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ABSTRACT

The degree of fractal substructure in molecular clouds can be quantified by comparing them
with fractional Brownian motion (FBM) surfaces or volumes. These fields are self-similar
over all length-scales and characterized by a drift exponent H, which describes the structural
roughness. Given that the structure of molecular clouds and the initial structure of star clusters
are almost certainly linked, it would be advantageous to also apply this analysis to clusters.
Currently, the structure of star clusters is often quantified by applying Q analysis. Q values
from observed targets are interpreted by comparing them with those from artificial clusters.
These are typically generated using a box-fractal (BF) or radial density profile (RDP) model.
We present a single cluster model, based on FBM, as an alternative to these models. Here, the
structure is parametrized by H and the standard deviation of the log-surface/volume density o .
The FBM model is able to reproduce both centrally concentrated and substructured clusters,
and is able to provide a much better match to observations than the BF model. We show that
Q analysis is unable to estimate FBM parameters. Therefore, we develop and train a machine
learning algorithm that can estimate values of H and o, with uncertainties. This provides us
with a powerful method for quantifying the structure of star clusters in terms that relate to the
structure of molecular clouds. We use the algorithm to estimate the H and o for several young
star clusters, some of which have no measurable BF or RDP analogue.

Key words: methods: data analysis — methods: statistical —stars: formation — stars: statistics —
ISM: clouds — galaxies: star clusters: general.

1 INTRODUCTION

Recent space-borne instruments have revealed much of the detailed
multiscale structure of our own Galaxy. The Herschel submillimetre
observatory (Griffin et al. 2010; Poglitsch et al. 2010) has mapped
out many of the gas and dust structures in the interstellar medium
(ISM; e.g. Molinari et al. 2010). Similarly, the Gaia observatory
(Gaia Collaboration et al. 2016, 2018) continues to reveal the spatial
and velocity distribution of the stars which accompany this gas and
dust. Nevertheless, understanding the link between the structures
in the ISM and star clusters remains an ongoing challenge. We are
confident that the earliest stages of stellar evolution occur within
dense, substructured (i.e. clumpy or filamentary), molecular clouds
within the ISM (e.g. Motte, Andre & Neri 1998; André et al. 2010;
Smith et al. 2016; Parker 2018). However, the extent to which star
clusters retain the structural signatures of their parent molecular
clouds is uncertain. Some studies highlight similarities between
the distribution of stars and that of the molecular clouds which
spawn them (e.g. Elmegreen & Falgarone 1996; Gouliermis, Hony
& Klessen 2014). However, numerical studies suggest that gas and
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stars decouple quickly during the star formation process, erasing
structural similarities (e.g. Bate & Bonnell 2005; Parker & Dale
2015). To make headway in this complex field, we require tools that
can fulfil two roles. First, we need statistics that can quantify the
structure of clouds and clusters, ideally in the same terms. Secondly,
in order to simulate these structures, we need initial conditions that
statistically match observations.

Stutzki et al. (1998) note that molecular clouds can be compared
with surface-density fields generated by fractional Brownian mo-
tion (FBM). These are random fractal structures, with well-defined
fractal dimension D, which can be analysed using perimeter-area
or A-variance techniques (e.g. Falgarone, Phillips & Walker 1991;
Stutzki et al. 1998; Williams, Blitz & McKee 2000; Elia et al. 2014).
Other studies measure the surface-density probability density func-
tions (PDFs) of molecular clouds (e.g. Federrath & Klessen 2012;
Schneider et al. 2013). These can provide a measure of a cloud’s
surface-density dynamic range, which is not necessarily related to
its fractal structure. Indeed, a property of fractal distributions is that
the density can be rescaled by any one-to-one transform without
altering D (Peitgen & Saupe 1988).

Techniques also exist which estimate the fractal properties of
star clusters. Cartwright & Whitworth (2004, hereafter CW04)
were the first to use minimum spanning trees (MSTs) to estimate
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D for clusters. The application of this method has since become
widespread in the field star formation (e.g. Schmeja & Klessen
2006; Cartwright 2009; Cartwright & Whitworth 2009; Lomax,
Whitworth & Cartwright 2011; Parker et al. 2014; Parker 2018).
However, this analysis assumes that substructured clusters can be
described by a box-fractal (BF) (Goodwin & Whitworth 2004) or a
radial density profile (RDP) model. The BF model is parametrized
by D only. Here, altering D also changes the surface-density dy-
namic range; the two properties cannot be varied independently. A
more recent study by Jaffa, Whitworth & Lomax (2017, hereafter
JWL17) expands the BF model to include variable surface-density
scaling. This model provides a better likeness to observed clusters,
at the cost of two additional parameters.

