serum	 (FBS).	 Cells	were	 pelleted	 at	 300	×	 g	 for	 5	min	 at	 room	 temperature	 (RT)	 and	

supernatant	 discarded.	 Cell	 pellets	 were	 re-suspended	 in	 15	 mL	 of	 aforementioned	

media	and	incubated	at	37°C	(5%	CO2)	in	a	T75	culture	flask.	Media	was	changed	every	

2-3	 days,	 and	 cells	 were	 sub-cultured	 (described	 in	 Section	 2.2.2)	 at	 high	 confluence	

(80-90%).			

	

The	media	used	to	maintain	the	cell	lines	and	the	passaging	ratio	are	described	in	table	

2.2.		

	

Table	2.2:	List	of	cell	lines	and	passaging	ratios	

Cell	Line	 Growth	Media	 Passaging	Ratio	

NIH-3T3	 DMEM,	 4.5	 g/L	 glucose,	 2	 mM	 L-glutamine,	 10%	

FBS,	50U/ml	penicillin	(All	Gibco)	

1:15	

HaCaT	 DMEM,	 4.5	 g/L	 glucose,	 2	 mM	 L-glutamine,	 10%	

FBS,	50U/ml	penicillin		

1:15	

DAOY	 MEM,	 2	 mM	 L-glutamine,	 10%	 FBS,	 50U/ml	

penicillin		

1:10	

UW228-2	 DMEM,	 4.5	 g/L	 glucose,	 2	 mM	 L-glutamine,	 10%	 1:5	
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FBS,	50U/ml	penicillin	(All	Gibco)	

SJSA-1	 RPMI,	 2	 mM	 L-glutamine,	 10%	 FBS,	 50U/ml	

penicillin		

1:15	

NIH-3T3	 (GLI	

Reporter	

Transduced)	

DMEM,	4.5	g/L	glucose,	10%	FCS,	and	500µg/ml	of	

Geneticin	(Gibco,	UK).	

1:5	

	

2.2.3	 Sub-Culturing	Cell	Lines		
	
For	all	cell	lines,	media	was	aspirated	and	cells	were	washed	once	with	pre-warmed	PBS	

(Gibco,	 UK),	 before	 adding	 0.05%	 trypsin-EDTA	 (Gibco,	 UK).	 Cells	 were	 incubated	 at	

37°C	 for	5	min,	or	until	 cells	detached	 from	 the	 culture	 flask.	 Four	 volumes	of	media	

with	10%	FBS	or	FSC	(GLI-Responsive	NIH-3T3)	was	added	to	inhibit	trypsin	activity,	and	

cell	suspension	transferred	to	a	15mL	falcon	tube.	Cells	were	centrifuged	for	300	×	g	for	

5	min	at	RT,	supernatant	was	removed	and	cell	pellets	re-suspended	in	media	required	

for	 their	maintenance,	 and	 counted	using	 a	 haemocytometer.	 Cells	were	 seeded	 into	

appropriate	 cell	 culture	 plates/flasks	 (Table	 2.3)	 depending	 on	 the	 assay	 being	

performed.	Cells	were	incubated	at	37°C	(5%	CO2)	until	80-90%	confluent	(3-5	days).		

	

Table	2.3:	Volumes	of	media	used	in	cell	culture		

Plate	 Relative	Surface	Area	(cm2)	 Volume	(µL)	

T-25	 25	 5,000	

T-75	 75	 15,000	

T-150	 150	 30,000	

96-well	 0.3	 100	

48-well	 1.0	 250	

24-well	 2.0	 500	

12-well	 4.0	 1,000	

6-well	 10.0	 2,000	
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2.2.4	 Cryopreserving	Cell	Lines	for	Storage			
	
All	cell	 lines	were	prepared	for	cryopreservation	 in	the	same	manner	as	sub-culturing,	

with	 the	 exception	 that	 they	 were	 re-suspended	 in	 freezing	 medium	 following	

centrifugation.	 For	 all	 cell	 lines,	 recommended	 cell	 concentrations	 for	 freezing	 was	

1.5×106	cells/mL.	

			

A	 specialized	 freezing	medium	 is	 required	 in	 order	 to	 keep	 cells	 preserved	 for	 a	 long	

period	of	time	in	liquid	nitrogen.	Both	NIH-3T3	and	HaCaT	cells	were	stored	in	a	mixture	

of	DMEM	with	10%	FBS	and	10%	v/v	DMSO.	GLI-Responsive	NIH-3T3	cells	were	stored	

in	 a	 mixture	 of	 90%	 FBS	 and	 10%	 DMSO.	 In	 all	 instances	 freezing	 medium	 was	

thoroughly	 mixed	 with	 the	 cells	 in	 2mL	 cryovials,	 and	 placed	 in	 a	 CoolCell	 Biocision	

cryopreservation	container	 (Dutscher	Scientific)	 and	 stored	at	 -80°C	overnight,	before	

being	transferred	to	liquid	nitrogen.		

	

2.2.5	 Primary	Cell	Culture		

2.2.5.1	 BCC	Cell	Culture		
	
BCC	 tissue	 was	 dissociated	 as	 previously	 described	 (Section	 2.1.2),	 single	 cells	

resuspended,	and	either	plated	onto	a	 feeder	 layer	 (50	Gy	 irradiated	NIH-3T3	murine	

fibroblasts)	in	a	tissue	culture	flask	(T75)	or	cultured	without	irradiated	3T3s	(depending	

on	 duration	 of	 culture)	 in	 keratinocyte	 serum	 free	 media	 (Gibco,	 UK)	 supplemented	

with	 20ng/mL	 EGF	 (Peprotech),	 10ng/mL	 FGF-basic	 (Peprotech),	 25µg/mL	 of	 bovine	

pituitary	 extract	 (Gibco,	 UK),	 25	 units/mL	 of	 penicillin	 (Gibco,	 UK),	 25µg/mL	 of	

streptomycin	(Gibco,	UK)	and	10µg/mL	of	Amphotericin	(Gibco,	UK).	If	necessary,	every	

three	days,	the	media	was	replaced	and	the	irradiated	NIH-3T3	murine	fibroblasts	were	

replenished,	 and	 after	 2	 weeks	 BCC	 colonies	 could	 be	 visualized	 under	 an	 inverted	

microscope.	 BCC	 colonies	 were	 passaged	 following	 trypsinisation,	 onto	 a	 fresh	

irradiated	NIH-3T3	murine	fibroblast	feeder	layer	or	frozen	down	in	cell	freezing	media	

and	stored	in	 liquid	nitrogen	(Section	2.2.4).	BCC	cells	were	then	exposed	to	drugs	for	

either	24	or	48	hours,	before	being	processed	for	downstream	applications.		
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2.3	 Nucleic	Acid	Analysis	

2.3.1	 Gene	Expression	Analysis			
	

During	procedures	involving	RNA	extraction	and	handling,	care	was	taken	to	ensure	that	

all	 plastic-ware	 (i.e.	 pipettes),	 glassware,	 and	 work	 surfaces	 where	 RNase-free	 by	

spraying	them	with	RNaseZAP.	Sterile	RNA	and	DNA	free	filter	tips	where	used	to	carry	

out	all	procedures	involving	RNA	work.	

	

2.3.2	 RNA	Extraction			

2.3.2.1	 BCC	Tissue	Samples			
	
	
Extraction	of	 total	 RNA	 from	BCC	 tumour	 tissue	was	 achieved	 firstly	by	 removing	 the	

epidermis	and	any	underlying	dermis	using	a	sterile	scalpel	under	sterile	conditions	in	a	

tissue	 culture	hood.	 Samples	were	placed	 in	 screw-cap	 tubes	 containing	600µl	 of	RLT	

buffer	(approx.	20-30	mg	of	tissue)	with	1.4	mm	ceramic	beads	(Lysing	matrix	D	tubes,	

MP	Biomedical),	and	subsequently	homogenized	using	Precellys24	homogeniser	(Bertin	

Technologies)	at	6,500	rpm	for	2×45-second	cycles.	To	pellet	the	beads	and	any	cellular	

debris,	 tubes	were	 spun	at	11,000	×	 g	 for	5	min.	 Following	homogenization	RNA	was	

isolated	 using	 the	 Qiagen	 RNeasy	 Plus	 Mini	 kit	 (Qiagen,	 UK)	 per	 manufacturers	

instructions	(Section	2.3.2.4).		

	

2.3.2.2	 Cultured	Cells			
	
Firstly,	adherent	cell	lines	where	trypsinised	and	pelleted	at	300	×	g	for	5	min	to	pellet	

the	cells.	Supernatant	was	removed	and	pellet	re-suspended	in	600	µl	of	RLT	buffer	(per	

1×106	cells)	and	disrupted	by	passing	through	a	23-gauge	needle	8-10	times.	Following	

homogenization	RNA	was	 isolated	using	 the	Qiagen	RNeasy	Plus	Mini	kit	 (Qiagen,	UK)	

per	manufacturers	instructions	(Section	2.3.2.4).	

	

2.3.2.3	 Homogenisation	of	Flow	Sorted	Cells			
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FACS	was	carried	out	as	described	in	Section	2.4.	Cell	populations	were	sorted	directly	

into	1.5	mL	Eppendorff	tubes	containing,	350	µl	of	RLT	buffer	if	there	were	fewer	than	

50,000	 cells	 present,	 or	 PBS	 with	 20%	 BSA,	 if	 the	 number	 of	 cells	 was	 considerably	

larger	(i.e.	>50,000	cells).	Cell	populations	sorted	into	PBS+20%	BSA	were	subsequently	

centrifuged	at	400×g	 for	5	min	and	 re-suspended	 in	350µl	of	RLT	Plus	Buffer.	 Lysates	

were	 passed	 through	 a	 23-gauge	 needle	 8-10	 times.	 Extraction	 of	 total	 RNA	 was	

achieved	 using	 the	Qiagen	 RNeasy	Micro	 Kit	 for	 <50,000	 cells,	 or	 the	Qiagen	 RNeasy	

Mini	Kit	for	>50,000	cells	(Section	2.3.2.5).	

	

2.3.2.4	 RNA	Extraction		
	
Lysates	 were	 transferred	 to	 a	 gDNA	 eliminator	 spin	 column	 together	 with	 a	 2	 mL	

collection	tube	and	centrifuged	for	30	s	at	8,000	×	g.	One	volume	of	70%	ethanol	was	

added	to	one	volume	of	 flow-through,	and	transferred	to	an	RNeasy	spin	column	and	

spun	 for	 30	 s	 at	 8,000	×	 g.	 Spin	 column	membrane	was	 then	washed	with	700	µL	of	

Buffer	RW1	and	spun	for	30	s	at	8,000	×	g,	followed	by	two	washes	with	500	µl	of	Buffer	

RPE	with	subsequent	spins	at	8,000	×	g	for	30	s	and	2	min,	respectively.	RNA	was	eluted	

by	adding	50	µL	of	RNase-free	water,	and	centrifugation	for	1	min	at	8,000	×	g.								

	

2.3.2.5	 RNA	Extraction	from	Flow	Sorted	Cells		

		
RNA	 extraction	 from	 flow-sorted	 cells	 was	 undertaken	 using	 the	 Qiagen	 RNeasy	 Plus	

Micro	 Kit	 (Qiagen,	 UK).	 The	 protocol	 was	 similar	 to	 the	 Qiagen	 RNeasy	 Plus	Mini	 Kit	

(above),	with	the	exceptions	that	the	final	spin	column	membrane	wash	uses	500	µl	of	

80%	 ethanol	 at	 8,000	×	 g	 for	 2	min,	 and	 the	 RNA	was	 eluted	 in	 a	 smaller	 volume	of	

RNase-Free	water,	14	µl.		

	

2.3.3	 Determination	of	RNA	Quality			
	
The	quality	of	 the	extracted	RNA	was	assessed	using	 the	Agilent	RNA	6000	Nano	and	

Pico	kits.	The	Nano	kit	assesses	RNA	quality	quantitatively	within	 the	 range	of	25-500	

ng/µL	of	 total	 RNA	 (i.e.	 RNA	 from	whole	 tissue	or	 cell	 cultures),	whereas	 the	Pico	 kit	
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assesses	 RNA	 quality	 quantitatively	 within	 the	 range	 of	 50-5,000	 pg/µL,	 which	 was	

therefore	chosen	for	samples	with	lower	RNA	concentrations	(i.e.	RNA	from	flow	sorted	

samples).	 RNA	 concentration	 was	 determined	 using	 a	 NanoDrop	 2000	 (Thermo	

Scientific).	Both	Agilent	Nano	and	Pico	chips	were	run	on	the	Agilent	2100	Bioanalyzer	

according	 to	manufacturers	 guidelines.	RNA	 integrity	was	assessed	on	 the	28S	 to	18S	

rRNA	 ratio,	 and	 several	 other	 characteristics	 of	 the	 RNA	 electropherogram	 trace,	 to	

generate	an	RNA	Integrity	Number	(RIN).	RIN	assigns	an	electropherogram	a	value	of	1	

to	10,	with	10	being	the	least	degraded.		

	

2.3.4	 Preparation	of	cDNA	for	Quantitative	Analysis			
	
cDNA	synthesis	was	performed	using	the	Quantitect	Reverse	Transcription	Kit	(Qiagen,	

UK)	 in	 0.2ml	 PCR	 tubes	 as	 per	 manufacturers	 guidelines.	 cDNA	 synthesis	 reaction	

comprised	 two	 steps:	 1)	 gDNA	 removal,	 and	 2)	 reverse	 transcription	 (RT)	 reaction.	

Firstly,	any	contaminating	gDNA	was	removed	by	adding	500ng	of	total	RNA	to	2	µL	of	

gDNA	wipeout,	 and	made	 up	 to	 a	 final	 volume	 of	 14	µL	with	 RNase-free	water,	 and	

incubated	 at	 42°C	 for	 exactly	 2	min	 in	 a	 thermocycler	 (Biorad).	 Then	 1	µL	 of	 reverse	

transcriptase,	 1	µL	 of	 primer	mix,	 and	 4	µL	 of	 RT	 buffer	 was	 added	 to	 the	 14	µL	 of	

aforementioned	solution,	and	incubated	at	42°C	for	15	min	and	then	95°C	for	3	min.		

2.3.5	 Quantitative	real-time	PCR	(qPCR)			
	
For	 qPCR	 gene	 expression	 studies,	 all	 reactions	 were	 performed	 using	 the	 TaqMan	

assay.	Pre-designed	TaqMan	primer/probes	were	obtained	from	Applied	Biosystems.	A	

number	 of	 conditions	 were	 considered	 when	 obtaining	 the	 primers.	 Primers	 were	

human	 specific,	 and	 did	 not	 cross	 react	 with	 mouse.	 Primers	 resided	 across	 exon	

boundaries	to	avoid	amplification	of	gDNA.	Gene	symbols	and	primer	accession	IDs	are	

specified	in	Table	2.4	below.					

	

All	 reactions	 were	 run	 on	 the	 QuantStudio	 7	 Flex	 Real-Time	 PCR	 system	 (Applied	

Biosystems)	 supplemented	 with	 the	 QuantStudio	 software.	 All	 reactions	 were	 run	 in	

three	technical	triplicates.	Housekeeping	genes	(usually	GAPDH,	beta	actin)	were	used	

as	a	reference	gene	for	each	plate	run.	Reactions	were	run	using	the	TaqMan	Universal	
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Master	 Mix	 II,	 with	 UNG	 (Applied	 Biosystems)	 according	 to	 the	 manufacturers	

guidelines.	qPCR	reactions	were	assembled	in	96-	and	384-well	plates	to	a	final	reaction	

volume	of	15	µL	and	10	µL,	respectively.	The	amount	of	cDNA	used	was	such	that	each	

well	 would	 contain	 20	 ng	 of	 RNA/cDNA.	 Reactions	 were	 run	 using	 the	 following	

conditions:	50°C	for	2	min,	95°C	for	10	min,	followed	by	40	cycles	(95°C	for	15	seconds,	

60°C	for	1	min).			

	

2.3.5.1	 Gene	Expression	Analysis	of	qPCR	Data	

			
Samples	 with	 reproducible	 cycle	 time	 (Ct)	 values	 were	 analysed	 using	 the	 2ΔΔCt	

method.	 The	 ct	 value	 of	 the	 reference	 gene	 (i.e.	GAPDH)	 from	 the	 same	 sample	was	

used	 to	 calculate	 the	ΔCt	 values.	 Average	ΔCt	 values	 were	 calculated	 for	 all	 control	

samples	and	ΔΔCt	value	was	calculated	for	each	 individual	sample	 in	reference	to	the	

average	control	ΔCt.	

	

	

	

	

	

	

	

Table	2.4:	Taqman	Assay	on	Demand	used	for	Taqman	qPCR		
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Gene	Symbol	 Assays	on	demand	

reference	

Dye	

ACTB	 Hs00357333_g1	 FAM-MGB	

ADAM19	 Hs00958320_m1	 FAM-MGB	

ADRB2	 Hs00240532_s1	 FAM-MGB	

ANGPTL4	 Hs01101127_m1	 FAM-MGB	

ARHGEF18	 Hs01547795_m1	 FAM-MGB	

ATF3	 Hs00231069_m1	 FAM-MGB	

AURKA	 Hs01582072_m1	 FAM-MGB	

BMP4	 Hs03676628_s1	 FAM-MGB	

CDH1	 Hs01023894_m1	 FAM-MGB	

CDH2	 Hs00983056_m1	 FAM-MGB	

CDKN2A	 Hs00923894_m1	 FAM-MGB	

CDKN2B	 Hs00394703_m1	 FAM-MGB	

CEBPD	 Hs00270931_s1	 FAM-MGB	

COL6A1	 Hs01095585_m1	 FAM-MGB	

CTGF	 Hs01026925_g1	 FAM-MGB	

DUSP6	 Hs04329643_s1	 FAM-MGB	

DUSP7	 Hs00997002_m1	 FAM-MGB	

EPHB2	 Hs01031829_m1	 FAM-MGB	

ETS2	 Hs00232009_m1	 FAM-MGB	

FSTL3	 Hs00610505_m1	 FAM-MGB	

GAPDH	 Hs02758991_g1	 FAM-MGB	

GLI1	 Hs00171790_m1	 FAM-MGB	

GLI2	 Hs01119974_m1	 FAM-MGB	

ID1	 Hs03676575_s1	 FAM-MGB	

ID2	 Hs04187239_m1	 FAM-MGB	

ID3	 Hs00171409_m1	 FAM-MGB	

IL1B	 Hs00174097_m1	 FAM-MGB	

ITGA5	 Hs01547673_m1	 FAM-MGB	

ITGB6	 Hs00982350_m1	 FAM-MGB	

JUN	 Hs01103582_s1	 FAM-MGB	
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JUNB	 Hs00357891_s1	 FAM-MGB	

KLF10	 Hs00921811_m1	 FAM-MGB	

LDLR	 Hs01092524_m1	 FAM-MGB	

MAP3K4	 Hs01104570_g1	 FAM-MGB	

MEIS2	 Hs01035448_m1	 FAM-MGB	

MN1	 Hs00159202_m1	 FAM-MGB	

MXI-1	 Hs00365648_m1	 FAM-MGB	

MYC	 Hs00905030_m1	 FAM-MGB	

NEDD9	 Hs00610590_m1	 FAM-MGB	

PIM1	 Hs01065498_m1	 FAM-MGB	

PLAU	 Hs01547054_m1	 FAM-MGB	

PTCH1	 Hs00970968_m1	 FAM-MGB	

PTGER4	 Hs00964382_g1	 FAM-MGB	

RUNX1	 Hs01021970_m1	 FAM-MGB	

RUNX2	 Hs00231692_m1	 FAM-MGB	

SERPINE1	 Hs01126606_m1	 FAM-MGB	

SKIL	 Hs01045418_m1	 FAM-MGB	

SLUG	 Hs00950344_m1	 FAM-MGB	

SMO	 Hs01090242_m1	 FAM-MGB	

SMURF1	 Hs00905769_m1	 FAM-MGB	

SMURF2	 Hs00224203_m1	 FAM-MGB	

SNAIL	 Hs00195591_m1	 FAM-MGB	

ST3JAL1	 Hs00161688_m1	 FAM-MGB	

TAp63	 Hs00978340_m1	 FAM-MGB	

TBX3	 Hs01105635_g1	 FAM-MGB	

TGFB1	 Hs00998133_m1	 FAM-MGB	

TGFB2	 Hs00234244_m1	 FAM-MGB	

TGFB3	 Hs01086000_m1	 FAM-MGB	

TWIST1	 Hs01675818_s1	 FAM-MGB	

VDR	 Hs00172113_m1	 FAM-MGB	

VEGFA	 Hs00900054_m1	 FAM-MGB	

Vimentin	 Hs00958111_m1	 FAM-MGB	
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2.3.6	 DNA	Extraction		
	
DNA	 isolation	 was	 performed	 using	 the	 DNeasy	 Blood	 &	 Tissue	 kit	 (Qiagen,	 UK)	 per	

manufacturers	guidelines.	Briefly,	human	BCC	tissue	was	homogenized	as	described	in	

section	2.3.2.1,	with	 the	exception	 that	180	µL	of	Buffer	ATL	was	used	 for	 tissue	 lysis	

instead	of	RLT	Plus	buffer	as	for	RNA	extraction.	Following	homogenization,	lysate	and	

any	 tissue	 was	 transferred	 to	 a	 fresh	 Eppendorff	 tube	 where	 20	 µL	 of	 proteinase	 K	

solution	was	added,	mixed	thoroughly	by	vortex,	and	incubated	at	56°C	in	a	shaking	hot	

block	until	the	tissue	was	completely	lysed	(usually	10-16	hours).	Tube	was	vortexed	for	

15	sec,	and	then	200	µL	of	Buffer	AL	was	added	and	mixed	thoroughly,	followed	by	200	

µL	 of	 ethanol	 (96-100%)	 again	mixing	 thoroughly	 by	 vortexing.	Mixture	was	 pipetted	

into	DNeasy	Mini	spin	column	and	centrifuged	at	8,000	×	g	for	1	min.	Flow	through	was	

discarded	and	column	membrane	was	washed	by	firstly	adding	500	µL	of	Buffer	AW1,	

and	centrifuging	at	8,000	×	g	for	1	min;	secondly,	500	µL	Buffer	AW2,	and	centrifuged	at	

20,000	×	g	for	3	min	to	dry	the	membrane.	Finally,	DNA	was	eluted	by	adding	200	µL	of	

Buffer	 AE	 directly	 onto	 the	 column	membrane,	 left	 to	 incubate	 at	 RT	 for	 1	min,	 and	

centrifuged	at	8,000	×	g	for	1	min.	DNA	concentration	was	determined	using	NanoDrop	

2000	(Thermo	Fisher	Scientific).								

	

2.3.7	 Microarray		

2.3.7.1	 RNA	extraction		
	
Homogenization	of	primary	human	BCC,	 SCC,	 and	normal	 skin	 (NS)	 samples	using	 the	

method	described	in	section	2.3.2.1,	RNA	extracted	as	outlined	in	2.3.2.4.	

	

XIAP	 Hs00745222_s1	 FAM-MGB	

ZEB1	 Hs00232783_m1	 FAM-MGB	

ΔNp63	 Hs00978337_m1	 FAM-MGB	
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2.3.7.2	 Determination	of	RNA	quality		
	
RNA	concentration	was	performed	in	the	same	manner	as	outlined	in	section	2.3.3.			

	

2.3.7.3	 RNA	amplification/cDNA	library	preparation	
	
The	 standard	 approach	 for	 the	 preparation	 of	 RNA	 samples	 for	 array	 analysis	 is	 RNA	

amplification,	 which	 is	 what	 was	 used	 in	 this	 project.	 The	 Illumina	 TotalPrep	 RNA	

Amplification	 Kit	 is	 a	 complete	 system	 for	 generating	 biotinylated	 amplified	 RNA	 for	

hybridization	with	Illumina	Sentrix	arrays.	Briefly,	500	ng	of	RNA/sample	was	brought	up	

to	11	µL	by	addition	of	nuclease-free	water,	and	9	µL	of	Reverse	Transcription	Master	

Mix,	 then	 placed	 in	 a	 PCR	 hot	 block	 for	 2	 hr	 at	 42°C.	 Then	 80	µL	 of	 Second	 Strand	

Master	Mix	was	added	 to	each	 sample	and	 incubated	 for	 a	 further	2	hr	 at	 16°C.	 The	

next	step	was	cDNA	purification,	which	was	achieved	by	adding	250	µL	of	cDNA	Binding	

Buffer	to	each	sample	and	passing	the	mixture	through	a	cDNA	filter	cartridge,	before	

finally	washing	with	500	µL	of	Wash	buffer,	and	eluting	the	cDNA	with	20	µL	of	nuclease	

free	water	(preheated	to	55°C).	The	penultimate	step	in	the	process	was	the	synthesis	

of	 cRNA,	which	was	achieved	by	adding	7.5	µL	of	 in	 vitro	 transcription	master	mix	 to	

each	cDNA	sample,	incubating	for	4-14	hr	at	37°C,	before	adding	75	µL	of	nuclease	free	

water	to	each	sample	to	stop	the	reaction.	Finally,	the	cRNA	was	purified	by	adding	350	

µL	 of	 cRNA	 binding	 buffer	 to	 each	 sample,	 along	 with	 250	µL	 of	 100%	 ethanol,	 and	

pipetted	to	mix.	The	mixture	was	passed	through	a	cRNA	filter	cartridge,	and	the	flow	

through	discarded.	The	filter	contents	were	washed	by	passing	650	µL	of	wash	buffer,	

before	finally	eluting	the	cRNA	with	200µL	of	55°C	nuclease	free	water	to	yield	purified	

cRNA.		

	

2.3.7.4	 Applying	samples	to	microarray	chip	
	
The	chip	used	for	the	microarray	was	the	Illumina	HumanHT-12	v4	Expression	BeadChip,	

which	 provided	 genome-wide	 transcriptional	 coverage	 of	 well-characterized	 human	

genes.	12	samples	 (6	BCC,	3	SCC,	and	3	NS)	were	applied	 to	 the	chip	using	 the	Direct	

Hybridization	assay	protocol.	The	first	step	in	this	process	was	the	hybridization	of	the	

labelled	 cRNA	 generated	 earlier	 in	 section	 2.3.7.3	 on	 the	 BeadChip	 containing	 the	
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complementary	gene	specific	sequence.	We	firstly	preheated	the	cRNA	sample	tube	at	

65°C	for	5	mins,	vortex	and	briefly	centrifuge	tubes	at	250xg.	The	sample	was	allowed	

to	cool	down	to	room	temperature	and	the	appropriate	amount	for	each	cRNA	sample	

was	added	into	each	hybridization	tube	(750ng	worth	of	cRNA	for	12-sample	chip),	and	

made	up	to	5	µL	using	nuclease	free	water.	Finally	to	each	cRNA	sample	tube,	10	µL	of	

HYB	solution	was	added	(15	µL	total).	Next	15	µL	of	sample	was	loaded	onto	the	centre	

of	each	 inlet	port	on	 the	BeadChip,	which	was	 loaded	 into	a	Hyb	chamber	 insert	 (full	

details	of	assembly	can	be	found	in	the	manufacturers	guidelines),	ensuring	the	barcode	

end	 of	 the	 chip	was	 over	 the	 ridged	 part	 of	 the	 Hyb	 chamber.	 Finally,	 the	 BeadChip	

chamber	 lid	 was	 closed,	 locked,	 checked	 to	 ensure	 that	 the	 Hyb	 chamber	 was	

completely	 closed	 as	 any	 gap	 in	 the	 seal	 would	 result	 in	 evaporation	 during	

hybridization	and	therefore	ruin	the	results.	The	Hyb	chamber	was	placed	 into	a	58°C	

Illumina	Hybridization	Oven	on	a	rocker	at	speed	5	and	incubated	for	at	least	14hr	(but	

no	more	than	20hr).	In	preparation	for	the	next	day,	preheated	500	mL	of	1x	High-Temp	

Wash	Buffer	(made	from	10x	stock	with	nuclease	free	water)	to	55°C	using	the	Hybex	

water	bath.			

	

Following	 incubation	 in	 the	 Hyb	 Chamber	 the	 next	 step	 was	 to	 wash	 the	 BeadChip.	

Firstly,	the	wash	E1BC	solution	was	made	by	adding	6	mL	E1BC	buffer	to	2	mL	nuclease	

free	 water.	 Next	 the	 Hyb	 Chamber	 was	 removed	 from	 the	 oven,	 disassembled,	 and	

BeadChip	removed	before	being	submerged	face	down	in	a	beaker	containing	1	L	of	the	

E1BC	solution.	Once	submerged	the	cover	seal	on	each	BeadChip	was	removed,	while	

ensuring	 the	Chip	 remained	 submerged,	 so	 as	 to	 ensure	 it	 didn’t	 dry	out.	 Then	using	

tweezers	the	BeadChip	was	transferred	to	a	slide	rack	and	submerged	in	a	staining	dish	

containing	 250	 mL	 wash	 E1BC	 solution.	 Then	 using	 the	 slide	 rack	 handle,	 the	 rack	

containing	the	BeadChips	was	transferred	to	the	water	bath	containing	High-Temp	wash	

buffer	(prepared	the	previous	day)	and	incubated	for	10	min.	After	incubation	the	slide	

rack	was	 transferred	back	 into	 a	 staining	dish	 containing	250	mL	of	 fresh	Wash	E1BC	

Buffer,	and	using	the	slide	rack	handle	the	rack	was	plunged	in	and	out	of	the	solution	

5-10	times.	The	staining	dish	containing	the	slide	rack	was	placed	back	onto	an	orbital	

shaker	and	allowed	to	shake	at	room	temperature	for	5	min,	before	being	transferred	

to	a	new	staining	dish	containing	250	mL	fresh	100%	ethanol	where	 it	was	plunged	in	
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and	 out	 of	 the	 solution	 5-10	 times,	 before	 finally	 being	 placed	 back	 onto	 the	 orbital	

shaker	at	room	temperature	for	10	min.	The	final	wash	involved	a	second	incubation	in	

fresh	250	mL	of	wash	E1BC	buffer	using	the	same	methods	deployed	in	the	first	wash.	

	

Following	incubation	in	the	wash	E1BC	buffer	the	BeadChip	was	blocked	as	follows.	The	

BeadChip	was	washed	 in	a	 tray	on	the	rocker	mixer,	before	4	mL	Block	E1	buffer	was	

added	 to	 the	 wash	 tray.	 Then	 using	 tweezers	 the	 BeadChip	 was	 transferred	 face	 up	

from	 the	 rack	 in	 the	 staining	 dish	 into	 the	wash	 tray	 containing	 blocking	 buffer.	 The	

wash	 tray	was	gently	 tilted	 to	ensure	 the	block	solution	was	covering	 the	entire	chip,	

then	placed	back	onto	the	rocker	platform	and	allowed	to	rock	for	10	min.	

	

The	 final	 stage	 before	 scanning	 the	 BeadChip	was	 detection	 of	 the	 signal,	which	was	

achieved	 as	 follows.	 This	 process	 involved	 the	 addition	 of	 Cy3-SA	 to	 bind	 to	 the	

analytical	probes	that	were	hybridized	to	the	BeadChip,	which	allowed	for	differential	

detection	 of	 signals	 when	 the	 BeadChip	 was	 scanned.	 Firstly	 Cy3-Streptavidin	 was	

removed	from	the	freezer	and	allowed	to	acclimatize	to	room	temperature	for	10	min.	

Once	acclimatized	2	mL	Block	E1	Buffer	was	prepared	with	 a	1:1,000	dilution	of	Cy3-

Streptavidin	for	each	BeadChip,	and	2	mL	of	the	prepared	buffer	was	added	into	a	fresh	

wash	tray.	Using	tweezers,	the	BeadChip	was	transferred	into	the	wash	tray	containing	

the	Block	solution,	and	again	gently	tilted	until	the	buffer	was	entirely	covering	the	chip,	

before	covering	the	wash	tray	with	the	flat	 lid	provided	so	that	 it	was	not	exposed	to	

the	light.	The	tray	was	placed	on	the	rocker	mixer	and	incubated	at	room	temperature	

for	10	min.	After	the	incubation	the	BeadChip	was	inserted	into	a	slide	rack	and	placed	

into	a	staining	dish	containing	fresh	250	mL	Wash	E1BC	buffer,	before	washing	the	slide	

in	the	same	manner	as	the	previous	two	Wash	E1BC	buffer	steps.	After	incubation,	the	

BeadChip	was	dried	by	placing	it	in	a	centrifuge	and	spinning	at	1,400	rpm	for	4	min	at	

room	temperature.	After	the	centrifuge	was	complete,	the	dried	BeadChip	was	stored	

in	a	dark	environment	until	ready	to	be	scanned.		

	

The	last	step	in	the	process	was	to	image	the	BeadChip	on	the	iScan	system.	The	steps	

involved	in	scanning	the	BeadChip	can	be	found	on	the	Illumina	website.							
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2.3.7.6	 Bioinformatics	analysis	of	the	data	
	
The	 resulting	data	were	analysed	using	 the	Bioconductor	packages	 in	 the	R	 statistical	

program	 for	 data	 processing	 for	 all	 the	 subsequent	 steps.	 For	 analysing	 Illumina	

microarray	 data,	 the	 ‘Lumi’	 package	 was	 used	 for	 assessing	 quality	 control	 of	 the	

samples,	 and	 remove	outliers,	 before	 transforming	 the	data	 using	 variance	 stabilizing	

transformation	 (vst),	 and	 normalizing	 using	 the	 conditional	 quantile	 normalization	

method.	 Finally,	 genes	 were	 annotated	 and	 mapped	 at	 the	 probe	 level	 using	

‘lumiHumanAll.db’	 and	 ‘luminHumanIDMapping’	 programs	 respectively.	 We	 then	

filtered	out	the	genes/probes	whose	expression	was	absent	between	the	samples.	Next	

we	performed	comparisons	between	the	tumour	groups	and	the	normal	group	by	using	

the	 Limma	program	again	 in	 the	Bioconductor	 package	 to	 calculate	 the	 level	 of	 gene	

differential	 expression.	 Briefly,	 to	 estimate	 the	 fold	 changes	 and	 standard	 errors,	 a	

linear	model	was	fitted	for	each	gene	using	‘lmFit’	and	the	empirical	Bayes	smoothing	

was	applied	to	the	standard	errors	using	 ‘eBayes’,	before	finally	showing	the	statistics	

for	 the	 top	 genes	 using	 ‘topTable’	 (e.g.	 tumour	 vs	 normal).	 We	 obtained	 a	 list	 of	

differentially	 expressed	 genes	 (DEGs)	 at	 a	 p	 value<0.05.	 Following	 this,	 we	 used	 the	

expression	values	of	DEGs	to	perform	pathway	analysis	using	NIH	DAVID	Tools	(NCBI),	

and	Gene	Set	Enrichment	Analysis	 (GSEA;	Broad	 Institute)	by	exporting	our	DEGs	 in	a	

format	accepted	by	GSEA	software.			

2.4	Cell	Based	Functional	Assays		
	
Table	2.5	outlines	the	drugs	that	were	used	in	our	functional	assays	

	

Table	2.5:	Drugs	used	in	functional	assays	
Drug	 Stock	(mM)	 Cat.	#	 Source		 Solvent	

GANT-61	 10	 S8075	 Selleckchem	 Ethanol	

Vismodegib	 25	 S1082	 Selleckchem	 DMSO	

Sonidegib	 50	 S2151	 Selleckchem	 DMSO	

SB431542	 50	 S1067	 Selleckchem	 DMSO	

Etoposide	 10	 S1225	 Selleckchem	 DMSO	
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2.4.1	 Cell	Viability		

2.4.1.1	 Cell	Titer	Glo	
	

The	Cell	Titer	Glo	assay	(Promega,	Southampton,	UK)	is	used	to	determine	the	number	

of	 viable	 cells	 in	 culture	 based	 on	 the	 quantitation	 of	 the	 ATP	 present,	 which	 is	 an	

indicator	of	metabolically	 active	 cells.	 Cultured	 cells	were	 seeded	 into	white-sided	96	

well	 flat-bottomed	 plates	 (Greiner	 Bio	 One),	 and	 allowed	 to	 adhere	 overnight.	 Once	

adhered,	 cultures	were	 exposed	 to	 a	 variety	 of	 treatment	 conditions	 for	 24	 or	 48	 hr	

before	performing	the	experiment	to	assess	the	impact	of	these	agents	on	cell	viability.	

Experiment	was	performed	by	adding	the	single	reagent	(Cell	Titer-Glo	Reagent)	directly	

to	the	cells	cultured	in	media	supplemented	with	serum	in	a	1:1	ratio	(100	μL	or	reagent	

to	100	μLmedia)	and	plate	was	placed	on	an	orbital	shaker	for	2	min	in	order	to	lyse	the	

cells,	 before	 being	 placed	 in	 a	 dark	 environment	 for	 20	min	 at	 room	 temperature	 in	

order	 for	 the	 signal	 to	 stabilise.	 The	 Cell	 Titer-Glo	 reagent	 contains	 lysing	 reagents,	

which	lyse	the	cells,	and	the	enzyme	Ultra-Glo	rLuciferase,	which	requires	ATP	from	the	

lysed	 cells	 to	 convert	 luciferin	 into	 oxyluciferin,	 to	 subsequently	 generate	 the	

luminescent	 output.	 Following	 incubation	 the	 luminescent	 signal	 produced	 was	

measured	 using	 the	 CLARIOstar	 plate	 reader	 (BMG	 Labtech)	 by	 setting	 the	

excitation/emission	wavelengths	to	560/590	nm.	

	

2.4.2	Tumoursphere	Forming	Assay		
	
The	 tumoursphere-forming	 assay	 is	 a	 functional	 assay	 that	 is	 designed	 to	 isolate	 SCs	

from	a	bulk	population	of	 cells	 by	exploiting	 their	 capacity	 to	 resist	 anoikis.	 Cell	 lines	

initially	 grown	 in	 2D	 adherent	 culture	 are	 trypinisied	 and	 plated	 into	 non-adherent	

culture	 conditions,	 which	 has	 the	 capacity	 to	 induce	 anoikis	 in	 the	 bulk	 tumour	 cell	

population	and	since	the	SCs	are	resistant	 to	anoikis	 they	remain.	The	remaining	cells	

then	self	renew	and	form	small	colonies	of	cells	termed	tumourspheres.	Furthermore,	

these	tumourspheres	once	formed	can	be	dissociated	 into	single	cells	and	replated	or	

passaged	for	a	second	time	in	the	same	culture	conditions,	a	process	which	assays	for	

the	 ability	 of	 these	 cells	 to	 self	 renew,	 and	 therefore	 whilst	 primary	 tumoursphere	



	 	 Chapter	2:	Materials	and	Methods	

	
	

129	

formation	 is	 a	 measure	 of	 both	 SC	 and	 early	 progenitor	 cell	 activity,	 secondary	

tumourpshere	 formation	 allows	 their	 self	 renewal	 to	 be	 quantified,	 which	 is	 a	 key	

property	 of	 CSCs.	 Therefore	 quantifying	 tumoursphere	 number	 is	 indicative	 of	 SC	

number.	 Tumoursphere	 assays	 were	 carried	 out	 in	 non-adherent	 culture	 conditions	

using	a	serum	free	epithelial	growth	medium	(MEM,	Gibco)	supplemented	with	1xN-2	

(Invitrogen),	 1xB27	 (Invitrogen),	 20ng/mL	 FGF	 (Peprotech),	 and	 20	 ng/mL	 EGF	

(Peprotech)	 and	 1%	 Penicillin/Streptomycin	 (Gibco).	 Depending	 on	 the	 experiment	

performed,	 tumoursphere	 experiments	 were	 conducted	 following	 a	 24	 hr	 or	 48	 hr	

treatment	 in	 adherent	 culture	 (MEM	 with	 10%	 FBS,	 2	 mM	 L-Glutamine	 and	 1%	

Penicillin/Streptomycin).	Cells	were	trypsinised	and	plated	 in	ultra-low	attachment	96-

well	plates	(Costar,	Corning)	at	a	seeding	density	of	5,000	cells/mL.	After	7	days	in	non-

adherent	 culture	 conditions,	 tumourspheres	 were	 counted,	 then	 collected	 by	

centrifugation	(300	x	g	for	5	min	at	room	temperature),	and	dissociated	in	0.05%	trypsin	

with	0.25%	EDTA	and	subsequently	counted	and	re-seeded	at	the	same	density	of	5,000	

cells/mL.	Cells	were	left	to	form	tumourspheres	for	another	7	days	and	again	counted	

for	each	condition.							

	

2.4.3	Colony	Forming	Assay		
	
The	colony-forming	assay	assesses	 the	ability	of	 individual	cells	 to	survive,	proliferate,	

and	 expand	 to	 form	 small	 colonies	 (Locke	 et	 al.,	 2005).	 Cells	 were	 seeded	 at	 a	 low	

density	 of	 300	 cells/well	 in	 a	 12-well	 plate,	 allowed	 to	 adhere	 overnight	 and	 then	

subsequently	drugged	 (ensuring	drugging	occurs	before	 cells	 begin	 to	divide)	 and	 left	

for	7	days	in	normal	growth	media	to	allow	colonies	to	form.	Colonies	were	quantified	

by	 removing	 the	 media,	 washing	 with	 PBS	 and	 subsequently	 staining	 with	 a	 crystal	

violet/ethanol	 solution	 for	15-30	min	on	a	 rocker	at	 room	temperature,	before	 finally	

washing	off	solution	by	gently	running	the	plates	under	tap	water.	Plates	were	allowed	

to	dry	 and	 colonies	 containing	 32	or	more	 cells	were	 enumerated	either	manually	 or	

automatically	using	a	GelCount	plate	reader	(Oxford	Optronix)	to	detect	colonies	(Shaw	

et	al.,	2012).			
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2.4.4	siRNA	transfection		
	
Short	interfering	RNA	(siRNA)	was	transfected	in	our	cell	lines	to	transiently	knock-down	

the	transcription	factor,	co-SMAD4	(ON-Target	plus	SMART	pool,	GE	Dharmacon,	Bucks,	

UK;	 #L-003902-00).	 SMAD4	 is	 required	 by	 the	 other	 SMADs	 for	 nuclear	 translocation	

and	 subsequent	 activation	 of	 downstream	 target	 genes	 following	 TGFβ	 signalling	

pathway	activation.	 In	all	 siRNA	experiments	an	 irrelevant	scrambled	control	was	also	

used	(ON-Target	plus	SMART	pool,	GE	Dharmacon,	Bucks,	UK;	#D-001810-10-05).	Each	

siRNA	pool	was	re-suspended	according	to	the	manufacturer’s	guidelines.	Transfection	

was	 conducted	 by	 firstly	 diluting	 stock	 siRNA	 in	 Opti-MEM	 (Gibco)	 to	 achieve	 a	 final	

concentration,	 which	 was	 cell	 line	 dependent,	 and	 was	 left	 to	 incubate	 for	 5	min	 at	

room	 temperature.	 Finally,	 the	 transfection	 reagent,	 Lipofectamine	 3000	 (Invitrogen)	

was	 added	 to	 the	 siRNA/Media	mix	 and	 left	 to	 incubate	 for	 a	 further	 5	min	 at	 room	

temperature	before	being	diluted	in	a	well	containing	cells	and	standard	culture	media	

(with	serum).	The	typical	reagent	concentrations	used	for	different	plate	formats	can	be	

found	in	Table	2.6	below.	

	

	

Table	2.6:	Concentrations	used	in	siRNA	knock	down	experiments		
Plate	

Format	

Volume	 of	

Media/Well	

Volume	 of	

Opti-MEM	

(μL)		

Volume	

siRNA	

(μL)	

Volume	 of	

Lipofectamine	

Final	 Volume	

of	Media/Well	

96-Well	 87.5	μL	 12.125	 0.125	 0.25	 100	μL	

48-Well	 218.75	μL	 30.3125	 0.3125	 0.625	 250	μL	

24-Well	 437.5	μL	 60.625	 0.625	 1.25	 500	μL	

12-Well	 875	μL	 121.25	 1.25	 2.5	 1,000	μL	

6-Well	 1,750	μL	 242.5	 2.5	 5.0	 2,000	μL	

	

	

	

	



	 	 Chapter	2:	Materials	and	Methods	

	
	

131	

2.4.5	Flow	Cytometry	and	Cell	Sorting			
	
All	 antibody	 incubations	were	 carried	 out	 for	 30	min	 at	 4°C.	 All	 centrifugations	were	

performed	at	400	×	g	for	5	min	at	4°C.	For	routine	cell	sorting,	human	BCC	tissue	was	

dissociated	as	described	(Section	2.1.2),	and	subsequent	cell	suspensions	at	106	cells/ml	

were	 stained	 with	 anti-CD200-BV421,	 anti-CD45-FITC,	 and	 the	 live-dead	 stain,	 7AAD	

(Table	 2.7).	 Cells	 were	 sorted	 at	 low	 pressure	 (20	 psi)	 using	 a	 100	 µm	 nozzle	 on	 a	

FACSAria	 (Becton	 Dickenson,	 Oxford,	 UK).	 Cells	 were	 sorted	 into	 1.5	 mL	 Eppendorf	

tubes	maintained	at	4°C.	Single	stained	samples	were	used	as	compensation	controls.	

Samples	were	gated	on	the	basis	of	forward-	and	side-scatter.	Doublets,	dead	cells,	and	

pan-leukocytes	(CD45+)	were	excluded.							

	

Table	2.7:	Antibodies/Stains	used	in	FACS	experiments	
Antibody	 Dilution	 Cat.	#	 Source		

CD200	(BV421/DAPI)	 1:1000	 564114	 BD	Pharmingen	

CD45	(FITC)	 1:1000	 341071	 BD	Pharmingen	

EpCAM	(APC)	 1:1000	 347200	 BD	Pharmingen	

Annexin	V	(APC/647)	 1:1000	 A23204	 ThermoFisher	

7-AAD	 5μL/1x106	cells	 559925	 BD	Pharmingen	

DAPI	 1μL/1x105	cells	 	 	

	

2.4.6	Annexin	V	apoptosis	assay		
	
The	 Annexin	 V	 apoptosis	 assay	 was	 used	 to	 determine	 the	 proportion	 of	 cells	

undergoing	early	or	late	apoptosis	following	drug	treatment,	by	detecting/studying	the	

externalization	of	phosphadtidylserine,	one	of	 the	earliest	 indicators	of	 apoptosis.	On	

the	day	of	analysis,	media	containing	dead	cells	was	 removed	 from	cultured	cells	and	

kept,	cells	were	washed	with	PBS,	 trypsinised	and	trypsin	 inactivated	using	 the	media	

that	was	 stripped	off	 the	well	 earlier.	 Cells	were	pelleted,	 supernatant	was	 removed,	

and	each	sample/condition	was	 resuspended	 in	100	μL	of	1xAnnexin	V	Binding	Buffer	

(Biolegend)	and	1	μL	of	Annexin	V,	Alexa	Fluor	647	conjugate	(ThermoFisher	Scientific)	

was	added	to	the	suspension	and	incubated	for	20	min	at	room	temperature	in	a	dark	

environment.	100	μL	of	Annexin	V	buffer	was	used	for	every	100,000	cells,	and	volumes	



	 	 Chapter	2:	Materials	and	Methods	

	
	

132	

were	 scaled	 up	 according	 to	 cell	 number.	 Following	 incubation,	 a	 further	 400	 μL	 of	

Annexin	 V	 binding	 buffer	 was	 added	 to	 each	 sample	 to	 inactivate	 the	 reaction.	 Just	

before	each	 sample	was	analysed,	1	μL	of	DAPI	 (20	μg/mL)	was	added.	 Samples/cells	

were	analysed	using	a	BD	LSRFortessa	flow	cytometer	(BD	Biosciences),	and	were	gated	

by	 first	selecting	the	cell	population	using	FSC-area/SSC-area,	and	then	by	obtaining	a	

single	 cell	 population	 by	 removing	 doublets	 using	 FSC-area/FSC-height,	 before	 finally	

gating	 this	 single	 cell	 population	 based	 on	 the	 intensity	 of	 the	 far-red	 APC	 dye	

conjugated	 to	 Annexin	 V,	 and	 DAPI	 to	 identify	 cells	 that	 are	 either	 early	 or	 late	

apoptotic,	and	live	or	dead.	Data	was	processed	using	FlowJo	analysis	software	(Figure	

2.1).								

	

	

	

	

	

Figure	2.1:	Representative	flow	cytometry	dot	plot	generated	for	Annexin	V	apoptosis	

assay	
Flow	 cytometry	 dot	 plot	 depicts:	Q1)	 cells	 entering	 early	 apoptosis,	Q2)	 cells	 entering	

late	apoptosis,	Q3)	cells	that	have	necrosed/died,	and	Q4)	cells	that	are	viable.	Left	dot	

plot	shows	untreated	cells,	whereas	the	right	dot	plot	shows	the	etoposide	treated	cells	

(+ve).				
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2.4.7	GLI	Reporter	Experiments		

2.4.7.1	 Functional	Validation	and	Luciferase	Assay	Performance		
	
The	following	assays	were	carried	out	in	white	clear-bottom	96-well	microplates	(Sigma	

Aldrich,	 UK).	 Dose	 response	 of	 GLI	 Reporter	 NIH-3T3	 cells	 to	mouse	 Sonic	 Hedgehog	

(mSHh)	was	performed	by	seeding	40,000	cells	per	well	in	100	µL	of	DMEM	+10%	FBS,	

without	 Geneticin.	 Each	 treatment	 was	 set	 up	 in	 triplicate.	 Cells	 were	 plated	 and	

incubated	at	37°C	(5%	CO2)	for	24	hours.	Cells	were	incubated	at	37°C	(5%	CO2)	for	16-

20	 hours,	 or	 until	 cells	 reached	 confluence.	 Once	 confluent,	 the	 growth	 media	 was	

carefully	removed	using	a	pipette	(not	an	aspirator)	so	as	not	to	disrupt	the,	monolayer.	

50	µL	of	 three-fold	 serial	dilution	of	mSHh	 in	assay	medium	was	added	 to	 stimulated	

wells,	and	50	µL	of	assay	medium	without	mSHh	was	added	to	untreated	(control)	wells	

and	cell-free	(control)	wells	(for	determining	background	luminescence).	The	Luciferase	

assay	 was	 performed	 by	 adding	 50	 µL	 of	 ONE-Step	 Luciferase	 reagent	 to	 the	 assay	

media	 per	 well,	 and	 then	 gently	 rocked	 for	 20-30	 min	 at	 RT.	 Following	 incubation	

luminescence	was	measured	using	 the	CLARIOstar	High	Performance	Monochromator	

Multimode	Microplate	Reader	(BMG	LABTECH).		

	

Values	were	 obtained	 by	 subtracting	 the	 average	 background	 luminescence	 from	 the	

average	 obtained	 for	 each	 treatment.	 Raw	 luminescence	 values	 were	 then	 plotted	

against	logged	mSHh	dose	ranges.	

	

Inhibition	of	mSHh-induced	reporter	activity	by	inhibitors	of	Hh	signalling	pathway	was	

determined	by	first	seeding	cells	as	previously	described.	Stock	solutions	of	Hh	pathway	

inhibitors,	 vismodegib	 (Selleckchem),	 cyclopamine	 (Selleckchem),	 sonidegib,	

(Selleckchem)	and	GANT-61	(Selleckchem)	were	prepared	in	DMSO	and	diluted	in	assay	

medium.	45	µL	of	diluted	inhibitor	in	assay	medium	was	added	per	well,	along	with	45	

µL	of	assay	medium	with	the	same	concentration	of	DMSO	but	without	inhibitor,	and	45	

µL	of	assay	medium	with	DMSO	to	cell-free	wells.	Plate	was	incubated	at	37°C	(5%	CO2)	

for	1-2	hours.	5	µL	of	diluted	mSHh	in	assay	medium	was	added	to	the	stimulated	wells	
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(final	[mSHh]=	3.3µg/mL),	along	with	5	µL	of	assay	medium	to	untreated	control	wells	

(determining	basal	 activity),	 and	 cell-free	 control	wells.	 Each	 treatment	was	 set	 up	 in	

triplicate.	 Plate	 was	 incubated	 at	 37°C	 (5%	 CO2)	 for	 24	 hours,	 and	 luciferase	 assay	

performed	as	described	above.	Luminescence	was	measured	using	the	CLARIOstar	High	

Performance	Monochromator	Multimode	Microplate	Reader	(BMG	LABTECH).		

	

Values	were	 obtained	 by	 subtracting	 the	 average	 background	 luminescence	 from	 the	

average	 obtained	 for	 each	 treatment.	 The	 results	 are	 shown	 as	 a	 percentage	 of	

luminescence.	The	background-subtracted	luminescence	of	cells	stimulated	with	mSHh	

in	the	absence	of	Hh	inhibitors	was	set	at	100%.	

