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Abstract

Using a suitable stochastic version of the compactness argument of [V. V. Zhikov, 2000. On an
extension of the method of two-scale convergence and its applications. Sb. Math., 191(7–8), 973–1014],
we develop a probabilistic framework for the analysis of heterogeneous media with high contrast. We
show that an appropriately defined multiscale limit of the field in the original medium satisfies a system of
equations corresponding to the coupled “macroscopic” and “microscopic” components of the field, giving
rise to an analogue of the “Zhikov function”, which represents the effective dispersion of the medium. We
demonstrate that, under some lenient conditions within the new framework, the spectra of the original
problems converge to the spectrum of their homogenisation limit.
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1 Introduction

Asymptotic analysis of differential equations with rapidly oscillating coefficients has featured prominently
among the interests of the applied analysis community during the last half a century. The problem of
understanding and quantifying the overall behaviour of heterogeneous media has emerged as a natural step
within the general progress of material science, wave propagation and mathematical physics. In this period
several frameworks have been developed for the analysis of families of differential operators, functionals and
random processes describing multiscale media, all of which have benefitted from the invariably deep insight
and mathematical elegance of the work of V. V. Zhikov. In the present paper we touch upon two subjects in
which his contributions have inspired generations of followers: the stochastic approach to homogenisation,
in particular through his collaboration with S. M. Kozlov during the 1980s, and the analysis of differential
operators describing periodic composites with high contrast, which started with his fundamental contribution
[Zh00].

Our present interest in the context of stochastic homogenisation of high-contrast composites stems from
the relationships that have recently been indicated between media with negative material properties (“meta-
materials”), and more generally time-dispersive media, and “degenerate” families of differential operators,
where e.g. loss of uniform ellipticity of the symbol is known to lead to non-classical dispersion relations in the
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limit of vanishing ratio ε of the microscopic (l) and macroscopic (L) lengths: ε = l/L→ 0. The work [Zh00]
has provided an example, in the periodic context, of what one should expect in the limit as ε→ 0 in terms of
the two-scale structure of the solution as well as the spectrum of the related differential operator, in the case
when the metamaterial is modelled by disjoint “soft” inclusions with low, order O(ε2) values of the material
parameters (say, elastic constants in the context of linearised elasticity), embedded in a connected “stiff”
material with material constants of order O(1). In mathematical terms, the coefficients of the corresponding
differential expression alternate between values of different orders in ε, where the contrast increases as ε gets
smaller.

In the present article we introduce a stochastic framework for the analysis of homogenisation problems
with soft inclusions and explore the question on what version of the results of [Zh00] can be achieved in this
new framework. In particular, we are interested in the equations that describe the stochastic two-scale limit,
in an appropriate sense, of the sequence of solutions to the probabilistic version of a Dirichlet problem in a
bounded domain of Rn. Furthermore, we show that the spectra of such problems converge, in the Hausdorff
sense, to the spectrum of the limit problem, which we analyse in a setting that models distributions of soft
inclusions whose shapes are taken from a certain finite set and whose sizes vary over an interval. To our
knowledge, the present manuscript is the first work containing an analysis of random heterogeneous media
with high contrast that results in a “complete” Hausdorff-type convergence statement for the spectra of the
corresponding differential operators. Various aspects of multiscale analysis of high-contrast media in the
stochastic context have been looked at in a handful of papers, e.g. [BMP03], [BBM15], [Bel17].

While in the periodic context norm-resolvent convergence results been obtained for high-contrast media,
see [CC16, CCC17] , the stochastic case remains open to developments of a similar nature. It is anticipated
that the operator-theoretic approach to problems of the kind we discuss in the present article will provide a
general description of the types of spectral behaviour that can occur in the real-world applications where it is
difficult to enforce periodicity of the microstructure. On the other hand, as we show in the present work, new
wave phenomena should be expected in the stochastic setting (e.g. a non-trivial continuous component of
the spectral measure of the homogenised operator for a bounded-domain problem), which makes the related
future developments even more exciting.

Next, we outline the structure of the paper. In Section 2 we recall the notion of stochastic two-scale
convergence, which we use, in Sections 3, 4, to pass to the limit, as ε → 0, in a family of homogenisation
problems with random soft inclusions. In Section 3 we give a formulation of the high-contrast problem
we study and provide some auxiliary statements. In Section 4 we describe the limit problem and prove
the strong resolvent convergence of the ε-dependent family to the limit system of equations. In Section 5
we provide a link between the spectra of the Laplacian operator on realisations of the inclusions and of the
corresponding stochastic Laplacian. In Section 6 we prove that sequences of normalised eigenfunctions of the
ε-dependent problems are compact in the sense of strong stochastic two-scale convergence. Finally, in Section
7 we discuss two examples of the general stochastic setting and describe the structure of the corresponding
limit spectrum.

In conclusion of this section we introduce some notation used throughout the paper. For a Banach space
X and its dual X∗, we denote by X〈·, ·〉X∗ the corresponding duality. For a Hilbert space H the inner product
of a, b ∈ H is also denoted by 〈a, b〉H and, if H = Rn, by a · b. For a set O we denote by χO its characteristic
function, which takes value one on the set O and zero on the complement to O in the appropriate ambient
space. For D ⊆ Rn we denote by D its closure and by |D| its Lebesgue measure. Further, we use the
notation Br(0) for the ball in Rn of radius r with the centre at the origin; Y denotes the cube [0, 1)n with
torus topology, where the opposite faces are identified; and Nl

0 := {0, . . . , l}. For an operator A on some
Hilbert space, we denote by SpA its spectrum. Finally, for a Lipschitz open set D ⊂ Rn, we denote by
−∆D the (positive) Laplace operator with the Dirichlet boundary condition on ∂D. For x ∈ Rn we denote
by [x] the element of Zn which satisfies [x] ≤ x < [x] + (1, . . . , 1). For k = 1, . . . , n by ek we denote the k-th
coordinate vectors.
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2 Stochastic two-scale convergence

2.1 Probability framework

Let (Ω,F , P ) be a complete probability space. We assume that F is countably generated, which implies that
the spaces Lp(Ω), p ∈ [1,∞), are separable. For a function u ∈ L1(Ω), we will sometimes write 〈u〉 for

´

Ω
u.

By S we denote a domain (open bounded subset) in Rn.

Definition 2.1. A family (Tx)x∈Rn of measurable bijective mappings Tx : Ω → Ω on a probability space
(Ω,F , P ) is called a dynamical system on Ω with respect to P if:

a. Tx ◦ Ty = Tx+y ∀x, y ∈ Rn;

b. P (TxF ) = P (F ) ∀x ∈ Rn, F ∈ F ;

c. T : Rn × Ω → Ω, (x, ω) → Tx(ω) is measurable (for the standard σ-algebra on the product space,
where on Rn we take the Lebesgue σ-algebra).

We next define the notion of ergodicity for dynamical systems introduced above.

Definition 2.2. A dynamical system is called ergodic if one of the following equivalent conditions is fulfilled:

a. f measurable, f(ω) = f(Txω) ∀x ∈ Rn, a.e. ω ∈ Ω =⇒ f(ω) is constant P -a.e. ω ∈ Ω.

b. P
(
(TxB ∪B)\(TxB ∩B)

)
= 0 ∀x ∈ Rn =⇒ P (B) ∈ {0, 1}.

Henceforth we assume that the dynamical system Tx is ergodic.

Remark 2.3. Note that for the condition b the implication P (B) ∈ {0, 1} has to hold, if the symmetric
difference between TxB and B is a null set. It can be shown (see, e.g., [CFS82]) that ergodicity is also
equivalent if a priori only the weaker implication

TxB = B ∀x ∈ Rn =⇒ P (B) ∈ {0, 1}

holds.

For f ∈ Lp(Ω), we write f(x, ω) := f(Txω), defining the realisation f ∈ Lp
loc(R

n, Lp(Ω)). There is a
natural unitary action on L2(Ω) associated with Tx :

U(x)f = f ◦ Tx, f ∈ L2(Ω). (1)

It can be shown that the conditions of Definition 2.1 imply that this is a strongly continuous group (see
[ZKO94]). It is often necessary that the set of full measure be invariant in the sense that together with the
point ω it contains the whole ”trajectory” {Txω, x ∈ Rm}. This requirement can always be met on the basis
of the following simple lemma (see [ZKO94, Lemma 7.1]).

Lemma 2.4. Let Ω0 be a set of full measure in Ω. Then there exists a set of full measure Ω1 such that
Ω1 ⊆ Ω0, and for a given ω ∈ Ω1 we have Txω ∈ Ω0 for almost all x ∈ Rm.

For each j = 1, 2, ...n, we define the infinitesimal generator Dj of the unitary group Uxj
by the formula

Djf(ω) = lim
xj→0

f(Txj
ω)− f(ω)

xj
, f ∈ L2(Ω), (2)

where the limit is taken in L2(Ω). Notice that iD1, j = 1, . . . , n, are commuting, self-adjoint, closed and
densely defined linear operators on the separable Hilbert space L2(Ω). The domain Di(Ω) of such an operator
is given by the set of L2(Ω)-functions for which the limit (2) exists. We consider the set

W 1,2(Ω) :=

n⋂

j=1

Dj(Ω) (3)
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and similarly

W k,2(Ω) :=
{
f ∈ L2(Ω) : Dα1

1 . . . Dαn
n f ∈ L2(Ω), α1 + · · ·+ αn = k

}
,

W∞,2(Ω) :=
⋂

k∈N

W k,2(Ω).

It is shown by the standard semigroup property that W∞,2(Ω) is dense in L2(Ω). We also define the space

C∞(Ω) =
{
f ∈W∞,2(Ω) : ∀(α1, . . . , αn) ∈ Nn

0 Dα1

1 . . . Dαn
n f ∈ L∞(Ω)

}
.

By the smoothening procedure discussed in [ZKO94, p. 232] (see also the text before Lemma 3.2 below), it
is shown that C∞(Ω) is dense in Lp(Ω) for all p ∈ [1,∞) as well as in W k,2(Ω) for all k. Furthermore, it is
shown that W 1,2(Ω) is separable. Notice that, due to the infinitesimal generator being closed, Dif can be
equivalently defined as the function that satisfies the property

ˆ

Ω

Dif g = −

ˆ

Ω

f Dig ∀g ∈ C∞(Ω). (4)

If f ∈W 1,2(Ω), we may also define Dif(x, ω) := Dif(Txω) for all x ∈ Rn. It can be shown that the following
identity holds (see [DG16]):

W 1,2(Ω) =
{
f ∈W 1,2

loc

(
Rn, L2(Ω)

)
: f(x+ y, ω) = f(x, Tyω) ∀x, y, a.e. ω

}

=
{
f ∈ C1

(
Rn, L2(Ω)

)
: f(x+ y, ω) = f(x, Tyω) ∀x, y, a.e. ω

}
.