In this paper, we present a method of generating model FBM star
clusters. This provides a parametrization of cluster structure, which
matches that of clouds. We demonstrate that BF clusters do not
always match observations, and, therefore, should not be used to
infer quantitative results. We show that FBM clusters overcome this
problem, and we use machine learning to estimate the structural
parameters of test clusters and observations. In Section 2 of this
paper, we define different star cluster models. In Section 3, we
review parameter estimators and apply them to observations. In
Section 4, we compare and discuss the results of the estimators.
Finally, we summarize our conclusions in Section 5.

2 MODEL STAR CLUSTERS

Here, we present a method for generating artificial star clusters
from FBM density fields. Peitgen & Saupe (1988) provide multiple
methods for generating the underlying field; we follow the spectral
synthesis technique used by Stutzki et al. (1998). In addition, we
define the BF and RDP cluster models used by CW04 to calibrate
the Q estimator. These two models have a cross-over point where
they generate clusters with a uniform distribution. For a more in-
depth discussion of the structural properties of the BF and RDP
models, we refer the reader to CW04 and JWL17.

The generation of all three models relies heavily on pseudo-
random number generation. Throughout this section, we define U/
as a random variate drawn from the uniform distribution in the
interval [0,1], and G as a variate from the Gaussian distribution with
zero mean and unit variance. These models can be extended to any
E-dimensional space. We use the shorthand £, and Ej3 to indicate
two- and three-dimensional spaces, respectively.

2.1 FBM clusters

We generate FBM clusters by generating an FBM probability den-
sity distribution. From this, we randomly sample E-dimensional
variates, i.e. stellar positions. FBM is an E-dimensional generaliza-
tion of classical Brownian motion, parametrized by a drift exponent
H (sometimes referred to as the Hurst index), which may take a
value between 0 and 1. The field’s power spectrum is related to H
via the spectral index B = E + 2H. For a one-dimensional FBM
curve f(x), the value at x + Ax is given by fix + Ax) = fix) + Af,
where Af is a random Gaussian increment. When H = 1/2, i.e.
classical Brownian motion, Afis uncorrelated with f(x). When H >
1/2, the curve is smoother, i.e. Afis correlated with f{x). When H <
1/2, the curve is rougher, i.e. Af is anticorrelated with f{x). In E
dimensions, FBM structures have fractal dimension D = E — H.
When D is close to E — 1, the structure is smooth and coherent (e.g.
a single sheet, filament or core). When D is close to E, the structure
consists of multiple sub-clumps that are evenly distributed in space.
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We generate the periodic field f(r, H) numerically on an E-
dimensional Cartesian grid. Along each axis, r has integer values in
the range 1 < r < Npix (for E;, we set Npix = 1000; for E5 we set
Npix = 100). First, we generate the spectrum

_?(k, H)= A(k, H) [cos ¢(k) + ising(k)] , (D)

where k is a grid of wavevectors with integer k values | — Npx/2| <
k < [Npix/2] along each axis. The amplitudes A(k, H) and phases
@(k) of each component of the spectrum are given by

Ak, H) = {é’"“ VIR0,
P=> kI,
B = Ek+ 2H , 2
and
plk) = x(k) — x(=k).,
x(k) = 2mU. 3)

The field f(r, H) can be obtained by performing an inverse discrete
Fourier transform on ]A‘(k, H)." Note that the first line of equation (3)
ensures that f(—k, H) is the complex conjugate of F(k, H) and
therefore f(r, H) is strictly real.

As noted by Peitgen & Saupe (1988) and JWL17, fractal struc-
tures in nature are self-similar over a limited range of length-scales.
It is therefore appropriate to introduce a length-scale A at which
the self-similarity of the structure ceases. This can be easily imple-
mented by convolving f(r, H) with a Gaussian kernel

f'(r,H,h) = f(r, H)xw(r, h),

) — 1 [Ir]I* 4
w(r, h) = WE @m)ER xp\ =% ) “4)

Here, h is the smoothing length given in pixels widths. This is
equivalent to applying a Gaussian filter to 7(k, H) with standard
deviation ky.x = Npix/4h.

The FBM field cannot directly be used as a PDF because, by
construction, the distribution of f'(r, H, h) is roughly Gaussian
with (f'(r, H, h)) ~ 0 and (f'(r, H, h)*) ~ 1. However, the frac-
tal properties of a structure remain unchanged when its density is
transformed via a one-to-one function. Here, we exponentiate the
field

g(r, H, h,o) = exp m , 5)

(f'r H, b))

where o is a free parameter. This changes the Gaussian distribution
of densities into a lognormal distribution. Note that o is the standard
deviation of the natural log of g(r, H, h, o).