2.5	 Tissue	Analysis	

2.5.1	 Immunofluorescence	on	Frozen	Tissue	Sections	
	
Indirect	 immunofluorescence	 was	 performed,	 where	 a	 primary	 antibody	 binds	

specifically	 to	 tissue	 antigens	 and	 the	 secondary	 antibody	 is	 labelled	 with	 a	

fluorochrome,	 which	 binds	 to	 the	 primary	 antibody	 for	 visualization.	 Cryostat	 tissue	

sections	were	removed	from	storage,	allowed	to	air-dry	for	15	min,	and	circled	with	a	

hydrophobic	 marker	 pen	 (ImmuneEdge,	 VectorLabs).	 Tissue	 was	 fixed	 by	 incubating	

with	 4%	 PFA	 for	 15	 min.	 Tissue	 was	 permeabilised	 using	 TBS	 with	 0.5%	 TritonX-100	

(Sigma	Aldrich)	 for	 10	min.	 To	 prevent	 non-specific	 binding	 of	 primary	 antibodies,	 all	

tissue	epitopes	were	blocked	by	using	TBS	with	10%	donkey	serum	(DS)	and	0.1%	Triton	

X-100,	and	incubating	for	1	hour	at	RT.	Slides	were	washed	with	TBS	three	times	for	5	

min	each	wash.	The	equivalent	of	1	µg	of	primary	antibody	protein	in	TBS	with	10%	DS	

and	0.05%	Triton	X-100	was	added	 to	each	 tissue	 section	over	night	 at	4°C,	 then	 the	

slides	were	washed	with	TBS	four	times	for	5	min	each	wash.	Tissue	sections	were	then	

incubated	 with	 species-specific	 conjugated	 fluorochrome	 antibodies	 used	 as	 per	

manufacturer’s	instructions	together	with	5	µL	of	the	nuclear	stain,	DAPI	(1mg/mL),	 in	

the	dark	 for	45	min	at	RT.	 Finally	 slides	were	washed	with	TBS	 three	 times	 for	5	min	

each	wash,	before	being	mounted	with	coverslips	using	 fluorosave	aqueous	mounting	

media.	Slides	were	stored	at	4°C	and	then	examined	using	a	Leica	DMI6000B	Inverted	

fluorescent	microscope	(Leica	Biosystems,	England).							
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2.5.2	Immunofluorescent	antibody	labelling	of	Cultured	Cells	
	
Glass	coverslips	were	 first	 sterilized	with	100%	ethanol;	air	dried,	and	placed	 into	 the	

wells	of	a	6-well	culture	plate,	before	cells	were	seeded	 into	 the	plate	at	a	density	of	

100,000	cells/mL	and	allowed	to	adhere	overnight.	With	the	exception	of	primary	and	

secondary	antibody	incubations,	all	steps	were	carried	out	with	the	coverslips	still	in	the	

culture	plate.	On	the	day	of	analysis,	cells	were	washed	with	PBS,	and	fixed	with	4%	PFA	

for	10	min,	and	then	washed	3x5min	in	PBS.	Cells	were	then	permeabilised	with	0.25%	

Tween-20	 (Sigma)	 in	 PBS,	 and	 then	 blocked	 with	 3%	 BSA	 in	 PBS	 for	 1	 hr	 at	 room	

temperature.	 Coverslips	 were	 then	 placed	 on	 parafilm	 and	 incubated	 with	 primary	

antibody	 (Table	 2.8)	 in	 3%	 BSA	 in	 PBS	 and	 incubated	 overnight	 at	 4°C.	 Following	

incubation,	coverslips	were	placed	back	into	a	6-well	culture	plate	and	washed	3x5min	

with	 PBS,	 and	 then	 subsequently	 incubated	 with	 fluorescence-conjugated	 secondary	

antibody	 (Invitrogen,	 Table	 2.9)	 diluted	 1:400	 in	 PBS	 containing	 DAPI	 nuclear	 stain	

(1:1000)	for	1	hr	at	room	temperature.	Coverslips	were	then	washed	3x5min	in	PBS	and	

mounted	 in	 Vectashield	 mounting	 solution	 (Vector	 Labs).	 Cells	 were	 visualized	 and	

pictures	acquired	on	a	Leica	confocal	microscope.		

	

	

Table	2.8:	Primary	antibodies	used	in	immunofluorescence	experiments	
Antibody	 Dilution	 Species	 Cat	 Source	

pSMAD3	 1:100	 Rabbit	 ab52903	 Abcam	

Total	p63	 1:500	 Mouse	 ab735	 Abcam	

ΔNp63	 1:500	 Mouse	 619002	 BioLegend	

K14	 1:500	 Chicken	 906001	 Biolegend	

Alpha-Tubulin	 1:100	 Mouse	 T6074	 Sigma	

Phalloidin-488	 1:100	 N/A	 A12379	 ThermoFisher	
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			Table	2.9:	Secondary	antibodies	used	in	immunofluorescence	experiments	
Secondary	

Antibody	

Fluorochrome	(nm)	 Dilution	 Source	

Dk	α-Rb	(H&L)	 488	 1:400	 ThermoFisher	

Gt	α-Ms	(H&L)	 568	 1:400	 ThermoFisher	

Gt	α-Ck	(H&L)	 647	 1:400	 ThermoFisher	

	

	

2.6	Protein	analysis		

2.6.1	Protein	Extraction			

2.6.1.1	 Total	Cellular	Proteins	
	
Cells	 in	culture	were	trypsinised,	centrifuged	for	5	min	at	1,400	rpm	and	the	resulting	

pellet	was	washed	with	PBS,	and	again	pelleted.	PBS	was	removed	and	resuspended	in	

100	 μL	 of	 RIPA	 buffer	 containing	 complete	 protease	 inhibitors	 (1	 tablet/5	 mL	 RIPA	

buffer;	Roche).	Samples	were	passed	through	a	23-gauge	needle	in	a	1	mL	syringe	6-8	

times	before	being	placed	into	a	1.5	mL	microcentrifuge	tube	and	incubated	on	ice	for	

30min.	Following	incubation	samples	were	centrifuged	at	13,000	rpm	for	10	min	at	4°C,	

and	the	supernatant	collected	and	placed	into	a	fresh	microcentrifuge	tube	and	stored	

at	-80°C.	Composition	of	RIPA	buffer	can	be	found	in	table	2.10.		

	

	

2.6.1.2	 Nuclear	and	Cytoplasmic	Extracts	
	
Cells	 in	culture	were	trypsinised,	centrifuged	for	5	min	at	1,400	rpm	and	the	resulting	

pellet	was	washed	with	PBS,	and	again	pelleted.	PBS	was	removed	and	re-suspended	in	

200	 μL	 of	 NEBA	 containing	 complete	 protease	 inhibitors	 (Roche),	 and	 transferred	 to	

1.5mL	microcentrifuge	tubes.	Resuspension	was	performed	by	gently	pipetting	up	and	

down,	before	placing	on	 ice	for	15	min.	Following	 incubation	25	μL	of	10%	NP-40	was	
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added	to	the	samples	and	vortexed	vigorously	for	30	seconds,	before	being	centrifuged	

at	 10,000	 rpm	 for	 30	 seconds,	 with	 the	 resultant	 supernatant	 (cytoplasmic	 proteins)	

transferred	to	a	fresh	microcentrifuge	tube.	The	next	step	was	to	remove	any	additional	

contaminating	 cytoplasmic	 proteins	 from	 the	 pellet	 (nuclear	 proteins),	 which	 was	

achieved	by	adding	200	μL	of	NEBA	to	the	pellet	(being	careful	not	to	disturb	the	pellet	

too	much)	and	then	centrifuging	again	at	10,000	rpm	for	30	secs.	The	supernatant	was	

removed	and	discarded,	and	NEBC	buffer	containing	complete	protease	inhibitors	was	

added	to	the	resultant	pellet	and	subsequently	vortexed	for	30	seconds	and	placed	on	

ice	for	a	further	30	min.	Following	incubation,	samples	were	centrifuged	at	13,000	rpm	

for	 5	 min	 at	 4°C	 and	 the	 supernatant	 (nuclear	 proteins)	 transferred	 to	 a	 fresh	 tube	

before	being	stored	at	 -80°C	(Compositions	of	NEBA	and	NEBC	buffer	can	be	found	 in	

table	2.10).	

	

	

				

Table	2.10:	Buffers	used	for	protein	extractions	

	

	

	

	

	

	

	

RIPA	Buffer	 NEBA	 NEBC	

• 5	mL	1M	Tris	pH7.4	

• 10	mL10%	Nonidet-P40	(Sigma)	

• 0.25	g	Sodium	Deoxycholate	

• 3	mL	5M	NaCl	

• 0.4	mL	0.25M	EGTA	

• Made	up	to	100	mL	with	H2O	and	to	

pH	7.4	

• 10mM	Hepes	pH7.9	

• 10mM	KCl	

• 0.1mM	EDTA	pH8.0	

• 0.1mM	EGTA	pH8.0	

• 10%	glycerol	

• 20mM	Hepes	pH7.9	

• 0.4M	NaCl	

• 1mM	EDTA	pH8.0	

• 1mM	EGTA	pH8.0	
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2.6.2	 Quantifying	protein	concentration			
	

2.6.2.1	 BCA		
	
The	 BCA	 assay	 kit	 (Pierce,	 ThermoFisher	 Scientific)	 was	 used	 to	 determine	 protein	

concentrations	of	total	proteins	or	cytoplasmic	extracts.	BCA	assay	was	set	up	in	a	96-

well	clear	 flat	bottomed	plate	with	each	sample	run	 in	duplicate	 for	accuracy.	5	μL	of	

sample	or	BSA	standard	was	added	to	25	μL	BCA	reagent	(BCA	reagent	was	made	using	

50	parts	of	BCA	reagent	A	to	1	part	of	BCA	reagent	B)	and	incubated	at	37°C	for	30	min	

then	kept	at	4°C.	Standards	of	25,	125,	250,	500,	750,	1000,	1500,	2000	μg	of	BSA	per	

mL	were	diluted	in	RIPA	or	NEBA	buffer	to	produce	a	standard	curve	from	which	sample	

protein	 concentration	 could	 be	 extrapolated.	 Following	 incubation,	 protein	

concentrations	were	determined	by	running	the	plate	on	a	CLARIOstar	plate	reader,	and	

software	used	to	determine	protein	concentration.				

	

2.6.2.2	 Bradford		
	
The	 Bradford	 assay	 reagent	 was	 used	 to	 determine	 the	 protein	 concentrations	 of	

cytoplasmic	and	nuclear	protein	extracts.	Again,	the	assay	was	carried	out	in	a	96-well	

plate.	10	μL	of	sample	or	BSA	standard	was	added	to	290	μL	Bradford	assay	reagent	and	

incubated	at	room	temperature	for	5-10	min.	Standards	of	1.25,	2.5,	5	and	10	mg/mL	

BSA	 (Sigma)	 in	 NEBC	 buffer	 were	 used	 to	 produce	 a	 standard	 curve	 from	which	 the	

protein	 concentration	 could	 be	 extrapolated.	 Again	 following	 incubation,	 protein	

concentrations	were	determined	by	running	the	plate	on	a	CLARIOstar	plate	reader,	and	

software	used	to	determine	protein	concentration.						
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2.6.3	 Western	Blotting		
Table	2.11	outlines	the	solutions	prepared	for	use	during	Western	blotting.	

	

	

	

Table	2.11:	Buffers	used	in	Western	Blotting	

	

	

	

	

	

	

	

	

	

Solution	 Composition	

4x	 Laemmli	 (Loading)	

Buffer	

60	mM	Tris-Cl	pH	6.8,	2%	SDS,	10%	glycerol,	5%	β-mercaptoethanol,	

0.01%	bromophenol	blue	

TBST	 1xPBS	solution:	5	tablets	500	mL	dH2O	with	0.5	mL	Tween	(Sigma)	

Resolving	Gel	Buffer	 Made	using	TGXTM	FastCastTM	Acrylimide	Kit,	7.5%	#161-0171	

Stacking	Gel	Buffer	 Made	using	TGXTM	FastCastTM	Acrylimide	Kit,	7.5%	#161-0171	

1x	 SDS-PAGE	 Running	

Buffer	

3.62	g	Trizma	(Sigma),	14.4	g	Glycine	(Sigma)	pH6.8	and	add	H2O	up	

to	1	L	

Trans-Blot	Turbo	Transfer	

Buffer	

Add	200	mL	5x	Trans-Blot	Turbo	Transfer	Buffer	to	800	mL	of	dH2O		

Blocking	Buffer	 5%	w/v	non-fat	dry	milk	powder	(Marvel):	0.75	g	in	15	mL	TBST	

5%	w/v	BSA	powder	(Sigma):	0.75	g	BSA	in	15	mL	TBST	

Antibody	Dilution	Buffer	 5%	w/v	non-fat	dry	milk	powder	(Marvel):	0.1	g	in	2	mL	TBST	

5%	w/v	BSA	powder	(Sigma):	0.1	g	BSA	in	2	mL	TBST	

Stripping	Buffer	 62.5	mM	Tris-HCl	(pH6.8,	2%	w/v	SDS,	100	mM	2-β-mercaptoethanol	
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2.6.3.1	 Sample	Preparation	
	
Samples	 were	 diluted	 in	 the	 correct	 protein	 extraction	 buffer	 (RIPA,	 NEBA,	 or	 NEBC)	

plus	 1x	 Laemmli	 buffer	 at	 a	 concentration	 no	 less	 than	 1	 μg/μL,	 and	 subsequently	

heated	to	95°C	for	5	min	and	used	immediately.			

	 	

2.6.3.2	 SDS-PAGE	
	
To	 prepare	 the	 resolving	 gel,	 30	 μL	 10%	 APS	 (Sigma)	 plus	 3μL	 TEMED	 (Sigma)	 were	

added	to	the	resolving	gel	buffer	(3	mL	Resolver	A	and	3mL	Resolver	B)	and	immediately	

poured.	dH2O	was	immediately	added	on	top	of	the	stacking	solution	to	ensure	that	the	

gel	 front	 was	 even.	 The	 resolving	 gel	 was	 allowed	 to	 set	 for	 15-20	 min	 at	 room	

temperature.	 While	 the	 resolver	 gel	 was	 setting,	 the	 stacking	 gel	 was	 prepared	 by	

adding	10	μL	10%	APS	and	2	μL	TEMED	to	the	stacking	solution	(1	mL	Stacker	A	and	1mL	

Stacker	B),	and	immediately	poured	on	top	of	the	resolving	gel	once	the	dH2O	had	been	

poured	off.	Finally,	combs	were	inserted	into	the	top	of	the	gel	and	allowed	to	set	for	

15-20	min	more.	Once	set,	the	gels	were	placed	into	the	electrophoresis	gasket,	which	

itself	was	placed	into	a	gel	running	tank	(BioRad),	and	the	centre	of	the	gasket	was	filled	

to	the	top	with	SDS	running	buffer,	while	the	outer	compartment	of	the	tank	was	filled	

with	the	same	buffer	 to	a	depth	of	3-4	cm.	The	plastic	comb	was	then	removed	from	

the	gel	and	20-30	μL	of	prepared	samples	were	 loaded	 into	 the	wells	 in	addition	to	a	

molecular	weight	marker	 (PageRuler,	 ThermoFisher).	 Once	 the	 samples	were	 loaded,	

the	electrophoresis	tank	was	connected	to	a	power	pack	and	gels	were	run	at	300	V	for	

20-30	min	or	until	desired	marker	separation	was	achieved.			

	

2.6.3.3	 Western	Transfer	to	Membrane	
	
The	 Trans-Blot	 Buffer	 was	 prepared	 by	mixing	 200	mL	 of	 5X	 Trans-Blot	 Turbo	 Buffer	

with	200	mL	of	100%	ethanol	and	600	mL	of	dH2O.	The	 transfer	stacks	were	wet	and	

equilibrated	 by	 immersing	 in	 1x	 Trans-Blot	 Turbo	 Buffer	 for	 2-3	 min.	 For	 the	 PVDF	

membrane,	we	firstly	immersed	in	100%	methanol	for	2-3min	until	the	membrane	was	

translucent,	 and	 then	 transferred	 to	 1x	 Trans-Blot	 Turbo	 Buffer	 for	 2-3	 min	 before	

allowing	to	equilibrate	for	2-3	min.	Western	blot	transfer	was	achieved	using	the	Trans-
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Blot	 Turbo	 RTA	 Mini	 PVDF	 Transfer	 Kit	 using	 the	 Trans-Blot	 Turbo	 Blotting	 System.	

Briefly,	the	ion	reservoir	stack	with	the	membrane	(anode	stack)	was	laid	in	the	centre	

of	 the	 cassette	 base,	 ensuring	 that	 the	 stack	 was	 not	 overlapping	 the	 green	 rubber	

moulding	 in	 the	base.	 The	PVDF	 transfer	membrane	was	placed	directly	 onto	 the	 ion	

reservoir	 stack,	and	 the	gel	was	 carefully	aligned	on	 top	of	 the	PVDF	membrane.	The	

second	 ion	reservoir	stack	 (cathode	stack)	was	then	placed	on	top	of	 the	gel,	and	the	

blot	roller	used	to	remove	any	air	bubbles	in	the	assembled	transfer	pack.	Once	the	gel	

stack	 was	 placed	 in	 the	 cassette	 base,	 the	 cassette	 lid	 was	 placed	 on	 the	 base	 and	

locked.	The	cassette	was	slid	into	the	Trans-Blot	Turbo	instrument	bay	until	a	hear	click	

could	 be	 heard,	 and	 then	 the	 transfer	 protocol	 was	 run	 (refer	 to	 manufacturers	

guidelines).		

	

2.6.3.4	 Confirming	Protein	Transfer	
	
Once	membrane	transfer	was	complete,	we	examined	protein	transfer	by	washing	the	

PVDF	 membrane	 for	 5	 min	 in	 TBST,	 and	 then	 rinsing	 under	 tap	 water.	 Ponceau	 red	

solution	was	poured	on	top	of	the	membrane	and	allowed	to	incubate	for	2	min	in	the	

ponceau	until	 bands	 (protein	 binding)	 began	 to	 appear	 on	 the	membrane.	 To	 keep	 a	

record	 of	 the	 protein	 transfer	 and	 loading,	 the	 membrane	 was	 placed	 between	 two	

acetate	 sheets	 and	 photocopied.	 The	 membrane	 was	 then	 washed	 3x5	 min	 in	 TBST	

before	blocking.				

	

2.6.3.5	 Blocking	and	Antibody	Incubation	
	
Following	 the	 confirmation	 of	 protein	 transfer,	 PVDF	 membrane	 was	 incubated	 in	

blocking	buffer	 for	 1	 hr	 at	 room	 temperature	with	 shaking.	 Following	 incubation,	 the	

membrane	was	then	transferred	to	a	30	mL	universal	tubes	(Fisher)	containing	4-5	mL	

of	the	desired	primary	antibody	diluted	in	5%	BSA	or	Milk	(depending	on	the	antibody	

used;	Table	2.12)	in	TBST,	and	incubated	overnight	at	4°C	on	a	roller.			
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2.6.3.6	 Detection	
	
Following	overnight	incubation,	the	membrane	was	washed	3x5	min	in	TBST	(all	washes	

were	performed	in	a	universal	tube)	and	4-5	mL	of	appropriate	(Table	2.13)	horseradish	

peroxidase	(HRP)-conjugated	secondary	antibody	(Abcam)	diluted	1:2000	in	5%	Milk	in	

TBST.	 Membranes	 were	 incubated	 in	 the	 secondary	 antibody	 for	 1	 hr	 at	 room	

temperature	 on	 the	 roller,	 before	 being	 washed	 3x5	 min	 in	 TBST.	 Following	 washes	

antibody	binding	was	detected	by	incubating	Illumina	Forte	chemiluminescence	reagent	

(Millipore)	 on	 the	 membrane	 for	 30-60	 seconds	 (less	 for	 endogenous	 controls)	 and	

membrane	 transferred	 to	 the	 ChemiDoc	 MP	 Imaging	 System	 (BioRad)	 and	

chemiluminescence	was	detected	and	imaged.		

	

	

2.6.3.7	 Stripping	and	Re-probing	the	Membrane	
	
Membrane	 was	 placed	 in	 a	 30	 mL	 universal	 tube	 and	 incubated	 in	 the	 presence	 of	

stripping	buffer	(ThermoFisher)	at	RT	for	10-15	min	on	a	roller.	Membrane	was	washed	

3x5	min	in	TBST	on	a	roller.	The	membrane	was	then	blocked	and	again	re-probed	with	

primary	antibody	as	described	before.	

	

	

2.6.3.8	 Quantitation	by	Densitometry	
	
To	quantitate	Western	blotting	data	by	densitometry,	the	ImageLab	software	(BioRad)	

was	used.	The	pixel	density	over	the	selected	areas	was	quantified	and	compared.	
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Table	2.12:	Primary	antibodies	used	for	Western	Blotting	

	

	

Table	2.13:	Secondary	antibodies	used	for	Western	Blotting	

Secondary	Antibody	 Dilution	 Source	 Cat	#	

Goat	pAb	to	Rb	IgG	(HRP)	 1:2000	 Abcam	 ab97051	

Goat	pAb	to	Ms	IgG1	(HRP)	 1:2000	 Abcam	 ab98693	

Goat	pAb	to	Ms	IgG2a	(HRP)	 1:2000	 Abcam	 ab97245	

	 	 	 	

	

2.7	 Statistical	analysis			
	

Error	bars	on	graphs	represent	standard	error	values.	 In	the	vast	majority	of	cases,	an	

unpaired	 student’s	 T-test	 was	 used	 to	 establish	 if	 there	 was	 statistical	 significance	

between	 experimentally	 treated	 samples	 and	 control	 samples.	 All	 tests	 assumed	

unequal	variance	and	in	most	cases	were	carried	out	on	data	sets	with	samples	sizes	of	

n=3	unless	otherwise	stated.	Tests	were	carried	out	using	Microsoft	Excel	2010	software	

and	Graphpad	Prism	software,	and	results	were	taken	to	be	significant	if	the	calculated	

p	value	was	equal	to	or	less	than	0.05.			

Antibody	 Dilution	 Diluted	in	 Source	 Cat	#	 Species	 Target	Size	

pSMAD3	(mAb)	 1:500	 10%	BSA	 Cell	Signalling	 9520	 Rabbit	 55	kDa	

Total	 SMAD3	

(mAb)	

1:500	 10%	BSA	 Cell	Signalling	 9523	 Rabbit	 55	kDa	

PARP	 1:1000	 10%	Non-fat	milk	 Cell	Signalling	 9532	 Rabbit	 110	kDa	

ΔNp63	 1:500	 10%	Non-fat	milk	 Biolegend	 619002	 Rabbit	 70	kDa	

Alpha-Tubulin	 1:1000	 10%	Non-fat	milk	 Sigma	 T6074	 Mouse	 55	kDa	

Acetylated	

Alpha-Tubulin	

1:1000	 10%	Non-fat	milk	 Sigma	 T6793	 Mouse	 55	kDa	

GAPDH	 1:5000	 10%	Non-fat	milk	 Millipore	 MAB374	 Mouse	 35	kDa	

LAMIN	A/C	 1:1000	 10%	Non-fat	milk	 Cell	Signalling	 2032	 Rabbit	 65-70	kDa	
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Chapter	3	 Determination	 of	 TGFβ	 Signalling	 in	
Human	Basal	Cell	Carcinoma	

3.1	 Introduction	
	
One	quarter	of	all	cancers	exhibit	activation	of	the	hedgehog	growth	factor	pathway	to	

drive	 tumour	 growth,	 including:	 breast,	 pancreas,	 gastrointestinal,	 prostate,	

haematological,	and	neural	malignancies.	The	archetypal	cancer	for	Hh	signalling	is	BCC,	

with	activating	mutations	found	in	nearly	100%	of	tumours	studied.	As	a	consequence	

of	 this,	 a	 number	 of	 hedgehog	 pathway	 inhibitors	 are	 currently	 in	 clinical	 trials	 for	 a	

variety	 of	 these	malignancies,	 and	 in	 2012	 the	 drug	 vismodegib	 became	 the	 first	 Hh	

signalling	 pathway	 targeting	 agent	 to	 gain	 U.S.	 Food	 and	 Drug	 Administration	 (FDA)	

approval	for	the	treatment	of	inoperable	and	metastatic	BCC.	However,	clinical	studies	

already	 suggest	 that	a	BCC	 sub-population	 is	 resistant	 to	vismodegib	 (Von	Hoff	et	al.,	

2009;	 Metcalfe	 &	 de	 Sauvage,	 2011;	 Skvara	 et	 al.,	 2011;	 Sekulic	 et	 al.,	 2012),	 with	

growing	numbers	of	case	reports	showing	an	initial	regression	of	BCC	after	vismodegib	

treatment,	followed	by	an	inevitable	relapse	of	the	tumour,	or	even	progression	of	the	

tumour	 into	 a	more	malignant	 phenotype	 (Hausauer	 et	 al.,	 2013).	 Studies	 have	 now	

demonstrated	 resistance	 towards	 these	 growth	 factor	 inhibitors.	 	 Research	 from	 our	

lab,	has	shown	that	vismodegib	was	ineffective	against	the	treatment	of	primary	human	

BCC	cells	in	an	in	vitro	SC	assay	(Colmont	et	al.,	2013).	

	

Therefore	this	raises	the	question	as	to	how	these	tumours	are	capable	of	resisting	such	

therapies.	One	essential	factor	that	has	long	been	contributed	to	drug	resistance	is	the	

cross	talk	that	exists	amongst	the	signalling	pathways,	which	serves	to	provide	tumour	

cells	with	the	opportunity	to	circumvent	other	pathways	to	enhance	their	survival	(Sun	

et	 al.,	 2016;	 Prahallad	 and	 Bernards,	 2015).	 In	 particular,	 the	 crosstalk	 that	 exists	

between	the	TGFβ	and	Hh	signalling	pathways	is	very	well	documented	whereby	in	both	

normal	 and	malignant	 tissues,	 they	 have	 been	 shown	 to	 regulate	 key	 components	 of	

each	other	 (Dennler	et	al.,	 2007;	Mauviel	et	al.,	 Javelaud	et	al.,	2011;	 Javelaud	et	al.,	

2012).	TGFβ	signalling	in	cancer	is	typically	associated	with	increased	invasiveness	and	

aggressiveness	 through	 the	 two	 key	 mechanisms:	 (1)	 increased	 proliferation	 arising	
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from	 retinoblastoma	 gene	 inactivation,	 and	 (2)	 induction	 of	 epithelial-mesenchymal	

transition.	

	

Under	 physiological	 conditions	 TGFβ	 signalling	 is	 responsible	 for	 cell	 cycle	 arrest,	

however,	proliferation	can	occur	after	concomitant	 inactivation	of	 the	 retinoblastoma	

gene	 (Laiho	et	al.,	1990;	Herrera	et	al.,	1996).	Whereas	EMT	 is	a	biological	process	 in	

which	a	non-motile	epithelial	cell	undergoes	changes	to	a	mesenchymal	phenotype	and	

possesses	invasive	capacities	(Weinberg	et	al.,	2008).	TGFβ	signalling	is	associated	with	

epithelial	cell	migration	during	wound	healing	and	facilitates	the	egress	of	adult	tissue	

SCs	from	the	HF	bulge	(Oshimori	et	al.,	2012),	and	has	a	pivotal	role	 in	 inducing	EMT.	

This	is	achieved	by	regulation	of	a	well-established	EMT	core	signature	(Derynck	et	al.,	

2014;	 Taube	 et	 al.,	 2010),	 whereby	 TGFβ1	 induced	 TGFβ	 signalling	 enhances	 the	

expression	 of	 EMT	 inducers,	 including	 the	 transcription	 factors	 (TFs)	 Gooscoid,	 Snail,	

and	Twist.	The	overexpression	of	these	EMT	inducers	then	in	turn	upregulates	a	subset	

of	other	EMT-inducing	TFs,	with	Twist,	Zeb1,	Zeb2,	Runx1	and	Runx2	being	commonly	

induced.	 These	 TFs	 are	 capable	 of	 transforming	 cells	 into	 ones	 that	 display	 classic	

hallmarks	 of	 EMT,	 such	 as	 the	 loss	 of	 epithelial	 cell	 surface	markers,	most	 notably	 E-

cadherin,	 whose	 transcriptional	 repression	 is	 mediated	 through	 the	 binding	 of	 the	

aforementioned	 TFs	 to	 E-boxes	 present	 within	 the	 E-cadherin	 promoter,	 and	 the	

acquisition	of	mesenchymal	markers	such	as	N-cadherin	(CDH2)	and	vimentin.	

	

TGF-β	was	 recently	 shown	 to	 induce	Hh	 expression,	which	 in	 turn	 activates	GLI1	 and	

GLI1-dependent	 EMT	 in	 non-small	 cell	 lung	 cancer	 cells	 (Maitah	 et	 al.,	 2011).	 For	

instance,	there	are	multiple	lines	of	evidence	showing	that	crosstalk	exists	between	the	

Hh	 and	 TGFβ	 pathway,	which	 has	 led	 to	 the	 identification	 of	 increased	 expression	 of	

TGFβ	 signalling	observed	 in	untreated	BCC	(Heller	et	al.,	2013;	O’Driscoll	et	al.,	2006).	

For	example,	TGFβ	signalling	activation	 is	required	for	tumour	progression	 in	a	mouse	

model	 of	 BCC	 development	 where	 it	 may	 exert	 immunosuppressive	 activities.	 Hh	

signalling	has	been	shown	to	promote	motility	and	invasiveness	in	human	gastric	cancer	

cells	through	TGFβ	mediated	activation	of	the	TGFβ	receptor	1	pathway.	Furthermore,	

there	 is	 a	 non-canonical	 Hh	 cascade	 that	 is	 capable	 of	 activating	 GLI	 transcription	

factors	 independently	 of	 Hh	 ligands	 or	 PTCH/SMO.	 Activation	 of	 GLI	 transcription	
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factors	is	positively	regulated	by	a	number	of	pathways	including	KRAS,	TGFβ,	PI3K-AKT,	

and	PKCα	(Pellegrini	et	al.,	2017).		

	

It	 is	 this	 crosstalk	 that	 led	 to	 our	 laboratory	 performing	 microarray	 analysis	 and	

generating	 preliminary	 data	 showing	 an	 increased	 expression	 of	 TGFβ	 signalling	

following	exposure	of	our	primary	human	BCC	cells,	established	in	vitro	to	vismodegib.	

We	 found	 that	 exposure	 to	 vismodegib	 was	 associated	 with	 expression	 of	 TGFβ	

pathway	 genes	 (increase:	 TGFβ,	 ACVR1,	 E2F4,	 ID1,	 RUNX2,	 JunB,	 Snail1,	 Snail2,	 Zeb2	

and	 decrease:	 SMURF1	 and	 SMURF2)	 and	 concomitant	 up-regulation	 of	 TGFβ	 target	

genes	 (Sox4,	 Lif,	Hey1,	 Jagged11,	CXXC5	and	 ID1).	 Therefore,	 in	BCC,	where	 the	most	

significant	pathogenic	event	 is	the	upregulation	of	Hh	signalling,	an	enrichment	of	the	

TGFβ	 signalling	pathway	was	observed	when	 treating	with	 the	 commercially	 available	

drug	vismodegib.		

	

3.2	 Results		 	

3.2	1	 Microarray	analysis	of	BCC	identifies	TGFβ	signalling.			
	
I	 undertook	 microarray	 analysis	 of	 untreated	 BCC,	 normal	 skin	 and	 an	 alternative	

cutaneous	keratinocyte	carcinoma	(squamous	cell	carcinoma,	SCC).	Normal	human	skin,	

BCC	and	SCC	samples	were	obtained	for	this	study	within	8	hours	of	cutaneous	surgery,	

from	 dermatology	 departments	 in	 two	University	 Health	 Boards,	 as	 part	 of	 an	 ethics	

committee	 and	 NHS	 approved	 clinical	 study	 (09-WSE02-1).	 Samples	 were	 collected	

directly	 from	 the	 surgeon	 during	 the	 procedure	 and	 sterilely	 placed	 into	 a	 prepared	

transportation	 tube	 containing	 keratinocyte	media	 and	were	 then	 transported	 to	 the	

laboratory	 on	 ice.	 Tissue	 samples	 were	 processed	 immediately	 upon	 receipt	 and	

messenger	RNA	(mRNA)	was	extracted	within	24	hours	using	established	protocols	and	

stored	 at	 -20	 °C.	 In	 the	 case	 of	 keratinocyte	 tumours,	 histological	 confirmation	 was	

sought	from	the	sample	submitted	for	the	pathologists	report	before	the	RNA	was	used.	

The	quantity	and	quality	of	the	RNA	was	determined	by	nanodrop™	and	Bioanalyser™,	

respectively.	A	total	of	10	BCC,	10	normal	skin	and	10	SCC	samples	were	processed	 in	

this	way.	Of	these,	6	BCC,	3	SCC,	and	3	normal	skin	samples	were	determined	to	be	of	
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sufficient	quantity	(100-200	ng/µL)	and	quality	(RIN	9-10)	for	gene	profiling	by	Illumina	

HT-12	 v4	 bead	microarray	 chips.	 The	 raw	microarray	 data	was	 then	 transformed	 and	

normalised	 using	 the	 Bioconductor	 packages	 in	 the	 R	 statistical	 program	 (Section	

2.3.7.6).	 Based	 on	 the	 box	 plot	 distributions,	 two	 out	 of	 the	 six	 BCC	 samples	 were	

identified	 as	 outliers	 and	 were	 therefore	 removed	 from	 the	 analysis.	 Therefore,	 the	

microarray	 analysis	 was	 performed	 on	 four	 BCC,	 three	 SCC	 and	 three	 normal	 skin	

samples.							

	

3.2.2	 Volcano	plots	highlight	the	most	significant	genes	within	BCC			
	
The	 Illumina	 platform	 allowed	 for	 gene	 expression	 analysis	 of	 24,329	 genes,	 utilising	

multiple	 probes	 for	 each	 gene.	 Following	 transformation	 and	 normalisation	 of	 our	

samples,	we	identified	differentially	expressed	genes	using	an	FDR>±2.0,	and	a	p<0.05:	

1,424	genes	that	were	differentially	expressed	between	BCC	and	normal	skin	and	1,664	

genes	between	BCC	and	SCC.	Volcano	plots	using	a	 cut	off	of	>±2.0	 fold	difference	 in	

expression	and	a	p-value<0.01,	identified	24	up-regulated	and	21	down-regulated	genes	

(in	 BCC	 tissue	 compared	 to	 NS;	 Fig.	 3.1A;	 Table	 3.1).	 In	 keeping	 with	 the	 prominent	

stroma	around	BCC	and	the	fact	that	is	a	very	invasive	and	locally	aggressive	carcinoma,	

16	of	the	24	genes	demonstrating	increased	expression	were	associated	with	proteins	in	

the	extracellular	matrix.	Of	note	were	7	collagen	genes	 (COL1A1,	1A2,	1A2,	3A1,	5A1,	

5A2	 and	 6A3),	 a	 group	of	 proteoglycans	 and	 glycoproteins	 (VCAN,	 FBN3,	 TNC,	 CSPG4	

and	 LUM),	 other	 extracellular	 proteins	 (SPON2	 and	 CALD1),	 and	 genes	 involved	 in	

remodelling	the	extracellular	matrix	(MMP11).			

	

BCC	compared	to	SCC	 identified	20	up-regulated	and	3	down-regulated	genes	 (in;	Fig.	

3.1B;	 Table	 3.2).	 Ten	 genes	 demonstrated	 increased	 expression	 in	 both	 analyses,	 and	

were	therefore	found	to	be	highly	upregulated	in	BCC	when	compared	to	both	normal	

skin	 and	 SCC.	 Surprisingly	 none	 of	 these	 ten	 genes	 were	 found	 to	 be	 the	 collagens,	

which	 also	 highlight	 the	 similarity	 in	 the	 stroma	 of	 both	 BCC	 and	 SCC.	 However,	 the	

proteoglycans	and	glycoproteins	were	still	found	to	be	elevated	in	BCC	when	compared	

to	 SCC	 (VCAN,	 FBN3,	 CSPG4),	 along	 with	 the	 additional	 extracellular	 matrix	 protein	

SPON2.	 The	 remaining	 genes	 were	 the	 proto-oncogene	 MYCN,	 the	 Cre-dependent	
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trans-activator,	CREB5,	and	the	mitogenic	factor	PDGFA.	The	remaining	two	genes	were	

APCDD1L	and	SLC39A14,	however,	 very	 little	 is	 known	about	 their	 function.	Although	

not	 found	 to	 be	 upregulated	 in	 BCC	 when	 compared	 to	 normal	 skin,	 some	 of	 the	

remaining	 upregulated	 genes	 also	 have	 involvement	 in	 regulating	 the	 extracellular	

matrix,	including	MT1F,	which	is	associated	with	collagen	deposition,	MARCKSL1,	which	

affects	the	formation	of	adherens	junctions,	GPC4,	which	is	a	proteoglycan,	and	LCE2B,	

which	 is	 associated	 with	 epidermal	 differentiation.	 Another	 notable	 gene	 was	 the	 7-

transmembrane	domain	receptor,	FZD7,	which	is	involved	in	the	Wnt	signalling	pathway	

(highlighted	in	gene	set	enrichment	analysis	later	on).					

	

Only	three	genes	were	significantly	downregulated	 in	BCC	compared	to	SCC,	and	they	

were	 the	 type	 I	 cytokeratin,	 KRT13,	 IGFL1	 and	 the	 subunit	 of	 NADH	 dehydrogenase	

located	in	the	mitochondrial	inner	membrane,	NDUFA4L2.		
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Figure	3.1.	Volcano	plots	of	differentially	expressed	genes		

Volcano	plot	 representation	of	 the	differentially	expressed	genes	with	visualised	genes	

on	 the	 right	 and	 left	 corresponding	 to	 2.0-fold	 upregulation	 and	 downregulation	

respectively,	at	p<0.01:	(A)	Statistically	significant	genes	observed	when	comparing	BCC	

to	normal	skin	(NS),	(B)	Statistically	significant	genes	observed	when	comparing	BCC	to	

SCC.	

	

Table	 3.1:	 List	 of	 significant	 genes	 highlighted	 identified	 by	 the	 volcano	 plot	

comparing	BCC	to	NS	

	

#	 Gene	 Fold	Change	 Gene	 Fold	Change	
1	 VCAN	 3.14	 DCD	 -5.70	
2	 APCDD1L	 2.97	 PIP	 -4.08	
3	 MYCN	 2.93	 SCGB2A2	 -3.93	
4	 SLC39A14	 2.82	 ALOX15B	 -3.39	
5	 FBN3	 2.80	 MUC1	 -3.37	
6	 TNC	 2.79	 ACTA1	 -3.19	
7	 COL1A1	 2.76	 TMEM91	 -2.91	
8	 FLJ22536	 2.61	 KIA18881	 -2.87	
9	 MMP11	 2.61	 SCGB1D2	 -2.82	
10	 COL5A1	 2.55	 MUCL1	 -2.80	
11	 COL1A2	 2.55	 CFD	 -2.74	
12	 CHCHD7	 2.54	 GPT	 -2.59	
13	 COL5A2	 2.51	 HMGCS2	 -2.59	
14	 GJB6	 2.46	 UBIAD1	 -2.54	
15	 PDGFA	 2.45	 FCGBP	 -2.52	
16	 LUM	 2.44	 PSAPL1	 -2.45	
17	 CSPG4	 2.42	 BRI3BP	 -2.34	
18	 IGF2BP2	 2.37	 AZGP1	 -2.19	
19	 SPON2	 2.33	 CHCHD10	 -2.14	
20	 CREB5	 2.19	 PROL1	 -2.08	
21	 CALD1	 2.17	 FCGBP	 -2.01	
22	 COL6A3	 2.15	 	 	
23	 COL1A2	 2.15	 	 	
24	 COL3A1	 2.13	 	 	
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Table	 3.2.	 List	 of	 significant	 genes	 highlighted	 identified	 by	 the	 volcano	 plot	

comparing	BCC	to	SCC	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	

	

	

	

	

	

	

	

	

	

	

#	 Gene	 Fold	
Change	

Gene	 Fold	
Change	

1	 LHX2	 3.71	 KRT13	 -4.47	
2	 APCDD1L	 3.49	 IGFL1	 -3.47	
3	 MYCN	 3.36	 NDUFA4L2	 -2.33	
4	 FBN3	 3.01	 	 	
5	 CREB5	 2.98	 	 	
6	 CHCHD7	 2.91	 	 	
7	 SLC39A14	 2.86	 	 	
8	 PELI2	 2.73	 	 	
9	 TMEM98	 2.65	 	 	
10	 FZD7	 2.49	 	 	
11	 LCE2B	 2.44	 	 	
12	 GPC4	 2.43	 	 	
13	 PDGFA	 2.42	 	 	
14	 CSPG4	 2.38	 	 	
15	 TSPAN18	 2.36	 	 	
16	 MT1F	 2.28	 	 	
17	 VCAN	 2.24	 	 	
18	 SPON2	 2.22	 	 	
19	 MARCKSL1	 2.21	 	 	
20	 IRX2	 2.18	 	 	
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3.2.3	 Unsupervised	Clustering	separates	samples	by	disease	status	
	

Unsupervised	 hierarchical	 clustering	 of	 235	 significant	 differentially	 expressed	 genes	

(p<0.01),	 identified	6	clusters	 (Figure	3.2	A).	Cluster	1	 identified	genes	that	were	over	

expressed	 in	 keratinocyte	 carcinoma	more	 than	NS.	While	 cluster	 2,	 identified	 genes	

under	expressed	 in	BCC	relative	to	SCC	and	NS.	Clusters	3,	4	and	5	represented	genes	

that	were	overexpressed	 in	BCC	much	more	 than	 in	SCC	or	NS.	Cluster	5	 represented	

genes	that	were	overexpressed	in	NS	but	not	in	BCC	and	SCC.	

	

Cluster	 1	 predominantly	 contained	 genes	 involved	 in	 the	 extracellular	 matrix.	 In	

particular	 the	 collagen	 proteins,	 COL1A1,	 1A2,	 3A1,	 and	 6A3,	 were	 all	 shown	 to	 be	

highly	 upregulated	 in	 both	 BCC	 and	 SCC	 tissue	 when	 compared	 to	 normal	 skin.	 This	

pattern	of	collagen	gene	expression	observed	between	the	tissue	groups	 is	consistent	

with	other	microarray	studies	on	BCC	tissue	(Heller	et	al.,	2013).	This	 is	 interesting,	as	

collagens	are	 regulated	by	TGFβ	and	Hh	 signalling	pathways,	which	may	possibly	give	

further	insight	into	the	pathways	involved	in	these	tissues	(Zunich	et	al.,	2012).		

	

There	 are	 a	 number	 of	 different	 genes	 that	 can	 be	 observed	within	 Cluster	 2	 (Figure	

3.2C),	with	19/46	of	 these	genes	concordantly	downregulated	 in	both	BCC	and	SCC	 in	

comparison	to	normal	skin.	This	group	consisted	of	genes	with	indeterminate	functions	

in	BCC	and	SCC,	including	PROL1,	CA6,	PPARGC1A,	and	CYP4X1,	while	the	remaining	27	

genes	 were	 highly	 downregulated	 in	 all	 three-tissue	 groups	 including	 transcription	

factors:	TOX2,	TWIST2,	and	FOXA1;	and	genes	involved	in	lipid	metabolism	(LIPL2,	LIPK,	

and	LIPH),	and	skeletal	muscle	formation	(TNNT3,	MYLPF,	and	TNNC2).		

	

Gene	cluster	3	(Fig.	3.2D)	contained	genes	that	are	upregulated	in	BCC	when	compared	

to	SCC	and	normal	skin,	whose	expression	levels	are	found	to	be	similar	between	both	

tissue	groups.	The	genes	APCDD1L,	MMP11,	SLC39A14,	CSPG4,	MGC24103,	and	FBN3	

were	all	highly	upregulated	in	BCC,	and	again	are	genes	integral	to	the	maintenance	and	

remodelling	 of	 the	 extracellular	 matrix.	 Other	 genes	 shown	 to	 have	 increased	

expression	 included	 GLI1,	 which	 is	 to	 be	 expected	 since	 the	 Hh	 signalling	 is	

constitutively	activated	in	BCC.		
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Gene	 cluster	 4	 (Figure	3.2E)	 is	 subdivided	 into	blue	 and	brown	 clusters.	Genes	 in	 the	

blue	cluster	were	predominantly	found	to	be	concordantly	expressed	in	all	three-tissue	

groups,	with	 the	highest	 increases	 in	expression	 found	 in	BCC	tissue.	These	genes	are	

involved	 in	 the	 extracellular	 matrix/stroma,	 including	 VCAN	 (proteoglycan),	 COL6A3,	

COL5A2,	COL5A1,	ANTXR1	 (type	 I	 transmembrane	protein	 involved	 in	 cell	 attachment	

and	migration),	and	TUBA1A	(encodes	α-Tubulin,	which	is	responsible	for	the	formation	

of	 microtubules	 within	 cells).	 Again	 all	 of	 these	 genes	 have	 important	 roles	 in	

maintaining	 the	 functionality/integrity	 of	 the	 extracellular	 matrix	 and	 the	 cells	

themselves.	 Genes	 in	 the	 brown	 cluster	 were	 all	 highly	 upregulated	 in	 BCC,	 in	

comparison	 to	 both	 SCC	 and	 normal	 skin,	 where	 no	 change	 in	 gene	 expression,	 and	

downregulation	was	observed	respectively.	 Interestingly	the	genes	upregulated	in	BCC	

are	regulated	or	induced	by	TGFβ	signalling	including	CDH11,	RUNX1,	SOX4	(regulators	

of	EMT),	and	FSTL1.										
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Figure	3.2.	Heatmap	from	Unsupervised	hierarchical	clustering	analysis		

Heat	 map	 showing	 the	 relative	 expression	 levels	 of	 235	 significant	 differentially	

expressed	 genes	 (p<0.01),	 with	 expression	 levels	 ranging	 from	 -3.0	 (yellow)	 to	 +3.0	

(blue)	 to	 reveal	 groups	 of	 dysregulated	 genes.	 (A)	 Complete	 cluster	 diagram,	 (B)	

Enlargement	of	cluster	1,	(C)	Enlargement	of	cluster	2;	(D)	Enlargement	of	cluster	3;	(E)	

Enlargement	of	cluster	4.	
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3.2.4	 Identifying	differentially	regulated	pathways	enriched	in	BCC		
	

As	 BCC	 expression	 could	 be	 differentiated	 from	 SCC	 and	 normal	 skin	with	 respect	 to	

volcano	 plots	 and	 hierarchical	 clustering,	 differentially	 expressed	 genes	 were	 then	

functionally	annotated	and	pathway	analysis	was	performed	by:	1)	DAVID	(Database	of	

Annotation	 (p<0.05),	 Visualization	 and	 Integrated	 Discovery;	 NCBI)	 and	 2)	 gene	 set	

enrichment	analysis	(GSEA,	http://www.broadinstitute.org/gsea/index.jsp).				

	

DAVID	is	a	bioinformatics	resource	providing	functional	annotation	of	gene	expression	

data	 to	 identify	 enriched	 biological	 pathways/functional	 processes.	 DAVID	 pathway	

analysis	of	differentially	expressed	genes	in	BCC	revealed	enrichment	in	21	pathways	(p	

<0.01).	 The	 enriched	 pathways	 included	 ‘metabolic	 pathways’	 (p<0.01;	 131	 genes),	

‘ECM-receptor	interactions’	(p<0.01;	17	genes),	‘tight	junctions’	(p<0.01;	20	genes),	and	

‘PPAR	signalling	pathway’	(p<0.01;	12	genes).	Unsurprisingly	also	enriched	were	‘cancer’	

(p<0.01;	 43	 genes),	 and	 ‘basal	 cell	 carcinoma’	 (p<0.01;	 11	 genes).	 Importantly,	 the	

enrichment	of	 these	pathways	has	been	documented	 in	other	BCC	microarray	studies	

(Heller	et	al.,	2013),	strengthening	the	reliability	of	our	microarray	dataset.						

	

DAVID	 pathway	 analysis	 also	 highlighted	 the	 enrichement	 of	 some	 key	 functional	

processes	in	BCC,	including	‘SMAD	binding	sites’	that	were	highly	regulated	in	BCC	when	

compared	to	normal	skin	(Figure	3.3A).	Furthermore,	 in	BCC,	when	analysing	the	gene	

expression	levels	within	our	dataset,	increases	were	observed	in	the	SMAD	transcription	

factors,	 SMAD2,	 3,	 and	 4,	 when	 compared	 to	 normal	 skin	 (Figure	 3.3B).	 Therefore	 it	

appeared	that	TGFβ	signalling	was	enriched	in	BCC	when	using	basic	pathway	analysis.		

	

When	 comparing	 BCC	 to	 SCC	 a	 total	 of	 16	 pathways	 were	 found	 to	 be	 statistically	

significant	 (p<0.05).	 As	 expected	 there	 was	 enrichment	 of	 ‘basal	 cell	 carcinoma’	

(p<0.01;	11	genes)	and	 the	 ‘hedgehog-signalling	pathway’	 (p<0.05;	6	genes).	However	

there	 were	 a	 number	 of	 other	 pathways	 significantly	 enriched	 including	 the	 TGFβ	

(p<0.01;	15	genes),	Hippo	(p<0.01;	21	genes)	and	PI3K-AKT	(p<0.01;	37	genes)	signalling	

pathways.	
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Figure	3.3.	TGFβ	signalling	in	BCC.		

When	 comparing	 BCC	 to	 normal	 skin	 there	 were	 1,664	 significant	 differentially	

expressed	 genes	 (p<0.05).	 These	 were	 annotated	 using	 DAVID	 functional	 pathway	

analysis.	(A)	Gene	expression	profile	showing	fold	change	of	genes	involved	in	the	Gene	

Ontology	 (GO)	process	 ‘SMAD	Binding’	obtained	 through	DAVID	pathway	analysis.	 (B)	

Gene	expression	levels	of	SMAD	transcription	factors	in	BCC.		

	

	

Next	 we	 performed	 more	 detailed	 pathway	 analysis	 using	 GSEA	

(http://www.broadinstitute.org/gsea/index.jsp),	to	correlate	expression	patterns	with	a	

phenotype.	 GSEA	 differs	 from	 DAVID	 pathway	 analysis,	 in	 that	 expressed	 genes	 are	

ranked	by	their	correlation	with	a	phenotype,	and	then	this	ranked	list	is	compared	to	

curated	 gene	 sets,	 which	 are	 downloaded	 from	 the	 Broad	 Institutes	 Molecular	

Signatures	Database	(MSigD).		

	

When	using	GSEA	to	identify	the	enrichement	of	pathways/processes	between	BCC	and	

NS	 (Table	3.3),	and	BCC	and	SCC	(Table	3.4),	considerable	overlap	between	these	two	

comparison	groups	was	observed.	As	expected	the	Hh	signalling	pathway	was	enriched	

in	 BCC,	 when	 compared	 to	 both	 NS	 (ES=0.52,	 p>0.05),	 and	 SCC	 (ES=	 0.64,	 p<0.01)	

(Figure	 3.4A	 and	 3.5A,	 respectively).	 Similarly,	 EMT	 was	 significantly	 enriched	 in	

comparison	to	NS	(ES=0.77;	p<0.05;	Figure	3.4B)	and	SCC	(ES=0.66;	p>0.05;	Figure	3.5B).	
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Angiogenesis	was	 relevant	 in	 BCC	 compared	 to	 SCC	 (Figure	 3.5C),	which	 is	 used	 as	 a	

clinical	 feature	 in	 BCC	 with	 the	 presence	 of	 peripheral	 vessels	 being	 a	 common	

diagnostic	 finding.	 Of	 the	 other	 signalling	 pathways	 that	 were	 observed,	 the	 TGFβ	

signalling	 pathway	 was	 enriched	 in	 BCC	 (ES=0.56;	 Figure	 3.4C)	 when	 compared	 to	

normal	skin,	where	it	was	the	most	enriched	signalling	pathway.	TGFβ	signalling	is	often	

implicated	 in	EMT,	 suggesting	 that	 these	 two	profiles	may	be	 linked.	Another	notable	

pathway	enriched	was	 the	KRAS	 signalling	pathway	 (ES=0.55;	 Figure	 3.4D),	which	has	

been	shown	to	interact	with	TGFβ	signalling	in	a	number	of	carcinomas	(Adorno	et	al.,	

2009;	Vasilaki	et	al.,	2016).	In	addition,	the	Wnt/β-catenin	pathway	was	also	enriched	in	

BCC	compared	 to	SCC.	Nuclear	 staining	with	β-catenin,	a	 feature	of	Wnt	activation,	 is	

more	frequent	in	BCC	when	compared	to	SCC	(Doglioni	et	al.,	2003).	In	summary,	both	

DAVID	 and	 GSEA	 support	 the	 role	 of	 TGFβ	 signalling	 in	 BCC,	 a	 pathway	 that	 has	

previously	been	considered	only	relevant	for	SCC	development.	

	

	

Table	3.3	Top	20	processes	(Gene	Sets)	enriched	in	BCC	in	comparison	to	normal	skin		

Enrichment	results	report	generated	on	the	Broad	Institute	website	

(http://www.broadinstitute.org/gsea/index.jsp),	listing	the	top	20	gene	sets	enriched	in	

BCC	when	compared	to	normal	skin,	along	with	the	size	of	each	gene	set	and	the	

enrichment	score	(ES),	which	reflects	the	degree	to	which	the	gene	set	is	

overrepresented	at	the	top	or	bottom	of	a	ranked	list	of	genes	in	the	expression	

dataset.	Gene	sets	are	ordered	by	normalized	enrichment	score	(NES),	which	accounts	

for	the	differences	in	gene	set	size	and	in	correlations	between	gene	sets	and	the	

expression	data	set.	

