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Abstract 

There is substantial evidence showing that the microbiome of teleosts plays a key role in host health and 

wellbeing. Aquaculture practices increase the risk of dysbiosis (i.e. microbial imbalance), which is known to facilitate 

pathogen infections. The skin and gills are the primary defense organs against pathogens, thus, characterizing their 

microbiome composition in farmed fish is pivotal for detecting potential alterations that may lead to disease susceptibility. 

Here, we assessed the skin and gill microbiomes of two of the most important adult fish species farmed in southern 

Europe, the seabass and the seabream, during winter months. We coupled next-generation sequencing (MiSeq) of the 16S 

rRNA V4 region with the DADA2 bioinformatic pipeline to assess microbial composition and structure. Variation in 

microbial alpha-diversity (intra-sample) and taxa proportions were assessed using analysis of variance. Differences in 

beta-diversity (between-sample) were tested using permutational multivariate analysis of variance. Microbiomes of both 

tissues (n=30 per species) identified 19 bacteria phyla, dominated by the phyla Proteobacteria (44 - 68%) and 

Bacteroidetes (15 - 37%); the families Flavobacteriaceae (11 - 28%), Rhodobacteraeae (4 - 8%) and Vibrionaceae (2 - 

17%); and the genera Rubritalea (4 - 13%), Pseudomonas (4 - 8%) and the NS3a marine group (4 - 12%). Mean relative 

proportion of these taxa, some alpha-diversity indices and all beta-diversity distances varied significantly between tissues 

within and between species. ASVs belonging to the genera Polaribacter and Vibrio, which include several species that 

are pathogenic, were detected in the core microbiomes of seabass or seabream. 
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1 Introduction 

Seminal studies conducted in mammals established a link between the microbiome and the host’s innate immune 

response, with implications for host health and wellbeing (see for example reviews by Belkaid and Hand, 2014; Lynch 

and Peterson, 2016; Nelson et al., 2014). Furthermore, differences in microbial composition can account for differential 

disease susceptibility in humans (e.g. Börnigen et al., 2013; Dunn et al., 2016; Pérez-Losada et al., 2015; Pérez-Losada 

et al., 2018) and teleosts (reviewed by Kelly and Salinas, 2017). Particularly problematic for fish, pathogenic bacteria that 

naturally reside in the aquatic environment can also form part of their microbiomes (e.g. Borchardt et al., 2003; Califano 

et al., 2017; Rivas et al., 2011; Rud et al., 2017) and cause disease if there is a shift in abundance (i.e., dysbiosis) (e.g. 

Hess et al., 2015). While the skin microbiome of unstressed fish is dominated by taxa known for their probiotic and 

antimicrobial activity, the microbiome of stressed fish is dominated by potential pathogens (see Boutin et al., 2013). 

Although mucosal surfaces, such as skin, gills and the gut, do act as primary barriers to disease (reviewed by Gómez and 

Balcázar, 2007), they can be affected by several pathogens (e.g. Aeromonas septicemia, see Balebona et al., 1998; Doukas 

et al., 1998), which may cause significant losses. Aquaculture practices also impact microbial communities in the 

epidermal mucosa of fish. Overcrowding and low oxygen concentrations, typical in fish farms, result in host stress and 

induce dysbiosis in the skin microbiome, facilitating the proliferation of opportunistic pathogens (e.g. Boutin et al., 2013). 

At the same time, infectious diseases that frequently affect farmed fish can also induce dysbiosis, generally favouring 

increased abundance of opportunistic bacteria creating complex feedback mechanisms (e.g. Llewellyn et al., 2017; Reid 

et al., 2017). 

