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Abstract
The j th divisor function d j , which counts the ordered factorisations of a positive
integer into j positive integer factors, is a very well-known multiplicative arithmetic
function. However, the non-multiplicative j th non-trivial divisor function c j , which
counts the ordered factorisations of a positive integer into j factors each of which
is greater than or equal to 2, is rather less well studied. Additionally, we consider
the associated divisor function c(r)

j , for r ≥ 0, whose definition is motivated by the
sum-over divisors recurrence for d j . We give an overview of properties of d j , c j
and c(r)

j , specifically regarding their Dirichlet series and generating functions as well
as representations in terms of binomial coefficient sums and hypergeometric series.
Notinggeneral inequalities between the three types of divisor function,we thenobserve
how their ratios can be expressed as binomial coefficient sums and hypergeometric
series, and find explicit Dirichlet series and Euler products for some of these. As an
illustrative application of the non-trivial and associated divisor functions,we showhow
they can be used to count principal reversible square matrices of the type considered
by Ollerenshaw and Brée and so sum-and-distance systems of integers.
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1 Introduction

The j th divisor function d j , which counts the ordered factorisations of a positive
integer into j positive integer factors, is a very well-known arithmetic function. In par-
ticular, d2(n)—sometimes called the divisor function—counts the number of ordered
pairs of positive integers whose product is n, and therefore, considering only the first
factor in each pair, also counts the number of divisors of n (see papers 8 and 15 of [11]
and p. 10 of [2]). The divisor function lies at the heart of a number of open number
theoretical problems, e.g. the additive divisor problem of finding the asymptotic of

∑

n≤x

d j (n) d j (n + h) (1)

for large x , which is notoriously difficult if j ≥ 3, see e.g. [1,8], and, for j = 3, [7].
In the present paper, we consider the rather less well-studied j th non-trivial divisor

function c j , which counts the ordered proper factorisations of a positive integer into
j factors, each of which is greater than or equal to 2. While d j (n), for given n, is
obviously monotone increasing in j , since factors of 1 can be freely introduced, c j (n)

will shrink back to 0 as j gets too large, and indeed c j (n) = 0 if n < 2 j .

Additionally, we define the associated divisor function c(r)
j , for r ∈ N0, by

c(0)
j = c j , c(r)

j (n) =
∑

m|n
c(r−1)
j (m) (n, r ∈ N).

This definition is motivated by the sum-over divisors recurrence (3) for d j .
The paper is organised as follows. In Sect. 2, after reviewing properties of d j ,

we proceed to study analogous properties of c j , specifically regarding its associated
Dirichlet series and its representation in terms of binomial coefficient sums and hyper-
geometric series. A major complication in comparison to d j arises from the fact that
c j is not multiplicative. We also provide formulae expressing c j in terms of d j and

vice versa. We then introduce the associated divisor functions c(r)
j . Noting general

inequalities between the three types of divisor function in Sect. 3, we observe how
their ratios can be expressed as binomial coefficient sums and hypergeometric series,
and find explicit Dirichlet series and Euler products for some of these. As an illustra-
tive application of the non-trivial and associated divisor functions, we show in Sect. 4
how they can be used to count principal reversible squares [10] and sum-and-distance
systems of integers.

Throughout the paper, we use the notationsN = {1, 2, 3, . . .},N0 = N ∪ {0}. For
n having prime factorisation n = pa11 pa22 · · · patt , we also use the symbol Ω(n) =∑t

k=1 ak .

2 Basic properties of standard, non-trivial and associated divisor
functions

In view of the formula for the j-fold Dirichlet convolution of arithmetic functions
f1, f2, . . . , f j ,
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Some properties and applications of non-trivial divisor functions

( f1 ∗ f2 ∗ · · · ∗ f j )(n) =
∑

∏ j
k=1 nk=n

j∏

k=1

fk(nk) (n ∈ N), (2)

it is obvious that d j = 1∗ j , where 1 denotes the constant function and the convolution
power f ∗ j is (2) with f1 = · · · = f j = f . In particular, d j satisfies the sum-over-
divisors recurrence relation

d j+1(n) = (d j ∗ 1)(n) =
∑

m|n
d j (m) (n, j ∈ N) (3)

and has the Dirichlet series

∞∑

n=1

d j (n)

ns
= ζ(s) j .

These statements extend to the case j = 0 if we set d0 = e, where e is defined as

e(n) =
{
1 if n = 1
0 if n > 1

(n ∈ N).

