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Abstract Training a generic objectness measure to

produce object proposals has recently become a hot

topic. We observe that generic objects with well-

defined closed boundaries can be detected by looking

at the norm of gradients, with a suitable resizing of

their corresponding image windows to a small fixed

size. Based on this observation and computational

reasons, we propose to resize the window to 8 ×
8 and use the norm of the gradients as a simple

64D feature to describe it, for explicitly training

a generic objectness measure. We further show

how the binarized version of this feature, namely

binarized normed gradients (BING), can be used for

efficient objectness estimation, which requires only

a few atomic operations (e.g. add, bitwise shift,

etc.). To improve the proposal localization quality

while maintain efficiency, we propose a novel fast

segmentation method and demonstrate its effectiveness

for improving BING’s localization performance, when

used in the multi-thresholding straddling expansion

(MTSE) post-processing. In experiments on the

challenging PASCAL VOC2007 dataset, using 103

proposals per image and IoU threshold 0.5, our proposal

method achieves 95.6% object detection rate (DR) and

78.6% mean average best overlap (MABO) within 0.005

second per image.

Keywords Object proposals, objectness, generic

proposals, efficient method, visual

attention, category agnostic proposals.
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1 Introduction

As suggested in the pioneering research [3, 4],

objectness is usually represented as a value which

reflects how likely an image window covers an object

of any category. A generic objectness measure

has great potential to be used as a pre-filtering

process for many vision tasks, including object

detection [32, 33, 38], visual tracking [52, 77], object

discovery [22, 47], semantic segmentation [5, 9], content

aware image retargeting [73], and action recognition

[71]. Especially for object detection, proposal

based detectors have dominated recent state-of-the-

art performance. Compared with sliding windows,

objectness measures can significantly improve: i)

computational efficiency by reducing the search space,

and ii) system accuracy by allowing the use of complex

subsequent processing during testing. However,

designing a good generic objectness measure method

is difficult, and should:

• achieve high object detection rate (DR), as

any undetected objects at this stage cannot be

recovered later;

• gain high proposal localization accuracy which

is measured by the average best overlap (ABO) for

each object in each class and the mean average best

overlap (MABO) across all classes;

• obtain high computational efficiency so that

the method can be easily incorporated in various

applications, especially for realtime and large-scale

applications;

• produce a small number of proposals

for reducing computational time of subsequent

precessing;

• have good generalization ability to unseen

object categories, so that the proposals can be

reused by various of vision tasks without category

biases.
To the best of our knowledge, no prior method can
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satisfy all these ambitious goals simultaneously.

Research from cognitive psychology [74, 79] and

neurobiology [25, 48] suggests that humans have a

strong ability to perceive objects before identifying

them. Based on the human reaction time that

is observed and the biological signal transmission

time that is estimated, human attention theories

hypothesize that the human visual system processes

only parts of an image in detail, while leaving others

nearly unprocessed. This further suggests that before

identifying objects, there are simple mechanisms in the

human visual system to select possible object locations.

In this paper, we propose a surprisingly simple

and powerful feature “BING” to help the search for

objects using objectness scores. Our work is motivated

by the fact that objects are stand-alone things with

well-defined closed boundaries and centers [4, 31, 40]

although the visibility of these boundaries depends

on the characteristics of the background of occluding

foreground objects. We observe that generic objects

with well-defined closed boundaries share surprisingly

strong correlation in terms of the norm of their

gradient (see Fig. 1 and Sec. 3), after resizing of their

corresponding image windows to a small fixed size

(e.g. 8 × 8). Therefore, in order to efficiently quantify

the objectness of an image window, we resize it to

8 × 8 and use the norm of the gradients as a simple

64D feature for learning a generic objectness measure

in a cascaded svm framework. We further show

how the binarized version of the NG feature, namely

binarized normed gradients (BING), can be used for

efficient objectness estimation of image windows, which

requires only a few atomic CPU operations (i.e. add,

bitwise shift, etc.). The BING feature’s simplicity,

while using advanced speed up techniques to make the

computational time tractable, contrasts with recent

state of the art techniques [4, 26, 75] which seek

increasingly sophisticated features to obtain greater

discrimination.

The original conference version of BING [19] has

received much attention. Its efficiency and high

detection rates makes BING a good choice in a large

number of successful applications that requires category

independent object proposals [53, 62, 64, 78, 80–82].

Recently, deep neural network based object proposal

generation methods have become very popular due to

their high recall and computational efficiency, e.g. RPN

[70], YOLO900 [68] and SSD [58]. However, these

methods generalize poorly to unseen categories, and

rely on training with many ground-truth annotations

for the target classes. For instance, the detected

...

(a) source image

(b) normed gradients maps

(c) 8× 8 NG features

(d) learned model w ∈ R8×8

Fig. 1 Although object (red) and non-object (green) windows

present huge variation in image space (a), at proper scales and

aspect ratios which correspond to a small fixed size (b), their

corresponding normed gradients, i.e. a NG feature (c), share

strong correlation. We learn a single 64D linear model (d) for

selecting object proposals based on their NG features.

object proposals of RPN are highly related to the

training data: when training it on the PASCAL

VOC dataset [27], the trained model will aim to only

detect the 20-classes objects in PASCAL VOC and

perform poorly on another dataset like MS COCO (see

Sec. 5.4). Its poor generalization ability has restricted

its usage, so RPN is usually only used in object

detection. By contrast, BING is built based on low-level

cues about enclosed boundaries and thus can produce

category independent object proposals, which

has demonstrated applications in multi-label image

classification [78], semantic segmentation [64], video

classification[81], co-salient object detection [82], deep

multi instance learning [80], and video summarisation

[53]. However, several researchers [41, 65, 86, 90] have

noted that BING’s proposal localization is weak.

This manuscript further improves the proposal

localization of the conference version [19] by applying

multi-thresholding straddling expansion (MTSE) [15]

as a postprocessing step. The standard MTSE

would introduce a significant computational bottleneck

because of its image segmentation step. Therefore we

propose a novel image segmentation method, which

generates accurate segments much more efficiently.

