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Abstract 
 

Arterial calcification is a manifestation of atherosclerosis, which over the last two 

decades has become a recognised predictor of cardiovascular disease. Abdominal 

Aortic Calcification (AAC) and osteoporosis have been shown to coincide in older 

individuals. The accepted method of diagnosing osteoporosis is through the 

measurement of bone mineral density by dual energy x-ray absorptiometry (DXA). 

Vertebral fracture assessment (VFA) images obtained alongside BMD using DXA 

technology provide an inexpensive resource for AAC diagnosis.  

Although several simple methods have been proposed for manual semi-quantitative 

scoring of AAC in x-ray images in the past, these methods have limitations in terms of 

capturing small changes in atherosclerosis progression and are time-consuming. 

Several automatic approaches have been proposed to measure AAC on radiographs. 

However, these methods have not been related to any accepted medical AAC scoring 

systems and thus are not likely to be adopted easily by the medical community. In 

addition, there has been no attempt to apply the proposed methods to VFA images.  

The main focus of the research presented in this thesis is the automatic quantification of 

AAC in VFA images acquired in single energy mode. The thesis is divided into two main 

parts. In the first part, an automatic method for AAC detection and quantification in VFA 

images is proposed and evaluated on a large number of images. In the second part, the 

performance of both single and dual energy VFA imaging for the detection of uniformly 

distributed calcification is investigated. 

The automatic method for AAC detection consists of two stages. In the first stage an 

active appearance model was employed for the purpose of segmentaion.  In the second 

stage, adaptive thresholding techniques were used to detect AAC, whilst automatic 
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classification techniques were used to quantify the detected calcification. The 

performance of several classifiers were investigated, and the proposed method was 

evaluated against the manual AC-24 scoring method using several hundred images and 

two human readers. A thorough statistical analysis of the results showed that, overall, 

the SVM classifier gave the best results. Weighted accuracy, sensitivity, specificity 

assessed for 4 AAC categories were 89.2%, 78.5% and 92.3% respectively while the 

corresponding values for 3 AAC categories were 88.6%, 86%, 90.4%.   

 
In the second part, a study using a tissue-mimicking physical phantom is described. The 

phantom consists of an aluminium strip within Perspex to simulate calcification and 

abdominal soft tissue respectively.   

VFA images of different phantom configurations were acquired in single energy (SE) and 

dual energy (DE) modes. The minimum detectable aluminium thickness was assessed 

visually and related to contrast and contrast-to-noise ratio. Percentage coefficient of 

variation was used to quantify uniformity, repeatability and reproducibility with a Perspex 

width of 25 cm, the smallest thickness of aluminium that could be detected was 0.20-

0.25 mm. 

The initial results are promising, and the system proposed in this research can be used 

as an alternative method to the manual scoring system (AC-24) for a wide range of AAC.  

The principal conclusion from the phantom work is that under idealised imaging 

conditions, VFA images have the potential to be used for detecting small thicknesses of 

calcification with good linearity, repeatability and reproducibility in SE and DE modes for 

patients with a body width < 30 cm.   
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 Introduction	

    

Introduction 

1.1 Motivation  

Cardiovascular disease (CVD) is a major cause of mortality and the main cause of 

morbidity worldwide. The most prevalent form of CVD is a condition called 

atherosclerosis, in which the arteries become narrowed and hardened due to an 

excessive build-up of plaque on the inner artery wall (Sanz and Fayad 2008; Golestani 

et al. 2010). More than 50% of patients with atherosclerosis die without prior clinical 

symptoms (Barascuk et al. 2011). According to the British Heart Foundation, in the 

United Kingdom CVD is the second highest cause of death, with a total number of deaths 

of about 155,000 per year. In 2014, CVD caused 27% of all deaths (Nick et al. 2015). 

Atherosclerosis is an inflammatory disease of the large and medium-sized arteries, 

including the aorta, the carotid arteries, coronary arteries and muscular arteries,  leading 

to ischemia of the heart and brain and possibly resulting in infarction (Lorkowski and 

Cullen 2007; Tuttolomondo et al. 2012). Heart attack, stroke, aortic aneurysms and 

peripheral vascular disease may occur due to atherosclerosis.  

Arterial calcification, especially abdominal aortic calcification (AAC), is a manifestation 

of atherosclerosis and a predictor of CVD (Cecelja et al. 2013). The presence of AAC 

means that is it very likely that there is some atherosclerosis in the largest artery and 

elsewhere in the arterial system. Moreover, an inverse relationship between bone 

mineral density (BMD) and measures of AAC has been reported (Grant et al. 2017). 

Atherosclerosis increases with advancing age, as the plaque develops and the size of 
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calcified regions increases to be visible on radiographs of the thoracic as well as the  

abdominal region (Wilson et al. 2001; Okuno et al. 2007).  

AAC is an established risk factor for CVD (Doherty et al. 2004; Chow et al. 2008; 

Golestani et al. 2010; Wong et al. 2011; Ganz et al. 2012; Bastos Gonçalves et al. 2012; 

Kim et al. 2013; Maroules et al. 2013; Tatami et al. 2015).  In general, AAC is common 

in both CVD and chronic kidney disease (CKD) (Leckstroem et al. 2014).  

Several non-invasive modalities are employed for AAC detection. These include multi-

slice computed tomography (CT), radiography and ultrasound (US). Currently, CT is the 

gold standard technique to measure AAC but it is restricted due to high radiation 

exposure (Cecelja et al. 2013; Chuang et al. 2014; Leckstroem et al. 2014). The simplest 

method of AAC detection is radiography. Calcified lesions can be visualised on 

radiographs of the thorax and abdomen (Wilson et al. 2001). 

Dual energy x-ray absorptiometry (DXA) is a standard diagnostic technique widely used 

to detect osteoporosis and vertebral fractures. Vertebral fracture assessment (VFA) has 

become a valuable and significantly used method to diagnose patients with osteoporosis 

due to the presence of vertebral fractures. During a VFA scan, the soft tissue anterior to 

the lumbar spine is incidentally included. This allows for the detection of calcified plaques 

in the abdominal aorta.  

VFA images performed by DXA in single energy mode are used for the detection of AAC 

(Schousboe et al. 2006; Schousboe et al.  2007; Cecelja et al. 2013; Netto et al. 2013).  

Several  recent studies (Lewis et al. 2016; Grant et al. 2017; Schousboe et al. 2017) 

used VFA methods as a reasonable substitute for radiography to measure AAC.   

VFA images have several advantages over radiographs. These comprise simplicity, 

KeV, quick acquisition of images and lower cost. Another advantage is the low radiation 

dose required, 3-40 µSv, to perform a VFA image, whereas the radiation exposure for a 

radiograph is approximately 600 µSv (Schousboe et al. 2010; Szulc et al. 2013). 
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Furthermore, VFA uses a fan-beam of x-rays to scan the spine whereas in radiography, 

images are performed using a cone-beam, which produces parallax distortion within 

vertebrae located above or below the central point of the beam. Nonetheless, images 

obtained by radiography provide better visibility with less noise and higher spatial 

resolution than VFA images by DXA, with the result that cortical edges and endplates 

can be identified properly (Schousboe et al. 2010).  

Although several simple methods have been proposed for manual semi-quantitative 

scoring of AAC, these methods have limitations, in particular in terms of capturing small 

changes in atherosclerosis progression. Moreover, the techniques rely on input from the 

observer/investigator and are time-consuming. The most popular method is the 

established and validated visual approach of Kauppila et al. (1997), in which calcification 

in the walls of the abdominal aorta is scored on a scale ranging from 0 to 24. This method 

is known as the AC-24 or 24 point system; it was applied by the Framingham study group 

(Schousboe et al. 2006; Nielsen et al. 2010; Cecelja et al. 2013; Mohammad et al. 2014) 

to estimate CVD risk from lumbar aortic radiographs.   

With regard to the performance of DXA compared with other imaging modalities for AAC 

measurement using the AC-24 system, agreement was good to very good with 

radiography and moderate to good with CT (Schousboe et al. 2006; Toussaint et al. 

2009).  

In recent years, several automatic approaches have been proposed to measure AAC on 

radiographs. However, none of them were applied to VFA images, which have lower 

resolution and higher noise. In addition, the proposed methods have not been related to 

existing manual AAC scoring techniques and have not been properly evaluated from a 

medical point of view. 

VFA images obtained in single energy mode alongside BMD measurement using DXA 

can be used to assess risk factors for CVD, although currently this kind of assessment 
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is not normally included in the BMD report. In principle medical intervention could be 

provided to individuals with AAC detected during osteoporosis screening in order to 

prevent the progression of CVD. 

In addition, introducing computer-based assessment algorithms to measure AAC in VFA 

images could facilitate the detection of this risk factor for CVD.  

1.2 Aims and Objectives 

The goal of the research presented in this thesis is to assess the suitability of the DXA 

modality for the detection of AAC in VFA images with the purpose of finding an additional 

low-cost method of diagnosing CVD.  

The aims of this project are: (1) development of a new method for the automated 

detection and quantification of AAC on VFA images relating this to existing AAC scoring 

techniques; (2) investigation of the limitations of VFA images for AAC detection using a 

physical phantom.  

The specific objectives necessary to achieve the aims in the first part are identified as:  

1. Creating an automatic method for AAC detection and quantification and assessing 

it against existing manual scoring technique in order to assist clinicians in the 

detection of AAC at all stages of development;  

2. Validating the developed automatic system for all possible AAC categories on a 

large dataset consisting of several hundred images. 

The sensitivity of the VFA medical imaging technique in detecting calcification in the 

patient’s aorta is an important factor for achieving accurate AAC evaluation. Thus, the 

assessment of the capability of VFA to image AAC under various scan acquisition 

conditions is the second aim in this research. To achieve this aim, a phantom simulation 
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study was conducted. This is the first physical phantom study to address this issue, and 

the corresponding research objectives were identified as follows: 

1. Designing and constructing a physical phantom to simulate soft tissue in the 

abdomen and calcification within this region with the capability to cover a range 

of abdominal width as well as a range of calcification thickness.     

2. Conducting a study with this phantom to examine the sensitivity of VFA for AAC 

detection including:  

2.1 investigating the performance of VFA with different phantom configurations 

and image acquisition conditions;   

2.2 Investigating the minimum detectable thickness of uniformly distributed AAC. 

 

1.3 Thesis Outline 

This thesis is organised into the following structure: 

• Chapter 1 provides an introduction to the work. 

• Chapter 2 presents a review of background information on cardiovascular 

diseases and their association with calcification in the abdominal aorta, and 

discusses related work in this field. It also reviews available scoring systems for 

calcification in the abdominal aorta.  

• Chapter 3 reviews techniques relevant to the automatic assessment of AAC, 

such as automatic image segmentation and data classification methods.   

• Chapter 4 reviews the fundamentals of the DXA modality including VFA. 
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• Chapter 5 introduces a new automatic technique for AAC detection and 

quantification. 

• Chapter 6 presents a validation of the new method using a large dataset.  

• Chapter 7 describes phantom design and construction.  

• Chapter 8 presents a novel phantom study involving two DXA scanners.  

• Chapter 9 highlights the contributions, limitations and conclusions of this thesis, 

and proposes further work.  
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 Abdominal	Aortic	Calcification		

 

Abdominal Aortic Calcification  

2.1 Introduction  

This chapter surveys previous studies relevant to the detection and quantification of AAC 

presented in this thesis. The chapter provides general background information related to 

atherosclerosis and AAC and presents the common modalities used to detect AAC. The 

chapter also discusses the physical characteristics of calcification such as the size and 

chemical composition. Existing medical visual assessment systems for AAC 

quantification are also presented.  

2.2  Atherosclerosis  

Atherosclerosis or arteriosclerotic vascular disease is a systemic disease characterised 

by thickening and hardening of blood vessel walls to form atherosclerotic plaque  (Sanz 

and Fayad 2008; Golestani et al. 2010). The disease is identified by the formation of fatty 

lines, fibrous plaques and calcified plaques in the inner layer of the arterial wall. The 

calcified plaques affect the shape and mechanical properties of the arteries.  

Atherosclerosis occurs mostly in large and medium-sized arteries and can lead to 

ischemia of the heart and brain, possibly resulting in infarction (Lorkowski and Cullen 

2007; Tuttolomondo et al.  2012).  

The plaque is divided into two categories: stable and unstable (vulnerable) (Fishbein 

2010). Atherosclerotic plaque pathobiology is very complicated; in general, stable 

atherosclerotic plaques are rich in extracellular matrix and smooth muscle cells. 

Vulnerable plaques have also been called “high-risk” or “thrombosis-prone” plaques 

(Bentzon et al. 2014).  
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The presence of calcium is not a marker of stable or vulnerable plaques, but there is an 

association between coronary atherosclerotic plaques and the extent of atherosclerosis 

and this allows to atherosclerosis to be categorised (Oei et al. 2002).  

Cholesterol deposition and thrombosis inflammation play an important role in plaque 

formation (Kim et al. 2000). As the plaque develops, it projects into the space inside the 

artery where the blood is flowing. Subsequently, calcium is deposited and collagen fibre 

production by smooth muscle cells declines. A complicated lesion forms when the fibrous 

plaque breaks and opens, revealing the cholesterol and connective tissue underneath 

combined with a blood clot.  