The following explicit expression for d j (n) in terms of the prime factorisation of n
shows that d j is a multiplicative arithmetic function; however, it is not totally multi-
plicative, e.g. d3(20) = 18 �= 27 = d3(2)d3(10).

Lemma 1 Let p1, . . . , pt be distinct primes, t ∈ N. Then, for any j ∈ N,

d j (p
a1
1 pa22 . . . patt ) =

t∏

k=1

(
ak + j − 1

ak

)
(a1, . . . , at ∈ N0). (4)

Proof (by induction on j) For j = 1 the formula is trivial. Suppose j ∈ N is such that
(4) holds. Note that m|∏k

i=1 p
ai
i if and only if m = ∏k

i=1 p
ãi
i with 0 ≤ ãi ≤ ai for

all i ∈ {1, . . . , k}. Using multi-index notation, we can write the latter condition in the
form 0 ≤ ã ≤ a. By (3),

d j+1(p
a1
1 · · · pakk ) =

∑

0≤ã≤a

k∏

i=1

(
ãi + j − 1

ãi

)

=
k∏

i=1

ai∑

l=0

(
l + j − 1

l

)
=

k∏

i=1

(
ai + j

ai

)
,

using combinatorial identity (1.49) of [3] in the last step. 	
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Remark 1 We remark that there are other known Dirichlet series associated with d j

(see for example [5, Chap. XVII]), such as

ζ(s)3

ζ(2s)
=

∞∑

n=1

d2(n2)

ns
, and

ζ(s)4

ζ(2s)
=

∞∑

n=1

(d2(n))2

ns
,

both of which can be obtained from the more general calculation

ζ(s)r+2

ζ(2s)
=

∏

p

(1 − p−s)(1 + p−s)

(1 − p−s)(1 − p−s)r+1 =
∏

p

(1 + p−s)

∞∑

j=0

( j + r)!
j !r ! p−s j

=
∏

p

⎛

⎝1 +
∞∑

j=1

(
( j + r)!

j !r ! + ( j + r − 1)!
( j − 1)!r !

)
p−s j

⎞

⎠

=
∏

p

∞∑

j=0

(2 j + r)( j + r − 1)!
j !r ! p−s j =

∞∑

n=0

fr (n)

ns
,

where we use the Euler product for the zeta function and Newton’s inverse binomial
series in the first two steps, respectively, and fr is themultiplicative arithmetic function

fr (p
a1
1 pa22 . . . patt ) =

t∏

j=1

(2a j + r)(a j + r − 1)!
r !a j ! .

The non-trivial divisor function c j only counts ordered factorisations in which all
factors are greater than 1, so by formula (2) it can be expressed as the j-fold Dirichlet
convolution c j = (1 − e)∗ j . Hence it satisfies a slightly different sum-over-divisors
recurrence relation compared to (3),

c j+1(n) = (c j ∗ (1 − e))(n) =
∑

m|n
c j (m) (1 − e)

( n

m

)

=
∑

m|n,m<n

c j (m) (n, j ∈ N). (5)

As the Dirichlet series for 1 − e is ζ(s) − 1, the non-trivial divisor function c j has
the Dirichlet series

∞∑

n=1

c j (n)

ns
= (ζ(s) − 1) j .

These formulae extend to j = 0 when we set c0 = e (= d0).
We emphasise that c j , unlike d j , is not a multiplicative arithmetic function. For

example, (2, 5) = 1, and yet c2(10) = 2 �= 0 × 0 = c2(2)c2(5).
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In order to study the less symmetric multiplicative properties of c j , it is useful to
express it in terms of its multiplicative cousin d j . When j = 2, the non-trivial divisors
for any n are all the divisor except 1 and n, and hence c2(n) = d2(n)− 2 if n ≥ 2, and
c2(1) = d2(1) − 1 = 0. More generally, there is the following connection between
the divisor function and the non-trivial divisor function.

Lemma 2 For j ∈ N0,

c j =
j∑

i=0

(−1) j−i
(
j

i

)
di and d j =

j∑

i=0

(
j

i

)
ci .

Proof The first identity follows from applying the binomial theorem to the j-fold
Dirichlet convolution,

c j = (1 − e)∗ j =
j∑

k=0

(
j

k

)
1∗k ∗ (−e)∗( j−k),

and using the fact that e is the identity for the convolution product. The proof of the
second identity is analogous, starting from d j = ((1 − e) + e)∗ j . 	