Finally, We circularly shift the FBM field so that its periodic
centre of mass lies at the centre of the grid. This tends to place
coherent structures within high H fields at the centre and lower
density regions around the edges.

In summary, we generate a modified FBM field, defined using
three parameters: H, h, and 0.2 This is then used as the PDF from

If Nprx is even, the range of k-values along a given axis is reduced to
—Npix/2 < k < Npix/2 — 1. Here, the Nprx/2 wavenumber is equivalent to
—Npix/2. Values of j‘(k, H) with one or more coordinates k = Npyx/2 are
superposed onto the corresponding —Nprx/2 values.

2Strictly speaking, the field is defined by five parameters if we include Nprx
and the random seed.
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which we sample N, random positions (see Appendix A for a de-
scription of the random sampling technique). E5 clusters are pro-
jected onto E, space by marginalizing the distribution along one
of its axes. We note that in most practical cases (i.e. N, < 10%),
h is unlikely to have a strong impact on the distribution of points.
Essentially, & is a nuisance parameter that we include to random-
ize the field resolution without introducing coarse grid artefacts.
For E, fields, we randomly pick a value of / from the log-uniform
distribution in the interval [1073 Npx, 1072 Npix]. For E; fields,
computational limitations require that we use a coarser grid (both
grids have the same number of elements). Here, we skip equation (4)
and set f'(r, H, h) = f(r, H).

Fig. 1 shows how the structure of an E, FBM cluster varies
with H and o. Here, we have used the same random seed for each
realization and set 4 = 1073 Nprx. We see that fixing o and varying
H alter the amount of substructure in a cluster. The outline of the
cluster remains roughly the same shape, but the number of internal
clumps increases with H. Fixing A and changing o alter the dynamic
range of the cluster surface-density. When o is high, the clumps are
sharply defined. As o tends towards zero, the cluster structure tends
towards uniform density distribution.

2.2 Box-fractal cluster

We generate a BF cluster with approximately N, stars by taking an
E; cube with unit edge-length, and bisecting it along each axis to
make 2£ sub-cubes. A random set of 22 sub-cubes are labelled as
active, where D has a value in the interval (0, E]. In cases where 2P
is non-integer, the number of active sub-cubes if given by

N — { [2°]if (2P — |2P)) < U,

1207 if (22 — [2°]) > U. ©

The method is recursively repeated on each active sub-cube a further
[log,(N,)/D7 — 1 times. Finally, a star is placed at a random position
within the volume of each final generation cube. In order to perform
the analysis in E, space, the BF structure is projected through a
random line of sight.

2.3 Radial profile cluster

We construct an E3 RDP cluster by generating N, random coordi-
nates

r=ri,
r:UE]*",
u=(,%,....9), O]

where « is the radial density exponent. The cluster has a density
profile p(r)ocr™®, where @ may have any value in the interval [0, E).
Again, the Ej5 cluster is projected onto E, space through a random
line of sight.

3 PARAMETER ESTIMATORS

We examine a family of estimators that use the MST and complete
graph (CG) to infer the structural parameters of clusters. The MST is
the shortest possible network that connects N, vertices with N,, = N,
— 1 edges. The CG is the graph that connects each vertex directly to
all the other vertices. The CG has Ny = N, (N, — 1)/2 edges in total.
Here, we review the Q estimator (CW04) and -5 plots (Cartwright
2009, hereafter C09). Next, we present a machine learning algorithm
wthat builds and improves upon these two methods. In all three
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cases, we test each estimator’s ability to recover the parameters of
artificial clusters and apply them to a selection of observed clusters.

3.1 Observations

We apply the estimators to the clusters examined by CW04 and
JWLI17. Table 1 lists their properties and original references. The
stellar positions of each cluster are plotted in Fig. 2. Each of the
cluster has been pre-processed to remove probable multiple systems.
Here, any star with neighbours closer than 5 x 1073 pc is removed,
along with its neighbours, and replaced by a single star at the original
stars’ centre of mass. This minimum length-scale reflects the widest
separations typically observed amongst multiple systems in young
clusters (King et al. 2012).

3.2 Q parameter

CW04 define the statistic @ = m /5, where m and 5 are, respectively,
the normalized mean edge-lengths of the MST and the CG:

1 A
<(7IRE[Nm + l]El)l/E> ;mi »
1) &
(NSR> _lesi. ®)

Here, m; and s; are graph edge-lengths, and R is a characteristic
length-scale of the system. Note that the R terms cancel when cal-
culating Q.