Our approach starts with a GPU version of the

SLIC method [2, 69], to quickly obtain initial seed

regions (superpixels) by performing oversegmentation.

A region merging process is then performed based on

the average pixel distance. We replace [30] in MTSE
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with this novel grouping method [16], and dub the new

proposal system BING-E.

We have extensively evaluated our objectness

methods on the PASCAL VOC2007 [27] and Microsoft

COCO [56] datasets. The experimental results show

that our method efficiently (300fps for BING and

200fps for BING-E) generates a small set of data-

driven, category-independent and high quality object

windows. BING is able to achieve 96.2% detection

rate (DR) with 1,000 windows and intersection-over-

union (IoU) threshold 0.5. At the increased IoU

threshold of 0.7, BING-E can obtain 81.4% DR and

78.6% MABO. Feeding the proposals to the fast R-

CNN [32] framework for an object detection task,

BING-E achieves 67.4% mean average precision (mAP).

Following [4, 26, 75], we also verify the generalization

ability of our method. When training our objectness

measure on the VOC2007 training set and testing on

the challenging COCO validation set, our method still

achieves competitive performance. Compared to most

popular alternatives [4, 26, 44, 49, 50, 61, 65–67, 75,

85, 90], our method achieves competitive performance

using a smaller set of proposals, while being 100-1,000

times faster than them. Thus, our proposed method

achieves significantly high efficiency while obtaining

state-of-the-art generic object proposals. These

performances fulfill the previously stated requirements

for a good objectness detector. Our source code will be

published with the paper.

2 Related Works

Being able to perceive objects before identifying

them is closely related to bottom up visual attention

(saliency). According to how saliency is defined,

we broadly classify the related research into three

categories: fixation prediction, salient object detection,

and objectness proposal generation.

Fixation prediction models aim at predicting

human eye movement [8, 46]. Inspired by

neurobiology research about early primate visual

system, Itti et al.[45] proposed one of the first

computational models for saliency detection, which

estimates center-surrounded differences across multi-

scale image features. Ma and Zhang [60] proposed a

fuzzy growing model to analyze local contrast based

saliency. Harel et al. [36] proposed normalizing center-

surrounded feature maps for highlighting conspicuous

parts. Although fixation point prediction models

have achieved remarkable development, the prediction

results tend to highlight edges and corners rather than

the entire objects. Thus, these models are not suitable

for generating generic object proposals.

Salient object detection models try to detect the

most attention-grabbing object in a scene, and then

segment the whole extent of that object [6, 7, 55].

Liu et al.[57] combined local, regional, and global

saliency measurements in a CRF framework. Achanta

et al.[1] localized salient regions using a frequency-

tuned approach. Cheng et al.[18] proposed a salient

object detection and segmentation method based on

region contrast analysis and iterative graph based

segmentation. More recent research also tried to

produce high quality saliency maps in a filtering based

framework [63]. Such salient object segmentation for

simple images achieved great success in image scene

analysis [20, 54, 87], content aware image editing [83,

89], and it can be used as a cheap tool to process a large

number of Internet images or build robust applications

[12, 13, 21, 37, 42, 43] by automatically selecting good

results [17, 18]. However, these approaches are less

likely to work for complicated images where many

objects are presented and they are rarely dominant

(e.g. PASCAL VOC images).

Objectness proposal generation methods avoid

making decisions early on, by proposing a small number

(e.g. 1,000) of category-independent proposals, that

are expected to cover all objects in an image [4, 26,

75]. Producing rough segmentations [10, 26] as object

proposals has been shown to be an effective way of

reducing search spaces for category-specific classifiers,

whilst allowing the usage of strong classifiers to improve

accuracy. However, such methods [10, 26] are very

computationally expensive. Alexe et al.[4] proposed

a cue integration approach to get better prediction

performance more efficiently. Broadly speaking, there

are two main categories of object proposal generation

methods: region based methods and edge based

methods.

Region based object proposal generation methods

mainly look for sets of regions produced by image

segmentation and use the bounding boxes of these

sets of regions to generate object proposals. Since

image segmentation aims to cluster pixels into regions

that are expected to represent objects or object-parts,

merging together some regions is likely to find complete

objects. A large literature has focused on this aspect.

Uijlings et al.[75] proposed a selective search approach,

which combined the strength of both an exhaustive

search and segmentation, to achieve higher prediction
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performance. Pont-Tuset et al.[65] proposed a multi-

scale segmenter to generate segmentation hierarchies,

and then explored the combinatorial space of these

hierarchical regions to produce high-quality object

proposals. Some other well-known algorithms [26, 50,

61, 66, 67] fall into this category as well.

Edge based object proposal generation approaches

use edges to explore where in an image the complete

objects occur. As pointed out in [4], complete objects

usually have well-defined closed boundaries in space.

Some methods have achieved high performance using

this intuitive cue. Zitnick et al.[90] proposed a simple

box objectness score that measured the number of

contours wholly enclosed by a bounding box. They

generated object bounding box proposals directly from

edges in an efficient way. Lu et al.[59] proposed a

closed contour measure that is defined using closed path

integral. Zhang et al.[85] proposed a cascaded ranking

SVM approach with an oriented gradient feature for

efficient proposal generation.

Generic object proposals can be widely used in object

detection [32, 33, 38], visual tracking [52, 77], video

classification [81], pedestrian detection [62], content

aware image retargeting [73], and action recognition

[71]. Thus a generic objectness measure can benefit

many vision tasks. In this paper, we describe a

simple and intuitive object proposal generation method

which generally achieves state-of-the-art detection

performance, and is 100-1,000 times faster than most

popular alternatives [4, 26, 75] (see Sec. 5).

3 BING for Objectness Measure

Inspired by the ability of the human visual system

which efficiently perceives objects before identifying

them [25, 48, 74, 79], we introduce a simple 64D norm

of the gradients (NG) feature (Sec. 3.1), as well as

its binary approximation, i.e. the binarized normed

gradients (BING) feature (Sec. 3.3), for efficiently

capturing the objectness of an image window.