We now derive a hypergeometric series for c j (n). The generalised hypergeometric
series has the form

k Fn(a1, a2, . . . , ak; b1, b2, . . . , bn; z) =
∞∑

m=0

am1 am2 · · · amk zm

bm1 bm2 · · · bmn m! ,

where am , with m ∈ N, is the Pochhammer symbol (rising factorial)

am =
m−1∏

j=0

(a + j);

in particular, 1m = m!, 2m = (m + 1)!, am = (a +m − 1)!/(a − 1)! if a ∈ N and, for
negative a, am = (−1)m (−a)!/(−a−m)! if−(a+m) ∈ N0. By the usual convention
on empty products, a0 = 1.

Theorem 1 Let j ∈ N and suppose n has the prime factorisation n = pa11 . . . pakk .
Then the value of the non-trivial j th divisor function at n has the hypergeometric
form

c j (p
a1
1 · · · pakk ) = (−1)1− j j k+1Fk

(
{ai + 1}ki=1, (1 − j); {1}k−1

i=1 , 2; 1
)

.
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Proof Starting from the right-hand side expression, we find

(−1)1− j j
∞∑

m=0

(∏k
i=1(ai + 1)m

)
(1 − j)m

(1m)k−1 2m m!

= (−1)1− j
j−1∑

m=0

j ( j − 1)! (−1)m

(m + 1)! ( j − m − 1)!
k∏

i=1

(ai + m)!
a!m!

=
j−1∑

m=0

(−1)m− j+1
(

j

m + 1

) k∏

i=1

(
ai + m

m

)

=
j−1∑

m=0

(−1)m− j+1
(

j

m + 1

)
dm+1(p

a1
1 · · · pakk ) = c j (p

a1
1 · · · pakk ),

by Lemmata 1 and 2. 	

In particular, for a prime power the above theorem gives

c j (p
a) = (−1)1− j j 2F1(a + 1, 1 − j; 2; 1) = (−1)1− j j

∞∑

m=0

(a + 1)m(1 − j)m

2m m! .

Finally, we note the following multiplication rule for prime powers.

Lemma 3 Let p be a prime and j, a, b ∈ N. Then

c j (p
a+b) =

j−1∑

k=0

(−1)k− j+1
(

j

k + 1

)
dk+1(p

b)
(b + k + 1)a

(b + 1)a
.

Proof By Lemma 1,

d j (pa+b)

d j (pb)
= (a + b + j − 1)! b! ( j − 1)!

(a + b)! ( j − 1)! (b + j − 1)! = (b + j)a

(b + 1)a
.

The statement now follows by combining this result with Lemma 2. 	

In analogy to the sum-over-divisors recurrence relation (3) for the divisor function

d j , we define the j th associated divisor function c(r)
j by the following recurrence.

Definition 1 Let j ∈ N. Then, for all non-negative integers r , the associated divisor
function c(r)

j is defined recursively by

c(0)
j (n) = c j (n), c(r)

j (n) =
∑

m|n
c(r−1)
j (m) = (c(r−1)

j ∗ 1)(n) (n ∈ N).
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This immediately gives the representation c(r)
j = (1−e)∗ j ∗1∗r . Thus, we can interpret

c(r)
j (n) as the number of ordered factorisations of n into j + r factors, the first j of

which are greater than 1. It follows that c(r)
j (n) = 0 for all r ∈ N if n < 2 j .

The Dirichlet series of the associated divisor function c(r)
j is

∞∑

n=1

c(r)
j (n)

ns
= ζ(s)r (ζ(s) − 1) j .

The following formulae representing the associated divisor functions in terms of the
usual divisor functions and in terms of the non-trivial divisor functions can be obtained
by applying the binomial theorem to the first convolution power in c(r)

j = (1−e)∗ j ∗1∗r

and to the second convolution power in c(r)
j = (1−e)∗ j ∗ ((1−e)+e)∗r , respectively.

Lemma 4 Let j ∈ N and r ∈ N0. Then

c(r)
j =

j∑

i=0

(−1) j−i
(
j

i

)
di+r , c(r)

j =
r∑

i=0

(
r

i

)
c j+i .

The following binomial form for the value of c(r)
j at prime powers is somewhat

analogous to Lemma 1, but note that the present function is not multiplicative.

Lemma 5 Let j, a ∈ N, r ∈ N0 and p a prime. Then

c(r)
j (pa) =

(
a + r − 1

j + r − 1

)
.

Proof From Lemmata 4 and 1, we find

c(r)
j (pa) =

j∑

i=0

(−1) j−i
(
j

i

)(
a + i + r − 1

a

)
=

(
a + r − 1

a − j

)
=

(
a + r − 1

j + r − 1

)

by combinatorial identity (3.47) of [3]. 	