(5)

Moreover, for a.e. ω ∈ Ω the function Dif(·, ω) is the distributional derivative of f(·, ω) ∈ L2
loc(R

n) : a proof
of this fact can be found in [DG16, Lemma A.7].

Following [SW11], we denote by ‖·‖#,k,2 the seminorm on C∞(Ω) given by

‖u‖2#,k,2 =
∑

α∈Nn, |α|=k

‖Dαu‖2L2(Ω).

ByWk,2(Ω) we denote the completion of C∞(Ω) with respect to the seminorm ‖·‖#,k,2. The gradient operator
∇ω := (D1, . . . , Dn) and the operator div ω := ∇ω· are extended uniquely by continuity to mappings from
W1,2(Ω) to L2(Ω,Rn) and from W1,2(Ω,Rn) to L2(Ω), respectively. Finally, by a density argument, it is
easily seen that W1,2(Ω) is also the completion of W 1,2(Ω) with respect to ‖·‖#,1,2.

2.2 Definition and basic properties

The key property of ergodic systems is the following theorem, due to Birkhoff (for a more general approach,
see [AK81]).

Theorem 2.5 (“Ergodic Theorem”). Let (Ω,F , P ) be a probability space with an ergodic dynamical system
(Tx)x∈Rn on Ω. Let f ∈ L1(Ω) be a function and B ⊂ Rn be a bounded open set. Then for P -a.e. ω ∈ Ω
one has

lim
ε→0

ˆ

B

f(Tx/εω)dx = |B|

ˆ

Ω

f(ω)dP (ω). (6)

Furthermore, for all f ∈ Lp(Ω), 1 ≤ p ≤ ∞, and a.e. ω ∈ Ω, the function f(x, ω) = f(Txω) satisfies
f(·, ω) ∈ Lp

loc(R
n). For p <∞ one has f(·/ε, ω) = f(T·/εω)⇀

´

Ω
fdP weakly in Lp

loc(R
n) as ε→ 0.

The elements ω such that (6) holds for every f ∈ L1(Ω) and bounded open B ⊂ Rn are refereed to
as typical elements, while the corresponding sets (Txω)x∈RN are called typical trajectories. Note that the
separability of L1(Ω) implies that almost every ω ∈ Ω is typical, and in what follows we only work with such
ω.

For vector spaces V1, V2, we denote by by V1 ⊗ V2 their usual tensor product. We define the following
notion of stochastic two-scale convergence, which is a slight variation of the definition given in [ZP06]. We
shall stay in the Hilbert setting (p = 2), as it suffices for our analysis.
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Definition 2.6. Let (Txω)x∈Rn be a typical trajectory and (uε) a bounded sequence in L2(S). We say that

(uε) weakly stochastically two-scale converges to u ∈ L2(S × Ω) and write uε
2
−⇀ u, if

lim
ε↓0

ˆ

S

uε(x)g
(
x, Tε−1xω

)
dx =

ˆ

Ω

ˆ

S

u(x, ω)g(x, ω)dx dP (ω) ∀g ∈ C∞
0 (S)⊗ C∞(Ω). (7)

If additionally ‖uε‖L2(S) → ‖u‖L2(S×Ω), we say that (uε) strongly stochastically two-scale converges to u

and write uε
2
−→ u.

Remark 2.7. The convergence of (uε) is defined along a fixed typical trajectory and a priori the limit depends
on this trajectory. In applications, such as the analysis of the PDE family in Section 4, it often turns out
that the limit does not depend on the trajectory chosen. For this reason, and to simplify notation, in what
follows we often do not indicate this dependence explicitly.

Note also that, by density, the set of admissible test functions g in (7) can be extended to L2(S)⊗L2(Ω).

In the next proposition we collect the properties of stochastic two-scale convergence that we use in the
present work.

Proposition 2.8. The following properties of stochastic two-scale convergence hold.

a. Let (uε) be a bounded sequence in L2(S). Then there exists a subsequence (not relabeled) and u ∈

L2(S × Ω) such that uε
2
−⇀ u.

b. If uε
2
−⇀ u then ‖u‖L2(S×Ω) ≤ lim infε→0 ‖u

ε‖L2(S).

c. If (uε) ⊆ L2(S) is a bounded sequence with uε → u in L2(S) for some u ∈ L2(S), then uε
2
−→ u.

d. If (vε) ⊆ L∞(S) is uniformly bounded by a constant and vε → v strongly in L1(S) for some v ∈ L∞(S),

and (uε) is bounded in L2(S) with uε
2
−⇀ u for some u ∈ L2(S × Ω), then vεuε

2
−⇀ vu.

e. Let (uε) be a bounded sequence in W 1,2(S). Then on a subsequence (not relabeled) uε ⇀ u0 in W 1,2(S),
and there exists u1 ∈ L2(S,W1,2(Ω)) such that

∇uε
2
−⇀ ∇u0 +∇ωu

1(·, ω) .

f. Let (uε) be a bounded sequence in L2(S) such that ε∇uε is bounded in L2(S,Rn). Then there exists
u ∈ L2(S,W 1,2(Ω)) such that on a subsequence

uε
2
−⇀ u, ε∇uε

2
−⇀ ∇ωu(·, ω). (8)

Proof. In view of analogies with the periodic case, we just give a sketch of the proof. A proof of (a) can be
found in [ZP06, Lemma 5.1]. For the proof of (b), we take an arbitrary g ∈ C∞

0 (S)⊗ C∞(Ω) and calculate

lim inf
ε→0

ˆ

S

∣∣uε(x)− g(x, Tε−1xω)
∣∣2dx

= lim inf
ε→0

(
ˆ ∣∣uε(x)

∣∣2dx− 2

ˆ

S

uε(x)g(x, Tε−1xω)dx+

ˆ

S

∣∣g(x, Tε−1xω)
∣∣2dx

)

= lim inf
ε→0

(
ˆ ∣∣uε(x)

∣∣2dx− 2

ˆ

S×Ω

u(x, ω)g(x, ω)dxdP (ω) +

ˆ

S×Ω

∣∣g(x, ω)
∣∣2dxdP (ω)

)
.

We obtain the claim by density and letting g → u. The proof of (c), (d) is straightforward. The proof of (e)
goes in the same way as in the periodic case, by the duality argument. First, one proves that if f ∈ (L2(Ω))n

is such that
ˆ

Ω

f · g = 0 ∀g ∈
{
g ∈ C∞(Ω,Rn) : divω g = 0

}
,
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and therefore there exists ψ ∈ W1,2(Ω) such that f = ∇ωψ, and one then proceeds in the same way as

in the periodic case (see [All92]). In order to show the claim (f), take the subsequence such that uε
2
−⇀ u,

where u ∈ L2(S × Ω) and ε∇uε
2
−⇀ z, where z ∈ L2(S × Ω,Rn). We choose the test functions of the form

ϕε(x) = a(x)b(Tε−1xω), where a ∈ C∞
0 (S) and b ∈ C∞(Ω) and by partial integration we conclude

lim
ε→0

ˆ

S

ε∇uε(x)ϕε(x) = −

ˆ

S

ˆ

Ω

u(x, ω)a(x)∇ωb(ω)dxdP (ω) =

ˆ

S

ˆ

Ω

z(x)a(x)b(ω)dxdP (ω),

from which the claim follows by a density argument, in view of the property (4).

3 Problem formulation and auxiliary statements

Let S ⊆ Rn be a bounded domain. We take O ⊆ Ω such that 0 < P (O) < 1 and for each ω ∈ Ω consider its
“realisation”

Oω = {x ∈ Rn : Txω ∈ O}.

We assume that the following conditions are satisfied.

Assumption 3.1. For a.e. ω ∈ Ω one has

Oω :=

∞⋃

k=1

Ok
ω, (9)

where:
1) Ok

ω, k ∈ N, are open connected sets with Lipschitz boundary;

2) For a.e. ω ∈ Ω one has Oω = ∪∞
k=1O

k
ω;

3) There exist c1, c2 > 0 such that c1 ≤ diamOk
ω ≤ c2 ∀k ∈ N;

4) There exists a sequence of disjoint bounded domains Bk
ω such that Ok

ω ⊆ Bk
ω, k ∈ N, and Cω > 0 such

that for all k ∈ N the following extension property holds: for all u ∈W 1,2(Bk
ω\O

k
ω) there exists ũ ∈W 1,2(Bk

ω)
satisfying

ũ = u on Bk
ω\O

k
ω,

ˆ

Bk
ω

|∇ũ|2 ≤ Cω

ˆ

Bk
ω\Ok

ω

|∇u|2, ∆ũ = 0 on Ok
ω.

It is easily seen that Assumption 3.1 holds for the examples given in Section 7.1. Denote by Λ the set of
typical elements ω ∈ Ω satisfying the conditions listed in Assumption 3.1, and for all ω ∈ Λ, ε > 0 define
Sε
0(ω) as the union of all components εOk

ω that are subsets of S and stay sufficiently far from its boundary,
in the sense that there exists C = C(ω) > 0 such that

Sε
0(ω) :=

⋃

k∈Kε
ω

εOk
ω, Kε

ω :=
{
k ∈ N : εOk

ω ⊆ S, dist
(
εOk

ω, ∂S
)
> Cε

}
. (10)

We denote the complement of the set Sε
0(ω) by Sε

1(ω) := S \ Sε
0(ω) and the corresponding set indicatior

functions by χε
0(ω) and χ

ε
1(ω).

For each ω ∈ Λ, we consider the following Dirichlet problem in S : for λ < 0 and fε ∈ L2(S), find
uε ∈W 1,2

0 (S) such that

ˆ

S

Aε(·, ω)∇uε · ∇v − λ

ˆ

S

uε · v =

ˆ

S

fεv ∀v ∈W 1,2
0 (S), (11)

where
Aε(·, ω) = χε

1(ω)A1 + ε2χε
0(ω)I, ω ∈ Λ,

with a symmetric and positive-definite matrix A1.
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For all ω ∈ Λ we also define the Dirichlet operator Aε(ω) in L2(S) corresponding to the differential
expression −divAε(·, ω)∇u, e.g. by considering the bilinear form

ˆ

S

Aε(·, ω)∇u · ∇v, u, v ∈W 1,2
0 (S).