An increasing blood concentration of low-density lipoprotein (LDL) in combination with 

other risk factors such as smoking, hypertension, diabetes mellitus, gender, and a 

complex genetic susceptibility to the disease can be sufficient to form atherosclerosis. 

Typically, the abdominal aorta, coronary arteries, iliofemoral arteries and carotid 

bifurcations are the most affected locations (Bentzon et al. 2014).  

Arteries consist of three layers: tunica adventitia, tunica media and tunica intima. Tunica 

adventitia components are type I collagen networks of elastic fibres and proteoglycans 

that form loose connective tissue. Scattered fibroblasts, adipocytes, rarely 

macrophages, lymphocytes and mast cells are the components within the adventitia. The 

tunica media is composed of smooth muscle cell sub-layers arranged diagonally and 

separated by wavy sheets of elastic membranes. Collagen type III fibres, elastin, 

proteoglycans and glycoproteins are its other major components. The tunica intima is 

made up of one layer of endothelial cells. Within the sub-endothelial space that forms 

the border between intima and media, there are fibrils of elastin and extracellular matrix 

(Bukowska et al. 2014). Figure 2-1 shows a normal an artery and artery narrowed by 

atherosclerotic plaque. 
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Atherosclerosis causes CVD such as heart attack, stroke, aortic aneurysm, and 

peripheral vascular disease, which represent the greatest cause of death worldwide. This 

disease can be diagnosed only at advanced stages (Sanz and Fayad 2008). Symptoms 

of atherosclerosis depend on the location of the affected artery and whether the walls 

narrowed gradually or become blocked suddenly. A heart attack occurs when coronary 

arteries are blocked suddenly; stroke occurs when the arteries supplying the blood to 

the brain are blocked. If the arteries supplying blood to the leg are blocked, this may 

cause gangrene of a toe, foot or leg. Angina occurs when heart muscles affected and 

leg pain while walking if the leg muscles are affected.  

Calcification detected by lateral lumbar radiographs is an indicator of subclinical 

atherosclerotic disease and an independent predictor of CVD (Bots et al. 1993; Lillemark 

2010). CVD mortality in a large population sample (1049 men and 1466 women) was 

studied by Wilson et al. (2001). The study proved that calcification seen on lumbar 

radiographs is a mark of subclinical atherosclerosis and vascular morbidity and mortality.  

Studies relating to the coronary arteries have also proved an association between 

calcification and cardiovascular events, in particular, myocardial infarction (Alexopoulos 

et al. 2003; Doherty et al. 2004; Shakeri et al. 2013).  

The association between atherosclerosis and osteoporosis has been proven in many 

studies; they are correlated with age as both conditions are common in the elderly (Chow 

et al. 2008). Generally, atherosclerosis increases and advances with age, as the plaque 

develops and the size of calcification increases to be visible on radiographs of the 

abdominal and thoracic regions (Wilson et al. 2001; Okuno et al. 2007). 
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Figure 2-1:  Diagram showing the effects of atherosclerosis on an artery 

(https://en.wikipedia.org/wiki/Artery) 

 
 

2.3 Abdominal Aortic Calcification (AAC) 

The abdominal aorta (Van Metter et al. 2000a) is the biggest blood vessel in the body; it 

is imbedded in adipose tissue behind the peritoneal cavity. It starts at the aortic hiatus of 

the diaphragm, anterior to the inferior border of the 12th thoracic vertebra, and it 

descends anteriorly to the end at the lower border of the 4th lumbar vertebra (Songur et 
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al. 2010). It bifurcates at lumbar vertebra L4 into the common iliac arteries. Abdominal 

aortic bifurcation is shown in Figure 2-2.  

The normal diameter of the abdominal aorta is considered to be less than 30 mm (Van 

Metter et al. 2000b; Erbel and Eggebrecht 2006). The mean (SD) aortic diameter was 

reported as 18.8 (3.0) mm at the proximal bifurcation by Laughlin et al. (2011) and as 

18.6 (2.2) mm by Allison et al. (2008). The normal arterial vessel wall thickness was 

reported to be < 1 mm  in a study by Bentzon et al. (2014).  

The normal abdominal aorta cannot be distinguished from surrounding soft tissue by any 

x-ray imaging technique because its composition is similar to soft tissue. However, the 

abdominal aorta can be captured on radiographs if it is calcified. AAC is identified visually 

as either a diffuse white stippling of the aorta extending out to the aortic wall or as white 

linear calcification of the anterior and/or posterior aortic walls (Schousboe et al. 2017). 

There are two categories of arterial calcification, intimal and medial. Both types can be 

seen in the abdominal aorta; however, most of the available studies have concentrated 

on intimal calcification because of its strong connection with atherosclerosis (Jayalath et 

al. 2005). Intimal calcification can be seen in patients with renal failure and diabetes 

mellitus. Medial calcification can affect the abdominal aorta but it is rarely detected in the 

coronary arteries. Discrimination between these two types of calcification is not possible 

and it seems to be a limitation of medical imaging techniques (Jayalath et al. 2005).  

There is a strong association between factors such as age, sex, BMI, and the presence 

and extent of calcified atherosclerosis (Allison et al. 2008). Calcification and stenosis 

generally affect people older than 65 years of age. Calcification strongly correlates with 

coronary artery events (Okuno et al. 2007).  
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Figure 2-2:  Abdominal aorta bifurcation. (Openstax, Circulatory Pathways, 2015, 
https://anatomychartee.co/show/branch-of-abdominal-aorta.html 

 
 

A significant correlation between aortic calcification, aortic wall thickness and aortic 

extensibility and coronary artery disease was reported by Jang et al. (2012). Generally, 

AAC is a strong predictor of the CVD (Doherty et al. 2004; Chow et al. 2008; Golestani 

et al. 2010; Wong et al. 2011; Ganz et al. 2012; Bastos Gonçalves et al. 2012; Kim et al. 

2013; Maroules et al. 2013; Tatami et al. 2015).  
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The prevalence of calcification is higher in the abdominal aorta compared to the thoracic 

aorta and it is correlated with fat deposition plaques (Benvenuti et al. 2005; Cecelja et 

al. 2013). There is consistency in many studies regarding the association of AAC with 

age in the middle-age group (Kim et al. 2013). Moreover, the progression rate of AAC is 

correlated significantly with chronic kidney disease CKD (Yamamoto et al. 2016).  

The Framingham Heart Study revealed that abdominal aortic calcification is a heritable 

atherosclerotic feature (O’Donnell et al. 2002). Risk factors such as smoking, age, 

physical activity, and diabetes mellitus are common in both atherosclerosis and AAC 

(Golestani et al. 2010; Bolland et al. 2010).  

CVD mortality risk can be predicted by the distribution, size, and shape of aortic 

calcification, in addition to its extent (Nielsen et al. 2010).  

In general, AAC is considered as a strong predictor of CVD. Many studies have proven 

a strong correlation between AAC and coronary artery calcification, kidney disease and 

osteoporosis (Doherty et al. 2004; Chow et al. 2008; Golestani et al. 2010; Wong et al. 

2011; Ganz et al. 2012; Bastos Gonçalves et al. 2012; Kim et al. 2013; Maroules et al. 

2013; Tatami et al. 2015).  

2.4 Characteristics of Calcification 

Calcification associated with atherosclerosis results from highly regulated and organised 

active cellular processes. The mechanism of arterial calcification is not completely 

understood. However, it has been suggested that arterial wall cells, such as vascular 

smooth muscle cells, may produce a mineralised matrix (Lee et al. 2012). There is 

considerable interest in generating further understanding of the mechanisms of 

calcification and its implications in CVD. Calcification formation and composition have 

been intensively investigated with different methods in both in vitro and in vivo studies. 
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This section discusses two characteristics of calcification: its chemical composition and 

its thickness.  

2.4.1 Calcification Chemical Composition 

 
The chemical composition of calcification has been investigated by various methods, 

including x-ray diffraction, Fourier transform infrared spectroscopy and chemical analysis 

(Liao et al. 2009). The calcification of human artery plaque was examined by Fitzpatrick 

et al. (1994). This study proved that the chemical composition of calcification was 

identical to hydroxyapatite (	'()*[,-.]0	[-1]2), which is the major inorganic component 

of bone (Lee et al. 2012). Calcified deposits appear to be similar to bone mineral, 

chemically and morphologically (Dmitrovsky and Boskey 1985). Higgins et al. (2005) 

reported that calcium hydroxyapatite is one of the forms of calcification throughout the 

vasculature. Calcification in the aortic valves was analysed by Ortlepp et al. (2004) and 

they proved that it consists of Ca-deficient hydroxyapatite.  

Some studies have reported that breast calcification consists of calcium oxalate (Warren 

et al. 2013). Micro-calcifications have been separated into two types: type I, calcium 

oxalate and type II calcium hydroxyapatite (Haka et al. 2002; Prieto et al. 2011). 

According to the same study, discrimination between these two types is not possible. 

Similar were published by Lee et al. (2012); in cardiovascular tissues calcium deposits 

comprised different calcium salts, such as calcium carbonate (CC), calcium oxalate 

(CO), calcium phosphate (CP), calcium pyrophosphate (CPP), and calcium 

hydroxyapatite (HA).  

2.4.2 Calcification Thickness 

 
There is little information about the size and distribution of calcified plaques within the 

aorta. To some extent, this is difficult to obtain during in vivo research. The thickness of 

arteriosclerotic calcification was measured using a multi- metric ruler in a study by 



15 
 

 

Laroche and Delmotte (2005); the length of calcification was also measured.The study 

aimed to quantify the thickness and length of vascular calcification in patients with 

Paget’s disease (PD) and compare them with those in a control group. Calcification 

thickness was scored as follows: 1, between 1 and 2 mm; 2, between 2 and 3 mm; 3, 

more than 3 mm. The mean length of calcification was 1.93 ± 2.85 cm in PD cases and 

0.84 ± 1.69 cm in controls (4	 = 	0.04). Calcification thickness was 1.24 ± 1.30 mm in PD 

patients, and 0.56 ± 0.94 mm (4 = 	0.01) in controls.  

Babiarz et al. (2003) scored the thickness of calcification in the cavernous carotid arteries 

based on computed tomography (CT) as follows: 0, 1 for 1 mm, 2 for 2 mm, 3 for 3 mm 

and 4 for > 3 mm. In a study by Moreau et al. (1994), the thickness of tissue and bone 

within atherosclerotic plaque was studied using a calibration phantom that had similar 

geometry to that of calcified plaque. Lucite and an epoxy-based bone mimicking-material 

(SB3) were chosen with thicknesses of 15 mm and 5 mm respectively. The authors 

reported that the reason for choosing this large range was that in heavily calcified 

arteries, the thickness can be as large as 3-4 mm for same type of calcification.  

2.5 Detection of Abdominal Aortic Calcification 

Arterial calcification measurements are the most effective approaches to predict clinical 

events associated with the abdominal aorta. CT, radiography and ultrasound (US) are 

the most common modalities used for the assessment of atherosclerotic plaque 

(Jayalath et al. 2005).  

Numerous studies have measured and validated AAC on lateral spine radiographs and 

on CT scans (Lewis et al. 2016; Schousboe et al. 2017). CT is presently used as the 

gold standard measure of artery calcification, but is limited by high radiation exposure 

(Cecelja et al. 2013; Chuang et al. 2014; Leckstroem et al. 2014; Lee et al. 2017).  

The most popular techniques used for AAC detection are presented briefly in this section. 
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2.5.1 Computed Tomography (CT)  

 
CT is a diagnostic imaging procedure that uses x-rays to build cross-sectional images 

("slices") of the body. Cross-sections are reconstructed from measurements of 

attenuation coefficients in the volume of the object studied.  

Multislice computed tomography is an important tool for non-invasive imaging of 

cardiovascular structures (Schmitz et al. 2005; Schousboe et al. 2017). In addition, CT 

easily permits complete quantification of calcification in arterial walls. 

Coronary calcium scores were determined by CT in a study by Bolland et al. (2010). 

Scoring was performed using a 64 slice CT scanner.  In another study, abdominal CT 

scans of 380 patients were analysed to investigate the correlation of AAC with life- style 

and risk factors for CVD (Kim et al. 2013). The findings of this research were that AAC 

was related to gender, age, presence of dyslipidemia, exercising, smoking in male 

subjects and the presence of diabetes mellitus and hypertension in female subjects. 

The association of AAC with CVD in 1974 men and women aged 45 to 84 years who 

had complete AAC and coronary artery calcium data from CT scans was investigated in 

a study by Criqui et al. (2014). They found that both AAC and CAC could predict heart 

disease and CVD events independently of one another and that AAC was more strongly 

correlated with total mortality than CAC.   

2.5.2 Ultrasound  

Ultrasound is non-invasive tomographic technique, which has the capability to 

immediately image vessel walls. The tomographic orientation of ultrasound can visualise 

the entire circumference of the vessel wall and its surfaces. The main disadvantage of 

US is that it is operator- dependent and has low reproducibility (Hartshorne et al. 2011).  