We conclude this section with a remark on the generating functions for the different
types of divisor function considered above. If we denote the generating function of an
arithmetic function f by G f , so

G f (x) =
∞∑

n=1

f (n) xn
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for all x ∈ C for which the power series converges, then the following recursive
identities hold for j, r ∈ N0,

Gd j+1(x) =
∞∑

k=1

Gd j (x
k), Gc j+1(x) =

∞∑

k=1

Gc j (x
k),

Gc(r+1)
j (x) =

∞∑

k=1

Gc(r)
j (xk).

These follow from the observation that if f = g ∗ 1 for some arithmetic functions
f , g, then

G f (x) =
∞∑

n=1

∑

m|n
g(m) xn =

∞∑

k=1

∞∑

m=1

g(m) (xk)m, (6)

and if f = g ∗ (1 − e), then

G f (x) =
∞∑

n=1

∑

m|n,m<n

g(m) xn =
∞∑

k=2

∞∑

m=1

g(m) (xk)m . (7)

We note in passing that upon reversal of the order of the sums, Eqs. (6) and (7) also
yield

G f (x) =
∞∑

m=1

g(m)
xm

1 − xm
and G f (x) =

∞∑

m=1

g(m)
x2m

1 − xm
,

respectively, provided x �= 1; however, the right-hand side is then not of the form of
a generating function.

3 Ratios of divisor functions

The divisor function, non-trivial divisor function and associated divisor functions
satisfy the following ordering relations.

Lemma 6 For any j ∈ N and r ∈ N,

c(r−1)
j (n) ≤ c(r)

j (n);

in particular,

c j (n) ≤ c(r)
j (n) (n ∈ N).

Moreover,

c(r)
j (n) ≤ d j+r (n) (n ∈ N).
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Proof For the first statement, it is sufficient to note that n|n, so
c(r)
j (n) =

∑

m|n
c(r−1)
j (m) ≥ c(r−1)

j (n) (n ∈ N).

The final statement follows from the facts that 1 − e ≤ 1 and that the Dirichlet
convolution of non-negative functions is monotonic in each factor. 	

Lemma 6 shows that, for any r ∈ N0, the normalised divisor ratio function c(r)

j /d j+r

takes rational values between0 and1,with the zeros occurring exactlywhen j > Ω(n).
We have the following formulae for this function and the similar ratio c(r)

j /dr .

Theorem 2 Let j ∈ N and r ∈ N0, and suppose n ∈ N has prime factorisation
n = pa11 · · · patt . Then

c(r)
j (n)

d j+r (n)
=

j∑

i=0

(−1)i
(
j

i

) ( j+r−1
i

)t
∏t

k=1

(ak+ j+r−1
i

)

= t+1Ft ({1 − j − r}ti=1,− j; {1 − ai − j − r}ti=1; 1). (8)

Also, for r ≥ 1

c(r)
j (n)

dr (n)
=

j∑

i=0

(−1) j−i
(
j

i

)∏t
k=1

(ak+i+r−1
i

)

(i+r−1
i

)t

= (−1) j t+1Ft ({ak + r}tk=1,− j; {r}tk=1; 1). (9)

Proof By Lemmata 4 and 1, we have that

c(r)
j (n) =

j∑

i=0

(−1)i
(
j

i

)
d j+r−i (n) =

j∑

i=0

(−1)i
(
j

i

) t∏

k=1

(ak + j + r − 1 − i)!
( j + r − i − 1)! ak !

=
j∑

i=0

(−1)i
(
j

i

) t∏

k=1

( j+r−1
i

)(ak+ j+r−1
j+r−1

)

(ak+ j+r−1
i

)

=
(

t∏

k=1

(
ak + j + r − 1

j + r − 1

)) j∑

i=0

(−1)i
(
j

i

) ( j+r−1
i

)t
∏t

k=1

(ak+ j+r−1
i

)

= d j+r (n)

j∑

i=0

(−1)i
(
j

i

) ( j+r−1
i

)t
∏t

k=1

(ak+ j+r−1
i

) . (10)

To obtain the hypergeometric form, we note that

c(r)
j (n)

d j+r (n)
=

j∑

i=0

(− j)i

i !

(
( j+r−1)!

( j+r−1−i)!
)t

∏t
k=1

( j+r+ak−1)!
( j+r+ak−1−i)!

=
∞∑

i=0

(− j)i

i !