The CWO04 calibration of Q involves calculating the statistic for
BF and RDP clusters. A uniform density cluster (i.e. D =3 ora =
0) returns Q ~ 0.8. BF clusters have Q < 0.8 and RDP clusters
have Q 2 0.8. Q increases monotonically with both D and «. Fig. 3
shows the relationship between Q and D, and between Q and «.

The Q values of Lupus 3, IC 348, and p Oph suggest that they
have RDPs with « = 1.5. The Q values of Cha I and Taurus suggest
they are similar to BF structures with D < 2.5. The Q value of
IC 2391 lies near a plateau on the plot, making its structural type
difficult to determine.

Fig. 3 also shows how Q relates to the parameters of FBM clus-
ters. Here, we see that there is a slight positive correlation between
H and Q. However, the scatter introduced by o exceeds the dynamic
range of the correlation. There is no noticeable correlation between
Q and o. Therefore, Q is a poor predictor of H and/or o.

m

Gl
I

3.3 m-5§ plots

C09 suggest that plots of 7 versus 5 provide a more robust diagnostic
tool than Q alone. They show that BF and RDP clusters with fixed
parameters fill distinct regions of the m—5 plot. However, there is
a lack of agreement on which length-scale R should be used to
normalize /m and 5. In the original C0O9 publication, R is set to the
distance between the cluster’s centre of mass and its outer most
point. This measure is problematic as a single outlying star can
dominate the length-scale and this value is not representative of the
area of a cluster with a high aspect ratio. Both of these issues can
add significant noise to the normalization of m and § (see Parker
2018, for a review of different R normalization methods). Instead,
we use the Schmeja & Klessen (2006) scheme, which sets R to the
square root of the area of the convex hull of the set of stars. This
lessens (although does not necessarily eliminate) the issues with
outliers and the aspect ratio.

MNRAS 480, 371-380 (2018)
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Figure 1. Left-hand panels: nine E, FBM fields generated using the same random seed. From the top to bottom, the rows show fields with H = 1.0, 0.5, and 0.0.
From the left to right, the columns show fields with o = 0.5, 1.0, and 2.0. The colour scale gives an indication of the relative surface density. Right-hand
panels: nine sets of 300 points, randomly sampled from the corresponding fields on the left.

Table 1. Cluster properties and sources. The first column gives the numeric
identifier used throughout this paper; the second column gives the name
of the cluster; the third column gives the number of stellar objects (after
multiple systems are fused into single objects); the fourth column gives the
assumed distance to the cluster; the fifth column cites the source of the data.

# Name N, D (pc) Reference

Lupus 3 67 170
IC 348 350 315
p Oph 198 130

1C 2391 200 150
Chal 234 160
Taurus 335 140

Comerdn (2008)

Lada et al. (2006); Muench et al. (2007)
Bontemps et al. (2001)

Barrado y Navascués et al. (2001)
Luhman (2007)

Luhman et al. (2010)

AN R W N =

The top frame of Fig. 4 shows how model clusters with different
values of D or @ occupy different regions on the /-3 plot. Here, the
parameter estimates for Lupus 3, IC 348, and p Oph are unchanged
from their respective Q estimates. In addition, the plot suggests
that IC 2391 is similar to a BF cluster with D ~ 2.8. However, we
find that Taurus and Cha I do not match up to any of the BF or
RDP clusters. On visual inspection (see Fig. 2), they are clearly
sub-clustered, but their 77—5 values cannot be matched to any value
of D.

The remaining two frames of Fig. 4 shows the m—3§ values for
FBM clusters. Here, unlike the BF and RDP models, the FBM
clusters fill an area of the plot, which overlaps all of the observed
clusters. We see that FBM clusters with H ~ 1 fill the same region
of the plot as RDP clusters. This is unsurprising, as they both repre-
sent smoothly distributed, centrally concentrated clusters. However,
clusters with H < 1 do not appear to occupy distinct regions of the
plot. Finally, We see a very strong negative correlation between /7
and o. This shows that the mean edge-length of the MST is much

MNRAS 480, 371-380 (2018)

more sensitive to the surface-density dynamic range of a cluster
than its fractal properties.