Seabass (Dicentrarchus labrax) and seabream (Sparus aurata) are the two most important fish species farmed 

in southern Europe; their productivity, however, is greatly affected by infectious diseases, which can account for losses 

of 15% to 40%, respectively (Lane et al., 2014). Given the role skin and gill microbiomes play in fish innate immunity 

(Gourzioti et al., 2016; Pellizzari et al., 2013) and the economic impact of diseases in fish aquaculture, characterizing the 

microbiomes of these two fishes is paramount. Additionally, anthropogenic stressors (e.g. rise of sea temperature and 

pollution) and farming conditions (e.g. high densities) aggravate bacterial diseases causing external lesions in skin and 

gills (e.g. photobacteriosis and vibriosis) of farmed seabass and seabream (e.g. Avendaño-Herrera et al, 2006; Bakopoulos 

et al., 2018; Frans et al., 2011; Gourzioti et al., 2016; Pellizzari et al., 2013; Weber et al., 2010). To this end, identifying 

potential fish pathogens could help to design more efficient prevention and treatment strategies. The first assessment of 

the skin microbiome of adult seabass and seabream showed that inter-individual variability was comparable to 

interspecific variability (Chiarello et al., 2015). Recently, Tapia-Paniagua et al. (2018) found a reduction in beneficial 

bacteria from the skin microbiomes of ulcered compared to healthy seabream. Differences in microbiome diversity of the 

skin of seabass have also been assessed in three different fish farms located in Ria de Aveiro, northern Portugal (Pimentel 

et al., 2017). Despite high inter-individual variation, microbial composition was found to act as a unique signature of each 
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individual’s geographic origin (Pimentel et al., 2017). Although the authors controlled for ontogenetic effects, which 

affect skin microbiome (e.g. Sylvain and Derome, 2017), they acknowledged that other factors, such as different farming 

practices and probiotic use, may have explained some of the observed differences (Pimentel et al., 2017). Moreover, 

previous disease history (e.g. Llewellyn et al., 2017; Tapia-Paniagua et al., 2018; Reid et al., 2017) and host physiology 

(e.g. Apprill et al., 2014) may have influenced the composition of fish skin microbiomes. Other key factor impacting 

microbial composition differences between groups is sample size and longitudinal (time) variation (Knight et al., 2018). 

Not surprisingly, skin and gill microbiome composition of seabass and seabream varied greatly between previous studies, 

as they have been cross-sectional (one time point) and included few individuals (Chiarello et al., 2015; Pimentel et al., 

2017; Tapia-Paniagua et al., 2018). 

In the present study, we monitored the microbiome composition and structure of the skin and gills of 30 seabass 

and 30 seabream healthy adults over winter (December to February) using 16S rRNA next-generation sequencing 

(MiSeq). Our main aims here were to characterize the baseline diversity of the skin and gill microbiomes of these two 

farmed species and identify potential pathogens or opportunistic bacteria. 

 

2 Material and Methods 

2.1 Sample collection and preparation 

Thirty individuals of both seabass and seabream were collected in 19 of December 2016, 16 of January 2017 

and 13 of February 2017 (10 specimens of each species per month) from a commercial fish farm located in an estuarine 

environment, the Ria Formosa (Portimão), southern Portugal. Seabass and seabream sampled were about 2 years old and 

individuals weighted on average, 384 g and 318 g. The fish were reared in two separate ponds, at a density of ca. 4.4 

kg/m3 (ca. 130 individual seabass) and 5.2 kg/m3 (ca. 150 individual seabream), with the same open water circulation 

systems, thus subjected to the same environmental conditions. The mean water temperature 30 days before each sampling 

point was 16.6 ºC, 15.3 ºC and 14.4 ºC, and the photoperiod for each sampling point was 9 h 35 min, 9 h 54 min and 10 

h 45 min, respectively. All fish were fed with the same commercial feed and they shared the same clinical history. All fish 

were considered healthy, with no external lesions and no pathologies detected during the sampling period. Individuals 

were randomly caught from each tank using a fishing pole, and skin and gill swabs were collected using tubed sterile dry 

swabs (Medical Wire & Equipment, UK). Skin samples were taken by swabbing several times along the right upper lateral 

part of the fish from head to tail; gill swabs were taken from the right filaments between the first and second arch. Swabs 

were immediately stored at -20ºC until transported on dry ice to the CIBIO laboratory by airmail where they were kept at 

-80ºC until processing. DNA from a total of 120 samples (60 skin and 60 gills) was extracted using the PowerSoil DNA 