It is well known that the spectrum of Aε(ω) is discrete. The following subspace of W 1,2(Ω) will play an
essential role in our analysis:

W 1,2
0 (O) =

{
v ∈W 1,2(Ω) : v(Txω) = 0 on Rn\Oω ∀ω ∈ Λ

}
.

Notice that as a consequence of Ergodic Theorem (Theorem 2.5) one has

W 1,2
0 (O) =

{
v ∈W 1,2(Ω) : χOv = v

}
,

i.e. W 1,2
0 (O) consists of W 1,2-functions that vanish on Ω\O. Henceforth we assume that ω ∈ Λ without

mentioning it explicitly.
The next two lemmas use a standard smoothening (or “mollification”) procedure, which we now describe.

We take g ∈ L2(Ω) and (cf. [ZKO94, p. 232]) choose a nonnegative even function ρ ∈ C∞
0 (Rn) with

´

Rn ρ = 1,
supp ρ ⊂ B1(0) and write ρδ(x) = δ−nρ(x/δ) for all δ > 0. For each δ > 0, we define the regularisation Rδ[g]
of g by

Rδ[g](ω) =

ˆ

Rn

ρδ(y)g(Tyω)dy,=

ˆ

Rn

ρδ(y)g(T−yω)dy, ω ∈ Ω.

Notice that

Rδ

[
g
]
(Txω) =

ˆ

Rn

ρδ(y)g(Tx−yω)dy =

ˆ

Rn

ρδ(x− y)g(Tyω)dy =

ˆ

Rn

ρδ(y − x)g(Tyω)dy, (12)

from which we infer that

DiRδ[g](ω) = −

ˆ

Rn

∂iρδ(y)g(Tyω)dy, ω ∈ Ω, i = 1, 2, . . . , n.

Arguing by induction, we show that Rδ[g] ∈ W∞,2(Ω), and if g ∈ L∞(Ω) then Rδ[g] ∈ C∞(Ω). Before we
state and prove the lemmas, we introduce additional notation. We define the space

C∞
0 (O) :=

{
v ∈ C∞(Ω) : v = 0 on Ω\O

}
,

as well as the sets

Dk,m
ω :=

{
x ∈ Ok

ω : dist
(
x, ∂Ok

ω

)
>

1

m

}
, k,m ∈ N.

Also, for all m ∈ N we define the set

Bm := {ω ∈ Ω : 0 ∈ Dk,m
ω for some k ∈ N} ⊂ Ω.

By using the density of Qn in Rn it can be seen that for all m ∈ N the set Bm is measurable. Notice that
for each fixed ω, k,m, where m is large enough, there exist constants C1, C2 > 0 such that

C1

m

∣∣Ok
ω

∣∣ ≤
∣∣Ωk

ω\D
k,m
ω

∣∣ ≤ C2

m

∣∣Ok
ω

∣∣. (13)

In the next lemma we assume that a relaxed version of the right inequality in (13) holds uniformly in ω.

Lemma 3.2. Suppose that for a.e. ω ∈ Ω there exists a sequence of positive values Cm converging to zero,
such that ∣∣Ok

ω\D
k,m
ω

∣∣ ≤ Cm

∣∣Ok
ω

∣∣ ∀k ∈ N.

Then the set C∞
0 (O) is dense in L2(O).
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Proof. By using Ergodic Theorem and the assumption of the lemma, it can be shown that P (O\Bm) → 0
as m → ∞. To prove the density, it suffices to approximate g := χBmf , where f ∈ L∞(O) by a function
from C∞

0 (O), for which we use the above mollification procedure. Notice that for δ > 0 small enough, one
has Rδ[g] ∈ C∞

0 (O). It remains to check Rδ[g] → g as δ → 0, but this follows from the strong continuity of
the group U(x), see (1):

∥∥g −Rδ[g]
∥∥
L2(Ω)

≤

ˆ

Rn

ρδ(y)
∥∥U(y)g − g

∥∥
L2(Ω)

dy → 0,

as required.

Notice that, by the standard Poincaré inequality, for each Dk,m
ω there exists C > 0 such that

ˆ

Ok
ω\Dk,m

ω

u2dx ≤ C
∣∣Ok

ω\D
k,m
ω

∣∣2
ˆ

Ok
ω\Dk,m

ω

|∇u|2dx ∀u ∈W 1,2
0 (Ok

ω). (14)

In the following lemma we impose this condition uniformly.

Lemma 3.3. Assume that for a.e. ω ∈ Ω there exists a constant C > 0 such that

∣∣Ok
ω\D

k,m
ω

∣∣ ≤ C

m

∣∣Ok
ω

∣∣ ∀k,m, (15)

and that (14) is satisfied for all k and large enough m. Then the set C∞
0 (O) is dense in W 1,2

0 (O).

Proof. We take f ∈ W 1,2
0 (O) and define fM := χ|f |≤Mf + χ|f |≥MM . Notice that as a consequence of (5),

fM ∈ W 1,2
0 (O) and DifM = χ|f |<MDif . It is easily seen that fM → f in W 1,2(Ω) as M → ∞. Thus we

can assume, without loss of generality, that f ∈ L∞(Ω) ∩W 1,2
0 (O). We define hm = K1/2m[χBmf ]. It can

be seen from the proof of Lemma 3.2 that hm → f in L2(O) as m → ∞. Notice that for a.e. ω ∈ B⌈2m/3⌉

we have for i = 1, . . . , n

Dihm(ω) = K1/2m[Dif ](ω) =

ˆ

Rn

ρ1/2m(y)Dif(Tyω)dy,

and therefore
‖Dihm −Dif‖L2(B⌈2m/3⌉) ≤

∥∥K1/2m[Dif ]−Dif
∥∥
L2(Ω)

→ 0.

Notice also that for a.e. ω ∈ Ω there exist C1, C2 > 0 such that for all k,m ∈ N, where m is sufficiently
large, we have

∥∥∂ihm(·, ω)
∥∥2
L2(Ok

ω\D
k,⌈2m/3⌉
ω )

≤ C1m
2‖f‖2

L2(Ok
ω\D

k,⌈m/2⌉
ω )

≤ C2‖f‖
2

W 1,2(Ok
ω\D

k,⌈m/2⌉
ω )

,

where we have used (12), (14), (15) and Young’s inequality. By using the Ergodic Theorem we conclude that
there exists C > 0 such that

‖Dihm‖2L2(O\B⌈2m/3⌉) ≤ C‖f‖2W 1,2(O\B⌈m/2⌉),

from which the claim follows.

4 Limit equations and two-scale resolvent convergence

We define the quadratic form

Ahom
1 ξ · ξ := inf

ϕ∈W 1,2(Ω)

ˆ

Ω\O

A1(ξ +∇ωϕ) · (ξ +∇ωϕ), ξ ∈ Rn,

and denote by W1,2(Ω\O) the completion of W 1,2(Ω) with respect to the seminorm ‖∇ωϕ‖L2(Ω\O),
ϕ ∈W 1,2(Ω). The proof of the following lemma is straightforward.
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Lemma 4.1. For each ξ ∈ Rn there exists pξ ∈ W1,2(Ω\O) such that

Ahom
1 ξ · ξ =

ˆ

Ω\O

A1(ξ + pξ) · (ξ + pξ),

or, equivalently,
ˆ

Ω\O

A1(ξ + pξ) · ∇ωϕ = 0 ∀ϕ ∈ C∞(Ω). (16)

In particular, one has Ahom
1 ≤ A1.

Remark 4.2. It follows from the observations in [ZP06, p. 265–266] that if the following extension property
is satisfied for a.e. ω ∈ Ω: for all u ∈ C∞

0 (B1(0)) there exists ε0ω > 0 and a sequence of functions (ũε) such
that

ũε = u in B1(0)\
⋃

k∈N

εOk
ω for ε ≤ ε0ω,

ˆ

B2(0)

|∇ũε| ≤ Cω

ˆ

B1(0)\
⋃

k∈N
εOk

ω

|∇u|2,

where Cω is a constant independent of u and ε, then the matrix Ahom
1 is positive definite.

Notice that under Assumption 3.1, the extension property in Remark 4.2 is satisfied. We define the space

H := L2(S) +
{
u ∈ L2(S × Ω) : u|S×(Ω\O) = 0

}
,

which is clearly a direct sum, naturally embedded in L2(S × Ω). Before stating the next theorem we prove
a simple lemma that implies that gives norm bounds for each component of H by the norm in L2(S × Ω).

Lemma 4.3. Let f0 ∈ L2(S) and f1 ∈ L2(S × Ω) such that f1 ≡ 0 on Ω\O. Then there exists a constant
C > 0 such that

‖f0‖L2(S) + ‖f1‖L2(S×Ω) ≤ C‖f0 + f1‖L2(S×Ω),

where we use the natural embedding L2(S) →֒ L2(S × Ω).