To find generic objects within an image, we scan over

a predefined set of quantized window sizes (scales and

aspect ratios1). Each window is scored with a linear

model w ∈ R64 (Sec. 3.2),

sl = 〈w,gl〉, (1)

l = (i, x, y), (2)

where sl, gl, l, i and (x, y) are filter score, NG feature,
1In all experiments, we test 36 quantized target window sizes

{(Wo, Ho)}, where Wo, Ho ∈ {16, 32, 64, 128, 256, 512}. We resize

the input image to 36 sizes so that 8 × 8 windows in the downsized

images (from which we extract features), correspond to target

windows.

location, size and position of a window respectively.

Using non-maximal suppression (NMS), we select a

small set of proposals from each size i. Zhao et al.[86]

show that this choice of window sizes along with the

NMS is close to optimal. Some sizes (e.g. 10 × 500)

are less likely than others (e.g. 100 × 100) to contain

an object instance. Thus we define the objectness score

(i.e. the calibrated filter score) as

ol = vi · sl + ti, (3)

where vi, ti ∈ R are learnt coefficient and bias terms for

each quantised size i (Sec. 3.2). Note that calibration

using Eq. (3), although very fast, is only required when

re-ranking the small set of final proposals.

3.1 Normed gradients (NG) and objectness

Objects are stand-alone things with well-defined

closed boundaries and centers [4, 31, 40] although

the visibility of these boundaries depends on the

characteristics of the background of occluding

foreground objects. When resizing windows

corresponding to real world objects to a small fixed size

(e.g. 8 × 8, chosen for computational reasons that will

be explained in Sec. 3.3), the norm (i.e. magnitude)

of the corresponding image gradients becomes a good

discriminative feature, because of the limited variation

that closed boundaries could present in such an

abstracted view. As demonstrated in Fig. 1, although

the cruise ship and the person have huge differences in

terms of color, shape, texture, illumination etc., they

do share clear similarity in normed gradient space. To

utilize this observation for efficiently predicting the

existence of object instances, we firstly resize the input

image to different quantized sizes and calculate the

normed gradients of each resized image. The values

in an 8 × 8 region of these resized normed gradients

maps are defined as a 64D normed gradients (NG)2

feature of its corresponding window.

Our NG feature, as a dense and compact objectness

feature for an image window, has several advantages.

Firstly, no matter how an object changes its position,

scale and aspect ratio, its corresponding NG feature

will remain roughly unchanged because the region for

computing the feature is normalized. In other words,

NG features are insensitive to change of translation,

scale and aspect ratio, which will be very useful

for detecting objects of arbitrary categories. And

these insensitive properties are what a good objectness

proposal generation method should have. Secondly,

the dense compact representation of the NG feature

makes it very efficient to be calculated and verified,
2The normed gradient represents Euclidean norm of the gradient.
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thus having great potential to be involved in realtime

applications.

The cost of introducing such advantages to the NG

feature is the loss of discriminative ability. However,

this is not a problem as BING can be used as

a pre-filter, and the resulting false-positives will be

processed and eliminated by subsequent category

specific detectors. In Sec. 5, we show that our method

results in a small set of high quality proposals that cover

96.2% of the true object windows in the challenging

VOC2007 dataset.

3.2 Learning objectness measurement with

NG

To learn an objectness measure of image windows,

we follow the two stage cascaded svm approach [85].

Stage I. We learn a single model w for Eq. (1)

using a linear svm [28]. NG features of the ground

truth object windows and random sampled background

windows are used as positive and negative training

samples respectively.

Stage II. To learn vi and ti in Eq. (3) using

a linear svm [28], we evaluate Eq. (1) at size

i for training images and use the selected (NMS)

proposals as training samples, their filter scores as 1D

features, and check their labeling using training image

annotations (see Sec. 5 for evaluation criteria).

Discussion. As illustrated in Fig. 1d, the learned

linear model w (see Sec. 5 for experimental settings),

looks similar to the multi-size center-surrounded

patterns [45] hypothesized as biologically plausible

architecture of primates [34, 48, 79]. The large

weights along the borders of w favor a boundary

that separates an object (center) from its background

(surround). Compared to manually designed center

surround patterns [45], our learned w captures a more

sophisticated natural prior. For example, lower object

regions are more often occluded than upper parts. This

is represented by w placing less confidence in the lower

regions.

3.3 Binarized normed gradients (BING)

To make use of recent advantages in binary model

approximation [35, 88], we describe an accelerated

version of the NG feature, namely binarized normed

gradients (BING), to speed up the feature extraction

and testing process. Our learned linear model w ∈ R64

can be approximated with a set of basis vectors w ≈∑Nw

j=1 βjaj using Alg. 1, where Nw denotes the number

Algorithm 1 Binary approximate model w [35].

Input: w, Nw

Output: {βj}Nw

j=1, {aj}Nw

j=1

Initialize residual: ε = w

for j = 1 to Nw do

aj =sign(ε)

βj = 〈aj , ε〉/‖aj‖2 (project ε onto aj)

ε← ε− βjaj (update residual)

end for

of basis vectors, aj ∈ {−1, 1}64 denotes a basis vector,

and βj ∈ R denotes the corresponding coefficient. By

further representing each aj using a binary vector and

its complement: aj = a+
j − a+

j , where a+
j ∈ {0, 1}64, a

binarized feature b could be tested using fast bitwise

and and bit count operations (see [35]),

〈w,b〉 ≈
∑Nw

j=1
βj(2〈a+

j ,b〉 − |b|). (4)

The key challenge is how to binarize and calculate our

NG features efficiently. We approximate the normed

gradient values (each saved as a byte value) using the

top Ng binary bits of the byte values. Thus, a 64D

NG feature gl can be approximated by Ng binarized

normed gradients (BING) features as

gl =
∑Ng

k=1
28−kbk,l. (5)

Notice that these BING features have different weights

according to their corresponding bit position in the

byte values.