Isolation Kit (QIAGEN, Netherlands), following the manufacturer’s protocol. DNA concentration was measured with the 

NanoDropTM 2000 Spectrophotometer (Thermo Fisher Scientific, USA) and extractions were sent on dry ice by airmail 
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to the University of Michigan Medical School (USA) for amplification and sequencing according to the protocol of 

Kozich et al. (2013). Each sample was amplified for the V4 hypervariable region of the 16S rRNA gene (~250 bp), which 

has been widely used to characterize microbiomes from vertebrates (Earth Microbiome Project, Gilbert et al., 2014), 

including fish (e.g. Carlson et al., 2017; Llewellyn et al., 2015; Nielsen et al., 2017; Wang et al., 2017). Amplicon libraries 

were sequenced in a single run of the Illumina MiSeq sequencing platform. 

 

2.2 Data and statistical analyses 

Raw FASTQ files were analyzed using the Quantitative Insights Into Microbial Ecology 2 (QIIME2; release 

2018.4) platform. Clean sequences were aligned against the SILVA (132 release) reference database (Quast et al., 2012) 

with DADA2 pipeline (Callahan et al., 2016). Samples were rarefied to the minimum read count (9,087) and a feature 

table containing amplicon sequence variants (ASVs) was constructed. ASVs with less than 0.01% of reads across samples 

were eliminated (Nelson et al., 2014). The core microbiome was assessed for the skin and gill of seabass and seabream, 

separately. An ASV was considered as part of the core microbiome if present in 100% of samples in each group. 

Rarefaction curves were performed to examine sampling depth (Supplementary Figure 1). 

Microbial taxonomic alpha-diversity (intra-sample) was calculated using Shannon, ACE, Fisher and Faith’s 

phylogenetic diversity (PD) indices as implemented in the R package phyloseq (McMurdie and Holmes, 2013). Species 

beta-diversity (inter-sample) was estimated using phylogenetic Unifrac (unweighted and weighted) and Bray-Curtis 

distances. Dissimilarity between samples was assessed by principal coordinates analysis (PCoA). Variation in microbial 

alpha-diversity and taxa composition were assessed using one-way analysis of variance (ANOVA). Differences in 

community composition (beta-diversity) were tested using permutational multivariate analysis of variance for 

Unweighted and Weighted Unifrac and Bray-Curtis indices with 1,000 permutations, as implemented in the adonis 

function of the R vegan package. In our microbiome statistical analyses we compared i) tissues within each fish species 

(skin x gills) and ii) fish species within each tissue (seabass x seabream) – see Table 2. We used the three sampling months 

(December to February) as temporal replicates, rendering a total of 30 microbiome samples per comparison per tissue. 

All analyses were performed in R studio v1.0.143 (Studio R, 2012). 

 

3 Results 

3.1 Taxonomic bacterial composition and core microbiome of seabass and seabream 

Approximately 3.2 million raw reads were retrieved (1.7 million for seabass and 1.5 million for seabream) and 

the number of sequences per sample ranged between 9,087 and 3,537,652. These sequences corresponded to 8,136 unique 

ASVs, from which ASVs with less than 0.01% of sequences across all samples and ASVs belonging to Archaea were 

removed, resulting in 556 unique ASVs and 3,246,429 sequences. Of the 457 ASVs found in the skin of the seabass, only 
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24 were common to all individuals sampled, thus forming the core microbiome (Table 1). Of the 466 ASVs found on the 

gills of the seabass, only 7 were shared among all individuals. The same pattern was observed in the seabream, where 15 

out of 532 skin ASVs and 2 out of 539 gill ASVs were present in all individuals (Table 1). These results highlight the high 

inter-individual variability found in both tissues, especially the gills (Table 1, Figures 1 and 2). 