Proof. Notice that by Cauchy-Schwartz inequality we have

2

ˆ

S×Ω

∣∣f0(x)
∣∣∣∣f1(x, ω)

∣∣dxdP (ω) = 2

ˆ

S

∣∣f0(x)
∣∣
ˆ

O

∣∣f1(x, ·)
∣∣dPdx

≤ ‖f0‖
2
L2(S) +

∥∥∥∥
ˆ

O

f1

∥∥∥∥
2

L2(S)

≤ ‖f0‖
2
L2(S) + P (O)‖f1‖

2
L2(S×Ω),

and hence

‖f0 + f1‖
2
L2(S×Ω) ≥ ‖f0‖

2
L2(S×Ω) − 2

ˆ

S×Ω

|f0||f1|dxdP + ‖f1‖
2
L2(S×Ω) ≥

(
1− P (O)

)
‖f1‖

2
L2(S×Ω). (17)

It remains to bound ‖f0‖L2(S×Ω) by ‖f0 + f1‖L2(S×Ω), which is done by the triangle inequality:

‖f0‖
2
L2(S) ≤ 2

(
‖f0 + f1‖

2
L2(S) + ‖f1‖

2
L2(S×Ω)

)
≤

2
(
2− P (O)

)

1− P (O)
‖f0 + f1‖

2
L2(S×Ω).

By P : L2(S × Ω) → H we denote the orthogonal projection. For f ∈ L2(S × Ω) we have

Pf(x, ω) =

ˆ

Ω\O

f(x, ·)dP + χO(ω)

(
f(x, ω)−

ˆ

Ω\O

f(x, ·)dP

)
.
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Theorem 4.4. Under Assumption 3.1, let λ < 0 and suppose that (fε) be a bounded sequence in L2(S) such

that fε
2
−⇀ f ∈ L2(S × Ω). For each ε > 0, consider the solution uε to (11). Then for a.e. ω ∈ Ω one has

uε
2
−⇀ u0 + u1(·, ω), where u0 ∈W 1,2

0 (S), u1 ∈ L2(S,W 1,2
0 (O)) satisfy

ˆ

S

Ahom
1 ∇u0 · ∇ϕ0 − λ

ˆ

S

(
u0 + 〈u1〉Ω

)
ϕ0 =

ˆ

S

〈f〉Ω ϕ0 ∀ϕ0 ∈W 1,2
0 (S), (18)

ˆ

O

∇ωu1(x, ·) · ∇ωϕ1 − λ

ˆ

O

(
u0(x) + u1(x, ·)

)
ϕ1 =

ˆ

O

f(x, ·)ϕ1 ∀ϕ1 ∈W 1,2
0 (O). (19)

Remark 4.5. The system (18)–(19) is understood in the weak sense:

ˆ

S

Ahom
1 ∇u0 · ∇ϕ0 +

ˆ

S×Ω

∇ωu1 · ∇ωϕ1 − λ

ˆ

S×Ω

(u0 + u1)(ϕ0 + ϕ1) (20)

=

ˆ

S×Ω

f(ϕ0 + ϕ1) ∀ϕ0 ∈W 1,2
0 (S), ϕ1 ∈ L2

(
S,W 1,2

0 (O)
)
.

Noting that W 1,2
0 (O) is a closed subspace of W 1,2(Ω) and bearing in mind Lemma 4.3, it follows by the

Lax-Milgram lemma that for all f ∈ L2(S × Ω), x ∈ S the problem (20) has a unique solution in W 1,2
0 (O).

Its solutions for the right-hand sides f ∈ L2(S ×Ω) and Pf coincide. The solution of the equation (19) has
the form

u1(x, ω) = u(x, ω) + u0(x)w(ω), (21)

where u ∈ L2(S,W 1,2
0 (O)) is the solution of the equation (19) obtained by setting u0 = 0 and w ∈ W 1,2

0 (O)
is the solution of the equation (19) obtained by setting u0 = 1 and f = 0. Substituting (21) into (18), we
obtain an equation on u0.

Proof. The proof follows a standard argument. First, by (11), there exists a constant C > 0 such that

‖∇uε‖L2(Sε
1
) + ε‖∇uε‖L2(Sε

0
) + ‖uε‖L2(S) ≤ C. (22)

For each ε > 0 we extend uε|Sε
1
, using Assumption 3.1, to a sequence ũε, which is bounded in W 1,2(S). From

Proposition 2.8 we infer that there exist u0 ∈W 1,2(S), u1 ∈ L2(S,W 1,2(Ω)), u2 ∈ L2(S,W1,2(Ω)) such that
on a subsequence we have

ũε → u0 strongly in L2(S), ∇ũε
2
−⇀ ∇u0 +∇ωu2, uε − ũε

2
−⇀ u1, ε∇(uε − ũε)

2
−⇀ ∇ωu1. (23)

To obtain the equation (18), we take test functions of the form ϕ0(x) + εa(x)ϕ(Tε−1xω) in (11), where
ϕ0 ∈W 1,2

0 (S), ϕ ∈W 1,2(Ω) and a ∈ C1
0 (S). In the limit as ε→ 0 we obtain

ˆ

S

ˆ

Ω\O

A1(∇u0 +∇ωu2) ·
(
∇ϕ0 + a∇ωϕ1

)
dPdx− λ

ˆ

S

(
u0 + 〈u1〉Ω

)
ϕ0 =

ˆ

S

〈f〉Ω ϕ0. (24)

Setting ϕ0 = 0, it follows that

ˆ

Ω\O

A1(∇u0(x) +∇ωu2) · ∇ωϕ1dP = 0 a.e. x ∈ S,

and the characterisation (16) yields ∇ωu2(x, ω) = p∇u0(x)(ω) a.e. x ∈ S, ω ∈ Ω. Taking arbitrary ϕ0 ∈

W 1,2
0 (S) in (24), we obtain the “macroscopic” part (18) of the limit ptoblem. The “microscopic” part (19)

is obtained by taking test functions of the form a(x)ϕ(Tε−1xω) in (11), where a ∈ C1
0 (S), ϕ ∈W 1,2

0 (O). The
convergence of the whole sequence can be deduced by uniqueness of the solution of the system (18)–(19).
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Remark 4.6. The following observation was made in [Zh00] in the periodic setting. The formulation (20)
can be interpreted from the operator-theoretic point of view. Namely, we define a positive definite operator A
on a dense linear subset of V =W 1,2

0 (S)+L2(S,W 1,2
0 (O)) (which is a dense subset of H under the condition

of Lemma 3.2), as follows. One takes λ < 0 and defines the domain dom(A) as the set of solutions of (20)
obtained for varying f ∈ H. To see that dom(A) is dense in H, take the solutions u0 + u1, w0 + w1 ∈ V
for f, g ∈ H, respectively. Setting ϕ0 = u0, ϕ1 = u1 as the test function in the equation for (w0, w1) and
ϕ0 = w0, ϕ1 = w1 as the test function in the equation for (u0, u1) yields

ˆ

S×Ω

f(w0 + w1) =

ˆ

S×Ω

g(u0 + u1).

Thus, if g ⊥ u0 + u1 then necessarily w0 + w1 = 0, which implies g = 0. The operator A : dom(A) → H
defined by A(u0 + u1) = f + λ(u0 + u1) is a bounded linear mapping between Hilbert spaces, where the norm
on dom(A) is given by

‖u0 + u1‖
2
dom(A) =

∥∥A(u0 + u1)
∥∥2
H
+ ‖u0 + u1‖

2
V .

We shall need the following statement for the convergence of spectra of the operators associated with
(11). It is proved in the same way as the previous theorem, and we omit the proof.

Proposition 4.7. Under Assumption 3.1, let λ < 0 and suppose that (fε) is a bounded sequence in L2(Sε
0)

such that χε
0f

ε 2
−⇀ f ∈ L2(S × Ω). For each ε > 0, let zε ∈W 1,2

0 (Sε
0) be the solution of

ε2
ˆ

Sε
0

∇zε · ∇v − λ

ˆ

Sε
0

zεv =

ˆ

Sε
0

fεv ∀v ∈W 1,2
0 (Sε

0). (25)

Then for a.e. ω ∈ Ω one has zε
2
−⇀ z(·, ω), where z ∈ L2(S,W 1,2

0 (O)) is the solution of the problem

ˆ

O

∇ωz(x, ·) · ∇ωv − λ

ˆ

O

z(x, ·)v =

ˆ

O

f(x, ·)v ∀v ∈W 1,2
0 (O). (26)

Remark 4.8. Theorem 4.4 and Proposition 4.7 are still valid if, instead of a fixed λ < 0, we take a
sequence (λε) ⊆ R such that λε → λ ∈ R and lim infε→0 dist(λ

ε, SpAε) > 0, for Theorem 4.4, i.e.
lim infε→0 dist(λ

ε, Sp T ε) > 0 for Proposition 4.7, where T ε := −ε2∆Sε
0
. Notice that Sp T ε splits into the

spectra of scaled Laplace operators on each hole contained in Sε
0 :

Sp T ε =
⋃

n∈Kε
ω

Sp
(
−∆On

ω

)
, (27)

where Kε
ω is defined in (10). Notice that there exists C > 0 such that for all λ ∈ R the solution uε of (11)

satisfies

‖∇uε‖L2(Sε
1
) + ε‖∇uε‖L2(Sε

0
) + ‖uε‖L2(S) ≤ C

(
dist(λ, SpAε)−1 + λ+ 1

)
‖fε‖L2(S), (28)

and similarly the solution of (25) satisfies

ε‖∇zε‖L2(Sε
0
) + ‖zε‖L2(Sε

0
) ≤ C

(
dist(λ, Sp T ε)−1 + λ+ 1

)
‖fε‖L2(S). (29)

In what follows we denote by −∆ω the operator generated by the bilinear form

ˆ

O

∇ωu · ∇ωv, u, v ∈W 1,2
0 (O). (30)

As a consequence of Proposition 4.7 and Remark 4.8, we have the following statement.
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Corollary 4.9. Assume that Assumption 3.1 holds. Then

Sp(−∆ω) ⊆
⋃

n∈N

Sp
(
−∆On

ω

)
a.e. ω ∈ Ω.

Proof. Take λ /∈
⋃

n∈N Sp(−∆On
ω
) and f ∈ L2(O), and define fε(x, ω) := χε

0f(Tε−1xω)
2
−→ f . As a conse-

quence of Remark 4.8, the sequence of solutions of (25) converges weakly two-scale to the solution of (26),
which is a resolvent equation. Moreover, (27) and (29) imply the existence of C > 0 such that

‖u1‖L2(S×Ω) ≤ lim inf
ε→0

‖zε‖L2(Sε
0
) ≤ C‖f‖L2(O),

and therefore λ /∈ Sp(−∆ω).

5 Spectral completeness for inclusions

In this part we prove that ⋃

n∈N

Sp
(
−∆On

ω

)
⊆ Sp(−∆ω) a.e. ω ∈ Ω.

We shall use the assumptions of Lemma 3.3 as well as assume that for each λ0 > 0 there exists Mλ0
> 0

such that for a.e. ω ∈ Ω the following implication holds:

−∆u = λu, u ∈W 1,2
0 (Ok

ω), for some k ∈ N, λ ≤ λ0 =⇒ ‖u‖L∞(Ok
ω) ≤Mλ0

‖u‖L2(Ok
ω). (31)

Notice that, by regularity theory, the above condition is satisfied for a fixed ω ∈ Ω and k ∈ N, whenever the
boundary ∂Ok

ω is sufficiently regular. In what follows we use a sequence {ϕ̃k}k∈N ⊂ C∞
0 ([0, c2 + 1]n) that is

dense in W 1,2
0 ([0, c2 + 1]n), where the constant c2 is defined in Assumption 3.1.