	

	 Gene	Sets	

Size	of	

Gene	

Set	

Enrichment	

Score	

Normalized	

Enrichment	

Score	

Nominal	

p-value	

1	 G2M	CHECKPOINT	 178	 0.54	 1.44	 0.059	

2	 E2F	TARGETS	 179	 0.51	 1.39	 0.120	

3	
EPITHELIAL	MESENCHYMAL	

TRANSITION	
185	 0.77	

1.34	
0.045	

4	 TGFB	SIGNALLING	 48	 0.56	 1.34	 0.092	
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5	 KRAS	SIGNALLING	 179	 0.55	 1.33	 0.140	

6	 ALLOGRAFT	REJECTION	 165	 0.56	 1.29	 0.146	

7	 MITOTIC	SPINDLE	 180	 0.51	 1.29	 0.000	

8	 UV	RESPONSE	(DOWN)	 129	 0.48	 1.23	 0.109	

9	 ANGIOGENESIS	 32	 0.80	 1.23	 0.050	

10	 APOPTOSIS	 149	 0.46	 1.22	 0.106	

11	 PANCREAS	BETA	CELLS	 19	 0.54	 1.21	 0.317	

12	 MYC	TARGETS	 191	 0.38	 1.18	 0.205	

13	 COMPLEMENT	 173	 0.45	 1.17	 0.146	

14	 IL6	JAK	STAT3	SIGNALLING	 75	 0.53	 1.16	 0.202	

15	 IMFLAMMATORY	RESPONSE	 173	 0.53	 1.14	 0.213	

16	 HEDGEHOG	SIGNALLING	 30	 0.52	 1.14	 0.112	

17	 IL2	STAT5	SIGNALLING	 180	 0.41	 1.13	 0.153	

18	 WNT	BETA	CATENIN	SIGNALLING	 38	 0.48	 1.09	 0.278	

19	 APICAL	SURFACE	 35	 0.50	 1.09	 0.119	

20	 DNA	REPAIR	 146	 0.29	 1.08	 0.182	
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Figure	3.4.	Pathway	enrichment	observed	in	BCC	compared	to	normal	skin	

Gene	Set	Enrichment	Analysis	reveals	enrichment	of	(A)	Hh	signalling,	(B)	EMT,	(C)	TGFβ	

signalling,	and	(D)	KRAS	signalling.	On	the	x-axis,	the	human	genes	are	ranked	from	the	

most	 upregulated	 (left	 end)	 to	 the	most	 downregulated	 (right	 end)	 between	 BCC	 and	

normal	skin.	The	‘barcode’	 indicates	the	position	of	the	genes	from	the	biological	gene	

set	within	 that	particular	pathway.	 The	 y-axis	 shows	a	 running	enrichment	 score	 (ES),	

which	increases	when	genes	are	encountered	within	that	particular	pathway,	leading	to	

an	 assessment	 of	 the	 gene	 distribution	 within	 a	 set	 of	 genes.	 Black	 circles	 show	 the	

enrichment	score.	Black	star	symbols	showing	the	leading	edge	subset,	which	represents		
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the	subset	of	gene	members	within	that	gene	set	which	contributed	to	the	ES.	 	

	

	Table	3.4	Top	20	processes	(Gene	Sets)	enriched	in	BCC	in	comparison	to	SCC		

	Enrichment	results	report	generated	on	the	Broad	Institute	website	

(http://www.broadinstitute.org/gsea/index.jsp),	listing	the	top	20	gene	sets	enriched	in	

BCC	when	compared	to	SCC,	along	with	the	size	of	each	gene	set	and	enrichment	score	

(ES),	which	reflects	the	degree	to	which	the	gene	set	is	overrepresented	at	the	top	or	

bottom	of	a	ranked	list	of	genes	in	the	expression	dataset.	Gene	sets	are	ordered	by	

#	 Gene	Sets	
Size	of	

Gene	Set	

Enrichment	

Score	

Normalized	

Enrichment	

Score	

Nominal	p-

value	

1	
WNT/BETA	CATENIN	

SIGNALLING	
38	 0.58	

1.32	
0.043	

2	 HEDGEHOG	SIGNALLING	 30	 0.59	 1.25	 0.075	

3	 ANGIOGENESIS	 32	 0.69	 1.22	 0.239	

4	
EPITHELIAL	MESENCHYMAL	

TRANSITION	
185	 0.66	

1.21	
0.175	

5	 UV	RESPONSE	DN	 129	 0.53	 1.19	 0.000	

6	 MITOTIC	SPINDLE	 180	 0.36	 1.16	 0.187	

7	 MYOGENESIS	 167	 0.34	 1.12	 0.208	

8	 APOPTOSIS	 149	 0.40	 1.10	 0.245	

9	 KRAS	SIGNALLING	 179	 0.47	 1.08	 0.212	

10	 COAGULATION	 105	 0.47	 1.07	 0.335	

11	 NOTCH	SIGNALLING	 32	 0.33	 1.06	 0.390	

12	 ANDROGEN	RESPONSE	 97	 0.31	 1.05	 0.250	

13	 SPERMATOGENESIS	 82	 0.28	 1.04	 0.416	

14	 DNA	REPAIR	 146	 0.23	 1.00	 0.244	

15	 APICAL	JUNCTION	 177	 0.36	 0.96	 0.471	

16	 TNFA	SIGNALLING	 189	 0.44	 0.96	 0.506	

17	 PANCREAS	BETA	CELLS	 19	 0.40	 0.92	 0.535	

18	 APICAL	SURFACE	 35	 0.32	 0.92	 0.627	

19	 PROTEIN	SECRETION	 92	 0.25	 0.91	 0.605	

20	 IL2/STAT5	SIGNALLING	 180	 0.37	 0.89	 0.697	
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normalized	enrichment	score	(NES),	which	accounts	for	the	differences	in	gene	set	size	

and	in	correlations	between	gene	sets	and	the	expression	data	set.	

	

	

	

	

	

	

	

	

C D 
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Figure	3.5:	Pathway	enrichment	observed	in	BCC	compared	to	SCC.	

Gene	 Set	 Enrichment	 Analysis	 reveals	 enrichment	 of	 (A)	 Hh	 signalling,	 (B)	 EMT,	 (C)	

Angiogenesis,	 and	 (D)	WNT/β-Catenin	 signalling.	 On	 the	 x-axis,	 the	 human	 genes	 are	

ranked	 from	 the	 most	 upregulated	 (left	 end)	 to	 the	 most	 downregulated	 (right	 end)	

between	BCC	and	normal	skin.	The	‘barcode’	indicates	the	position	of	the	genes	from	the	

biological	 gene	 set	 within	 that	 particular	 pathway.	 The	 y-axis	 shows	 a	 running	

enrichment	 score	 (ES),	 which	 increases	 when	 genes	 are	 encountered	 within	 that	

particular	 pathway,	 leading	 to	 an	 assessment	 of	 the	 gene	 distribution	within	 a	 set	 of	

genes.	Black	circles	show	the	enrichment	score.	Black	star	symbols	showing	the	leading	

edge	subset,	which	represents	the	subset	of	gene	members	within	that	gene	set	which	

contributed	to	the	ES.	

	

3.2.5	 Identification	of	a	TGFβ	responsive	gene	set	panel	
	

We	 sought	 to	 define	 a	 panel	 of	 TGFβ	 signal	 responsive	 genes	 that	 could	 be	 used	 to	

define	 TGFβ	 signalling.	 Numerous	 laboratories	 have	 performed	 and	 published	

microarray	 analysis	 on	 a	 variety	 of	 different	 epithelial	 cell	 lines	 comparing	 TGFβ1	

treated	and	untreated	gene	sets	(Ranganathan	et	al.,	2007;	Xie	et	al.,	2003,	Moustakas	

et	al.,	2002;	Zavadil	et	al.,	2001).	These	studies	sought	to	determine	genes	regulated	by	

TGFβ	signalling	in	a	wide	range	of	cell	lines;	including	lung	(A549	cells;	Ranganathan	et	

al.,	 2007),	HNSCC	 (Xie	et	 al.,	 2003),	 and	 skin	 (HaCaT;	 Zavadil	et	 al.,	 2001)	 for	 defined	

periods	of	time	(range	from	30	min	to	4	hours).	We	identified	a	panel	of	27	candidate	

TGFβ	 regulated	 genes	 from	 these	 reported	 microarray	 studies.	 To	 generate	 a	

comprehensive	panel	of	genes	relevant	for	our	studies,	we	treated	the	HaCaT	cell	 line	

with	 TGFβ1	 ligand,	 as	 reported	 previously	 and	 interrogated	 our	 panel	 of	 genes.	 As	

expected,	 all	 the	 genes	 demonstrated	 TGFβ	 responsive	 changes	 (Figure	 3.6)	 when	

compared	 to	 untreated	 controls,	 which	 is	 consistent	 with	 what	 was	 observed	 in	 the	

literature.	

	

To	define	whether	the	27	TGFβ	responsive	genes	showed	similar	expression	in	BCC,	we	

next	 ran	 the	27	genes	against	primary	BCC	 tissue	 (n=5)	and	compared	 to	normal	 skin	
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(Figure	3.7).	Of	the	27	genes	within	the	panel,	19	were	found	to	have	expression	that	

was	concordant	with	what	was	observed	in	the	TGFβ1	treated	HaCaT	cells.	Of	these	19	

genes,	a	panel	of	9	were	found	to	be	either	highly	up	or	down	regulated	in	concordance	

with	 the	HaCaT	TGFβ1	 treated	cell	 line	data	 (Figure	3.6).	This	 smaller	 subset	of	genes	

was	selected	as	a	refined	panel	of	TGFβ-responsive	genes	and	was	used	to	define	TGFβ	

response	 in	 BCC	 and	 the	Hh	driven	 tumour	 cell	 lines	 (chapter	 5).	 Furthermore,	when	

performing	a	chi-square	test,	there	was	no	significant	difference	in	the	expression	of	the	

TGFβ	gene	panel	between	the	TGFβ1	treated	HaCaT	cell	line	and	the	primary	BCC	tissue	

(p>0.05),	thereby	confirming	that	this	panel	of	TGFβ	regulated	genes	is	relevant	in	BCC.	

Therefore	 we	 have	 identified	 a	 refined	 panel	 of	 genes	 that	 are	 highly	 regulated	 and	

responsive	in	BCC.	

	

	

Figure	3.6:	Defining	a	TGFβ	responsive	gene	panel	

HaCaT	cells	were	cultured	on	glass	coverslips	treated	for	1hr	with	20	ng/mL	TGFβ1	and	

then	assayed	for	expression	of	27	TGFβ-responsive	genes	in	comparison	to	an	untreated	

control.	 Fold	 change	 in	 gene	 expression	 was	 compared	 to	 untreated	 HaCaT	 cells.	

Experiment	was	 performed	 in	 duplicate	 (n=2),	 with	 each	 experiment	 containing	 three	
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internal	technical	replicates	for	each	gene,	along	with	two	endogenous	controls	(β-Actin,	

and	GAPDH).	Blue	bars	indicate	genes	that	were	upregulated	in	response	to	TGFβ1.	Red	

bars	indicate	genes	that	were	downregulated	in	response	to	TGFβ1.	Error	bars	represent	

SE	of	the	mean.	

	

	

	

	

	

Figure	3.7:	TGFβ	responsive	gene	panel	in	primary	human	BCC		

RNA	was	extracted	from	primary	human	BCC	tissue	(n=5)	and	subsequently	assayed	for	

the	 expression	 of	 a	 TGFβ-responsive	 gene	 set.	 Fold	 change	 in	 gene	 expression	 was	

compared	 to	 normal	 skin	 control	 (n=3).	 Each	 experiment	 contained	 three	 internal	

technical	 replicates	 for	 each	 gene,	 along	with	 two	 endogenous	 controls	 (β-Actin,	 and	

GAPDH).	Blue	bars	indicate	genes	that	were	upregultaed	in	HaCaT	cells	following	TGFβ1	

treatment	(Figure	3.6).	Red	bars	indicate	genes	that	were	downregulated	in	HaCaT	cells	

following	TGFβ1	treatment	(Figure	3.6).	Error	bars	represent	SE	of	the	mean.	
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3.2.6	 Determination	of	TGFβ	signalling	in	basal	cell	carcinoma		
	

TGFβ1	 induced	 pathway	 activation	 uses	 the	 nuclear	 accumulation	 of	 phosphorylated	

forms	 of	 the	 TFs	 SMAD2	 and	 3	 to	 drive	 gene	 transcription.	 I	 therefore	 used	 a	

phosphorylated	 SMAD3	 (pSMAD3)	 specific	 antibody	 to	 detect	 TGFβ	 signalling	 in	 BCC.	

BCC	 samples	 were	 collected	 and	 processed	 within	 4	 hours	 of	 surgery.	 As	 a	 positive	

control,	HaCaT	cells	were	grown	on	glass	coverslips	and	treated	with	TGFβ1	for	30	min	

at	a	concentration	of	20	ng/mL.	As	expected,	TGFβ	treatment	led	to	increased	pSMAD3	

nuclear	 accumulation	 (n=3;	 Figure	 3.8).	 Therefore,	 activation	 of	 the	 TGFβ	 signalling	

pathway	by	TGFβ1	could	be	detected	by	immunofluorescence	using	pSMAD3	antibody	

labelling.	

	

As	 BCC	 are	 derived	 from	 the	HF,	we	 also	 used	HF	 tissue	 as	 a	 positive	 control	 during	

telogen,	as	TGFβ	signalling	is	active	in	the	HF	bulge	SCs	(Cammareri	et	al.,	2016).	In	the	

HF,	nuclear	pSMAD3	labelling	was	evident	within	the	scalp	HF	bulge	keratinocytes	only	

(n=5	samples,	Figure	3.9),	and	was	not	uniformly	expressed	by	all	cells,	which	suggests	

that	it	is	limited	to	a	specific	cell	population.	Nuclear	pSMAD3	labelling	was	not	evident	

within	 the	 interfollicular	 epidermal	 keratinocytes	 (Figure	 3.9).	 Consistent	 with	

mesenchymal	dermal	papilla	signalling	to	the	HF	bulge,	TGFβ	signalling	was	restricted	to	

the	hair	follicle	bulge	keratinocytes	within	normal	skin.	
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Figure	3.8.	pSMAD3	expression	and	localisation	in	TGFβ1treated	HaCaT	cells		

Positive	control	experiment	was	performed	by	culturing	HaCaT	cells	onto	glass	coverslips	

and	 treating	 with	 20	 ηg/mL	 TGFβ1	 ligand	 for	 30	 min,	 before	 performing	

immunofluorescence	 to	 detect	 the	 presence	 of	 nuclear	 pSMAD3,	 DAPI,	 and	 K14.	 (A)	

Untreated	HaCaT	cells,	(B)	TGFβ1	treated	HaCaT	cells.	Scale	bars	represent	100	μM	for	

all.	(n=3)	

			

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	3.9.	pSMAD3	labelling	of	human	hair	follicles	

Primary	human	non-lesional	telogen	scalp	hair	was	frozen	with	embedding	medium	and	

sectioned	 before	 performing	 immunofluorescent	 staining	 for	 pSMAD3,	 K14,	 and	DAPI.	

All	 three	stains	were	merged.	Fluorescent	microscopy	revealed	the	presence	of	nuclear	

pSMAD3	 (green)	 within	 the	 bulge	 region	 (B)	 of	 the	 hair	 follicle,	 but	 not	 within	 the	

interfollicular	epidermis	(IF).	Scale	bars	represent	100	μM.	(n=5)	

	

K14 pSMAD3 

DAPI Merge 

B	
IF	
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Next,	14	BCC	 tumour	 sample	 sections	were	 labelled	with	pSMAD3,	 together	with	K14	

and	DAPI.	All	BCC	tissue	had	been	collected	and	frozen	with	embedding	medium.	All	14	

independently	 collected	 BCC	 samples	 immunolabelled	 with	 pSMAD3	 antibody	

demonstrated	nuclear	expression,	using	keratin	14	co-labelling	to	 identify	BCC	tumour	

cell	nodules	within	the	tissue	sections.	However,	nuclear	pSMAD3	and	therefore	active	

TGFβ	 signalling	 was	 not	 uniform	 throughout	 the	 tumour	 nodules,	 instead	 expression	

was	 preferentially	 localised	 towards	 the	 tumour	 periphery	 (Figure	 3.10A).	 When	

enumerated,	 74.09±2.30%	 (n=14)	 of	 all	 nuclear	 pSMAD3	 positive	 cells	 within	 K14	

positive	BCC	 tumour	nodules	were	 located	within	 the	basal	 layer	 and	 immediate	 two	

suprabasal	 cell	 layers	 (Figure	 3.10B).	 Furthermore,	when	 enumerating	 all	 of	 the	DAPI	

positive	cells	at	 the	 tumour	nodule	periphery,	31.77%±1.86%	(n=14)	were	positive	 for	

pSMAD3	 staining	 (Figure	 3.10C).	 Thus	 similar	 to	 the	 HF	 bulge	 keratinocytes,	 BCC	

pSMAD3	 labelling	 was	 restricted	 to	 a	 sub-population	 of	 keratinocytes	 at	 the	 tumour	

periphery.		
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Figure	3.10:	pSMAD3	labelling	of	human	BCC	tumour	tissues	

Primary	 human	 BCC	 tissue	was	 frozen	with	 embedding	medium	 and	 sectioned	 before	

performing	 immunofluorescent	 staining	 for	 pSMAD3,	 K14,	 and	 DAPI	 (A)	

Immunofluorescent	microscopy	 of	 human	BCC	 tissue	 revealed	 the	 presence	 of	 nuclear	

pSMAD3	 (green)	within	 the	 BCC	 tumour	 nodules	 (N)	marked	with	 keratin14	 (red)	 and	

predominantly	 around	 the	 periphery,	 with	 very	 little	 staining	 in	 the	 stroma	 (S).	 Scale	
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bars	 represent	200	uM	 (B)	 Box	and	whisker	plot	 showing	 the	percentage	of	pSMAD3-

positive	cells	found	at	the	tumour	nodule	periphery	when	compared	to	the	total	number	

of	DAPI	positive	nuclei	at	the	tumour	nodule	periphery	over	14	independent	BCC	samples	

(n=14)	 (C)	 Box	and	whisker	plot	 showing	 the	%	of	pSMAD3-positive	 cells	 found	at	 the	

tumour	 nodule	 periphery	when	 compared	 to	 the	 total	 number	 of	 DAPI-positive	 nuclei	

over	14	independent	BCC	samples	(n=14).	For	each	BCC	sample	the	number	of	positive	

cells	 enumerated	 was	 based	 on	 the	 number	 of	 tumour	 nodules	 present	 within	 that	

sample;	 however	 over	 the	 14	 BCC	 samples,	 an	 average	 of	 five	 tumour	 nodules	 were	

enumerated	per	sample.							
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3.2.7	 TGFβ	Signalling	was	not	associated	with	proliferation		
	

TGFβ	signalling	in	the	human	HF	is	associated	with	anagen,	thus	proliferation	and	egress	

of	 HF	 bulge	 keratinocytes	 (Oshimori	 et	 al.,	 2012).	 I	 next	 hypothesised	 that	 the	 TGFβ	

signalling	 in	 BCC	may	 be	 similarly	 responsible	 for	 BCC	 keratinocyte	 proliferation	 and	

migration/invasion.	 Our	 group	 has	 previously	 shown	 that	 proliferation,	 invasion	 and	

BCC	 CSCs	 are	 all	 present	 at	 the	 tumour	 periphery	 (Colmont	 et	 al.,	 2013),	 similar	 to	

where	nuclear	pSMAD3	positive	keratinocytes	were	visualised.	While	the	centre	of	BCC	

nodules	 undergoes	 terminal	 differentiation	 akin	 to	 the	 terminal	 differentiation	

consistent	with	telogen	HF	growth	(Morgan	et	al.,	2018,	manuscript	submitted).		

	

We	sought	to	determine	the	frequency	of	BCC	pSMAD3	positive	keratinocytes	that	were	

proliferating	 by	 immunofluorescence	 co-labelling	 with	 an	 s-phase	 marker	 of	

proliferation,	MCM7.	For	each	section	of	 tissue	 (n=14;	Figure	3.11),	 I	enumerated	 the	

number	of	pSMAD3	positive	only	cells,	MCM7	positive	only	cells,	and	pSMAD3/MCM7	

double	 positive	 cells	 (yellow).	 Of	 the	 tumour	 keratinocytes	 with	 nuclear	 pSMAD3	

positivity,	only	17.49%±	4.63%	were	positive	for	MCM7	(Figure	3.11C).	Similarly,	of	all	of	

the	MCM7	positive	cells,	nuclear	pSMAD3	was	evident	in	10.92%±	2.50%	(Figure	3.11C).	

Finally,	of	all	the	cells	present	within	a	tumour	nodule,	13.98%±2.18%	were	found	to	be	

proliferating	 (Figure	 3.11C).	 This	 is	 in	 line	 with	 normal	 physiological	 effects,	 and	

therefore	 TGFβ	 signalling	 in	 BCC	 is	 not	 associated	 with	 proliferation	 of	 BCC	

keratinocytes.		
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Figure	3.11:	pSMAD3	and	MCM7	labelling	of	BCC		

Whole	 primary	 human	 BCC	 tissue	was	 frozen	with	 embedding	medium	 and	 sectioned	

before	performing	immunofluorescent	staining	for	pSMAD3,	MCM7,	K14,	and	DAPI.	 (A)	

Fluorescent	microscopy	of	human	BCC	tissue	(n=14)	shows	that	very	little	co-localisation	

Merge 

B C 

pSMAD3 

MCM7 K14 

Merge 

A 

0

10

20

30

40

50

Pe
rc

en
ta

ge
 (%

)

% of all proliferating cells 
found to be active 
for TGFβ signalling 

% of all TGFβ positive cells 
found to be active 

for proliferating 

% of proliferating cells 
found in an average 

tumour nodule



	 	 Chapter	3	

	
	

177	

(yellow)	is	observed	between	pSMAD3	(Green)	and	the	cell	cycle	marker,	MCM-7	(Red).	

(B)	40x	magnification	of	 (A).	 (C)	Box	and	Whisker	plot	enumerating	 the	percentage	of	

TGFB	pathway	active	cells	shown	to	be	proliferating	(left	box	plot),	and	the	percentage	

of	 proliferating	 cells	 shown	 to	 be	 active	 for	 TGFB	 signalling	 (right	 box	 plot)	 in	 14	

independent	BCC	samples.	For	each	BCC	sample	the	number	of	positive	cells	enumerated	

was	based	on	the	number	of	tumour	nodules	present	within	that	sample;	however	over	

the	14	BCC	samples,	an	average	of	 five	tumour	nodules	were	enumerated	per	sample.						

Scale	bar	=	200	uM.	

	

	

3.2.8	 Analysis	of	EMT	related	gene	expression	in	whole	BCC	tissue		
	
We	next	hypothesized	that	TGFβ	signalling	may	be	involved	in	BCC	tumour	cell	invasion	

into	 the	stroma,	consistent	with	our	microarray	 findings.	To	confirm	this	we	used	 the	

EMT	core	gene	signature	to	define	EMT	within	whole	BCC	(n=5)	and	normal	skin	(n=5)	

(Figure	3.12).	 In	 the	5	 individual	BCC	samples	 studied,	 consistent	with	TGFβ	signalling	

induced	EMT,	 there	was	concordant	downregulation	of	E-Cadherin	 (CDH1)	 in	4/5	BCC	

samples	tested,	along	with	the	upregulation	of	Runx1	(4	of	5	BCC),	Runx2	(4	of	5	BCC),	

Slug	 (all	5	BCC),	Snail	 (2	of	5	BCC),	Twist1	 (all	5	BCC)	and	vimentin	 (3	of	5	BCC)	when	

compared	to	normal	skin.	However,	there	was	discordant	regulation	of	CDH2	and	Zeb1,	

which	 showed	downregulation	 rather	 than	upregulation	 in	 4	of	 5	 and	3	of	 5	 samples	

respectively.	However	when	all	5	BCC	samples	were	averaged	together	all	of	the	genes	

described	were	not	statistically	significant	in	comparison	to	the	control	tissue,	which	is	

suggestive	 of	 the	 pattern	 of	 TGFβ	 regulated	 EMT	 genes	 being	 unique	 between	 BCC	

tumours.	 With	 the	 exceptions	 of	 CDH2	 and	 Zeb1,	 these	 findings	 suggest	 that	 BCC	

demonstrate	TGFβ	dependent	EMT.	
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Figure	3.12:		Expression	of	TGFβ	regulated	EMT	genes	in	BCC	tissue	

RNA	 was	 extracted	 from	 whole	 primary	 human	 BCC	 tissue	 (n=5)	 and	 subsequently	

assayed	 for	 the	 expression	 of	 a	 panel	 of	 9	 TGFβ-associated	 EMT	 genes	 in	 order	 to	

identify	an	EMT	profile	within	whole	BCC	tissue.	Five	individual	BCC	samples:	(A)	BCC1,	
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(B)	BCC2,	(C)	BCC3,	(D)	BCC4,	and	(E)	BCC5	were	analysed	by	qPCR	for	the	expression	of	

these	 EMT	 genes	 in	 comparison	 to	 normal	 skin	 (n=5).	 (F)	 Represents	 the	 average	

expression	over	the	5	 independent	BCC	samples	relative	to	5	normal	skin	samples.	Red	

bars	indicate	genes	that	are	expected	to	be	downregulated	in	EMT,	while	the	blue	bars	

indicate	genes	that	are	expected	to	be	upregulated	in	EMT.	Dotted	lines	represent	2-fold	

changes	 in	 gene	 expression.	 Each	 experiment	 contained	 three	 internal	 technical	

replicates	for	each	gene,	along	with	two	endogenous	controls	(β-Actin,	and	GAPDH).	

	

3.2.9	 Expression	of	TGFβ 	pathway	in	BCC		
	

To	 support	 our	 findings,	 qPCR	 was	 performed	 using	 the	 TGFβ/BMP	 signalling	 RT(2)	

Profiler	PCR	Array	(Qiagen,	UK)	containing	primers	for	84	genes	related	to	TGFβ/BMP-

mediated	signal	 transduction.	This	array	allowed	the	expression	of	a	 focused	panel	of	

genes	 related	 to	 TGFβ/BMP	 signalling	 to	 be	 analysed,	 from	 members	 of	 the	 TGFβ	

superfamily	of	 cytokines	 (Figure	3.13A)	 and	 their	 receptors	 (Figure	3.13B),	 along	with	

SMAD	(Figure	3.13C),	and	SMAD	target	genes	(Figure	3.13D).	Gene	expression	profiles	

shown	 in	 Figure	 3.13	 A-D	were	 categorised	 by	 Qiagen	 using	 their	 online	 software	 to	

process	the	qPCR	results.	The	ligands	responsible	for	driving	the	canonical	Activin/TGFβ	

signalling	side	of	the	pathway,	notably	TGFβ1,	2,	and	3,	were	all	elevated	by	two-fold	or	

more,	 with	 TGFβ1	 and	 3	 found	 to	 be	 statistically	 significant	 (p<0.05;	 and	 p<0.01,	

respectively).	 In	 contrast,	 the	 ligands	 responsible	 for	driving	 signalling	down	 the	BMP	

side	of	the	pathway	were	mostly	down	regulated	(Figure	3.13A).	All	receptors	involved	

in	both	sides	of	the	pathway	were	up	regulated,	most	by	two-fold	or	greater,	with	the	

exception	 of	 the	 negative	 regulator	 of	 canonical	 Activin/TGFβ	 signalling,	 TGFBRIII,	

whose	expression	was	over	three-fold	lower	than	that	of	the	control	(Figure	3.13B).	In	a	

similar	manner	 to	 the	microarray	 data,	 the	 expression	 of	 SMAD	 transcription	 factors	

was	increased,	in	particular	SMAD2	(p<0.05),	3,	and	4,	whose	expression	was	found	to	

be	1.5-fold	or	greater	in	both	the	microarray	and	qPCR	data	sets	(Figure	3.13C).	Nearly	

70%	(18/26)	of	the	Activin/TGFβ-responsive	genes	were	up	regulated,	while	the	inverse	

was	 observed	 for	 the	 BMP-responsive	 genes	 where	 4/7	 genes	 were	 found	 to	 be	

downregulated	(Figure	3.13D).	Therefore	the	expression	levels	obtained	from	the	qPCR	

array	 mirrored	 the	 microarray	 results	 to	 a	 high	 degree,	 confirming	 canonical	 TGFβ	
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signalling	pathway	activation	in	BCC,	with	prominent	increased	expression	observed	in	

the	ligands,	receptors,	transcription	factors,	and	genes	regulated	downstream.		
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Figure	3.13:	Expression	of	TGFβ 	pathway	ligands	and	receptors	in	BCC.		

A	qPCR	array	 (Qiagen,	UK)	was	performed	on	whole	BCC	RNA	 (n=5)	 in	 comparison	 to	

normal	 skin	 (n=3)	 to	 evaluate	 the	 expression	 of	 84	 genes	 related	 to	 the	 TGFβ/BMP-

signalling	 pathways.	 Gene	 expression	 values	 and	 profiles	 (A-D)	 were	 generated	 by	

Qiagen	using	their	online	software.	(A)	TGFβ	superfamily	of	cytokines,	(B)	Receptors,	(C)	

Transcription	factors,	and	(D)	SMAD	target	genes.	Dotted	lines	represent	2-fold	changes	

in	 gene	 expression.	 Two	 endogenous	 controls	 were	 used	 for	 each	 sample	 studied	 (β-

Actin,	and	GAPDH).	
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3.3	 Discussion	
	

In	this	chapter	we	performed	microarray	analysis	on	primary	human	BCC,	SCC	and	

normal	skin	samples	to	assess	the	relevance	of	TGFβ	signalling	in	BCC.	When	taking	a	

whole	genome	approach	comparing	BCC	to	normal	skin,	a	number	of	studies	have	

performed	microarray	analysis	in	an	attempt	to	enhance	our	understanding	of	the	

genetic	and	molecular	basis	of	BCC	(Heller	et	al.,	2013;	Pellegrini	et	al.,	2017;	Jayaraman	

et	al.,	2014;	Bonilla	et	al.,	2016).	When	studying	the	most	highly	significant	genes	within	

BCC	tissue	compared	to	normal	skin,	a	large	number	of	collagens	and	matrix	

remodelling	enzymes	were	found	to	be	highly	upregulated.	This	observation	is	

consistent	with	the	pathogenesis	of	sporadic	BCC	as	exposure	to	UV	is	the	most	

important	risk	factor,	and	many	of	the	collagens	and	MMPs	are	upregulated	following	

exposure	to	UV	light	(Pittayapruek	et	al.,	2016).	Furthermore,	BCC	has	a	high	propensity	

to	be	locally	invasive	and	destructive,	therefore	the	remodelling	and	degradation	of	the	

ECM	is	a	hallmark	of	both	BCC	and	SCC	development.	Since	BCC	has	the	highest	

mutation	rate	of	any	cancer	(closely	followed	by	SCC)	(Jayaraman	et	al.,	2014;	Bonilla	et	

al.,	2016),	there	was	no	surprise	that	in	comparison	to	normal	skin,	BCC	was	found	to	

have	1,664	significant	differentially	expressed	genes	(p<0.05).	As	there	were	so	many	

differentially	expressed	genes	found	to	be	significant,	we	began	expression	profiling	in	

order	to	extrapolate	pathways	and	processes	relevant	in	BCC.	To	do	this,	functional	

pathway	analysis	using	DAVID	and	GSEA	was	performed,	and	several	

pathways/processes	were	found	to	be	significantly	over-represented	in	BCC	compared	

to	normal	skin,	including:	i)	EMT,	ii)	TGFβ	signalling,	iii)	KRAS	signalling,	iv)	WNT	

signalling,	v)	Hh	signalling,	and	vi)	MYC	target	genes.	As	alluded	to	earlier,	the	significant	

enrichment	of	EMT	observed	in	BCC	is	to	be	expected	due	to	the	upregulation	of	

collagens	and	proteins	involved	in	ECM	maintenance	and	remodelling.	TGFβ	signalling	

was	found	to	be	the	most	significantly	over-represented	signalling	pathway	in	BCC	when	

compared	to	normal	skin.	This	finding	is	in	concordance	with	a	study	by	Heller	et	al.	

(2013)	who	compared	human	BCC	tissue	against	site-matched	normal	skin	control	

samples	and	found	several	pathways	to	be	significantly	overrepresented	in	BCC,	

including	TGFβ	signalling	along	with	the	previously	well	established	roles	of	SHh	and	

p53	(Heller	et	al.,	2013).	The	enrichment	of	the	KRAS	signalling	pathway	has	also	been	
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identified	in	other	studies	as	being	implicated	in	the	pathogenesis	of	BCC	(van	der	

Schroeff	et	al.,	1990;	Pierceall	et	al.,	1991;	Bonilla	et	al.,	2016).	Interestingly	‘MYC	

target’	genes,	were	also	enriched	in	BCC	tissue,	which	is	consistent	with	a	recent	study	

by	Bonilla	et	al.	(2016),	who	performed	genetic	profiling	of	293	BCC	samples	in	

comparison	to	normal	skin	and	found	that	85%	of	BCCs	harbor	additional	driver	

mutations	in	other	cancer-related	genes,	including	recurrent	mutations	in	MYC	(30%)	

along	with	the	upregulation	of	MYC	target	genes	following	GSEA	(Bonilla	et	al.,	2016).	

Furthermore,	although	beyond	the	scope	of	their	paper,	Bonilla	et	al.	(2016)	identified	

10	pathways/processes	that	were	significantly	over-represented	in	BCC	tissue	when	

compared	to	normal	skin,	with	one	of	them	being	the	TGFβ	signalling	pathway	(Bonilla	

et	al.,	2016).	A	limitation	of	our	microarray	study	however	is	the	small	sample	size,	with	

only	four	BCCs,	three	SCCs,	and	three	normal	skin	samples	processed,	which	can	lead	to	

poor	random	error	estimates	and	inaccurate	statistical	tests	of	differential	gene	

expression.	Another	limitation	of	using	low	BCC	sample	numbers	is	the	inability	to	

compare	gene	expression	profiles/pathway	enrichment	profiles	between	histological	

subtypes	of	BCC,	which	would	be	possible	if	the	sample	size	was	larger.	Comparing	

histological	subtypes	could	potentially	be	of	interest	as	some	subsets	of	BCC	have	been	

associated	with	higher	risks	of	recurrence	than	others,	and	therefore	identifying	what	

pathways	predominate	in	these	subtypes	in	comparison	to	others	is	important.	

However,	in	spite	of	this,	the	pathways	that	were	found	to	be	significantly	over-

represented	in	our	study	using	GSEA	were	similar	to	that	observed	in	a	number	of	

studies,	including	the	study	by	Bonilla	et	al.	(2016),	who	used	a	much	larger	sample	size.	

Another	potential	factor	that	needs	to	be	considered	is	the	control	samples	used	for	the	

experiment.	In	this	instance	we	used	normal	skin	samples,	which	is	in	accordance	with	

the	vast	majority	of	studies.	However,	evaluating	the	roles	of	SCs	within	BCC/Hh	driven	

tumours	is	within	the	scope	of	this	project,	and	there	is	significant	evidence	both	by	

studies	from	our	lab	(Colmont	et	al.,	2013),	and	others	(Youssef	et	al.,	2010;	Wang	et	

al.,	2011),	to	suggest	that	BCC	has	a	follicular	SC	origin.	Therefore,	using	follicular	SCs	

may	serve	as	a	more	accurate	control	sample	for	comparing	gene	expression	profiles	in	

microarray	studies.	One	important	consideration	is	the	fact	that	the	HF	contains	several	

distinct	SC	populations,	therefore	for	the	purposes	of	our	research,	the	CD200+	bulge	

stem	cell	population	could	be	used	a	control,	since	previously	published	papers	from	
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our	lab	indicate	BCC	may	be	derived	from	this	population	(Colmont	et	al.,	2013;	

Colmont	et	al.,	2014).		

	

Our	microarray	results	highlight	that,	although	the	most	significant	pathogenic	event	in	

BCC	is	the	constitutive	activation	of	the	Hh	signalling	cascade,	BCC	has	a	much	more	

complex	genetic	network	of	cancer-related	genes.	Numerous	studies	have	shown	that	

GLI	activity	can	be	positively	regulated	by	a	number	of	pathways	including	TGFβ,	KRAS,	

PI3K-AKT,	and	PKC	(Seto	et	al.,	2009;	Rajurkar	et	al.,	2012;	Ramaswamy	et	al.,	2012;	

Deng	et	al.,	2015),	and	therefore	are	involved	in	BCC	tumour	progression.	In	particular,	

crosstalk	between	TGFβ	and	Hh	signalling	pathways	is	well	established,	with	TGFβ	

signalling	shown	to	induce	Hh	expression,	which	in	turn	activates	GLI1	and	GLI1-

dependent	EMT	in	non-small	cell	lung	cancer	cells	(Maitah	et	al.,	2011).	Furthermore,	

SMAD	TFs	have	been	shown	to	interact	with	the	GLI	TFs,	where	in	several	cell	types,	

TGFβ/SMAD3	has	been	demonstrated	to	directly	induce	the	transcription	of	GLI2,	which	

in	turn	upregulates	GLI1	(Dennler	et	al.,	2007).	Therefore,	our	microarray	data	supports	

the	role	of	TGFβ	signalling	in	Hh-driven	BCC.	Given	the	fact	that	TGFβ	signalling	

enrichment	has	also	been	observed	in	other	BCC	studies	(Bonilla	et	al.,	2016;	Heller	et	

al.,	2013),	and	that	the	crosstalk	between	Hh	and	TGFβ	signalling	pathways	is	very	well	

established	(particularly	in	BCC)	(Dennler	et	al.,	2007;	Javelaud	et	al.,	2012),	we	then	

explored	the	role	of	TGFβ	signalling	in	BCC	further	using	immunofluorescence	and	

qPCR.	

	

We	confirmed	TGFβ	signalling	by	labelling	BCC	samples	with	the	TGFβ	associated	

transcription	factor	pSMAD3,	using	nuclear	localisation	of	the	pSMAD3	protein	as	

evidence	of	active	TGFβ	signalling.	The	pSMAD3	antibody	was	optimized	by	treating	the	

human	keratinocyte	cell	line,	HaCaT,	with	and	without	TGFβ1	at	a	concentration	of	20	

ηg/mL	for	1hr	before	performing	immunofluorescence.	Nuclear	pSMAD3	levels	were	

shown	to	increase	in	the	HaCaT	cell	line	following	treatment;	however,	an	important	

point	to	note	is	that	the	experiment	performed	in	Figure	3.8	lacked	a	true	negative	

control,	in	that	the	cells	were	not	treated	with	a	receptor	kinase	inhibitor	such	as	

SB431542	and	therefore	pSMAD3	staining	was	not	shown	to	be	truly	negative.	

Nevertheless,	in	BCC,	74%	of	all	nuclear	pSMAD3	positive	cells	within	K14	positive	BCC	
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tumour	nodules	were	located	within	the	basal	layer	and	immediate	two	suprabasal	cell	

layers.	Furthermore,	when	enumerating	all	of	the	DAPI	positive	cells	at	the	tumour	

nodule	periphery,	31%	were	positive	for	pSMAD3	staining.	This	is	important	since	it	is	

where	proliferation	and	invasion	occur	and	is	where	our	lab	previously	identified	the	

CSC	population	in	BCC	using	immunofluorescence.	The	presence	of	cells	active	for	TGFβ	

signalling	at	the	invasive	tumour	edge	has	been	observed	in	SCC	(Oshimori	et	al.,	2015).	

In	this	study,	Oshimoriet	al.	(2015)	observed	intense	pSMAD2	staining	in	a	subset	of	

basal	tumour	cells	at	the	invasive	tumour	front,	which	were	identified	as	being	slow	

cycling	SCs	responsible	for	fueling	tumour	heterogeneity	and	drug	resistance	

(Oshimoriet	al.,	2015).	A	previous	study	by	the	same	group	used	CD34	to	identify	in	SCC,	

two	highly	tumourigenic	CSC	populations	that	were	enriched	for	integrins.	These	

populations	co-existed	together	at	the	tumour-stroma	interface	and	were	reliant	on	

TGFβ/focal	adhesion	kinase	signaling	for	their	growth	(Schober	and	Fuchs,	2011).	Other	

cancer	types	have	also	demonstrated	the	presence	of	CSC	at	the	invasive	tumour	edge,	

including	a	study	by	Ye	et	al.	(2012)	on	glioma	who	demonstrated	the	presence	of	

CD133+	glioma	stem-like	cells	at	the	invasive	front	which	became	more	invasive	

following	treatment	with	TGFβ1	(Ye	et	al.,	2012).	Finally,	a	study	by	Stankic	et	al.	(2013)	

demonstrated	in	breast	cancer	that	the	expression	of	ID1	(a	gene	responsible	for	breast	

cancer	colonization)	was	regulated	by	TGFβ	signalling	in	mesenchymal-like	breast	

cancer	cells	at	the	invasive	edge	(Stankicet	al.,	2013).	BCC	CSC	population	is	studied	in	

more	detail	in	chapter	4.		

	

Another	important	consideration	for	future	work	is	assessing	the	role	of	pSMAD2	rather	

than	solely	pSMAD3.	SMAD2	and	3	are	mostly	considered	to	be	equally	important	in	

mediating	TGFβ	signals	and	are	functionally	interchangeable	(Souchelnytskyi		et	al.,	

1997;	Brown	et	al.,	2007;	Massague	et	al.,	2005;	Liu	et	al.,	2004),	which	as	a	

consequence	means	the	vast	majority	of	studies	use	either	pSMAD2	or	3	as	an	output	

for	active	TGFβ	signalling.	However,	it	is	important	to	note	that	their	roles	are	context	

dependent,	and	at	the	biochemical	level,	several	lines	of	evidence	have	demonstrated	

obvious	differences	between	SMAD2	and	3,	including	the	observation	that	in	a	basal	

state,	SMAD2	is	found	as	a	monomer,	whereas	SMAD3	exists	in	oligomeric	states	

(Jayaraman	and	Massague,	2000).	Other	differences	include	the	fact	that	SMAD3	can	
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bind	DNA	through	its	β-hairpin	DNA-interaction	motif	within	the	MHI	region,	whereas	

SMAD2	cannot	(Shi	et	al.,	1998;	Dennler	et	al.,	1999;	Yagi	et	al.,	1999);	and	that	

SMAD2/4	or	SMAD3/4	oligomers	enter	the	nucleus	with	assistance	from	different	

proteins,	where	SMAD3/4	can	enter	through	importin-β1	and	a	Ran	dependent	

mechanism,	whereas	the	SMAD2/4	oligomer	cannot	(Xiao	et	al.,	2000;	Kurisaki	et	al.,	

2001).	Finally,	a	recent	study	by	Liu	et	al.	(2016)	found	that	SMAD2	and	3	had	

differential	sensitivity	in	transducing	TGFβ	signalling	and	have	functionally	distinct	roles	

in	regulating	early	developmental	events	(Liu	et	al.,	2016).		

	

As	the	BCC	tumour	periphery	contains	both	dividing	and	invading	cells,	whereas	the	

inner	cell	mass	is	associated	with	differentiation,	we	next	sought	to	determine	the	

functional	role	of	TGFβ	signalling	at	the	invasive	edge.	In	normal	cells,	the	TGFβ	

signalling	pathway	exerts	tumour	suppressor	effects	by	regulating	cell	growth,	death,	

and	immortalization.	However,	the	protective	and	cytostatic	effects	offered	by	TGFβ	are	

often	lost	as	a	tumour	begins	to	develop	and	progress.	As	a	consequence,	TGFβ	

signalling	then	switches	to	promote	tumour	progression,	invasion,	and	metastasis.	Two	

major	ways	TGFβ	signalling	achieves	this	are:	1)	progression	through	the	cell	cycle,	

achieved	through	inactivation	of	the	retinoblastoma	gene,	and	2)	EMT.	When	

evaluating	the	role	of	TGFβ	signalling	in	cell	proliferation,	we	found	that	only	10%	of	

pSMAD3	positive	BCC	cells	were	proliferating,	which	is	suggestive	of	TGFβ	signalling-

induced	G1	arrest;	thus,	TGFβ	was	therefore	not	considered	to	have	a	role	in	

proliferation.	As	a	consequence,	we	next	hypothesized	that	TGFβ	signalling	may	be	

involved	in	tumour	cell	invasion	into	the	stroma.	EMT	has	been	implicated	in	both	the	

progression	and	metastasis	of	tumours.	Epithelial	cells	that	undergo	EMT	lose	contact	

with	their	neighbouring	cells	and	rearrange	their	cytoskeletons,	which	contribute	to	

them	becoming	more	motile	and	invasive.	Therefore,	we	analysed	EMT	related	gene	

expression	in	whole	BCC	tissue,	and	although	BCC	do	not	frequently	metastasize,	

consistent	with	TGFβ	signalling,	upregulation	of	EMT	related	genes,	notably	Runx1,	2,	

Slug,	Snail	and	Twist,	along	with	the	downregulation	of	E-Cadherin	was	observed	in	BCC	

when	compared	to	normal	skin.	This	is	consistent	with	the	microarray	data,	where	

enrichment	in	EMT	was	observed	in	BCC	in	comparison	to	normal	skin	following	GSEA.	

The	slight	variation	in	EMT	gene	expression	observed	between	all	five	BCC	samples	
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could	potentially	be	explained	by	the	samples	being	of	different	subtypes	(subtype	

information	was	not	provided),	as	some	subtypes	have	been	shown	to	be	more	

infiltrative	and	therefore	more	aggressive	than	others,	which	could	impact	on	the	

expression	of	the	genes	studied.	As	alluded	to	earlier	the	presence	of	EMT	related	

genes	within	BCC	is	not	unusual	as	it	is	locally	invasive	and	highly	destructive	For	

example,	CAFs	within	the	stroma	have	been	shown	to	have	involvement	in	BCC	tumour	

progression	(Sasaki	et	al.,	2018;	Omlandet	al.,	2017;	Mickeet	al.,	2007),	and	given	our	

observation	that	cells	at	the	tumour	nodule	periphery	are	active	for	TGFβ	signalling,	

focusing	on	the	tumour-stroma	interface	in	BCC	may	be	interesting	for	potential	future	

work.	

	

Finally,	to	determine	at	what	 level	the	TGFβ	signalling	pathway	was	perturbed	in	BCC,	

we	 determined	 the	 gene	 expression	 of	 an	 array	 of	 TGFβ	 and	 BMP	 pathway	 genes	

captured	 in	 a	 384	 well	 plate	 qRT-PCR	 array	 (Qiagen,	 UK).	 We	 identified	 increased	

expression	 of	 TGFBRI	 and	 II,	 added	 to	 which	 was	 the	 increased	 expression	 of	 the	

transcription	 factors,	 SMAD3	and	4.	 Conversely,	 ligands	 responsible	 for	 activating	 the	

BMP	side	of	the	pathway,	such	as	GDF5,	7	and	BMP3	were	found	to	be	downregulated	

along	with	TGFBRIII,	which	is	a	negative	regulator	of	the	TGFβ	signalling	pathway.	These	

observations	support	findings	in	the	literature	that	have	shown	BMP	signalling	to	be	a	

potent	tumour	suppressor	in	the	epidermis	and	HF	(Blessing	et	al.,	1995;	Sharov	et	al.,	

2009).	 Other	 observations	 included	 the	 upregulation	 of	 SerpinE1	 and	 DLX2,	 both	 of	

which	 are	 SMAD2/3	 regulated,	 and	 have	 been	 shown	 to	 drive	 tumour	 invasion	 in	 a	

number	of	cancers	(Choi	et	al.,	2016;	Klein	et	al.,	2012;	Samarakoon	et	al.,	2009).	Thus	

the	 TGFβ	 signalling	 pathway	 constituents	 were	 amplified	 in	 BCC,	 consistent	 with	

increased	signalling.		

	

In	 summary	we	have	 shown	 that	 TGFβ	 signalling	 is	 enriched/over-represented	 in	BCC	

tissue	 compared	 to	 normal	 skin	 when	 studying	 gene	 expression	 profiles	 through	

microarray	and	qPCR.	We	have	shown	that	 the	 tumour	nodules	within	BCC	are	active	

for	TGFβ	signalling,	and	that	the	majority	of	these	cells	are	found	at	the	invasive	edge	of	

the	tumour	nodules.	This	is	important,	as	our	lab	has	previously	shown	that	BCC	growth	

is	dependent	on	CSCs	and	that	they	reside	at	the	tumour	nodule	periphery	(Colmont	et	
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al.,	 2013;	 Colmont	 et	 al.,	 2014).	 We	 found	 that	 these	 cells	 were	 not	 involved	 in	

proliferation,	 but	 rather	 may	 be	 associated	 with	 invasion.	 Therefore,	 we	 next	

hypothesised	that	BCC	CSCs	may	be	active	for	TGFβ	signalling,	which	is	addressed	in	the	

following	chapter.	
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Chapter	4	 Determination	 of	 TGFβ 	 Signalling	 in	
Human	BCC	CSC	

4.1	 Introduction	
	
The	human	HF	undergoes	cyclical	growth	 in	response	to	mesenchymal	signals	 (Alonso	

and	Fuchs,	2006;	Hsu	and	Fuchs,	2012).	Upon	 receiving	mesenchymal	TGFβ1,	CD200+	

HF	cells	 in	the	outer	 layers	of	the	hair	bulge	become	activated,	heralding	the	onset	of	

anagen	 (Oshimori	et	al.,	2012).	During	anagen,	HF	bulge	keratinocytes	proliferate	and	

egress	 from	 the	 bulge	 during	 expansion	 of	 the	 HF.	 The	 human	 BCC	 cell	 of	 origin	 is	

thought	to	be	the	long-lived	HF	bulge	SC	population,	which	are	sufficiently	long	lived	to	

acquire	 mutations	 that	 enable	 transformation	 (Wang	 et	 al.,	 2011;	 Seykora	 and	

Cotsarelis,	2011).	Once	BCC	is	established,	we	have	shown	that	CD200+	CSC	are	capable	

of	maintaining	 and	propagating	 tumour	 growth,	while	 the	bulk	population	undergoes	

terminal	differentiation	(Colmont	et	al.,	2013).	

	

It	 has	 been	 shown	 that	 CSC	 population	 may	 be	 responsible	 for	 resistance	 to	

conventional	chemotherapies	and	subsequent	relapse,	both	during	and	after	treatment	

(Holohan	et	al.,	2013).	For	example,	in	a	mouse	model	of	glioblastoma,	a	population	of	

quiescent	 tumour	 cells	 survived	 treatment	with	 temozolomide	 and	were	 found	 to	 be	

capable	of	 regenerating	 the	tumour	 (Chen	et	al.,	2012).	Moreover,	 targeted	therapies	

that	 block	 oncogenic	 pathways	 that	 drive	 tumour	 growth	 (e.g.	 Hh,	mitogen-activated	

protein	kinases,	vascular	endothelial	growth	factor,	and	the	Abelson	tyrosine	kinase	and	

the	 chromosome	 22	 break	 point	 cluster	 fusion	 gene)	 have	 also	 been	 associated	with	

resistance	and	relapse.	Notably,	a	number	of	case	reports	show	an	initial	regression	of	

BCC	 following	vismodegib	 treatment,	 followed	by	an	 inevitable	 relapse	of	 the	 tumour	

(Von	Hoff	et	al.,	2009;	Skvara	et	al.,	2011;	Sekulic	et	al.,	2012).		

	

Our	preliminary	data	suggest	that	BCC	cells	demonstrate	increased	expression	of	TGFβ	

pathway	genes	upon	exposure	to	vismodegib	 in	vitro	based	on	preliminary	microarray	

(Affymetrix)	 analysis.	 Consistent	with	 TGFβ	 responsiveness,	 I	 have	 found	 active	 TGFβ	

signalling	within	a	sub-population	of	BCC	cells	located	at	the	tumour	periphery,	wherein	
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reside	 BCC	 CSC.	 These	 observations	 support	 our	 hypothesis	 that	 TGFβ	 signalling	

provides	a	cell	survival	signal	for	BCC	CSC.	

	

4.2	 Results	
	

4.2.1	 CD200+	BCC	cells	are	pSMAD3	positive	in	tissue	sections		
	

To	define	TGFβ	signalling	within	the	BCC	CSC	population,	I	sought	to	determine	pSMAD3	

presence	and	localisation	by	immunofluorescent	staining	within	the	CD200	and	keratin	

14	 expressing	 BCC	 CSC	 population.	 As	 previously	 described,	 CD200	 expression	 was	

observed	in	a	select	subset	of	tumour	cells	within	BCC	nodules	at	the	tumour	periphery.		

In	all	 the	BCC	 tissue	sections	where	BCC	CD200	and	K14	co-expression	was	observed,	

we	simultaneously	observed	nuclear	accumulation	of	pSMAD3	(Figure	4.1)	(n=2).	Due	to	

the	paucity	of	the	CD200+	cells	within	BCC	tissue,	it	was	difficult	to	visualize	and	identify	

this	 population	when	 studying	whole	 tissue	 by	 immunofluorescence.	 However,	 these	

findings	 support	 our	 hypothesis	 and	 show	 that	 BCC	 CSC	 demonstrate	 active	 TGFβ	

signalling	that	may	be	relevant	for	CSC	maintenance.		
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Figure	4.1:	CD200	expressing	BCC	CSC	are	active	for	TGFβ	signalling		

Primary	 human	 BCC	 tissue	 sections	 were	 labelled	 for	 immunofluorescence	 with	

antibodies	 to	 pSMAD3,	 CD200,	 and	 keratin	 14	 (not	 shown),	 then	 stained	 with	 DAPI.	

Immunofluorescent	microscopy	(10x	image	A	and	20x	image	B)	revealed	the	presence	of	

CD200	 (red)	expressing	BCC	cells	within	 the	 tumour	nodule	 (N)	at	 the	periphery.	 Scale	

bars	represent	200	uM.	(n=2)	

	

4.2.2	 Isolation	of	CD200+	BCC	cancer	SCs	by	flow	sorting	
	
To	further	characterize	the	BCC	CSC	population,	we	optimized	flow	cytometry	and	FACS	

to	 isolate	 CD200+	CD45-	 cells	 (CSCs)	 to	 determine	 active	 TGFβ	 signalling	 (Figure	 4.2).	

BCC	 samples	 obtained	 within	 8	 hours	 of	 cutaneous	 surgery,	 from	 dermatology	

departments	in	two	University	Health	Boards	as	part	of	an	approved	clinical	study,	were	

dissociated	as	outlined	in	section	2.1.2,	and	single	cells	labelled	for	flow	sorting	(Section	

2.4.5).	