Of the total 19 bacteria phyla identified across all samples, Proteobacteria and Bacteroidetes were the most 

abundant in both tissues (Figure 1, Table 1). ASVs from four (Proteobacteria, Bacteroidetes, Chlamydiae and 

Verrucomicrobia) of these 19 phyla formed part of the core microbiome (Figure 2). Moreover, the phyla Dependentiae 

(0.2% of ASVs and sequences) and Patescibacteria (0.2% of ASV, 0.1% of sequences) were unique to the microbiome 

of seabream, while the phyla Spirochaetes (0.2% of ASVs and 0.1% of sequences) was unique to the gill microbiome of 

seabass. 

The phyla Proteobacteria and Bacteroidetes accounted for 69% to 72% of all ASVs and 62% to 87% of all 

sequences in both species and for 50% to 93% of all phyla in the core microbiomes (Figure 2, Table 1). It was possible to 

identify 106 families, from which ASVs belonging to 16 families formed the core microbiome of both species. Altogether, 

Flavobacteriaceae (Bacteroidetes), Rhodobacteraeae (Proteobacteria) and Vibrionaceae (Proteobacteria) accounted for 

19% to 21% of ASVs, 17% to 51% of sequences, and 29% to 50% of all families in the core microbiome of both tissues 

(Figure 2, Table 1). From the 117 genera identified, ASVs belonging to 16 of these genera formed the core microbiome 

of both species. The NS3a marine group (4% - 12%), Rubritalea (4% - 13%) and Pseudomonas (4% - 8%) were the most 

abundant genera in the skin and gill of both species (Table 1). Polaribacter (7% - 50%) was highly abundant in both 

tissues, and Polynucleobacter (14%) and Vibrio (7%) were highly abundant in the gill of seabass and in the skin of 

seabream, respectively (Figure 2, Table 1). 

 

3.3 Microbial diversity 

When comparing the alpha-diversity of bacteria between tissues within each species, significant differences were 

detected between the skin and gills of seabass (ANOVA, P < 0.05; Table 2, Figure 3), but not for seabream (ANOVA, P 

> 0.05; Table 2, Figure 3). The alpha-diversity of the skin microbiome was significantly different between the seabass 

and the seabream for all indexes (ANOVA, P < 0.05; Table 2), except the Shannon index (ANOVA, P = 0.4; Table 2). On 

the other hand, the gill microbiomes were similar between species for all indices except PD (ANOVA, P = 0.03; Table 2). 

Analysis of the PCoA shows that species and tissues within species cluster separately and that there is a higher 

variation in the gill microbiomes when compared to the skin (Figure 4). There were significant differences in beta-

diversity estimates between tissues within each species and between tissues across species (Adonis, P = 9.9-5 for all; Table 

2). 
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Mean proportions of bacterial taxa varied between the two fish species and tissues (Table 2). In the seabass, the 

abundance of Bacteroidetes, Flavobacteriaceae, NS3a marine group, Rubritalea, Pseudomonas, Polaribacter and 

Polynucleobacter were significantly different between the skin and gill (ANOVA, P < 0.05, Table 2). In the seabream, the 

mean proportion of Proteobacteria, Bacteroidetes, Flavobacteriaceae, Rhodobacteriaceae, Vibrionaceae, NS3a marine 

group, Polaribacter, Polynucleobacter and Vibrio varied significantly (ANOVA, P < 0.05) between the skin and gill 

microbiomes (Table 2). Finally, Proteobacteria, Vibrionaceae, NS3a marine group, Pseudomonas, Polaribacter, 

Polynucleobacter, and Vibrio varied significantly between the skin microbiomes of seabass and seabream (ANOVA, P < 

0.05, Table 2), while Proteobacteria, Rhodobacteriaceae, Vibrionaceae, NS3a marine group, Rubritalea, Polaribacter 

and Polynucleobacter varied significantly between their gill microbiomes (ANOVA, P < 0.05, Table 2). 