Naively getting an 8 × 8 BING feature requires a

loop computing access to 64 positions. By exploring

two special characteristics of an 8×8 BING feature, we

develop a fast BING feature calculation algorithm (Alg.

2), which enables using atomic updates (bitwise shift

and bitwise or) to avoid computing the loop. First,

a BING feature bx,y and its last row rx,y are saved

in a single int64 and a byte variable, respectively.

Second, adjacent BING features and their rows have

a simple cumulative relation. As shown in Fig. 2 and

Alg. 2, the operator bitwise shift shifts rx−1,y by

one bit, automatically through the bit which does not

belong to rx,y, and makes room to insert the new bit

Algorithm 2 Get BING features for W ×H positions.

Comments: see Fig. 2 for illustration of variables

Input: binary normed gradient map bW×H

Output: BING feature matrix bW×H

Initialize: bW×H = 0, rW×H = 0

for each position (x, y) in scan-line order do

rx,y = (rx−1,y � 1) | bx,y
bx,y = (bx,y−1 � 8) | rx,y

end for
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bk,i,x,y ∈ {0, 1}8×8

shorthand: bx,y or bk,l

rk,i,x,y ∈ {0, 1}8
shorthand: rx,y or rk,l

bk,i,x,y ∈ {0, 1}
shorthand: bx,y

Fig. 2 Illustration of variables: a BING feature bx,y, its

last row rx,y and last element bx,y. Notice that the subscripts

i, x, y, l, k, introduced in Eq. (2) and Eq. (5), are locations of

the whole vector rather than index of vector element. We can use

a single atomic variable (int64 and byte) to represent a BING

feature and its last row, enabling efficient feature computation

(Alg. 2).

bx,y using the bitwise or operator. Similarly bitwise

shift shifts bx,y−1 by 8 bits automatically through the

bits which do not belong to bx,y, and makes room to

insert rx,y.

Our efficient BING feature calculation shares

the cumulative nature with the integral image

representation [76]. Instead of calculating a single

scalar value over an arbitrary rectangle range [76],

our method uses a few atomic operations (e.g. add,

bitwise, etc.) to calculate a set of binary patterns over

an 8× 8 fixed range.

The filter score Eq. (1) of an image window

corresponding to BING features bk,l can be efficiently

tested using:

sl ≈
∑Nw

j=1
βj

∑Ng

k=1
Cj,k, (6)

where Cj,k = 28−k(2〈a+
j ,bk,l〉 − |bk,l|) can be tested

using fast bitwise and popcnt sse operators.

Implementation details. We use the 1-D kernel

[−1, 0, 1] to find image gradients gx and gy in the

horizontal and vertical directions, while calculating

normed gradients using min(|gx|+ |gy|, 255) and saving

them in byte values. By default, we calculate gradients

in RGB color space.

4 Enhancing BING with Region Cues

BING is not only very efficient, but also can achieve

high object detection rate. However, when considering

ABO or MABO, its performance is disappointing.

When further applying BING to some object detection

frameworks which use object proposals as input, like

fast-RCNN, the detection rate is also bad. This

situation suggests BING does not obtain good proposal

localization quality.

Two reasons may cause this phenomenon. On the

one hand, given an object, BING tries to capture its

closed boundaries by resizing it to a small fixed size and

setting larger weights at the most probable positions,

but the problem is that the shapes of objects are varied,

which means that the closed boundaries of objects

will be mapped to different positions in the fixed size

windows. So the learned model of NG features cannot

adequately represent this variability across objects. On

the other hand, BING is designed to only test a limited

set of quantized window sizes. However, the sizes of

objects are variable. Thus, to some extent, bounding

boxes generated by BING are unable to tightly cover

all objects.

In order to improve the unsatisfactory localization

quality caused by above reasons, we consider multi-

thresholding straddling expansion (MTSE) [15], which

is an effective method for refining object proposals

using segments. Given an image and corresponding

initial bounding boxes, MTSE first aligns boxes with

potential object boundaries preserved by superpixels,

and then multi-thresholding expansion is performed

with respect to superpixels straddling for each box.

By this means, each bounding box covers tightly a

set of internal superpixels, and thus the localization

quality of proposals is significantly improved. However,

MTSE algorithm is too slow and the bottleneck is

segmentation [30]. Considering this situation, we use

a new fast image segmentation method [16] to replace

the segmentation method in MTSE.

Recently, SLIC [2] has become a popular superpixel

generation method because of its efficiency, and the

GPU version of SLIC (i.e. gSLICr) [69] can achieve

a fast speed of 250fps. SLIC aims to generate small

superpixels and is not good at producing large image

segments. In the MTSE algorithm, large image

segments are needed to ensure accuracy, so it is not

straightforward to apply SLIC within MTSE. However,

the high efficiency of SLIC makes it a good start

for developing new segmentation methods. We first

use gSLICr to segment an image into many small

superpixels. Then, we view each superpixel as a node

whose color is denoted by the average color value of all

the pixels in this superpixel, and the distance between

two adjacent nodes is computed using the Euclidean

distance of color values. Finally, we feed these nodes

into the graph-based segmentation method to produce

the final image segmentation [16].

We employ the full MTSE pipeline which is modified

to use our new segmentation algorithm, and manage to

reduce the computation time from 0.15 second down to

0.0014 second per image. Incorporating this improved

version of MTSE as a post processing enhancement step

6
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of BING, we obtain a new proposal system, and call it

BING-E.

5 Evaluation

We extensively evaluate our method on the

challenging PASCAL VOC2007 [27] and Microsoft

COCO [56] datasets. PASCAL VOC2007 contains

20 object categories, and consists of training,

validation and test sets, with 2501, 2510 and 4952

images respectively and corresponding bounding box

annotations. We use the training set to train our

BING model and test on the test set. Microsoft

COCO consists of 82783 images for training and

40504 images for validation, which contains about 1M

annotated instances from 80 categories. COCO is more

challenging because of its large size and complex image

contents.