	

All	 BCC	 samples	 contained	a	 small	 CD200+	 tumor	 cell	 population	 (1.63±1.11%;	 range,	

3.96–0.05%;	 n=21;	 Figure	 4.2A,	 population	 Q4),	 irrespective	 of	 the	 histological	 type	

(Colmont	 et	 al.,	 2013).	 BCC	 also	 contained	 CD45+	 tumour-associated	 leukocytes	 that	

accounted	for	13.81±10.84%	(n=21)	of	all	cells	and	included	a	subpopulation	of	CD200+	

CD45+	cells	(0.66	±	0.7%;	Figure	4.2A,	population	Q1).	Thus,	CD200+	BCC	tumour	cells	

could	 be	 distinguished	 by	 flow	 cytometry	 with	 the	 pan-leukocyte	 marker	 CD45	 to	

exclude	 tumour-infiltrating	 leukocytes.	 BCC	 CD200+	 CD45−	 and	 CD200−	 CD45−	

subpopulations	were	isolated	by	flow	cytometry	with	greater	than	86%	and	98%	purity,	

respectively	(Figure	4.2B).	

	

To	 confirm	 active	 TGFβ	 signalling	we	 undertook	 immunofluorescence	 by	 flow	 sorting	

individual	cells	onto	a	glass	slide	(see	section	4.2.3),	and	qPCR	analysis	by	flow	sorting	

directly	into	RLT	buffer	for	RNA	extraction	(see	section	4.2.4).	
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Figure	4.2:	CD200+	and	CD200-	BCC	cells	isolated	using	flow	sorting.		

Enzymatically	dissociated	BCC	 tissue	 labelled	with	 the	 cell	 surface	markers	CD200	and	

CD45	were	 flow	sorted	using	a	FACS	ARIA.	 (A)	 FACS	dot	plot	 (top	plot)	and	histogram	

(bottom	plot)	profiles	were	determined	using	unlabelled	and	isotype	controls.	The	pan-

leukocyte	 marker	 CD45	 was	 used	 to	 eliminate	 tumour-infiltrating	 leukocytes	 (Q1).	

CD200+	 CD45-	 represented	 the	 BCC	 CSC	 population	 (Q4),	 while	 CD200-	 CD45-	

represented	 the	 non-CSC	 BCC	 population	 (Q3).	 A	 representative	 single	 parameter	
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histogram,	 right	 hand	 side	 plot,	 shows	 the	 selected	 CD45-	 population	 with	 a	 distinct	

CD200+	CSC	population.	(B)	A	density	plot	to	show	that	the	CD200+	CD45−	(top	plot)	and	

CD200−	CD45−	(bottom	plot)	subpopulations	were	 isolated	with	greater	than	86%	and	

98%	 purity,	 respectively	 (Taken	 from	 Colmont	 et	 al.,	 2013).	 Dead	 cells	 were	 excluded	

using	7-AAD.					

	

	

4.2.3	 CD200	Expressing	BCC	CSCs	are	pSMAD3	positive		
	
To	 determine	 pSMAD3	 labelling	 and	 therefore	 active	 TGFβ	 signalling	 within	 the	 BCC	

tissue	 CD200+	 BCC	 cells,	 we	 sought	 to	 determine	 pSMAD3	 expression.	 Based	 on	 the	

literature	and	our	own	experimental	 findings,	 the	available	 reagents	did	not	allow	 for	

flow	 cytometric	 determination	 of	 pSMAD3	 expression.	 Instead,	 we	 undertook	

immunofluorescent	 labelling	of	 flow	sorted	CD200+	versus	CD200-	BCC	cells	using	cell	

surface	 proteins	 CD200,	 Epcam	 and	 CD45.	 Flow	 sorted	 CD200+	 Epcam	 +	 CD45-	 and	

CD200-	 Epcam+	 CD45-	 subpopulations	were	 directly	 placed	 onto	 a	 glass	 slide	 via	 the	

FACS	Aria,	(n=3,	with	an	average	of	50	cells	counted	per	sort	for	each	cell	population).	

Each	 droplet	 was	 allowed	 to	 dry	 and	 was	 then	 immunofluorescence	 labelled	 for	

pSMAD3	 (Figure	 4.3).	 Nuclear	 labelling	 of	 pSMAD3	 was	 evident	 within	 a	 greater	

proportion	of	the	CD200+	population,	with	56.4±2.7%	of	the	total	BCC	CSC	population	

(Figure	4.3A&C),	compared	to	non-CSC	BCC	keratinocytes,	which	had	16.8±5.2%	nuclear	

pSMAD3	positivity	(p<0.05)	(Figure	4.3	B&C).	Quantification	of	the	relative	intensity	of	

nuclear	 pSMAD3	 staining,	 the	 relative	 fluorescent	 intensity	 (RFI)	 of	 the	 CD200+	

population	was	also	greater,	33,699±6,524,	compared	to	the	CD200-	population,	which	

was	 8,011±1,471	 (Figure	 4.3D),	 however	 this	 increase	 did	 not	 reach	 statistical	

significance.	 In	 summary,	 nuclear	 pSMAD3	 and	 therefore	 active	 TGFβ	 signalling	 was	

observed	 in	 CD200+	 BCC	 CSC	 and	 also	 demonstrated	 a	 4-fold	 increase	 in	 staining	

intensity.					
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Figure	4.3:	CD200	expressing	CSC	display	TGFβ	signalling	pathway	activation		

Enzymatically	dissociated	BCC	tissue	were	labelled	with	the	cell	surface	markers	CD200,	

EPCAM	and	CD45,	then	flow	sorted	directly	onto	glass	slides.	The	sorted	cells	were	fixed	

then	labelled	for	immunofluorescence	with	antibodies	to	pSMAD3	and	K14,	and	stained	

with	DAPI.	(A&B)	Immunofluorescent	microscopy	demonstrated	the	presence	of	nuclear	

pSMAD3.	(C)	Bar	graph	shows	the	percentage	of	cells	found	to	be	positive	for	pSMAD3	

relative	to	the	total	number	of	cells	stained	in	both	cell	populations.	(D)	Bar	graph	shows	

the	average	level	of	nuclear	pSMAD3	fluorescent	intensity	for	each	cell	population.	The	

relative	 fluorescent	 intensity	 was	 quantified	 using	 ImageJ	 software	 and	 values	 were	
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obtained	from	an	average	over	3	independent	experiments	(n=3).	Performed	two-tailed	

T-test	to	determine	statistical	significance.	*	represents	p<0.05.	Scale	bar	=	10	μM.			

4.2.4	 Obtaining	RNA	from	low	numbers	of	flow	sorted	cells		
	
A	number	of	issues	arose	when	isolating	RNA	from	cell	populations	using	this	approach.	

In	BCC	samples	the	CD200+CD45-	population	represents	1.63%±1.11%	of	the	total	cell	

population	 (Colmont	 et	 al.,	 2013).	 As	 BCC	 tumour	 samples	 tended	 to	 be	 small,	 we	

typically	obtained	10	ng/μL	of	RNA	per	population	per	sort.	The	quality	of	the	RNA	was	

verified	using	a	Bioanalyser™,	with	an	RNA	Agilent	6000	Pico	Chip.	Although	 the	RNA	

yield	was	very	low,	the	RNA	quality	was	excellent,	with	RNA	Integrity	Numbers	(RIN)	in	

the	range	of	9-10	frequently	being	obtained,	which	represents	near	perfect	RNA	(Figure	

4.4).	Therefore,	the	RNA	achieved	from	our	flow	sorting	was	of	sufficient	quality	to	run	

qPCR	analysis	on	this	population	for	a	small	number	of	genes.		

	

	

	

Figure	4.4:	Analysis	of	RNA	integrity	from	flow	sorted	CSCs	have	good	quality,	but	very	

low	yields.		

Electropherogram	generated	from	and	Agilent	2100	Bioanalyzer	showing	good	integrity	

of	RNA	in	both	flow	sorted	populations,	as	shown	by	a	flat	baseline	and	distinct	peaks	of	

both	 18S	 and	 28S	 ribosomal	 RNA.	 Left	 panel:	 CD200+CD45-	 population.	 Right	 panel:	

CD200-CD45-	population.		

	

	

CSC Population Non-CSC Population 

18S	
28S	

18S	
28S	

RIN = 9.6 
 
Concentration = 11.8ng/μL	

RIN = 9.7 
 
Concentration = 7.3ng/μL	

Baseline	 Baseline	



	 	 Chapter	4	

	
	

197	

4.2.5	 CD200	Expressing	CSC	Display	EMT	Gene	Signature	
	

To	 confirm	 active	 TGFβ	 signalling	 in	 BCC	 CSC,	 I	 preformed	 RT-PCR	 on	 flow	 sorted	

CD200+	EPCAM+	CD45-	and	CD200-	EPCAM+	CD45-	cells	 (CSCs)	using	a	panel	of	TGFβ	

regulated	EMT	genes.	All	genes	studied	in	this	panel	have	well-established	roles	in	the	

process	 of	 EMT	 (Kalluri	 and	 Weinberg,	 2009;	 Lamouille	 et	 al.,	 2014).	 Concordant	

regulation	of	TGFβ	regulated	EMT	genes	was	observed	within	BCC	CSC	compared	to	the	

non-CSC	population	(Figure	4.5).	There	was	a	7.5±0.5-fold	reduction	in	expression	of	E-

cadherin.	Increased	expression	genes	driving	EMT	were	also	observed,	including	Runx1	

(20.2±3.0),	Slug	(1.8±0.5),	Snail1	(454.0±22.0),	Twist	1	(6.4±1.8),	vimentin	(5.8±0.3),	and	

Zeb1	 (2.3±0.3).	 These	 findings	 support	 the	 role	 of	 TGFβ	 signalling	 within	 BCC	 CSC,	

moreover	the	levels	of	EMT	expression	suggest	that	these	cells	at	the	tumour	periphery	

are	actively	involved	in	tumour	invasion.	
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Figure	4.5:	CD200+	EPCAM+	CD45-	BCC	cells	demonstrate	TGFβ	regulated	EMT		

CD200+	BCC	cells	 (CSC)	were	 sorted	directly	 into	RLT	buffer	and	RNA	extracted	before	

being	assayed	for	the	expression	of	a	panel	of	7	TGFβ-associated	EMT	genes	in	order	to	

identify	 an	 EMT	 profile	 within	 the	 CSC	 population.	 BCC	 CSC	 display	 a	 distinct	 TGFβ	

regulated	 gene	 signature	 in	 comparison	 to	 normal	 skin	 keratinocytes	 (n=1).	 Red	 bars	

indicate	genes	that	are	downregulated	in	EMT,	while	the	blue	bars	indicate	genes	that	

are	 upregulated	 in	 EMT.	 This	 experiment	 (n=1)	 contained	 three	 internal	 technical	

replicates	for	each	gene,	along	with	two	endogenous	controls	(β-Actin,	and	GAPDH).	
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4.3	 Discussion	
	

In	this	chapter,	we	have	isolated	CSCs	from	whole	BCC	tissue	in	an	attempt	to	elucidate	

the	mechanisms	of	resistance	in	Hh	driven	cancers.	We	have	shown	that	CSCs	isolated	

from	 the	 Hh	 driven	 cancer,	 BCC,	 were	 active	 for	 TGFβ	 signalling.	 Immunofluorescent	

labelling	of	BCC	tissue	confirmed	the	presence	of	BCC	CSC	at	the	tumour	periphery,	and	

were	 shown	 to	 be	 positive	 for	 nuclear	 pSMAD3,	 which	 is	 consistent	 with	 what	 is	

observed	in	the	HF	SCs	from	which	BCC	are	thought	to	be	derived	(Youssef	et	al.,	2010;	

Wang	et	al.,	2011;	Colmont	et	al.,	2013).	This	was	verified	and	enumerated	within	the	

CD200+	 flow	 sorted	 population,	 demonstrating	 that	 56%	 of	 all	 cells	 exhibit	 nuclear	

pSMAD3,	compared	to	their	negative	counterparts,	which	was	at	17%.	This	observation	

is	consistent	with	other	cancer	 types,	where	the	role	of	TGFβ	signalling	has	also	been	

identified	in	the	CSC	population	(Bruna	et	al.,	2012;	Lo	et	al.,	2012;	Bhola	et	al.,	2013;	

Shipitsin	et	al.,	2007,	You	et	al.,	2010;	Mima	et	al.,	2012,	Ikushima	et	al.,	2009;	Penuelas	

et	al.,	2009,	Oshimori	et	al.,	2015),	with	some	of	these	studies	highlighting	the	existence	

of	CSC	at	the	tumour-stroma	interface	(Oshimori	et	al.,	2015;	Schober	and	Fuchs,	2011;	

Ye	 et	 al.,	 2012;	 Stankic	 et	 al.,	 2013).	 Furthermore,	 some	 of	 these	 studies	 have	

implicated	 the	 CSC	 population	 at	 the	 leading	 edge	 as	 being	 responsible	 for	 drug	

resistance	 and/or	 tumour	 relapse	 (Oshimori	 et	 al.,	 2015;	 Schober	 and	 Fuchs,	 2011;	

Colmont	et	al.,	2013;	Stankic	et	al.,	2013).	Importantly,	the	role	of	CSC	in	Hh	antagonist	

resistance	has	been	suggested	in	BCC	within	the	clinic	(Von-Hoff	et	al.,	2009;	Skvara	et	

al.,	2011;	Sekulic	et	al.,	2012;	Tang	et	al.,	2012).	In	fact,	our	group	has	previously	shown	

that	 BCC	 CSCs	 both	 constitutively	 express	 and	 induce	 ABCG2	 expression	 following	

etoposide	treatment	(Colmont	et	al.,	2014),	and	are	resistant	to	vismodegib	treatment	

(Colmont	 et	 al.,	 2013).	 Furthermore,	 our	 group	 demonstrated	 that	 this	 CD200+	

population	was	capable	of	recreating	BCC	tumour	growth	in	vivo	(Colmont	et	al.,	2013).	

Therefore,	 this	 CD200+	 BCC	 CSC	 population	 demonstrates	 resistance	 towards	 Hh	

antagonists,	 and	 we	 have	 shown	 in	 this	 chapter	 that	 this	 same	 CSC	 population	 has	

increased	 TGFβ	 signaling	 activity,	 and	 is	 located	 at	 the	 tumour	 nodule	 periphery.	We	

also	 demonstrated	 in	 the	previous	 chapter	 that	 cells	 at	 the	 tumour	 nodule	 periphery	

active	 for	 TGFβ	 signalling	 were	 not	 associated	 with	 proliferation,	 which	 raised	 the	

possibility	 that	 they	may	be	 involved	with	 invasion.	Our	microarray	analysis	on	whole	
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BCC	 tissue	 identified	 an	 enrichment	 for	 EMT	 related	 genes,	 and	 gene	 expression	

analysis	 using	 a	 panel	 of	 TGFβ-related	 EMT	 genes	 showed	 that	 there	 was	 significant	

enrichment	 in	 the	BCC	CSC	population,	 suggesting	 that	 these	cells	may	be	 involved	 in	

EMT.	The	link	between	EMT	and	SCs/CSCs	was	highlighted	by	Mani	et	al.	(2008)	and	has	

important	 implications	 in	 tumour	 heterogeneity,	 therapeutic	 resistance,	 and	 disease	

progression.	 EMT-TFs	 have	 been	 shown	 to	 bestow	 cancer	 cells	 with	 the	 capacity	 to	

adapt	 to	 environmental	 stresses	 and	 resistance	 to	 apoptosis.	 EMT-TFs	 render	 cancer	

cells	 resistant	 to	 chemotherapy	 and	 radiotherapy	 (Sanchez-Tillo	 et	 al.,	 2012).	 For	

example,	 the	 aberrant	 expression	 of	 Slug	 and	 Snail	 has	 been	 shown	 to	 alter	 the	

response	to	DNA	damage	induced	by	doxorubicin	treatment	in	cancer	cells	(Kajita	et	al.,	

2004),	and	has	also	been	shown	to	contribute	directly	to	cisplatin	resistance	in	ovarian	

cancer	(Haslehurst	et	al.,	2012).	Furthermore,	the	expression	of	EMT	related	genes	has	

been	shown	to	correlate	with	sensitivity	towards	growth	factor	targeted	therapies.	For	

example,	the	sensitivity	of	lung	cancer	cells	towards	the	EGFR	tyrosine	kinase	inhibitor,	

gefitinib,	has	been	shown	to	correlate	with	 the	expression	of	E-cadherin	 (Witta	et	al.,	

2006),	 and	 knockdown	 of	 Snail	 has	 shown	 to	 increase	 the	 sensitivity	 of	 these	 lung	

cancer	cell	lines	to	cisplatin	(Zhuo	et	al.,	2008).	This	therefore	raises	the	possibility	that	

CSCs	may	be	involved	not	only	with	BCC	tumour	development/invasion,	but	also	in	the	

refractory	response	observed	following	Hh	antagonist	treatment.	

	

The	link	between	EMT	and	GLI-dependent	gene	regulation	has	already	been	established	

(Li	et	al.,	2006),	which	when	coupled	with	TGFβ	being	a	prototypic	cytokine	capable	of	

inducing	 the	 phenotypic	 switch	 in	 EMT	 (Zavadil	 and	 Bottinger,	 2005),	 has	 led	 to	

suggestions	 that	 GLI-dependent	 mechanisms	 take	 place	 downstream	 of	 TGFβ	 in	

connection	with	EMT.	In	fact	this	crosstalk	has	already	been	implicated	in	EMT/invasion	

in	 a	 number	 of	 other	 cancer	 types,	 including	 bladder	 cancer,	 where	 in	 a	 series	 of	

bladder	cancer	cell	lines	it	was	found	that	Hh-independent	GLI2	expression	and	function	

was	 linked	 to	 invasiveness,	 with	 suggestions	 that	 this	 non-canonical	 Hh	 activity	 was	

contributed	by	RAS	and	TGFβ	signalling	(Mechlin	et	al.,	2010).	Furthermore,	in	a	breast	

cancer	 progression	 mouse	 model,	 TGFβ1	 has	 shown	 to	 be	 responsible	 for	 both	

increased	GLI2	expression	and	GLI-dependent	transcription	in	MCFDCIS	cells	(Hu	et	al.,	

2008),	and	upon	implantation	into	mice,	ductal	carcinoma	in	situ	(DCIS)	tumours	were	
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shown	 progress	 to	 invasive	 tumours	 (Miller	 et	 al.,	 2000).	 In	 this	 paper,	 the	 authors	

found	 that	 TGFβ-dependent	 GLI2	 expression	was	 capable	 of	 promoting	myoepithelial	

cell	differentiation	and	progression	to	invasion.	Finally,	it	was	reported	that	in	recurrent	

ovarian	 tumours,	CSCs	overexpressed	GLI1	 and	2	 together	with	effectors	of	 the	TGFβ	

pathway	 when	 compared	 to	 the	 primary	 tumours,	 and	 that	 the	 recurrent	 tumours	

demonstrated	 resistance	 to	 cisplatin	 (Steg	 et	 al.,	 2012).	 Therefore	 it	 is	 possible	 that	

there	 is	 crosstalk	 between	 the	 TGFβ	 and	 Hh	 signalling	 pathways	 in	 the	 BCC	 CSC	

population	and	that	this	crosstalk	may	be	implicated	in	EMT/invasion.		

	

Given	our	ability	to	isolate	excellent	quality	RNA	from	the	BCC	CD200+	CSC	population,	

one	 important	 future	 experiment	 would	 be	 to	 evaluate	 this	 population	 using	 RNA	

sequencing	in	order	to	explore	the	transcriptional	profiles	of	this	population	further	and	

develop	a	better	understanding	of	its	role	in	tumour	progression	and	drug	resistance	by	

comparing	treated	and	untreated	populations.	Furthermore,	sequencing	will	allow	us	to	

identify	what	gene	signatures	are	enriched	within	the	CSC	population,	which	has	been	

used	to	good	effect	in	other	studies,	such	as	Schober	and	Fuchs	(2011),	who	used	RNA	

sequencing	 to	show	that	 the	CD34	CSC	population	within	SCC	was	enriched	 for	genes	

involved	 in	 the	cell	 cycle,	mitosis,	epithelial	morphogenesis	and	apoptosis,	 along	with	

the	 involvement	 of	 signaling	 pathways	 including	 MAPK4,	 FAK,	 and	 TGFβ,	 relative	 to	

wild-type	SCs.	They	 further	 showed	 that	 these	cells	had	a	down-regulation	of	 cell-cell	

adhesion	 genes	 including	 E-	 and	 α-cadherin,	 suggestive	 of	 cytoskeletal	 and	 adhesion	

remodeling	 within	 this	 population,	 which	 they	 concluded	 was	 correlated	 with	 the	

features	 that	 typify	 the	 CSC	 microenvironment	 at	 the	 edge	 of	 the	 tumour-stroma	

interface	(Schober	and	Fuchs,	2011).	

	

The	findings	within	this	chapter	raise	two	important	questions:	(1)	is	TGFβ	signalling	an	

important	CSC	survival	pathway?;	and	(2)	alternatively,	after	Hh	antagonist	treatment	is	

there	 an	 enrichment	 of	 active	 TGFβ	 signalling?	 Therefore,	 in	 order	 to	 explore	 this	

further	we	 recruited	 the	 use	 of	 three	well-established	Hh	 driven	 tumour	 cell	 lines	 to	

address	these	questions	in	the	next	chapter.	
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Chapter	5	 Hedgehog	 and	 TGFβ	 Pathway	Antagonists	
in	Hedgehog	Driven	Tumours		
	

5.1		 Introduction	
	
25%	 of	 all	 cancer	 types	 demonstrate	 constitutive	 activation	 of	 the	 Hh	 growth	 factor	

signalling	pathway	including	breast,	pancreas,	gastrointestinal,	prostate,	mesenchymal,	

haematological,	 and	 neural	 malignancies.	 BCNS	 as	 previously	 mentioned	 is	 an	

autosomal	dominant	disorder	that	is	caused	by	a	germline	mutation	in	the	PTCH1	gene	

resulting	 in	 active	 Hh	 signalling	 (Aszterbaum	 et	 al.,	 1998;	 Hahn	 et	 al.,	 1996).	 This	

predisposes	 individuals	 with	 the	 disease	 to	 craniofacial	 and	 skeletal	 abnormalities	

(Gorlin	 and	 Goltz,	 1960;	 Kimonis	 et	 al.,	 1997),	 and	 greatly	 increases	 their	 risk	 of	

developing	 BCC	 and	 medulloblastoma.	 Therefore,	 although	 BCC	 is	 the	 archetypal	

tumour	for	Hh	driver	mutations,	medulloblastoma	is	also	strongly	linked	with	Hh	driver	

mutations	and	pathway	activation.	One	of	 the	 limitations	of	using	BCC	as	a	model	 for	

studying	 Hh	 signalling	 is	 that	 the	 number	 of	 cell	 lines	 available	 in	 both	 human	 and	

mouse	 is	 very	 limited,	 and	 the	 cell	 lines	 that	 are	 available	 (e.g.	 TE	 354.T;	 ATCC	 CRL-

7762)	are	notoriously	slow	growing	and	cannot	be	used	in	stem	cell	assays	since	they	do	

not	form	spheres	in	non-adherent	culture	conditions.	Therefore,	the	assays	performed	

in	this	chapter	will	be	carried	out	using	medulloblastoma	cell	lines	as	they	are	still	highly	

relevant	 to	 this	 project	 and	 there	 are	 over	 40	 medulloblastoma	 cell	 lines	 currently	

available,	with	approximately	half	of	these	being	sub-grouped	and	characterised	(18/44)	

(Ivanov	et	al.,	2016);	furthermore,	these	cell	lines	can	be	used	in	stem	cell-based	assays.	

Of	the	18	cell	 lines	that	have	been	characterised,	four	have	been	classified	as	SHh-cell	

lines,	and	comprise	the	DAOY,	UW228-2,	ONS-76,	and	UW426	cell	lines.	Both	DAOY	and	

UW228-2	 cell	 lines	 harbour	 TP53	 mutations,	 and	 represent	 high-risk	 aggressive	

medulloblastoma	(Ivanov	et	al.,	2016),	and	were	therefore	used	in	our	experiments.	The	

osteosarcoma	 cell	 line,	 SJSA-1,	was	 also	 used	 in	 our	 experiments,	 but	was	 chosen	 as	

osteosarcoma	 is	 also	 associated	with	Hh	driver	mutations	 and/or	 pathway	 activation,	

and	this	cell	line	is	well	documented	as	having	a	15-fold	GLI	amplification	(Khatib	et	al.,	

1993).	Therefore,	although	the	SJSA-1	cell	line	is	not	considered	to	be	as	dependent	on	
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Hh	signalling	 for	 its	growth	as	 the	DAOY	and	UW228-2	cell	 lines,	 it	does	nevertheless	

have	 some	 reliance	 on	 the	 pathway,	 and	 might	 serve	 as	 a	 good	 reference	 in	 our	

experiments.	 Hence	 all	 cell	 lines	 used	 in	 this	 chapter	 should	 respond	 to	 the	 two-

targeted	 therapies	 that	 block	 the	 Hh	 pathway,	 notably	 vismodegib	 and	 sonidegib,	

which,	have	both	been	approved	for	clinical	use	by	the	Federal	Drug	Administration	and	

European	Medicines	Agency	(Figure	5.1).	

	

The	 steroidal	 alkaloids	 cyclopamine	 and	 jervine	 are	 naturally	 occurring	 Hh	 pathway	

antagonists,	which	act	to	 inhibit	SMO	and	have	formed	the	basis	 for	targeted	therapy	

development	 (Chen	 et	 al.,	 2002).	 Vismodegib	 (GDC-0449,	 Genentech/Curis	 Inc.),	 a	

small-molecule	SMO	antagonist	belonging	to	the	2-arylpyridine	class,	was	the	first	SMO	

antagonist	to	be	approved	for	clinical	use	in	the	treatment	of	BCC	(Sekulic	et	al.,	2012;	

Tang	et	al.,	2012).	Clinical	studies	have	shown	that	vismodegib	treatment	is	associated	

with	 therapeutic	 response	 in	43%	of	patients	with	 locally	advanced	BCC,	and	30%	 for	

metastatic	 BCC	 (Von-Hoff	et	 al.,	 2009;	 Sekulic	et	 al.,	 2012).	 Furthermore,	 vismodegib	

was	shown	to	reduce	the	tumour	burden	and	block	growth	of	new	BCCs	in	individuals	

with	 basal	 cell	 nevus	 syndrome	 (Tang	et	 al.,	2012).	 LDE-225/Sonidegib	 (Novartis)	 is	 a	

potent,	 oral,	 SMO	antagonist	 (Buonamici	et	 al.,	 2010).	 Patients	with	Gorlin	 syndrome	

and	sporadic	BCC	showed	a	response	to	treatment	with	sonidegib	(Skvara	et	al.,	2011).	

GANT-61	 is	a	small	molecule	 inhibitor	 that	directly	 inhibits	GLI1	and	2	 (Mechlin	et	al.,	

2010;	Kawabata	et	al.,	2011;	Yan	et	al.,	2011).		

	

	



	 	 Chapter	5	

	
	

205	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	 5.1:	 Components	 of	 the	 canonical	 Hh	 signalling	 pathway	 and	molecular	 sites	

targeted	by	Hh	pathway	inhibitors.		

	

Crosstalk	exists	between	Hh	and	TGFβ	signalling	pathways.	Hh	signalling	has	been	found	

to	induce	the	expression	of	TGFβ	family	members	in	human	cancer	cell	lines	(Yoo	et	al.,	

2008)	 and	 murine	 models	 (Fan	 et	 al.,	 2010).	 Primary	 and	 recurrent	 and	 metastatic	

medulloblastoma	 tumour	 tissue	 microarray	 analyses	 demonstrated	 increased	 TGFβ	

gene	expression	 that	correlated	with	positive	nuclear	staining	of	pSMAD3	 (Aref	et	al.,	

2013).	Similarly	TGFβ	signalling	can	induce	SHh	and	GLI1	expression,	resulting	in	SMO-

independent	Hh	 signal	 transduction	 (Javelaud	et	al.,	 2011;	Dennler	et	al.,	 2007).	 SHh-

induced	 cell	 motility	 and	 invasiveness	 requires	 activation	 of	 the	 TGFβ-driven	 SMAD	
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pathway;	 it	 is	 likely	 that	 these	 family	 members	 are	 involved	 in	 SMO-dependent	

tumourigensis	 (Yoo	et	 al.,	 2008).	 Thus,	 the	 crosstalk	 between	Hh	 and	 TGFβ	 signalling	

pathways	is	amplified	in	malignancy	and	promotes	tumour	invasion.			

TGFβ	 signalling	 pathway	 can	 be	 inhibited	 at	 the	 level	 of	 the:	 1)	 ligand	 with	 a	 TGFβ	

receptor	blocking	antibody	(research	only,	TGF-beta	1,	2,	3	Antibody,	R&D	Systems),	2)	

receptor	 using	 a	 TGFBRI	 tyrosine	 kinase	 phosphatase	 small	 molecule	 inhibitor	

(SB431542,	GlaxoSmithKline)	(Inman	et	al.,	2002b),	3)	transcription	factors	using	siRNA	

targeting	co-SMAD4	(Figure	5.2).	In	transgenic	mice	with	Hh	resistant	SMO,	activation	of	

TGFβ	 signalling	and	 tumour	development	 could	be	 inhibited	by	 the	TGFβRI	 SB431542	

inhibitor	(Fan	et	al.,	2010).	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	5.2:	Components	of	the	canonical	TGFβ	signalling	pathway	and	molecular	sites	

targeted	by	TGFβ	pathway	inhibitors.			
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Treatment	 of	 Hh	 driven	 tumours	 with	 currently	 available	 Hh	 pathway	 antagonists,	

vismodegib	and	sonidegib,	has	been	disappointing.	 In	33	cases	of	metastatic	or	 locally	

advanced	BCC	oral	vismodegib	demonstrated	an	objective	response	in	18	patients,	with	

2	 complete	 responses	 and	 16	 partial	 responses	 (Von	 Hoff	 et	 al.,	 2009).	 Eleven	 other	

patients	 had	 stable	 disease	 with	 4	 patients	 having	 progressive	 disease.	 Similarly,	

although	 there	 is	 a	 case	 report	 of	 medulloblastoma	 responding	 to	 vismodegib,	 the	

subsequent	clinical	 trial	 failed	 to	demonstrate	clinical	benefit	 (Rudin	et	al.,	 2009;	Von	

Hoff	 et	 al.,	 2009).	 Therefore	 we	 hypothesised	 that	 the	 TGFβ	 pathway	 may	 be	

responsible	for	Hh	driven	treatment	resistance	after	Hh	inhibition.	

	

5.2	 Results	

5.2.1	 Hedgehog	agonist	dose	response	curves	
	

To	determine	 the	optimal	 in	 vitro	 dose	of	Hh	 signalling	 antagonists,	we	utilised	 an	 in	

vitro	 reporter	 assay	 in	 which	 NIH	 3T3	 cells	 were	 transduced	 with	 a	 luciferase	 GLI	

reporter	 construct	 (Taipale	 et	 al.,	 2000).	 I	 first	 had	 to	 determine	 the	 dose	 of	 the	 Hh	

agonist,	sonic	Hh	(SHh)	that	would	reproducibly	induce	downstream	Hh	signalling.	The	

Hh	agonist	protein	targets	are	conserved	between	mouse	and	human.	GLI	reporter	NIH	

3T3	 cells	 were	 plated	 at	 104	cells	 per	 well	 in	 a	 96	 well	 clear-bottomed	 white-walled	

plate.	The	cells	were	allowed	to	establish	growth	for	up	to	24	hours,	before	stimulation	

with	increasing	concentrations	(0.01	to	30	μM)	of	murine	SHh	(mSHh)	in	quadruplicate.	

After	 24	 hours,	 bioluminescence	 readouts	 relative	 to	 unstimulated	 cells	 were	

determined	 using	 a	 ONE-Step	 Luciferase	 reagent	 and	 CLARIOstar	 High	 Performance	

Monochromator	 Multimode	 Microplate	 Reader.	 The	 experiment	 was	 performed	 in	

triplicate	(n=3).	Consistent	with	the	literature,	the	peak	response	was	determined	as	3.3	

µg/ml	 resulting	 in	 an	 11.96	 fold	 increase	 in	 bioluminescence	 in	 comparison	 to	

unstimulated	(Figure	5.3).	Hence	 in	our	 in	vitro	assays,	we	used	3.3µg/ml	of	mSHh,	to	

define	the	optimal	dose	of	hedgehog	signalling	inhibitors.		
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Figure	5.3:	mSHh	induced	GLI	reporter	assay	dose	response	curve.		

Fold	 induction	 in	bioluminescence	from	GLI	reporter	NIH	3T3	cells	treated	with	varying	

Log	concentrations	of	mSHh	for	24	hr.	Experiment	was	performed	in	triplicate,	with	four	

internal	technical	replicates	for	each	condition	(n=3).	Error	bars	represent	SE	of	mean.					
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5.2.2	 Hedgehog	antagonist	dose	response	curves	
	

Vismodegib	is	a	currently	licensed	SMO	antagonist	for	the	treatment	of	inoperable	BCC	

at	 a	 dose	of	 150	mg	daily.	 The	optimal	 in	 vitro	dose	 varies	 according	 to	 the	 cell	 line,	

ranging	 from	 an	 IC95	 for	 patient	 derived	 colorectal	 cancer	 xenograft	 (0.068	µM)	 to	 a	

PTCH	 allograft	 model	 of	 medulloblastoma	 (0.042	 µM)	 (Wong	 et	 al.,	 2011).	 In	 the	

presence	of	3.3	µg/ml	of	mSHh,	Gli-reporter	NIH	3T3	bioluminescence	was	determined	

upon	addition	of	increasing	vismodegib	concentrations	(0.01-30	μM)	(Figure	5.4).	There	

was	 negligible	 reduction	 in	 bioluminescence	 with	 the	 addition	 of	 vismodegib	 at	 a	

concentration	below	1	μM	in	our	assay.	At	a	dose	of	10	μM	of	vismodegib,	there	was	a	

maximal	30%	reduction	in	luminescence	(Figure	5.4).	There	was	no	further	reduction	in	

luminescence,	 despite	 concentrations	 of	 vismodegib	 up	 to	 30	 μM.	 Numerous	 studies	

have	 also	 used	 10	 μM	 in	 their	 functional	 assays	 using	 the	 same	 or	 similar	 cell	 lines	

(Infante	et	al.,	2016;	Lauressergues	et	al.,	2016;	de	 la	Rosa	et	al.,	2017;	Pambid	et	al.,	

2014).	Therefore	a	concentration	10	μM	of	vismodegib	was	used	for	our	experiments.		

Like	 vismodegib,	 sonidegib	 is	 a	 licensed	 SMO	 antagonist	 for	 the	 treatment	 of	 adult	

patients	 with	 locally	 advanced	 BCC	 who	 are	 not	 amenable	 to	 curative	 surgery	 or	

radiation	 therapy.	 In	 the	 presence	 of	 3.3	 µg/ml	 of	 mSHh,	 we	 determined	 the	

bioluminescence	 change	 in	 GLI	 reporter	 NIH	 3T3	 cells	 with	 co-administration	 of	

increasing	 sonidegib	 concentrations	 from	 0.01-30	 μM	 (Figure	 5.5).	 There	 was	 a	

progressive	 reduction	 in	 bioluminescence	with	 the	 addition	 of	 sonidegib,	with	 a	 70%	

reduction	in	luminescence	when	10	μM	of	sonidegib	was	co-administered	(Figure	5.5).	

Sonidegib	 at	 a	 concentration	 of	 20μM	 and	 higher	 was	 associated	 with	 cell	 death,	

therefore	a	10	μM	concentration	of	sonidegib	was	used	for	experiments,	which	mirrors	

concentrations	used	in	other	studies	on	similar	cell	lines	(Infante	et	al.,	2016;	Pambid	et	

al.,	2014).			

	

GANT-61	 inhibits	 GLI1	 and	 GLI2-induced	 transcription,	 and	 is	 currently	 in	 clinical	

development.	 In	 the	 presence	 of	 3.3µg/ml	 of	 mSHh,	 we	 determined	 the	

bioluminescence	 change	 in	 GLI	 reporter	 NIH	 3T3	 cells	 with	 co-administration	 of	

increasing	 GANT-61	 concentrations	 from	 0.01-30	 μM	 (Figure	 5.6).	 There	 was	 a	
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progressive	 reduction	 in	 bioluminescence	 with	 the	 addition	 of	 GANT-61,	 with	 a	 50%	

reduction	in	luminescence	when	10	μM	of	GANT-61	was	co-administered.	Again	studies	

have	used	10	μM	and	above	in	their	functional	assays	for	treating	these	Hh	driven	cell	

lines	 (Arnhold	 et	 al.,	 2016).	 Therefore,	 10	 μM	 was	 the	 concentration	 used	 in	 later	

experiments.	

	

	

	

	

	

	

	

	

	

	

Figure	5.4:	Inhibition	of	hedgehog	signalling	pathway	by	vismodegib		

Fold	change	in	bioluminescence	from	GLI	reporter	NIH	3T3	cells	treated	with	3.3	μg/ml	

of	 mSHh	 varying	 and	 Log	 concentrations	 of	 vismodegib	 for	 24hr.	 Experiment	 was	

performed	in	triplicate,	with	four	internal	technical	replicates	for	each	condition.	(n=3).	

Error	bars	represent	SE	of	mean.				
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Figure	5.5:	Inhibition	of	hedgehog	signalling	pathway	by	sonidegib		

Fold	change	in	bioluminescence	from	GLI	reporter	NIH	3T3	cells	treated	with	3.3	μg/ml	

of	 mSHh	 varying	 and	 Log	 concentrations	 of	 sonidegib	 for	 24hr.	 Experiment	 was	

performed	in	triplicate,	with	four	internal	technical	replicates	for	each	condition.	(n=3).	

Error	bars	represent	SE	of	mean.				

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	5.6:	Inhibition	of	hedgehog	signalling	pathway	by	GANT-61		
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Fold	change	in	bioluminescence	from	GLI	reporter	NIH	3T3	cells	treated	with	3.3	μg/ml	

of	 mSHh	 varying	 and	 Log	 concentrations	 of	 GANT-61	 for	 24hr.	 Experiment	 was	

performed	in	triplicate,	with	four	internal	technical	replicates	for	each	condition.	(n=3).	

Error	bars	represent	SE	of	mean.				
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5.2.3	 Identifying	 genes	 that	 are	 Hh	 regulated	within	 Hh	 driven	 tumour	
cell	lines		
	
The	 DAOY	 and	 UW228	 cell	 lines	 are	 derived	 from	 children	 with	 paediatric	

medullobalstoma	(Jacobsen	et	al.,	1985;	Keles	et	al.,	1995).	The	UW228	cells	are	diploid	

and	 the	 DAOY	 cells	 are	 tetraploid.	 As	 is	 common	 with	 Hh	 driven	 growth	 in	

medulloblastoma,	both	cell	lines	harbour	MYC	amplification	and	p53	mutation	(Higdon	

et	 al.,	 2017).	 DAOY	 cell	 line	 exhibits	 high	 levels	 of	 SHh,	 PTCH1,	 GLI1,	 and	 GLI2	

expression.	 While	 UW228-2,	 demonstrate	 low	 levels	 of	 SHh,	 PTCH1	 and	 GLI2.	 DAOY	

remain	responsive	to	Hh	signalling,	while	UW228-2	cells	are	less	responsive	(Arnhold	et	

al.,	 2016;	Götschel	et	al.,	 2013).	 SJSA-1	 cells	demonstrate	GLI	 amplification	 (Khatib	et	

al.,	1993).		

	

All	three-tumour	cell	lines	were	treated	with	Hh	ligand	and/or	Hh	antagonists	(10	μM)	

for	 24	 hr	 before	 performing	 qPCR	 on	 a	 panel	 of	 Hh	 regulated	 genes	 in	 order	 to	

determine	which	genes	are	truly	Hh	regulated	(a	response	following	agonist	treatment	

which	can	be	subsequently	reversed	following	antagonist	treatment)	within	each	of	the	

cell	lines	(Figure	5.7A-C).	Summarised	in	Table	5.1.	

	

In	DAOY	 cells,	 following	Hh	agonist	 treatment,	 an	 increased	expression	was	observed	

for	 GLI1	 (0.74±0.26),	 GLI2	 (0.15±0.09),	 and	 SMO	 (0.44±0.18),	 whereas	 a	 decrease	 in	

expression	 was	 observed	 for	 PTCH	 (-1.03±0.10)	 when	 compared	 to	 the	 untreated	

control	 (Figur	 5.7A).	 Following	 Hh	 antagonist	 treatment	 in	 comparison	 to	 Hh	 agonist	

treatment:	 a	 reduction	 in	 GLI1	 expression	 was	 found	 following	 treatment	 with	

vismodegib	 (0.06±0.14),	 sonidegib	 (-8.63±0.14)	 and	 GANT-61	 (0.38±0.40),	 with	 the	

greatest	reduction	observed	for	sondeigib;	a	reduction	was	observed	in	GLI2	expression	

following	 sonidegib	 (-2.85±0.12)	 and	 GANT-61	 (-1.54±0.08)	 treatment,	 whereas	 no	

change	was	observed	 for	vismodegib	 (0.01±0.09);	 finally,	a	 reduction	was	observed	 in	

SMO	 expression	 following	 vismodegib	 (0.14±0.07)	 and	GANT-61	 (0.08±0.06),	whereas	

sonidegib	was	shown	to	greatly	reduce	the	expression	of	SMO	(-6.65±0.05).	Therefore,	

in	 the	DAOY	 cell	 line,	GLI1,	 2	 and	 SMO	will	 be	 classified	 as	Hh	 regulated	 genes,	with	

sonidegib	shown	to	have	the	most	pronounced	effect	in	their	expression.			
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In	 UW228-2	 cells,	 following	 Hh	 agonist	 treatment,	 an	 increased	 expression	 was	

observed	for	GLI1	(0.56±0.14),	no	change	was	observed	for	PTCH,	whereas	a	decrease	

was	seen	for	GLI2	(-4.86±0.12)	and	SMO	(-2.39±0.09)	when	compared	to	the	untreated	

control	 (Figure	5.7B).	 Following	Hh	antagonist	 treatment	 in	 comparison	 to	Hh	agonist	

treatment:	an	even	greater	increase	in	GLI1	expression	was	found	following	treatment	

with	 vismodegib	 (2.43±0.59),	 sonidegib	 (1.77±0.44)	 and	 GANT-61	 (3.49±0.79);	 a	

reduction	was	observed	in	GLI2	expression	following	sonidegib	(-8.58±0.12)	and	GANT-

61	 (-6.36±0.09)	 treatment;	mixed	 results	 were	 observed	 for	 PTCH	 expression,	 with	 a	

reduction	 observed	 for	 sonidegib	 (-2.36±0.14),	 whereas	 an	 increase	 was	 found	 for	

GANT-61	 (0.82±0.25)	 (vismodegib	 data	was	 not	 available);	 finally,	 a	 further	 reduction	

was	 observed	 in	 SMO	 expression	 following	 vismodegib	 (-6.13±0.08),	 sonidegib	 (-

5.70±0.11)	and	GANT-61	(-5.10±0.15).	Therefore,	 in	UW228-2	cells,	Hh	antagonists	did	

not	reverse	this	expression,	but	rather	enhanced	the	effects	observed	in	the	Hh	agonist	

treated	 cells	 by	 further	downregulating	GLI2,	 PTCH,	 and	 SMO,	 and	upregulating	GLI1.	

Although	none	of	the	four	genes	conform	to	the	criteria	GLI1,	2	and	SMO	will	be	used	as	

a	Hh	output	for	this	cell	line,	as	their	expression	changed	upon	both	the	addition	of	Hh	

agonist	and	antagonist	in	comparison	to	the	untreated	cells,	whereas	PTCH	expression	

didn’t	change	upon	addition	of	agonist.				

	

In	 SJSA-1	 cells,	 following	 Hh	 agonist	 treatment,	 a	 small	 increase	 in	 expression	 was	

observed	for	GLI1	(0.10±0.09),	whereas	a	decrease	was	seen	for	GLI2	(-5.89±0.06),	PTCH	

(-3.83±0.11)	 and	 SMO	 (-3.00±0.15)	 when	 compared	 to	 the	 untreated	 control	 (Figure	

5.7C).	 Following	 Hh	 antagonist	 treatment	 in	 comparison	 to	 Hh	 agonist	 treatment:	 an	

even	 greater	 increase	 in	 GLI1	 expression	 was	 found	 following	 treatment	 with	

vismodegib	 (0.15±0.08),	 sonidegib	 (0.30±0.14)	 and	 GANT-61	 (0.19±0.06);	 an	 increase	

was	 observed	 in	 GLI2	 expression	 following	 vismodegib	 (0.26±0.19),	 sonidegib	

(0.24±0.17)	 and	 GANT-61	 (0.45±0.26)	 treatment;	 an	 increase	 was	 observed	 for	 PTCH	

expression	following	sonidegib	(0.38±0.10)	and	GANT-61	(0.39±0.12)	treatment;	finally,	

an	 increase	was	 also	 observed	 for	 SMO	 expression	 following	 vismodegib	 (0.10±0.09),	

sonidegib	(0.31±0.21)	and	GANT-61	(0.23±0.15)	treatment.	Therefore,	in	the	SJSA-1	cell	

line	 GLI2,	 PTCH	 and	 SMO	 were	 classified	 as	 being	 Hh	 regulated,	 and	 appear	 to	 be	

negatively	regulated.	
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Figure	5.7:	Identifying	genes	that	are	Hh	regulated	within	Hh	driven	tumour	cell	lines.		

Hh	 driven	 cell	 lines	 were	 cultured	 in	 the	 presence	 of	 Hh	 antagonists	 (vismodegib,	

sonidegib	 and	GANT-61)	 for	 24hr.	 RNA	was	 extracted	 and	assayed	 for	 a	 panel	 of	Hh-

regulated	genes	by	qPCR	in	(A)	DAOY,	(B)	UW228-2,	and	(C)	SJSA-1	cell	lines.	Expression	

values	are	based	on	the	Log10RQ,	where	a	value	of	1.0	represents	a	fold	change	of	+10,	

and	0.1	represents	a	fold	change	of	-10.	All	results	are	an	average	of	two	independent	

experiments.	The	qPCR	assay	was	performed	with	three	internal	technical	replicates	and	

two	endogenous	controls.	(n=2).			

	

Table	5.1:	Identifying	genes	that	are	Hh	regulated	within	Hh	driven	tumour	cell	lines.	

UP,	 represents	 genes	 that	 are	 upregulated;	 DOWN,	 represents	 genes	 that	 are	

downregulated;	NC,	represents	no	change	in	gene	expression.	All	changes	stated	are	in	

comparison	 to	 the	 untreated	 control.	 *=moderately	 up/downregulated;	 **=highly	

up/downregulated.	?=cannot	determine	based	on	the	available	data.				

Cell	Line	 Hh	Regulated	

Genes	

Hh	

Agonist	

Hh	Antagonists	 Hh	Regulated	

DAOY	 GLI1	 UP**	 Vismodegib	–	UP*	 YES	

Sonidegib	–	DOWN**	

GANT-61	–	UP*	

GLI2	 UP*	 Vismodegib	-	NC	 YES	

Sonidegib	–	DOWN**	

GANT-61	–	DOWN*	

PTCH	 DOWN*	 Vismodegib	–	DOWN*	 NO	

Sonidegib	–	DOWN**	

GANT-61	-	NC	

SMO	 UP**	 Vismodegib	–	UP*	 YES	

Sonidegib	–	DOWN**	

GANT-61	–	UP*	

UW228	 GLI1	 UP*	 Vismodegib	–	UP**	 NO	

Sonidegib	–	UP**	
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GANT-61	–	UP**	

GLI2	 DOWN*	 Vismodegib	–	DOWN*	 NO	

Sonidegib	–	DOWN**	

GANT-61	–	DOWN**	

PTCH	 NC	 Vismodegib	–	N/A	 ?	

Sonidegib	–	DOWN	

GANT-61	–	UP	

SMO	 DOWN*	 Vismodegib	–	DOWN**	 NO	

Sonidegib	–	DOWN**	

GANT-61	–	DOWN**	

SJSA	 GLI1	 UP*	 Vismodegib	–	UP*	 NO	

Sonidegib	–	UP**	

GANT-61	–	UP**	

GLI2	 DOWN**	 Vismodegib	–	UP*	 YES	

Sonidegib	–	UP*	

GANT-61	–	UP*	

PTCH	 DOWN**	 Vismodegib	–	NC	 YES	

Sonidegib	–	UP*	

GANT-61	–	UP*	

SMO	 DOWN**	 Vismodegib	–	UP*	 YES	

Sonidegib	–	UP*	

GANT-61	–	UP*	

	

5.2.4			Apoptosis	after	Hh	antagonists		
	
To	 determine	 whether	 Hh	 antagonist	 treatment	 for	 4,	 24,	 and	 48	 hours	 resulted	 in	

apoptosis	of	Hh	driven	 cell	 lines,	we	undertook	 flow	cytometric	 analysis	of	 annexin	V	

and	DAPI	labelled	cells;	allowing	detection	of	early	and	late	apoptotic	events.		

	

For	 the	positive	 control,	when	 compared	 to	 the	 total	 cell	 population	 (100%)	all	 three	

cell	 lines	 demonstrated	 an	 increase	 in	 the	 percentage	 of	 apoptotic	 cells	 (Annexin	 V	

positive)	between	untreated	and	24	hour	etoposide	treatment:	DAOY	0.93%	vs	6.97%,	
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UW228-2	 1.65%	 vs	 17.1%,	 and	 SJSA-1	 cells	 2.11%	 vs	 18.8%.	 All	 three	 cell	 lines	

demonstrated	 an	 increase	 in	 the	 percentage	 of	 dead	 cells	 (AnnexinV/DAPI	 positive)	

between	untreated	and	etoposide	treatment:	DAOY	2.37%	vs	20.9%,	UW228-2	1.28%	vs	

12.2%,	and	SJSA-1	cells	1.53%	vs	37.8%.	Therefore	we	were	able	to	detect	a	change	in	

the	 level	 of	 apoptotic	 and	 dead	 cells	 in	 our	 Hh	 driven	 cell	 lines	 following	 etoposide	

treatment.		

	

Figure	5.8	shows	representative	dot	plots	between	untreated	and	Hh	antagonist	treated	

cell	 lines	 over	 three	 time-points.	 Table	 5.2	 outlines	 the	 effect	 of	 Hh	 antagonist	 only	

treatments	 on	 early	 apoptosis	 (Annexin	 Vpos/DAPIneg),	 late	 apoptosis	 (Annexin	

Vpos/DAPIpos)	or	necrosis	(Annexin	Vneg/DAPIpos)	over	three	time-points	(4,	24	and	48	hr)	

in	our	three	Hh	driven	cell	lines.			

	

In	the	DAOY	cell	line,	following	4,	24	and	48	hr	of	vismodegib	treatment,	no	significant	

effect	was	observed	on	early	apoptosis,	 late	apoptosis	or	necrosis	when	compared	 to	

the	 untreated	 control.	 Following	 sonidegib	 treatment,	 no	 significant	 effect	 was	

observed	on	early	apoptosis,	late	apoptosis	or	necrosis	at	any	of	the	three	time	points	

when	 compared	 to	 the	 untreated	 control.	 Finally,	 following	 GANT-61	 treatment	 no	

significant	 effect	 was	 observed	 on	 early	 and	 late	 apoptosis	 over	 4,	 24	 and	 48	 hr	 of	

treatment;	however	a	significant	increase	in	the	%	of	necrotic	cells	was	observed	after	

48hr	of	treatment	when	compared	to	the	untreated	control	(5.95%	vs	14.31%;	p<0.05).		

	

In	 the	 UW228-2	 cell	 line,	 following	 4,	 24	 and	 48	 hr	 of	 vismodegib	 treatment,	 no	

significant	 effect	 was	 observed	 on	 early	 apoptosis,	 late	 apoptosis	 or	 necrosis	 when	

compared	to	the	untreated	control.	Following	sonidegib	treatment,	no	significant	effect	

was	 observed	 on	 early	 apoptosis,	 late	 apoptosis	 or	 necrosis	 at	 any	 of	 the	 three	 time	

points	when	compared	to	the	untreated	control.	Finally,	following	GANT-61	treatment	

no	significant	effect	was	observed	on	early	apoptosis,	late	apoptosis	or	necrosis	over	4,	

24	and	48	hr	of	treatment.		

	

In	the	SJSA-1	cell	line,	following	4,	24	and	48	hr	of	vismodegib	treatment,	no	significant	

effect	was	observed	on	early	apoptosis,	 late	apoptosis	or	necrosis	when	compared	 to	
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the	 untreated	 control.	 Following	 sonidegib	 treatment,	 no	 significant	 effect	 was	

observed	on	early	apoptosis	at	any	of	the	time	points,	whereas	an	increase	in	the	%	of	

cells	 in	 late	 apoptosis	was	 observed	 at	 all	 time	points,	 although	only	 the	 24	 hr	 time-

point	was	significant	(1.78%	vs	9.75%;	p<0.05).	Marginal	 increases	were	also	observed	

in	the	%	of	necrotic	cells	at	all	time	points	although	none	were	found	to	be	significant.	

Finally,	 following	GANT-61	 treatment	 no	 significant	 effect	was	 observed	 on	 early	 and	

late	apoptosis	over	4,	24	and	48	hr	of	treatment;	however	a	significant	increase	in	the	%	

of	necrotic	cells	was	observed	after	48hr	of	treatment	when	compared	to	the	untreated	

control	(2.03%	vs	10.21%;	p<0.05).								