(
(−1)i (1 − j − r)i

)t

∏t
k=1(−1)i (1 − j − r − ak)i

= t+1Ft
({1 − j − r}tk=1,− j; {1 − ak − j − r}tk=1; 1

)
,
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establishing (8). For the proof of (9), we rewrite (10) in the form

c(r)
j (n) =

j∑

i=0

(−1) j−i
(
j

i

) t∏

k=1

(ak + i + r − 1)!
(i + r − 1)! ak !

=
(

t∏

k=1

(ak + r − 1)!
ak ! (r − 1)!

) j∑

i=0

(−1) j−i
(
j

i

)

×
t∏

k=1

(
(ak + r − 1 + i)!
(ak + r − 1)! i !

i ! (r − 1)!
(i + r − 1)!

)

and apply Lemma 1. For the hypergeometric form, we rewrite the last expression as

c(r)
j (n)

dr (n)
= (−1) j

j∑

i=0

(− j)i

i !
t∏

k=1

(ak + r)i

r i

and note as above that the sum can be extended to an infinite series since (− j)i = 0
if i > j . 	

Specifically for r = 0, the formula (8) of Theorem 2 gives

c j (n)

d j (n)
=

j∑

i=0

(−1)i
(
j

i

) ( j−1
i

)t
∏t

k=1

(ak+ j−1
i

)

= t+1Ft ({1 − j}ti=1,− j; {1 − ai − j}ti=1; 1)

if n has prime factorisation n = pa11 · · · patt .
Clearly these formulae simplify when n is a prime power. We note that in this case,

Lemmata 1 and 5 give

c j (pa)

d j (pa)
=

(a−1
a− j

)

(a+ j−1
a

) .

In the following, we give Dirichlet series for the ratio of divisor functions c j/d j for
j ∈ {1, 2, 3}, as well as corresponding Euler products. Note that the term n = 1 can
be omitted from the Dirichlet series, since c j (1) = 0 for all j ∈ N. For j = 1,

∞∑

n=2

c1(n)

d1(n)

1

ns
=

∞∑

n=2

1

ns
= ζ(s) − 1.

For j = 2, we have c2(n) = d2(n) − 2 for n ≥ 2, so the Dirichlet series for the ratio
of divisor functions can be written as
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∞∑

n=2

c2(n)

d2(n)

1

ns
=

∑

n=2

1

ns
− 2

∞∑

n=2

1

d2(n)ns

= 1 + ζ(s) − 2
∞∑

n=1

1

d2(n)ns
;

we note the Euler product for the Dirichlet series in the last term,
∞∑

n=1

1

d2(n) ns
=

∏

p prime

∞∑

j=0

1

d2(p j ) ps j
=

∏

p prime

∞∑

j=0

1

( j + 1) ps j

=
∏

p prime

(
ps log

(
1

1 − 1
ps

))
.

For j = 3, we have c3(n) = d3(n) − 3d2(n) + 3 for n ≥ 2, which gives the Dirichlet
series for the ratio of divisor functions

∞∑

n=2

c3(n)

d3(n)

1

ns
= ζ(s) − 1 − 3

∞∑

n=1

d2(n)

d3(n)

1

ns
+ 3

∞∑

n=1

1

d3(n)

1

ns
;

noting

d2(p j )

d3(p j )
= 2

j + 2
,

1

d3(p j )
= 2

( j + 1)( j + 2)
= 2

j + 1
− 2

j + 2
,

we find the Euler products
∞∑

n=1

d2(n)

d3(n)

1

ns
=

∏

p prime

∞∑

j=0

2

( j + 2) ps j
=

∏

p prime

∞∑

j=2

2p2s

j ps j

=
∏

p prime

2p2s
(
log

(
1

1 − 1
ps

)
− 1

ps

)

and
∞∑

n=1

1

d3(n)

1

ns
=

∏

p prime

∞∑

j=0

(
2

j + 1
− 2

j + 2

)
1

ps j

=
∏

p prime

⎛

⎝
∞∑

j=1

2ps

jps j
−

∞∑

j=2

2p2s

j ps j

⎞

⎠

=
∏

p prime

(
2ps log

1

1 − 1
ps

− 2p2s
(
log

1

1 − 1
ps

− 1

ps

))

=
∏

p prime

2p2s
(

1

ps
−

(
1 − 1

ps

)
log

1

1 − 1
ps

)
.
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4 Counting principal reversible squares

As an illustration for the use of the non-trivial and associated divisor functions, we
show how they can be used to count the different principal reversible squares of a
given size.