We will now define a sequence of random variables that is invariant for all ω ∈ O whose realisation is
such that the shape that contains the origin is the same. For q = (q1, . . . , qn) ∈ Qn define the set

Oq :=
{
ω ∈ O : there exists k0 ∈ N such that q ∈ Ok0

ω

}
.

Lemma 5.1. For every q ∈ Qn, Oq ⊂ Ω is measurable.

Proof. Notice that

ω ∈ Oq ⇐⇒ There exists a polygonal line that connects 0 and q and (32)

consists of a finite set of straight segments with rational endpoints

such that for all l ∈ Qn on this line one has Tlω ∈ O.

Since for each fixed q ∈ Qn there is a countable set of lines satisfying the property (32), the set Oq is
measurable.

We define the random variables

Di(ω) := inf{qi : ω ∈ Oq}, ω ∈ Ω, i = 1, . . . , n.

Notice that Di = +∞ whenever ω /∈ O, and also, due to the assumption, −c2 ≤ Di ≤ 0 for a.e. ω ∈ O. We
denote by D the random vector

D := −(D1, . . . , Dn) +

(
1

2
, . . . ,

1

2

)
. (33)
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For a.e. ω ∈ O, m ∈ N we define the set

Dm
ω :=

{
x ∈ Rn : there exists k0 ∈ N such that x ∈ Ok0

ω and dist
(
x, ∂Ok0

ω

)
>

1

m

}
.

Furthermore, we introduce the set Uω ⊂ [0, c2 + 1]n, which is a translation of the set Ok0

ω containing the
origin:

Uω :=
{
x ∈ [0, c2 + 1]n : x−D ∈ Ok0

ω for k0 ∈ N such that 0 ∈ Ok0

ω

}
.

Finally, we define a characteristic function of the translation of the set Dm
ω and a measurable function of ω

taking values in W 1,2
0 ([0, c2 + 1]n)

χm(x, ω) := χDm
ω
(x−D), ϕk,m(x, ω) := ρ1/2m ∗

(
χm(x, ω)ϕ̃k(x)

)
. (34)

Notice that for a.e. ω ∈ O one has suppϕk,m(·, ω) ⊂ Uω.

Lemma 5.2. For every k,m ∈ N, the function ω 7→ ϕk,m(·, ω) taking values in W 1,2
0 ([0, c2 + 1]n) is

measurable with respect to the Borel σ-algebra on W 1,2
0 ([0, c2 + 1]n).

Proof. Firstly notice that
ω 7→ χm(·, ω)ϕ̃k(·), (35)

is a measurable mapping taking values in the set L2([0, c2 +1]n), with Borel σ-algebra. To check this notice
that for each q ∈ Qn the set

Bq :=
{
ω ∈ Ω : q ∈ Dm

ω

}
,

is measurable: the related proof is similar to that of Lemma 5.1. Further, for ψ ∈ C∞
0 (Rn) the norm

‖ψ−χmϕ̃k‖L2(Rn) is written as a limit of Riemann sums, and each Riemann sum can be written in terms of

a finite number of χBq and values of function ϕ̃k(·). Thus ω 7→ ‖ψ − χmϕ̃k‖L2(Rn) is measurable. Since the
topology in L2(Rn) is generated by the balls of the form B(ψ, r), where ψ ∈ C∞

0 (Rn) and r ∈ Q we have
that the mapping given by (35) is measurable. The final claim follows by using the fact that the convolution
is a continuous (and thus measurable) operator from L2 to W 1,2.

Notice that by construction {ϕk,m(·, ω)}k,m∈N ⊂ C∞
0 (Uω) is a dense subset of W 1,2

0 (Uω) for a.e. ω ∈ Ω
(see also the proof of Lemma 3.3). For 0 ≤ a ≤ b we introduce the following subset of O :

Ea,b :=
{
ω ∈ O : −∆

O
k0
ω

has an eigenvalue in [a, b] for k0 ∈ N such that 0 ∈ Ok0

ω

}
. (36)

For 0 ≤ a ≤ b and a.e. ω ∈ Ea,b we also define Sa,b,ω ⊂W 1,2
0 (Uω) as follows:

Sa,b,ω :=
{
ψ ∈W 1,2

0 (Uω) : ψ is an eigenfunction of −∆Uω whose eigenvalue is in [a, b]
}
.

Finally, for every r ∈ R and k,m ∈ N we define the random variable

Xk,m
r (ω) :=





∥∥−∆ϕk,m(·, ω)− rϕk,m(·, ω)
∥∥
W−1,2(Uω)∥∥ϕk,m(·, ω)

∥∥
L2(Uω)

if ϕk,m(·, ω) 6= 0,

+∞ otherwise.

(37)

Lemma 5.3. For every r ∈ R and k,m ∈ N, Xk,m
r is a measurable function.

Proof. We use Lemma 5.2 and the fact that −∆ is a continuous map from W 1,2 to W−1,2 and ‖ · ‖W−1,2(Uω)

is a measurable function, since

‖ψ(·, ω)‖W−1,2(Uω) := sup
k,m∈N

{
W−1,2(Uω)

〈
ψ(·, ω), ϕk,m(·, ω)

〉
W 1,2

0
(Uω)

‖ϕk,m(·, ω)‖W 1,2(Uω)
: ϕk,m(·, ω) 6= 0

}
.
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Lemma 5.4. For 0 ≤ a ≤ b, the set Ea,b is measurable.

Proof. The claim follows by observing that

Ea,b =
{
ω ∈ O : inf

k,m∈N,r∈Q∩[a,b]
Xk,m

r (ω) = 0
}
.

Now we are going to define a measurable mapping from O to the subspace Sa,b,ω. We set it to be an
L2-projection onto Sa,b,ω of a specially chosen function of x and ω. We need the following measurability
lemma.

Lemma 5.5. Assume that ω 7→ ϕ(·, ω) is a measurable function taking values in L2(Uω) for a.e. ω ∈ Ea,b.
Then the L2-distance ω 7→ distL2(Uω)

(
ϕ(·, ω), Sa,b,ω

)
, ω ∈ Ea,b, is a measurable map.

Proof. The claim follows from the formula

distL2(Uω)

(
ϕ(·, ω), Sa,b,ω

)
= lim sup

n→∞
inf

k,m∈N

{∥∥ϕk,m(·, ω)−ϕ(·, ω)
∥∥
L2(Uω)

: Xk,m
r (ω) <

1

n
for some r ∈ Q∩[a, b]

}
.

For 0 ≤ a ≤ b and ω ∈ Ea,b we define the measurable map ω 7→ ϕa,b(·, ω) as follows:

ϕa,b(·, ω) = ϕk0(ω),m0(ω)(·, ω),

where

k0(ω) := min
k∈N

{
k : distL2(Uω)

(
ϕk,m(·, ω), Sa,b,ω

)
6=
∥∥ϕk,m(·, ω)

∥∥
L2(Uω)

,

1

2
≤
∥∥ϕk,m(·, ω)

∥∥
L2(Uω)

≤ 1 for some m ∈ N

}
, (38)

and m0(ω) is the minimal value of m in (38) Notice that in this way for a.e. ω ∈ Ea,b the L2-projection of
ϕa,b(·, ω) on Sa,b,ω is not zero. We also define the random variable R : Ω → [0,+∞) in the following way:

R(ω) :=

{
dist

(
0, ∂Ok0

ω

)
if 0 ∈ Ok0

ω for some k0 ∈ N,

0 otherwise.

By invoking the measurability of Oq, q ∈ Qn, see Lemma 5.1, it is easily seen that R is indeed measurable.
Next, for 0 ≤ a ≤ b, l > 0 we define the random variable ψa,b,l : Ω → R by

ψa,b,l(ω) :=

{
lim supn→∞

ffl

B(D,min{l,R(ω)})
ϕk1(ω,n),m1(ω,n)(·, ω) if R(ω) > 0, ω ∈ Ea,b,

0 otherwise,

where, for all n ∈ N,

k1(ω, n) :=min
k∈N

{
k : Xk,m

r <
1

n
for some r ∈ Q ∩ [a, b],

∥∥ϕk,m(·, ω)− ϕa,b(·, ω)
∥∥
L2(Uω)

< distL2(Uω)

(
ϕa,b(·, ω), Sα,b,ω

)
+

1

n
for some m ∈ N

}
,
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m1(ω) is the corresponding minimal value1 of m, and B(D,min{l, R(ω)}) is the ball with the centre at D
and radius min{l, R(ω)}, see (5.1). We also define

ψa,b := lim sup
l−1∈N, l→0

ψa,b,l.

Notice that in this way ψa,b is the value at the origin (taking into account for ω ∈ O the relative position of
the origin with respect to the shape) of the (unique) L2-projection of ϕa,b onto Sa,b,ω. As a consequence of
(31), we have |ψa,b| ≤Mb. Notice that by construction ψa,b 6= 0 if P (Ea,b) > 0.

We are ready for the proof of main statement.

Theorem 5.6. Under Assumption 3.1, the assumption of Lemma 3.3 and (31), one has

⋃

n∈N

Sp
(
−∆On

ω

)
⊆ Sp(−∆ω) a.e. ω ∈ Ω.

Proof. We take l ≥ 0. There are two possibilities:

a. There exists ε > 0 such that El−ε,l+ε has zero probability. In this case we denote

ε0(l) := sup
ε>0

{
ε : P (El−ε,l+ε) = 0

}
.

b. For all ε > 0 the set El−ε,l+ε has positive probability.

In the case (a), by the continuity of probability, we conclude that P
(
E0

l−ε0(l),l+ε0(l)

)
= 0, where (cf. (36))

E0
a,b :=

{
ω ∈ O : −∆

O
k0
ω

has an eigenvalue in (a, b) for k0 ∈ N such that 0 ∈ Ok0

ω

}
.

By Lemma 2.4 and Corollary 4.9 we infer that

(
l − ε0(l), l + ε0(l)

)
⊆ C \

⋃

n∈N

Sp
(
−∆On

ω

)
⊆ C \ Sp(−∆ω) a.e. ω ∈ Ω.