3.4 Machine learning regression

Q and m—5 plots are often used to estimate underlying parameters by
visual inspection. By this, we mean that a large ensemble of Q or 71—
5 measurements for a known set of models are plotted; parameters
are attributed to an observation based on the plot-distance from the
observation’s measurements to the equivalent model values. This
methodology makes it difficult to quantify parameter uncertainties.
Furthermore, we have shown that the BF model, which typically
is used to calibrate the two methods, is unable to produce clus-
ters with similar properties to Taurus or Cha I. The latter of these
two problems may be addressed by implementing the FBM cluster
model. However, the Q and m—5 methods are poor at distinguish-
ing the underlying parameters. We address these shortcomings with
a machine learning regressor wthat uses FBM clusters as training
data.

A regressor is an analytical function or numerical procedure F(x),
which gives an estimate of y for a given input (or feature) x. In order
to make these estimates, the regressor must first be trained. A simple
example of a regressor is linear regression, i.e. F(x) =mx +c.
Training the regressor involves taking N training data, x; and y;, and
finding values m and ¢ (hyperparameters®), which minimize a loss
statistic, e.g. L = S0 (F(xi) — yi).

A similar approach can be used to estimate the parameters of a
star cluster. Here, x is a vector of statistics that are directly taken
from the cluster (we define these in Section 3.4.1), and y = (H, o)
is the vector of underlying parameters. Here, the regressor F'(x) is an

3In most contexts, these are referred to as parameters. We refer to them as
hyperparameters so that they are not confused with cluster model parame-
ters, e.g. Hand o.
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Figure 2. The positions of stars in real clusters, presented alongside those of artificial FBM clusters. In each of the six frames, the real cluster is plotted in the
top left-hand corder. The remaining eight frames show different realizations of FBM clusters with the most likely estimated parameters (see Section 3.4). In
all cases, the aspect ratios of the clusters have been removed (see equation 9).
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Figure 3. QO values plotted against the underlying parameters of artificial star clusters. Each artificial cluster contains between 300 and 1000 stars. The left-hand
panel shows Q values for BF clusters (purple) and RDP clusters (gold). Each set of points represents 2000 clusters with random D in the interval [1,3] and o
in the interval [0,3). The horizontal teal lines show the values of Q calculated for the clusters listed in Table 1 (the vertical order of the lines is the same as the
table). The centre and right-hand panels show the Q values for FBM clusters as a function of H and o. Each panel contains 5000 clusters with H in the interval
[0,1] and o in the interval [0.5,3.5]. In each case, the colour scale gives the value of the other parameter.

artificial neural network (ANN). Complex ANNS are routinely used
in fields such as image analysis (e.g. Lecun et al. 1998). However,
comparatively simple ANNs can be used for numerical regression
problems with multiple inputs and outputs (e.g. Rafieferantsoa, An-
drianomena & Davé 2018).

Details of ANN used here, along with links to the full imple-
mentation in PYTHON, are given in Appendix B. If the reader is not
concerned about these technical details, they should simply note
that the ANN hyperparameters are estimated from training data.
Once trained, the ANN is applied to test data. This enables us to
ensure we are not overfitting the training data and quantify the un-
certainties of the regressor. In the following sections, we discuss the
training, testing, and the results of the ANN.

3.4.1 Training

For each star cluster, we generate a set features x using its CG and
MST. However, as noted by Cartwright & Whitworth (2009), the
elongation of a star cluster may affect these graphs. Before we build
the graphs, we whiten the distribution of points. This completely
removes the size scale and aspect ratio from the distribution. We
calculate the covariance matrix X (r) for the set of stellar positions
r. From this, we calculate a new set of positions r’, where each
value r; has elements

ro_ 1 N
rl.j_ Ajr,- Uj,
i=1,2... E. )
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Here, A; and v; are, respectively, the jth eigenvalues and eigen-
vectors of X(r). Note that X'(r') is equal to the identity matrix
I.

For a set of N graph edges /, we define the mean edge-length (/)
and the nth central moment M,,([) as

A N
)= — l,
(@) N;
1

A N l N N
M(0) = <N;[zi—“’f‘)] ) ,

A — (N‘H)(% fOI‘MST,
1 for CG.

We construct x using the mean and the second, third, and fourth
central moments of the MST and CG edge-lengths. Note that the
second, third, and fourth central moments are related to the variance,
skewness, and kurtosis. We do not need to normalize these features
to a length-scale as we have already whitened the distribution of
points.

We perform two analyses: one with £, FBM clusters and another
with E3. For each analysis, we train three regressors with different
ranges of N,. There are two reasons for this. First, it is useful
to quantify parameters uncertainties as a coarse function of N,.
Secondly, the MST normalization (see equation 10) is technically
only valid for the limit N, — oo (Steele 1988). Splitting the analysis
into different N, bins helps to isolate any biases which may occur
as a function of N,. For each regressor, we generate 10* training
clusters with randomly sampled values of N,, H, and o. The ranges
and distributions of these parameters are given in Table 2.
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Figure 4. Plots of m versus § for the BF and RDP clusters (top panel)
and the FBM clusters (middle and lower panel). The colour scale gives the
values of the underlying cluster parameters. The points are generated from
the same clusters as Fig. 3. The numbered points give m—3 values for the
clusters given in Table 1. In all cases, the value of R (see equation 8) is set
to the square root of the area of the cluster convex hull.