A reversible square matrix M = (
Mi, j

)
i, j∈Zn

∈ R
n×n is an n × n matrix with the

following symmetry properties (cf. [10], [9]),

(R) the row and column reversal symmetry

Mi, j + Mi,n+1− j = Mi,k + Mi,n+1−k,

Mi, j + Mn+1−i, j = Mk, j + Mn+1−k, j (i, j, k ∈ Zn),

(V) the vertex cross sum property Mi, j + Mk,l = Mi,l + Mk, j (i, j, k, l ∈ Zn).

Note that the index calculations are performed in the cyclic ring Zn := Z/nZ, and the
top left corner of the matrix has indices (1, 1) ∈ Z

2
n .

An n × n principal reversible square is a reversible square matrix M such that
{Mi, j | i, j ∈ Zn} = {1, 2, . . . , n2}, the entries in each row and each column appear
in increasing order, and M1, j = j ( j ∈ {1, 2}).

Definition 2 Let n, α ∈ N. The pair of tuples

((i1, i2, . . . , iα−1, iα), ( j1, j2, . . . , jα−1, jα)) ∈ (Nα)2

is called a divisor path set for n (of length α) if

i1|i2| . . . |iα−1|iα, 1 < i1 < i2 < · · · < iα−1 < iα = n,

and

j1| j2| . . . | jα−1| jα|n, 1 < j1 < j2 < · · · < jα−1 < jα ≤ n.

Theorem 3 Let n ∈ N. Then from any divisor path set for n, a unique n × n principal
reversible square can be constructed. Conversely, every n × n principal reversible
square arises from a unique divisor path set.

For the details of the construction and proof of Theorem 3, we refer the reader to Chap.
3 of [10]. In that book, a principal reversible square constructed from a divisor path
set of length α is said to have α − 1 progressive factors.

Alternatively, Theorem 3 and the construction can be obtained as a special case, for
a two-dimensional square array, of Theorem 9 of [6]; note that the ratios of consecutive
divisors in the divisor path set correspond to the factors appearing in the joint ordered
factorisation defined in [6]. Specifically, the above divisor path set corresponds to the
joint ordered factorisation
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((2, j1), (1, i1), (2, j2/ j1), (1, i2/i1), (2, j3/ j2), . . . ,

(2, jα/ jα−1), (1, iα/iα−1), (2, n/ jα))

of (n, n), with the last entry omitted if jα = n.

Using the bijection between divisor path sets and principal reversible squares given
by Theorem 3, we can count the number of different principal reversible squares of
size n × n in terms of the non-trivial and associated divisor functions of n as follows.

Theorem 4 Let n ∈ N. The number of different n × n principal reversible squares is
given by

Nn =
Ω(n)∑

j=1

c(0)
j (n)c(1)

j (n) =
Ω(n)∑

j=1

c j (n)
(
c j (n) + c j+1(n)

)
.

Proof By Theorem 3, it is sufficient to count the number of different divisor path sets
for n.

Suppose ((i1, . . . , iα), ( j1, . . . , jα)) is a divisor path set for n of length α. Then the
left-hand tuple gives an ordered factorisation of n into α factors,

i1
i2
i1

i3
i2

· · · iα
iα−1

= n

with all factors > 1; there are cα(n) such non-trivial factorisations.
The right-hand tuple gives an ordered factorisation of n into α + 1 factors,

j1
j2
j1

j3
j2

· · · jα
jα−1

n

jα
= n,

where the last factor may or may not be equal to 1 and all other factors are > 1; there
are c(1)

α (n) such factorisations.
The statement of the theorem follows by summing over α ∈ N, noting that cα(n) =

0 if α > Ω(n), and using Lemma 4 for the last identity. 	

Remark 2 Combining the formula of Theorem 4 with Lemma 4, the count Nn can be
expressed in terms of the (multiplicative) divisor functions,

Nn =
Ω(n)∑

j=1

j∑

l=1

j∑

m=0

(−1)l+m
(
j

l

)(
j

m

)
dl(n)dm+1(n). (11)

Using the prime factorisation n = ∏t
k=1 p

ak
k , this takes the form

Nn =
Ω(n)∑

j=1

j∑

l=1

j∑

m=0

(−1)l+m
(
j

l

)(
j

m

) t∏

k=1

(
ak + l − 1

l − 1

)(
ak + m

m

)
.
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We note that the terms of the sum in (11) bear some similarity to the sum underlying
the additive divisor problem (1).