In particular, we conclude that l /∈ Sp(−∆ω).
In the case (b) we construct a Weyl sequence showing that l ∈ Sp(−∆ω). To this end, we define

ψn :=
∥∥ψl−1/n,l+1/n

∥∥−1

L2(O)
ψl−1/n,l+1/n, n ∈ N.

Then, by the above construction and using Ergodic Theorem, one has

∥∥−∆ωψn − lψn

∥∥
L2(O)

≤
1

n
, n ∈ N.

It follows from the above that Sp(−∆ω) consists of exactly those l ∈ R that satisfy the property (b). The
set Sp(−∆ω) is closed, hence its complement is a countable union of open disjoint intervals. Every element
of such an interval (d1, d2) satisfies the property (a) with l = (d1 + d2)/2, ε0(l) = (d2 − d1)/2, and therefore
P (E0

d1,d2
) = 0. Using Lemma 2.4, we obtain

(d1, d2) ⊆ C \
⋃

n∈N

Sp
(
−∆On

ω

)
a.e. ω ∈ Ω.

The claim follows since there is only countable number of such intervals.

1The function ϕ
k,m(·, ω) is an “approximate eigenfunction” for −∆Uω , see (37).
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6 Convergence of spectrum

In our analysis we keep in mind the examples set in Section 7, for which it is shown that Sp(−∆ω) ⊆ Sp(A).
In the present section we assume that this holds, as well as the conclusion of Theorem 5.6, i.e.

Sp(−∆ω) =
⋃

n∈N

Sp
(
−∆On

ω

)
. (39)

We are interested in approximating the spectra SpAε(ω) of the operators Aε(ω) (see Section 3) by the
spectrum SpA of the limit operator. We claim that SpAε(ω) → SpA for a.e. ω ∈ Ω, where the convergence
is understood in the Hausdorff sense:

a. For all λ ∈ SpA there are λε ∈ SpAε(ω) such that λε → λ.

b. If λe ∈ SpAε(ω) and λε → λ, then λ ∈ SpA.

We prove this claim by adapting the argument of [Zh05]. First, we introduce the notion of strong resolvent
convergence.

Definition 6.1. Let Aε(ω) and A be the operators acting on L2(S) and on H ⊂ L2(S × Ω), respectively.

We say that Aε(ω) strongly two-scale resolvent converge to A and write Aε 2
−→ A if

fε
2
−→ f, f ∈ L2(S × Ω) =⇒

(
Aε(ω) + I

)−1
fε

2
−→ (A+ I)−1f for a.e. ω ∈ Ω.

It can be shown that the property (a) is satisfied if we have strong two-scale resolvent convergence (see
the proof of [Zh05, Proposition 2.2]). Theorem 4.4 shows that the following implication holds:

fε
2
−⇀ f, f ∈ L2(S × Ω) =⇒

(
Aε(ω) + I

)−1
fε

2
−⇀ (A+ I)−1f.

It can be shown that this is equivalent to strong two-scale resolvent convergence (see [Zh05, Proposition 2.8])
and thus the property (a) is satisfied.

In order to prove (b), we start from the eigenvalue problem of the operator Aε(ω) (it has a compact
resolvent and its spectrum is discrete), i.e., of the solutions to

Aε(ω)uε = sεuε,

ˆ

S

(uε)2 = 1. (40)

If we have that sε → s and uε
2
−⇀ u, then we would also have Au = su. However, the problem would be

if u = 0, because then s /∈ SpA. The next lemma tells us if s /∈ Sp(−∆ω) then necessarily the sequence
of eigenvalues are compact with respect to strong two-scale converegence and thus s belongs to the point
spectrum of the operator A, since then necessarily u 6= 0.

Theorem 6.2. Suppose that (39) holds and that for each ε > 0, (sε, uε) satisfy (40). If sε → s /∈ Sp(−∆ω),
then for a.e. ω ∈ Ω the sequence (uε) is compact in the sense of strong two-scale convergence.

Proof. uε ∈W 1,2
0 (Sε

1) satisfies
ˆ

Sε
1

A1∇u
ε · ∇v + ε2

ˆ

Sε
0

∇uε · ∇v = sε
ˆ

S

uεv ∀v ∈W 1,2
0 (S).

We use Assumption 3.1 and for each ε extend uε|Sε
0
, denoting the extensions by ũε. Notice that there exists

C > 0 such that
ũε ∈W 1,2

0 (S), ∆ũε = 0 on Sε
0 ‖ũε‖W 1,2(S) ≤ C. (41)

The difference zε := uε − ũε satisfies:

zε ∈W 1,2
0 (Sε

0), ε2
ˆ

Sε
0

∇zε · ∇v − sε
ˆ

Sε
0

zεv = sε
ˆ

Sε
0

ũεv ∀v ∈W 1,2
0 (Sε

0). (42)
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From the estimate (41) we see that (ũε) is weakly compact in W 1,2
0 (S) and thus there exists ũ ∈ W 1,2

0 (S)

such that ũε ⇀ ũ, which immediately implies sεχ
ε
0ũ

ε 2
−→ sũχO(ω). Furthermore, as a consequence of (27),

(29) and (39), the following estimate holds for some C > 0 :

ε‖∇zε‖L2(Sε
0
) + ‖zε‖L2(Sε

0
) ≤ C.

Therefore, from Proposition 4.7 and Remark 4.8 we conclude that zε
2
−⇀ z ∈ L2(S,W 1,2

0 (O)) where the limit
z satisfies

ˆ

O

∇ωz(x, ·) · ∇ωv − s

ˆ

O

z(x, ·)v = s

ˆ

O

ũ(x)v ∀v ∈W 1,2
0 (O). (43)

We also consider the problem

mε ∈W 1,2
0 (Sε

0), ε2
ˆ

Sε
0

∇mε · ∇v − sε
ˆ

Sε
0

mεv = sε
ˆ

Sε
0

zεv ∀v ∈W 1,2
0 (Sε

0). (44)

In the same way as before we conclude that for some C > 0:

ε‖∇mε‖L2(Sε
0
) + ‖mε‖L2(Sε

0
) ≤ C.

Analogously, we conclude that mε 2
−⇀m ∈ L2(S,W 1,2

0 (O)) which satisfies

ˆ

O

∇ωm(x, ·) · ∇ωv − s

ˆ

O

m(x, ·)v = s

ˆ

O

z(x, ·)v ∀v ∈W 1,2
0 (O). (45)

By testing (42) with mε and (44) with zε we conclude

lim
ε→0

ˆ

Sε
0

(zε)2 = lim
ε→0

ˆ

Sε
0

ũεmε =

ˆ

S×Ω

ũm.

Finally, by testing (43) with m(x, ·) and (45) with z(x, ·) and integrating over S we conclude

ˆ

S×Ω

ũm =

ˆ

S×Ω

z2,

which completes the proof.

7 Spectrum of the limit operator: examples

This section is devoted to the description of the spectrum of the limit operator. Since it crucially depends on
the intrinsic properties of the microscopic part of the operator and the properties of the probability space, it
does not seem feasible (at least at the current stage of research in this area) to provide a characterisation of
the spectrum in a general setting. We shall consider several interesting, from the point of view of applications,
examples of probability spaces and configurations of soft inclusions. The general example of a finite number
of shapes of randomly varying size is described in Section 7.1. Then we consider the case of a single shape
of fixed size in Section 7.2, and the case of a single shape of randomly varying size in Section 7.3, for which
we provide the full description of the spectrum of the limit operator with the proofs. The characterisation
of the spectrum in the general case of Section 7.1 is analogous to the case of a single shape considered in
Section 7.3.
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7.1 The setting of finite number of shapes of varying size

Let (ω̃j)j∈Zn be a sequence of independent and identically distributed random vectors taking values in

Nl
0 × [r1, r2], where 0 < r1 ≤ r2 ≤ 1 and (Ω̃, F̃ , P̃ ) is an appropriate probability space. We also assume that

we have a finite number of shapes Yk ⊂ Y, k ∈ Nl
0, that represent the inclusions, where the first and the

second components of ω̃j = (kj , rj) model the shape and the size, respectively. We also set Y0 = ∅. On Ω̃

there is a natural shift T̃z(ω̃j) = (ω̃j−z), which is ergodic. We next state the discrete analogue of Lemma
2.4.

Lemma 7.1. Assume that Ω̃0 ⊆ Ω̃ is a set of full measure. Then there exists a subset Ω̃1 ⊆ Ω̃0 of full
measure such that for each ω̃ ∈ Ω̃1, z ∈ Zn we have T̃zω̃ ∈ Ω̃0.

We treat Y := [0, 1)n as a probability space with Lebesgue measure dy and the standard algebra L of
Lebesgue measurable sets, and define

Ω = Ω̃× Y, F = F̃ × L, P = P̃ × dy.

On Ω we define a dynamical system Tx(ω̃, y) = (T̃[x+y]ω̃, x + y − [x + y]). By O ⊆ Ω we define the set

O = {(ω̃, y) : ω̃0 ∈ Nl
0 × [r1, r2], y ∈ r0Yk0

}. It is easily seen that O is measurable. For a fixed ω = (ω̃, y),
the realisation Oω consists of the inclusions rjYkj + j − y, j ∈ Zn. Next, we describe the generators Di,
i = 1, 2, . . . , n, in the present example. Taking f ∈ W 1,2(Ω) and using the above lemma, note that there

exists a subset of full measure Ω̃1 ⊆ Ω̃ such that for all ω̃ ∈ Ω̃1 and z ∈ Zn we have f(T̃zω̃, ·) ∈ W 1,2(Y ).

It is clear that for x ∈ Y + z − y one has f(x, ω) := f(Txω) = f(T̃zω̃, x − (z − y)). Using this fact and the
statement following (5), we infer that

W 1,2(Ω) =
{
f ∈ L2(Ω̃× Y ) : for a.e. ω̃ ∈ Ω̃, f(ω̃, ·) ∈W 1,2(Y ),

f(T̃z+ek ω̃, ·)
∣∣
{yk=0}

= f(T̃zω̃, ·)
∣∣
{yk=1}

∀z ∈ Zn, k ∈ {1, . . . , n}
}
.

and
(Dif)(ω̃, y) = ∂yif(ω̃, y), i = 1, 2, . . . , n. (46)

7.2 Simple example

In this section we set l = 0, r1 = r2 = 1, so that Nl
0 × [r1, r2] = {0, 1}, and, by a standard procedure, see

e.g. [Sh96], identify the elements of the probability space Ω̃ with sequences ω̃ = (ω̃z)z∈Zn whose components
ω̃z take values in the two-element set {0, 1}. Let Y1 be an open subset of Y whose closure is contained in
Y (“soft inclusion”) . The value 0 or 1 of ω̃z, z ∈ Zn, corresponds to the absence or the presence of the
inclusion in the “shifted cell” Y + z, respectively. We also set

O =
{
ω = (ω̃, y) : ω̃0 = 1, y ∈ Y1

}
⊆ Ω.