US may be used to visualise the of intima-media thickness of carotid arteries as they are 

superficial structures. This can provide additional information about myocardial infarction 
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or stroke (Fayad and Fuster 2001; Sanz and Fayad 2008; Ganz et al. 2012). Ultrasonic 

contrast agents have been introduced to improve image resolution and specificity. 

Intravascular ultrasound (IVUS) is another diagnostic modality that combines anatomic 

and physiologic measurements in real time. This technique is a catheter-based, invasive 

modality that allows direct imaging of atheroma and offers a cross- sectional, 

tomographic perspective of the vessel  (Fayad and Fuster 2001; Ricotta et al. 2008; Sanz 

and Fayad 2008). Artefacts adversely affect the images; these include artefacts 

generated by acoustic oscillations, which makes the catheter appear larger in size than 

its physical size (Nissen and Yock 2001). IVUS cannot define calcification thickness as 

ultrasound cannot penetrate calcium, but it can detect the arc of calcium layers (Dey and 

Roy 2012). 

2.5.3 Radiography   

Radiography is an imaging modality that uses a beam of x-rays projected toward the 

object to view its internal structure. A certain amount of radiation is absorbed by the 

object, dependent on its density, composition and thickness. Plain radiography is the 

simplest method of abdominal aortic calcification detection. 

Aortic calcification has been diagnosed by radiography in many studies (Walsh et al. 

2002; Hollander et al. 2003; Jayalath et al. 2005; Ganz et al. 2012). This is because the 

calcified lesions have high density and are usually visible on standard radiographs of the 

thorax and abdomen (Wilson et al. 2001; O’Donnell et al. 2002). 

Lateral lumbar radiographs were used to predict CHD, CVD, and CVD mortality in 1049 

men and 1466 women in a study by Kauppila et al. (2001). Jayalath et al. (2005) 

presented a comprehensive review of aortic calcification, the techniques used for 

measurement, the associated risk factors and the outcomes for these with AAC. In 

another published work by Honkanen et al. (2008), severe AAC was recorded using 

lateral lumbar radiographs; patients with stage 5 chronic kidney disease (CKD) were 
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included. The method that uses for AAC assessment was recommended as a part of 

pre-transplant work-up and cardiovascular risk factor determination. Radiography is 

widely used but  it is less sensitive in detecting atherosclerotic lesions than new methods 

such as US and CT (Schousboe et al. 2017).  

2.5.4 Dual Energy X-ray Absorptiometry  

DXA is a standard diagnostic technique widely used to detect osteoporosis and vertebral 

fractures. VFA has become a valuable method that is used to identify patients with 

osteoporosis because of the presence of vertebral fractures (Golestani et al. 2010; 

Schousboe et al. 2006; Schousboe et al. 2007; Cecelja et al. 2013; Grant et al. 2017; 

Schousboe et al. 2017). Prevalent vertebral fractures and predict future fractures 

independently of other risk factors such as age and BMD (Wilson 2006).  

VFA has the potential to detect AAC with low radiation exposure and is a useful 

alternative to CT in this regard AAC (Cecelja et al. 2013; Elmasri et al. 2016; Lewis et al. 

2016; Grant et al. 2017). For example, the modality was also employed for the detection 

of vascular calcification disease in dialysis patients in a study by Toussaint et al. (2009). 

Screening of vascular calcification using VFA images is similar to radiography and may 

provide a dual advantage in CKD because it can measure BMD and simultaneously 

detect AAC with good sensitivity and specificity. 

VFA images have several advantages over lateral spine radiographs. These include 

simplicity, speed of image acquisition and low-cost. Another advantage is the low 

radiation exposure from VFA compared with radiographs (Schousboe et al. 2010; Szulc 

et al. 2013).  

In addition,  VFA imaging uses a fan-beam to scan the spine, whereas radiography is 

performed using a cone-beam, which produces parallax distortion within vertebrae 

located above or below the central point of the beam (Schousboe et al. 2010). VFA 

images have low resolution compared with radiographs; these images may fail to identify 
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small amounts of AAC that may be visible on radiographs. At the same time, both VFA 

images and radiographs may miss smaller calcifications that are detected by CT 

(Schousboe et al.  2017). 

2.6 Quantification of Abdominal Aortic Calcification  

There are different manual methods for AAC measurement depending on the modalities 

utilised for this task. A brief review of the methods associated with each modality 

described in Section 2.5 is presented here. 

AAC has been measured using CT in several studies (Ichii et al. 2013; Cecelja et al. 

2013; Leckstroem et al. 2014; Lee et al. 2017). Calcification measurements on CT scans 

are often performed using the Agatston score method. The Agatston score is defined by 

the area of a calcified plaque multiplied by a scaling cofactor that represents peak 

attenuation of this calcification (Hong and Pilgram 2003; Lee et al. 2017). A constant 

threshold of attenuation 130 Hounsfield units (HU) is used to distinguish between non-

calcified and calcified areas.  

AAC and BMD were assessed in a study by Chow et al.  (2008) to define the association 

between vascular calcification and bone mass and structure. The Agatston scoring 

method was used to quantify AAC for 693 subjects. The study also showed that 

osteoporosis and atherosclerosis are age-dependent.  

In another study, females aged 52-80 years from the UK twins registry years underwent 

non-contrast CT and lateral DXA imaging of the abdominal aorta at lumbar vertebrae 

L1–L4 (Cecelja et al. 2013). Every cross-sectional slice in the CT image was analysed 

separately, and calcification in the aorta was expressed as the area that in this region > 

mm2 with attenuation ≥130 HU. Calcification was measured in the unit of mm3 using the 

volume score calculated as the product of voxel volume and the number of voxels for 
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each cross-sectional slice; by summing the score for all cross-sectional images, the total 

volume score was obtained. 

 Leckstroem et al. (2014) measured AAC on CT scans of 93 living kidney donors. AAC 

was derived using a manual scoring system to calculate total aortic calcium severity 

score. Each CT slice was scored individually for circumference calcified between the 

coeliac axis and the aortic bifurcation calcification was classified as mild, moderate or 

severe, where mild AAC extended through 450 of the circumference, moderate 460–1800 

and severe 1800. Chuang et al. (2014) also determined AAC by a modified Agatston 

score in 100 Framingham Heart Study participants using CT. They found that AAC was 

common in middle aged and older adults and that AAC distribution was not uniform in 

the aorta.   

In the Framingham Heart Study,  abdominal aortic wall calcification seen on standard  

lateral spine radiograph was measured using what has become the most widely 

accepted semi-quantitative technique (Kauppila et al. 1997; Wilson et al. 2001; 

Schousboe et al. 2008). This visual scoring system quantified calcific deposits in the 

region of the aorta at the level of L1 through L4 and is known as the AC-24 method. 

To date, the AC-24 method has been widely used to assess AAC (Ganz et al. 2012; 

Mohammad et al. 2014; Lewis et al. 2016; Grant et al. 2017; Schousboe et al. 2017). In 

the AC-24 system, calcified deposits are considered to be present if calcification is visible 

in an area parallel to the lumbar spine and anterior to the lower part of the spine. 

Calcification of the anterior and posterior aortic walls is assessed separately; and graded 

as follows: 0, no calcification; 1, only small scattered calcified deposits occupying one 

third or less of the longitudinal wall of the aorta; 2, one thirds but less than two thirds of 

the longitudinal aortic wall calcified; 3, two thirds or more of the longitudinal wall of the 

aorta calcified. Finally, the AAC scores in the anterior and posterior walls are summed 

to give an overall severity score in the range 0-24 (Wilson et al. 2001).  
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AAC may also be quantified using the AC-8 system, which is a simplification of AC-24 

method. The AC-8 system is described as follows. For each aortic wall, the total length 

of calcification is scored between 0 and 4 relative to vertebral body height. A segment 

with no calcification is scored as 0 if the aggregate length of calcification is one vertebral 

body height or less, the score is 1. The score is 2 when the aggregate length of 

calcification is greater than one and less than or equal to 2 vertebral heights, and so on 

to the maximum score of 4. Scores for each wall are summed individually to give the 

total AC-8 score, which ranges between 0 and 8 (Bolland et al. 2010).  

The size, shape and the distribution of AAC were investigated by Ganz et al. (2012 ) for 

308 postmenopausal women. In this study, the number of calcified deposits was 

quantified as well as the percentage of the abdominal aorta occupied by the lesions 

based on their area, thickness, wall coverage and length. AC-24 was used for AAC 

quantification and three radiologists annotated the same images manually. Statistical 

agreement tests were conducted in this study. Schousboe et al. (2006) used the AC-24 

system to quantify AAC manually on 57 VFA images of women who had participated in 

a previous study for the detection of vertebral fracture.  

In a study by Lewis et al. (2016), VFA images of 892 elderly women aged > 70 years 

were used to investigate whether AAC measures were related to atherosclerosis. AAC 

scores were measured using AC-24. VFA images of 2,500 subjects were evaluated for 

AAC detection and quantification by Golestani et al. (2010) using AC-8. VFA assessment 

was validated against radiography in 53 subjects. Subjects with identified AAC were 

classified into two groups: low score (1-3) and high score (>3).  

The severity of calcification in eight anterior and posterior aortic segments was assessed 

by the AC-24 system in a study conducted by Szulc et al. (2013). Here, AAC also was 

categorised into three groups: score 0, score 1-2 and score 3-6.  
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In the work of Mohammad et al. (2014), two radiologists scored AAC on VFA images 

using the AC-24 scoring system described above. In this study, the severity of AAC was 

classified categorically. Three categories of calcification scores were described: mild (1–

4), moderate (5–12), and severe (>12).  

Recently, Schousboe et al. (2017) reported that the severity of AAC on radiographs and 

VFA images should be categorised as follows:  low (AC-24 =1or 2, AC-8 =1); moderate 

(AC-24 =3 to 5, AC-8=2 or 3); and severe (AC-24 6 or more; A-C8 =4 or more). A 

limitation of this scoring system is the time and cost of assessing the lateral spine 

images. 

Several other recent studies (Lewis et al. 2016; Grant et al. 2017) have used VFA images 

to measure AAC. Grant et al. (2017) scored AAC using a modified Framingham score in 

100 patients who had osteoporosis examinations.  

The accuracy and variability of calcification measurements are important considerations 

in clinical and research applications of AAC scoring. With regards to AC-24 scores, 

radiographs recorded a very high inter-observer and intra-observer reliability, with intra-

class correlation coefficients (ICC) consistently reported as 0.90 or higher (Kauppila et 

al. 1997). In another study, the intra-observer intra-class correlation coefficient was 0.93 

and inter-observer intra-class correlation coefficient was 0.90 (Pariente-rodrigo et al. 

2016). Several studies have shown that AC-24 and AC-8 can discriminate between those 

with and those without a high level of AAC (AAC-24 scale score ≥5) on radiographs with 

high accuracy (Bolland et al. 2010; Mohammad et al. 2014; Schousboe et al. 2017).  

2.7  Summary  

This chapter has provided background information on abdominal aortic calcification 

(AAC) and its correlation with atherosclerosis, as well as information on medical imaging 

techniques used for AAC detection. Evidence has been presented that VFA images 
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acquired as a part of osteoporosis diagnosis by DXA are a suitable alternative to CT 

scans in the detection of AAC due to their simplicity, low cost and low radiation exposure 

has been presented.  

Available manual scoring systems used as assessment tools for measuring AAC by 

different modalities have been reviewed. These include the AC-24 points system that 

has been employed in many studies on radiographic images. It has been shown that the 

same system can be used for AAC measurement in VFA images with high accuracy and 

reliability.   

The main findings of the literature review are as follows: 

1. Atherosclerosis is a common cause of CVD, such as aortic aneurysm, peripheral 

vascular disease, heart attack and stroke. Studies related to CVD have proved 

that the presence of calcification in the aorta is correlated with the presence of 

aortic atherosclerosis.  

2. Only few prospective studies have examined how well the detection of AAC on 

lateral spine images can predict incident CVD. However, most of them have 

shown that the presence and severity of AAC is correlated to presence of CVD.  

3. DXA is a standard diagnostic technique widely used to detect osteoporosis; if it 

has VFA capability, it may also be used to identify vertebral fracture. VFA also 

represents a new method for the detection of abdominal aortic calcification with 

low radiation exposure and cost. DXA with VFA can provide two diagnostic 

examinations at the same time, namely atherosclerosis and osteoporosis.  

4. Although the presence of calcification in the abdominal aorta is commonly noted 

incidentally in VFA images obtained using DXA, normally it is not included in the 

DXA report. At the same time, there is potential that identifying AAC during 

osteoporosis screening using VFA images can help in diagnosis of CVD.  
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5. Further studies are needed to determine whether AAC identified in VFA images 

improves the prediction of CVD risk. In addition, an investigation of whether AAC 

detection with VFA images contributes to treatment or alters healthcare provision 

is also needed.           

6. The manual AC-24 points system is the only current accepted method for AAC 

scoring on both radiographs and VFA images. The limitation of the current 

assessment of AAC is its time and cost. 

7. Several studies have proposed points scales to classify AAC into mild, moderate 

and severe.  Recently, an AC-24 score greater than 6 has been reported as an 

indication of severe AAC.  