Table 2. The range and distributions of parameters used to train the ANN
regressor. The first column gives the parameter; the second column gives
the type of distribution; the third column gives the interval. Note that o has
a different ranges for E; and E3.

Parameter Distribution Interval

Ny log-uniform [32,99], [100,315], [316,999]
H uniform [0,1]

o uniform [0.5,3.5] (E»), [0.5,4.5] (E3)
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3.4.2 Testing and results

We test each trained ANN by generating an additional 5 x 103 ar-
tificial clusters. These are randomly generated the same way as the
training clusters, but with different random seeds. Fig. 5 shows the
estimated parameters of E; test clusters as a function of their under-
lying true parameters. From these plots, we see that the parameters
can be estimated with a useful degree of accuracy for clusters with
N, > 100. We can approximate the uncertainties as the root-mean-
squared errors, AH = +/((Hey — H)?) and Ao = +/{(0est — 0)?).
Here, the est subscripts denote estimated parameters; the terms with
no subscripts denote underlying parameters. For both the E, and E3
cases, AH ~ +0.2. For the E, case, Ao varies from £0.3 to £0.5.
For E5, Ao varies between 0.5 and £0.7. The magnitudes of the
uncertainties decrease as N, increases (we give values for E; clus-
ters to two significant figures in Fig. 5). We also find that the H and
o uncertainties are correlated, i.e. there is some degeneracy in the
expression of the two parameters. Here, high ¢ can make a smooth
distribution (determined by H) appear rougher, and vice versa. We
note that this uncertainty approximation may underestimate the er-
ror on Hey when N, < 100. Here, the correlation between H.g and
H is visibly less tight than the other cases.

Table 3 shows the parameter estimates for the observed star clus-
ters. We find that for these six cases, H appears invariant with
respect to E, whereas the E3; values of ¢ are approximately one and
a half times greater than the £, values. We also include approximate
D and o values estimated using m—5 plots for comparison. Fig. 6
shows a plot of o against H for the E, analysis. Here, we see that
Taurus, Cha I, and IC 2391 have similar levels of fractal structure
to each other (determined by H), but are distinguished by different
surface-density dynamic ranges (determined by o). IC 348 and p
Oph are indistinguishable from one another, each with a smooth
structure and a low level of surface-density variation. Lupus 3 has
a high amount of surface-density variation, but the relatively low
number of stars makes it difficult to estimate the uncertainty on H.

4 DISCUSSION

4.1 Comparison of methods

We have shown that the BF star cluster model struggles to reproduce
the observed features of substructured clusters. This is because, as
identified by JWL17, the BF model only produces clusters with very
high surface-density variances. Therefore, we strongly suggest that
the model should be retired from star cluster analysis. The FBM
model presented here overcomes this problem. FBM clusters have
independent parameters that control the amount of fractal clustering
and set the global level of surface-density variation. In addition,
clusters with H ~ 1 fulfil the same role as centrally concentrated
RDP clusters. This removes the need for using two unrelated models
(i.e. BF and RDP) in the same analysis.

We find that Q and/or /5 plot analyses are poorly suited to FBM
clusters. Furthermore, they do not present robust uncertainties. This
limits their efficacy, and we suggest that they should no longer
be used as is. However, these analyses can be reformulated using
modern machine learning techniques. Here, we present an ANN
that makes robust estimates of star cluster parameters and their
uncertainties. We note that alternatives to this method also exist.
For example, JWL17 use principle component analysis to reduce a
large range of observables to two principle features.
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Figure 5. Test data parameter estimates as a function of the underlying parameters. The top row shows the ANN’s ability to predict H. The bottom row shows
ANN’s ability to predict . The colour scale gives the value of the other parameter. The range of N, is indicated in the top left-hand corner of each plot. The
solid black line shows the hypothetical performance of a perfect estimator. We also give the root-mean-squared error and Pearson’s correlation coefficient for

each plot in the bottom right-hand corner.

Table 3. Parameter values estimated for observed star clusters. The first
and second columns give the identifier and name of the cluster. The third
and fourth columns give the E; FBM parameters, inferred using the ANN.
The fifth and sixth columns give the same values for E3. The seventh and
eighth columns give the approximate D or « values, estimated using /-5
plots.