Then, for a given ω = (ω̃, y) ∈ Ω, the realisation Oω = {x : Tx(ω̃, y) ∈ O} is the union of the sets
(“inclusions”) Y1 + z − y over all z ∈ Zn such that ω̃z = 1. For this example the space W 1,2

0 (O) consists of
all functions of the form

v(ω) = v(ω̃, y) =

{
vω̃(y), (ω̃, y) ∈ O, where vω̃ ∈W 1,2

0 (Y1),

0 otherwise.
(47)

It is also important to understand how one applies the stochastic gradient. For a function v(ω) ∈W 1,2
0 (O) ⊆

L2(Ω) we have (see (46))

∇ωv =

{
∇yvω̃(y), (ω̃, y) ∈ O, where vω̃ ∈W 1,2

0 (Y1),

0 otherwise.
(48)
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Consider formally the spectral problem for the limit operator:
ˆ

S

Ahom
1 ∇u0 · ∇ϕ0 = λ

ˆ

S

(
u0 + 〈u1〉

)
ϕ0 ∀ϕ0 ∈W 1,2

0 (S), (49)

ˆ

O

∇ωu1(x, ·)∇ωϕ1 = λ

ˆ

O

(
u0(x) + u1(x, ·)

)
ϕ1 ∀ϕ1 ∈W 1,2

0 (O). (50)

We write the solution to the “microscopic” equation (50) in the form u1(x, ω) = λu0(x)v(ω), where (recall
Remark 4.5)

v ∈W 1,2
0 (O), −∆ωv = λv + 1. (51)

In other words, v is given by (47) with vω̃(y) satisfying

−∆yvω̃(y) = λvω̃(y) + 1, y ∈ Y1, (52)

whenever ω̃ such that ω̃0 = 1 and vω̃ = 0 otherwise.
We label the eigenvalues of the operator in (52) in the increasing order, where we repeat multiple eigen-

values, so that νj , j ∈ N, and ν′j , j ∈ N, are, respectively, the eigenvalues whose eigenfunctions ϕj have
non-zero integral over Y1 and the eigenvalues whose eigenfunctions ϕ′

j have zero integral over Y1. Following
[Zh00], we write the solution to (52) via the spectral decomposition

vω̃ =

∞∑

j=1

(νj − λ)−1

(
ˆ

Y1

ϕj

)
ϕj , (53)

and thereby

〈v〉Ω = P
(
{ω̃ : ω̃0 = 1}

) ˆ

Y1

vω̃dy = P
(
{ω̃ : ω̃0 = 1}

) ∞∑

j=1

(νj − λ)−1

(
ˆ

Y1

ϕj

)2

. (54)

Substituting the obtained representation for u1 into the “macroscopic” equation (49) yields

− divAhom
1 ∇u0 = β(λ)u0, u0 ∈W 1,2

0 (S), (55)

where

β(λ) := λ
(
1 + λ〈v〉Ω

)
= λ+ λ2P

(
{ω̃ : ω̃0 = 1}

) ∞∑

j=1

(νj − λ)−1

(
ˆ

Y1

ϕj

)2

(56)

is a stochastic version of the “Zhikov function” β in [Zh00].
Assume for the moment that S = Rn. Then the intervals where β(λ) ≥ 0 are the “spectral bands” of

A, and additionally a Bloch-type spectrum is given by {ν′j : j ∈ N}. The set {λ : β(λ) < 0} \ {ν′j : j ∈ N}
corresponds to the gaps in the spectrum of A.

In the setting of this paper, namely, for a bounded domain S ⊂ Rn, instead of each spectral band
β(λ) ≥ 0 lying to the left of νj we have a “band” of discrete spectrum: a countable set of eigenvalues

{
λj,k : νj−1 < λj,k < νj , β(λj,k) = µk

}
, (57)

with the accumulation point at the right end νj of each band, where µk are the eigenvalues of the operator
−divAhom

1 ∇ defined by the form
ˆ

S

Ahom
1 ∇u · ∇v, u, v ∈W 1,2

0 (S). (58)

The Bloch-type spectrum of A consists of eigenvalues ν′j of infinite multiplicity with eigenfunctions of the

form f(x)v′j(ω) with f ∈ L2(S) and

v′j(ω) = v′j(ω̃, y) =

{
ϕ′
j(y), (ω̃, y) ∈ O,

0 otherwise.
(59)
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Summarising, the spectrum of A is given by

σ(A) =
(⋃

j

{
ν′j , νj

})
∪
{
λj,k : j, k ∈ N

}
. (60)

7.3 More advanced example

Here we allow the inclusions to randomly change size, so that l = 0, 0 < r1 < r2 < 1. By analogy with the
previous section, we assume that Ω̃ consists of sequences ω̃ = (ω̃z)z∈Zn such that ω̃z ∈ {0} ∪ [r1, r2], z ∈ Zn.

We also assume that the restriction to to [r1, r2] of the probability measure on Ω̃ is absolutely continuous
with respect to Lebesgue measure. As before, consider Y1 ⊂ Y, and denote by Y1,r := r(Y1 − yc) + yc, where
yc is the centre of Y , the “scaled inclusion”, requiring that Y1,r2 ⊂ Y , in order for the extension property in
Assumption 3.1 to hold. The values 0 or r ∈ [r1, r2] of ω̃z correspond to the absence of an inclusion or the
presence of the inclusion Y1,r in the cell Y + z, respectively. Furthermore, define O := {ω = (ω̃, y) : y ∈
Y1,ω̃0

} ⊆ Ω. Then a realisation Oω = {x : Tx(ω̃, y) ∈ O} is the union of the inclusions Y1,ω̃z
+ z − y for all

z ∈ Zn, where in the case ω̃z = 0 we set Y1,ω̃z
= ∅. The space W 1,2

0 (O) consists of functions of the form

v(ω) = v(ω̃, y) =

{
vω̃(y), (ω̃, y) ∈ O, where vω̃ ∈W 1,2

0 (Y1,ω̃0
),

0, otherwise.
(61)

Consider the spectral problem for u1, namely
ˆ

O

∇ωu1(x, ·)∇ωϕ = λ

ˆ

O

(
u0(x) + u1(x, ·)

)
ϕ ∀ϕ ∈W 1,2

0 (Ω),

and separate the variables, as in Section 7.2: u1(x, ω) = λu0(x)v(ω), where the function v satisfies
ˆ

O

∇ωv · ∇ωϕ =

ˆ

O

(1 + λv)ϕ ∀ϕ ∈W 1,2
0 (Ω). (62)

The stochastic gradient is given by

∇ωv =

{
∇yvω̃(y), (ω̃, y) ∈ O, where vω̃ ∈W 1,2

0 (Y1,ω̃0
),

0, otherwise,

and therefore the problem (62) is equivalent to
ˆ

{ω̃0∈[r1,r2]}

ˆ

Y1,ω̃0

∇yv∇yϕdy dP (ω̃) =

ˆ

{ω̃0∈[r1,r2]}

ˆ

Y1,ω̃0

(1 + λv)ϕdy dP (ω̃). (63)

For each r ∈ [r1, r2], the eigenvalues νj,r, ν
′
j,r and (orthonormal) eigenfunctions ϕj,r, ϕ

′
j,r of the operator

−∆y acting in W 1,2
0 (Y1,r) are obtained by scaling the eigenvalues and eigenfunctions of −∆y acting in

W 1,2
0 (Y1), in particular, νj,r = r−2νj , ν

′
j,r = r−2ν′j . Therefore, the formula (53) with νj , ϕj replaced by νj,r,

ϕj,r gives the solution to

−∆yvr = 1 + λvr, vr ∈W 1,2
0 (Y1,r). (64)

If 0 < r1 ≤ r2 and the set {νj,r : j ∈ N, r ∈ [r1, r2]} has gaps, then for λ ∈ R \
{
νj,r : j ∈ N, r ∈ [r1, r2]

}

the solution to (63) is given by (61), where the functions vω̃(y) solve (64) with r = ω̃0. Substituting it into
the spectral problem for (49) yields the problem (55) with the Zhikov-type function β given by (cf. (56))

β(λ) := λ
(
1 + λ〈v〉Ω

)
= λ + λ2

ˆ

{ω̃0∈[r1,r2]}

∞∑

j=1

(
νj,ω̃0

− λ
)−1
(
ˆ

Y1,ω̃0

ϕj,ω̃0

)2

dP (ω̃). (65)

The integral in (65) is well defined for λ ∈ R\{νj,r : j ∈ N, r ∈ [r1, r2]}, and the description of the spectrum
on the intervals where β(λ) > 0 follows Section 7.2.
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Theorem 7.2. Under the assumptions of the current subsection, the spectrum of A is given by

σ(A) =

( ⋃

j∈N, r∈[r1,r2]

{
νj,r, ν

′
j,r

}
)

∪
{
λj,k : j, k ∈ N

}

where for each k, the values λj,k are solutions to β(λj,k) = µk, see (57). The point spectrum of the operator
A is given by

{
λj,k : j, k ∈ N

}
.

It is clear that if the set
⋃

j∈N, r∈[r1,r2]
{νj,r, ν

′
j,r} has gaps, then σ(A) also has gaps. We are going to

prove the theorem in several steps formulated in the following lemmas. We begin by studying the spectrum
of the “microscopic” part of the limit operator.

Lemma 7.3. The spectrum of the operator −∆ω (see (30)) is given by

σ(−∆ω) =
⋃

j∈N, r∈[r1,r2]

{
νj,r, ν

′
j,r

}

and does not contain eigenvalues of −∆ω.