	

In	 conclusion,	 Hh	 antagonists	 have	 minimal	 effect	 on	 short-term	 viability.	 Only	

sonidegib	treated	SJSA-1	cells	and	GANT-61	treated	UW228-2	cells,	showed	an	increase	

in	dead	and	apoptotic	cells	respectively.		

	

	

	

	

	

	

	

	

	

	

	

Figure	5.8:	Little	or	no	impact	on	apoptosis	in	Hh	driven	tumour	cell	lines	following	Hh	

antagonist	treatment	

Representative	dot	plot	showing	the	effect	of	Hh	antagonists	over	the	three	time	periods	

4,	24,	and	48	hr	in	Hh	driven	tumour	cell	lines.	4hr	(red	population),	24hr	(blue	

population),	and	48hr	(orange	population)	treatments	are	merged	on	top	of	each	other	

Untreated	 Hh	Antagonist	
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in	order	to	display	any	shifts	following	treatment	over	the	three	time	periods.	Annexin	V	

(apoptosis	marker)	and	DAPI	(dead	cell	marker)	are	on	the	X-	and	Y-axis,	respectively.	

Each	quadrent	represents	as	follows:	Q1)	early	apoptosis,	Q2)	late	apoptosis,	Q3)	

necrosis,	Q4)	viable	cells.	Experiments	were	performed	in	triplicate	(n=3),	*	represents	

p<0.05,	t-test.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Table	5.2:	The	effect	of	Hh	antagonists	on	apoptosis	in	Hh	driven	cell	lines		 	
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Cell	Line	 Drug	

Time	

Points	

(hr)	

%	Live	

Cells	

%	Early	

Apoptosis	

%	Late	

Apoptosis	
%	Necrosis	

DAOY	

	
4	 86.25	 2.99	 2.76	 8.01	

Untreated	 24	 93.30	 1.23	 1.92	 3.54	

	 48	 92.20	 0.44	 1.42	 5.95	

	
4	 92.60	 1.38	 1.73	 4.30	

Vismodegib	 24	 94.15	 0.63	 0.92	 4.29	

	 48	 93.75	 0.74	 0.84	 4.69	

	
4	 86.70	 4.63	 3.86	 4.79	

Sonidegib	 24	 93.60	 0.53	 0.89	 5.01	

	 48	 92.60	 0.45	 1.28	 5.69	

GANT-61	

4	 90.00	 3.88	 2.93	 3.17	

24	 94.85	 0.73	 0.97	 3.58	

48	 83.20	 0.67	 1.79	 14.31	

UW228-2	

	
4	 89.25	 1.44	 3.25	 6.11	

Untreated	 24	 84.45	 2.57	 8.99	 4.00	

	 48	 86.75	 3.12	 5.65	 4.53	

	
4	 93.75	 3.82	 0.96	 1.43	

Vismodegib	 24	 96.15	 1.68	 0.58	 1.60	

	 48	 94.75	 1.62	 0.72	 2.91	

	
4	 91.05	 1.05	 2.45	 5.48	

Sonidegib	 24	 91.40	 1.07	 2.08	 5.46	

	 48	 86.50	 2.93	 5.03	 5.53	

	
4	 92.20	 5.20	 1.27	 1.33	

GANT-61	 24	 92.15	 4.15	 1.10	 2.59	

	 48	 80.40	 5.84	 6.48	 7.30	

SJSA-1	

Untreated	

4	 94.55	 1.90	 1.39	 2.18	

24	 94.95	 1.60	 1.78	 1.64	

48	 95.85	 1.41	 0.72	 2.03	

	
4	 92.70	 1.93	 2.83	 2.52	

Vismodegib	 24	 93.15	 2.29	 2.48	 2.09	

	 48	 96.60	 0.98	 0.83	 1.64	

	
4	 85.40	 1.16	 6.87	 6.57	

Sonidegib	 24	 83.70	 1.81	 9.75	 4.79	

	 48	 94.25	 0.87	 1.95	 2.96	
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4	 94.60	 1.91	 1.59	 1.91	

GANT-61	 24	 89.50	 3.43	 2.89	 4.18	

	 48	 86.75	 1.47	 1.58	 10.21	

	

	

	

	

5.2.5	 	Hh	antagonists	in	2D	culture	do	not	reduce	cell	viability	
	
To	determine	if	Hh	antagonists	resulted	in	loss	of	cell	culture	viability,	10,000	cells	per	

well	in	a	96-well	flat-bottomed	white-walled	plate	were	cultured	overnight,	before	the	

addition	 of	 10	 µM	Hh	 antagonists	 for	 24	 hours.	 Cell	 viability	was	 determined	 by	 Cell	

Titre	Glo	assay	by	comparing	untreated	and	 treated	cells.	HaCaT	cells	were	used	as	a	

non-Hh	 driven	 cell	 line	 control.	 As	 expected	 since	 HaCaT	 cells	 are	 not	 driven	 by	 Hh	

signalling,	 no	 reduction	 in	 cell	 viability	 was	 observed	 for	 vismodegib	 98.7%±4.5%,	

sonideigb	91.9%±15.3%	or	GANT-61	96.4±3.6%	treatments	 (Figure	5.9A).	As	a	positive	

control,	cell	lines	were	treated	with	the	chemotherapeutic	agent	docetaxyl	resulting	in	a	

reduction	 in	 cell	 viability	 to	 36.1%±19.0%	 (DAOY),	 58.1%±13.0%	 (UW228-2),	 and	

49.3%±11.4%	(SJSA-1),	respectively	(Figure	5.9B).		

	

In	 all	 three-cell	 lines,	 the	 addition	 of	 10µM	 vismodegib	 or	 sonidegib	 resulted	 in	 no	

significant	reduction	in	cell	viability	(Figure	5.9C,	D).	GANT-61	at	a	concentration	of	10	

µM	for	24	hours	reduced	UW228-2	cell	viability	to	81.5%±4.35%,	but	with	no	effect	on	

DAOY	or	SJSA-1	viability	(Figure	5.9E).	In	summary,	24	hr	treatment	with	antagonists	of	

the	Hh-signalling	pathway	did	not	adversely	affect	cell	 viability	and	proliferation,	with	

the	exception	of	GANT-61	treatment	of	UW228-2	cells.	
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Figure	5.9:	Hh	Antagonists	do	not	reduce	cell	viability	in	Hh	Driven	Cell	Lines:	Cell	Titre	

Glo	assay	following	24hr	treatment	with	Hh	antagonists.		

(A)	All	three	Hh	antagonists,	vismodegib,	sonidegib	and	GANT-61	were	ineffective	in	the	

non	HH-driven	HaCaT	cell	line	(-ve).	All	three-cell	lines	(DAOY,	UW228-2,	and	SJSA-1)	

were	treated	with	(B)	Docetaxyl	(+ve),	(C)	vismodegib,	(D)	sonidegib,	and	(E)	GANT-61.	

Graphs	represent	an	average	over	three	independent	experiments,	with	each	
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experiment	having	four	internal	technical	replicates	for	each	condition.	(n=3),	Error	bars	

represent	SE	mean,	*	represents	p<0.05,	t-test.	

					

5.2.6			Effect	of	Hh	antagonist	on	2D	colony	forming	efficiency	
	
We	 previously	 determined	 the	 inability	 of	 Hh	 signalling	 pathway	 antagonism	 to	

influence	 BCC	 colony	 forming	 efficiency	 (Colmont	 et	 al.,	 2013).	 We	 next	 sought	 to	

determine	 if	 Hh	 antagonists	 could	 influence	 CFE	 in	 other	 tumours	 with	 Hh	 pathway	

activation.	The	three	cell	 lines	were	plated	at	a	density	of	75	(DAOY),	125	(UW228-2),	

and	125	(SJSA-1)	cells/cm2	and	allowed	to	adhere	overnight	(in	a	total	of	1mL	of	media),	

and	then	subsequently	treated	with	Hh	antagonists.	Colonies	were	established	over	7-

12	days	(cell	line	dependent)	in	the	presence	of	the	drug,	with	colonies	needing	to	reach	

a	cut-off	of	at	least	32	cells	(5	cell	divisions)	to	be	counted	(Harrison,	2012).		

	

	

Vismodegib	did	not	influence	CFE	in	DAOY	and	UW228-2	cell	lines	(Figure	5.10B	and	C),	

but	reduced	CFE	in	SJSA-1	(77.1%±1.2%)	although	this	was	not	significant	(Figure	5.10D).	

Sonidegib	 demonstrated	 reduced	 CFE	 in	 all	 cells	 lines:	 DAOY	 (63.2%±1.9%,	 p<0.05),	

UW228-2	 (25.1%±0.07%,	 p<0.01)	 and	 SJSA-1	 (31.6%±0.2%,	 p<0.01).	 GANT-61	

significantly	reduced	CFE	in	all	three	cell	lines	(Figure	5.10A-D),	when	compared	to	the	

unstimulated	 control:	 DAOY	 (<1%,	 p<0.01),	 UW228-2	 (0%,	 p<0.01),	 SJSA-1	

(22.6%±0.30%,	p<0.01).	Hence	Hh	driven	tumour	cells	appeared	sensitive	to	GANT-61,	

followed	by	sonidegib,	with	the	least	effective	demonstrated	to	be	vismodegib.				
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Figure	 5.10:	 Colony	 forming	 cells	 are	 sensitive	 to	 GANT-61,	 but	 resistant	 to	

vismodegib.		

Colony-Forming	Assays:	Cells	were	seeded	at	a	density	of	75	cells/cm2	for	DAOY,	187.5	

cells/cm2	for	UW228-2,	and	125	cells/cm2	for	SJSA-1	cell	lines	in	the	presence	or	absence	

of	Hh	Antagonists	 for	7-12	days.	 (A)	Representative	 images,	 (B)	DAOY	cell	 line	treated	

with	 vismodegib,	 sonidegib	 and	 GANT-61,	 (C)	 UW228-2	 cell	 line	 treated	 with	

vismodegib,	 sonidegib	 and	 GANT-61,	 (D)	 SJSA-1	 cell	 line	 treated	 with	 vismodegib,	

sonidegib	 and	 GANT-61.	 All	 results	 are	 averages	 of	 at	 least	 four	 independent	

experiments,	with	three	internal	technical	replicates	for	each	condition.	(n=4),	Error	bars	

represent	SE	mean,	*	represents	p<0.05,	**	represents	p<0.01,	t-test.	

	

5.2.7			Effect	of	Hh	antagonist	on	3D	tumoursphere	forming	units	
	
To	 determine	whether	 Hh	 antagonists	 influence	 SC	 function,	 the	%	 of	 tumoursphere	

forming	units	(TFUs)	formed	was	calculated	for	each	cell	line.	Both	DAOY	and	UW228-2	

cell	lines	grow	in	non-adherent	conditions,	however	SJSA-1	does	not	and	therefore	was	

excluded.	 The	 cultured	 cells	 were	 treated	 for	 24	 hr	 before	 being	 passaged	 into	 non-

adherent	 culture	 conditions	 and	 allowed	 to	 form	 spheres	 over	 7	 days,	 before	

enumeration	and	secondary	passage.		

	

Hh	 antagonists	 did	 not	 reduce	 the	 number	 of	 DAOY	 TFUs	 in	 both	 passage	 1	 and	 2	

(Figure	5.11A	and	B,	respectively),	 instead	there	was	a	2-fold	increase	in	both	the	first	

and	second	passages	following	vismodegib	treatment	(1.4±0.2	vs	2.2±0.34,	p<0.05)	and	

(2.3±0.1	vs	7.1±3.6,	p<0.05)	 respectively.	An	 increase	 in	 the	number	of	TFUs	was	also	

observed	in	both	the	first	and	second	passages	following	sonidegib	treatment	(1.4±0.2	

vs	 1.8±0.6)	 and	 (2.3±0.1	 vs	 4.4±2.4)	 respectively.	 When	 assessing	 the	 impact	 of	 Hh	

antagonists	 on	 the	 relative	 TFU	 area,	 GANT-61	 was	 found	 to	 reduce	 TFU	 size	

(64.7%±18.9%;	 Figure	5.11C).	 This	would	 suggest	 that	 both	 vismodegib	 and	 sonidegib	

treatment	led	to	an	increase	in	colony	forming	cells	and	therefore	potential	SCs.	

	

In	UW228-2	cells	all	three	Hh	antagonists	had	no	effect	on	primary	TFUs	(Figure	5.12A),	

but	secondary	TFUs	were	reduced	with	vismodegib	(2.4±1.3	vs	1.5±0.13)	and	GANT-61	
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(2.4±1.3	vs	1.1±0.5)	(Figure	5.12B).	Once	more	GANT-61	treatment	was	associated	with	

smaller	 colonies	 (60.0%±12.6%;	 Figure	 5.12C).	 Thus	 UW228-2	 cells	 demonstrated	 a	

reduction	 in	 secondary	 TFUs,	 suggesting	 that	 vismodegib	 and	 GANT-61	 reduced	 SC	

numbers.	

	

	

	

	

	

	

	

	

	

	

	

Figure	 5.11:	 Tumoursphere-forming	 cells	 are	 sensitive	 to	 GANT-61,	 but	 not	 to	

vismodegib	and	sonidegib	in	DAOY	cells.		

Sphere-Forming	Assays:	Cells	were	seeded	in	2D	and	allowed	to	adhere	overnight	before	

being	 treated	 with	 Hh	 antagonists	 (GANT-61,	 vismodegib,	 and	 sonidegib)	 for	 24	 hr.	

Following	treatment	cells	were	trypsinised	and	plated	under	sphere	forming	conditions	

at	 a	 density	 of	 5	 cells/μL	 and	 allowed	 to	 form	 spheres	 over	 7	 days	 before	 being	

enumerated	(P1).	Spheres	were	then	dissociated	and	re-plated	at	a	density	of	5	cells/μL	
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allowed	to	grow	for	a	further	7	days,	before	being	finally	enumerated	(P2).	(A)	%TFUs	at	

P1	in	DAOY	cells	treated	with	Hh	antagonists,	(B)	%TFUs	at	P2	in	DAOY	cells	treated	with	

Hh	 antagonists,	 (C)	 Area	 of	 DAOY	 TFUs	 treated	 with	 Hh	 antagonists	 relative	 to	

untreated	 control.	 Tumoursphere	 forming	 units	 (%)	 represents	 the	 number	 of	 spheres	

formed	relative	to	the	number	of	cells	originally	seeded.	All	results	are	averages	of	three	

independent	 experiments,	 with	 three	 internal	 technical	 replicates	 for	 each	 condition.	

(n=3),	Error	bars	represent	SE	of	mean,	*	represents	p<0.05,	**	represents	p<0.01,	t-test.	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	 5.12:	 Tumoursphere-forming	 cells	 are	 sensitive	 to	 GANT-61,	 but	 not	 to	

vismodegib	and	sonidegib	in	UW228-2	cells.		
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Sphere-Forming	Assays:	Cells	were	seeded	in	2D	and	allowed	to	adhere	overnight	before	

being	 treated	 with	 Hh	 antagonists	 (GANT-61,	 vismodegib,	 and	 sonidegib)	 for	 24	 hr.	

Following	treatment	cells	were	trypsinised	and	plated	under	sphere	forming	conditions	

at	 a	 density	 of	 5	 cells/μL	 and	 allowed	 to	 form	 spheres	 over	 7	 days	 before	 being	

enumerated	(P1).	Spheres	were	then	dissociated	and	re-plated	at	a	density	of	5	cells/μL	

allowed	to	grow	for	a	further	7	days,	before	being	finally	enumerated	(P2).	(A)	%TFUs	at	

P1	 in	 UW228-2	 cells	 treated	 with	 Hh	 antagonists,	 (B)	 %TFUs	 at	 P2	 in	 UW228-2	 cells	

treated	with	 Hh	 antagonists,	 (C)	 Area	 of	 UW228-2	 TFUs	 treated	with	 Hh	 antagonists	

relative	to	untreated	control.	Tumoursphere	forming	units	(%)	represents	the	number	of	

spheres	formed	relative	to	the	number	of	cells	originally	seeded.	All	results	are	averages	

of	 three	 independent	 experiments,	 with	 three	 internal	 technical	 replicates	 for	 each	

condition.	 (n=3),	 Error	 bars	 represent	 SE	 of	mean,	 *	 represents	 p<0.05,	 **	 represents	

p<0.01,	t-test.	

	

5.2.8	 Identifying	genes	that	are	TGFβ	regulated	within	Hh	driven	tumour	

cell	lines	

	All	 three-tumour	 cell	 lines	 were	 treated	 with	 TGFβ	 ligand	 for	 1hr	 and	 the	 ALK5	

antagonist	 (SB431542)	 for	a	 further	3	hr,	before	performing	qPCR	on	a	panel	of	TGFβ	

regulated	genes	in	order	to	determine	which	genes	are	truly	TGFβ	regulated	(a	response	

following	agonist	 treatment	which	 can	be	 subsequently	 reversed	 following	antagonist	

treatment)	within	each	of	the	cell	lines	(Figure	5.13A-C).	Summarised	in	Table	5.3.	

	

In	DAOY	cells,	following	TGFβ1	agonist	treatment,	a	decreased	expression	was	observed	

for	ADAM19	(-1.54±0.13),	ANGPTL4	 (-2.89±0.50),	and	CEBPD	(-2.10±0.22),	whereas	an	

increase	in	expression	was	observed	for	NEDD9	(0.93±0.36),	SERPINE1	(0.09±0.10),	and	

SKIL	 (0.06±0.05)	 when	 compared	 to	 the	 untreated	 control	 (Figure	 5.13A).	 Following	

SB431542	treatment	 in	comparison	to	TGFβ1	treatment:	no	change	 in	expression	was	

observed	 for	ADAM19,	ANGPTL4,	 or	NEDD9,	whereas	CEBPD	 increased	 (0.40±0.44)	 in	

expression	 and	 both	 SERPINE1	 (-4.91±0.05)	 and	 SKIL	 (-3.09±0.06)	 decreased	 in	

expression.	Therefore,	in	the	DAOY	cell	line,	CEBPD,	SERPINE1,	and	SKIL	will	be	classified	

as	TGFβ	regulated	genes.	
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In	 UW228-2	 cells,	 following	 TGFβ1	 agonist	 treatment,	 a	 decreased	 expression	 was	

observed	for	CEBPD	(-5.08±0.08),	whereas	an	 increase	 in	expression	was	observed	for	

ADAM19	 (0.14±0.07),	 NEDD9	 (1.15±0.13),	 SERPINE1	 (1.89±0.27),	 and	 SKIL	 (0.28±0.09)	

when	compared	to	the	untreated	control	(Figure	5.13B).	Following	SB431542	treatment	

in	comparison	to	TGFβ1	treatment:	no	change	in	expression	was	observed	for	ADAM19,	

SERPINE1,	or	 SKIL,	whereas	NEDD9	 (0.68±0.10)	was	 shown	 to	decrease	 in	expression,	

and	CEBPD	was	found	to	slightly	 increase	(-4.63±0.05).	Therefore,	 in	the	UW228-2	cell	

line,	NEDD9	and	CEBPD	will	be	classified	as	TGFβ	regulated	genes.	

	

In	 SJSA-1	 cells,	 following	 TGFβ1	 agonist	 treatment,	 a	 decreased	 expression	 was	

observed	 for	 ANGPTL4	 (-4.63±0.12),	 and	 CEBPD	 (-5.87±0.05),	 whereas	 an	 increase	 in	

expression	 was	 observed	 for	 NEDD9	 (1.44±0.34),	 SERPINE1	 (0.13±0.11),	 and	 SKIL	

(0.08±0.10)	 when	 compared	 to	 the	 untreated	 control	 (Figure	 5.13C).	 Following	

SB431542	treatment	 in	comparison	to	TGFβ1	treatment:	no	change	 in	expression	was	

observed	 for	 ANGPTL4,	 SERPINE1	 or	 SKIL,	 whereas	 CEBPD	 increased	 (-0.04±0.39)	 in	

expression	and	NEDD9	(0.06±0.16)	decreased	in	expression.	Therefore,	in	the	SJSA-1	cell	

line,	CEBPD	and	NEDD9	will	be	classified	as	TGFβ	regulated	genes.	
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Figure	5.13:	 Identifying	genes	 that	are	TGFβ	 regulated	within	Hh	driven	 tumour	 cell	

lines	

Hh	driven	cell	lines	were	cultured	in	the	presence	of	TGFβ1	ligand	for	1hr	and	the	ALK5	

antagonist	 (SB431542)	for	a	further	3	hr,	before	performing	qPCR	on	a	panel	of	TGFβ-

regulated	genes	 in	(A)	DAOY,	(B)	UW228-2,	and	(C)	SJSA-1	cell	 lines.	Expression	values	

are	based	on	the	Log10RQ,	where	a	value	of	1.0	represents	a	fold	change	of	+10,	and	0.1	

represents	 a	 fold	 change	 of	 -10.	 All	 results	 are	 an	 average	 of	 two	 independent	

experiments	 (n=2).	 The	 qPCR	 assay	 was	 performed	 with	 three	 internal	 technical	

replicates	and	two	endogenous	controls.			

	
Table	5.3:	Identifying	genes	that	are	TGFβ	regulated	within	Hh	driven	tumour	cell	lines	

UP,	 represents	 genes	 that	 are	 upregulated;	 DOWN,	 represents	 genes	 that	 are	

downregulated;	NC,	represents	no	change	in	gene	expression.	All	changes	stated	are	in	

comparison	 to	 the	 untreated	 control.	 *=moderately	 up/downregulated;	 **=highly	

up/downregulated.	?=cannot	determine	based	on	the	available	data.				

	

Cell	Line	 TGFβ	
Regulated	
Genes	

TGFβ1	Agonist	 SB431542	 TGFβ	
Regulated	

DAOY	 ADAM19	 DOWN	 DOWN	 ?	
ANGPTL4	 DOWN	 DOWN	 ?	
CEBPD	 DOWN	 UP	 YES	
NEDD9	 UP	 UP	 NO	
SERPINE1	 UP	 DOWN	 YES	
SKIL	 UP	 DOWN	 YES	

UW228-2	 ADAM19	 UP	 UP	 NO	
CEBPD	 DOWN**	 DOWN*	 YES	
NEDD9	 UP**	 UP*	 YES	
SERPINE1	 UP	 UP	 NO	
SKIL	 UP*	 UP*	 NO	

SJSA-1	 ANGPTL4	 DOWN	 DOWN	 NO	
CEBPD	 DOWN	 NC	 YES	
NEDD9	 UP	 NC	 YES	
SERPINE1	 UP	 UP	 NO	
SKIL	 UP	 UP	 NO	
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5.2.9	 Hh	antagonists	 induce	SMAD3	phosphorylation	and	regulate	TGFβ	
gene	expression		
	

To	determine	if	Hh	antagonism	could	induce	TGFβ	signalling,	Western	blot	analysis	was	

undertaken	on	protein	lysates	extracted	from	cells	following	a	4	hr	treatment	with	Hh	

antagonists	 and	quantified	using	 ImageJ	 software.	As	 a	positive	 and	negative	 control,	

cells	were	treated	with	TGFβ1	and	SB431542,	respectively.	Using	Western	blot	analysis,	

in	 the	 DAOY	 cell	 line,	 increased	 levels	 of	 pSMAD3	were	 observed	 following	 GANT-61	

(140.4%±12.7%),	 vismodegib	 (145.5%±9.1%;	 p<0.05),	 and	 sonidegib	 (132.14±10.7)	

(Figure	5.14A).	In	the	UW228-2	cell	line,	increased	levels	of	pSMAD3	were	also	observed	

following	 GANT-61	 (123.1%±2.7%;	 p<0.05),	 vismodegib	 (156.5%±33.8%;	 p<0.05),	 and	

sonidegib	(126.2±3.9;	p<0.05)	(Figure	5.14B).	Finally,	this	increase	in	pSMAD3	levels	was	

also	 observed	 in	 primary	 BCC	 tissue,	 following	 treatment	 with	 GANT-61	 (115.1%+/-

8.3%),	vismodegib	(122.6%±9.5%),	and	sonidegib	(112.4%±1.8%:	p<0.05)	(Figure	5.14C).	
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Figure	 5.14:	 The	 TGFβ	 signalling	 pathway	 is	 activated	 following	 treatment	 with	 Hh	

antagonists	in	Hh	driven	tumours		

The	tumour	cell	 lines,	DAOY	and	UW228-2,	were	cultured	in	normal	growth	medium	in	

the	presence	of	Hh	antagonists	at	a	concentration	of	10	μM	for	4hr	before	 lysing	and	

extracting	protein	for	Western	blot	analysis.	Primary	BCC	adhered	to	the	same	drugging	
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and	protein	extraction	regime,	but	whole	tissue	was	first	dissociated	into	single	cells	and	

then	plated	before	being	drugged.	Western	Blotting	and	Densitometry	analysis	 for	 (A)	

DAOY	 cells,	 (B)	 UW228-2	 cells	 (C)	 Primary	 BCC	 cells.	 pSMAD3	 bands	were	 normalised	

firstly	 to	 total	 SMAD3,	and	 then	GAPDH.	 Experiments	on	 the	DAOY	and	UW228-2	 cell	

lines	 were	 performed	 in	 triplicate	 (n=3),	 while	 experiment	 on	 primary	 BCC	 was	

performed	 in	duplicate	 (n=2),	Error	bars	 represent	SE	of	mean,	*	 represents	p<0.05,	 t-

test.		

	

To	determine	the	impact	of	Hh	antagonists	on	TGFβ	regulated	genes	(defined	in	section	

5.2.8),	 cell	 lines	 were	 cultured	 with	 Hh	 antagonists	 for	 24hr,	 and	 RNA	 subsequently	

extracted	for	a	qPCR	assay	(summarised	in	Table	5.4).		

	

In	DAOY	cells,	as	previously	mentioned	the	cell	specific	TGFβ	regulated	genes	(TGFβ1-

induced	and	ALK5	receptor	kinase	dependent),	CEBPD,	SERPINE1	and	SKIL	were	found	

to	decrease,	 increase	and	 increase	 in	expression,	resepctivey,	 following	TGFβ1	agonist	

treatment	 when	 compared	 to	 the	 untreated	 control	 (Figure	 5.15A).	 Following	 Hh	

antagonist	 treatment	 in	 comparison	 to	 the	 untreated	 control:	 a	 reduction	 in	 CEBPD	

expression	 was	 found	 following	 treatment	 with	 vismodegib	 (-3.89±0.11;	 p<0.05),	

whereas	GANT-61	showed	no	change	in	expression	(0.02±0.09),	and	sonidegib	induced	

an	 increase	 in	 expression	 (1.43±0.38;	 p<0.05);	 a	 reduction	was	 observed	 in	 SERPINE1	

expression	 following	 vismodegib	 (-2.05±0.09)	 and	 GANT-61	 (-0.74±0.08)	 treatment,	

whereas	 an	 increase	 was	 observed	 for	 sonidegib	 (1.70±0.31)	 treatment;	 finally,	 a	

reduction	was	observed	in	SKIL	expression	following	vismodegib	(-1.82±0.08)	and	GANT-

61	(-0.87±0.08)	treatment,	whereas	an	increase	was	observed	for	sonidegib	(0.23±0.08)	

treatment.	 Therefore,	 in	 the	DAOY	 cell	 line,	 a	 TGFβ1	 induced	 response	was	observed	

for:	 1)	 vismodegib	 and	 CEBPD	 expression,	 2)	 sonidegib	 and	 SERPINE1	 and	 SKIL	

expression,	and	3)	GANT-61	and	CEBPD	expression.	

	

In	 UW228-2	 cells,	 as	 previously	 mentioned	 the	 cell	 specific	 TGFβ	 regulated	 genes	

(TGFβ1-induced	and	ALK5	receptor	kinase	dependent),	CEBPD	and	NEDD9	were	found	

to	decrease	and	increase	in	expression,	resepctivey,	following	TGFβ1	agonist	treatment	

when	 compared	 to	 the	 untreated	 control	 (Figure	 5.15B).	 Following	 Hh	 antagonist	
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treatment	in	comparison	to	the	untreated	control:	a	reduction	in	CEBPD	expression	was	

found	 following	 treatment	 with	 vismodegib	 (-2.60±0.45)	 and	 sonidegib	 (-3.62±0.06;	

p<0.05),	but	this	however	was	not	observed	following	GANT-61	treatment	(0.33±0.13);	

a	reduction	was	observed	 in	NEDD9	expression	following	vismodegib	 (-3.54±0.04)	and	

sonidegib	(-5.70±0.04;	p<0.01)	treatment,	whereas	an	increase	was	observed	for	GANT-

61	 (0.29±0.07)	 treatment.	 Therefore,	 in	 the	 UW228-2	 cell	 line,	 a	 TGFβ1	 induced	

response	 was	 observed	 for:	 1)	 vismodegib	 and	 CEBPD	 expression,	 2)	 sonidegib	 and	

CEBPD	expression,	and	3)	GANT-61	and	NEDD9	expression.	

	

In	SJSA-1	cells,	as	previously	mentioned	the	cell	specific	TGFβ	regulated	genes	(TGFβ1-

induced	 and	 ALK5	 receptor	 kinase	 dependent),	 CEBPD	 and	 NEDD9	 were	 found	 to	

decrease	 and	 increase	 in	 expression,	 resepctivey,	 following	 TGFβ1	 agonist	 treatment	

when	 compared	 to	 the	 untreated	 control	 (Figure	 5.15C).	 Following	 Hh	 antagonist	

treatment	in	comparison	to	the	untreated	control:	an	increase	in	CEBPD	expression	was	

found	 following	 treatment	 with	 sonidegibb	 (0.41±0.37)	 and	 GANT-61	 (0.40±0.26),	

whereas	 no	 change	 in	 expression	 was	 observed	 following	 vismodegib	 treatment	 (-

1.39±0.18);	 an	 increase	 was	 observed	 in	 NEDD9	 expression	 following	 sonidegib	

(0.42±0.17)	 treatment,	 whereas	 no	 change	 was	 observed	 for	 both	 vismodegib	

(0.12±0.17)	 and	 GANT-61	 (0.07±0.05)	 treatment.	 Therefore,	 in	 the	 SJSA-1	 cell	 line,	 a	

TGFβ1	induced	response	was	observed	for:	sonidegib	and	NEDD9	expression	only.		

	

Collectively	these	findings	show	that	the	response	of	each	cell	line	is	varied	following	Hh	

antagonist	 treatment.	 Sonidegib	was	 shown	 to	 induce	TGFβ	 regulated	genes	 in	DAOY	

cells.	Both	sonidegib	and	vismodegib	appeared	to	downregulate	TGFβ	regulated	genes	

in	UW228-2	cells,	a	cell	line	known	to	be	less	sensitive	to	Hh	antagonist	treatment.			
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Figure	 5.15:	 TGFβ-regulated	 genes	 are	 induced	 following	 treatment	 with	 Hh	

antagonists	in	Hh	driven	tumours.		

(A)	 HaCaT	 cells	 treated	 with	 TGFβ1	 (+ve);	 blue	 bars	 shown	 genes	 upregulated	 in	

response	 to	 TGFβ1;	 red	 bars	 indicate	 genes	 downregulated	 in	 response	 to	 TGFβ1,	 (B)	

DAOY	cell	 line	 treated	with	GANT-61,	vismodegib	and	sonidegib,	 (C)	UW228-2	cell	 line	

treated	with	vismodegib,	sonidegib	and	GANT-61,	and	 (D)	SJSA-1	cell	 line	treated	with	

vismodegib,	 sonidegib,	 and	 GANT-61.	 Expression	 values	 are	 based	 on	 the	 Log10RQ,	

where	a	value	of	10.0	represents	a	fold	change	of	+10,	and	0.1	represents	a	fold	change	

of	 -10	 in	 comparison	 to	 the	 control.	 All	 results	 are	 an	 average	 of	 two	 independent	

experiments.	The	qPCR	assay	was	performed	with	three	internal	technical	replicates	and	

two	endogenous	controls.	(n=2),	Error	bars	represent	SE	of	mean,	*	represents	p<0.05,	

**	represents	p<0.01.		
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Table	5.4:	Impact	of	Hh	antagonists	on	cell	line	specific	TGFβ	regulated	genes	

UP,	 represents	 genes	 that	 are	 upregulated;	 DOWN,	 represents	 genes	 that	 are	

downregulated;	NC,	represents	no	change	in	gene	expression.	All	changes	stated	are	in	

comparison	 to	 the	 untreated	 control.	 *=moderately	 up/downregulated;	 **=highly	

up/downregulated.	?=cannot	determine	based	on	the	available	data.				

	

Cell	Line	 TGFβ	

Regulated	

Genes	

Impact	

of	

TGFβ1		

Impact	of	

Vismodegib	

Induction	of	

TGFB	

Regulated	

Genes	

Impact	of	

Sonidegib	

Induction	of	

TGFB	

Regulated	

Genes	

Impact	of	

GANT-61	

Induction	of	

TGFB	

Regulated	

Genes	

DAOY	 CEBPD	 DOWN	 DOWN*	 YES	 UP	 NO	 DOWN	 YES	

SERPINE1	 UP	 DOWN	 NO	 UP*	 YES	 DOWN	 NO	

SKIL	 UP	 DOWN	 NO	 UP	
YES	

DOWN	 NO	

UW228-2	 CEBPD	 DOWN

**	

DOWN*	 YES	 DOWN**	 YES	 UP	 NO	

NEDD9	 UP	 DOWN*	 NO	 DOWN*	 NO	 UP	 YES	

SJSA-1	 CEBPD	 DOWN	 DOWN/NC	 YES/?	 UP	 NO	 UP	 NO	

NEDD9	 UP	 NC	 NO/?	 UP	 YES	 NC	 NO	

	

	

	

5.2.10		 Blocking	TGFβ	signalling		
	
TGFβ	 signalling	 can	be	blocked	at	 the	 level	 of:	 TGFβ	 receptor	 kinase	 activation	 (small	

molecule	 tyrosine	 kinase	 inhibitor	 SB431542),	 and	 signal	 transduction	 binding	 of	

phosphorylated	SMAD3	with	the	co-SMAD,	SMAD4	(by	siRNA	transcript	knockdown).	

	

Next	the	efficacy	of	the	two	approaches	for	blocking	TGFβ1	signalling	in	our	Hh	driven	

tumour	 cell	 lines	was	 determined	 by	 evaluating	 nuclear	 pSMAD3	 accumulation	 using	

immunofluorescence	and	expression	of	a	panel	of	TGFβ	 responsive	genes	by	qRT-PCR	

(already	defined).	As	expected,	 immunofluorescence	of	pSMAD3	showed	 reduction	of	

nuclear	 accumulation	 with	 SB431542	 in	 all	 three	 Hh	 driven	 cell	 lines	 (Figure	 5.16A).	

SMAD4	knockdown	was	achieved	with	siRNA	to	limit	cell	cytotoxicity	before	evaluation	
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of	the	effectiveness	of	 in	vitro	TGFβ	signalling	blockade.	Optimisation	of	SMAD4	siRNA	

transfection	was	undertaken	with	varying	concentrations	of	Lipofectamine	and	siRNA;	

and	qPCR	was	 performed	 to	 assess	 the	 level	 of	 SMAD4	 transcript	 knockdown	 (Figure	

5.16B).	In	both	the	DAOY	and	UW228-2	cell	lines	(data	not	available	for	SJSA-1	cell	line),	

when	using	0.625	μM	of	Lipofectamine	with	0.3125	μM	of	SMAD4	siRNA,	a	10-fold	and	

4-fold	 downregulation	 of	 SMAD4	 was	 achieved,	 respectively,	 when	 compared	 to	 the	

control.	 Furthermore,	 when	 knocking	 down	 SMAD4,	 there	 was	 a	 downregulation	 in	

most	of	the	TGFβ	regulated	genes	in	all	three-cell	lines	(Figure	5.16C).		
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Figure	5.16:	Blocking	TGFβ	signalling.			

DAOY,	 UW228-2	 and	 SJSA-1	 cell	 lines	 were	 cultured	 under	 normal	 growth	 conditions	

before	being	treated	with	10	μM	SB431542	for	24	hr	and	subsequently	performing	(A)	

Immunofluorescence	 for	 pSMAD3	 nuclear	 labelling,	 with	 TGFβ1	 used	 as	 a	 positive	

control	 (B)	 qPCR	 to	 show	 the	 downregulation	 of	 SMAD4	 following	 optimisation	 of	

lipofectamine	 and	 siRNA	 concentrations	 in	 the	 DAOY	 and	 UW228-2	 cells	 (data	 not	
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available	for	SJSA-1	cell	line).	The	core	panel	of	genes	was	used	on	DAOY,	UW228-2	and	

SJSA-1	cells	treated	with	(C)	SMAD4	siRNA	for	48	hr.	Expression	values	are	based	on	the	

Log10RQ,	where	a	value	of	10.0	 represents	a	 fold	change	of	+10,	and	0.1	 represents	a	

fold	 change	 of	 -10.	 The	 qPCR	 assay	 was	 performed	 with	 three	 internal	 technical	

replicates	and	two	endogenous	controls.	Error	bars	represent	SE	of	mean.		

	

	

	

5.2.11	 	 	 Effect	 of	 Blocking	 TGFβ	 Signalling	 on	Hh-regulated	Genes	 in	Hh	
Driven	Tumours	
	

We	next	sought	to	test	the	impact	of	TGFβ	inhibitors	(SB431542,	and	SMAD4	siRNA)	on	

Hh-regulated	genes	 (defined	 in	 section	5.2.3)	using	qPCR	 (Figure	5.17;	 summarised	 in	

Table	 5.5).	 As	 previously	 mentioned	 numerous	 studies	 have	 demonstrated	 crosstalk	

between	 the	 TGFβ	 and	 Hh	 signalling	 pathways,	 we	 therefore	 wanted	 to	 establish	

whether	genes	regulated	through	Hh	signalling	are	 impacted	following	the	addition	of	

TGFβ	inhibitors	in	our	Hh	driven	cell	lines.					

	

In	DAOY	cells,	as	previously	mentioned	the	cell	specific	Hh	regulated	genes	(Hh-induced	

and	 Hh	 inhibitor	 responsive),	 GLI1,	 GLI2	 and	 SMO	 were	 found	 to	 all	 increase	 in	

expression,	 following	Hh	agonist	 treatment	when	compared	 to	 the	untreated	control.	

Following	SB43142	treatment,	in	comparison	to	the	untreated	control:	a	slight	increase	

in	SMO	(0.10±0.05)	expression	was	found,	but	this	however	was	not	observed	for	GLI1	

and	 GLI2	 where	 there	 was	 no	 change	 in	 expression	 (0.09±0.41)	 and	 (-0.63±0.24),	

respectively.	Following	SMAD4	knockdown,	in	comparison	to	the	untreated	control:	an	

increase	 in	expression	was	observed	for	GLI1	 (1.60±0.8;	p<0.05),	GLI2	 (0.27±0.20)	and	

SMO	(1.42±0.34;	p<0.05).	Therefore,	in	the	DAOY	cell	 line,	a	Hh	induced	response	was	

observed	 for:	 1)	 SB431542	 and	GLI1	 and	 SMO	expression,	 2)	 SMAD4	 knockdown	 and	

GLI1,	2,	and	SMO	expression.		

	

In	UW228-2	 cells,	 as	previously	mentioned	 the	 cell	 specific	Hh	 regulated	 genes,	GLI1,	

GLI2	 and	 SMO	 were	 found	 to	 increase,	 decrease	 and	 decrease	 in	 expression,	
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respectively,	following	Hh	agonist	treatment	when	compared	to	the	untreated	control.	

Unfortunately	data	is	not	available	for	the	impact	of	SB431542	on	Hh	regulated	genes	in	

this	cell	line.	Following	SMAD4	knockdown,	in	comparison	to	the	untreated	control:	an	

increase	in	expression	was	observed	for	GLI1	(0.77±0.74),	no	change	in	expression	was	

observed	 for	 GLI2	 (0.06±0.31),	 while	 the	 expression	 of	 SMO	 decreased	 unchanged	 (-

0.83±0.05).	Therefore,	 in	 the	UW228-2	cell	 line,	a	Hh	 induced	response	was	observed	

for:	1)	SMAD4	knockdown	and	GLI1	and	SMO	expression.		

	

In	 the	SJSA-1	cell	 line,	GLI2,	PTCH,	and	SMO	were	classified	as	being	Hh	 regulated.	 In	

SJSA-1	cells,	all	 three	genes	were	downregulated	 in	 response	 to	SB431542	 treatment,	

GLI2	 (-3.97±0.15;	 p<0.01),	 PTCH1	 (-3.37±0.1;	 p<0.05),	 and	 SMO	 (-1.10±0.20)	 (Figure	

5.17).	 Finally,	 following	 SMAD4	 knockdown,	 no	 changes	 in	 gene	 expression	 were	

observed	 in	 any	of	 the	 genes	when	 compared	 to	 the	untreated	 control	 (Figure	5.17).	

Therefore,	in	the	SJSA-1	cell	line,	a	Hh	induced	response	was	observed	for:	1)	SB431542	

and	GLI2,	PTCH	and	SMO	expression.	
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Figure	 5.17:	 Effect	 of	 Blocking	 TGFβ	 Signalling	 on	 Hh-regulated	 Genes	 in	 Hh	 Driven	

Tumours.		

Hh	driven	cell	 lines	were	cultured	in	the	presence	of	the	TGFβ	blocker	SB431542	for	24	

hr,	 and	 SMAD4	 siRNA	 for	 48	 hr.	 RNA	 was	 extracted	 and	 assayed	 for	 a	 panel	 of	 Hh-

regulated	 genes	 in	 DAOY,	 UW228-2,	 and	 SJSA-1	 cells	 by	 qPCR.	 Expression	 values	 are	

based	on	the	Log10RQ,	where	a	value	of	10.0	represents	a	fold	change	of	+10,	and	0.1	

represents	 a	 fold	 change	 of	 -10.	 	 All	 results	 are	 an	 average	 of	 two	 independent	

experiments.	The	qPCR	assay	was	performed	with	three	internal	technical	replicates	and	

two	endogenous	controls.	(n=2),	Error	bars	represent	SE	of	mean,	*represents	p<0.05,	**	

represents	p<0.01,	t-test.	
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Table	5.5:	Impact	of	TGFβ	inhibition	on	cell	line	specific	Hh	regulated	genes	

UP,	 represents	 genes	 that	 are	 upregulated;	 DOWN,	 represents	 genes	 that	 are	

downregulated;	NC,	represents	no	change	in	gene	expression.	All	changes	stated	are	in	

comparison	 to	 the	 untreated	 control.	 *=moderately	 up/downregulated;	 **=highly	

up/downregulated.	?=cannot	determine	based	on	the	available	data.				

	

Cell	Line	 Hh	

Regulated	

Genes	

Impact	of	Hh	 Impact	of	

SB431542	

Induction	of	

Hh	Regulated	

Genes	

Impact	of	

SMAD4	siRNA	

Induction	of	

Hh	Regulated	

Genes	

DAOY	 GLI1	 UP	 UP/NC	 YES/?	 UP*	 YES	

GLI2	
UP	 DOWN/NC	 ?	 UP	 YES	

SMO	
UP	 UP	 YES	 UP*	 YES	

UW228-

2	

GLI1	 UP	 N/A	 N/A	 UP	 YES	

GLI2	 DOWN	 N/A	 N/A	 NC	 ?	

SMO	
DOWN	 N/A	 N/A	 DOWN	 YES	

SJSA-1	
GLI2	

DOWN	 DOWN	 YES	 NC	 NO	

SMO	
DOWN	 DOWN	 YES	 NC	 NO	

PTCH	
DOWN	 DOWN	 YES	 NC	 NO	

	

	

	

5.2.12		 Apoptosis	after	blocking	TGFβ	signalling		
	
In	order	to	determine	whether	TGFβ	inhibition	(SB431542	and	SMAD4	siRNA)	increased	

cell	 death	 in	 our	Hh	 driven	 cell	 lines,	we	 undertook	 flow	 cytometric	 analysis	 on	 cells	

treated	for	4,	24,	and	48	hours,	then	labelled	with	Annexin	V	and	DAPI.		

	

Figure	 5.18	 shows	 representative	 dot	 plots	 between	 untreated	 and	 TGFβ	 antagonist	

treated	 cell	 lines	 over	 three	 time-points.	 Table	 5.6	 below	 outlines	 the	 effect	 of	

SB431542	and	 SMAD4	 siRNA	only	 treatments	on	early	 apoptosis	 (Annexinpos/DAPIneg),	
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late	 apoptosis	 (Annexinpos/DAPIpos)	 or	 necrosis	 (Annexinneg/DAPIpos)	 over	 three	 time-

points	 (4,	24	and	48hr)	 in	our	Hh	driven	cell	 lines	 relative	 to	 the	 total	 cell	population	

(100%).			

	

As	a	percentage	of	the	total	cell	population	(100%)	all	three-cell	lines	demonstrated	no	

significant	difference	 in	early	apoptosis,	 late	apoptosis	or	necrosis	between	untreated	

and	SB431542	treatment	over	the	three	time-points,	with	the	exceptions	of	DAOY	cells,	

where	the	48	hr	treatment	increased	the	percentage	of	cells	 in	early	apoptosis	(3.70%	

vs	10.63%;	p<0.05);	and	in	UW228-2	cells,	where	24	and	48	hr	treatments	increased	the	

percentage	 of	 cells	 in	 late	 apoptosis	 (0.63%	 vs	 9.20%;	 p<0.05	 and	 0.73%	 vs	 5.64%;	

p<0.05,	respectively).			

	

As	a	percentage	of	the	total	cell	population	(100%)	all	three-cell	lines	demonstrated	no	

significant	difference	 in	early	apoptosis,	 late	apoptosis	or	necrosis	between	scrambled	

siRNA	and	SMAD4	siRNA	treatment	over	the	three	time-points	(Table	5.6).		

	

In	conclusion,	the	TGFβ	antagonists,	SB431542	and	SMAD4	siRNA	had	no	effect	on	cell	

apoptosis	or	death	in	all	three-cell	lines.			
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Figure	5.18:	Impact	TGFβ	antagonist	only	treatment	on	apoptosis	in	Hh	driven	tumour	

cell	lines		

Representative	dot	plot	to	show	the	effect	of	TGFβ	antagonists	over	the	three	time	

periods	4,	24,	and	48	hours	in	Hh	driven	tumour	cell	lines.	4hr	(red	population),	24hr	

(blue	population),	and	48hr	(orange	population)	treatments	are	merged	on	top	of	each	

other	in	order	to	display	any	shifts	following	treatment	over	the	three	time	periods.	

Annexin	V	(apoptosis	marker)	and	DAPI	(dead	cell	marker)	are	on	the	X-	and	Y-axis,	

Untreated	 SB431542	

Scrambled	siRNA	 SMAD4	siRNA	
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respectively.	Each	quadrent	represents	as	follows:	Q1)	early	apoptosis,	Q2)	late	

apoptosis,	Q3)	necrosis,	Q4)	viable	cells.	Experiments	were	performed	in	duplicate	(n=2),	

*	represents	p<0.05,	t-test.	

	
	

Table	5.6:	Effect	of	TGFβ	antagonist	treatment	on	inducing	apoptosis	in	Hh	driven	cell	

lines.		

#	 Drug	 Time	Points	

(hr)	
%	Live	

Cells	
%	Early	

Apoptosis	
%	Late	

Apoptosis	
%	

Necrosis	

DAOY	

Untreated	

	

4	 90.95	 5.34	 1.75	 1.96	

24	 89.55	 5.72	 2.75	 1.99	
48	 91.90	 3.70	 0.99	 3.39	

SB431542	

	

4	 87.75	 4.44	 1.43	 6.36	
24	 86.60	 7.71	 3.22	 2.46	
48	 82.85	 10.63	 3.24	 3.31	

Scrambled	

siRNA	

	

4	 88.35	 3.41	 4.72	 3.50	
24	 81.30	 2.80	 5.51	 10.39	

48	 65.15	 3.59	 11.65	 19.64	

SMAD4	siRNA	
4	 90.25	 2.66	 3.84	 3.25	
24	 81.45	 3.35	 6.38	 8.83	
48	 67.20	 2.81	 10.37	 19.65	

	

	

	

	

	

UW228-

2	

Untreated	

	

4	 95.25	 2.47	 0.83	 1.48	
24	 95.50	 1.46	 0.63	 2.42	

48	 94.80	 1.88	 0.73	 2.60	

SB431542	

	

4	 87.30	 3.83	 2.96	 5.95	
24	 82.15	 3.82	 9.20	 4.84	

48	 85.70	 3.92	 5.64	 4.80	
Scrambled	

siRNA	

	

4	 85.20	 0.77	 4.63	 9.38	
24	 86.50	 2.39	 1.66	 9.47	

48	 81.30	 2.95	 4.08	 11.70	

SMAD4	siRNA	

4	 95.50	 0.83	 0.70	 2.97	

24	 90.50	 1.87	 1.07	 6.57	
48	 86.30	 2.81	 2.02	 8.85	

	

	

	

Untreated	

	

4	 93.10	 3.94	 1.21	 1.57	
24	 95.70	 1.20	 1.26	 1.84	
48	 95.40	 1.85	 0.69	 2.04	
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SJSA-1	

SB431542	

	

4	 94.55	 2.26	 1.47	 1.77	
24	 94.05	 2.88	 1.34	 1.74	
48	 95.50	 1.72	 1.22	 1.57	

Scrambled	

siRNA	

	

4	 82.40	 8.75	 3.76	 5.08	
24	 71.20	 4.75	 8.60	 15.40	

48	 30.10	 8.88	 33.00	 28.00	

SMAD4	siRNA	
4	 88.20	 5.12	 2.18	 4.49	
24	 75.70	 4.50	 6.27	 13.60	
48	 39.00	 8.97	 25.40	 26.70	

	

	

5.2.13		 Effect	of	Blocking	TGFB	signalling	on	cell	viability		
	
TGFβ	signalling	blockade	with	SB431542	was	evaluated	by	plating	10,000	cells	into	a	96-

well	 flat-bottomed	 plate	 overnight	 then	 incubating	 with	 SB431542	 for	 24	 hr,	 before	

evaluation	of	cell	viability	using	cell	titre	glo	assay	on	a	CLARIOstar	plate	reader.	These	

experiments	were	conducted	in	quadruplicate,	in	three	separate	experiments.	

	

We	observed	no	 loss	of	viability	 in	DAOY	(98.8%±3.7%),	UW228-2	(107.0%±1.9%),	and	

SJSA-1	(124.8%±19.8%)	cell	 lines	in	comparison	to	unstimulated	control	(100%)	(Figure	

5.19A).	 In	 conclusion,	 TGFβ	 signalling	 blockade	 with	 the	 small	 molecule	 receptor	

tyrosine	kinase	 inhibitor	 SB431542,	 although	effective	at	blocking	TGFβ	 signalling,	did	

not	significantly	affect	cell	viability	significantly	in	these	experiments.	

	

TGFβ	signalling	blockade	with	SMAD	4	siRNA	was	similarly	evaluated	by	incubation	with	

SMAD4	siRNA	for	48	hr,	before	evaluating	cell	viability	through	the	cell	titre	glo	assay.	

These	 experiments	 were	 conducted	 in	 quadruplicate,	 in	 three	 separate	 experiments.	

We	observed	no	loss	of	viability,	in	DAOY	(106.0%±6.4%),	UW228-2	(102.5%±1.9%),	and	

SJSA-1	 (109.6%±8.0%)	 cell	 lines	 in	 comparison	 to	 scrambled	 controls	 (100%)	 (Figure	

5.19B).				

	

In	summary,	the	2D	culture	growth	and	viability	of	Hh	driven	cell	 lines	studied	(DAOY,	

SJSA-1	and	UW228-2)	was	unaffected	by	TGFβ	blockade.	
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Figure	 5.19:	 Blocking	 the	 TGFβ	 signalling	 pathway	 at	 both	 the	 receptor	 and	

transcription	factor	level	appears	to	have	very	little	impact	on	relative	cell	viability	in	

Hh	driven	cell	lines.		

DAOY,	UW228-2	and	SJSA-1	cell	lines	were	cultured	under	normal	conditions	and	treated	

with	(A)	10	μM	SB431542	for	24hr	and	(B)	SMAD4	siRNA	for	48	hr.	Graphs	represent	an	

average	over	three	independent	experiments,	with	each	experiment	having	four	internal	

technical	replicates	for	each	condition.	(n=3).	Error	bars	represent	SE	of	mean.				
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5.2.14			Effect	of	TGFβ	blockade	on	2D	colony	formation	
	
As	 TGFβ	 can	 regulate	 SC	 fate	 and	 cell	 viability,	we	next	 evaluated	 the	 effect	 of	 TGFβ	

blockade	on	2D	Colony	formation	(Watabe	et	al.,	2009).	

	

To	evaluate	the	effects	SB431542	on	CFE,	75	(DAOY),	187.5	(UW228-2),	and	125	(SJSA-

1)	cells/cm2	were	plated	 in	a	12-well	 tissue	culture	plate	and	 left	 to	adhere	overnight.	

Cells	 were	 then	 treated	 with	 SB431542	 for	 7	 days	 and	 CFE	 was	 evaluated	 using	

GelCount	(Oxford	Optronix).	Experiments	were	performed	in	triplicate,	in	four	separate	

experiments.	There	was	a	reduction	in	CFE	in	all	cell	lines,	DAOY	(78.2%±7.3%),	UW228-

2	 (53.0%±2.4%;	 p<0.01)	 and	 SJSA-1	 (65.1%±6.9%;	 p<0.05)	 in	 comparison	 to	

unstimulated	controls	(100%)	(Figure	5.20B).		