The next chapter surveys medical image processing, automatic classification techniques 

and reviews available automatic methods for AAC assessment.  
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 							Medical	Image	Processing	and	Machine	Learning	 	

 

Medical Image Processing and Machine Learning 

 

3.1 Introduction  

This chapter reviews popular medical image processing techniques relevant to the task 

at hand; relevant machine learning methods are also discussed in this Chapter. This 

Chapter also surveys previously proposed automatic methods for AAC assessment 

using a variety of imaging modalities.    

3.2 Medical Image Processing 

Medical images are very important for the diagnosis and treatment of wide range of 

medical conditions. Medical image processing and analysis is helpful in transforming raw 

images into a quantifiable images suitable for searching and mining, and extracting from 

them significant quantitative information to aid medical diagnosis (Norouzi, 2014).  

A variety of imaging modalities have been developed over the last several decades. 

Examples include CT, US, Magnetic Resonance Imaging (MRI), other tomographic 

modalities such as single photon emission computed tomography (SPECT) and positron 

emission tomography (PET). Images obtained by different medical imaging modalities 

are subject to degradations and/or deformations during the process of acquisition. 

Consequently, to extract information for quantification, at least some preliminary image 

processing is needed.    
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3.2.1 Image Enhancement Techniques 

 
Image enhancement is an important step in medical image processing; its purpose is to 

improve the visual quality of images for human viewing or to provide better images for 

the steps involved in automated processing. These could include image segmentation, 

object detection and feature extraction (Maini and Aggarwal 2010; Bedi and Khandelwal 

2013; Sasi and Jayasree 2013). Medical and other images may suffer from poor contrast, 

limited resolution and high noise. Removing blurring, noise and increasing contrast, are 

examples of enhancement operations that are done to reveal hidden detail.  

Image enhancement does not increase the information content of the data, but it 

highlights the main features of interest in order to detect objects in a simple and efficient 

way (Vasuki and Devi 2017). Available techniques of image enhancement include spatial 

domain methods and frequency domain methods. The choice of technique is highly 

dependent on the imaging modality, image processing task and viewing conditions. 

Spatial domain methods work on the image pixels directly; they comprise point arithmetic 

operations and neighbourhood enhancement algorithms. Point arithmetic operations 

include grey-level transformation and histogram equalisation (Vasuki and Devi 2017).  

For example, the contrast enhancement operation, often known as windowing, utilises a 

contrast stretching technique to map the pixel values of an original image into new 

values, which have increased contrast (Gonzalez and Woods 2010). Histogram 

equalisation, (HE) is one of the popular and widely used contrast enhancement 

techniques. HE changes the spatial histogram of an image into an approximately uniform 

distribution. It cannot highlight image edges and cannot be utilised for detection 

applications (Kumar and Rana 2016; Vasuki and Devi 2017). Neighbourhood 

enhancement algorithms include image smoothing and image sharpening. Image 

smoothing is used to remove noise; a good image smoothing algorithm should be able 

to deal with different types of noise. The mean filter, Wiener filter, Gaussian filter and 
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median filter are used for effective noise removal (Vasuki and Devi 2017). A 

comprehensive review of image smoothing techniques has been presented in many 

studies (Goyal et al. 2012; Kaur and Singh 2015; Vasuki and Devi 2017). 

In frequency domain methods, images transformed into the frequency domain using low-

pass filtering, high-pass filtering and homomorphic filtering techniques. Fourier 

transformation and Gaussian low pass are two common low pass filtering techniques 

(Makandar 2015).    

High pass filtering allows high frequencies to pass but eliminates frequencies lower than 

the cut-off frequency. Sharpening is a high pass operation in the frequency domain; it 

uses filters such as Butterworth and Gaussian. These methods are time consuming, 

dependent on cut-off frequency and also need expert knowledge to select the  right 

process (Wang and Tan 2011). In addition, they often cannot meet medical image 

processing task requirements because they process the entire image. Thus, they may 

lose both partial and specific information and also may be easily affected by noise. 

Morphological image processing is an image processing technique based on shape and 

structure form (Sreedhar 2012). Morphological operations are important for filtering, 

segmentation and pattern recognition. The technique is a powerful non-linear tool for 

capturing image components; it is helpful in the representation and description of objects 

regions, such as boundaries, skeletons and convex hulls (Ciaccio 2011). Techniques 

such as erosion, dilation, opening and closing are used to perform morphological 

processing (Sreedhar 2012). Morphological operations are usually necessary to post-

process the segmentation results of threshold methods, because the latter use only the 

intensity histogram and ignore the spatial information (Fasihi and Mikhael 2016).  

A more comprehensive review of image quality enhancement techniques has been given 

by Gonzalez et al. (2010).    
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3.2.2 Image Segmentation  

 
Image segmentation is a process of partitioning an image into semantically meaningful 

sub-regions. In medical imaging this can be achieved by identifying a surface for each 

tissue class individually, or by classifying every pixel in the image (Seerha 2013). Medical 

image segmentation is an essential stage to model different tissues and is an effective 

tool for clinical diagnosis, staging, screening, treatment planning and evaluating 

response to therapy. 

In general, image segmentation can be divided into three types based on the degree of 

human interaction: manual segmentation, semi-automatic segmentation and fully 

automatic segmentation (Chitradevi and Sadasivam 2016; Fasihi and Mikhael 2016). 

Image objects can be divided into sub-regions manually, but it is time-consuming work, 

which has significant inter-observer and intra-observer variability; hence it is not 

reproducible.  

In semi-automatic segmentation methods, minimum human involvement is required at 

some stages e.g. to initialise the method or to correct segmentation results manually 

(Fasihi and Mikhael 2016). In fully automatic methods, prior human knowledge such as 

location, size or shape is incorporated in the algorithms to produce robust techniques 

(Fasihi and Mikhael 2016).  

Automatic segmentation methods are classified into three types based on the learning 

method that is used: supervised, semi-supervised and unsupervised segmentation. 

Supervised segmentation needs user interaction throughout the segmentation process 

whereas unsupervised methods generally require operator participation only after the 

segmentation stage is completed. In supervised segmentation, labelling the entire 

training data requires expert knowledge and is also time-consuming. In semi-supervised 

algorithms, a small amount of the data is labelled correctly and used for training, while 
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the rest is unlabelled (Fasihi and Mikhael 2016).  Unsupervised methods do not depend 

on a labelled training set at all.   

Alternatively, segmentation may be classified into classical and non-classical techniques 

(Bhattachayya et al. 2016; Chitradevi and Sadasivam 2016). Most of the classical 

segmentation approaches depend on filtering and statistical techniques. Classical 

methods engage thresholding techniques, edge detection or boundary-based 

techniques, region-based techniques, morphological techniques or :-means 

approaches. Non-classical techniques are represented in the fuzzy-neuro-genetic 

paradigm. Genetic algorithms are randomised search and optimization techniques 

guided by the principles of evolution and natural genetics; they work on the collection of 

probable solutions in parallel rather than the domain dependent knowledge. These 

techniques are ideal for those problems for which there is no knowledge about their 

domain theories or for problems that are difficult to formulate. Near optimal solutions with 

an objective or fitness function are provided by the genetic algorithms (Balla-Arabé et al. 

2013; Bhattachayya and Chakraborty 2016). There are three properties that can 

influence the result of segmentation of an object in an image: object boundaries, object 

homogeneity and object shape. Image boundaries and homogeneity are dependent on 

the modality used. The most challenging problem is to segment images with insufficient 

object boundaries, such as edges, and/or lack of texture contrast between regions of 

interest (ROIs) and background (Huang et al.  2013).  

There are various medical image segmentation methods; however, none of them works 

perfectly for all imaging modalities. Moreover, for each imaging modality, such as MRI 

or CT, there is no optimum method for segmentation. In addition, a suitable image 

segmentation method is dependent on the goal of the segmentation task. 

In the rest of this Section, the most popular segmentation methods are discussed. These 

methods can be classified into four types: 1) Threshold based methods; 2) Region based 
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methods; 3) Model-based methods; 4) Clustering methods (Fasihi and Mikhael 2016; 

Chitradevi and Sadasivam 2016).  

 Threshold based methods 
 
Thresholding is an important technique for image segmentation and pattern recognition 

and it is a basic component of many computer vision applications. The threshold is a 

value in a histogram that divides pixel intensities into two parts: the first part is the 

“foreground” that has pixels with intensity values greater than or equal to the threshold 

and the second part is the “background” that has pixel intensities less than the threshold 

(Norouzi 2014; Kaur and Goyal 2015).  

Thresholding can be implemented locally or globally; for the global approach, the target 

objects are extracted from the background on the basis of the grey-level histogram by 

creating a binary partition of the image intensities (Seerha 2013; Norouzi 2014; Kaur and 

Goyal 2015). In global thresholding, a single threshold is chosen for the entire image. 

These methods cannot be used in some types of image such as those that do not have 

a constant background and have variation across the object (Kaur and Goyal 2015; 

Chitradevi and Sadasivam 2016). 

The local thresholding method, that divides an image into sub images, can be used in 

order to define different threshold values for different parts of the image, after which 

multilevel thresholding can be applied (Norouzi 2014; Fasihi and Mikhael 2016; 

Chitradevi and Sadasivam 2016). Normally, local thresholding requires more time to 

segment an image compared to global thresholding. 

In order to select the threshold value for each sub image, different statistical values are 

used such as mean, standard deviation, mean and standard deviation together, and 

mean of maximum and minimum (Norouzi 2014). 
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A popular method proposed by Otsu (1979) is one of the best thresholding methods for 

real-world images as regards uniformity and shape measures (Horng 2010). Otsu’s 

thresholding method aims to find an optimal value for global thresholding (Norouzi 2014; 

Fasihi and Mikhael 2016). It is assumed that an image has two pixel classes or has a bi-

modal histogram. Otsu’s method has been widely used in medical imaging. For example, 

Wang et al. (2011) used Otsu threshold recognition combined with local entropy to 

extract prostatic lumina from histology images based on texture features of prostatic 

calculus. A multi-level Otsu method was proposed by Liao et al. (2001) to improve 

computation efficiency.  

In general, threshold-based segmentation techniques are unable to segment most 

medical images properly. However, these techniques are used as the first step in a 

segmentation process (Kaur and Goyal 2015; Chitradevi and Sadasivam 2016). 

At the same time, thresholding is a suitable choice for the segmentation of images that 

include objects with homogeneous regions, or when contrast between the objects and 

the background is high.  

There are some drawbacks to global thresholding methods, such as their sensitivity to 

noise and intensity, the non-use of spatial information in the image and the fact that they 

cannot be applied in cases of irregular background illumination (Fasihi and Mikhael 

2016).  

These methods do not provide good results in MRI without pre-processing but are 

effective for CT images, which have less noise (Norouzi 2014). MRI images have many 

different parts, which make these methods non-applicable. Thus, loss of information from 

the image and misdiagnosis occur and this may mislead physicians in their clinical task. 
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 Region based methods 
 
Region based methods partition the image into regions with no overlap between two 

different regions. The most common region-based method is the region growing 

segmentation algorithm. This algorithm is the one of most popular region based 

techniques used for brain tumour segmentation (Fasihi and Mikhael 2016). A detailed 

summary of region based segmentation approaches is presented in a survey by 

Chitradevi and Sadasivam (2016).  

Region growing is an approach to image segmentation based on the criterion of intensity 

information, in which neighbouring pixels are tested and connected to a region class if 

no edges are detected (Kaur and Goyal 2015; Fasihi and Mikhael 2016; Chitradevi and 

Sadasivam 2016). In region growing, the input image is adjusted into a set of 

homogeneous simple regions. Then, similar neighbouring regions are incorporated 

based on a certain decision rule and using an iterative merging process. At the 

beginning, the entire image is regarded as one rectangular region (Bhattachayya and 

Chakraborty 2016).  

Region growing is used usually in combination with other segmentation techniques to 

delineate small, simple structures such as tumours and lesions in mammograms 

(Norouzi 2014). This method has been widely used in mammography in order to extract 

the potential lesion from its background (Norouzi 2014; Fasihi and Mikhael 2016).  

The disadvantage of region growing is that it depends on the selection of a seed point, 

which requires human interaction (Nygren and Jasinski 2016). Seed point selection 

depends on human ability; thus, the extracted shape relies on the user to a considerable 

extent. Furthermore, the region may leak into nearby tissues with poor image contrast 

or when the boundary information is not good enough (Fasihi and Mikhael 2016).  
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 Model-based segmentation methods 
 
Normal human vision is able to detect objects in images whether or not they are 

completely represented. For this, specific knowledge about the geometric shape of the 

objects is required instead of local information. These types of model are also known as 

deformable models and they can be parametric or geometric (Fasihi and Mikhael 2016; 

Chitradevi and Sadasivam 2016). The regions need not be homogeneous because the 

methods use domain-specific prior information. Anatomic structures in an image can be 

segmented by building a connected and continuous model, which considers prior 

knowledge about the shape, location, size and direction of these structures.  

Parametric deformable models, also known as snakes, include active contours (2D) and 

active surfaces (3D). The snake is a common initial active contour, used for supervised 

boundary identification in 2D images. 

Active contour models or snakes have been widely applied in the segmentation of 

medical images to avoid the problem of intensity variation (Withey and Koles 2008). 