Corollary 1 Let n ∈ N. Then Nn = 1 if and only if n is prime.

Proof If n is prime, then c1(n) = 1 and c j (n) = 0 for all j ≥ 2, and it follows that
Nn = c1(n) (c1(n) + c2(n)) = 1. Conversely, suppose n ≥ 2 is an integer such that
Nn = 1. By Theorem 4,

Nn =
Ω(n)∑

j=1

c j (n)2 +
Ω(n)∑

j=1

c j (n)c j+1(n).

As all terms of these sums are non-negative and c1(n) = 1, the total can equal 1 only
if c j (n) = 0 ( j ≥ 2), which implies that n is prime. 	

Corollary 2 Let n = pa with a ∈ N and prime p. Then

Nn =
(
2a − 1

a

)
.

Proof Theorem 4 and Lemma 5 give

Npa =
a∑

j=1

(
a − 1

j − 1

)(
a

j

)
=

a−1∑

j=0

(
a − 1

j

)(
a

j + 1

)
=

(
2a − 1

a

)

by combinatorial identity (3.20) of [3]. 	

Counting principal reversible squares is of interest not only in view of their bijection

to most perfect squares [10], but also because of their relationship with sum-and-
distance systems. In the present context, these are composed of two finite component
sets, of equal cardinality, of natural numbers, such that the numbers formed by consid-
ering all sums and all absolute differences of all pairs of numbers, each taken from one
of the component sets, with or without inclusion of the component sets themselves,
combine to an arithmetic progression without repetitions. Such systems arise naturally
from the question of constructing a certain type of rank 2 traditional magic squares
using the formulae given in [9]. We refer the reader to [6] for further details and for
the extension of the following definitions and of Theorem 5 to any finite number of
component sets of arbitrary finite cardinality.

Definition 3 Let m ∈ N and consider positive integers a j , b j ∈ N ( j ∈ {1, . . . ,m})
such that

a1 < a2 < · · · < am, b1 < b2 < · · · < bm .

We call {{a j : j ∈ {1, . . . ,m}}, {b j : j ∈ {1, . . . ,m}}}
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(a) an m + m (non-inclusive) sum-and-distance system if

{a j + bk, |a j − bk | : j, k ∈ {1, . . . ,m}} = {1, 3, 5, . . . , 4m2 − 1};

(b) an m + m inclusive sum-and-distance system if

{a j , bk, a j + bk, |a j − bk | : j, k ∈ {1, . . . ,m}} = {1, 2, 3, . . . , 2m(m + 1)}.

It is easy to see that the conditions in a) and b) above are equivalent to

{±a j : j ∈ {1, . . . ,m}} + {±bk : k ∈ {1, . . . ,m}}
= {−4m2 + 1,−4m2 + 3, . . . , 4m2 − 3, 4m2 − 1} (12)

and

{0,±a j : j ∈ {1, ldots,m}} + {0,±bk : k ∈ {1, . . . ,m}}
= {−2m(m + 1),−2m(m + 1) + 1, . . . , 2m(m + 1)}, (13)

respectively, where we use the usual sum of sets A + B = {x + y : x ∈ A, y ∈ B}.
Example 1 For m = 3 there are the seven 3 + 3 (non-inclusive) sum-and-distance
systems

{{1, 3, 5}, {6, 18, 30}}, {{1, 7, 9}, {2, 22, 26}}, {{1, 11, 13}, {14, 18, 22}},
{{1, 23, 25}, {2, 6, 10}}, {{3, 9, 15}, {16, 18, 20}}, {{3, 21, 27}, {4, 6, 8}},
{{7, 9, 11}, {12, 18, 24}},

but just the one inclusive 3 + 3 sum-and-distance system {{1, 2, 3}, {7, 14, 21}}.
Sum-and-distance systems of the non-inclusive and inclusive variety are intimately

connected with principal reversible squares. Indeed, let n ∈ N and consider a principal
reversible square (Mj,k) j,k∈Zn ; for all j ∈ {1, . . . , n}, define α j = M1, j − 1 and
β j = Mj,1 − 1. From property (V) of the reversible square and the fact that M1,1 = 1,
it then follows that

Mj,k = Mj,1 + M1,k − 1 = α j + βk + 1 ( j, k ∈ {1, . . . , n}); (14)

note that α1 = β1 = 0. By property (R),

α j + αn+1− j = αn, β j + βn+1− j = βn ( j ∈ {1, . . . , n}). (15)

Now suppose n is even, n = 2m. Then setting

a j = αm+ j − αm+1− j , b j = βm+ j − βm+1− j ( j ∈ {1, . . . ,m})
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defines anm+m non-inclusive sum-and-distance system. Indeed, it follows from (15)
that

a j = 2αm+ j − αn, −a j = 2αm+1− j − αn ( j ∈ {1, . . . ,m})

and correspondingly for ±bk (k ∈ {1, . . . ,m}), so the equality (12) can be verified
using the facts that αn + βn = Mn,n − 1 = n2 − 1 and that

{α j + βk : j, k ∈ {1, . . . , n}} = {Mj,k − 1 : j, k ∈ {1, . . . , n}} = {0, 1, . . . , n2 − 1}.