	

TGFβ	 signalling	 blockade	with	 SMAD4	 siRNA	was	 similarly	 evaluated	 for	 CFE,	 by	 first	

incubating	 with	 siRNA	 for	 48	 hr	 before	 trypsinising	 and	 plating	 SMAD4	 siRNA	 and	

scramble	cells	at	the	same	densities	as	before	for	7	days.	There	was	no	difference	in	CFE	

compared	 to	 scrambled	 control	 for	 DAOY	 (92.1%±7.1%)	 and	 UW228-2	 (96.8%±6.7%),	

while	a	reduction	was	observed	for	SJSA-1	(78.3%±4.3%)	(Figure	5.20C).		

	

In	summary,	SB431542	led	to	a	significant	reduction	in	CFE	in	two	cell	 lines	(UW228-2	

and	 SJSA-1).	 There	 was	 no	 reduction	 in	 CFE	 with	 SMAD4	 knockdown	 in	 DAOY	 and	

UW228-2,	whereas	a	slight	reduction	was	observed	in	SJSA-1	cells.	
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Figure	5.20:	Effect	of	TGFβ	blockade	on	2D	colony	formation:	Colony-Forming	Assays.		

Cells	were	seeded	at	a	density	of	75	cells/cm2	for	DAOY,	187.5	cells/cm2	for	UW228-2,	

and	125	cells/cm2	for	SJSA-1	cell	lines	in	the	presence	or	absence	of	TGFβ	Antagonists	for	

7-12	 days.	 (A)	 Representative	 Images,	 (B)	 SB431542	 treatment,	 (C)	 SMAD4	 K-D.	 All	

results	 are	 averages	 of	 at	 least	 4	 experimental	 replicates,	 along	 with	 three	 internal	

technical	replicates	for	each	drugging	condition.	(n=4),	Error	bars	represent	SE	of	mean,		

*	represents	p<0.05,	t-test.			
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5.2.15		 Effect	of	TGFβ	blockade	on	3D	tumoursphere	forming	units	
	
To	determine	the	effect	of	SB431542	on	3D	TFUs,	we	treated	cells	in	adherent	culture	

for	24	hr	before	passaging	them	into	non-adherent	culture	conditions	at	a	density	of	5	

cells/μL	 for	 both	 DAOY	 and	 UW228-2	 cell	 lines.	 After	 7	 days,	 spheres	 were	 counted	

using	 an	 inverted	 microscope	 (Passage	 1)	 then	 dissociated	 into	 single	 cells	 and	

subsequently	reseeded	at	5	cells/μL	and	again	allowed	to	form	spheres	over	7	days	and	

counted	(Passage	2).		

	

After	 passage	 1	 there	was	 no	 reduction	 of	 3D	 TFUs	 following	 SB431542	 treatment	 in	

comparison	 to	 the	 control:	 DAOY	 (127.8%±11.3%)	 and	 UW228-2	 (109.0%±25.5%).	 At	

passage	 2	 3D	 TFUs	were	 reduced	 in	 both	 cell	 lines	 although	 these	 changes	were	 not	

significant:	DAOY	(72.7%)	and	UW228-2	(88.9%)	(Figure	5.21A).		

	

The	effect	of	SMAD	4	knockdown	on	3D	TFUs	was	determined	by	 incubating	cultured	

cells	with	 SMAD4	 siRNA	 for	48	hr	before	 trypsinising	 and	plating	 at	 low	density	 for	 7	

days.	After	7	days,	spheres	were	counted,	dissociated	and	reseeded	at	the	same	density	

before	being	allowed	to	form	spheres	for	another	7	days	and	counted	again.		

	

After	passage	1,	 SMAD4	knockdown	 resulted	 in	a	 reduction	of	3D	TFUs	 in	DAOY	cells	

(51.9%±7.4%;	p<0.05),	but	not	in	the	UW228-2	cells	(100.0%±14.0%).	At	passage	2	both	

cell	 lines	demonstrated	reduced	3D	TFUs:	DAOY	(62.8%±11.6%;	p<0.05)	and	UW228-2	

(72.7%±36.4%)	(Figure	5.21B).		

	

TGFβ	blockade	did	not	 impact	on	the	size	of	the	TFUs	in	either	the	DAOY	or	UW228-2	

cell	lines	following	both	SB431542	treatment	and	SMAD4	K-D	(Figure	5.21C).		

	

In	summary,	TGFβ	blockade	resulted	in	a	partial	effect	on	3D	TFUs,	predominantly	seen	

at	 passage	 2,	 suggesting	 that	 TGFβ	 was	 necessary	 for	 TFE	 and	 therefore	 SC	 self	

renewal/maintenance.	
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Figure	5.21:	Effect	of	TGFβ	blockade	on	tumoursphere-forming	cells:	Sphere-Forming	

Assays.		

Cells	were	seeded	in	2D	and	allowed	to	adhere	overnight	before	being	treated	with	the	

TGFβ	antagonists,	SB431542	and	SMAD4	siRNA	for	24	and	48hr,	respectively.	Following	

treatment	cells	were	trypsinised	and	plated	under	sphere	forming	conditions	at	a	density	

of	5	cells/μL	for	both	DAOY	and	UW228-2	cell	lines	and	allowed	to	form	spheres	over	7	

days	before	being	enumerated	 (P1).	 Spheres	were	 then	dissociated	and	 re-plated	at	a	

density	of	5	cells/μL	and	allowed	to	grow	for	a	further	7	days,	before	being	enumerated	
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(P2).	 (A)	%	TFUs	at	P1	 in	DAOY	and	UW228-2	cells	 treated	with	TGFβ	antagonists,	 (B)	

%TFUs	 at	 P2	 in	 DAOY	 and	 UW228-2	 cells	 treated	with	 TGFβ	 antagonists,	 (C)	 Area	 of	

DAOY	and	UW228-2	TFUs	treated	with	TGFβ	antagonists	relative	to	untreated	control.	

(n=3),	 (n=1,	 for	 conditions	 lacking	 error	 bars),	 Error	 bars	 represent	 SE	 of	 mean,	 *	

represents	p<0.05,	t-test.			

	

5.2.16	 	 	 Effect	 of	 combining	 TGFβ	 and	Hh	 antagonist	 on	Hh-	 and	 TGFβ-
regulated	genes		
	
	
We	 sought	 to	 determine	 the	 expression	 of	 TGFβ	 regulated	 genes	 by	 combining	

SB431542	 with	 Hh-signalling	 inhibitors	 (Figure	 5.22)	 and	 comparing	 gene	 expression	

levels	to	Hh	antagonist	only	treated	cells	(Figure	5.15).	Summarised	in	Table	5.7.	

	

As	 highlighted	 in	 section	 5.2.9,	 in	 the	 DAOY	 cell	 line,	 a	 TGFβ1	 induced	 response	was	

observed	for:	1)	vismodegib	and	CEBPD	expression,	2)	sonidegib	and	SERPINE1	and	SKIL	

expression,	 and	 3)	 GANT-61	 and	 CEBPD	 expression.	 For	 SB431542	 combination	

treatment	 (Figure	 5.22A):	 in	 the	 combination	 treatment	 (SB431542+vismodegib)	 we	

observed	 an	 increase	 in	 expression	 for	 CEBPD	 (0.98±0.24)	 in	 comparison	 to	 the	

vismodegib	 only	 treatment;	 in	 the	 combination	 treatment	 (SB431542+sonidegib)	 we	

observed	 a	 downregulation	 of	 SERPINE1	 (-7.43±0.10)	 and	 SKIL	 (-7.23±0.11)	 when	

compared	 with	 the	 sonidegib	 only	 treatment;	 finally,	 in	 the	 combination	 treatment	

(SB431542+GANT-61)	 we	 observed	 an	 upregulation	 of	 CEBPD	 (2.03±0.43)	 when	

compared	to	the	GANT-61	only	treatment.	Therefore,	SB431542	treatment	appeared	to	

reverse	 the	 induction	 of	 TGFβ	 regulated	 genes	 for	 the	 respective	 Hh	 antagonist	

treatments.		

	

As	highlighted	in	section	5.2.9,	in	the	UW228-2	cell	line,	a	TGFβ1	induced	response	was	

observed	for:	1)	vismodegib	and	CEBPD	expression,	2)	sonidegib	and	CEBPD	expression,	

and	3)	GANT-61	and	NEDD9	expression.	For	SB431542	combination	 treatment	 (Figure	

5.22B):	in	the	combination	treatment	(SB431542+vismodegib)	we	observed	an	increase	

in	expression	for	CEBPD	(0.34±0.22)	in	comparison	to	the	vismodegib	only	treatment;	in	

the	combination	treatment	(SB431542+sonidegib)	we	observed	an	increase	in	CEBPD	(-
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2.08±0.09)	 expression,	 and	 a	 downregulation	 of	 NEDD9	 (-8.88±0.12)	when	 compared	

with	 the	 sonidegib	 only	 treatment;	 finally,	 in	 the	 combination	 treatment	

(SB431542+GANT-61)	 we	 observed	 a	 downregulation	 of	 NEDD9	 (-7.46±.11)	 when	

compared	to	the	GANT-61	only	treatment.	Therefore,	SB431542	treatment	appeared	to	

reverse	 the	 induction	 of	 TGFβ	 regulated	 genes	 for	 the	 respective	 Hh	 antagonist	

treatments.		

	

As	highlighted	 in	 section	5.2.9,	 in	 the	 SJSA-1	 cell	 line,	 a	 TGFβ1	 induced	 response	was	

observed	 for:	 sonidegib	 and	 NEDD9	 expression	 only.	 For	 SB431542	 combination	

treatment	 (Figure	 5.22C):	 in	 all	 three	 of	 the	 combination	 treatments	

(SB431542+vismodegib,	 SB431542+sonidegib	 and	 SB431542+GANT-61)	we	 observed	 a	

decrease	 in	 expression	 of	 NEDD9	 (-2.64±0.15,	 -2.61±0.14,	 -1.12±0.11,	 respectively)	 in	

comparison	 to	 the	 Hh	 antagonist	 only	 treatments.	 Therefore,	 SB431542	 treatment	

appeared	 to	 reverse	 the	 induction	 of	 the	 TGFβ	 regulated	 gene,	 NEDD9,	 for	 all	 Hh	

antagonist	treatments.		

	

We	 next	 sought	 to	 determine	 the	 impact	 of	 SMAD4	 K-D	 in	 combination	 with	 Hh	

antagonists	 on	 the	 expression	 of	 the	 TGFβ	 regulated	 genes	 in	 comparison	 to	 Hh	

antagonist	only	treatments	(summarised	in	Table	5.8).	Firstly	however,	when	comparing	

the	 gene	 expression	 levels	 of	 the	 TGFβ-regulated	 genes	 between	 Hh	 antagonist	 only	

treatments	 (Figure	 5.15)	 and	 scrambled	 siRNA+Hh	 antagonists	 only	 treatments,	 we	

found	that	gene	expression	values	were	all	comparable	between	the	treatments	in	all	of	

our	 cell	 lines,	 therefore	 the	 control	 siRNA	 had	 no	 impact	 or	 minimal	 impact	 on	 the	

expression	of	our	chosen	genes.		

	

As	 highlighted	 in	 section	 5.2.9,	 in	 the	 DAOY	 cell	 line,	 a	 TGFβ1	 induced	 response	was	

observed	for:	1)	vismodegib	and	CEBPD	expression,	2)	sonidegib	and	SERPINE1	and	SKIL	

expression,	 and	 3)	 GANT-61	 and	 CEBPD	 expression.	 For	 SMAD4	 siRNA	 combination	

treatment	(Figure	5.22D):	in	the	combination	treatment	(SMAD4	siRNA+vismodegib)	we	

observed	 a	 slight	 increase	 in	 expression	 for	 CEBPD	 (-2.09±0.14)	 in	 comparison	 to	 the	

vismodegib	 only	 treatment	 (-4.62±0.10);	 in	 the	 combination	 treatment	 (SMAD4	

siRNA+sonidegib)	we	observed	a	downregulation	of	SERPINE1	 (0.11±0.08)	and	a	slight	
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upregulation/no	 change	 in	 SKIL	 (0.00±0.12)	 when	 compared	 with	 the	 sonidegib	 only	

treatment	 (0.81±0.14	 and	 -0.89±0.05,	 respectively);	 finally,	 in	 the	 combination	

treatment	(SMAD4	siRNA+GANT-61)	we	observed	a	upregulation	of	CEBPD	(0.34±0.09)	

when	 compared	 to	 the	 GANT-61	 only	 treatment	 (-1.38±0.08).	 Therefore,	 SMAD4	 K-D	

appeared	 to	 reverse	 the	 induction	 of	 TGFβ	 regulated	 genes	 for	 the	 respective	 Hh	

antagonist	treatments,	with	the	exception	of	SKIL	in	the	sonidegib	treated	group.		

	

As	highlighted	in	section	5.2.9,	in	the	UW228-2	cell	line,	a	TGFβ1	induced	response	was	

observed	for:	1)	vismodegib	and	CEBPD	expression,	2)	sonidegib	and	CEBPD	expression,	

and	 3)	 GANT-61	 and	 NEDD9	 expression.	 For	 SMAD4	 siRNA	 combination	 treatment	

(Figure	5.22E):	in	the	combination	treatment	(SMAD4	siRNA+vismodegib)	we	observed	

an	increase	in	expression	for	CEBPD	(0.48±0.17)	 in	comparison	to	the	vismodegib	only	

treatment	 (-2.29±0.04);	 in	 the	 combination	 treatment	 (SMAD4	 siRNA+sonidegib)	 we	

observed	 no	 change	 in	 expression	 for	 CEBPD	 (-2.42±0.21)	 in	 comparison	 to	 the	

sonidegib	 only	 treatment	 (-2.58±0.04);	 finally,	 in	 the	 combination	 treatment	 (SMAD4	

siRNA+GANT-61)	 we	 observed	 no	 change	 in	 NEDD9	 expression	 (0.12±0.08)	 when	

compared	to	the	GANT-61	only	treatment	(0.01±0.06).	Therefore,	SMAD4	K-D	appeared	

to	 partially	 reverse	 the	 induction	 of	 TGFβ	 regulated	 genes	 for	 the	 respective	 Hh	

antagonist	treatments.			

	

As	highlighted	 in	 section	5.2.9,	 in	 the	 SJSA-1	 cell	 line,	 a	 TGFβ1	 induced	 response	was	

observed	 for:	 sonidegib	 and	 NEDD9	 expression	 only.	 For	 SMAD4	 siRNA	 combination	

treatment	 (Figure	 5.22F):	 in	 all	 three	 of	 the	 combination	 treatments	 (SMAD4	

siRNA+vismodegib,	SMAD4	siRNA+sonidegib	and	SMAD4	siRNA+GANT-61)	we	observed	

a	 slight	 increase	 in	 expression	 of	 NEDD9	 (-0.95±0.20,	 0.15±0.29,	 -0.24±0.20,	

respectively)	 in	 comparison	 to	 the	 Hh	 antagonist	 only	 treatments	 (-2.36±0.11,	

0.04±0.22,	 -1.45±0.30,	 respectively).	 Therefore,	 SMAD4	K-D	did	not	appear	 to	 reverse	

the	induction	of	TGFβ	regulated	genes	for	the	respective	Hh	antagonist	treatments.	

	

	



	 	 Chapter	5	

	
	

256	

	

	
Figure	5.22:	Effect	of	Blocking	TGFβ-	and	Hh-signalling	on	TGFβ-regulated	Genes	in	Hh	

Driven	Tumours.		

Hh	driven	cell	lines	were	cultured	in	the	presence	of	the	TGFβ	blocker	SB431542	for	24hr,	

and	SMAD4	siRNA	for	48	hr,	in	combination	with	Hh	antagonists	(GANT-61,	vismodegib,	
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sonidegib).	 RNA	 was	 extracted	 and	 assayed	 for	 a	 panel	 of	 TGFβ-regulated	 genes	

following	treatment	with	SB431542	in	combination	with	Hh	antagonists	in	(A)	DAOY,	(B)	

UW228-2,	and	 (C)	 SJSA-1	cells,	and	 treatment	with	SMAD4	siRNA	 in	combination	with	

Hh	 antagonists	 in	 (D)	 DAOY,	 (E)	 UW228-2,	 and	 (F)	 SJSA-1	 cells	 by	 qPCR.	 Expression	

values	are	based	on	the	Log10RQ,	where	a	value	of	10.0	represents	a	fold	change	of	+10,	

and	 0.1	 represents	 a	 fold	 change	 of	 -10.	 Results	 are	 an	 average	 of	 two	 independent	

experiments.	The	qPCR	assay	was	performed	with	three	internal	technical	replicates	and	

two	endogenous	controls.	(n=2).	Error	bars	represent	SE	of	mean.	

	

Table	 5.7:	 Impact	 of	 SB431542	 combinational	 treatments	 on	 cell	 line	 specific	 TGFβ	

regulated	genes	

UP,	 represents	 genes	 that	 are	 upregulated;	 DOWN,	 represents	 genes	 that	 are	

downregulated;	NC,	represents	no	change	in	gene	expression.	All	changes	stated	are	in	

comparison	 to	 the	 untreated	 control.	 *=moderately	 up/downregulated;	 **=highly	

up/downregulated.	?=cannot	determine	based	on	the	available	data.				

	

Cell	Line	 TGFβ	

Regulated	

Genes	

Impact	of	

Vismodegib	

Impact	of	

SB431542+	

Vismodegib	

Impact	of	

Sonidegib	

Impact	of	

SB431542+	

Sonidegib	

Impact	of	

GANT-61	

Impact	of	

SB431542+	

GANT-61	

DAOY	 CEBPD	 DOWN*	 UP	 UP	 UP	 DOWN	 UP	

SERPINE1	
DOWN	 DOWN	 UP*	 DOWN	 DOWN	 DOWN	

SKIL	
DOWN	 DOWN	 UP	 DOWN	 DOWN	 DOWN	

UW228-

2	

NEDD9	 DOWN*	 DOWN**	 DOWN*	 DOWN**	 UP	 DOWN**	

CEBPD	
DOWN*	 UP	 DOWN**	 DOWN*	 UP	 DOWN/NC	

SJSA-1	 CEBPD	 DOWN/NC	 UP/NC	 UP	 DOWN	 UP	 UP	

NEDD9	
NC	 DOWN	 UP	 DOWN	 NC	 DOWN/NC	
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Table	5.8:	Impact	of	SMAD4	siRNA	combinational	treatments	on	cell	line	specific	TGFβ	

regulated	genes	

UP,	 represents	 genes	 that	 are	 upregulated;	 DOWN,	 represents	 genes	 that	 are	

downregulated;	NC,	represents	no	change	in	gene	expression.	All	changes	stated	are	in	

comparison	 to	 the	 untreated	 control.	 *=moderately	 up/downregulated;	 **=highly	

up/downregulated.	?=cannot	determine	based	on	the	available	data.				

	

Cell	Line	 TGFβ	

Regulated	

Genes	

Impact	of	

Vismodegib	

Impact	of	

SMAD4	

siRNA+	

Vismodegib	

Impact	of	

Sonidegib	

Impact	of	

SMAD4	

siRNA+	

Sonidegib	

Impact	of	

GANT-61	

Impact	of		

SMAD4		

siRNA+	

GANT-61	

DAOY	 CEBPD	 DOWN**	 DOWN*	 UP	 UP	 DOWN	 UP	

SERPINE1	
DOWN**	 DOWN**	 UP	 NC	 DOWN	 DOWN	

SKIL	
DOWN**	 DOWN**	 DOWN	 NC	 DOWN	 DOWN	

UW228-

2	

NEDD9	 DOWN	 DOWN	 DOWN	 DOWN	 NC	 UP/NC	

CEBPD	
DOWN	 UP	 DOWN	 DOWN	 UP*	 UP**	

SJSA-1	 CEBPD	 DOWN	 DOWN	 DOWN	 DOWN	 UP	 UP	

NEDD9	
DOWN	 DOWN/NC	 NC	 UP/NC	 DOWN	 NC	

	

Next,	 we	 sought	 to	 determine	 the	 impact	 of	 combining	 TGFβ-	 and	 Hh-signalling	

inhibitors	on	Hh-regulated	genes	when	compared	 to	Hh	antagonist	only	 treated	cells.	

SB431542	 combinational	 treatments	 are	 summarised	 in	 Table	 5.9;	 whereas	 SMAD4	

siRNA	combinational	treatments	are	summarised	in	Table	5.10.	

	

As	 highlighted	 in	 section	 5.2.3,	 in	 the	 DAOY	 cell	 line,	 a	 Hh	 induced	 response	 was	

observed	for:	1)	vismodegib	and	GLI1,	GLI2	and	SMO	expression,	2)	sonidegib	and	GLI1,	

GLI2	 and	 SMO	 expression,	 and	 3)	 GANT-61	 and	 GLI1,	 GLI2	 and	 SMO	 expression.	 For	

SB431542	 combination	 treatment	 (Figure	 5.23A):	 in	 the	 combination	 treatment	

(SB431542+vismodegib)	 we	 observed	 an	 increase	 in	 expression	 for	 GLI1	 (-1.14±0.42)	

and	 SMO	 (0.06±0.03),	wheras	GLI2	 (-0.16±0.11)	 slightly	 increased	 in	 expression	when	

compared	 to	 the	 vismodegib	 only	 treatment;	 in	 the	 combination	 treatment	
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(SB431542+sonidegib)	we	observed	an	 increase	 in	expression	for	GLI1	(0.10±0.14)	and	

SMO	 (0.08±0.11),	 whereas	 GLI2	 (-0.44±0.10)	 expression	 remained	 unchanged	 when	

compared	 with	 the	 sonidegib	 only	 treatment;	 finally,	 in	 the	 combination	 treatment	

(SB431542+GANT-61)	we	again	observed	an	increase	in	expression	for	GLI1	(0.11±0.58)	

and	 SMO	 (0.02±0.08),	 whereas	 GLI2	 (0.03±0.08)	 expression	 was	 reduced	 when	

compared	 with	 the	 the	 GANT-61	 only	 treatment.	 Therefore,	 SB431542	 treatment	

appeared	 to	 increase	 the	 expression	 of	 both	 GLI1	 and	 SMO	when	 combined	with	 all	

three	Hh	antagonists.	

	

As	 highlighted	 in	 section	 5.2.3,	 in	 the	UW228-2	 cell	 line,	 a	 Hh	 induced	 response	was	

observed	 for:	 1)	 vismodegib	 and	 SMO	 expression,	 2)	 sonidegib	 and	 GLI2	 and	 SMO	

expression,	and	3)	GANT-61	and	GLI2	and	SMO	expression.	For	SB431542	combination	

treatment	 (Figure	 5.23B):	 in	 the	 combination	 treatment	 (SB431542+vismodegib)	 we	

observed	 no	 change	 in	 expression	 for	 SMO	 (-5.01±0.15)	 when	 compared	 to	 the	

vismodegib	 only	 treatment;	 in	 the	 combination	 treatment	 (SB431542+sonidegib)	 we	

observed	 an	 increase	 in	 expression	 for	 GLI2	 (0.15±0.74)	 and	 SMO	 (0.13±0.26)	 when	

compared	 with	 the	 sonidegib	 only	 treatment;	 finally,	 in	 the	 combination	 treatment	

(SB431542+GANT-61)	we	again	observed	an	increase	in	expression	for	GLI2	(0.71±1.72)	

and	SMO	(2.06±0.17)	when	compared	with	the	the	GANT-61	only	treatment.	Therefore,	

SB431542	treatment	appeared	to	increase	the	expression	of	both	GLI1	and	SMO	when	

combined	with	sonidegib	and	GANT-61.	

	

As	 highlighted	 in	 section	 5.2.3,	 in	 the	 SJSA-1	 cell	 line	 a	 Hh	 induced	 response	 was	

observed	for:	1)	vismodegib	and	GLI2,	PTCH	and	SMO	expression,	2)	sonidegib	and	GLI2,	

PTCH	and	SMO	expression,	and	3)	GANT-61	and	GLI2,	PTCH	and	SMO	expression.	For	

SB431542	 combination	 treatment	 (Figure	 5.23C):	 in	 the	 combination	 treatment	

(SB431542+vismodegib)	 we	 observed	 an	 increase	 in	 expression	 for	 SMO	 (0.27±0.15),	

wheras	 GLI2	 (-1.69±0.11)	 and	 PTCH	 (-2.39±0.05)	 decreased	 in	 expression	 when	

compared	 to	 the	 vismodegib	 only	 treatment;	 in	 the	 combination	 treatment	

(SB431542+sonidegib)	 we	 observed	 an	 increase	 in	 expression	 for	 SMO	 (0.37±0.04),	

wheras	 GLI2	 (-1.56±0.09)	 and	 PTCH	 (-2.50±0.06)	 decreased	 in	 expression	 when	

compared	 with	 the	 sonidegib	 only	 treatment;	 finally,	 in	 the	 combination	 treatment	
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(SB431542+GANT-61)	we	again	observed	an	increase	in	expression	for	SMO	(1.35±0.39),	

wheras	 GLI2	 (-3.20±0.09)	 and	 PTCH	 (-1.80±0.10)	 decreased	 in	 expression	 when	

compared	 with	 the	 the	 GANT-61	 only	 treatment.	 Therefore,	 SB431542	 treatment	

appeared	 to	 decrease	 the	 expression	 of	 both	 GLI2	 and	 PTCH	 and	 increase	 the	

expression	of	SMO	when	combined	with	all	three	Hh	antagonists.	

	

For	 SMAD4	 siRNA	 combination	 treatment	 in	 the	DAOY	 cell	 line	 (Figure	 5.23D):	 in	 the	

combination	 treatment	 (SMAD4	 siRNA+vismodegib)	 no	 change	 in	 expression	 was	

observed	for	GLI1,	2	and	SMO	when	compared	to	the	vismodegib	only	treatment;	in	the	

combination	 treatment	 (SMAD4	 siRNA+sonidegib)	 we	 observed	 a	 downregulation	 of	

SMO	 (-2.49±0.17),	whereas	 no	 change	was	 observed	 for	 both	GLI1	 (0.85±0.65)	 and	 2	

(0.10±0.13)	when	compared	with	the	sonidegib	only	treatment	(0.55±0.18,	1.06±0.57,	-

0.75±0.15,	respectively);	finally,	in	the	combination	treatment	(SMAD4	siRNA+GANT-61)	

no	 change	 in	 expression	 was	 observed	 for	 GLI1,	 2	 and	 SMO	when	 compared	 to	 the	

GANT-61	 only	 treatment.	 Therefore,	 SMAD4	 K-D	 appeared	 to	 have	 less	 impact	 than	

SB431542	on	the	Hh	regulated	genes	when	combined	with	Hh	antagonists.			

	

For	SMAD4	siRNA	combination	treatment	in	the	UW228-2	cell	line	(Figure	5.23E):	in	the	

combination	 treatment	 (SMAD4	 siRNA+vismodegib)	 a	 decrease	 in	 expression	 was	

observed	 for	 SMO	 (-7.36±0.16)	 when	 compared	 to	 the	 vismodegib	 only	 treatment	 (-

1.82±0.10);	 in	 the	 combination	 treatment	 (SMAD4	 siRNA+sonidegib)	 we	 observed	 a	

downregulation	 of	 SMO	 (-3.31±0.08),	 whereas	 no	 change	 was	 observed	 for	 GLI2	 (-

0.33±0.63)	when	compared	with	 the	sonidegib	only	 treatment	 (-0.19±0.10,	0.03±0.08,	

respectively);	 finally,	 in	 the	 combination	 treatment	 (SMAD4	 siRNA+GANT-61)	 we	

observed	a	downregulation	of	SMO	(-4.09±0.10),	whereas	no	change	was	observed	for	

GLI2	 (1.76±0.54)	 when	 compared	 with	 the	 GANT-61	 only	 treatment	 (0.83±0.20,	

1.47±0.52,	 respectively).	 Therefore,	 SMAD4	 K-D	 in	 combination	 with	 Hh	 antagonists	

appeared	 to	 have	 no	 impact	 on	 GLI2,	 but	 caused	 the	 downregulation	 of	 SMO	when	

compared	to	Hh	antagonist	only	controls.		
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For	 SMAD4	 siRNA	 combination	 treatment	 in	 the	 SJSA-1	 cell	 line,	 no	 change	 was	

observed	between	the	combination	treatments	and	the	Hh	antagonist	only	treatments	

on	the	expression	of	GLI2,	PTCH	and	SMO	(Figure	5.23F).	

	

	

	

Figure	 5.23:	 Effect	 of	 Blocking	 TGFβ	 Signalling	 and	 Hh-signalling	 on	 Hh-regulated	

Genes	in	Hh	Driven	Tumours.		

Hh	driven	cell	lines	were	cultured	in	the	presence	of	the	TGFβ	blocker	SB431542	for	24hr,	

and	SMAD4	siRNA	for	48hr,	in	combination	with	Hh	antagonists	(GANT-61,	vismodegib,	
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sonidegib).	RNA	was	extracted	and	assayed	for	a	panel	of	Hh-regulated	genes	following	

treatment	with	SB431542	in	combination	with	Hh	antagonists	in	(A)	DAOY,	(B)	UW228-

2,	 and	 (C)	 SJSA-1	 cells,	 and	 treatment	 with	 SMAD4	 siRNA	 in	 combination	 with	 Hh	

antagonists	 in	(D)	DAOY,	 (E)	UW228-2,	and	 (F)	SJSA-1	cells	by	qPCR.	Expression	values	

are	based	on	the	Log10RQ,	where	a	value	of	10.0	represents	a	fold	change	of	+10,	and	

0.1	 represents	 a	 fold	 change	 of	 -10.	 Results	 are	 an	 average	 of	 two	 independent	

experiments.	The	qPCR	assay	was	performed	with	three	internal	technical	replicates	and	

two	endogenous	controls.	(n=2),	Error	bars	represent	SE	of	mean,	*	represents	p<0.05,	

**	represents	p<0.01,	t-test.	

	

Table	 5.9:	 Impact	 of	 SB431542	 combinational	 treatments	 on	 cell	 line	 specific	 Hh	

regulated	genes	

UP,	 represents	 genes	 that	 are	 upregulated;	 DOWN,	 represents	 genes	 that	 are	

downregulated;	NC,	represents	no	change	in	gene	expression.	All	changes	stated	are	in	

comparison	 to	 the	 untreated	 control.	 *=moderately	 up/downregulated;	 **=highly	

up/downregulated.	?=cannot	determine	based	on	the	available	data.				

	

Cell	Line	 Hh	

Regulated	

Genes	

Impact	of	

Vismodegib	

Impact	of	

SB431542+	

Vismodegib	

Impact	of	

Sonidegib	

Impact	of	

SB431542+	

Sonidegib	

Impact	of	

GANT-61	

Impact	of	

SB431542+	

GANT-61	

DAOY	 GLI1	 UP	 DOWN/NC	 DOWN	 NC	 UP	 UP/NC	

GLI2	
NC	 UP	 DOWN	 DOWN	 DOWN	 UP	

SMO	
UP	 UP/NC	 DOWN	 NC	 UP	 NC	

UW228-

2	

GLI2	 DOWN	 DOWN*	 DOWN	 UP/NC	 DOWN	 UP	

SMO	
DOWN	 DOWN*	 DOWN	 UP/NC	 DOWN	 UP*	

SJSA-1	
GLI2	

UP	 DOWN	 UP	 DOWN	 UP	 DOWN	

PTCH	
UP	 DOWN	 UP	 DOWN	 UP	 DOWN	

SMO	
UP	 UP	 UP	 UP	 UP	 UP	
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Table	5.10:	Impact	of	SMAD4	siRNA	combinational	treatments	on	cell	line	specific	Hh	

regulated	genes	

UP,	 represents	 genes	 that	 are	 upregulated;	 DOWN,	 represents	 genes	 that	 are	

downregulated;	NC,	represents	no	change	in	gene	expression.	All	changes	stated	are	in	

comparison	 to	 the	 untreated	 control.	 *=moderately	 up/downregulated;	 **=highly	

up/downregulated.	?=cannot	determine	based	on	the	available	data.				

	

Cell	Line	 Hh	

Regulated	

Genes	

Impact	of	

Vismodegib	

Impact	of	

SMAD4	

siRNA+	

Vismodegib	

Impact	of	

Sonidegib	

Impact	of	

SMAD4	

siRNA+	

Sonidegib	

Impact	of	

GANT-61	

Impact	of	

SMAD4	

siRNA+	

GANT-61	

DAOY	 GLI1	 UP	 UP	 UP	 UP	 UP	 UP	

GLI2	
NC	 NC	 DOWN/NC	 NC	 UP/NC	 NC	

SMO	
UP	 UP	 UP	 DOWN	 UP	 UP	

UW228-

2	

GLI2	 NC	 DOWN	 NC	 NC	 UP	 UP	

SMO	
DOWN	 DOWN	 NC	 DOWN	 UP	 DOWN	

SJSA-1	
GLI2	

NC	 NC	 NC	 NC	 NC	 NC	

PTCH	
DN	 NC	 NC	 NC	 NC	 NC	

SMO	
DN	 NC	 NC	 NC	 UP	 UP	

	

5.2.17		 The	 effect	 of	 combining	 TGFβ	 and	 Hh	 antagonists	 on	
apoptosis		
	
In	order	to	determine	whether	combining	TGFβ	inhibition	(through	SB431542)	with	Hh	

inhibition	 (GANT-61,	 vismodegib	 and	 sonidegib)	 increased	 apoptosis	 in	 our	Hh	 driven	

cell	lines,	we	undertook	flow	cytometric	analysis	on	cells	treated	for	4,	24,	and	48	hours.		

	

Figure	5.24	shows	representative	dot	plots	between	TGFβ	antagonist	only	treated	cells	

compared	to	combination	treatment	of	TGFβ	antagonist	with	Hh	antagonist	over	three	

time-points.	 As	 a	 percentage	 of	 the	 total	 cell	 population	 (100%)	 all	 three	 cell	 lines	

demonstrated	no	 significant	 change	 in	 the	percentage	of	 cells	 in	 early	 apoptosis,	 late	
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apoptosis	 or	 necrosis	 between	 vismodegib	 treatment	 alone	 or	 in	 combination	 with	

SB431542	for	any	of	the	three	time-points	(Table	5.11).			

	

As	 a	 percentage	 of	 the	 total	 cell	 population	 (100%)	 an	 increase	 in	 the	 percentage	 of	

cells	in	early	apoptosis	between	sonidegib	alone	or	in	combination	with	SB431542	was	

observed	for	24	and	48	hr	in	DAOY	cells	(0.53%	vs	10.72%;	p<0.05	and	0.45%	vs	16.28%;	

p<0.05,	respectively).	A	marginal	increase	was	also	observed	in	the	percentage	of	cells	

in	late	apoptosis,	although	this	was	not	statistically	significant.	Conversely	no	effect	was	

observed	in	either	UW228-2	or	SJSA-1	cells	following	this	treatment	combination.			

	

As	a	percentage	of	the	total	cell	population	(100%)	all	three-cell	lines	demonstrated	no	

additive	effect	on	the	percentage	of	cells	 in	early	apoptosis,	 late	apoptosis	or	necrosis	

between	GANT-61	alone	or	 in	 combination	with	 SB431542	 for	 any	of	 the	 three	 time-

points.	

In	conclusion,	combining	TGFβ	and	Hh	antagonists	had	minimal	effect	on	apoptosis.	

	

	

	

	

Figure	5.24:	Impact	of	SB431542	in	combination	with	Hh	antagonists	on	apoptosis	in	

Hh	driven	tumour	cell	lines		

SB431542		 SB431542	+Hh	Antagonist	
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Representative	dot	plot	to	show	the	effect	of	combinational	treatment	over	the	three	

time	periods	4,	24,	and	48	hours	in	Hh	driven	tumour	cell	lines.	4hr	(red	population),	

24hr	(blue	population),	and	48hr	(orange	population)	treatments	are	merged	on	top	of	

each	other	in	order	to	display	any	shifts	following	treatment	over	the	three	time	periods.	

Annexin	V	(apoptosis	marker)	and	DAPI	(dead	cell	marker)	are	on	the	X-	and	Y-axis,	

respectively.	Each	quadrent	represents	as	follows:	Q1)	early	apoptosis,	Q2)	late	

apoptosis,	Q3)	necrosis,	Q4)	viable	cells.	Experiments	were	performed	in	duplicate	(n=2),	

*	represents	p<0.05,	t-test.	

	

Table	 5.11:	 Effect	 of	 Combining	 TGFβ-	 and	 Hh-Antagonist	 Treatment	 on	 inducing	

apoptosis	in	DAOY	cells.		

	

Cell	Line	 Drug	
Time	Points	

(hr)	

%	Live	

Cells	

%	Early	

Apoptosis	

%	Late	

Apoptosis	

%	

Necrosis	

DAOY	

	
4	 90.95	 5.34	 1.75	 1.96	

Untreated	 24	 89.55	 5.72	 2.75	 1.99	

	 48	 91.90	 3.70	 0.99	 3.39	

	
4	 87.75	 4.44	 1.43	 6.36	

SB431542	 24	 86.60	 7.71	 3.22	 2.46	

	 48	 82.85	 10.63	 3.24	 3.31	

	
4	 94.55	 2.07	 0.87	 2.52	

SB431542+	

Vismodegib	
24	 91.50	 4.38	 1.22	 2.89	

	 48	 88.20	 7.96	 1.30	 2.57	

	
4	 87.30	 6.09	 3.66	 2.95	

SB431542+	

Sonidegib	
24	 80.25	 10.72	 5.67	 3.39	

	 48	 75.15	 16.28	 5.46	 3.11	

SB431542+		

GANT-61	

4	 91.05	 4.73	 1.85	 2.36	

24	 88.95	 6.96	 1.51	 2.55	

48	 77.40	 10.13	 2.08	 10.35	

	

UW228-2	 	
4	 95.25	 2.47	 0.83	 1.48	

Untreated	 24	 95.50	 1.46	 0.63	 2.42	
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	 48	 94.80	 1.88	 0.73	 2.60	

	
4	 87.30	 3.83	 2.96	 5.95	

SB431542	 24	 82.15	 3.82	 9.20	 4.84	

	 48	 85.70	 3.92	 5.64	 4.80	

	
4	 92.05	 5.58	 0.86	 1.48	

SB431542+	

Vismodegib	
24	 93.95	 2.86	 0.82	 2.42	

	 48	 91.80	 3.48	 0.96	 3.75	

	
4	 89.45	 2.94	 2.57	 5.06	

SB431542+	

Sonidegib	
24	 89.95	 2.11	 2.08	 5.88	

	 48	 84.25	 4.89	 5.02	 5.83	

SB431542+		

GANT-61	

4	 93.10	 4.35	 0.94	 1.63	

24	 91.65	 3.94	 1.08	 3.32	

48	 79.05	 8.97	 4.79	 7.25	

	

SJSA-1	

	
4	 93.10	 3.94	 1.21	 1.57	

Untreated	 24	 95.70	 1.20	 1.26	 1.84	

	 48	 95.40	 1.85	 0.69	 2.04	

	
4	 94.55	 2.26	 1.47	 1.77	

SB431542	 24	 94.05	 2.88	 1.34	 1.74	

	 48	 95.50	 1.72	 1.22	 1.57	

	
4	 93.25	 2.09	 2.52	 2.13	

SB431542+	

Vismodegib	
24	 93.20	 3.76	 1.12	 1.91	

	 48	 95.40	 1.60	 1.04	 1.99	

	
4	 79.90	 1.00	 8.44	 10.65	

SB431542+	

Sonidegib	
24	 84.00	 4.16	 7.88	 4.00	

	 48	 93.20	 1.78	 2.24	 2.82	

SB431542+		

GANT-61	

4	 94.95	 1.49	 1.64	 1.97	

24	 87.60	 5.57	 3.01	 3.83	

48	 88.35	 1.73	 1.81	 8.15	

	

	



	 	 Chapter	5	

	
	

267	

	

In	order	to	determine	whether	combining	TGFβ	inhibition	(through	SMAD4	siRNA)	with	

Hh	inhibition	(vismodegib,	sonidegib	and	GANT-61)	increased	apoptosis	in	the	Hh	driven	

cell	 lines,	 DAOY	 (Table	 5.12),	 UW228-2	 (Table	 5.13),	 and	 SJSA-1	 (Table	 5.14)	 we	

undertook	flow	cytometric	analysis	on	cells	treated	for	4,	24,	and	48	hours.	Figure	5.25	

shows	representative	dot	plots	between	SMAD4	siRNA	only	treated	cells	compared	to	

combination	treatment	of	SMAD4	siRNA	with	Hh	antagonist	over	three	time-points.			

	

As	a	percentage	of	the	total	cell	population	(100%)	all	three-cell	lines	demonstrated	no	

increase	in	the	%	of	apoptosis	or	necrosis	between	vismodegib,	sonidegib	or	GANT-61	

alone	or	in	combination	with	SMAD4	siRNA	for	any	of	the	three	time-points	(Table	5.12-

5.14).	

	

In	conclusion,	 combining	TGFβ	 (SMAD4	siRNA)	and	Hh	antagonists	did	not	 induce	cell	

apoptosis.			

	

	

	

	

	

SMAD4	siRNA	 SMAD4	siRNA+Hh	
Antagonists	
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Figure	5.25:	Impact	of	SMAD4	siRNA	in	combination	with	Hh	antagonists	on	apoptosis	

in	Hh	driven	tumour	cell	lines		

Representative	dot	plot	to	show	the	effect	of	combinational	treatment	over	the	three	

time	periods	4,	24,	and	48	hours	in	Hh	driven	tumour	cell	lines.	4hr	(red	population),	

24hr	(blue	population),	and	48hr	(orange	population)	treatments	are	merged	on	top	of	

each	other	in	order	to	display	any	shifts	following	treatment	over	the	three	time	periods.	

Annexin	V	(apoptosis	marker)	and	DAPI	(dead	cell	marker)	are	on	the	X-	and	Y-axis,	

respectively.	Each	quadrent	represents	as	follows:	Q1)	early	apoptosis,	Q2)	late	

apoptosis,	Q3)	necrosis,	Q4)	viable	cells.	Experiments	were	performed	in	duplicate	(n=2),	

*	represents	p<0.05,	t-test.	
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Table	 5.12:	 Effect	 of	 Combining	 TGFβ-	 and	 Hh-Antagonist	 Treatment	 on	 inducing	

apoptosis	in	DAOY	cells.		

Drug	
Time	Points	

(hr)	
%	Live	Cells	

%	Early	

Apoptosis	

%	Late	

Apoptosis	
%	Necrosis	

	
4	 88.05	 2.88	 4.43	 4.67	

Scrambled+	

Vismodegib	
24	 73.80	 3.88	 9.61	 12.72	

	 48	 62.00	 4.75	 12.91	 20.32	

	
4	 89.75	 2.81	 3.77	 3.68	

SMAD4+		

Vismodegib	
24	 80.70	 2.73	 6.54	 10.06	

	 48	 68.30	 3.54	 10.12	 18.04	

	
4	 84.45	 3.15	 3.66	 8.77	

Scrambled+	

Sonidegib	
24	 74.05	 3.49	 6.73	 15.75	

	 48	 55.15	 5.00	 14.39	 25.50	

	
4	 79.05	 3.43	 6.22	 11.25	

SMAD4+		

Sonidegib	
24	 79.65	 3.33	 6.63	 10.40	

	 48	 57.85	 3.22	 13.09	 25.85	

Scrambled+	

GANT-61	

4	 88.20	 2.86	 3.88	 5.05	

24	 71.75	 4.41	 10.07	 13.76	

48	 48.75	 3.62	 15.86	 31.75	

SMAD4+	GANT-

61	

4	 90.40	 2.89	 3.59	 3.18	

24	 79.45	 4.30	 7.56	 8.68	

48	 54.75	 3.82	 15.64	 25.80	
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Table	 5.13:	 Effect	 of	 Combining	 TGFβ-	 and	 Hh-Antagonist	 Treatment	 on	 inducing	

apoptosis	in	UW228-2	cells.		

	

Drug	
Time	Points	

(hr)	
%	Live	Cells	

%	Early	

Apoptosis	

%	Late	

Apoptosis	
%	Necrosis	

	
4	 66.80	 1.34	 19.90	 11.90	

Scrambled+	

Vismodegib	
24	 67.70	 1.74	 15.70	 14.90	

	 48	 55.70	 5.71	 15.90	 22.60	

	
4	 95.10	 1.37	 0.90	 2.59	

SMAD4+		

Vismodegib	
24	 88.90	 2.86	 1.47	 6.77	

	 48	 83.40	 1.44	 1.34	 13.80	

	
4	 67.30	 1.02	 20.00	 11.70	

Scrambled+	

Sonidegib	
24	 66.90	 1.93	 12.10	 19.00	

	 48	 63.00	 4.12	 19.70	 13.20	

	
4	 86.20	 0.68	 3.67	 9.44	

SMAD4+		

Sonidegib	
24	 86.50	 2.39	 1.66	 9.47	

	 48	 86.20	 1.80	 2.54	 9.41	

Scrambled+	

GANT-61	

4	 69.10	 1.51	 18.60	 10.80	

24	 50.90	 3.95	 23.80	 21.40	

48	 25.20	 7.80	 43.20	 23.80	

SMAD4+	GANT-

61	

4	 94.80	 1.53	 0.73	 2.93	

24	 84.80	 3.29	 1.91	 9.97	

48	 49.90	 6.21	 18.10	 25.80	
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Table	 5.14:	 Effect	 of	 Combining	 TGFβ-	 and	 Hh-Antagonist	 Treatment	 on	 inducing	

apoptosis	in	SJSA-1	cells.		

Drug	
Time	Points	

(hr)	
%	Live	Cells	

%	Early	

Apoptosis	

%	Late	

Apoptosis	
%	Necrosis	

	
4	 85.40	 5.18	 3.16	 6.23	

Scrambled+	

Vismodegib	
24	 71.50	 6.48	 8.70	 13.30	

	 48	 35.50	 8.87	 27.50	 28.10	

	
4	 86.20	 4.53	 3.44	 5.83	

SMAD4+		

Vismodegib	
24	 75.50	 2.03	 3.38	 19.10	

	 48	 46.60	 7.34	 18.40	 27.70	

	
4	 86.50	 3.49	 2.73	 7.24	

Scrambled+	

Sonidegib	
24	 73.40	 3.73	 6.46	 16.40	

	 48	 30.90	 9.01	 30.40	 29.70	

	
4	 85.80	 3.85	 3.25	 7.10	

SMAD4+		

Sonidegib	
24	 71.30	 4.08	 8.02	 16.60	

	 48	 36.20	 8.36	 26.50	 29.00	

Scrambled+	

GANT-61	

4	 84.00	 6.94	 3.60	 5.50	

24	 66.10	 6.22	 11.00	 16.70	

48	 7.01	 6.29	 65.00	 21.70	

SMAD4+	GANT-

61	

4	 89.60	 4.21	 1.78	 4.36	

24	 70.80	 4.95	 8.59	 15.70	

48	 8.64	 8.28	 67.70	 15.30	
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5.2.18		 Effect	of	Hedgehog	and	TGFβ	blockade	on	cell	viability			
	
We	 observed	 no	 significant	 difference	 in	 cell	 viability	 in	 all	 three	 cell	 lines	 between	

vismodegib	alone	and	vismodegib	in	combination	with	SB431542:	DAOY	(99.4%±2.0%	vs	

96.9%±4.4%),	 UW228-2	 (103.8%±1.2%	 vs	 76.6%±5.5%)	 and	 SJSA-1	 (120.5%±16.3%	 vs	

131.4%±26.6%)	(Figure	5.26	A-C).		

	

We	 observed	 no	 significant	 difference	 in	 cell	 viability	 in	 all	 three-cell	 lines	 between	

sonidegib	 alone	 and	 sonidegib	 in	 combination	with	 SB431542:	 DAOY	 (87.9%±7.4%	 vs	

87.6%±5.1%),	 UW228-2	 (103.1%±1.9%	 vs	 99.4%±3.0%)	 and	 SJSA-1	 (118.0±14.0	 vs	

125.1%±23.4%)	(Figure	5.26	A-C).		

	

We	 observed	 no	 significant	 difference	 in	 cell	 viability	 in	 all	 three-cell	 lines	 between	

GANT-61	 alone	 and	 GANT-61	 in	 combination	 with	 SB431542:	 DAOY	 (96.3%±1.5%	 vs	

95.0±2.2%),	 UW228-2	 (81.5%±4.4%	 vs	 104.9%±3.1%)	 and	 SJSA-1	 (109.3%±16.4%	 vs	

118.3%±23.4%)	(Figure	5.26	A-C).	

	

We	observed	no	significant	loss	of	cell	viability	in	all	three-cell	lines	between	scrambled	

control	siRNA,	vismodegib	+	scrambled	control	siRNA	and	vismodegib	+	SMAD4	siRNA:	

DAOY	 (100%±0.0%	 vs	 121.8%±15.9%	 vs	 110.5%±8.3%),	 UW228-2	 (100.0±0.0%	 vs	

108.8%±3.2%	 vs	 105.6%±2.7%),	 and	 SJSA-1	 (100%±0.0%	 vs	 114.6%±5.5%	 vs	

118.1%±6.0%)	(Figure	5.26	A-C).						

	

We	observed	no	significant	loss	of	cell	viability	in	all	three-cell	lines	between	scrambled	

control	 siRNA,	 sonidegib	 +	 scrambled	 control	 siRNA	 and	 sonidegib	 +	 SMAD4	 siRNA:	

DAOY	 (100.0%±0.0%	 vs	 105.9%±11.1%	 vs	 106.4%±10.2%),	 UW228-2	 (100.0%±0.0%	 vs	

103.7%±4.1%	 vs	 104.1%±1.7%),	 and	 SJSA-1	 (100.0%±0.0%	 vs	 100.4%±9.4%	 vs	

111.1%±6.0%)	(Figure	5.26	A-C).	

	

We	observed	no	significant	loss	of	cell	viability	in	all	three-cell	lines	between	scrambled	

control	siRNA,	GANT-61	+	scrambled	siRNA	control	and	GANT-61	+	SMAD4	siRNA:	DAOY	

(100.0%±0.0%	 vs	 96.1%±14.8%	 vs	 93.1%±14.7%),	 UW228-2	 (100.0%±0.0%	 vs	
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85.9%±4.5%	vs	87.2%±4.8%),	and	SJSA-1	(100.0%±0.0%	vs	86.3%±5.0%	vs	80.9%±7.3%)	

(Figure	5.26	A-C).			

	

Hence	blocking	TGFβ	signalling	 together	with	hedgehog	antagonism	did	not	adversely	

affect	cell	viability.	
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Figure	5.26:	Effect	of	Combining	TGFB	and	Hh	Antagonist	Treatment	on	Cell	Viability	

in	Hh	Driven	Tumours.		

Combining	TGFβ	and	Hh	antagonist	treatments	 in	the	(A)	DAOY	cell	 line,	(B)	UW228-2	

cell	 line,	and	 (C)	 SJSA-1	cell	 line.	Graphs	 represent	an	average	over	 three	 independent	

experiments,	 with	 each	 experiment	 having	 four	 internal	 technical	 replicates	 for	 each	

condition.	(n=3).	Error	bars	represent	SE	of	mean.				
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5.2.19						Effect	of	TGFβ	and	Hh	blockade	on	2D	colony	forming	efficiency	
	
We	 observed	 no	 significant	 difference	 in	 CFE	 between	 vismodegib	 alone	 and	

vismodegib	+	SB431542:	DAOY	(91.8%±6.2%	vs	107.6%±4.7%)	and	SJSA-1	(77.1%±14.1%	

vs	 75.8%±14.6%).	 However	 vismodegib	 +	 SB431542	 was	 associated	 with	 reduced	

viability	in	UW228-2	(112.7%±20.1%	vs	57.8%±14.8%,	p<0.05)	(Figure	5.27A).	

			

We	 observed	 no	 significant	 difference	 in	 CFE	 between	 all	 three-cell	 lines	 between	

sonidegib	 alone	 and	 sonidegib	 +	 SB431542:	 DAOY	 (63.2%±7.6%	 vs	 73.8%±10.3%),	

UW228-2	 (25.1%±10.1%	 vs	 22.9%±12.2%)	 and	 SJSA-1	 (31.6%±6.0%	 vs	 59.1%±14.9%)	

(Figure	5.27B).		

	

We	 observed	 no	 significant	 difference	 in	 CFE	 between	 all	 three-cell	 lines	 between	

GANT-61	alone	and	GANT-61	+	SB431542:	DAOY	(1.1%±0.7%	vs	3.7%±1.6%),	UW228-2	

(0%±0%	vs	0%±0%)	and	SJSA-1	(22.6%±11.7%	vs	21.1%±9.9%)	(Figure	5.27C).	

	

We	observed	no	significant	loss	of	CFE	in	all	three-cell	lines	between	scrambled	control	

siRNA,	 vismodegib	 +	 scrambled	 control	 siRNA	and	 vismodegib	 +	 SMAD4	 siRNA:	DAOY	

(100.0%±0.0%	vs	90.1%±13.8%	vs	79.1%±9.3%),	UW228-2	(100.0%±0.0%	vs	79.1%±9.3%	

vs	 60.8%±22.1%),	 and	 SJSA-1	 (100.0%±0.0%	 vs	 44.4%±10.4%	 vs	 25.7%±3.8%)	 (Figure	

5.27A).	

					

We	observed	no	significant	loss	of	CFE	in	all	three-cell	lines	between	scrambled	control	

siRNA,	 sonidegib	 +	 scrambled	 control	 siRNA	 and	 sonidegib	 +	 SMAD4	 siRNA:	 DAOY	

(100.0%±0.0%	vs	82.1%±16.5%	vs	88.3%±9.2%),	UW228-2	(100.0%±0.0%	vs	17.6%±8.9%	

vs	 19.6%±8.8%),	 and	 SJSA-1	 (100.0%±0.0%	 vs	 28.0%±8.7%	 vs	 43.2%±14.7%)	 (Figure	

5.27B).	