 

4 Discussion 

Characterizing the microbiome composition and structure of the mucosal surfaces of economically important 

fish species, such as the seabass and the seabream, is of paramount importance in order to detect imbalances and prevent 

potential disease outbreaks in fish farms. Here, we showed significant differences in both the composition and structure 

of the microbial communities residing in the skin and gills of seabass and seabream, which is in line with previous findings 

of both fish species (Chiarello et al., 2015). The skin microbiomes were found to be species-specific as in other fish 

species (e.g., the stripped mullet, red snapper, spotted seatrout, sand seatrout, pinfish and Atlantic croaker; Larsen et al., 

2013). Despite the high inter-individual variation, overall, the seabream microbiomes were less diverse than those of the 

seabass (Figure 3). 

 

4.1 Core microbiome composition  

Proteobacteria (50 - 60%) and Bacteroidetes (29 - 50%, Table 1) formed the main components of the skin and 

gill microbiomes of seabass and seabream. Proteobacteria is the most common phylum reported in the skin and gill 

microbiomes of teleosts (see for example the review by Llewellyn et al., 2014), including the skin microbiome of seabass 

and seabream (Chiarello et al., 2015; Pimentel et al., 2017; Tapia-Paniagua et al., 2018). A predominance of the phylum 

Bacteroidetes has also been previously reported in seabass and seabream (Chiarello et al., 2015; Tapia-Paniagua et al., 

2018), as well as in the skin of many other fishes, such as in the brook char (Boutin et al., 2014), rainbow trout (Lowrey 

et al., 2015), channel catfish (Larsen et al., 2014), tambaqui (Sylvain et al., 2016), among others (see Doane et al., 2017; 

Larsen et al., 2013; Larsen et al., 2015; Legrand et al., 2018; Leonard et al., 2014). The gill microbiome of the bluefin 

tuna (Valdenegro-Vega et al., 2013), rainbow trout (Lowrey et al., 2015) and yellowtail kingfish (Legrand et al., 2018) 

were also found to be dominated by Bacteroidetes.  



7 

In the present study, from the 16 genera identified in the core microbiome of the skin and gill of adult seabass 

and seabream, the highest percentage of amplicon sequence variants (ASVs) belonged to the NS3a marine group, 

Rubritalea and Pseudomonas genera. Besides these three, the microbiome of seabass also exhibited an elevated 

abundance of the genera Polaribacter, Polynucleobacter and Arcobacter; while the microbiome of seabream included 

high abundance of Polaribacter and Vibrio. The genus Pseudomonas has been previously reported to be highly 

represented in the skin microbiome of seabass (Pimentel et al., 2017), cod (Wilson et al., 2008), mosquitofish (Leonard 

et al., 2014), gulf killifish (Larsen et al., 2015) and others (see Colwell and Liston, 1962; Horsley, 1973; Horsley, 1977; 

Larsen et al., 2013). However, we found some differences in microbial composition at the genus level in comparison with 

previous studies of seabass and seabream; Tapia-Paniagua et al. (2018), for example, found Staphylococcus and 

Lactobacillus to be the most abundant in the skin microbiome of seabream. This in not unexpected since, the skin 

microbiome of seabass comprises genera that are unique signatures of specific earth growth ponds, even though these 

ponds were geographically close (Pimentel et al., 2017). Besides spatial variation in fish location, environmental 

conditions (such as water temperatures and water supply [e.g. Lokesh and Kiron, 2016; Tapia-Paniagua et al., 2018]), 

host physiology and even clinical history (Apprill et al., 2014; Llewellyn et al., 2017) could contribute to explain the 

observed differences.  

Ontogenetic shifts in microbiome composition have been described in several fish species (e.g. Atlantic salmon, 

Llewellyn et al., 2015; Zarkasi et al., 2014; Zebrafish, Stephens et al., 2016; discus, Sylvain and Derome, 2017). The 

larval microbiome tends to reflect more the microbial community of the surrounding water (Stephens at al., 2016; Sylvain 

and Derome, 2017), while adult fish harbour a more adapted and stable microbial community (e.g. Llewellyn et al., 2015). 

Califano et al. (2017) even reported an increase in the microbiome composition of seabream larvae between day 2 and 

day 34. This pattern, however, is far from being universal as decreased diversity with age has been reported in other fish 

species (Stephens et al., 2016; Yan et al., 2016). 