Snakes represent the objects as a set of landmarks. The initialisation step plays an 

important role in the use of snakes. In applications where the boundaries of objects are 

very close to each other, the starting position of the model should be placed close 

enough to the desired outlines to prevent converging to incorrect boundaries (Fasihi and 

Mikhael 2016).   

Model based methods have become common because they are potentially able to solve 

problems associated with the complexity of structures and to improve results for noisy 

data. The most common approaches are active shape models (ASM) and active 

appearance models (AAM). These models have been proven in recent years to be very 

useful for medical image segmentation.  
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3.2.2.3.1 Shape Models 
 
The statistical shape model was inspired by active contours.  This model took existing 

shape information into account when deforming the contours used in the snakes 

algorithm (Cootes 2000). In medical image segmentation, prior shape information 

obtained from segmented objects is often used to build a shape model for various 

structures. The shape model is used to extract shapes from images. The ASM relies on 

the fact that searching is based on prior knowledge of the target object shape and 

position. This is an important characteristic of this algorithm as it allows the user to 

choose the images and to carefully place the “landmarks” for the creation of a model.  

Expert knowledge of the subject can be used in such tasks. 

In medical imaging, shape models are mostly used for segmentation and recognition 

tasks (Melinska et al. 2015). A comprehensive review of shape models applied to 

medical image segmentation is presented in an article  by Heimann and Meinzer (2009).  

 A step in the shape model searching process is the manual identification of landmark 

points in a set of training images, where the same landmark refers to the same 

anatomical location on each training image. 

In respect of applying ASM for detection of the aorta or nearby vertebral structures, a 

number of studies have been published. Smyth et al. (1999) implemented an ASM to 

measure vertebral shape with high accuracy in VFA images obtained from DXA. The 

ASM was applied on full spine DXA scans obtained in a large cohort of patients with 

vertebral fractures. The authors reported the potential for the ASM to be used to detect 

fractures.  

Bruijne et al. (2004) proposed semi-automatic delineation of abdominal aortic aneurysms 

using shape model fitting in sequential slices acquired by CT angiography. The shape 

model was used by Bruijne (2005) to segment the aorta on lateral spine images from 

radiographs. The abdominal aorta is made of soft tissue and cannot be detected from 



35 
 

 

background soft tissue on lateral spine images, and so segmentation was achieved by 

utilising its relative position to the four lumbar spine vertebrae (L1-L4). 

A statistical model of shape also has been also used for cervical vertebra detection. The 

segmentation process included the following steps: (1) learning, in which landmarks 

were placed on the images to describe the vertebrae;  (2) model design, in which a model 

was created after all the marked shapes had been aligned; (3) initialisation, in which the 

mean shape was placed on the area of interest and (4) segmentation, in which each 

point of the mean shape evolved in order to fit the edges of the vertebra (Benjelloun et 

al. 2011).  

Shape models have also reported to be powerful algorithms for the prediction of bone 

strength in vivo, because they include information about bone shape and bone tissue 

material properties (Sarkalkan et al. 2014). Melinska et al. (2015) proposed a method to 

model the calcaneus by using the shape model.  

The main advantage of ASMs is that the models are specific to the type of object under 

study, they describe only the variation observed in the training set and do not allow for 

other variation (Smyth et al. 1999). 

In this study, the aim is to segment the calcified aorta in VFA images. The segmentation 

of the aorta is not easy because if the aorta is not calcified it cannot be seen of the x-ray 

images. Prior knowledge of the aorta location relative to the lumbar spine can be used 

to complete this task. Prior knowledge about the expected shape of the four lumbar 

vertebrae close to aorta can be very useful to detect the position of the calcified aorta in 

the VFA images. 
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3.2.2.3.2 Appearance Models 
 
ASM has been extended to include local texture information when training and searching 

(Cootes and Taylor 2001; Cootes 2004). The active appearance model (AAM) algorithm 

attempts to find the model parameters, which generate a synthetic image similar to the 

target image. In each case, the best fitting model parameters can be used for another 

processing stage, such as measurement or classification (Cootes 2004). The advantage 

of AAM over ASM is that one can build a model with only a small number of landmarks 

(Cootes and Taylor 2001). 

  Clustering  
 
Clustering is a process of arranging objects into groups based on the similarities of their 

features. The concept of similarity is used when dissimilar objects are grouped into 

different clusters. Similarity may be determined using measurement methods such as 

the Euclidean distance. Among the basic unsupervised clustering methods are Fuzzy C-

means (FCM), : −means and Markov Random Fields (MRF) (Chitradevi and Sadasivam 

2016). These algorithms are known as unsupervised learning methods because they do 

not need training data and they consume less time (Norouzi 2014; Chitradevi and 

Sadasivam 2016). Several FCM algorithms have been used for MRI segmentation. 

In the : −means clustering algorithm, the data set is classified into a number : of 

	clusters. Simplicity and low computation cost are the main advantages of : −means 

algorithm. However, their drawback is that the user has to select the : value in order to 

segment the image and different :	values give different results (Norouzi 2014; Chitradevi 

and Sadasivam 2016). 

In the Markov Random Fields (MRF) clustering method, spatial information is included 

in the clustering process and so clusters overlap and the effect of noise is reduced. MRF 

methods have been used to segment CT images of tumours (Fasihi and Mikhael 2016). 
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Supervised clustering methods include artificial neural network (ANN) and Bayes 

methods. ANN approaches are known as non-parametric techniques, because no 

parametric distribution (such as Gaussian) is proposed for the data (Chitradevi and 

Sadasivam 2016). The original concept behind the neural network was inspired by the 

mechanism of pattern recognition in the brain. A neural network can estimate the 

correlation between class labels and features, and it can also deal with multi-class data, 

where the data can be given more than two classes or categories.   

An example of the application of neural networks in medical image processing is the 

Computer-Aided Diagnosis of solid breast nodules. Such an algorithm can identify breast 

nodule malignancy using multiple US features and an ANN classifier; the authors 

reported a sensitivity of 99% (Joo et al. 2004).  

3.3 Statistical Machine Learning  

Statistical machine learning involves data analysis and provides a framework, that allows 

researchers to decode what computed characteristics reveal, and how these 

characteristics could be used as a decision support tool. The characteristics are 

qualitative and they can be assigned to an ordinal scale. For example, AAC could be 

categorised as follows: (a) mild, (b) moderate and (c) severe. In this case, AAC severity 

could define a scale that would read: 1= mild, 2 = moderate, and 3 = severe.   

Generally, data analysis starts by exploring the statistical characteristics of the data and 

producing plots to get the general impression of the spread of values. Initially, the 

probability densities of the features can be plotted. The simplest histograms are those 

that provide an overview of the distribution of values for each feature and for the 

response variable, which is equivalent to the diagnosis. The response variable can be 

divided into categories or classes. When the response variable takes any number of 

finite classes, the problem of predicting it is known as classification. When the response 
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variable takes any real value (any possible number from −∞	=>	∞, the problem is known 

as regression (Tsanas et al. 2013).  

In medical applications, classification is more frequently used, and hence this approach 

is used exclusively in this research.  

3.3.1 Classification 

 
Classification is important in data analysis, pattern recognition and machine learning. It 

provides intelligent decision making (Norouzi 2014). Classification is a process in which 

a model or classifier is constructed to predict class labels.  

The aim of classification is to predict accurately the target class for each case in the data 

(Kesavaraj and Sukumaran 2013). The simplest type of classification problem is binary 

classification, where the target attribute has only two possible values. Multiclass targets 

have more than two values. To use the supervised classification technique, a subset of 

observations and measurements for which the target value is already known should be 

defined as training data. Training data include both the input and desired results.  

Kotsiantis (2007) has described the classification process as a series of steps. The first 

step is collecting a dataset with known labels. In medical imaging, image labelling is often 

visually obvious and can be done through examination by an experienced operator 

(Pham et al. 1998). The second step is data preparation and data pre-processing. Pre-

processing algorithms can be employed for issues such as missing values, discretisation 

and noise removal.   

The third step is feature selection to identify and remove irrelevant and redundant 

features. This makes the algorithms work faster and also can improve their performance. 

The critical step is learning algorithm selection and how to choose a specific one. The 

final step is evaluation; in this context, there are at least three techniques that can be 

used to calculate classifier accuracy, all of them based on splitting the data into training 
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and testing sets (Mudry and Tjellström 2011). The difference between these techniques 

lies in how the division into these two data sets is made. Cross-validation and leave-one-

out are examples of validation procedures. 

The basic form of cross validation is @-fold cross-validation. Other forms are special 

cases of @-fold cross-validation or involve repeated cycles of @-fold cross-validation 

(Mudry and Tjellström 2011). In	@-fold cross-validation, the data are divided into @ 

equally or approximately equally sized folds. Subsequently, @ iterations of training and 

validation are performed such that within each iteration a different fold of the data is set 

a side for validation, while the remaining @ − 1 folds are used for learning. 

Leave-one-out cross-validation (LOOCV) is a special case of @-fold cross-validation 

where @ equals the number of observations in the data. Therefore, for each iteration all 

the data except for a single observation are used for training and the model is tested on 

that single observation. If the accuracy is unsatisfactory, the previous steps should be 

examined to establish the reasons. Poor accuracy can be due to using irrelevant 

features, imbalanced data, an inappropriate learning algorithm or high dimensionality. 

Traditionally, supervised machine learning classifiers can be compared by performing a 

statistical examination of the accuracies of trained classifiers on specific data sets. The 

paired t-test is used to check the null hypothesis that the mean difference between the 

classifiers is zero (Kotsiantis 2007). Two types of errors can be created. Type I error is 

the probability that the test rejects the null hypothesis incorrectly. Type II error is the 

probability that the null hypothesis is not rejected, whereas actually there is a difference. 

Ideally, the test results should be independent of particular partitioning. This can be 

achieved by randomising the process of classification and repeating the process several 

times (Kotsiantis 2007). 
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Choosing the best algorithm for classification can be done by relying on previously 

published studies in particular medical imaging applications. In this context, some 

comparative classification studies are reviewed in this section. 

Fernández-Delgado et al. (2014) evaluated 179 classifiers using 121 data sets over the 

UCI data base (Lichman 2013). The UCI Machine Learning Repository is a collection of 

databases, domain theories, and data generators that are used by the machine learning 

community for the empirical analysis of machine learning algorithms. 

Random forest (RF) was reported to be the best classifier with a maximum accuracy 

94.1%; the accuracy was greater than 90% in 84.3% of the data sets. The second best 

was support vector machine (SVM) with a Gaussian kernel implemented in C using 

LibSVM, which achieved 92.3% of the maximum accuracy. The authors also reported 

that there was no significant statistical difference between RF and SVM classifier results. 

K-nearest neighbour (K-nn) is a popular parametric classifier method. The disadvantage 

of the SVM and K-nn methods is that they do not take spatial information into 

consideration. Singh (2016) has published a recent review of supervised machine 

learning algorithms in terms of the accuracy, speed of learning, complexity and risk of 

over fitting measures.  

3.3.2 Accuracy of Classification  

 
In general, the accuracy of a diagnostic test indicates the ability of the test to distinguish 

between patients with disease and those without (Leeflang et al. 2018).  

Typically, the results of the test are categorised as positive or negative for the target 

condition. The terms positive and negative originate in early medical applications, where 

patients with some observed medical phenomenon (e.g. an illness) were denoted as 

positive, and the rest of the patients were described as negative. If a patient is positive 

for illness and is classified as positive by the test, this denotes a true positive (TP). If the 
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classifier prediction is negative, this is called a false negative (FN). Similarly, if the patient 

is negative for the illness and the classifier prediction is positive, this denotes a false 

positive (FP), while a negative prediction is called a true negative (TN).  

In addition, sensitivity and specificity are also used to assess a medical diagnostic test. 

Sensitivity indicates the proportion of true positives correctly identified. In contrast, 

specificity refers to the proportion of true negatives correctly identified (Orrù et al. 2012; 

Harefa and Pratiwi 2016). Accuracy is the sum of TP and TN expressed a proportion of 

the total number of cases (Leeflang et al. 2018). Accuracy, sensitivity and specificity can 

be defined as follows (Majnik and Bosni  2013):  

Accuracy	 = 	
G, + GI

G, + J, + JI + GI
														(3.1) 

 

#KLMN=NON=P = 	
G,

G, + JI
																																	(3.2) 

 

#4KRNSNRN=P	 = 	
GI

GI + J,
																														(3.3) 

 

 

 

3.4  Automatic Detection and Quantification of AAC 

With regard to detecting and quantifying AAC automatically, only a few methods have 

been developed in the past. Bruijne (2005) proposed the first method for automatic 

detection and quantification of calcified plaques from radiographs of the lumbar aorta. In 

this study, medical experts outlined the calcification manually on a set of images of the 

part of the aorta adjacent to the lumbar vertebrae (L1-L4). The vertebrae were annotated 



42 
 

 

by placing 6 points on each one as is done routinely in vertebral morphology studies. 

The linear point distribution models (PDM) proposed by Cootes et al. (1995) were used 

to model object shape variations observed in the training set. To detect calcification, a 

pixel classifier was trained to differentiate between calcified pixels and the background. 