	

We	observed	no	significant	loss	of	CFE	in	all	three-cell	lines	between	scrambled	control	

siRNA,	 GANT-61	 +	 scrambled	 siRNA	 control	 and	 GANT-61	 +	 SMAD4	 siRNA:	 DAOY	

(100.0%±0.0%	 vs	 11.8%±7.1%	 vs	 6.6%±4.4%),	 UW228-2	 (100.0%±0.0%	 vs	 0%±0%	 vs	

0%±0%),	and	SJSA-1	(100.0%±0.0%	vs	14.8%±5.2%	vs	16.3%±7.2%)	(Figure	5.27C).		
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Figure	5.27:	Effect	of	TGFβ	and	Hh	blockade	on	2D	colony	formation:	Colony-Forming	

Assays.		

Cells	were	seeded	at	a	density	of	75	cells/cm2	for	DAOY,	187.5	cells/cm2	for	UW228-2,	

and	125	cells/cm2	for	SJSA-1	cell	lines	in	the	presence	or	absence	of	TGFβ	antagonists	for	

7-12	days.	 (A)	Vismodegib	 in	 combination	with	SB431542	and	SMAD4	siRNA	 in	DAOY,	

UW228-2	 and	 SJSA-1	 cells,	 (B)	 Sonidegib	 in	 combination	 with	 SB431542	 and	 SMAD4	

siRNA	 in	DAOY,	UW228-2	and	SJSA-1	cells	 (C)	GANT-61	 in	combination	with	SB431542	

and	 SMAD4	 siRNA	 in	 DAOY,	 UW228-2	 and	 SJSA-1	 cells.	 All	 results	 are	 averages	 of	 at	
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least	 4	 experimental	 replicates,	 along	with	 three	 internal	 technical	 replicates	 for	 each	

drugging	condition.	(n=4),	Error	bars	represent	SE	of	mean,	*	represents	p<0.05,	t-test.			

	

	

5.2.20		 Effect	of	TGFβ	and	Hh	blockade	on	3D	tumoursphere	forming	
units	
	
To	determine	the	effect	of	combined	Hh	and	TGFβ	inhibition	on	3D	TFUs	we	evaluated	

the	effect	 in	a	non-adherent	 colony	 forming	efficiency	assay	over	 two	passages.	Both	

DAOY	 and	UW228-2	 cells	were	 treated	with	 TGFβ	 blockade	 and	 or	Hh	 antagonist	 for	

24hr	in	adherent	culture	before	passaging	them	into	non-adherent	culture	conditions	at	

low	density.		

	

Vismodegib	or	 vismodegib	+	 SB431542	after	passage	1	demonstrated	no	 reduction	 in	

3D	TFUs:	DAOY	(2.22±0.34	vs	1.25±0.32)	and	UW228-2	(2.52±0.59	vs	2.91±1.81).	Also	at	

passage	2	there	were	no	reductions	in	3D	TFUs:	DAOY	(7.10±0.11	vs	2.44)	and	UW228-2	

(1.48±0.13	vs	0.22)	(Figure	5.28	A-D).			

	

Sonidegib	or	 sonidegib	+	 SB431542	after	passage	1	demonstrated	no	 reduction	 in	3D	

TFUs:	 DAOY	 (1.78±0.57	 vs	 2.06±0.89)	 and	UW228-2	 (2.21±0.61	 vs	 3.55±0.98).	 Also	 at	

passage	2	 there	were	 reductions	 in	3D	TFUs:	DAOY	 (4.39±2.39	vs	2.89)	and	UW228-2	

(2.85±0.77	vs	2.56)	(Figure	5.28	A-D).			

	

GANT-61	 or	 GANT-61	 +	 SB431542	 after	 passage	 1	 demonstrated	 no	 reduction	 in	 3D	

TFUs:	 DAOY	 (1.21±0.24	 vs	 1.42±0.18)	 and	UW228-2	 (2.92±0.73	 vs	 0.76±0.35).	 Also	 at	

passage	2	 there	were	 reductions	 in	3D	TFUs:	DAOY	 (1.83±0.39	vs	0.67)	and	UW228-2	

(1.07±0.48	vs	0.78)	(Figure	5.28	A-D).			

	

Comparing	vismodegib	+	scrambled	siRNA	or	vismodegib	+	SMAD4	siRNA,	no	reduction	

of	3D	TFUs	was	observed	in	at	passage	1:	DAOY	(1.00±0.00	vs	1.94±0.39)	and	UW228-2	

(1.78±0.39	vs	1.74±0.15).	Also	at	passage	2	there	was	no	reduction	of	3D	TFUs:	DAOY	

(1.11±0.44	vs	3.83±1.5)	and	UW228-2	(1.50±0.39	vs	0.89±0.78)	(Figure	5.28	E-H).	
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Comparing	sonidegib	+	scrambled	siRNA	or	sonidegib	+	SMAD4	siRNA,	no	reduction	of	

3D	TFUs	was	observed	 in	at	passage	1:	DAOY	(1.33±0.11	vs	1.22±-0.11)	and	UW228-2	

(1.74±-0.44	vs	1.52±0.38).	Also	at	passage	2	there	was	no	reduction	of	3D	TFUs:	DAOY	

1.78±0.67	vs	1.72±0.61)	and	UW228-2	(1.11±1.11	vs	1.44±0.56)	(Figure	5.28	E-H).	

	

Comparing	GANT-61	+	scrambled	siRNA	or	GANT-61	+	SMAD4	siRNA,	no	reduction	of	3D	

TFUs	 was	 observed	 in	 at	 passage	 1:	 DAOY	 (1.33±0.56	 vs	 1.44±0.33)	 and	 UW228-2	

(1.00±0.51	vs	1.19±0.58).	Also	at	passage	2	there	was	no	reduction	of	3D	TFUs:	DAOY	

(2.94±0.39	vs	1.39±0.50)	and	UW228-2	(0.67±0.00	vs	0.61±0.06)	(Figure	5.28	E-H).	

	

In	 summary,	 combined	 treatment	 with	 Hh	 and	 TGFβ	 antagonists	 did	 not	 adversely	

affect	3D	TFUs.	
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Figure	5.28:	Effect	of	TGFβ	and	Hh	blockade	on	tumoursphere-forming	cells:	sphere-

forming	assays.	

Cells	were	seeded	in	2D	and	allowed	to	adhere	overnight	before	being	treated	with	TGFβ	

(SB431542	 and	 SMAD4	 siRNA)	 in	 combination	 with	 Hh	 antagonists	 (GANT-61,	

vismodegib,	 sonidegib).	 Following	 treatment	 cells	 were	 trypsinised	 and	 plated	 under	

sphere	 forming	 conditions	 at	 a	 density	 of	 5	 cells/μL	 for	 both	DAOY	and	UW228-2	 cell	

lines	and	allowed	 to	 form	spheres	over	7	days	before	being	enumerated	 (P1).	 Spheres	

were	 then	 dissociated	 and	 re-plated	 at	 a	 density	 of	 5	 cells/μL	 allowed	 to	 grow	 for	 a	

further	 7	 days,	 before	 being	 finally	 enumerated	 (P2).	 (A)	 %TFUs	 at	 P1	 in	 DAOY	 cells	

treated	with	SB431542	in	combination	with	Hh	antagonists,	(B)	%TFUs	at	P1	in	UW228-

2	cells	 treated	with	SB431542	 in	combination	with	Hh	antagonists,	 (C)	%TFUs	at	P2	 in	

DAOY	cells	treated	with	SB431542	in	combination	with	Hh	antagonists,	(D)	%TFUs	at	P2	

in	UW228-2	cells	treated	with	SB431542	in	combination	with	Hh	antagonists,	(E)	%TFUs	

at	P1	in	DAOY	cells	treated	with	SMAD4	siRNA	in	combination	with	Hh	antagonists,	(F)	

%TFUs	 at	 P1	 in	 UW228-2	 cells	 treated	 with	 SMAD4	 siRNA	 in	 combination	 with	 Hh	

antagonists,	 (G)	%TFUs	at	P2	 in	DAOY	cells	 treated	with	SMAD4	siRNA	 in	combination	

with	Hh	antagonists,	 (H)	%TFUs	at	P2	 in	UW228-2	 cells	 treated	with	 SMAD4	 siRNA	 in	

combination	 with	 Hh	 antagonists.	 Tumoursphere	 forming	 units	 (%)	 represents	 the	

number	of	 spheres	 formed	 relative	 to	 the	number	of	 cells	originally	 seeded.	All	 results	

are	 averages	 of	 three	 experimental	 replicates	 for	 P1	 (with	 the	 exception	 of	

scrambled+GANT-61	for	UW228-2)	and	P2	(with	the	exception	of	bars	with	no	error	bars	

where	only	one	replicate	was	obtained),	with	three	internal	technical	replicates	for	each	

drugging	condition.	(n=3).	Error	bars	represent	SE	of	mean.		
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5.3	 	 Discussion	
	
In	this	chapter,	a	range	of	functional	assays	have	been	used	to	evaluate	the	

susceptibility	of	three	Hh	driven	tumour	cell	lines	and	primary	BCC	tissue	towards	Hh	

antagonists	at	the	level	of	the	whole	cell	population	and	CSC	population,	along	with	the	

impact	on	these	cell	lines	following	TGFβ	antagonist	treatment	alone	and	in	

combination	with	Hh	antagonists.	Therefore,	in	order	to	identify	the	impact	of	both	Hh	

and	TGFβ	antagonists	on	the	tumour	cell	lines,	it	was	important	to	first	identify	the	

genes	that	are	truly	Hh	regulated	and	TGFβ	regulated	within	each	of	the	cell	lines,	since	

gene	responses	are	context	dependent	and	are	likely	to	vary	between	different	tumour	

types	and	cell	lines.	To	do	this	all	three-tumour	cell	lines	were	treated	separately	with:	

1)	Hh	agonist	alone	2)	Hh	agonist	+	Hh	antagonist	(vismodegib,	sonidegib	or	GANT-61),	

3)	TGFβ1	agonist	only,	and	4)	TGFβ1	agonist	+	TGFβ	antagonist	(SB431542	or	SMAD4	

knockdown)	in	order	to	determine	which	genes	within	the	panel	of	Hh-	and	TGFβ	

regulated	genes	demonstrated	a	response	following	agonist	treatment	which	could	be	

subsequently	reversed	following	antagonist	treatment.	Any	genes	that	demonstrated	

this	response	were	considered	to	be	Hh-induced/SMO/GLI	dependent	and/or	TGFβ1-

induced/ALK5	receptor	kinase	dependent.	

	

In	the	DAOY	cell	line	3	out	of	4	of	the	Hh	gene	panel	were	classified	as	being	Hh	

regulated,	notably,	GLI1,	2,	and	SMO.	All	three	of	these	genes	were	upregulated	

following	Hh	agonist	treatment,	and	decreased	following	addition	of	the	Hh	

antagonists,	vismodegib,	sonidegib,	or	GANT-61.	Therefore	the	DAOY	cell	line	was	found	

to	be	a	SHh	dependent	cell	line	and,	given	the	impact	of	the	inhibitors,	can	be	classified	

as	SMO	dependent	(vismodegib	and	sonidegib)	and	GLI	dependent	(GANT-61).	

Therefore	the	DAOY	cell	line	displayed	a	fully	responsive	canonical	Hh	signalling	

pathway.	In	the	UW228-2	cell	line,	the	response	to	agonist	and	antagonist	treatments	

was	more	convoluted	than	that	observed	in	the	DAOY	cell	line.	Only	GLI1	was	found	to	

be	upregulated	following	Hh	agonist	treatment,	whereas	GLI2,	PTCH	and	SMO	were	all	

downregulated.	Furthermore,	Hh	antagonists	did	not	reverse	this	expression,	but	rather	

enhanced	the	effects	observed	in	the	Hh	agonist	treated	cells	by	further	downregulating	

GLI2,	PTCH,	and	SMO,	and	upregulating	GLI1.	Therefore	agonist	and	antagonist	

treatments	were	not	found	to	perform	reciprocal	actions	on	these	genes,	and	as	a	



	 	 Chapter	5	

	
	

282	

consequence	the	UW228-2	cell	line	does	not	display	a	fully	responsive	canonical	Hh	

signalling	pathway.	This	is	a	little	surprising	as	both	DAOY	and	UW228-2	cell	lines	

represent	the	two	most	cited	medulloblastoma	cell	lines	and	have	been	well	established	

as	being	Hh	driven	through	a	number	of	means	including	the	demonstration	of	GLI	

transcriptional	activity	by	luciferase-based	reporter	assays	and	overexpression	of	Hh-

pathway	genes	(e.g.	GLI1,	PTCH1,	SMO)	(Di	Marcotullio	et	al.,	2004;	Triscott	et	al.,	2013;	

Arnhold	et	al.,	2016).	However,	although	both	are	characterized	as	being	Hh	driven,	

they	demonstrate	different	levels	of	expression	of	Hh	pathway	components,	with	the	

DAOY	cell	line	shown	to	exhibit	high	levels	of	SHh,	PTCH1,	GLI1,	and	GLI2	expression,	

while	UW228-2,	demonstrates	lower	levels	of	SHh,	PTCH1	and	GLI2	(Arnhold	et	al.,	

2016;	Götschel	et	al.,	2013).	Therefore,	studies	have	shown	that	DAOY	cells	are	more	

responsive	to	Hh	signalling	than	UW228-2	cells	(Arnhold	et	al.,	2016;	Götschel	et	al.,	

2013),	which	is	consistent	with	our	observations.	Finally,	in	the	SJSA-1	cells,	Hh	agonist	

treatment	induced	a	similar	response	to	that	observed	in	UW228-2	cells	in	that	an	

upregulation	of	GLI1	and	downregulation	of	GLI2,	PTCH	and	SMO	was	observed.	

However,	unlike	in	the	UW228-2	cells,	SJSA-1	cells	demonstrated	a	reversal	in	the	

expression	of	GLI2,	PTCH	and	SMO	following	Hh	antagonist	treatment.	Interestingly,	

however,	was	the	observation	that	Hh	agonist	treatment	resulted	in	the	

downregulation	of	these	Hh	target	genes,	indicating	that	they	are	negatively	regulated	

in	this	cell	line.	Furthermore,	the	lack	of	impact	on	GLI1	expression	following	Hh	

antagonist	treatment	can	potentially	be	explained	by	the	fact	that	SJSA-1	cells	have	a	

15-fold	amplification	of	GLI1	(Khatib	et	al.,	1993).		

	

Next	we	identified	TGFβ1-induced/ALK5	receptor	kinase	dependent	genes	within	each	

of	our	cell	lines.	In	the	DAOY	cell	line	3	out	of	6	of	the	TGFβ	gene	panel	were	classified	

as	being	TGFβ	regulated,	notably	CEBPD,	SERPINE1	and	SKIL.	SB431542	treatment	

reverted	the	expression	of	these	genes	following	TGFβ1	treatment,	and	therefore	are	

ALK5	receptor	kinase	dependent.	Furthermore,	this	same	response	was	also	observed	

following	SMAD4	knockdown,	so	these	three	genes	appear	to	be	SMAD4	dependent	

also.	In	both	the	UW228-2	and	SJSA-1	cell	lines	2	out	of	6	of	the	TGFβ1	genes	were	

classified	as	being	TGFβ	regulated,	notably	CEBPD	and	NEDD9.	The	expressions	of	both	

of	these	genes	were	again	reverted	following	both	SB431542	treatment	and	SMAD4	
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knockdown	and	therefore	may	be	ALK5	receptor	kinase	dependent	and	SMAD4	

dependent	genes.	This	panel	of	TGFβ	regulated	genes	was	identified	from	the	panel	of	

27	genes	defined	in	section	3.2.5,	and	was	based	on	their	expression	levels	in	both	

HaCaT	and	primary	BCC	cells.	However,	as	a	future	experiment,	it	will	be	important	to	

run	the	entire	panel	of	27	genes	against	TGFβ1	treated	cells	with	and	without	TGFβ	

antagonists	in	each	of	the	cell	lines,	in	order	to	identify	a	more	comprehensive	cell	line	

specific	panel	of	TGFβ	regulated	genes.	This	will	inevitably	allow	more	subtle	changes	

that	may	be	occurring	within	each	cell	line	to	be	identified	following	treatment.	

	

Once	both	Hh-	and	TGFβ-regulated	genes	had	been	established	in	the	cell	lines	we	

assessed	the	impact	of	Hh	antagonists	on	TGFβ	regulated	genes,	and	vice	versa,	in	order	

to	further	elucidate	the	crosstalk	between	Hh	and	TGFβ	signalling.	Our	data	so	far	

points	towards	TGFβ	signalling	being	relevant	in	our	model.	As	a	consequence	the	

assumption	would	be	that	when	Hh	signalling	is	abrogated,	TGFβ	signalling	would	also	

diminish.	However,	we	have	shown	that	following	Hh	antagonist	treatment,	TGFβ	

pathway	activity	increases	in	our	Hh	driven	tumour	cell	lines,	as	evidenced	through	

nuclear	accumulation	of	pSMAD3	in	all	cell	lines	(for	all	Hh	antagonists),	and	in	some	

instances	through	the	induction	of	downstream	TGFβ	regulated	genes	in	each	of	the	cell	

lines.	Of	the	TGFβ	regulated	genes	identified	within	each	of	the	cell	lines,	CEBPD	was	

induced	following	Hh	antagonist	treatment	in	all	three	cell	lines,	whereas	SERPINE1	was	

induced	following	sonidegib	and	GANT-61	treatment	in	DAOY	cells;	NEDD9	was	induced	

by	GANT-61	and	sonidegib	in	UW228-2	and	SJSA-1	cells,	respectively.	This	again	

highlights	the	importance	of	establishing	a	larger	panel	of	TGFβ	regulated	genes	within	

each	cell	line	as	the	induction	of	these	genes	following	Hh	antagonist	treatment	may	

have	been	more	pronounced	if	the	gene	panel	was	more	comprehensive.	Interestingly,	

there	appeared	to	be	no	difference	between	Hh	antagonists	in	their	ability	to	induce	

nuclear	pSMAD3	in	DAOY,	UW228-2	(data	not	available	for	SJSA-1	cells),	and	primary	

BCC	cells.	Therefore,	although	the	cell	lines	appear	to	have	varied	reliance	on	Hh	

signalling	(based	on	the	expression	of	Hh	regulated	genes),	all	cell	lines	exhibited	

nuclear	pSMAD3	expression	following	Hh	antagonist	treatment,	which	could	suggest	

that	mechanisms	downstream	of	the	points	of	Hh	inhibition	are	responsible	for	TGFβ	

induction.	Our	results	have	also	shown	that	TGFβ	signalling	inhibition	impacted	the	



	 	 Chapter	5	

	
	

284	

expression	of	Hh	regulated	genes	within	the	three	cell	lines,	with	SB431542	treatment	

(data	not	available	for	UW228-2	cells)	and	SMAD4	knockdown	both	shown	to	induce	

the	same	response	as	that	of	the	Hh	agonist	treated	cells.	This	contradicts	findings	by	

Dennler	et	al.	(2007)	who	showed	that	TGFβ1	agonist	treatment	potently	induced	the	

expression	of	GLI2	and	subsequently	GLI1,	whereas	we	have	shown	that	TGFβ	signalling	

inhibition	caused	the	induction	of	these	Hh	regulated	genes	in	some	instances	within	

our	cell	lines.	There	are	a	couple	of	caveats,	in	that	we	have	not	yet	assessed	the	impact	

of	TGFβ1	agonist	treatment	on	Hh	regulated	genes	(and	vice	versa)	in	our	cell	lines,	and	

Dennler	et	al.	(2007)	used	different	cell	lines	to	us,	and	therefore	a	direct	comparison	

cannot	be	made	between	the	two.	Nevertheless,	our	data	indicates	that	these	two	

pathways	may	be	interlinked	in	that	the	inhibition	of	one	leads	to	the	induction	of	the	

other,	within	these	cell	lines.	Furthermore,	in	a	similar	manner	to	using	nuclear	

pSMAD3	labelling	to	identify	active	TGFβ	signalling,	assessing	GLI1	and	2	nuclear	

labelling	of	cells	following	TGFβ	inhibition	will	be	important	as	a	future	experiment	to	

determine	Hh	signalling	pathway	activity	in	a	more	robust	manner.		

	

When	assessing	the	impact	of	Hh	and	TGFβ	antagonist	only	treatments	in	functional	

assays,	our	results	showed	that	Hh	antagonists	(vismodegib,	sonidegib	and	GANT-61)	

were	largely	ineffective	at	impacting	cell	viability	or	cell	apoptosis,	which	is	consistent	

with	what	has	been	found	in	some	reports	(Arnhold	et	al.,	2016;	Infante	et	al.,	2016).	

However,	sonidegib	showed	a	slightly	greater	potency	than	vismodegib,	with	a	

reduction	observed	in	cell	viability	for	the	DAOY	cell	line,	however	this	was	not	seen	in	

the	other	two	cell	lines.	This	could	potentially	be	explained	by	the	fact	that	the	DAOY	

cell	line	has	been	characterized	by	us	and	other	studies	(Arnhold	et	al.,	2016;	Götschel	

et	al.,	2013)	as	having	a	fully	functional	canonical	Hh	signaling	pathway	and	to	be	more	

sensitive	to	SHh	driven	proliferation,	thus	making	it	more	susceptible	to	inhibition	of	

SMO.	The	fact	that	this	effect	was	seen	for	sonidegib	but	not	vismodegib	in	this	cell	line	

could	be	because	sonidegib	is	a	more	potent	inhibitor	of	SMO	than	vismodegib,	which	

has	been	documented	in	the	clinical	studies	(Skvara	et	al.,	2011).	Nevertheless,	even	

though	a	small	reduction	in	cell	viability	was	observed,	the	ability	of	these	two	drugs	to	

impact	cell	viability	was	poor.	Finally,	GANT-61	showed	the	greatest	response	of	all	

three	drugs,	with	slight	reductions	in	viability	observed	for	both	DAOY	and	UW228-2	cell	
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lines,	but	not	SJSA-1	cells.	The	ineffectiveness	of	GANT-61	in	SJSA-1	cells	could	again	be	

due	to	the	fact	that	this	cell	line	has	higher	levels	of	GLI1	transcript,	which	could	

therefore	make	it	more	resistant	to	GLI1	blockers	such	as	GANT-61	due	to	the	potential	

surplus	of	GLI1	and	the	presence	of	mechanisms	that	enhance	the	amplification	of	GLI1.	

Furthermore,	this	cell	line	appears	to	be	less	reliant	on	Hh	signalling	for	its	growth	than	

the	DAOY	cell	line,	based	on	the	literature,	and	our	qPCR	expression	data.	However,	the	

increased	effectiveness	of	GANT-61	on	cell	viability	for	DAOY	and	UW228-2	cells	

compared	to	the	SMO	antagonists	may	be	due	to	the	ability	of	these	proteins	to	be	

activated	by	both	SHh-ligand	dependent	and	–independent	mechanisms.	This	is	

interesting	as	it	indicates	that	the	inhibition	of	GLI	transcription	factors	has	impacted	

other	neighboring	pathways	resulting	in	it	being	more	effective	in	this	assay.	However,	

the	apparent	ability	of	TGFβ	signalling	to	respond	to	a	reduction	in	Hh	signalling	

following	treatment	suggests	that	this	could	be	a	survival	mechanism	that	is	preventing	

cell	death	following	Hh	antagonist	treatment.	When	determining	the	effect	of	blocking	

TGFβ	signalling	alone	we	found	that	SB431542	treatment	and	SMAD4	knockdown	again	

did	not	induce	apoptosis	or	significantly	impact	cell	viability.	The	effectiveness	of	

blocking	TGFβ	signalling	in	Hh	antagonist-resistant	tumour	cell	lines	has	been	previously	

demonstrated	(Thayer	et	al.,	2003).	In	this	study	the	ability	of	cyclopamine	to	induce	

apoptosis	in	a	series	of	pancreatic	cell	lines	(all	shown	to	harbour	elevated	levels	of	

GLI1),	was	demonstrated	in	50%	of	the	cell	lines	tested	(Thayer	et	al.,	2003).	A	later	

study	went	on	to	demonstrate	that	in	these	cyclopamine-resistant	cell	lines,	the	basal	

expression	of	both	GLI1	and	2,	as	well	as	their	proliferative	capacity	was	greatly	

inhibited	by	SB431542	(Dennler	et	al.,	2007).	However,	based	on	our	findings,	TGFβ	

inhibition	was	capable	of	inducing	Hh	regulated	genes	in	these	cell	lines	which	may	

potentially	explain	why	no	response	was	observed	on	cell	viability	and	apoptosis.	

However,	an	important	point	to	also	note	is	that	the	cell	viability	and	apoptosis	assays	

were	performed	after	24	hr	of	Hh	and/or	TGFβ	antagonist	treatment,	and	therefore	it	is	

possible	that	longer	time	points	are	required	to	observe	any	effect,	therefore	for	future	

experiments,	exposing	the	cells	for	longer	time-points	should	be	performed	to	discount	

this	possibility.	
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Since	both	the	Hh	and	TGFβ	signalling	pathways	appear	to	be	induced	following	TGFβ	

and	Hh	inhibition,	respectively,	our	next	step	was	to	inhibit	both	of	these	pathways	

together	and	to	assess	the	impact	on	each	of	the	cell	lines.	Firstly,	we	assessed	the	

impact	of	the	combinational	treatments	on	the	expression	of	both	TGFβ	and	Hh	

regulated	genes.	In	the	DAOY	cell	line,	SB431542	was	capable	of	reversing	Hh	

antagonist-induced	CEBPD,	whereas	SERPINE1	and	SKIL	induction	was	reversed	in	the	

SB431542	and	sonidegib	combination	group.	This	same	effect	was	also	observed	by	

SMAD4	knockdown.	In	the	UW228-2	cells,	SB431542	was	capable	of	reversing	Hh	

antagonist-induced	CEBPD	and	NEDD9	in	combination	with	all	Hh	antagonists,	whereas	

SMAD4	knockdown	reversed	CEBPD	but	not	NEDD9.	In	the	SJSA-1	cells,	SB431542	

reversed	NEDD9	induction	in	combination	with	all	Hh	antagonists,	while	CEBPD	was	

reversed	in	combination	with	sonidegib	only.	SMAD4	knockdown	did	not	have	an	

impact	on	either	CEBPD	or	NEDD9.	Therefore,	inhibiting	the	TGFβ	signalling	pathway	

both	through	SB431542	treatment	and	SMAD4	knockdown	(not	in	the	case	of	SJSA-1	

cells)	was	capable	of	reverting	the	induction	of	TGFβ	regulated	genes	following	Hh	

antagonist	treatment.	The	discrepancy	between	the	ability	of	NEDD9	induction	to	be	

reversed	by	SB431542	and	SMAD4	knockdown	in	UW228-2	could	be	explained	by	the	

fact	that	NEDD9	was	induced	by	GANT-61	and	not	vismodegib	and	sonidegib	in	the	

single	treatments.	However,	the	inability	of	SMAD4	to	revert	NEDD9	induction	when	

combined	with	GANT-61	may	suggest	that	the	induction	of	NEDD9	by	GANT-61	occurs	

independent	of	SMAD4	but	dependent	on	ALK5	receptor	kinase	activity	in	UW228-2	

cells.	Furthermore,	the	inability	of	SMAD4	knockdown	to	revert	Hh	antagonist-mediated	

expression	of	TGFβ	regulated	genes	could	be	because	they	are	induced	in	a	manner	that	

is	independent	of	SMAD4.	Both	SMAD2	and	3	have	the	ability	to	freely	diffuse	in	(Fink	et	

al.,	2003)	and	out	(Inman	et	al.,	2002a)	of	the	nucleus	independent	of	SMAD4;	with	a	

recent	study	by	David	et	al.	(2016)	showing	that	SMAD2	and	3	can	initiate	TGFβ	

responses	independent	of	SMAD4.	They	went	on	to	show	that	Sox4	was	induced	in	a	

SMAD4	independent	manner	and	could	provide	a	mechanism	through	which	TGFβ	

promotes	aggressiveness	in	SMAD4	null	pancreatic	ductal	adenocarcinoma	(David	et	al.,	

2016).	Hence	these	findings	create	a	precedent	demonstrating	the	ability	of	SMAD2/3	

to	induce	TGFβ	transcriptional	changes	independent	of	SMAD4.	However,	SJSA-1	cells	

were	particularly	sensitive	to	knockdown	using	Lipofectamine,	and	as	consequence	a	lot	
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of	cell	death	was	observed.	As	a	consequence	qPCR	analysis	to	assess	the	level	of	

SMAD4	mRNA	was	not	possible	due	to	technical	issues	with	the	qPCR;	therefore,	the	

level	of	SMAD4	knockdown	achieved	in	SJSA-1	cells	is	not	available.	Furthermore,	with	

regards	to	siRNA	knockdown	procedures,	SMAD4	knockdown	was	achieved	using	

SMARTpool	siRNA	(Dharmacon,	GE	Healthcare),	which	consists	of	a	mixture	of	four	

different	siRNAs.	In	an	ideal	situation,	in	the	first	instance,	siRNA	should	be	optimized	

by	using	individual	siRNAs	to	determine	which	are	capable	of	achieving	the	best	levels	

of	SMAD4	knockdown.	Subsequently,	based	on	these	findings,	either	single	siRNA	or	

SMARTpool	could	be	used	(if	at	least	2	out	of	4	are	shown	to	be	effective)	(note:	

scrambled	siRNA	should	always	be	used	as	a	control).	

	

In	DAOY	cells,	when	assessing	the	impact	of	combination	treatment	on	Hh	regulated	

genes,	interestingly,	SB431542	was	shown	to	revert	the	effect	of	Hh	antagonist	

treatment	on	Hh	regulated	genes,	whereas	no	effect	was	observed	for	SMAD4	

knockdown.	This	same	effect	was	seen	to	varying	degrees	in	the	other	two	cell	lines,	

with	UW228-2	cells	demonstrating	that	SB431542	could	revert	the	effects	on	Hh	

regulated	genes	induced	by	sondeigib	and	GANT-61,	but	not	vismodegib,	while	SMAD4	

knockdown	was	shown	to	revert	SMO	but	not	GLI2	for	all	Hh	antagonist	treatments.	

Finally,	in	the	SJSA-1	cell	line,	SB431542	was	able	to	revert	the	expression	of	Hh	

antagonist-mediated	GLI2	and	SMO	expression,	whereas	no	effect	was	observed	

following	SMAD4	knockdown.	These	observations	are	interesting	as	they	suggest	that	

although	TGFβ	inhibitors	are	capable	of	reducing	Hh	antagonist-mediated	TGFβ	

regulated	gene	induction,	they	also	seem	to	revert	the	Hh	antagonist	mediated	

response	of	Hh	regulated	genes,	and	thereby	stimulate	a	Hh	agonist	induced	response	

(when	using	the	expression	of	Hh	regulated	genes	as	an	output).		

	

An	important	future	experiment	that	needs	to	be	performed	is	to	assess	the	impact	of	

combined	treatments	on	the	nuclear	accumulation	of	pSMAD3,	since	assessing	the	

ability	of	SB431542	treatment	and	SMAD4	knockdown	to	reduce	the	levels	of	Hh	

antagonist-induced	accumulation	of	nuclear	pSMAD3	will	tell	us	if	this	accumulation	is	

dependent	on	both	ALK5	receptor	kinase	activity	and	SMAD4.	However,	the	ability	of	

these	TGFβ	antagonists	to	in	part	reverse	TGFβ	induced	genes	following	Hh	antagonist	
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treatment	would	indicate	that	the	mechanism	involved	is	at	least	partially	dependent	

on	ALK5	receptor	kinase	activity	and	SMAD4.		

	

When	assessing	the	impact	of	combining	Hh	and	TGFβ	antagonist	treatments	in	

functional	assays,	our	results	showed	that	combinational	treatments	had	no	significant	

impact	on	cell	viability	or	cell	apoptosis.	Therefore,	inhibiting	both	of	these	pathways	

was	not	sufficient	to	impact	cell	viability,	which	as	previously	mentioned	could	be	as	a	

result	of	drugging	for	24	hr,	instead	of	longer	time	points;	however,	it	could	also	

indicate	that	other	mechanisms	beyond	these	two	signalling	pathways	are	responsible	

for	cell	survival.	

	

Based	on	chapter	4,	crosstalk	between	TGFβ	and	Hh	signalling	pathways	must	also	be	

considered	in	the	cancer	stem	cell	population.	Our	data	show	evidence	that	Hh	

antagonists	mimicked	the	effects	observed	on	cell	viability	and	apoptosis	in	CSCs.	Both	

GANT-61	and	sonidegib	were	found	to	have	an	impact	on	colony-forming	cells,	however	

the	effect	of	GANT-61	was	far	more	pronounced,	as	nearly	all	colony-forming	cells	were	

killed	in	all	three-cell	lines.	Conversely,	no	effect	was	observed	on	colony-forming	cells	

following	vismodegib	treatment.	For	tumour-sphere	forming	cells,	sonidegib	was	not	

found	to	have	the	same	effects,	with	no	impact	observed	on	tumoursphere	size	or	

surival	in	anoikis-resistant	cells	(passage	1),	nor	self-renewing	cells	(passage	2).	GANT-

61	was	capable	of	impacting	tumoursphere	size	in	passage	1	indicating	that	it	is	capable	

of	reducing	cell	proliferation,	along	with	being	able	to	impact	on	self-renewal	as	

evidence	through	the	reduction	of	tumourspheres	in	passage	2.	Like	in	the	CFA,	

vismodegib	was	found	to	have	no	effect	on	tumoursphere	forming	cells.	The	resistance	

towards	SMO	antagonists	identified	in	most	assays	corroborates	what	was	reported	by	

Colmont	et	al.	(2013)	whereby	no	effect	was	observed	following	vismodegib	treatment	

in	a	primary	BCC	in	vitro	SC	assay.	However,	with	regards	to	GANT-61	although	

concentrations	used	were	cited	in	numerous	publications	it	is	possible	that	under	SC	

conditions	the	concentration	was	cytotoxic,	or,	given	its	ability	to	inhibit	GLI	proteins	

directly,	there	could	be	abrogation	of	GLI	with	other	factors	that	contribute	to	off	target	

effects.	Nevertheless,	it	is	important	to	note	that	GANT-61	did	not	have	a	significant	
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impact	on	the	whole	cell	population	as	evidenced	by	cell	viability	and	apoptosis	assays	

indicating	that	maybe	GANT-61	is	a	potent	inhibitor	of	CSCs.		

	

TGFβ	antagonists	were	found	to	have	very	little	impact	on	tumoursphere	formation	

either	on	anoikis-resistant	cells	(passage	1)	or	self-renewing	cells	(passage	2)	in	all	three	

cell	lines.	SB431542	was	found	to	reduce	the	number	of	colony	forming	cells	in	our	cell	

lines	which	may	be	explained	by	the	fact	that	TGFβ	signalling	as	previously	described	is	

involved	in	CSC	maintenance.	However,	when	both	Hh	and	TGFβ	antagonists	were	

combined,	no	additive	impact	was	observed	in	either	colony	forming	cells	or	

tumourspheres.	It	is	important	to	note	however,	that	both	the	colony	forming	and	

sphere	forming	assays	have	their	limitations,	in	that	the	colony	forming	assay	measures	

the	ability	of	a	cell	to	grow	in	conditions	where	cell-cell	contact	is	absent,	and	therefore	

is	more	of	a	progenitor	like	assay	rather	than	a	SC	assay;	whereas	the	sphere	forming	

assay	is	a	true	SC	assay	as	it	measures	the	ability	of	a	cell	to	grow	in	anoikis	conditions	

(passage	1)	and	self	renew	(passage	2),	although	it	only	selects	for	SCs	that	divide	and	

not	for	ones	that	are	quiescent.	For	future	work,	if	the	CSC	population	is	indeed	

important	to	cell	survival,	as	potentially	evidenced	through	GANT-61	(CFA	and	SFA)	and	

SB431542	(CFA),	then	performing	cell	viability	and	apoptosis	assays	for	longer	time	

periods	becomes	even	more	important	as	no	effect	would	be	seen	on	the	total	cell	

population	over	short	time	periods	if	CSCs	are	effected	following	treatment,	therefore	

longer	time	periods	will	be	able	to	discern	any	potential	effects	of	the	drugs	on	the	cell	

lines.		

	

Thus	blocking	TGFβ	signalling	at	the	level	of	the	receptor	and	formation	of	intracellular	

SMAD	heterodimers	did	not	influence	Hh	driven	cell	survival	upon	Hh	antagonist	

treatment.	As	a	consequence	it	is	increasingly	apparent	that	other	mechanisms	may	be	

in	play	that	facilitate	cell	survival,	and	are	possibly	downstream	of	the	inhibitors	that	we	

have	been	using.	Therefore	in	chapter	6,	we	will	attempt	to	explore	the	mechanisms	

that	could	potentially	be	involved.	As	a	consequence,	further	exploration	is	required	to	

test	our	hypothesis	that	TGFβ	signalling	is	responsible	for	the	survival	of	Hh	driven	

tumour	cells	following	Hh	antagonist	treatment.	
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Chapter	6	 Defining	 the	 Basis	 for	 Nuclear	
Translocation	 of	 SMAD3	 Following	 Hh	 Antagonist	
Treatment	

6.1	 Introduction	
	
We	 had	 hypothesised	 that	 resistance	 to	 Hh	 antagonists	 and	 Hh	 driven	 cancer	 cell	

survival	was	dependent	upon	TGFβ	signalling,	based	on	preliminary	microarray	analysis.	

Consistent	 with	 the	 earlier	 published	 reports,	 Hh	 signalling	 was	 associated	 with	 an	

increase	in	TGFβ	signalling.	Microarray	gene	set	enrichment,	RT-PCR	profiling,	Western	

blot	 analysis	 and	 immunofluorescence	 demonstrated	 enriched	 TGFβ	 signalling	 at	 the	

tumour	periphery	and	notably	within	the	BCC	CSC	enriched	population.	In	line	with	our	

hypothesis,	 Hh	 antagonist	 treatments,	 despite	 reducing	 Hh	 regulated	 genes,	 did	 not	

affect	cell	viability	and	simultaneously	led	to	an	increase	in	TGFβ	regulated	genes.				

	

Blocking	TGFβ	signalling	at	the	level	of	the	receptor	(tyrosine	kinase	inhibitor	SB431542)	

and	 SMAD4	 siRNA	all	 led	 to	 a	 reduction	 in	 TGFβ	 signalling	with	down-regulation	of	 a	

TGFβ	core	gene	 set	 in	our	 in	 vitro	 assays.	We	observed	 that	TGFβ	 signalling	blockade	

was	 capable	 of	 reversing	 the	 expression	 of	 Hh	 antagonist-induced	 TGFβ	 regulated	

genes.	 However,	 when	 Hh	 driven	 cancer	 cells	 were	 treated	 with	 Hh	 antagonists	

together	 with	 either	 the	 tyrosine	 kinase	 inhibitor	 (SB431542)	 or	 SMAD4	 siRNA	 there	

was	no	synergistic	killing.	Hence,	pSMAD3	regulation	of	TGFβ	associated	genes	may	still	

influence	Hh	driven	cancer	cell	survival	after	Hh	antagonist	treatment.		

	

SMAD	 proteins,	 similar	 to	 other	 intracellular	 signal	 transduction	 proteins,	 are	

sequestered	 in	 the	 cell	 cytoplasm	 bound	 to	 microtubules	 in	 the	 absence	 of	 active	

signalling	 (Dong	 et	 al.,	 2000).	 The	 microtubule-organising	 centre	 is	 the	 connection	

between	 the	 microtubule	 network	 and	 nucleus	 and	 is	 crucial	 for	 both	 nuclear	

movement	and	intracellular	signal	transduction	(Fletcher	and	Mullins,	2010).	It	has	been	

shown	that	SMAD	proteins	use	this	microtubule	scaffold	to	shuttle	into	the	nucleus	to	

effect	 gene	 regulation	 (Batut	 et	 al.,	 2007).	 For	 example,	 the	 microtubular	 proteins	

kinesin-1	 and	 the	dynein	 light	 chain	 km23-1	are	 required	 for	 SMAD2	phosphorylation	

and	translocation	into	the	nucleus	(Batut	et	al.,	2007;	Jin	et	al.,	2007).	Dong	et	al.	(2000)	
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showed	in	several	cell	lines	that	endogenous	SMAD2,	3,	and	4	bind	microtubules	in	the	

absence	 of	 TGFβ	 stimulation	 (Dong	 et	 al.,	 2000).	Moreover,	 connexin43	 can	 displace	

SMAD3	from	microtubules	as	it	competes	for	the	same	microtubular	binding	site	(Dai	et	

al.,	2007).	Importantly,	displacement	of	SMAD3	from	microtubules	by	connexin43	led	to	

expression	 of	 TGFβ	 regulated	 genes.	 Thus,	 intracellular	 localisation	 of	 SMAD	proteins	

including	 SMAD3	 demonstrates	 their	 association	 with	 the	 microtubular	 network	 and	

their	displacement	can	lead	to	TGFβ	ligand	independent	signalling.	

	

Drugs	that	disrupt	the	microtubule	network	have	been	developed	for	the	treatment	of	

cancer	and	include	nocodazole	and	colchicine.	Nocodazole	binds	tubulin	and	blocks	the	

formation	 of	 one	 of	 the	 two	 interchain	 disulphide	 linkages,	 which	 therefore	 blocks	

microtubule	formation	through	polymerisation	(Vasquez	et	al.,	1997).	Dong	et	al.	(2000)	

showed	 that	 nocodazole	 led	 to	 displacement	 and	 phosphorylation	 of	 SMAD2,	 with	

nuclear	translocation	and	regulation	of	TGFβ	associated	genes	(Dong	et	al.,	2000).	One	

proposed	mechanism	 for	 nocodazole	 associated	 TGFβ	 gene	 regulation,	 suggests	 that	

Rho/ROCK	can	facilitate	SMAD2/3	phosphorylation	(Samarakoon	et	al.,	2009).	Hence	we	

hypothesised	 that	 SMAD3	phosphorylation	and	nuclear	 translocation	 into	 the	nucleus	

after	Hh	antagonists	may	 result	 from	Hh	antagonist	 induced	microtubular	 collapse.	 In	

order	to	determine	this	we	will	use	primary	BCC	tissue	and	the	DAOY	cell	line,	which	in	

chapter	5	was	identified,	as	having	an	intact	canonical	Hh	signalling	pathway,	whereas	

the	UW228-2	and	SJSA-1	cell	lines	did	not.		
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6.2	 Results	

6.2.1	TGFβ	ligand	expression	is	not	induced	by	Hh	antagonist		
	
We	 sought	 to	 determine	 if	 Hh	 antagonist	 treatment	 could	 induce	 autocrine	 TGFβ	

signalling	 by	 increasing	 expression	 of	 TGFβ	 ligands.	 Consistent	 with	 the	 crosstalk	

between	Hh	and	TGFβ	pathways,	Hh	antagonist	treatments	did	not	induce	expression	of	

TGFβ	 ligands	 (Figure	 6.1).	 After	 24	 hr	 treatment	 with	 vismodegib,	 both	 DAOY	 (-

2.35±0.02;	 p<0.05)	 and	 UW228-2	 (-2.85±0.09;	 p<0.05)	 cells	 showed	 downregulated	

expression	 of	 TGFβ2	 (Figure	 6.1	 A	 &	 B).	 Sonidegib	 treatment	 was	 associated	 with	

downregulated	expression	of	TGFβ2	in	UW228-2	cells	(-4.97±0.04;	p<0.05)	(Figure	6.1A	

&	 B).	 GANT-61	 treatment	 led	 to	 downregulation	 of	 TGFβ2	 and	 3	 in	 DAOY	 cells	 (-

3.36±0.04;	p<0.05	and	-3.52±0.06;	p<0.05	respectively),	whereas	UW228-2	cells	showed	

downregulated	expression	of	TGFβ1	and	3	(-2.98±0.09;	p<0.05	and	-8.74±0.15;	p<0.01	

respectively)	 (Figure	 6.1	 A	&	 B).	 GANT-61	was	 associated	with	 a	 small	 but	 significant	

increase	 in	 TGFβ2	 in	 UW228-2	 cells	 (1.67±0.15;	 p<0.05).	 Irrespective	 of	 the	 Hh	

antagonist,	 constitutive	 TGFβ	 signalling	 in	 SJSA-1	 cells	 was	 not	 associated	 with	 an	

increase	in	TGFβ	ligand	expression	(Figure	6.1C).	Consistent	with	the	lack	of	response	to	

concomitant	 TGFβ	 blockade,	 Hh	 antagonists	 did	 not	 induce	 the	 expression	 of	 TGFβ	

ligands	and	therefore	pathway	activation	may	be	ligand	independent.		
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Figure	 6.1:	 Hedgehog	 antagonist	 treatment	 in	 Hh	 driven	 tumour	 cell	 lines	 does	 not	

increase	the	expression	of	TGFβ	ligands.		

Hh	driven	tumour	cell	lines	(A)	DAOY,	(B)	UW228-2,	and	(C)	SJSA-1,	were	cultured	in	the	

presence	of	the	Hh	antagonists,	vismodegib,	sonidegib,	and	GANT-61	at	a	concentration	

of	10	μM	for	24	hr,	then	analysed	by	qPCR	for	the	expression	of	TGFβ1,	2,	and	3	ligands.	

Expression	 values	 are	 presented	 as	 Log10RQ,	 with	 an	 average	 of	 two	 independent	

experiments.	The	qPCR	assay	was	performed	with	three	internal	technical	replicates	and	

two	 endogenous	 controls.	 Dotted	 lines	 represent	 a	 +2	 or	 -2	 fold	 change	 in	 gene	

expression	 in	 comparison	 to	 the	 control.	 (n=2),	 Error	 bars	 represent	 SE	 of	 mean,	 *	

represents	p<0.05,	**	represents	p<0.01,	t-test.					
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6.2.2	 Nocodozaole	 induced	 microtubule	 collapse	 leads	 to	 nuclear	
accumulation	of	pSMAD3		
	
We	 next	 sought	 to	 determine	 if	 SMAD3	 associated	 with	 microtubules	 in	 Hh	 driven	

cancer	cell	lines	and	if	so	whether	disruption	of	the	microtubule	network	could	lead	to	

nuclear	 translocation	of	 pSMAD3.	DAOY	 cells	were	 cultured	onto	 glass	 coverslips	 and	

subsequently	treated	with	1	μM	nocodazole	for	8	and	24	hr,	and	immunofluorescence	

was	 performed	 to	 stain	 for	 α-tubulin	 and	 pSMAD3.	 Untreated	 DAOY	 cells	 formed	 an	

intricate	 microtubular	 cytoskeletal	 network	 with	 actin	 microfilaments	 and	 α-tubulin	

macrofilaments	 (Figure	 6.2	 upper	 row).	 After	 incubation	 with	 nocodazole	 the	

cytoskeletal	collapse	 led	to	a	change	 in	morphology	to	more	spindle	shaped	cells.	The	

cell	membrane	bound	actin	filaments	were	lost,	and	the	perinuclear	clusters	indicative	

of	α-tubulin	distribution	were	observed	(Figure	6.2	lower	row;	24hr	time-point	shown).	

All	 cells	 treated	 with	 nocodazole	 displayed	 similar	 changes	 in	 morphology	 and	

cytoskeletal	 protein	 re-distribution.	 Thus,	 the	 Hh	 driven	 medulloblastoma	 cell	 line	

DAOY,	 which	 has	 a	 cytoskeleton	 that	 is	 easy	 to	 visualise,	 also	 demonstrated	

microtubular	collapse	after	treatment	with	nocodazole.			
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Figure	6.2:	Nocodozaole	induced	microtubule	collapse		

DAOY	cell	lines	were	cultured	onto	glass	cover	slips	without	(upper	row)	and	with	(lower	

row)	nocodazole	treatment	for	24	hr.	Nocodazole	treatment	resulted	in	redistribution	of	

the	 cytoskeletal	 proteins,	 actin	 (labelled	 by	 phallodin,	 left-hand-side	 images)	 and	 α-

tubulin	 (centre	 and	 right-hand-side	 images).	 Cells	 are	 counterstained	with	 the	nuclear	

label	DAPI.	Scale	bars	=	50	μM.	

	

DAOY	cells	were	cultured	on	glass	cover	slips	and	treated	with	1	μM	nocodazole	for	8	

and	 24	 hrs.	 The	 cells	 were	 fixed	 in	 PFA,	 labelled	 with	 antibodies	 to	 α-tubulin	 and	

pSMAD3,	and	counterstained	with	DAPI.	Collapse	of	the	α-tubulin	network	was	evident	

at	 both	 8	 and	 24	 hr	 (Figure	 6.3).	 In	 contrast	 to	 untreated	 cells,	 pSMAD3	 nuclear	

accumulation	was	also	evident	at	both	of	these	time	points	(Figure	6.3).	The	pattern	of	

nuclear	pSMAD3	resembled	that	observed	previously	after	TGFβ1	treatment.	Therefore,	

nocodazole	achieved	time	dependent	cytoskeletal	collapse	and	nuclear	translocation	of	

pSMAD3	in	the	Hh	driven	tumour	cell	DAOY.				
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Figure	 6.3:	 Nocodozaole	 induced	 nuclear	 accumulation	 of	 pSMAD3	 in	 Hh	 driven	

tumour	cell	line.		

DAOY	 cells	 cultured	 on	 glass	 cover	 slips	 without	 (top	 row)	 and	 with	 nocodazole	

treatment	for	8	hr	(middle	row)	and	24	hr	(bottom	row).	Cells	were	labelled	with	DAPI	

(left-hand-side)	 and	 antibodies	 to	 α-tubulin	 (middle)	 and	 pSMAD3	 (right-hand-side).	

Cytoskeletal	collapse	and	nuclear	pSMAD3	was	evident	at	both	8	and	24hr,	but	not	 in	

untreated	cells.	Scale	bars	=	50	μM.	
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6.2.3	Primary	BCC	treated	with	Hh	antagonist	reduce	acetylated	tubulin	
	

When	 incorporated	 into	 microtubules,	 tubulin	 accumulates	 a	 number	 of	 post-

translational	 modifications	 that	 are	 important	 for	 its	 role	 in	 many	 biological	 and	

molecular	 functions,	 including	 acetylation.	 Catalyzed	 by	 α-tubulin	 acetyl-transferase,	

the	acetylation	of	K40	on	α-tubulin	 is	a	hallmark	of	stable	microtubules	(Friedmann	et	

al.,	 2012).	 To	 determine	 if	 Hh	 antagonist	 therapy	 of	 BCC	 could	 induce	 microtubular	

collapse,	we	undertook	western	blot	analysis	of	vismodegib	treated	primary	BCC	cells	at	

varying	time	points	(Figure	6.4).	As	with	nocodazole	induced	microtubular	collapse,	BCC	

cells	 treated	 with	 vismodegib	 for	 24	 hr	 resulted	 in	 loss	 of	 K40	 acetylated	 α-tubulin	

(Figure	 6.4).	 Hence,	 BCC	 treated	 with	 Hh	 antagonists	 also	 undergo	 time-dependent	

microtubule	collapse.			

	

	

	

	

	

	

	

	

	

	

	

Figure	6.4:	Hh	antagonists	 induce	microtubule	destabilisation	within	primary	human	

BCC		

Primary	BCC	tissue	was	dissociated	 into	single	cells	and	cultured	 in	 the	presence	of	10	

μM	 vismodegib	 at	 varying	 time-points.	 Protein	 was	 then	 extracted	 and	 western	 blot	

performed	 using	 anti	 acetylated	 α-tubulin	 antibody,	with	 GAPDH	 used	 as	 the	 loading	

control.	Experiments	were	performed	in	duplicate.	
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6.2.4	 Hh	 antagonists	 induce	 microtubule	 collapse	 and	 nuclear	 pSMAD3	
accumulation		
	

Next	 we	 sought	 to	 determine	 if	 Hh	 antagonist	 induced	 microtubular	 collapse	 was	

associated	 with	 pSMAD3	 nuclear	 translocation.	 The	 Hh	 driven	 DAOY	 cell	 line	 was	

cultured	onto	glass	coverslips	and	treated	with	vismodegib	for	24	hrs.	Cells	were	fixed	

and	 labelled	 for	 F-actin,	 α-tubulin,	 and	 pSMAD3.	 Vismodegib	 treatment	 led	 to	 a	

morphological	change	in	DAOY	cells,	compared	to	untreated	cells	vismodegib	treatment	

was	associated	with	 spindle	 shape	 transformation	 (Figure	6.5).	Treated	cells	 lost	 their	

ring	of	F-actin	around	the	cell	periphery	(Figure	5.6	arrows),	along	with	a	reduction	in	α-

tubulin	 in	 the	 cell	 cytoplasm.	 With	 vismodegib	 treatment,	 there	 was	 nuclear	

accumulation	 of	 pSMAD3	 (Figure	 6.6).	 Quantification	 of	 the	 relative	 fluorescence	

intensity	 of	 nuclear	 pSMAD3	 staining	 within	 these	 cells	 revealed	 a	 2-fold	 increase	 in	

treated	 cells	 (4,031±-567.0)	 when	 compared	 to	 the	 untreated	 cells	 (8,022±256.0;	

p<0.01;	 Figure	 6.6B).	 Therefore,	 based	 on	 immunofluorescence	 staining,	 vismodegib	

treatment	 led	 to	 disruption	 of	 the	microtubule	 network	 and	 was	 associated	 with	 an	

increase	in	the	nuclear	accumulation	of	pSMAD3.		
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Figure	6.5:	Hh	antagonists	induce	microtubule	changes	in	Hh	driven	tumour	cell	line.		

DAOY	cells	cultured	onto	glass	cover	slips	were	treated	with	vismodegib	at	10	μM	for	24	

hr.	 Untreated	 and	 vismodegib	 treated	 DAOY	 cells	 were	 fixed	 and	 labelled	 with	

phalloidin-488	and	α-tubulin.	Scale	bars	are	all	=	50	μM	

				

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	 6.6:	 Hh	 antagonists	 induce	 nuclear	 accumulation	 of	 pSMAD3	 in	 Hh	 driven	

tumour	cell	line.		