Proof. Let λ = νj0,r0 for some j0 ∈ N, r0 ∈ [r1, r2], and assume that v ∈ W 1,2
0 (O) is an eigenfunction

corresponding to λ, i.e. −∆ωv = λv. (For λ = ν′j0,r0 argument is similar.) Then v is of the form (61), where
−∆vω̃ = λvω̃ in Y1,ω̃0

, whenever ω̃0 ∈ [r1, r2]. But λ is only an eigenvalue of the operator −∆ acting in

W 1,2
0 (Y1,ω̃0

) if ω̃0 = r0, hence

v(ω) = v(ω̃, y) =

{
ϕj0,r0(y), ω̃0 = r0, y ∈ Y1,r0 ,

0 otherwise.
(66)

It remains to observe that {ω̃0 = r0, y ∈ Y1,r0} is a set of measure zero in Ω and hence ‖v‖L2(Ω) = 0. The
second claim of the lemma follows.

Now we show that λ ∈ σ(−∆ω) by constructing a Weyl sequence. Without loss of generality we can
assume that r0 ∈ (r1, r2). For small enough δ > 0 we choose an L2-function wδ = wδ(r) such that suppwδ ⊆
(r0 − δ, r0 + δ) and ‖wδ‖L2(r0−δ,r0+δ) = 1, e.g. we can choose wδ to be equal to a constant proportional to

δ−1/2 on (r0 − δ, r0 + δ). Consider the sequence

vδ(ω) = vδ(ω̃, y) =

{
wδ(ω̃0)ϕj0,ω̃0

(y), (ω̃, y) ∈ O,

0 otherwise.

We have vδ ∈W 1,2
0 (O), ‖vδ‖L2(Ω) = 1 and

−∆ωvδ(ω, y) = −wδ(ω̃0)∆ϕj0,ω̃0
(y) = νj0,ω̃0

wδ(ω̃0)ϕj0,ω̃0
(y),

hence

∥∥−∆ωvδ − λvδ
∥∥2
L2(O)

=

ˆ

{ω̃0∈[r1,r2]}

ˆ

Y1,ω̃0

(
(νj0,ω̃0

− νj0,r0)wδ(ω̃0)ϕj0,ω̃0
(y)
)2
dy dP̃ (ω̃) → 0, δ → 0.

It follows that vδ is a Weyl sequence for λ = νj0,r0 .
It remains to prove that λ is in the resolvent set whenever λ /∈

⋃
j∈N, r∈[r1,r2]

{νj,r, ν
′
j,r} . Assume the

contrary and let f ∈ L2(O), then the resolvent equation −∆ωv−λv = f has a unique solution given by (61)
with vω̃ solving −∆vω̃(y)− λvω̃(y) = f(ω̃, y), y ∈ Y1,ω̃0

. Moreover, since

d := dist

(
λ,

⋃

j∈N, r∈[r1,r2]

{
νj,r, ν

′
j,r

})
> 0,

we have ‖vω̃‖L2(Y1,ω̃) ≤ d−1‖f(ω̃, ·)‖L2(Y1,ω̃0
), and it follows immediately that ‖v‖L2(O) ≤ d−1‖f‖L2(O), which

concludes the proof.
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Next, we focus on the spectrum of A.

Lemma 7.4. The inclusion σ(−∆ω) ⊂ σ(A) holds.

Proof. The proof of the inclusion
{
ν′j,r : j ∈ N, r ∈ [r1, r2]

}
⊂ σ(A) repeats the related part of the proof of

the Lemma 7.3. Namely, for λ = ν′j0,r0 , j0 ∈ N, r0 ∈ (r1, r2), we define a Weyl sequence uδ := uδ0 + uδ1 ∈ V,

where uδ0 ≡ 0 and uδ1 is given by uδ1(x, ω) := f(x)vδ(ω), with an arbitrary fixed f ∈ L2(S) and vδ defined as
in Lemma 7.3.

In order to show that
{
νj,r : j ∈ N, r ∈ [r1, r2]

}
⊂ σ(A), suppose that λ = νj0,r0 for some j0 ∈ N and

r0 ∈ (r1, r2). Assume, to the contrary, that there exists a bounded resolvent (A − λ)−1, i.e. the system
(18)–(19) has a unique solution for all f ∈ L2(S × Ω). For f = f(x) ∈ L2(S) the second equation reads

ˆ

{ω̃0∈[r1,r2]}

ˆ

Y1,ω̃0

(−∆yu1 − λu1)ϕ1 dy dP (ω̃) = (f + λu0)

ˆ

{ω̃0∈[r1,r2]}

ˆ

Y1,ω̃0

ϕ1 dy dP̃ (ω̃).

Then u1 must necessary be of the form u1 = (f + λu0)v, where v is of the form (61) and −∆yvω̃ = λvω̃ + 1
in Y1,ω̃0

, i.e.

vω̃ =

∞∑

j=1

(νj,ω̃0
− λ)−1

(
ˆ

Y1,ω̃0

ϕj,ω̃0

)
ϕj,ω̃0

. (67)

which clearly blows up as ω̃0 → r0. We show that the corresponding v is not an element of L2(O), leading
to a contradiction. Indeed, using the identity

νj0,ω̃0
− νj0,r0 = ω̃−2

0 νj0 − r−2
0 νj0 = r−2

0 ω̃−2
0 (r0 − ω̃0)(r0 + ω̃0)νj0 ,

one has

ˆ

{ω̃0∈[r1,r2]}

ˆ

Y1,ω̃0

|v|2 dy dP (ω̃) =

ˆ

{ω̃0∈[r1,r2]}

∞∑

j=1

(
νj,ω̃0

− νj0,r0
)−2
(
ˆ

Y1,ω̃0

ϕj,ω̃0

)2

dP (ω̃)

≥

ˆ

{ω̃0∈[r1,r2]}

(
νj,ω̃0

− νj0,r0
)−2
(
ˆ

Y1,ω̃0

ϕj,ω̃0

)2

dP (ω̃) ≥ C

ˆ

{ω̃0∈[r1,r2]}

|ω̃0 − r0|
−2 dP (ω̃),

where the last integral diverges.

Lemma 7.5. If β(λ) = µk for some k ∈ N then λ is an eigenvalue of A.

Proof. Let β(λ) = µk, and denote by ψk ∈ W 1,2
0 (S) be the corresponding eigenfunction of −divAhom

1 ∇.
Since λ /∈ {νj,r : j, r ∈ N}, the problem

v ∈W 1,2
0 (O), −∆ωv = λv + 1,

has a solution given by (61), (67). Therefore u = ψk+λψkv is the eigenfunction of A corresponding to λ.

Lemma 7.6. A point λ belongs to the resolvent set of A if λ /∈ σ(−∆ω) and β(λ) /∈ σ(−divAhom
1 ∇), i.e.

β(λ) < 0 or β(λ) ≥ 0 and β(λ) 6= µk, k ∈ N.

Proof. We claim that the problem (18)–(19) has bounded resolvent. Indeed, suppose that f ∈ L2(S × Ω)
and write (19) in the form

−∆ωu1 − λu1 = λu0 + f.

Since λ is not in the spectrum of −∆ω, the latter has a bounded resolvent at λ and u1 = λu0v + g, where
v = (−∆ω − λ)−11 is as in (61) and g = g(x, ω) = (−∆ω − λ)−1f(x, ω), x ∈ S. In particular,

‖v‖L2(O) ≤ dist
(
λ, σ(−∆ω)

)−1
‖1‖L2(O),

∥∥g(x, ·)
∥∥
L2(O)

≤ dist
(
λ, σ(−∆ω)

)−1∥∥f(x, ·)
∥∥
L2(Ω)

.

22



Substituting the expression for u1 in (18) we obtain

−divAhom
1 ∇u0 − β(λ)u0 = 〈f + λg〉.

For β(λ) /∈ σ(−divAhom
1 ∇) the operator −divAhom

1 ∇− β(λ) is invertible and

‖u0‖L2(S) ≤ dist
(
β(λ), σ

(
−divAhom

1 ∇
))−1∥∥〈f + λg〉

∥∥
L2(S)

≤ dist
(
β(λ), σ

(
−divAhom

1 ∇
))−1(

‖f‖L2(S×Ω) + |λ|‖g‖L2(S×O)

)
,

from which the claim follows.

Proposition 7.7. The set σ(−∆ω) \
{
λj,k : j, k ∈ N

}
does not contain eigenvalues of the operator A.

Proof. Assume that λ = νj0,r0 , for some j0 ∈ N and r0 ∈ [r1, r2], is an eigenvalue of A, i.e. there exists
u = u0 + u1 ∈ V such that

− divAhom
1 ∇u0 = λ

(
u0 + 〈u1〉O

)
, (68)

−∆ωu1(x, ·) = λ
(
u0(x) + u1(x, ·)

)
.

Suppose that u0(x) 6= 0 for some x ∈ S, then u1(x, ·) = λu0(x)v(·), where v solves

−∆ωv = λv + 1. (69)

Arguing as for the second inclusion of Lemma 7.4, we see that (69) has no L2-solution for the given λ. It
follows that u0 = 0 and therefore u1(x, ·) is an eigenfunction of −∆ω, which cannot be true by Lemma 7.3.

Now we assume that λ = ν′j0,r0 . Arguing as above, for u0(x) 6= 0 we have u1(x, ·) = λu0(x)v(·), where
v solves (69). The solution exists and is given by (61), (67). Substituting u1 into (68) we see that u0 must
satisfy −divAhom

1 ∇u0 = β(λ)u0, which cannot be true since β(λ) /∈ σ
(
−divAhom

1 ∇
)
.

Finally, if u0 = 0, then we argue as above for the case λ = νj0,r0 , again arriving at a contradiction.

This completes the proof of Theorem 7.2.

Acknowledgments

KC is grateful for the support of the Engineering and Physical Sciences Research Council: Grant EP/L018802/2
“Mathematical foundations of metamaterials: homogenisation, dissipation and operator theory”. IV has been
supported by the Croatian Science Foundation under Grant agreement No. 9477 (MAMPITCoStruFl).

References

[AK81] M. A. Ackoglu, U. Krengel. Ergodic theorems for superadditive processes. J. Reine Angew.
Math. 323, 53–67 (1981).

[All92] G. Allaire. Homogenization and two-scale convergence. SIAM J. Math. Anal., 23(6), 1482–1518
(1992).

[Bel17] M. Bellieud. Homogenization of stratified elastic composites with high contrast. SIAM Journal
Math. Anal., 49(4), 2615–2665 (2017).
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