We compare against various competitive methods:

EdgeBoxes [90]3, CSVM [85]4, MCG [65] 5, RPN

[70]6, Endres [26], Objectness [4], GOP [49], LPO [50],

Rahtu [66], RandomPrim [61], Rantalankila [67], and

SelectiveSearch [75] 7 using publicly available code. All

the parameters of these method are set using default

values, except for [49], in which we employ (180,9)

as highlighted on the author’s homepage. To make

the comparison fair, all the methods except the deep

learning based RPN [70] are tested on the same device

with an Intel i7-6700k CPU and a NVIDIA GeForce

GTX 970 GPU, and data parallelization is enabled. For

RPN, we utilize an NVIDIA GeForce GTX TITAN X

GPU for computation. Since objectness is often used as

a preprocessing step to reduce the number of windows

subsequent processing needs to consider, too many

proposals are contrary to this principle. Therefore,

we only use the top 1000 proposals for comparison.

In order to evaluate the generalization ability of each

method, we test them on the COCO validation dataset

using the same parameters as on VOC2007 without

retraining. Since there are at least 60 categories in

COCO different to those in VOC2007, using COCO to

test the generalization ability of the proposal methods

is a good choice.
3https://github.com/pdollar/edges
4https://zimingzhang.wordpress.com/.
5http://www.eecs.berkeley.edu/Research/Projects/CS/vision/

grouping/mcg/.
6https://github.com/rbgirshick/py-faster-rcnn
7We download the code of other methods from [11] https://

github.com/Cloud-CV/object-proposals.

bitwise float int,byte

shift |, & cnt + × +,− min

Gradient 0 0 0 0 0 9 2

Get BING 12 12 0 0 0 0 0

Get score 0 8 12 1 2 8 0

Tab. 1 Average number of atomic operations for computing

objectness of each image window at different stages: calculate

normed gradients, extract BING features, and get objectness

score.

(Nw, Ng) (2,3) (2,4) (3,2) (3,3) (3,4) N/A

DR (%) 95.9 96.2 95.8 96.2 96.1 96.3

Tab. 2 The average result quality (DR using 1000 proposals)

of BING at different approximation levels, measured by Nw and

Ng in Sec. 3.3. N/A represents without binarization.

5.1 Experimental Setup

Discussion of BING. As shown in Tab. 1, with

the binary approximation to the learned linear filter

(Sec. 3.3) and BING features, computing the response

score for each image window only needs a fixed small

number of atomic operations. It is easy to see that the

number of positions at each quantized scale and aspect

ratio is equivalent to O(N), where N is the number of

pixels in the image. Thus, computing response scores

at all scales and aspect ratios also has computational

complexity O(N). Furthermore, extracting the BING

feature and computing the response score at each

potential position (i.e. an image window) can be

calculated with information given by its 2 neighboring

positions (i.e. left and above). This means that the

space complexity is also O(N).

For training, we flip the images and the

corresponding annotations. The positive samples

are boxes that have IoU overlap with a ground truth

box of at least 0.5, while the max IoU overlap with

ground truth for the negative sampling boxes is less

than 0.5. In addition, some window sizes whose aspect

ratios are too large are ignored because the number

of training samples in VOC2007 for each of them

is too small (less than 50). Our training on 2501

images (VOC2007) takes only 20 seconds (excluding

xml loading time). We further illustrate in Tab. 2

how different approximation levels influence the result

quality. According to this comparison, in all further

experiments we use Nw = 2, Ng = 4.

Implementation details of BING-E. In the

implementation of BING-E, we find that removing

some small BING windows, with Wo < 30 or Ho <

7
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Fig. 3 Testing results on PASCAL VOC2007 test set: (a) object detection recall versus IoU overlap threshold; (b, c) recall versus

the number of candidates at IoU threshold 0.5 and 0.7 respectively; (d) MABO versus the number of candidates using at most 1000

proposals.

30, hardly degrades the proposal quality of BING-E

while reducing the runtime spent on BING process by

half. When using gSLICr [69] to segment images into

superpixels, we set the expected size of superpixels to

4×4. In the graph-based segmentation system [16, 30],

we use the scale parameter k = 120, and the minimum

count of superpixels in each produced segment is

set to 6. We utilize the default multi-thresholds of

MTSE, i.e. {0.1, 0.2, 0.3, 0.4, 0.5}. After refinement,

non-maximal suppression (NMS) is performed to obtain

the final boxes, where the IoU threshold of NMS is set

to 0.8. All the following experiments use these settings.

5.2 PASCAL VOC2007

As demonstrated by [4, 75], a small set of coarse

locations with high detection recall (DR) is sufficient

for effective object detection, and it allows expensive

features and complementary cues to be involved in

subsequent detection to achieve better quality and

higher efficiency than traditional methods. Thus, we

first compare our method with some competitors using

detection recall metrics. Fig. 3 (a) show detection

recall when varying the IoU overlap threshold using

1, 000 proposals. EdgeBoxes and MCG outperform

many other methods in all cases. RPN achieves

8
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IoU=0.5 IoU=0.7

Time(s)

Methods

#WIN
100 500 1000 100 500 1000

CSVM 80.6 92.0 93.9 32.3 34.8 37.5 0.33

EdgeBoxes 80.4 93.1 96.1 67.3 83.4 87.8 0.25

Endres 87.1 92.4 92.8 64.3 75.7 77.4 19.94

GOP 64.7 93.0 96.0 39.7 73.7 82.3 0.29

LPO 80.4 93.8 96.0 56.0 76.3 81.8 0.46

MCG 86.2 94.0 96.5 67.9 80.4 86.1 17.46

Objectness 74.5 89.1 92.7 36.9 43.5 44.4 0.91

Rahtu 68.6 82.5 86.9 52.9 70.7 76.8 0.67

RandomPrim 74.9 89.5 92.3 50.4 71.2 76.9 0.12

Rantalankila 12.9 75.1 88.8 6.0 51.9 72.9 3.57

SelectiveSearch 77.8 92.4 95.7 57.1 76.2 82.3 1.60

RPN 93.9 98.4 98.8 73.9 84.3 86.0 0.10

BING 78.3 92.4 96.2 31.6 34.5 35.3 0.0033

BING+MTSE 81.2 93.6 96.3 56.5 77.7 83.4 0.022

BING-E 80.6 92.4 95.6 58.5 76.5 81.4 0.0047

Tab. 3 Detection recall (%) using different IoU thresholds and

#WIN on the VOC2007 test set.