As with most microbiome research, it is important to note any methodological differences that might explain 

variation. One of such methodological differences relates to our skin sampling method; Chiarello et al. (2015) used tissue 

from different fins, while in the present study and in Tapia-Paniagua et al. (2018) and Pimentel et al. (2017) we targeted 

skin mucous. Lowrey et al. (2015) uncovered high diversity of bacteria in the different dermal layers of skin, suggesting 

that mucosal diversity is an underestimation of the actual skin microbial diversity. Moreover, specifically for this study, 

the sequenced 16S variable region and the sequencing platform might have impacted taxonomic assignment. We 

sequenced the V4 region by synthesis (MiSeq), while Chiarello et al. (2015), Pimentel et al. (2017) and Tapia-Paniagua 

et al. (2018) used different combinations of other 16S regions and sequencing platforms (pyrosequencing and sequencing 

by synthesis). While differences in outputs provided by different sequencing methods are widely acknowledged (e.g. Frey 

et al., 2014; Li et al., 2014), debate regarding the most appropriate region for microbiome studies is still ongoing (e.g. 
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Guo et al., 2013; Mizrahi-Man et al., 2013). Finally, these results are likely to have been affected by the different analytical 

pipelines used to analyze the sequence data - amplicon sequence variants (ASVs) in this study versus Operational 

Taxonomic Units (OTUs) in previous studies. 

  

4.2 Potential pathogens detected in the core microbiomes  

Several ASVs belonging to genera comprising opportunistic and potential pathogenic bacteria were recovered 

from the skin and gill core microbiomes of apparently healthy individuals of seabass and seabream. Polaribacter is one 

such taxa, recovered from the skin and gills of both species (Figure 2, Table 1). This genus is often found in diseased 

fishes, being considered opportunistic and colonizing already weakened hosts (Bornø and Linaker, 2015). Species from 

this genus seem to be common in fish farms and have been reported in the water and biofilm of recirculating and semi-

closed aquaculture systems rearing Atlantic salmon, turbot and the Senegalese sole (Martins et al., 2013; Rud et al., 2017). 

The genus Vibrio, present in the gills of seabass and in both the gills and skin core microbiomes of seabream, harbours 

species associated with several diseases in these fish and many are considered opportunistic pathogens (e.g. Pujalte et al., 

2003a; Weber et al., 2010). Vibrio anguillarum and V. alginolyticus, for example, cause skin lesions, and V. splendidus 

has been involved in several disease outbreaks (e.g. Frans et al., 2011; Pujalte et al., 2003a). V. harveyi is another important 

pathogen causing tail rot disease in farmed seabream (Austin and Zhang, 2006; Haldar et al., 2010), comprising many 

strains that are fatal to seabass (Pujalte et al., 2003b). However, due to taxonomic assignment limitations, it was not 

possible to ascertain to which species these ASVs belonged to and if they are, indeed, pathogenic. If so, the high 

prevalence of these ASVs means that, in case of dysbiosis, these bacteria may overgrow and impact fish health. 

 

5 Conclusion 

The skin and gills of fish are exposed to many pathogens present in the marine and freshwater environment and 

represent an important barrier preventing pathogen invasion (e.g. Trivedi, 2012). The links between microbiome 

composition and disease resistance are now well established in mammals and teleosts (e.g. Britton et al., 2014; Gómez 

and Balcázar 2007; Gomez et al., 2013; Kelly and Salinas, 2017), and alterations in the microbiome often precede the 

onset of disease (reviewed by Munang’andu et al., 2018). Microbial imbalance, however, is not easily detected unless 

baseline information regarding microbiome composition and structure are established. Here, we describe the skin and 

gills microbiomes of farmed healthy seabass and seabream adults through three sampling months, thus yielding a more 

robust assessment of the microbiome of these two species. Our results show that seabass and seabream host different 

microbiomes despite sharing the same environment. Furthermore, high levels of intra- and inter-individual variability 

were found across tissues. Additionally, several potential pathogens were detected in the core microbiome of both species, 

which could lead to potential disease outbreaks during dysbiosis.  
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