Pixels used for training were selected randomly from a region of interest including the 

aorta and its surroundings. Pixel classification into calcified and non-calcified was based 

on one threshold value. Nonetheless, the author reported an accuracy of 93.8%.  

In another published work, the severity of atherosclerotic plaques on standard 

radiographs was estimated by Conrad-Hansen et al. (2007). Plaque severity was 

measured by subtracting the inpainting from the original image. The limitation of this 

work was the lack of accuracy in manual segmentation, which influenced the inpainting. 

The approach was based on comparing the observed image intensity to the image 

intensity that would be expected if the aorta were uncalcified. First, all calcified areas in 

the L1-L4 region were segmented. Images were annotated manually by radiologists. 

Thus, the non-calcified aorta appearance was reconstructed by interpolating the 

background image around the calcification using inpainting techniques. Plaque density 

was then estimated by subtracting this inpainting from the original x-ray. 

Lillemark (2010) proposed the first method to describe the growth pattern of AAC over 

time, based on the assumption that growth pattern was a good estimator of the 

progression of atherosclerosis on radiographs. Follow-up of radiographic images were 

registered to the baseline images with thin plate spline (TPS) registration. TPS was 

chosen due to its ability for aligning the deformable aortas globally from a few landmarks. 

Landmarks on the intersections between the anterior and posterior aorta walls and the 

inter vertebral lines were used for the registration. Area, height, width, centre of mass 

position, movement of the centre of mass and upper and lower boundaries of matched 

AACs were measured on images obtained at two different time instances. AAC growth 
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was measured from individually matched AACs with area overlap used as the matching 

criterion. 

A new morphological atherosclerotic calcification distribution (MACD) index was 

proposed by  Barascuk et al.  (2011). MACD was quantified from outlines of the calcified 

aorta on radiographs of the lumbar region. It was defined as the number of distinct 

calcified deposits (NCD) multiplied by the morphological atherosclerotic distribution 

(MAD) factor. The MAD factor describes the growth potential of the calcified plaques and 

was calculated by estimating the plaque area as visualised on the radiographs. The 

MACD factor was compared with scores derived using the AC-24 system. The study 

concluded that a refined index of aortic calcification, MACD, may provide additional and 

important information on risk related to CVD mortality compared to the traditional AC-24 

index. This study was limited by a small sample size of 20 radiographs and the results 

were valid for a follow-up period of 8.5 years.  

Recently, an analytical approach was developed for AAC quantification in VFA images 

(Grant et al. 2017). The study assessed a quantitative index to characterise AAC severity 

(QAAC). The technique relies on the relationship between plaque density and brightness 

on radiographs. AAC severity was quantified using an algorithm that measured pixel 

intensities in a defined ROI and that automatically exported all data points along its 

length as it moved horizontally across the observer specified ROI. The correlation 

between BMD and AAC measured by QAAC and a modified AC-24 score, which used 

only 12 points to score AAC, was determined in 110 patients. The study proved that 

there was a significant inverse relationship between bone density and aortic calcification 

measured by the QAAC technique. However, AAC was assessed only on segments of 

the aorta adjacent to L3-L4 and it was time-consuming to measure AAC severity in 

comparison with the Framingham technique. 
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3.5 Summary  

This chapter has provided a review of image processing methods for segmentation and 

data analysis in medical applications. The chapter also surveyed available automatic 

methods for AAC measurements.  

 The main findings of the literature review were as follows: 

1. There is a lack of studies describing automatic methods for AAC detection and 

quantification. Only one automatic method has been implemented in the past, 

but this was validated on radiographs. Furthermore, this method was not related 

to the accepted manual AAC measurement methods and thus it is unlikely to be 

adopted in the medical field.  None of the proposed methods were tested in VFA 

images. 

2. A new automatic method is required for AAC detection and quantification in VFA 

images. The new automatic quantification method needs to be related to the 

accepted manual assessment methods to ensure its possible future adoption by 

the medical community. 

The next chapter describes dual energy x-ray absorptiometry, the modality used in this 

study to acquire VFA images.   
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 Dual	Energy-X-ray	Absorptiometry	

 

Dual Energy X-ray Absorptiometry  

4.1 Introduction 

This chapter introduces the DXA modality utilised in this thesis for the detection of AAC. 

As outlined in Chapter 2, DXA is a standard diagnostic technique that is widely used to 

diagnose osteoporosis. The addition of VFA allows the detection of vertebral fractures. 

DXA is the gold standard for clinical trials designed to evaluate changes in patient BMD 

following therapeutic intervention. Osteoporosis is characterised by decreased BMD and 

poor bone quality resulting in an increased fracture risk. BMD is measured in g/cm2 but 

commonly expressed as the T-score, the number of population SDs above or below the 

mean for healthy 30-year- old adults of the same sex and ethnicity as the patient (Oei et 

al. 2016). VFA has become a valuable and significantly used method to diagnose 

patients with osteoporosis by indicating the presence of vertebral fractures. The VFA 

method provides quick image acquisition at low cost and with low radiation exposure.  

This chapter describes the physics of DXA and presents the characteristics of VFA 

images acquired by this modality. The properties of two models of Hologic DXA scanners 

(Discovery and Horizon) used in this study are presented. 

4.2 Clinical Application of Dual Energy X-ray Absorptiometry 

DXA is a two-dimensional non-invasive projection method that measures BMD in the 

lumbar spine, femur and forearm, which are the most common sites for osteoporotic 

fractures. Lumbar spine BMD measurements are usually made in the antero-posterior 

(AP) projection and may also be made in the lateral projection. The lateral spine image 
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allows BMD measurements in the vertebral bodies. These contain mainly trabecular 

bone without significant contribution from cortical bone, which is present in the posterior 

vertebral components (Finkelstein et al 1994).This technique is useful to diagnose 

osteoporosis and to evaluate the risk of fracture, so that therapeutic decisions can be 

taken and response to treatment assessed. In addition, whole body DXA imaging is a 

method for total and regional body composition measurement (Hologic 2003).  

DXA was introduced in 1987 by Hologic and has become the gold standard for clinical 

BMD measurements (Wu et al. 2012). DXA is a popular technique for bone densitometry 

due to its high precision, low radiation dose, stable calibration and short scan times 

(Adams 1997). The World Health Organisation (WHO) has established DXA as a widely 

validated technique to measure BMD (World Health Organisation 2004). Two main 

manufacturers provide bone densitometers: Hologic and GE, previously Lunar.  

For clinical interpretation, BMD is compared to the relevant reference population to 

calculate T and Z scores (Hricak 2013). The T-score compares the measured BMD with 

the mean BMD of a young (30-year-old) healthy population of the same gender. The 

WHO introduced the following classification system: if T-score at the spine, hip or 

forearm is less than -2.5, this indicates osteoporosis; if it is between -1.0 and -2.5, this 

indicates osteopenia and if it is greater than -1.0, this is regarded as normal. The Z-score 

compares measured BMD with that of an age and sex matched population and therefore 

accounts for the expected decline in BMD with age (World Health Organisation 2004). 

The WHO has developed a Fracture Risk Assessment Tool (FRAX), which calculates 

the 10-year probability of a major osteoporotic fracture (Hricak 2013). This is an on-line 

tool that can be found at www.sheffield.ac.uk/FRAX. The risk factors incorporated in this 

software include age, sex, weight, height, use of glucocorticoid therapy, history of 

previous fracture, family history of hip fracture, smoking and alcohol consumption, and 

the presence of rheumatoid arthritis. Femoral neck and BMD may also be included if 

available.  
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DXA is based on two assumptions: first, the body is composed of only two components 

(soft tissue and bone mineral) and second, soft tissue overlying bone has the same 

composition as that adjacent to bone. Soft tissue includes muscle, fat, viscera, bone 

marrow, skin and the bone collagen matrix. Inhomogeneity of the fat distribution within 

the body will significantly affect DXA accuracy (Michael and Henderson 1998; El 

Maghraoui and Roux 2008). DXA scanners are usually calibrated assuming an 

abdominal thickness of 15 – 25 cm and errors may occur when scanning very thin 

patients (<10 cm) and the obese (>30 cm) (Cullum et al. 1989). Generally, the accuracy 

error of the most widely used bone densitometers is about 5 –10 % (Guglielmi et al. 

2014). 

Precision is a measure of the reproducibility of bone densitometry and is usually 

expressed as a coefficient of variation (CV). CV is the ratio of the standard deviation 

(SD) of a series of measurements to the mean value expressed as percentage. Ideally, 

DXA precision needs to be in the region of 1 %, and certainly better than 3 % in clinical 

use (Hricak  2013).  

4.3 Physics of Absorptiometry 

Three different photon interactions with tissue occur in the energy range that is relevant 

to bone densitometry: photoelectric effect, Raleigh scattering and Compton scattering 

(IAEA 2010).  

The photoelectric effect converts the energy of a single photon into that of a single free 

electron and this type of interaction dominates at low energies. The photon is completely 

absorbed when it interacts with a bound electron and the electron emerges with kinetic 

energy equal to the photon energy ℎU minus the electron binding energy. The probability 

of photoelectric interaction decreases rapidly as the photon energy increases. In general, 

the mass attenuation coefficient VW for photoelectric absorption varies roughly as 

1/(ℎY)Z	and with [Z, where [ is the atomic number of the tissue (Hendee et al. 2003).  
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Rayleigh scattering occurs when the x-ray photon interacts with the whole atom. Photons 

are scattered in approximately the same direction as the incident photon with negligible 

loss of energy. This interaction occurs in media with high atomic number and is important 

in tissue only for low-energy photons. The importance of Rayleigh scattering is further 

reduced because little energy is deposited in the attenuating medium.  

Compton scattering occurs when an incident x-ray photon ejects an electron from an 

atom and the photon is scattered with lower energy. The Compton mass attenuation 

coefficient varies directly with the electron density (electrons per kilogram) of the 

absorbing medium because Compton interactions occur primarily with loosely bound 

electrons.  

The Compton mass attenuation coefficient is approximately independent of the atomic 

number of the attenuating medium	([). For this reason, radiographs show very poor 

contrast when exposed to high-energy photons. When most of the photons in a beam of 

x-rays interact by Compton scattering, little selective attenuation occurs in materials with 

different atomic number. The image in a radiograph obtained by exposing a patient to 

high-energy photons is not the result of differences in atomic number between different 

regions of the patient, but reflects differences in physical density (kilograms per cubic 

meter) between the different regions (e.g., bone and soft tissue) (Hendee et al.  2003). 

The transmission of monoenergetic photons through the body is given by:	 

																	\ = 			 \]				K^4	 _−	`abc				(dc

cef

ce)

^c	)g																																																				(4.1)												 

where \	, \] are the incident and transmitted intensities, abc			is the mass attenuation 

coefficient in Rh2	ij)	of the absorber material, dc is the material density, ̂ c is the material 

thickness in Rh, N	 represents an individual tissue and I is the number of different 

tissues.  
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The total attenuation depends on the thickness of the tissue and, in DXA, this will vary 

as bone mineral and soft tissue thickness varies. As a monoenergetic x-ray beam passes 

through bone that is surrounded by soft tissue, the transmitted intensity will be given by: 

		\ = 			 \]			 K^4− (	ak	dk	^k 	+	 	al	dl	^l)																																																	(4.2) 

where m and M represent bone mineral and soft tissue respectively; ^l, ^k are the 

thickness of bone mineral and soft tissue in the x-ray path and dl, dk are the physical 

density of bone and soft tissue. The main chemical components of soft tissue are 

hydrogen, oxygen, nitrogen and carbon and these elements have lower physical density 

and lower atomic number than calcium and phosphorus that are found in bone mineral. 

The volume of an attenuating element is given by: 

																						n = 			A	 × ^																																																																																					(4.3) 

where A is the projected area perpendicular to the x-ray beam. The physical density is 

given by:  

					d = 			
h

n
			= 	

h

p × ^
																																																																																										(4.4) 

where h is the mass. Combining equations 4.3 and 4.4 gives the area density (M) i.e. 

mass per unit area as shown in equation 4.5. 

																						q = 			
h

p
= 	ρ	^																																																																																													(4.5) 

DXA is a two-dimensional projection technique and therefore BMD is an area density 

measurement not a volumetric density. Substituting for M in equation 4.2 gives: 

							\ = 			 I]K^ 4−(µk	qk +	µl	ql),																																																																	(4.6)																	 

Taking the natural logarithm of equation 4.6 gives:  
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wL		 x
\*
\
y = 	ak	qk +	al	ql																																																																								(4.7)										

The logarithm of the ratio of incident intensity to transmitted intensity ({),	can be written 

as:  

J = 	µk	qk +	µl	ql																																																																													(4.8)		 

In dual energy mode, transmission measurements are made at two different photon 

energies (low and high) are given by:  

Low energy: 

	{~ = 	µk
~ 	qk +	µl

~	ql																																																																							(4.9)		 

High energy: 

{ = 	ak	qk 	+	alql																																																																									(4.10) 

These simultaneous equations are solved for ql and qk :  

ql 			= 	
{~	 − 	Ä

ak
~

akÅ 	Ç 	{

al
~ −	Ä

ak~
akÅ 	Ç al

																																																												(4.11) 

qk 			= 	
x
al
~

al
Å 	y 	{ −	{~

	x
al
~

al
Å 	y ak −	ak~

																																																											(4.12) 

The ratio of the soft tissue attenuation coefficients at the two energies is defined as	Ék 

and this depends on the soft tissue composition. 