Fig. 4 Some failure examples of BING-E. Failure means that

the overlap between the best detected box (green) and ground

truth (red) is less than 0.5. All images are from the VOC2007

test set.

very high performance when the IoU threshold is less

than 0.7, but then drops rapidly. Note that RPN is

the only deep learning based method amongst these

competitors. BING’s performance is not competitive

when the IoU threshold increases, but BING-E is close

to the best performance. It should be emphasized that

both BING and BING-E are more than two orders

of magnitude (i.e. 100+) faster than most popular

alternatives [26, 65, 75, 90] (see details in Tab. 3). The

performance of BING and CSVM [85] almost coincide

in all three subfigures, but BING is 100 times faster

than CSVM. The significant improvement from BING

to BING-E illustrates that BING is a strong basis that

can be extended and improved in various ways. Since

BING is able to run at about 300 fps, its variants can

still be very fast. For example, BING-E can generate

competitive candidates at over 200 fps, which is

far beyond the performance of most other detection

algorithms.

Fig. 3 (b)-(d) show detection recall and MABO

versus the number of proposals (#WIN) respectively.

When the IoU threshold is 0.5, both BING and BING-

E perform very well. Especially when the number of

candidates is sufficient, BING and BING-E outperform

all other methods. In the subfigure (e), the recall curve

of BING drops a lot, and the same behavior appears

in the MABO evaluation. This may be because the

proposal localization quality of BING is poor. However,

note that the performance of BING-E is consistently

close to the best performance, indicating that BING’s

localization problem has been overcome.

We show numeric comparison of recall vs. #WIN

in Tab. 3. BING-E always performs better than

most of the competitors. Both the speeds of BING

and BING-E are obviously faster than all of the

other methods. Although EdgeBoxes, MCG and

SelectiveSearch perform very well, they are too slow

for many applications. By contrast, BING-E is

more attractive. It is also interesting to find that

the detection recall of BING-E increases by 46.1%

over BING using 1000 proposals with IoU threshold

0.7, which suggests that the accuracy of BING has

lots of room for improvement after applying some

postprocessing steps. Tab. 4 shows the ABO &

MABO comparison of these competitors. MCG always

outperforms others with a big gap, and BING-E is

competitive with all the methods except MCG.

Since proposal generation is usually a preprocessing

step in vision tasks, we feed candidate boxes produced

by objectness methods into the fast R-CNN [32]

object detection framework to test the effectiveness of

proposals in practical applications. The CNN model of

fast R-CNN is retrained using boxes from the respective

methods. Tab. 5 shows the evaluation results. In terms

of mAP (mean average precision), the overall detection

rates across all the methods are quite close to each

other. RPN performs slightly better, and our BING-E

method is very close to the best performance. Although

MCG almost dominates the recall, ABO and MABO

metrics, it does not achieve the best performance

on object detection, and is worse than BING-E.

Synthesizing the effects of various factors, BING-E

achieves a significantly high speed while obtaining

state-of-the-art generic object proposals. Finally, we

illustrate sample results with varied complexity for

9
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Methods MABO

CSVM 67.9 66.9 62.8 62.8 58.2 68.8 64.4 69.5 62.0 65.0 69.6 68.1 67.5 66.6 62.4 59.6 63.9 69.9 69.0 63.1 67.0

EdgeBoxes 77.0 81.4 78.5 76.8 66.1 83.8 76.9 82.4 76.3 82.2 80.8 83.4 81.3 80.9 73.6 71.9 80.8 82.6 80.0 81.5 80.2

Endres 71.0 80.8 73.8 66.8 60.8 84.9 79.4 89.0 72.8 79.2 86.9 87.4 83.0 82.4 70.7 68.4 76.1 89.6 84.8 78.9 80.7

GOP 74.2 80.5 76.1 73.5 64.2 86.3 80.6 88.0 76.4 82.1 86.3 85.9 79.8 79.6 73.7 71.2 78.6 88.1 82.5 83.3 81.6

LPO 76.4 80.4 77.4 73.4 61.0 87.2 81.3 89.5 74.9 82.7 84.9 87.5 82.3 82.4 73.3 71.5 79.8 89.0 84.5 81.6 82.6

MCG 81.4 83.2 79.3 76.2 70.0 88.181.689.979.684.688.6 88.5 84.483.278.274.682.891.086.685.8 85.1

Objectness 65.1 66.5 63.8 63.0 56.1 69.4 63.3 72.4 62.6 65.0 72.8 70.9 69.2 66.9 62.3 60.1 63.7 72.3 70.7 63.1 68.0

Rahtu 72.9 73.6 67.6 70.4 46.8 78.8 67.6 80.7 61.5 71.9 79.9 79.7 78.3 73.3 64.9 58.0 68.1 80.2 80.6 73.1 74.6

RandomPrim 79.2 80.9 74.5 74.7 59.4 83.4 76.4 86.9 74.4 78.5 87.6 85.6 80.3 80.8 70.5 66.5 72.3 89.1 82.5 79.6 80.5

Rantalankila 73.0 74.4 72.7 68.0 53.9 80.4 72.2 88.9 68.1 75.6 82.1 85.9 80.1 75.6 65.4 62.4 72.9 86.6 81.6 76.6 78.3

SelectiveSearch81.8 82.4 79.877.5 62.8 84.0 78.0 89.8 76.5 82.9 87.1 89.1 82.0 81.8 72.9 70.9 79.9 89.3 84.0 82.8 82.8

RPN 71.6 78.5 75.1 72.9 70.7 76.8 77.0 78.6 76.1 78.7 79.0 78.9 78.1 77.1 76.4 72.3 76.6 78.1 77.1 77.0 77.5

ours:BING 65.1 65.7 63.7 62.5 60.8 65.8 64.1 70.6 63.2 65.3 69.4 67.8 65.8 65.8 63.8 62.6 63.9 68.7 68.6 63.4 66.9

ours:BING-E 76.7 78.2 75.3 74.2 63.6 81.8 74.3 82.9 74.7 77.9 82.7 82.1 77.8 77.4 72.0 70.7 75.9 84.0 79.5 78.7 78.6

Tab. 4 ABO & MABO (%) using at most 1000 proposals per image on the VOC2007 test set.