D o
# Cluster H (E») o (Ez) H (E3) o (E3) (C09) (C09)
1 Lupus3 0.6 £02 30=+05 0602 38+07 - ~2.5
2 IC348 08 +02 12403 07+02 1.6=£05 - ~2.1
3 pOph 07+£02 14+04 0702 21+£06 - ~1.8
4 1C2391 03+02 13+£04 03+02 20+x06 ~28 -
5 Cha 04 +£02 27+04 02£03 3.7 +06 - -
6 Taurus 0.0 £ 02 32403 00+02 47 £05 - -

4.2 Note on fractal dimension

We have, where possible, avoided discussing these results in terms
of fractal dimension. This is because D does not uniquely describe
a structure. For example, BF clusters with D ~ 3 have a roughly
uniform distribution of stars. Decreasing D increases the level of
substructure in the distribution. Conversely, FBM clusters with D
~ 3 may be very substructured. Decreasing D tends to fuse the
sub-clumps together until the cluster is composed of one or two
coherent objects. We, therefore, suggest caution when using the
term ‘fractal dimension’ in scientific statements. There appears to be
little relation between the value of D and the subjective clumpiness
expressed in different models.

4.3 Caveats

While the FBM model has several advantages over the BF model,
there are some caveats we must address. The FBM fields generated
in Section 2.1 fill a periodic box with no true centre. Here, we shift
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Figure 6. A scatter plot of the E» estimates of H and o for the clusters

listed in Table 1. The ellipses show the 1o uncertainties, calculated from the
root-mean-squared errors and their covariance.

the field’s periodic centre of mass to the centre of the box. This
generally places high-density structures (if present) in the centre
of the box and low-density regions around the edges. However, we
acknowledge that this choice is arbitrary. Also, in some instances,
the outline of the cluster can appear square (the effect is most
pronounced when o is low; see Fig. 2). We could address this
by culling the distribution into a sphere, but this would arbitrarily
remove stars from the edges of the distribution.
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We have demonstrated that the ANN regressor performs well
at classifying and differentiating stars clusters. However, we note
that there is an infinitude of measurable features for any given
cluster. We have experimented with a large number of features
from different graphs (e.g. centile-based statistics, features from
the Delaunay triangulation). We have found through testing that
the features presented here are adequate. Adding further features
to the ANN only yields very minor improvements to its estimation
accuracy.

4.4 Future work

The values of H and o are useful for categorizing star clusters
by their morphology. However, in order to infer physical meaning
from these measures, we need to apply them to simulations. We
hypothesize that, for a sub-virial substructured cluster, ¢ should
increase as the cluster collapses under its own gravity. Meanwhile,
H should increase as the collapse erases the cluster’s substructure.
Conversely, for a superviral equivalent of the same initial cluster, o
should decrease over time as the cluster expands. It is not clear how
H will behave during this process. We will test these hypotheses by
applying this analysis to an ensemble of N-body cluster simulations
with various initial states.

The ANN method also provides a convenient way to compare
the structure of the molecular clouds with that of star clusters.
For example, Elia et al. (2014) find that molecular clouds in the
galactic plane typically have H < 0.4, suggesting that they are
similar in structure to Taurus, or Cha I. Previous numerical work
has attempted to compare molecular cloud gas structure with that
of embedded clusters (e.g. Lomax et al. 2011; Parker & Dale 2015).
However, this was performed using Q analysis, which we have
shown is unreliable. We will revisit this work and analyse the FBM
properties of the stars and gas in molecular cloud simulations.

5 SUMMARY AND CONCLUSIONS

We present an artificial star cluster model, based on FBM. The
structure of these clusters is controlled by two parameters: the drift
exponent H, which controls the degree of fractal structure, and the
standard deviation o of the log-surface/volume density. The model
is able to produce artificial clusters with a wide range of structural
morphologies, similar to those of Lupus 3, IC 348, p Oph, IC 2391,
Cha I, and Taurus. This contrasts with the BF model — used in Q
analysis — which has a single parameter, D. Here, D is notionally a
fractal dimension. However, changing its value simultaneously al-
ters the degree of fractal structure and the amount of surface-density
variation. Because these two properties are linked, the BF model
is unable to reproduce naturally substructured clusters, like Cha I
and Taurus. We note that Jaffa et al. (2017) add extra parameters to
the BF model in order to address this problem. Their model has a
similar level of complexity as the FBM model, and can be viewed
as an alternative to the work presented here.