													Ék = 	
ak
~

ak
																																																																																			(4.13)					 
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ql 			= 	
{~	 − 	Ék	{

al
~ −	Ék	al

																																																																					(4.14) 

In a bone-free region, ql 	= 	0 and so  

  

																																	{~ = 	µk
~ 	qk																																																						(4.15)		 

 

																																	{ = 	 ak	qk																																																					(4.16) 

																													Ék = 	
ak
~

ak
	= 	

{~

{
																																																			(4.17)		 

 

	Ék is a measure of the percent fat of the soft tissue (IAEA 2010). It varies with the lean-

to fat ratio within soft tissue with an increase in fat reflected by a decrease in	Ék. BMD is 

calculated by assuming that the thickness and composition of the soft tissue in the bone-

free region is identical to tissue anterior and posterior to bone and within bone so that 

they have identical Ékvalues. 

The measurement of ql	is described in equation 4.14 for a single x-ray path through 

bone and soft tissue, whereas in practice measurements over a volume of bone are 

needed. To achieve this, a linear series of measurements across the part of the patient 

that contains bone must be made. The region of tissue adjacent to bone but within the 

analysis region is known as the soft tissue baseline. The result is an attenuation profile 

for each of the x-ray beams. The high-energy absorption profile is multiplied by Ék and 

then subtracted from the low energy profile to leave bone mineral. 

BMD values are presented as a digital image with each pixel corresponding to a 

measurement point through the patient. In order to cover a larger area of bone, 

numerous attenuation profiles are acquired along the length of the bone to form an 
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image. The 	Ék value is estimated line-by-line over the image and averaged over soft 

tissue on either side of bone within the DXA algorithm. The projected area of bone (BA) 

in Rh2 is the sum of the pixels within the bone edge. Within this area, the BMD of 

individual pixels is averaged and multiplied by the BA to calculate bone mineral content 

(BMC) in	i.  

A lumbar spine DXA image showing analysis regions and an example of BMD, BMC and 

BA results is shown in Figure 4-1 (IAEA  2010). Lumbar spine BMD measurements are 

usually made in the antero-posterior (AP) projection although it is also possible to 

measure BMD in the lateral projection.  

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 4-1:  Lumbar spine DXA image showing analysis regions and an example of BMD, BMC, 
and BA results 
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4.4  Dual Energy X-ray Absorptiometry Technology 

Typically, a DXA system consists of an x-ray tube emitting photons, which are filtered 

and collimated to pass through the patient’s body as a beam and then enter a detector.  

The photon source, collimator and detector are aligned and connected mechanically on 

a scanning arm (Shepherd 2009). Figure 4-2 shows a schematic diagram of a DXA 

system with a fan- shaped x-ray beam in the anterior-posterior (AP) direction. In some 

DXA scanners, the arm can rotate through 900 from the AP position so that the beam is 

in to the lateral direction. Figure 4-3 shows a Hologic (Discovery) DXA scanner with the 

arm in the in lateral position. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 4-2: DXA scanner components AP scan. (https://ufhealthjax.org/womens-imaging/images/dxa-
procedure.jpg) 
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Figure 4-3: Hologic Discovery DXA scanner in position for a lateral spine scan 
 
 
 
 
 
 
 

4.4.1 Production of Dual Energy X-ray beam 

 
DXA produces a spectrum with two x-ray energy peaks. The low and high energies are 

selected to optimise the separation of bone mineral and soft tissue in the scanned sites. 

x-ray tubes produce radiation with a continuous spectrum of photon energies. In single 

energy (SE) mode, only one effective energy is produced by the x-ray tube. In dual 

energy (DE) mode,  two x-ray energies are produced either by continuously switching 

the voltage of the x-ray tube between high and low values, known as kV switching, or by 

K-edge filtration (Blake and Fogelman 1997). The K-edge is the binding energy of the K 

shell electron of an atom. A sudden increase in the attenuation coefficient of photons 

x-ray detectors 

x-ray source 

Hologic spine phantom 
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occurs at a photon energy just above the binding energy of the K shell electrons of the 

atoms interacting with the photons. 

Hologic uses a voltage switching system. In the original QDR1000 DXA scanner, the x-

ray tube voltage was switched between 70 kV (as low energy) and 140 kV (as high 

energy) during half-cycles of the electrical power supply (Shepherd 2009). In later 

models, including the Discovery and Horizon scanners used in this research, the 

voltages were 100 kV and 140 kV (Shepherd et al. 2002).  

The higher x-ray energy beam undergoes hardening to remove the low energy part of 

the x- ray spectrum by using copper or brass filters during the corresponding half-cycle. 

The effective photon energy alternates between 40 keV and 70 keV (Lorente-ramos et 

al. 2011).  

In a K-edge filter system, such as that used by GE (Lunar), the x-ray tube is operated at 

a constant voltage and filtered into low and high energy bands (IAEA  2010). The K-edge 

filter separates the x-ray spectrum into two separate components of ‘‘high-energy’’ and 

‘‘low- energy’’ photons:  using either a cerium filter; (70 and 40 keV) or using a samarium 

filter (45 and 80 KeV) (Hricak  2013).  

4.4.2 DXA Detectors and Collimators 

 
DXA scanning geometries vary; the original DXA scanners used a pencil x-ray beam. 

Scanning time was approximately10–15 min per single site, and up to 30–40 min for 

whole-body imaging in a large patient. Modern DXA scanners have a fan shaped x-ray 

beam and a bank of detectors, which allows faster scanning and improved image quality 

and spatial resolution. The spatial resolution of modern scanners is between 0.5 and 

0.35 mm (Hricak 2013). Cone beam scanners are also available, in particular for small-

animal applications.  
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In pencil beam DXA systems, the source collimator is a small hole that illuminates a 

single detector. Images are formed by linearly translating the x-ray gantry across an 

entire image row and then shifting down one pixel and scanning the next row in the 

opposite direction (i.e. raster-scanning).  

Fan beam DXA systems have slit collimators and a linear array of 64 or more solid-state 

detectors. Images are formed by scanning linearly in the direction perpendicular to the 

length of the detector array, with the entire array being exposed to radiation. This makes 

fan beam systems faster compared with pencil beam systems in proportion to the 

number of elements, because a larger portion of the x-ray tube flux is used (Wu et al. 

2012; Speller et al. 2006). In addition, the detectors in fan beam system are smaller than 

those in pencil beam systems, resulting in smaller pixel sizes (Shepherd 2009).  

Cone beam systems have a rectangular source aperture (collimator) that illuminates an 

entire region of interest for each exposure. In these systems, the effect of scattered 

radiation can be significant. 

The function of the detector is to determine the tissue attenuation at a certain point in 

the patient by comparing the x-ray intensity measured at that point to the x-ray intensity 

measured with no patient present. The detector may be a scintillation crystal coupled to 

a photo multiplier tube (PMT) or, in more modern systems, a photodiode. When an x-ray 

interacts with a scintillating material, the energy of the x-ray is converted into a 

scintillation consisting of many photons of light. A PMT or photodiode converts this 

scintillation into an electrical voltage pulse. Photodiode detectors consist of either a light-

sensitive photodiode coupled to a scintillator or an x-ray-sensitive photodiode. Their 

advantage is that they can be manufactured in small sizes of 1 mm2 to 4 mm2, compared 

to approximately 10 mm2 or larger for PMT (Shepherd 2009). Therefore, photodiodes 

are used in high spatial resolution DXA systems that use fan or cone beam geometry. 

However, their disadvantage is that they do not contain any internal gain; thus, noise is 

higher and for comparable image quality, a higher x-ray flux is required.  
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4.5 Hologic DXA  

In this study, two types Hologic DXA scanner were used: Discovery and Horizon. The 

Discovery was the first system to integrate the two factors for determining osteoporotic 

fracture risk: BMD measurements and VFA. The Discovery uses a high-resolution 

detector array of 64 to 216 elements in addition to a fan beam technology. This provides 

a technical foundation for high image quality and improves scanning time. The system 

captures the hip and spine with 10-second scanning time and dose of less than 10µSv  

(Ram 2012).  

The Hologic Horizon is the latest version of the Hologic QDR series; like the Discovery, 

it integrates BMD measurement and VFA (Wu et al. 2012). Ultra-fast, high output 

ceramic detectors, a high frequency pulsing x-ray generator and an internal reference 

system are the key technology innovations of the Horizon scanner. The Horizon scanner 

uses a high-resolution multi-element detector array with gadolinium sulfoxylate 

(GADOX) scintillator technology (64 to 216 detectors, model dependent) (Wilson and 

Kelly 2013). Pulsing x-ray generators of high frequency are used in fluoroscopy to reduce 

radiation dose while maintaining image quality.  

In this research three DXA scanners were used: Discovery A (S/N: 70902) upgraded 

from Delphi in 2014, Discovery A (S/N: 86224) and Horizon A (S/N200253). The x-ray 

source alternate between high (140 kV) and low (100 kV).  

4.6 Quality Control  

Each Hologic DXA scanner is provided with an anthropomorphic spine phantom for 

quality control (QC) purposes.   

Hologic recommends that users should scan the QC phantom at the beginning of each 

day on which patient BMD is measured and at least three times a week. Spine phantom 

images are analysed using the standard Hologic BMD software.  
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QC scans were retrieved from the DXA scanner archives at the University Hospital of 

Wales, Cardiff to cover the period over which VFA scans were acquired in this work. 

Table 4-1 lists the spine phantom L1 to L4 BMD QC results for three Hologic DXA 

scanners over the time period of the first part of this research. Table 4-2 lists the 

corresponding QC results over the period of the phantom study in this research.  Figure 

4-4 shows a QC BMD plot for the Discovery A scanner (S/N70902) from 2012 to 2015. 

All CV% values were less than 0.5% and there was no significant change of BMD with 

time, indicating good scanner stability.  

 

Table 4-1: QC results for three DXA scanners over the acquisition period of the clinical VFA scans 
 

 

DXA scanner 

 

 

Type 

 

N 

 

Period 

 

Mean 
BMD 

(g/cm2) 

 

SD 

(g/cm2) 

 

CV% 

S/N: 70902 Discovery A 793 Jan 2010- Dec 2011 1.013 0.005 0.457 

S/N: 86224 Discovery A 1477 Jan 2012- Dec 2016 0.998 0.003 0.264 

S/N: 200253 Horizon A 564 Jan 2016- Dec-2017 0.921 0.002 0.225 
 

 

 

 

Table 4-2: QC results of three DXA scanners used experimental phantom scan 
 
 

  
 
 

   

 

DXA scanner 

 

 

Type 

 

N 

 

Period 

 

Mean 
BMD 

(g/cm2) 

 

SD 

(g/cm2) 

 

CV% 

S/N: 70902 Discovery A 1159 Jan 2010- Dec 2015 1.014 0.005 0.464 

S/N: 86224 Discovery A 316 Dec 2017-Jan 2018 0.996 0.003 0.270 

S/N: 200253 Horizon A 383 Aug 2016- Dec 2017 0.921 0.0019 0.209 



59 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4-4: Quality control plot for L1 to L4 BMD of the Hologic spine phantom BMD for one DXA 
scanner between 2012 and 2015 
 
 
 
 

4.7 Vertebral Fracture Assessment (VFA) 

The most important clinical outcome in osteoporosis is the occurrence of fracture. 

Vertebral fractures usually occur in postmenopausal women and older men, with an 

estimated prevalence of 10% - 26% in both men and women aged 50 years and older 

(Drampalos 2015). Highly effective drugs are available for osteoporosis treatment. The 

most efficient is the bisphosphonate zoledronic acid, which can reduce the risk of 

vertebral fractures by 76% and of non-vertebral fractures by 24% (Drampalos 2015; Oei 
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et al. 2016). The presence of one or more prevalent vertebral fractures on lateral spine 

radiographs is a strong predictor of future incident vertebral fractures and a moderate 

predictor of non-vertebral fractures, independent of BMD. Vertebral Fracture 

Assessment (VFA) is a relatively new DXA scanner technology that permits imaging of 

the thoracic and lumbar spine for the identification of vertebral fractures.  

Although the standard method for the detection of vertebral fractures (VFs) is 

radiography of the spine, VFA has several advantages. These include substantially lower 

radiation dose, lower cost, higher patient convenience, and less operator-dependent 

variance (Hospers et al. 2009). Another disadvantage of radiography is the problem of 

geometric distortion, because radiographs are acquired using cone-beam geometry. 

This causes an increase in size of the image compared to the object due to divergent 

path of the photons producing the image.   

VFs can be detected on other modalities such as CT or MRI as well. Fractures can be 

categorised according to skeletal site and shape and measured according to the amount 

of height loss and the number of fractured vertebrae.  