Methods mAP

CSVM 68.0 71.3 60.3 44.1 33.7 73.0 69.1 77.1 28.7 68.1 58.7 71.5 78.3 69.5 60.7 25.6 57.4 61.4 72.5 55.7 60.2

EdgeBoxes 73.4 78.1 68.4 55.7 39.2 79.5 76.8 81.0 41.7 73.7 65.6 82.8 82.6 76.2 68.1 34.8 66.2 70.1 77.1 58.9 67.5

Endres 63.3 75.0 63.4 43.0 31.2 77.2 70.5 78.1 32.8 66.8 67.6 75.3 78.7 70.9 61.1 28.0 61.6 66.3 75.9 61.3 62.4

GOP 67.2 76.3 65.7 51.5 32.4 78.4 78.6 81.1 40.7 74.1 64.2 78.7 80.5 74.3 67.3 30.7 65.4 70.6 76.5 66.1 66.0

LPO 67.4 76.9 68.8 52.1 30.4 81.3 75.0 79.9 37.9 73.9 67.6 76.4 80.3 70.1 66.1 33.5 65.0 68.0 76.4 63.9 65.6

MCG 69.8 77.2 67.2 51.8 42.5 80.0 76.8 78.6 43.9 71.4 68.1 77.1 81.5 70.9 67.8 33.0 65.5 68.2 77.1 64.8 66.7

Objectness 64.7 73.5 60.4 40.1 34.8 72.7 69.5 76.8 31.5 67.4 59.0 77.7 79.1 71.4 60.8 30.5 54.6 62.0 73.5 57.5 60.9

Rahtu 69.2 68.6 59.1 53.8 23.1 78.4 67.2 79.9 26.9 66.6 68.5 76.7 79.7 70.3 58.0 26.9 57.1 64.2 77.2 60.5 61.6

RandomPrim 69.8 78.4 61.5 52.6 25.3 76.0 69.3 78.3 39.2 67.5 69.8 76.2 82.7 69.5 58.8 27.6 53.7 67.5 76.3 58.5 62.9

Rantalankila 68.0 67.7 63.1 42.3 21.5 71.5 64.5 78.7 29.8 69.2 67.6 74.3 77.1 66.9 54.7 25.2 60.6 63.8 75.9 59.9 60.1

SelectiveSearch 72.9 78.3 66.0 54.3 34.7 81.3 76.8 83.3 41.5 74.5 66.4 79.8 82.2 76.2 65.5 35.2 65.6 70.1 77.4 65.9 67.4

RPN 67.5 78.5 67.3 51.9 51.5 76.2 79.884.450.2 74.3 66.9 83.2 80.0 73.9 76.537.169.4 65.7 76.5 74.2 69.2

ours:BING 65.0 68.6 61.8 46.8 42.2 72.1 71.4 77.7 31.4 69.7 56.3 74.0 75.7 66.3 65.4 27.1 62.1 60.6 68.7 60.0 61.2

ours:BING-E 69.3 78.3 66.5 55.0 39.0 81.7 75.9 83.9 39.6 74.4 67.5 80.1 83.776.3 67.0 35.2 67.2 68.8 75.8 61.7 67.4

Tab. 5 Detection average precision (%) using fast R-CNN on the VOC2007 test set with 1000 proposals.

VOC2007 test images using our improved BING-E

method in Fig. 5 to better demonstrate our high quality

proposals.

5.3 Discussion on PASCAL VOC2007

In order to perform further analysis, we divide the

ground truths into different sets according to their

window sizes, and test some of the most competitive

methods on these sets. Tab. 6 shows the results.

When the ground truth area is small, BING-E performs

much worse than others. As the ground truth area

increases, the gap between BING-E and other state-of-

the-art methods is gradually narrowing, and BING-E

outperforms all of them on the metric of recall when

the area is larger than 212. Fig. 4 shows some failure

examples of BING-E. Note that almost all the false

detected objects are small. These small objects may

have blurry boundaries that make them be hard to

distinguish from the background.

Note that MCG achieves much better performance

on small objects, and it may be the main cause of

the drop in detection rate when applying MCG into

the fast R-CNN framework. The fast R-CNN uses the

VGG16 [72] model, in which the convolutional layers

are pooled several times. The size of a feature map will

be just 1/24 size of the original object when it arrives at

the last convolutional layer of VGG16, and the feature

map will be too coarse to classify such small instances.

So using MCG proposals to retrain the CNN model

may confuse the network because of the detected small

object proposals. Thus, MCG does not achieve the best

performance in the object detection task although it
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Methods

Area
28 29 210 211 212 213 214 215 216 217 218

Recall

EdgeBoxes(Recall) 2.1 32.6 56.2 74.0 89.1 97.3 99.5 99.8 100.0 100.0 100.0

MCG 43.8 57.1 73.5 81.9 89.9 95.5 98.0 99.6 99.7 100.0 100.0

SelectiveSearch 6.3 28.8 58.7 75.2 87.2 95.1 98.6 99.8 99.9 100.0 100.0

ours:BING-E 0.0 10.3 40.9 73.7 91.5 98.8 99.8 100.0 100.0 100.0 100.0

MABO

EdgeBoxes(Recall) 25.5 39.9 54.2 63.5 71.6 77.0 80.0 81.9 83.4 85.7 85.0

MCG 48.9 53.9 61.8 66.5 71.6 77.1 81.8 86.6 90.2 94.0 97.7

SelectiveSearch 22.3 41.4 55.9 62.6 67.8 73.5 78.9 83.6 87.7 92.2 98.0

ours:BING-E 18.5 32.4 47.6 61.0 68.3 74.5 78.1 80.9 82.7 86.1 95.6

Tab. 6 Recall/MABO (%) vs. Area on VOC2007 test set with 1000 proposals and IoU threshold 0.5.