DAOY	cells	were	cultured	onto	glass	cover	slips	and	treated	with	10	μM	vismodegib	for	

24	hr.	(A)	DAOY	cells	untreated	and	treated	with	vismodegib	before	being	stained	with	

pSMAD3,	 (B)	 relative	 fluorescent	 intensity	 (RFI)	 of	 nuclear	 pSMAD3	 staining	 was	
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quantified	using	Image	J	software	over	three	independent	experiments.	(n=3),	Error	bars	

represent	SE	of	mean,	**	represents	p<0.01,	t-test.	Scale	bars	=	200	μM.		

	

	

6.3	 Discussion	
	
In	vertebrates,	Hh	signalling	is	coordinated	by	the	primary	cilium,	a	microtubule-based	

organelle	that	projects	from	the	surface	of	most	types	of	mammalian	cells	(Huangfu	et	

al.,	2003;	Goetz	and	Anderson,	2010).	In	the	absence	of	Hh	pathway	activation,	PTCH1	

localizes	to	the	primary	cilium	and	inhibits	SMO	ciliary	localisation	(Rohatgi	et	al.,	2007).	

In	 the	 presence	 of	 Hh	 ligands,	 SMO	 accumulates	 in	 the	 cilium	 and	 activates	 the	

downstream	Hh	pathway	(Corbit	et	al.,	2005).	Similarly,	other	Hh	pathway	components,	

including	SUFU	and	the	GLI	 transcription	 factors,	also	 localize	 to	 the	cilium	suggesting	

that	 the	 cilium	 is	 the	 subcellular	 site	 at	 which	 SMO	 interacts	 with	 its	 downstream	

targets	(Haycraft	et	al.,	2005;	Liu	et	al.,	2005).	Hh	signalling	maintains	the	primary	cilium	

through	 SMO	 mediated	 microtubule	 acetylation,	 and	 Hh	 antagonists	 have	 been	

previously	reported	to	disrupt	this	microtubular	network	(Lee	and	Ko,	2016;	Wu	et	al.,	

2012).	Our	data	corroborates	 these	 findings	and	has	 shown	 that	 in	Hh	driven	 tumour	

cells	 (where	primary	 cilia	 is	 relevant),	Hh	 antagonist	 treatment	 is	 capable	of	 inducing	

microtubule	 collapse,	 evidenced	 through	 de-acetylation	 of	 α-tubulin	 (hallmark	 of	

microtubule	collapse),	and	a	reduction	in	the	levels	of	phalloidin	and	α-tubulin	filaments	

in	 primary	 BCC	 and	 DAOY	 cells,	 respectively.	 Our	 data	 shows	 that,	 following	 Hh	

antagonist	treatment	and	therefore	microtubule	collapse,	we	get	nuclear	accumulation	

of	pSMAD3.	Interestingly,	a	study	by	Gu	et	al.	(2016)	determined	that	loss	of	α-tubulin	

acetylation	was	associated	with	TGFβ	induced	EMT	(Gu	et	al.,	2016).	They	reported	that	

TGFβ	 signalling	 increased	 the	 activity	 of	 HDAC6,	 which	 causes	 deacetylation	 of	 α-

tubulin,	 and	 that	 treatment	 with	 the	 HDAC	 inhibitor,	 tubacin,	 or	 the	 ALK5	 inhibitor,	

SB431542,	restored	the	level	of	acetylated	α-tubulin.	An	additional	study	by	Korol	et	al.	

(2016),	 also	 identified	 TGFβ	 induced	 cytoskeletal	 reorganisation	 through	 Rho/ROCK	

signalling	 as	 essential	 to	 the	 EMT	 of	 lens	 epithelial	 cells	 (Korol	 et	 al.,	 2016).	 This	

therefore	provides	a	mechanism	through	which	Hh	antagonists	can	induce	microtubular	

changes,	and	 therefore	 future	experiments	using	 tubacin	or	SB431542	 in	combination	
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with	Hh	antagonists	will	allow	us	to	determine	if	the	level	of	acetylated	α-tubulin	can	be	

restored.	 Furthermore,	 a	 number	 of	 studies	 have	 highlighted	 the	 ability	 of	 Hh	

antagonists	 to	 modify	 the	 microtubular	 network,	 such	 as	 Lee	 and	 Ko,	 (2016),	 who	

showed	that	 in	mouse	embryonic	fibroblast	cells	(MEFs)	activation	of	Hh	signalling	led	

to	 the	 acetylation	of	microtubules	 via	 SMO,	which	was	 subsequently	 abrogated	upon	

treatment	with	the	Hh	antagonist,	vismodegib.	Based	on	the	expression	of	TGFβ	ligands	

following	 Hh	 antagonist	 treatment	 in	 our	 Hh	 driven	 cell	 lines,	 Hh-antagonist	 induced	

TGFβ	signalling	may	not	be	ligand	dependent,	as	no	increase	in	TGFβ	ligand	expression	

was	observed	following	treatment.	Therefore	Hh	antagonists	are	capable	of	 impacting	

on	 the	 microtubular	 network,	 which	 is	 associated	 with	 the	 nuclear	 translocation	 of	

pSMAD3.	This	is	not	without	precedent	as	it	is	becoming	increasingly	evident	that	SMAD	

signalling	 can	 be	 initiated	 through	 non-TGFβ	 superfamily	 ligands,	 which	 in	 some	

instances	is	not	entirely	dependent	on	TGFBRI	(Samarakoon	et	al.,	2009;	de	Caestecker	

et	al.,	1998).	Although	Hh	antagonist	treatment	is	associated	with	microtubular	changes	

and	nuclear	accumulation	of	pSMAD3,	it	remained	to	be	determined	whether	these	two	

observations	 were	 linked.	 We	 therefore	 performed	 a	 proof	 of	 principle	 experiment	

using	 the	 microtubule	 destabilising	 agent,	 nocodazole,	 to	 confirm	 that	 microtubule	

collapse	causes	enhanced	nuclear	accumulation	of	pSMAD3.	We	found	that	nocodazole	

treated	 Hh	 driven	 DAOY	 cells	 demonstrated	 an	 increase	 in	 nuclear	 pSMAD3,	 which	

confirmed	what	other	papers	have	shown	using	these	destabilising	agents	(Samarakoon	

et	al.,	2009;	Samarakoon	et	al.,	2002;	Samarakoon	et	al.,	2003;	Ott	et	al.,	2003;	Chaqour	

et	al.,	2006;	Muehlich	et	al.,	2007).		

	

Although	 we	 have	 not	 currently	 elucidated	 a	 mechanism	 by	 which	 pSMAD3	 is	

phosphorylated	 following	Hh	 antagonist	 treatment,	 based	 on	 the	 literature	 there	 are	

several	 possibilities	 that	 could	 explain	what	we	have	observed.	Microtubules	 and	 the	

molecules	that	interact	with	them	can	contribute	to	signal	transduction	by	at	least	three	

distinct	mechanisms:	1)	microtubule	sequestering	and	release,	2)	microtubule	delivery	

and	3)	microtubule	scaffolding	of	signalling	molecules.	For	example,	in	order	for	SMAD2	

to	translocate	to	the	nucleus	 it	 is	required	to	associate	with	km23-1	and	microtubules	

(Jin	et	al.,	2007);	and	 in	 fact	there	 is	evidence	to	suggest	that	all	SMADs	 interact	with	

microtubules	(Dong	et	al.,	2000).	Furthermore,	microtubules	have	been	shown	regulate	
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TGFβ	signalling	by	trapping	SMADs	in	the	cytoplasm	(Dong	et	al.,	2000).	Interestingly,	in	

this	study	they	demonstrated	that	by	destabilising	the	microtubules	with	nocodazole	or	

colchicine,	TGFβ	signalling	was	 increased	 through	dissociation	of	 the	SMADs	 from	the	

microtubules	(Dong	et	al.,	2000),	with	a	later	study	showing	that	this	release	could	be	

regulated	by	connexin-43	(Dai	et	al.,	2007).	More	specifically,	Samarakoon	et	al.	(2009)	

implicated	the	potential	role	of	the	Rho-ROCK	pathway,	as	they	found	that	nocodazole	

treated	 cells	 were	 capable	 of	 activating	 Rho-GEFs	 which	 led	 to	 Rho-GTP	 loading	 and	

subsequent	phosphorylation	of	SMAD3	and	downstream	expression	of	TGFβ	regulated	

genes	(SERPINE1	and	CTGF)	(Samarakoon	et	al.,	2009).	In	fact	the	interaction	between	

the	 TGFβ	 and	 Rho/ROCK	 signalling	 pathways,	 and	 the	 subsequent	 impact	 on	 the	

microtubular	network	has	been	reported	by	a	number	of	publications	 (Vardouli	et	al.,	

2008;	Xue	et	al.,	 2012;	 Samarakoon	et	al.,	 2009).	 The	 same	group	also	demonstrated	

that	 blocking	 with	 the	 Rho/ROCK	 signalling	 pathway	 could	 inhibit	 TGFBRI	 induced	

phosphorylation	and	subsequent	nuclear	accumulation	of	pSMAD2	(Samarakoon	et	al.,	

2008a),	 and	 that	 this	 pathway	 could	 also	 modulate	 the	 duration	 of	 SMAD2/3	

phosphorylation	 and	 subsequent	 nuclear	 accumulation	 (Samarakoon	 et	 al.,	 2008b).	

Interestingly,	 non-canonical	 activation	 of	 R-SMADs	 has	 been	 shown	 after	 nocodazole	

treatment	 through	 the	 disassociation	 of	 R-SMADs	 from	 microtubules,	 which	 are	

subsequently	phosphorylated	by	Mps1	kinase	(Dong	et	al.,	2000;	Zhu	et	al.,	2007);	this	

therefore	provides	a	good	target	for	studying	in	our	Hh	driven	tumour	cells	following	Hh	

antagonist	treatment.	Therefore,	these	studies	along	with	our	findings	suggest	a	role	for	

microtubule	 dynamics	 in	 the	 regulation	 of	 SMAD	 signalling,	 and	 the	 ability	 of	 Hh	

antagonists	to	influence	those	dynamics.		

	

In	future	work,	elucidating	the	mechanisms	through	which	nuclear	pSMAD3	is	induced	

following	Hh	antagonist	treatment	could	be	evaluated	through	a	series	of	experiments.	

Initially,	it	will	be	necessary	to	determine	whether	or	not	it	is	ligand	dependent	and/or	

receptor	kinase	dependent.	To	do	this	TGFβ1,	2,	3	blockers	should	be	administered	 in	

combination	with	Hh	antagonist	treatments	to	determine	the	effect	on	nuclear	pSMAD3	

levels,	 assessed	 by	Western	 blot	 and	 immunofluorescence.	 Assessing	 receptor	 kinase	

dependence	 could	 be	 achieved	 through	 the	 use	 of	 the	 ALK5	 inhibitor,	 SB431542,	 in	

combination	with	Hh	antagonists,	to	again	determine	the	impact	on	pSMAD3	levels.	 If	
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Hh	 induced	 pSMAD3	 nuclear	 accumulation	 is	 dependent	 on	 ligand	 and/or	 receptor	

activity	 then	 it	 would	 be	 necessary	 to	 assess	 the	 ability	 of	 SB431542	 to	 reverse	 Hh	

antagonist	 induced	 microtubule	 destabilisation,	 and	 to	 address	 the	 inability	 of	 TGFβ	

blockade	to	impact	cell	viability	in	the	Hh	driven	cell	lines	(Chapter	5).	If	Hh	antagonist	

induced	nuclear	accumulation	of	pSMAD3	is	not	dependent	on	receptor	kinase	activity	

then	 alternative	 mechanisms	 will	 be	 explored	 through	 determining	 the	 effect	 of	

blocking	 the	 aforementioned	 potential	 targets,	 including	 the	 Rho/ROCK	 signalling	

pathway	 using	 the	 p160ROCK	blocker,	 Y-27632.	 Additionally,	 the	 Rho/ROCK	 signalling	

cascade	 is	 transduced	 through	 transcription	 factors,	 such	 as	 serum	 response	 factor	

(SRF);	therefore	assessing	the	nuclear	accumulation	of	SRF	following	treatment	with	Hh	

antagonist	 treatment	 and	 combination	 treatment	 with	 SB431542	 will	 be	 of	 interest.	

Furthermore,	 in	 order	 to	 determine	 the	 importance	 of	 pSMAD3	 and/or	 Rho/ROCK	 to	

impact	the	microtubular	network,	performing	siRNA	knockdowns	of	these	proteins	and	

then	assessing	the	effect	on	the	microtubular	network	will	allow	that	to	be	determined.		

		

In	 summary,	 we	 have	 confirmed	 that	 in	 Hh	 driven	 cancer	 cells,	 nocodazole	 induced	

microtubule	 collapse	 increases	 nuclear	 accumulation	 of	 pSMAD3	 protein	 levels.	

Likewise,	the	Hh	antagonist	vismodegib	also	disrupted	the	microtubular	network,	with	

an	 accompanied	 increase	 in	 nuclear	 pSMAD3	 in	 both	 primary	 BCC	 and	 a	 Hh	 driven	

tumour	cell	line.	Hence	our	findings	show	that	Hh	antagonists	disrupt	the	microtubular	

network	 in	 a	 time	 dependent	 manner,	 which	 in	 turn	 results	 in	 modulation	 of	 TGFβ	

regulated	genes.	The	broader	 implications	of	the	research	and	future	experiments	will	

be	discussed	in	more	detail	in	chapter	7.		
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Chapter	7	 General	Discussion	
	

7.1	 Discussion	
	

Over	the	past	10	years	the	focus	of	drug	discovery	in	oncology	has	evolved	from	empiric	

development	 to	 one	 of	 a	 rationale	 approach.	 Currently,	 emphasis	 is	 on	 the	

development	 of	 targeted	 therapeutic	 agents	 that	 have	 been	 identified	 through	 the	

discovery	of	genetic	alterations	in	human	cancers	and	the	signalling	pathways	that	they	

alter.	 In	 individuals	 with	 malignancies	 that	 are	 driven	 by	 dominant	 mutations,	 gene	

amplifications,	 or	 translocations	 (“oncogene	 addiction”),	 single	 agent	 therapies	 were	

initially	 shown	 to	 be	 effective,	 however	 the	 vast	 majority	 of	 tumours	 subsequently	

become	 refractory	 to	 treatment	 (e.g.	 through	acquired	 resistance)	 and	patients	often	

succumb	to	disease	progression.	Molecular	targets	that	have	FDA	approved	therapeutic	

agents	 include:	HER2	amplification	 in	breast	cancer	 (Perez	et	al.,	2017;	Welslau	et	al.,	

2014),	epidermal	growth	factor	receptor	(EGFR)	mutations	in	non-small	cell	lung	cancer	

(Zhao	et	al.,	2017;	Zhang,	2016),	BCR-ABL	translocations	 in	chronic	myeloid	 leukaemia	

(CML),	 c-Kit	mutations	within	 gastrointestinal	 stromal	 tumours	 (GIST)	 (Holohan	et	 al.,	

2013),	 and	 with	 relevance	 to	 Hh	 driven	 cancers	 (e.g.	 BCC	 and	 medulloblastoma),	

inactivating	mutations	in	the	receptor	of	PTCH	and/or	activating	mutations	in	the	GPCR	

SMO	within	basal	cell	carcinoma	(Von-Hoff	et	al.,	2009).	However,	key	to	the	successful	

development	and	application	of	targeted	therapies	is	having	a	better	understanding	of	

resistance	 mechanisms,	 as	 most	 tumour	 types	 are	 either	 refractory	 to	 targeted	

therapies	 (intrinsic	 resistance),	 or	 become	 refractory	 following	 therapy	 (acquired	

resistance).	There	are	several	mechanisms	that	have	been	identified	for	such	resistance	

to	 targeted	 therapies	 including,	 increases	 in	 the	expression	of	 transporters	capable	of	

drug	 efflux,	 alterations	 or	 mutations	 of	 drug	 targets,	 drug	 detoxification	 and	

inactivation,	 impact	 on	 apoptosis,	 and	 interference	 with	 DNA	 replication	 machinery.	

Table	7.1	provides	a	summary	of	resistance	mechanisms	to	some	common	molecularly	

targeted	agents.	This	project	focused	on	elucidating	the	mechanism	of	drug	resistance	

in	Hh	driven	tumours,	and	since	BCC	and	medulloblastoma	are	prototypical	cancers	for	

Hh	signalling	they	served	as	perfect	models	for	studying	resistance	mechanisms	towards	

targeted	therapies.	
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Table	7.1:	Summary	of	 resistance	mechanisms	 to	 some	common	molecular	 targeted	

agents	

Targeted	

Therapy	

Cancer	Type	 Target	 Mechanism	of	Resistance	

Imatinib	 CML,	ALL	 BCR-ABL1	 Mutations	 of	 the	 target	 (Chen	 et	 al.,	 2008);	

Increased	 MDR1	 expression	 (Shervington	 and	

Lu,	 2008;	 Bhatavdekar	 et	 al.,	 1998;	 Pusztai	 et	

al.,	2005)		

Trastuzumab	 ERBB2-positive	

breast	cancer	

ERBB2	 PTEN	 loss	 (Nagata	 et	 al.,	 2004),	 Truncation	 of	

ERBB2	 (Recupero	 et	 al.,	 2013);	 Activating	

mutations	in	PIK3CA	(Berns	et	al.,	2007)	

Gefitinib	 NSCLC	 EGFR	 EGFR	 kinase	 domain	 mutations	 (Coco	 et	 al.,	

2012;	Shin	et	al.,	2012;	Morris	et	al.,	1995);	MET	

amplifications	(Van	Schaeybroeck	et	al.,	2005)		

Cetuximab	 Head	 and	 neck	

cancer,	

colorectal	

cancer	

EGFR	 KRAS	mutation	(Lievre	et	al.,	2006);	

Increased	ERBB	 family	 signalling	 (Kishida	et	al.,	

2005)	

Vemurafenib	 Melanoma	 BRAF-V600E	 Elevated	 BRAF-V600E	 expression	 (Van	

Schaeybroeck	et	al.,	2008),	Acquired	mutations	

in	 KRAS,	 NRAS	 or	 MEK1	 (Sunnarborg	 et	 al.,	

2002;	 Lee	et	al.,	2003;	Kyula	et	al.,	2010;	Zhou	

et	al.,	2006)	

Bevacizumab	 Colorectal	

cancer,	 NSCLC,	

glioblastoma	

VEGF	 Hypoxia	 induced	 autophagy	 (Hu	 et	 al.,	 2013),	

Activation	 of	 alternative	 signalling	 pathway	

(Jahangiri	et	al.,	2013)		

Bortezomib	 Multiple	

myeloma	

Proteasome	 Mutation	 in	 the	binding	 site	 (Oerlemans	et	 al.,	

2008)	

Vismodegib	 and	

Sonidegib	

Basal	 cell	

carcinoma	

SMO	 Mutations	 of	 the	 target	 (Yauch	 et	 al.,	 2009;	

Sharpe	et	al.,	2015;	Atwood	et	al.,	 2015;	Ridky	

et	al.,	 2015),	Cancer	SCs	 (Colmont	et	al.,	 2013;	

Colmont	et	 al.,	 2013),	 Activation	 of	 alternative	

signalling	pathway	(Colmont	et	al.,	2013)	
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Work	has	already	begun	to	establish	possible	mechanisms	of	resistance	in	BCC	towards	

SMO	antagonist	 therapy,	with	 some	groups	 showing	 that	mutations	within	SMO	have	

altered	its	structure	meaning	that	vismodegib	and	sonidegib	are	no	longer	able	to	bind	

and	have	an	effect	(Yauch	et	al.,	2009;	Sharpe	et	al.,	2015;	Atwood	et	al.,	2015;	Ridky	et	

al.,	2015).	However,	these	mutations	have	only	been	identified	in	approximately	50%	of	

treatment-resistant	 BCC,	 which	 therefore	 strongly	 supports	 the	 existence	 of	 one	 or	

more	 unidentified	 pathways	 responsible	 for	 drug	 resistance	 in	 the	 remaining	 50%	 of	

treatment-resistant	 BCCs.	 When	 looking	 at	 the	 previously	 identified	 mechanisms	 of	

resistance	 towards	 targeted	 therapies	 in	 other	 cancers	 (Table	 7.1),	 there	 are	 three	

principle	mechanisms	that	have	been	identified;	1)	the	activation	of	alternate	signalling	

pathways	that	are	capable	of	driving	tumour	growth,	2)	target	mutations	that	prevent	

drug	activity,	and	more	recently	3)	 the	presence	of	CSCs	which	 in	certain	settings	has	

been	attributed	to	drug	resistance,	on	account	of	them	being	intrinsically	resistant	to	a	

wide	array	of	therapeutic	approaches	(Valent	et	al.,	2012).	Work	in	our	lab	using	an	 in	

vitro	based	colony	forming	assay	has	already	shown	that	human	BCC	cells	are	resistant	

to	conventional	chemotherapeutics	such	as	etoposide	(Colmont	et	al.,	2013),	which	was	

associated	 with	 increased	 expression	 of	 the	 ABCB1	 (p-glycoprotein	 multi-drug	

resistance	protein	1)	transporter	in	the	BCC	CD200+	CSC	population	following	treatment	

(Colmont	et	al.,	 2014).	 Furthermore,	our	 lab	also	demonstrated	 that	human	BCC	cells	

were	 resistant	 to	 the	 targeted	 therapeutic,	 vismodegib	 (Colmont	 et	 al.,	 2013),	 with	

preliminary	 microarray	 analysis	 identifying	 an	 enrichment	 of	 the	 TGFβ	 signalling	

pathway	 following	 treatment.	 This	 work	 therefore	 raised	 the	 possibility	 of	 the	

involvement	of	the	CSC	population	in	drug	resistance	within	BCC	and	also	the	potential	

role	 of	 TGFβ	 signalling	 in	 crosstalk	with	Hh	 signalling	 to	 compensate	 for	 Hh	 pathway	

inhibition.		

	

Both	TGFβ	and	Hh	signalling	have	been	recognised	 in	BCC.	Direct	 interaction	between	

these	two	pathways	was	established	in	BCC,	with	GLI2	being	identified	as	an	early	gene	

target	of	the	TGFβ/SMAD3	cascade	independent	of	Hhsignalling	(Dennler	et	al.,	2007).	

Additional	work	by	 the	same	group	confirmed	 that,	 in	 response	 to	TGFβ,	SMAD3	was	

rapidly	 recruited	 to	 distinct	 elements	 within	 the	 GLI2	 promoter	 and	 enhanced	 its	
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transcription	(Dennler	et	al.,	2009).	They	also	found	that	GLI1	(a	specific	marker	for	Hh	

signalling	 activity)	was	 induced	 in	 a	GLI2-dependent	manner	 following	 TGFβ	 pathway	

activation.	 Our	 data	 in	 chapter	 3	 supports	 the	 role	 of	 TGFβ	 signalling	 in	 Hh	 driven	

cancers	since	microarray	analysis	on	whole	BCC	tissue	identified	the	enrichment	of	Hh	

and	 TGFβ	 signalling,	 along	 with	 the	 overrepresentation	 of	 TGFβ	 regulated	 genes.	

Furthermore,	we	 found	 that	 cells	 active	 for	 TGFβ	 signalling	 resided	 predominantly	 at	

the	 tumour	 nodule	 periphery,	 which	 is	 important,	 as	 it	 is	 where	 proliferation	 and	

invasion	occur,	 and	where	our	 lab	previously	 identified	 the	CSC	population	 in	BCC.	 In	

chapter	 4,	 we	 isolated	 CSCs	 from	 whole	 BCC	 tissue	 and	 attempted	 to	 elucidate	 the	

mechanisms	of	 resistance	 in	Hh	driven	 cancers.	 Previously	 our	 group	has	 identified	 a	

CSC	 population	 within	 BCC	 and	 shown	 this	 population	 to	 express	 CD200	 and	 be	

resistant	to	Hh	antagonists	(Colmont	et	al.,	2013).	Consistent	with	a	HF	bulge	SC	basis	as	

the	cell	of	origin	for	BCC	(Youssef	et	al.,	2010;	Wang	et	al.,	2011),	we	have	shown	that	

BCC	CSCs	demonstrated	active	TGFβ	signalling,	and	that	immunofluorescent	labelling	of	

BCC	tissue	confirmed	the	presence	of	BCC	CSC	at	the	tumour	periphery.	We	also	found	

that	cells	at	the	tumour	nodule	periphery	active	for	TGFβ	signalling	were	not	associated	

with	proliferation,	which	raised	the	possibility	that	they	may	be	involved	with	invasion.	

Interestingly,	 we	 also	 found	 that	 the	 CSC	 population	 demonstrated	 concordant	

expression	 of	 TGFβ	 regulated	 EMT	 genes,	 which	 is	 also	 consistent	 with	 other	 cancer	

types,	where	the	role	of	TGFβ	signalling	has	been	identified	in	the	CSC	population	and	

has	been	linked	to	EMT/invasion	(Bruna	et	al.,	2012;	Lo	et	al.,	2012;	Bhola	et	al.,	2013;	

Shipitsin	et	al.,	2007,	You	et	al.,	2010;	Mima	et	al.,	2012,	Ikushima	et	al.,	2009;	Penuelas	

et	al.,	2009,	Oshimori	et	al.,	2015).	Future	studies	for	this	chapter	are	outlined	in	section	

7.2	below.		

	

Our	 findings	 from	chapter	4	 raised	 two	 important	questions:	 (1)	 is	 TGFβ	 signalling	an	

important	CSC	survival	pathway?;	and	alternatively,	(2)	after	Hh	antagonist	treatment	is	

there	an	enrichment	of	 active	TGFβ	 signalling	 in	BCC/medulloblastoma?	Therefore,	 in	

chapter	 5	we	 recruited	 the	use	of	 three	well-established	Hh	driven	 tumour	 cell	 lines,	

notably	the	two	medulloblastoma	cell	lines	DAOY,	and	UW228-2,	and	the	osteosarcoma	

cell	 line,	 SJSA-1.	 These	 cell	 lines	 as	 previously	 mentioned	 were	 chosen	 as	 both	

medulloblastoma	 and	 osteosarcoma	 are	 relevant	 tumour	 types	 for	 studying	 Hh	
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signalling,	 and	 they	 enabled	 us	 to	 study	 the	 stem	 cell	 compartment,	 which	 wasn’t	

possible	 with	 BCC	 cell	 lines.	 Our	 results	 showed	 that	 Hh	 antagonists	 (vismodegib,	

sonidegib	and	GANT-61)	had	no	significant	 impact	on	cell	viability,	which	 is	consistent	

with	what	has	been	found	 in	some	reports	(Arnhold	et	al.,	2016;	 Infante	et	al.,	2016).	

Both	DAOY	and	UW228-2	cell	lines	represent	the	two	most	cited	medulloblastoma	cell	

lines	and	have	been	well	established	as	being	Hh	driven,	however,	our	gene	expression	

data	suggested	that	the	DAOY	cell	line	had	a	functionally	intact	canonical	Hh	signalling	

pathway,	whereas	the	UW228-2	and	the	SJSA-1	cell	lines	did	not.	We	have	shown	that	

following	Hh	 antagonist	 treatment,	 TGFβ	 pathway	 activity	 increases	 in	 our	Hh	 driven	

tumour	 cell	 lines,	 as	 evidenced	 through	 nuclear	 accumulation	 of	 pSMAD3	 in	 all	 cell	

lines,	and	in	some	instances	through	expression	of	downstream	TGFβ	regulated	genes.	

This	 apparent	 ability	 of	 TGFβ	 signalling	 to	 respond	 to	 a	 reduction	 in	 Hh	 signalling	

following	treatment	suggests	that	this	could	be	a	survival	mechanism,	and	the	fact	that	

it	 occurred	 in	 both	 the	 DAOY	 and	 UW228-2	 cell	 lines	 suggests	 that	 this	 increase	 in	

pSMAD3	 levels	 is	 independent	 of	 having	 an	 intact	 canonical	 Hh	 signalling	 pathway.	

However,	our	work	showed	that	SB431542	treatment	alone	did	not	induce	apoptosis	or	

significantly	 impact	 cell	 viability,	 although	 did	 appear	 to	 be	 capable	 of	 reversing	 the	

expression	 of	 the	 TGFβ	 core	 gene	 set	 phenotype	 induced	 following	 Hh	 antagonist	

treatment	 in	 our	 cell	 lines.	However,	 even	 though	 at	 the	 gene	 expression	 level	 there	

appeared	 to	be	an	effect	 following	 SB431542	 treatment	 and	 SMAD4	knockdown,	 this	

was	 not	 mirrored	 in	 the	 cell	 viability	 assays,	 as	 combining	 TGFβ	 and	 Hh	 antagonist	

treatment	again	resulted	in	no	induction	of	apoptosis	or	decrease	in	cell	viability.		

	

With	 regards	 to	 the	 impact	 of	 treatment	on	 the	CSC	population,	we	 found	 that	 SMO	

antagonists	were	largely	ineffective	either	on	colony	forming	cells	or	tumourspheres	in	

all	 three	Hh	driven	cell	 lines,	which	corroborates	 findings	 from	our	group	whereby	no	

effect	was	observed	following	vismodegib	treatment	in	a	primary	BCC	in	an	 in	vitro	SC	

assay	(Colmont	et	al.,	2013).	However,	the	exception	was	GANT-61,	which	had	a	highly	

significant	impact	on	colony	forming	cells	and	tumoursphere	size	in	all	of	our	cell	lines.	

For	future	experiments,	it	will	be	interesting	to	compare	the	effects	observed	following	

GANT-61	treatment	with	the	knockdown	of	GLI	TFs	using	siRNA	in	order	to	assess	the	

impact	on	CSCs	 in	both	 the	CFA	and	SFA,	and	 to	see	 if	 the	effects	observed	 following	
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GANT-61	 treatment	 are	 due	 to	 cytotoxicity	 or	 targeted	 killing	 of	 CSC.	 The	 impact	

observed	for	GANT-61	could	be	abrogation	of	GLI	with	other	factors	that	contribute	to	

off	target	effects.	We	found	that	TGFβ	antagonists	were	found	to	have	very	little	impact	

on	 tumoursphere	 formation	 in	 all	 three	 Hh	 driven	 cell	 lines,	 and	when	 both	 Hh	 and	

TGFβ	antagonists	were	combined	in	these	cell	lines	no	additive	or	synergistic	effect	was	

observed	 in	 either	 colony	 forming	 cells	 or	 tumourspheres.	 Although	 treatment	 with	

SB431542	and	SMAD4	siRNA	was	capable	of	 impacting	 the	expression	of	 some	of	 the	

TGFβ	regulated	genes	following	Hh	antagonist	treatment	in	our	cell	 lines,	the	fact	that	

no	effect	was	observed	on	cell	viability	following	treatment	with	TGFβ	antagonists	alone	

or	in	combination	with	Hh	antagonists	suggests	that	other	mechanisms	may	be	involved	

aside	from	Hh	and	TGFβ	signalling.	However,	for	future	studies,	performing	cell	viability	

and	apoptosis	assays	following	longer	exposure	to	Hh	antagonists	will	be	important,	as	

cell	lines	were	treated	for	no	longer	than	48	hr	in	our	experiments,	and	it	will	allow	us	

to	determine	if	longer	time	periods	are	required	in	order	to	see	any	effects.		

	

In	 chapter	6,	we	demonstrated	 that	 the	microtubule	destabilizer,	nocodazole	 induced	

microtubule	 collapse	 and	 subsequently	 increased	 nuclear	 pSMAD3	 protein	 levels.	

Likewise,	we	found	that	the	Hh	antagonist	vismodegib	also	disrupted	the	microtubular	

network,	with	 an	 accompanied	 increase	 in	 nuclear	 pSMAD3	 in	 both	primary	BCC	 and	

the	 DAOY	 cell	 line,	 which	 in	 turn	 results	 in	 modulation	 of	 TGFβ	 regulated	 genes.	

Therefore,	we	have	shown	that	Hh	antagonists	are	capable	of	altering	the	microtubule	

network	 in	 Hh	 driven	 tumour	 cells	 and	 that	 this	 change	 is	 associated	with	 increased	

levels	of	nuclear	pSMAD3.	Finally,	the	mechanisms	that	underlie	both	the	alterations	in	

the	 microtubular	 network	 and	 increase	 in	 TGFβ	 signalling	 activity	 following	 Hh	

antagonist	treatment	need	to	be	explored	 in	more	detail	 in	our	cell	 lines	(Section	7.2,	

below).	 Furthermore,	 both	 of	 these	 observations	 are	 associated	 with	 EMT,	 and	

therefore	this	connection	will	need	to	be	explored	in	more	detail.	

	

The	disruption	of	the	microtubular	network	following	Hh	antagonist	treatment	and	the	

subsequent	increase	in	nuclear	pSMAD3	implicates	the	Rho/ROCK	signalling	pathway	as	

a	major	target	for	further	investigation.	Interestingly,	a	recent	publication	by	Whitson	et	

al.	(2018)	identified	a	non-canonical	mechanism	of	Hh	pathway	activation	driven	by	the	
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Rho/ROCK	 signalling	 TF,	 serum	 response	 factor	 (SRF),	 in	 drug-resistant	 basal	 cell	

carcinoma;	 and	 they	 found	 that	 SRF	 was	 induced	 by	 Rho/formin	 family	 member	

Diaphanous	(mDia)	activated	cytoskeletal	reorganisation.		

	

Additionally,	 in	 order	 to	 gain	 further	 insight	 into	 the	 mechanisms	 involved	 in	 drug	

resistance	 it	 is	 important	 to	 study	 what	 is	 observed	 in	 the	 clinic.	 As	 mentioned	

previously,	 the	 mechanisms	 that	 underlie	 approximately	 50%	 of	 treatment-resistant	

BCCs	 are	 yet	 to	 be	 elucidated.	 Interestingly,	 there	 have	been	 several	 clinical	 cases	 of	

SCC	 arising	 from	 the	 same	 tumour	 bed	 as	 the	 original	 BCC	 during	 and	 after	 Hh	

antagonist	 treatment	 (Ransohoff	 et	 al.,	 2015;	 Mohan	 et	 al.,	 2016;	 Aasi	 et	 al.,	 2013;	

Orouji	et	al.,	2014;	Zhu	et	al.,	2014;	Chang	et	al.,	2012).	In	these	reported	cases,	BCC	is	

shown	to	 initially	regress	and	then	regrow	into	a	more	aggressive	tumour,	which	may	

again	potentially	implicate	SCs	in	this	transformation	process.	Therefore,	in	this	instance	

it	appears	that	these	cells	have	deployed	mechanisms	enabling	them	to	acquire	a	more	

aggressive	and	invasive	phenotype.	It	is	possible	to	contextualise	this	observation	with	

our	own	data,	in	that	microtubule	dynamics	can	also	mediate	EMT	and	therefore	make	

cells	more	invasive.	Since	we	see	an	increase	in	TGFβ	signalling	following	Hh	antagonist	

treatment	in	BCC	tissue,	then	it	is	likely	that	this	is	also	observed	in	the	clinic.	During	the	

inter-conversion	of	an	epithelial	cell	to	a	mesenchymal	cell,	microtubules	must	undergo	

spatial	 reorganisation.	 In	 fact	 recent	 studies	 have	 shown	 that	 bladder	 and	 breast	

cancers	 treated	 with	 drugs	 that	 target	 microtubule	 dynamics	 demonstrate	 increased	

levels	 of	 E-cadherin	 and	 a	 reduction	 in	 mesenchymal	 markers	 (Aparicio	 et	 al.,	 2014;	

Yoshida	et	al.,	2014).	However,	it	is	important	to	note	that	the	opposite	has	also	been	

demonstrated,	 whereby	 the	 stabilisation	 of	 microtubules	 using	 paclitaxel	 has	

attenuated	 TGFβ	 induced	 morphological	 changes,	 phosphorylation	 of	 SMAD2,	 and	

expression	 of	 α-smooth	 muscle	 actin	 and	 collagen	 I	 (Tsukada	 et	 al.,	 2013).		

Furthermore,	 treatment	 of	 breast	 cancer	 cells	 with	 an	 inhibitor	 of	 microtubule	

dynamics,	 eribulin	 mesilate,	 decreased	 TGFβ	 induced	 changes	 in	 EMT	 markers	 and	

phosphorylation	 of	 SMAD2	 and	 3	 (Yoshida	 et	 al.,	 2014).	 Therefore	 there	 is	 data	 to	

suggest	 that	 microtubules	 are	 capable	 of	 influencing	 gene	 expression	 during	 TGFβ-

induced	 EMT	 and	 that	 they	 clearly	 play	 an	 important	 role	 in	 guiding	 cell	 fate	 and	

motility	during	EMT.	Interestingly,	SCC	is	strongly	associated	with	TGFβ	signalling	and	as	
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a	consequence	there	is	reason	to	suggest	that	Hh	antagonist	treatment	may	lead	to	the	

destabilisation	 of	microtubules,	which	 in	 turn	 leads	 to	 TGFβ-induced	 EMT/invasion	 in	

either	the	general	cell	population	or	SC	population.	Importantly,	we	are	in	the	process	

of	 obtaining	 PFFA	 patient	 BCC	 tissue	 samples	 that	 have	 been	 unresponsive	 following	

treatment	with	vismodegib.	This	will	therefore	allow	us	to	evaluate	any	changes	in	TGFβ	

signalling	 and	 explore	 mechanisms	 that	 underlie	 this	 increase	 using	

immunofluorescence	in	relevant	patient	samples.	

	

7.2	 Future	Directions	
	

With	 regards	 to	 the	 BCC	 CSC	 population	 (chapter	 4),	 future	 studies	 will	 need	 to	 be	

performed	in	order	to	elucidate	the	role	of	this	population	further.	Of	interest	to	us	is	

performing	 RNA	 sequencing	 and	 subsequent	 gene	 expression	 profiling	 on	 the	 CSC	

population	between	samples	that	have	been	treated	with	and	without	Hh	antagonists,	

in	 order	 to	 identify	 differences	 in	 pathways/processes	 between	 these	 two	 groups.	

Furthermore,	exploring	the	relationship	between	the	CSCs	at	the	invasive	edge	with	the	

surrounding	 stroma	 is	 of	 interest	 as	 a	 number	 of	 the	 studies	mentioned	 above	 have	

highlighted	 the	 role	 that	 the	 local	microenvironment	plays	on	CSC	 function.	Although	

they	 did	 not	 look	 at	 CSCs	 within	 BCC	 tissue,	 a	 recent	 study	 by	 Kuonen	 et	 al.	 (2018)	

identified	 a	 role	 for	 TGFβ	 signalling	 in	 promoting	 local	 invasion	 through	peritumoural	

fibronectin	deposition	in	BCC	(Kuonen	et	al.,	2018).	Interestingly,	this	study	showed	that	

higher	levels	of	fibronectin	and	CAFs	were	found	at	the	tumour	edge	in	BCC	(Kuonen	et	

al.,	 2018).	 CAFs	 have	 already	 been	 shown	 to	 promote	 BCC	 invasion	 through	 the	

paracrine	 activation	 of	mesenchymal	 epithelial	 transition	 receptor	 tyrosine	 kinase	 (c-

MET)	in	BCC	tumour	cells	(Marsh	et	al.,	2008;	Tiju	et	al.,	2009).	Furthermore,	the	role	of	

CAFs	 in	 increasing	 the	 frequency	 of	 tumour	 initiating	 cells,	 and	 the	 fact	 that	 TGFβ	

signalling	dramatically	enhances	this	process	has	also	been	demonstrated	(Calon	et	al.,	

2015).	Therefore,	exploring	the	potential	roles	of	TGFβ	signalling	in	the	CSC	population	

and	the	interaction	of	this	population	with	surrounding	stromal	elements,	such	as	CAFS,	

will	be	of	interest	in	future	studies.	
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Figure	7.1	outlines	several	avenues	that	will	need	to	be	explored	in	more	detail	in	order	

to	elucidate	the	mechanism/s	through	which	nuclear	pSMAD3	levels	increase	following	

Hh	antagonist	treatment.	Specifically,	Figure	7.1A	outlines	the	notion	that	Hh	antagonist	

induced	microtubule	collapse	leads	to	the	regulation	of	SMAD	phosphorylation	through	

alternative	 kinases	 independent	 of	 TGFBRI.	 A	 number	 of	 publications	 (highlighted	

previously)	 have	 identified	 alternative	 kinases	 capable	 of	 phosphorylating	 SMAD	

proteins.	 Therefore	 there	 are	 commercially	 available	 pharmacological	 inhibitors	 that	

can	be	deployed	 including	AG1478	 (EGFR),	 c3	 transferase	 (Rho),	 Y-27632	 (p160ROCK)	

and	PD98059	or	U0126	(MEK),	in	combination	with	Hh	antagonist	treatment	to	test	the	

impact	on	our	Hh	driven	cell	lines.	Figure	7.1B	highlights	another	potential	mechanism	

through	 which	 SMAD	 proteins	 can	 be	 induced,	 and	 it	 involves	 the	 ability	 of	 nuclear	

phosphatases	 such	 as	 PPM1A	 and	 pyruvate	 dehydrogenase	 phosphatase	 to	 regulate	

nuclear	SMAD	complexes.	 It	 is	possible	 that	SB431542	 treatment	 in	combination	with	

Hh	antagonists	did	not	have	an	 impact	on	our	cell	 lines	as	microtubule	destabilisation	

has	been	shown	to	influence	factors	such	as	the	Rho/ROCK	pathway	that	subsequently	

regulate	 the	 activity	 of	 these	 phosphatases	 (Samarakoon	 et	 al.,	 2009).	 Inhibition	 of	

these	 phosphatases	 through	 factors	 initiated	 by	 microtubule	 alterations	 serve	 to	

stabilise	 the	 phosphorylated	 SMADs	 in	 the	 nucleus	 which	 are	 then	 free	 to	 induce	

downstream	effects	 for	 longer	 time	periods.	As	 the	Rho/ROCK	 signalling	pathway	has	

been	 previously	 identified	 as	 a	 negative	 regulator	 of	 these	 phosphatases	 following	

microtubule	 reorganisation,	 it	 would	 be	 interesting	 to	 assess	 whether	 inhibiting	 this	

pathway	 leads	 to	 a	 reduction	 of	 pSMAD3	within	 the	 nucleus	 following	Hh	 antagonist	

treatment.	Since	destabilisation	of	these	microtubules	is	an	early	event	responsible	for	

the	initiation	of	TGFβ	signalling,	it	will	be	important	to	determine	whether	using	a	drug	

capable	of	stabilising	microtubules	such	as	paclitaxel,	would	have	a	significant	effect	on	

the	 level	 of	 TGFβ	 signalling	 in	 our	 Hh	 driven	 cell	 lines	 following	 Hh	 antagonist	

treatment.	 Another	 important	 point	 that	 also	 needs	 to	 be	 addressed	 is	 determining	

whether	 or	 not	 nuclear	 translocation	 of	 SMAD3	 and	 subsequent	 downstream	 effects	

are	responsible	for	conferring	a	survival	mechanism	to	Hh	driven	cells	after	treatment.	

Therefore	 knocking	 down	 SMAD3	 with	 siRNA	 will	 allow	 us	 to	 determine	 if	 cells	 can	

become	sensitised	to	Hh	antagonist	treatment.	Furthermore,	our	studies	have	focused	

on	 SMAD3;	 therefore	 it	 would	 be	 interesting	 to	 determine	 whether	 an	 increase	 in	
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nuclear	pSMAD2	is	observed	in	the	same	way	as	SMAD3	after	treatment.	Additionally	in	

order	 to	 test	 the	 hypothesis	 that	Hh	driven	 tumour	 cells	 undergo	 TGFβ-induced	 EMT	

following	Hh	 antagonist	 treatment,	 there	will	 be	 a	 need	 to	 obtain	 functional	 data	 on	

these	 cells	 rather	 than	gene	expression	outputs	 alone.	 Therefore	performing	 invasion	

and/or	migration	assays	on	our	cell	lines	treated	with	Hh	antagonists	will	help	us	better	

understand	if	these	cells	are	indeed	becoming	more	invasive	following	treatment.	

	

	
	

	

Figure	 7.1:	 Microtubule	 destabilization	 can	 induce	 SMAD	 signalling	 through	 two	

potential	mechanisms.	

Drug-initiated	 microtubule	 disassembly	 mobilizes	 several	 signalling	 pathways	 that	

impact	on	 SMAD	 signalling	 in	 two	potential	ways.	 (A)	 Ability	 of	 alternative	 kinases	 to	

phosphorylate	 ad	 activate	 SMADs	 independent	 of	 TGFBRI	 or	 (B)	 the	 induction	 of	

alternative	 pathways	 that	 negatively	 regulate	 phosphatases	 that	 are	 responsible	 for	

shuttling	deactivating	nuclear	SMAD	complexes.			
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Appendix	One:	Driver	genes	affected	by	subtle	mutations	
	
Oncogenes	 Core	Pathway	 Process	 Tumour	

Suppressor	
Genes	

Core	Pathway	 Process	

CTNNB1	 APC	 Cell	Fate	 APC	 APC	 Cell	Fate	
GNAS	 APC;	PI3K;	TGF-b,	RAS	 Cell	

Survival/Cell	
Fate	

AXIN1	 APC	 Cell	Fate	

ABL1	 Cell	Cycle/Apoptosis	 Cell	Survival	 CDH1	 APC	 Cell	Fate	
BCL2	 Cell	Cycle/Apoptosis	 Cell	Survival	 FAM123B	 APC	 Cell	Fate	
CARD11	 Cell	Cycle/Apoptosis	 Cell	Survival	 HNF1A	 APC	 Cell	Fate	
MYD88	 Cell	Cycle/Apoptosis	 Cell	Survival	 NF2	 APC	 Cell	Fate	
NFE2L2	 Cell	Cycle/Apoptosis	 Cell	Survival	 RNF43	 APC	 Cell	Fate	
PPP2R1A	 Cell	Cycle/Apoptosis	 Cell	Survival	 SOX9	 APC	 Cell	

Survival	
MED12	 Cell	 Cycle/Apoptosis;	

TGF-b		
Cell	Survival	 TRAF7	 Apoptosis	 Cell	

Survival	
DNMT1	 Chromatin	Modification	 Cell	Fate	 CASP8	 Cell	Cycle/Apoptosis	 Cell	

Survival	
DNMT3A	 Chromatin	Modification	 Cell	Fate	 CDC73	 Cell	Cycle/Apoptosis	 Cell	

Survival	
EZH2	 Chromatin	Modification	 Cell	Fate	 CDKN2A	 Cell	Cycle/Apoptosis	 Cell	

Survival	
H3F3A	 Chromatin	Modification	 Cell	Fate	 CYLD	 Cell	Cycle/Apoptosis	 Cell	

Survival	
HIST1H3B	 Chromatin	Modification	 Cell	Fate	 FUBP1	 Cell	Cycle/Apoptosis	 Cell	

Survival	
IDH1	 Chromatin	Modification	 Cell	Fate	 NPM1	 Cell	Cycle/Apoptosis	 Cell	

Survival	
IDH2	 Chromatin	Modification	 Cell	Fate	 RB1	 Cell	Cycle/Apoptosis	 Cell	

Survival	
SPOP	 Chromatin	 Modification;	

HH	
Cell	Fate	 TP53	 Cell	 Cycle/Apoptosis;	

DNA	Damage	Control	
Cell	
Survival	

SETBP1	 Chromatin	 Modification;	
Replication	

Cell	Fate	 TNFAIP3	 Cell	 Cycle/Apoptosis;	
MAPK	

Cell	
Survival	

SMO	 HH	 Cell	Fate	 ARID1A	 Chromatin	Modification	 Cell	Fate	
GATA2	 NOTCH,	TGF-b		 Cell	Fate	 ARID1B	 Chromatin	Modification	 Cell	Fate	
AKT1	 PI3K	 Cell	Survival	 ARID2	 Chromatin	Modification	 Cell	Fate	
PIK3CA	 PI3K	 Cell	Survival	 ASXL1	 Chromatin	Modification	 Cell	Fate	
TSHR	 PI3K;	MAPK	 Cell	Survival	 ATRX	 Chromatin	Modification	 Cell	Fate	
ALK	 PI3K;	RAS	 Cell	Survival	 KDM5C	 Chromatin	Modification	 Cell	Fate	
CBL	 PI3K;	RAS	 Cell	Survival	 KDM6A	 Chromatin	Modification	 Cell	Fate	
CSF1R	 PI3K;	RAS	 Cell	Survival	 MEN1	 Chromatin	Modification	 Cell	Fate	
EGFR	 PI3K;	RAS	 Cell	Survival	 MLL2	 Chromatin	Modification	 Cell	Fate	
ERBB2	 PI3K;	RAS	 Cell	Survival	 MLL3	 Chromatin	Modification	 Cell	Fate	
MET	 PI3K;	RAS	 Cell	Survival	 NCOR1	 Chromatin	Modification	 Cell	Fate	
PDGFRA	 PI3K;	RAS	 Cell	Survival	 PAX5	 Chromatin	Modification	 Cell	Fate	
FGFR2	 PI3K;	RAS	;	STAT	 Cell	Survival	 PBRM1	 Chromatin	Modification	 Cell	Fate	
FGFR3	 PI3K;	RAS	;	STAT	 Cell	Survival	 PRDM1	 Chromatin	Modification	 Cell	Fate	
GNA11	 PI3K;	RAS;	MAPK	 Cell	Survival	 SETD2	 Chromatin	Modification	 Cell	Fate	
KIT	 PI3K;	RAS;	STAT	 Cell	Survival	 SMARCA4	 Chromatin	Modification	 Cell	Fate	
GNAQ	 PI3K;RAS;	MAPK	 Cell	Survival	 SMARCB1	 Chromatin	Modification	 Cell	Fate	
BRAF	 RAS	 Cell	Survival	 TET2	 Chromatin	Modification	 Cell	Fate	
HRAS	 RAS	 Cell	Survival	 WT1	 Chromatin	Modification	 Cell	Fate	
KRAS	 RAS	 Cell	Survival	 EP300	 Chromatin	 Modification;	

APC;	TGF-b;	NOTCH	
Cell	
Survival/Fa
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te	
MAP2K1	 RAS	 Cell	Survival	 DAXX	 Chromatin	 Modification;	

Cell	Cycle/Apoptosis	
Cell	Fate	

NRAS	 RAS	 Cell	Survival	 CREBBP	 Chromatin	 Modification;	
Transcriptional	
Regulation	

Cell	Fate	

PTPN11	 RAS	 Cell	Survival	 ATM	 DNA	Damage	Control	 Genome	
Maintenan
ce	

RET	 RAS;	PI3K		 Cell	Survival	 BAP1	 DNA	Damage	Control	 Genome	
Maintenan
ce	

FLT3	 RAS;	PI3K;	STAT	 Cell	Survival	 BRCA1	 DNA	Damage	Control	 Genome	
Maintenan
ce	

CRLF2	 STAT	 Cell	Survival	 BRCA2	 DNA	Damage	Control	 Genome	
Maintenan
ce	

JAK1	 STAT	 Cell	Survival	 MLH1	 DNA	Damage	Control	 Genome	
Maintenan
ce	

JAK2	 STAT	 Cell	Survival	 MSH2	 DNA	Damage	Control	 Genome	
Maintenan
ce	

JAK3	 STAT	 Cell	Survival	 MSH6	 DNA	Damage	Control	 Genome	
Maintenan
ce	

MPL	 STAT	 Cell	SUrvival	 STAG2	 DNA	Damage	Control	 Genome	
Maintenan
ce	

FOXL2	 TGF-b		 Cell	Fate	 PTCH1	 HH	 Cell	Fate	
AR	 Transcriptional	

Regulation	
Cell	Fate	 STK11	 mTOR	 Cell	

Survival	
SF3B1	 Transcriptional	

Regulation	
Cell	Fate	 FBXW7	 NOTCH	 Cell	Fate	

SRSF2	 Transcriptional	
Regulation	

Cell	Fate	 NOTCH1	 NOTCH	 Cell	Fate	

U2AF1	 Transcriptional	
Regulation	

Cell	Fate	 NOTCH2	 NOTCH	 Cell	Fate	

KLF4	 Transcriptional	
Regulation;	WNT	

Cell	Fate	 GATA1	 NOTCH,	TGF-b		 Cell	Fate	

	 	 	 PIK3R1	 PI3K	 Cell	
Survival	

	 	 	 PTEN	 PI3K	 Cell	
Survival	

	 	 	 TSC1	 PI3K	 Cell	
SUrvival	

	 	 	 B2M	 PI3K;	RAS;	MAPK	 Cell	
Survival	

	 	 	 CEBPA	 PI3K;	RAS;	MAPK	 Cell	
Survival	

	 	 	 VHL	 PI3K;	RAS;	STAT	 Cell	
Survival	

	 	 	 CIC	 RAS	 Cell	
Survival	

	 	 	 NF1	 RAS	 Cell	
Survival	

	 	 	 MAP3K1	 RAS;	MAPK	 Cell	
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Survival	
	 	 	 SOCS1	 STAT	 Cell	

Survival	
	 	 	 ACVR1B	 TGF-b		 Cell	

Survival	
	 	 	 SMAD2	 TGF-b		 Cell	

Survival	
	 	 	 SMAD4	 TGF-b		 Cell	

Survival	
	 	 	 BCOR	 Transcriptional	

Regulation	
Cell	Fate	

	 	 	 GATA3	 Transcriptional	
Regulation	

Cell	Fate	

	 	 	 PHF6	 Transcriptional	
Regulation	

Cell	Fate	

	 	 	 RUNX1	 Transcriptional	
Regulation	

Cell	Fate	
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