Q analysis and m—5 plots are not well suited to estimating FBM
cluster parameters. We present an ANN regressor that can reliably
estimate the parameter values and their uncertainties. Future work
will involve using ANNs to measure how the structural properties
of N-body cluster simulations evolve over time. Furthermore, FBM
analysis is well suited to studying the structure of the ISM. This
means we can use the method to directly compare the structure of
gas and stars in star-forming complexes.
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APPENDIX A: RANDOMLY SAMPLING
VARIATES FROM 3 OR 2 DIMENSIONAL
DISTRIBUTIONS

We can draw random coordinates (X, Y, Z) from any gridded
three-dimensional distribution p(x, y, z) using random variates
U, Uy, andU,, drawn from the uniform distribution in the interval
[0,1]. First, we calculate the cumulative distribution of p(x, y, z)
along the x-axis,

P(x) = /p(x)dx,

XMIN

Zmax YMax
/ p(x,y,z)dydz. (AD)

M YMIN

p(x) =

Here, the MIN and MAX subscripts denote the extreme coordinate val-
ues of the cartesian grid. Integrals are computed using the trapezium
rule. Next, we numerically invert P(x) to find X using the relation-
ship

P(X)
P('XMAX) B ux . (A2)

In order to get Y, we calculate the cumulative distribution along the
y-axis, given X,

y
P(y|X) = /p(le)dy,

v

ImMAX

pOIX) = /P(X,y,z)dz. (A3)

ImN

In practice, we pre-compute P(y|x) for all gridded values of x. P(y|X)
is then found by linearly interpolating P(y|x) over the two x-values
either side of X. The Y-coordinate can found by inverting

_PX (Ad)
PlyuxlX) 7

Finally, we get the Z coordinate by calculating the cumulative dis-
tribution along the z-axis, given X and Y,

P(z] X, Y)=/P(Z|X,Y)dz, (A5)
and inverting
P(Z|X.Y)
—— =U;. A6
PlzuxlX,Y) 7 (A0)

Again, we pre-compute P(z|x, y) for all combinations of x and
v, and bi-linearly interpolate P(z|x, y) over the four (x, y) values
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surrounding (X, Y). As before, the Z-coordinate is found by inverting

P(Z|X,Y)
—=U;. (A7)
P(zux] X, Y)
This method can also be performed on a two-dimensional distri-
bution, p(x, y). Here, we simply repeat the same steps (disregarding
any integrals over the z-axis) until we have obtained X and Y.

APPENDIX B: ARTIFICIAL NEURAL
NETWORK

An ANN can be thought of as a collection of artificial neurons.
Each neuron takes an input x = (xy, x2, ..., X,;) and outputs z =
f(b+ w - x). Here, b is a bias value, w is a vector of m weights,
and f(7) is an activation function. The activation function is usually
chosen to vary smoothly over a limited range, e.g. f(t) = tanh (¢) or
f(t) = 1/[1 + exp (— 1)]. A collection of n neurons can be grouped
together to form a layer. Here, the weights are represented by an
m x n matrix W, and the biases by a vector b with length n. The
ensemble of neurons has an output z = f(b + Wx).*

For this analysis, we set up a three-layer ANN using the MLPRE-
GRESSOR class in the scIKIT-LEARN library (Pedregosa et al. 2011).°
The structure of the ANN is as follows:

Layer 1, melements : x;
Layer2, nelements : z = tanh(b; + W, x); (B1)
Layer3, pelements: y=b,+ W;yz.

The first layer is the input vector of features x. This is composed
of the measurable properties of a star cluster. The second layer z is
determined by a bias vector b; and the weight matrix W . The third
and final layer is the output y. This is composed of the underlying
cluster parameters that we are trying to estimate. The values are
determined by a second bias vector b, and weight matrix W,. Note
that no activation function is used to calculate the final layer; this
is so y is not confined to a limited range. The number of neurons
in the second layer is arbitrary; here, we find n = 40 provides
the most accurate results (more complicated ANN regressors may
contain multiple hidden layers). For simplicity, we refer to the ANN
mapping of x to y as y = F(x). The ANN is trained by taking N,
training clusters, with known y, and finding values of W, W5, b,,
and b,, which minimize ((F(x) — y)?). This is performed by the
class using gradient-descent techniques.

This paper has been typeset from a TEX/IATEX file prepared by the author.

4Note that here f(r) is a scalar function with a scalar argument. For the same
function, we define f(¢) = (f(t1), f(t2),...).

SThe hyperparameters of the class, including the number of layers and
neurons per layer, are tuned using GRIDSEARCHCV cross-validation tool. The
full implementation can be found at github.com/odlomax/clusterfrac.
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