Fig. 5 Illustration of true positive object proposals for VOC2007 test images using our method (BING-E).

outperforms others on recall and MABO metrics.

5.4 Microsoft COCO

In order to test the generalization ability of these

proposal methods, we extensively evaluate them on the

COCO validation set using the same parameters as on

the VOC2007 dataset without retraining. Since the

dataset is too large, we only compare against some

efficient methods.

Fig. 6 (a) show object detection recall versus IoU

overlap threshold using different numbers of proposals.

MCG always dominates the performance, but its low

speed makes it impossible for many vision applications.

EdgeBoxes performs well when the IoU threshold is
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Fig. 6 Testing results on COCO validation dataset: (a) object detection recall versus IoU overlap threshold; (b, c) recall versus

the number of candidates at IoU threshold 0.5 and 0.7 respectively; (d) MABO versus the number of candidates using at most 1000

proposals.

small, and LPO performs well for large IoU thresholds.

The performance of BING-E is slightly worse than

state-of-the-art performance. Both BING, Rahtu and

Objectness struggle on the COCO dataset, suggesting

that these methods may be not robust in complex

scenes. Note that RPN performs very poorly on

COCO, which means it is highly dependent on the

training data. As addressed in [11], a good object

proposal algorithm should be category independent.

Although RPN achieves good results on VOC2007, it

is not consistent with the goal of designing a category

independent object proposal method.

Fig. 6 (b)-(d) show the recall/MABO when varying

the number of proposals. The key observation is

also that RPN suffers a big drop in performance over

VOC2007. Its recall at IoU 0.5 and MABO are even

worse than BING. In addition, our proposed BING

and BING-E are very robust when transferring to

different object classes. Tab. 7 shows a statistical

comparison. Although BING and BING-E do not

achieve the best performance, they obtain very high

computational efficiency with a moderate drop in

accuracy. The significant improvement from BING to

BING-E suggests that BING would be a good basis

for combining with other more accurate bounding box

refinement methods if the increased computational load

12
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IoU=0.5 IoU=0.7 MABO

Methods

#WIN
100 500 1000 100 500 1000 (1000)

EdgeBoxes 53.3 69.5 75.6 41.6 57.1 62.9 65.4

GOP 50.6 72.5 76.2 31.5 53.7 60.2 67.4

LPO 55.8 74.1 78.4 36.2 54.6 60.2 69.4

MCG 63.8 77.8 83.6 46.6 60.4 67.7 74.8

Objectness 47.4 64.1 70.2 20.0 25.7 27.0 54.9

Rahtu 43.0 57.4 62.6 30.8 45.2 50.6 56.8

RandomPrim 49.0 69.4 74.6 29.7 48.9 55.4 67.0

SelectiveSearch 45.0 61.0 66.0 24.4 39.1 44.8 58.1

RPN 26.2 38.3 45.3 9.9 17.0 20.1 43.0

ours:BING 41.8 57.6 64.2 6.7 8.7 9.5 51.4

ours:BING-E 52.1 68.6 74.6 32.6 51.1 57.6 64.2

Tab. 7 Detection recall (%) using different IoU threshold and

#WIN on COCO validation set.

is acceptable.

6 Conclusion and Future Work

We present a surprisingly simple, fast, and high

quality objectness measure by using 8 × 8 binarized

normed gradients (BING) features, with which

computing the objectness of each image window at

any scale and aspect ratio only needs a few atomic

(i.e. add, bitwise, etc.) operations. To improve the

localization quality of BING, we further propose BING-

E which incorporates an efficient image segmentation

strategy. Evaluation results using the most widely used

benchmarks (VOC2007 and COCO) and evaluation

metrics show that BING-E can generate state-of-the-

art generic object proposals with a significantly high

speed. The evaluations also demonstrate that BING is

a good basis for object proposal generation.

Limitations. BING and BING-E predict a small

set of object bounding boxes. Thus, they share

similar limitations as all other bounding box based

objectness measure methods [4, 85] and classic sliding

window based object detection methods [23, 29]. For

some object categories (e.g. a snake, wires, etc.), a

bounding box might not localize the object instances

as accurately as a segmentation region [10, 26, 67].

Future work. The high quality and efficiency of

our method make it suitable for many realtime vision

applications and large scale image collections (e.g.

ImageNet [24]). In particular, the binary operations

and memory efficiency make our BING method suitable

to run on low power devices [35, 88]. Our speed-up

strategy by reducing the number of tested windows is

complementary to other speed-up techniques which try

to reduce the subsequent processing time required for

each location. The efficiency of our method solves the

computation bottleneck of proposal based vision tasks

such as object detection methods [32, 39], enabling

potential realtime high quality object detection.

We have demonstrated how to generate a small set

(e.g. 1,000) of proposals to cover nearly all potential

object regions, using very simple BING features and

a postprocessing step. It would be interesting to

introduce other additional cues to further reduce the

number of proposals while maintaining a high detection

rate [51, 84], and explore more applications [14, 53,

64, 78, 80–82] using BING and BING-E. To encourage

future works, we will continuously make the updated

source code available at http://mmcheng.net/bing.

Acknowledgements

This research was supported by NSFC (NO. 61572264,

61620106008).

Open Access This article is distributed under the

terms of the Creative Commons Attribution License which

permits any use, distribution, and reproduction in any

medium, provided the original author(s) and the source are

credited.

References

[1] R. Achanta, S. Hemami, F. Estrada, and S. Süsstrunk.
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