Conversely, given an m + m non-inclusive sum-and-distance system and setting

αm+ j = am + a j

2
, αm+1− j = am − a j

2
( j ∈ {1, . . . ,m}),

βm+k = bm + bk
2

, βm+1−k = bm − bk
2

(k ∈ {1, . . . ,m}),

Eq. (14) defines a principal reversible square (or its transpose).
Similarly, if n = 2m + 1 is odd, then an m +m inclusive sum-and-distance system

can be obtained from any n × n principal reversible square by setting

a j = αm+1+ j − αm+1− j

2
, b j = βm+1+ j − βm+1− j

2
( j ∈ {1, . . . ,m});

now by (15),

a j = αm+1+ j − αn

2
, −a j = αm+1− j − αn

2
( j ∈ {1, . . . ,m}),

and similarly for bk (k ∈ {1, . . . ,m}), and hence equality (13) follows in analogy to
the above. Conversely, setting

αm+1+ j = am + a j , αm+1− j = am − a j ( j ∈ {1, . . . ,m}),
βm+1+k = bm + bk, βm+1−k = bm − bk (k ∈ {1, . . . ,m})

and αm+1 = am , βm+1 = bm , we obtain a principal reversible square (or its transpose),
via (14), from an inclusive sum-and-distance system.

Thus, we have proven the following statement.

Theorem 5 Let m ∈ N. Then there is a bijection between the m + m non-inclusive
sum-and-distance systems and the 2m × 2m principal reversible squares, and there
is a bijection between the m + m inclusive sum-and-distance systems and the (2m +
1) × (2m + 1) principal reversible squares.

In conjunction with Theorem 4, this gives the following counting of non-inclusive
and inclusive sum-and-distance systems.
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Corollary 3 Let m ∈ N. Then there are

N2m =
Ω(2m)∑

j=1

c(0)
j (2m) c(1)

j (2m)

different m + m non-inclusive sum-and-distance systems, and

N2m+1 =
Ω(2m+1)∑

j=1

c(0)
j (2m + 1) c(1)

j (2m + 1)

different m + m inclusive sum-and-distance systems.

To conclude, we briefly note thatm+m sum-and-distance systems of either variety
have the general property that the sum of squares of all entries of their component sets
is invariant, determined only by the size m.

Theorem 6 Letm ∈ N and {{a1, . . . , am}, {b1, . . . , bm}} a (non-inclusive or inclusive)
sum-and-distance system. Then

m∑

j=1

(a2j + b2j ) =
{ 1

3! (2m)((2m)4 − 1) in the non-inclusive case,
1
4! (2m + 1)((2m + 1)4 − 1) in the inclusive case.

Proof In the non-inclusive case, we use the formula

n∑

j=1

(2 j − 1)2 = n(4n2 − 1)

3
(n ∈ N)

to find

2m
m∑

j=1

(a2j + b2j ) =
m∑

j=1

m∑

k=1

((a j + bk)
2 + (a j − bk)

2)

=
2m2∑

j=1

(2 j − 1)2 = 1

6
4m2(16m4 − 1).

In the inclusive case, we similarly use the formula

n∑

j=1

j2 = n(n + 1)(2n + 1)

6
= (2n + 1 − 1)(2n + 1 + 1)(2n + 1)

24

= ((2n + 1)2 − 1)(2n + 1)

24
(n ∈ N)
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and the identity for n = 2m(m + 1)

2n + 1 = 4m2 + 4m + 1 = (2m + 1)2

to calculate

(2m + 1)
m∑

j=1

(a2j + b2j ) =
m∑

j=1

∑
k

= 1m((a j + b j )
2 + (a j − b j )

2) +
m∑

j=1

a2j +
m∑

j=1

b2j

=
2m(m+1)∑

j=1

j2 = 1

24
((2m + 1)4 − 1) (2m + 1)2.
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