VFA images allow evaluation for prevalent and incident VFs using qualitative, semi-

quantitative or quantitative morphometric methods (Schousboe et al. 2010). Several 

methods are available to determine vertebral deformities and distinguish them from 

vertebrae with a normal shape. A frequently used method is that based on semi 

quantitative morphometry (QM) to evaluate vertebral height, as proposed by Genant et 

al. (1993). The method involves measuring a reduction of anterior and middle height 

relative to the posterior height within a vertebra and/or reductions of these height relative 

to the corresponding heights of adjacent vertebrae. This method uses fixed threshold 

values of loss of height ratio (0.60, 0.75 and 0.80) (Drampalos 2015). 

Another approach is based on the visual identification of VFs and is known as the 

algorithm-based qualitative method (ABQ). This technique focuses on the appearance 
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of the centre vertebral endplates to identify VFs without a minimum threshold of vertebral 

height reduction. In this methods endplate integrity is identified regardless of vertebral 

height reduction (Drampalos 2015). 

The Hologic Delphi scanner was the first DXA system to employ VFA, for which the 

Hologic name is instant vertebral imaging (IVA). This enabled experts to identify fractures 

in the spine with a rapid, low-dose single-energy image (Wu et al. 2012). VFA images 

have been shown to be a good alternative to standard radiography for the detection of 

vertebral fracture (Schousboe et al. 2006). 

There is sufficient soft tissue anterior to the lumbar spine in VFA images to allow the 

detection of calcification in the abdominal aorta.  Thus, two highly prevalent public health 

problems can be assessed through the same diagnostic test: osteoporosis and  CVD 

(Schousboe et al 2006; Schousboe et al. 2007). Figure 4-5 shows a Hologic Discovery 

scanner set up for lateral spine imaging. VFA images can be acquired in two energy 

modes: SE mode and DE mode.  VFA images obtained in SE mode include prominent 

soft tissue features. In contrast, images acquired with DE use a second x-ray beam 

energy to account for the x-ray absorption by soft tissues. DE images are noisier but 

have higher contrast for bone and greatly diminished soft tissue shadows. Advantages 

of SE imaging are that the images can be obtained faster, and the vertebral endplates 

and cortices are slightly sharper than on DE images. However, these images are 

disadvantaged in that shadows created by soft tissues can obscure visualization of the 

vertebrae, especially in areas where the contrast between adjacent soft tissues is 

considerable, such as the diaphragm. 

 Typical lateral VFA images acquired with the Discovery scanner in two energy modes 

are shown in Figure 4-6 (Hologic 2007). Many studies have been employed VFA images 

for AAC detection and measurement; this was discussed in Section 2.3 in detail.  
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Figure 4-5: Hologic Discovery DXA system in position for lateral spine scan. 
(http://www.hologic.com/products/imaging/skeletal-health/discovery-dxa-system 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4-6: Lateral VFA images acquired with a Hologic Discovery DXA scanner, (a) in single 
energy mode, b) in dual energy mode 
 

 
  



63 
 

 

4.8 Summary  

This chapter has discussed the medical imaging modality that is employed in this 

research. The physical principles of DXA have been briefly introduced. Two different 

Hologic DXA scanner models used in this research have been described.  

The next chapter introduces a new method for the detection and quantification of AAC 

in VFA images produced by both models of Hologic DXA scanner.  
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 				Automatic	Detection	and	Quantification	of	AAC	

 

Automatic Detection and Quantification of AAC 

5.1 Introduction 

As outlined in Chapter 2, VFA images can show AAC with good sensitivity and specificity 

compared to radiography (Lewis et al. 2016; Grant et al. 2017). The main limitations of 

VFA images are their relatively limited spatial resolution of these images compared to 

the radiographs and low signal to noise ratio (SNR) (Guglielmi et al. 2008). VFA image 

noise can be structural or statistical. Structural noise occurs due to the presence of 

bones, such as ribs and different soft tissues in the abdomen region. Statistical noise 

occurs due to the variation in number of detected x-ray photons per pixel.   

In general, there are several factors affecting the accuracy of the DXA technique: (a) 

variation in soft tissue composition within the x-ray beam, (b) patient positioning and 

scan analysis, (c) artefacts due to metal or clothing, (d) random errors due to photon and 

electronic noise (e) drifts in scanner calibration. Problems with patient positioning for 

lateral spine imaging are reduced in DXA scanners in which C-arm can rotate to 900 from 

the anterior-posterior position to the lateral position (Guglielmi et al. 2008). 

AAC appears in VFA images as small and elongated bright structures on the anterior 

and posterior walls of the aorta, but these also can extend to its centre. The assessment 

of AAC adjacent fractured vertebrae is difficult and this becomes even more challenging 

if the posterior vertebral wall was collapsed. At this time, there is no consensus on how 

to score AAC adjacent to a crushed vertebra. In some cases, distinguishing calcified 

aortic walls from other calcifications and artefacts, such as bowel wall adjacent to a gas 

bubble, is not easy.  For example, contrast between air and soft tissue can create 
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curvilinear borders mimicking calcification. Calcified kidney stones, the anterior cortices 

of the vertebrae themselves, other calcified tissues and the edges of the lower ribs 

extending down into the abdominal region sometimes need to be carefully distinguished 

from true AAC (Schousboe et al. 2017). 

A variety of studies have been conducted previously to score AAC manually on 

radiographs and VFA images using the AC-24 points system. However, at the time of 

this research, only few automatic approaches for AAC detection and quantification on 

radiographs had been described and they were not related to the clinically accepted 

manual methods. Furthermore, none of these methods were tested on VFA images 

characterised by lower SNR compared to standard radiographs.  

The main contribution of this chapter is the development of a new method for automatic 

detection and quantification of AAC related to existing manual scoring techniques. The 

method employs shape and appearance models for automatic segmentation of the aorta 

and uses an automatic classification method for the purpose of quantification. The new 

automatic AAC quantification method is based directly on the AC-24 manual method. 

Evaluation of the automatic method in relation to the manual AC-24 results is also 

presented.   

5.2 Data set  

This research used data provided by the bone densitometry service at the University 

Hospital of Wales, Cardiff. A set of 73 anonymised VFA images of patients referred for 

the investigation of osteoporosis in the period between 2010 and 2015 were collected. 

These images were selected visually because of obvious aortic calcification. The VFA 

images were acquired by two Hologic Discovery A DXA scanners operating in SE mode 

with a current of 5.0 mA and a voltage of 140 kV, giving an average x-ray energy of  

about 70 keV. The pixel size was 0.35945 mm x 0.361840 mm, the line spacing was 

0.0362 cm and the point resolution was 0.1258 cm for both scanners. Scanner S/N70902 
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was used in the period between 2010 and 2012 and scanner S/N86224 in the period 

between 2012 and 2015. Approval for the study was obtained from Cardiff University 

School of Engineering Ethics Committee. 

The selected patient images had three different degrees of aortic calcification, namely 

mild, moderate and severe. This classification was made visually based on the degree 

of calcification that was seen. Images in the anterior-posterior (AP) and lateral views 

were extracted in digital imaging and communications in medicine (DICOM) format. AP 

images were used to identify the four lumbar spine vertebrae (L1-L4) on the lateral 

images.  

Figure 5-1 shows examples of VFA images with various degrees of AAC. Three labelled 

VFA images cropped to a lumbar region of interest (ROI) and indicating severe, 

moderate and mild AAC are shown in Figure 5-2. Image constant has been enhanced 

by applying a widowing technique for better visualisation of the calcification.  

Unless otherwise specified, image display and processing was done using Matlab 

(Mathworks, MA, USA) software, While statistical analysis was done with SPSS (IBM, 

New York USA).    
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Figure 5-1: Examples of VFA images retrieved from the bone densitometry service archive at the 
University Hospital of Wales, Cardiff. (A) 91- year-old female, (B) 83-year-old female, (C) 79- 
year-old female. The images have been windowed to enhanced contrast 
 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 5-2: Cropped and labelled VFA images of female patients with (A) severe AAC, (B) 
moderate AAC, (C) mild AAC 

(A) (B) (C) 
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5.3 AC-24 Manual Scoring System   

AAC was scored visually on the set of 73 VFA images using the same method (AC-24) 

as the Framingham Heart Study (Kauppila et al. 1997; Walsh et al. 2002; Schousboe et 

al. 2006; Barascuk et al. 2011; Ganz et al. 2012). One reader who was trained to interpret 

VFA scores scored all 73 images.  

AC-24 scoring was done by visual inspection of AAC to in the aortic walls. The abdominal 

aorta was divided into eight sections (four anterior wall and four posterior wall) 

immediately adjacent to each vertebra L1-L4 in every VFA image (Figure 5-3). The 

calcification in each segment was graded as follows: 0 for no AAC, 1 for AAC occupying 

one-third or less of the aortic wall within the segment, 2 for AACs occupying more than 

one-third, but less than two-third of the length, or 3 for more than two thirds occupation 

of the wall length. The summation of scores gives a composite AC-24 score ranging from 

0 to 24. Table 5-1 shows the AC-24 scoring for the example shown in Figure 5-3. 

 

 

 

 

 

 

 

 

 

 

Figure 5-3: Labelled VFA image with AC-24 scores in 8 aortic segments. The dotted lines are 
drawn at the position and orientation of the intravertebral spaces 
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Table 5-1: AC24 scoring for the example VFA scan of the aorta shown in Figure 5-3 

 

 
 

5.4 AAC Categorisation using the manual AC-24 

The total AC-24 score was used to categorise AAC into three classes following the 

method of  Mohammad et al. (2014): mild AAC (score 1-4), moderate AAC (score 5-12) 

and severe AAC (score >12). A similar approach has been used in other previous 

studies. It was not feasible to categorise AAC in to 24 separate classes since the average 

of images per class would have been about three (with a total of 73 images). This would 

have been insufficient for further analysis. 

5.5 Segmentation of Lumbar Spine and Aorta 

The main problem in developing an automatic calcification detection technique for VFA 

images is the presence of other structures, particularly bones. Bones have similar 

appearance to calcification due to the fact that the chemical composition of calcification 

is identical to hydroxyapatite, which is a main component of bone.   

A general review of segmentation methods was presented in Section 3.2. The 

segmentation of the aorta is very difficult when it is not calcified, as soft tissue cannot be 

seen on x-ray images. However, the location of the aorta is constrained by the position 

of the spine, which can be detected easily in the image. Thus, prior knowledge of the 

Vertebral  AC24 scores  

 Anterior wall Posterior wall Anterior + Posterior 

 (0-3) (0-3) (0-6) 

L1 2 3 5 

L2 3 2 5 

L3 3 3 6 

L4 2 1 3 

Sum (L1-L4) 10 9 19 

Maximum 12 12 24 
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shape and position of the lumbar spine can be used to guess the position of the 

abdominal aorta even if it is not calcified. A suitable image segmentation approach for 

this task is the application of model-based algorithms, which use prior knowledge of what 

is expected in the image. Typically, the best fit of the model to the data is output as a 

new image. Statistical models of shape and appearance are powerful tools for 

interpreting medical and are well-studied to dealing with VFA images, which are 

inherently and noisy (Roberts et al. 2003; Bruijne et al. 2004; Benjelloun et al. 2011; 

Sarkalkan et al. 2014).  

5.5.1 Statistical Shape Model 

 
The aim of this step in the work package is to derive models that allow the analysis of 

both new shapes and the synthesis of shapes similar to those in a training set. Typically, 

the training set is developed by manual annotation of a number of images. The shape 

model can be built by analysing variations in shape over the training set.  

 Landmarks 
 
Building a statistical shape model consists of representing the mean shape and a 

number of modes of variation using a set of training instances. This method strongly 

depends on the chosen shape representation (Cootes 2004). The shape of an object is 

represented by a set of L	points, which may be in two or three dimensions. The process 

starts by choosing suitable landmarks, which must be consistently located from one 

image to another. The simplest method for generating a training set is by annotation of 

a series of images with a set of corresponding points by a human expert. Two 

dimensional images can be annotated using 2D points, which are usually placed at clear 

corners of object boundaries, ‘T’ junctions between boundaries or easily located 

biological landmarks. Object shape, which is described by L points in Ñ dimensions, can 

be represented by a LÑ  element vector produced by concatenating the elements of the 
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individual point position vectors. A single 2-D image can be represented by L landmark 

points,{(^c, Pc)},	as the 2L	element vector, á, where 

				á = 			 à^), ^2, ^Z	 …… . . ^ä	, P), P2, PZ,….Pä	ã	
å																																								(5.1) 

Here T, represents the transpose of á.		For M	training instances, M such vectors áç can be 

generated.  

 Aligning the Training Set 
 
In order to obtain a description of the object’s shape independent of its position, 

orientation and scale, the next step in this modelling process is the representation of all 

shapes aligned in the same coordinate system. The most common approach is 

Procrustes Analysis, which minimises the sum D of the distances of each shape from 

the mean shape	^̅ (Goodall et al.2014) : 

														$ = 			`|^c −	^	ê|
2

																																																																										(5.2) 

 

 Modelling Shape Variation 
 
The next step is dimensionality reduction of the data set from the initial LÑ values. For 

this, principal component analysis (PCA) is applied to the aligned shapes.  The data form 

a cloud of points in the LÑ space. PCA computes the main axes of this cloud of points 

and this allows the approximation of any of the original points using a model with fewer 

than LÑ	parameters. PCA is applied using the following steps:   

Calculate the mean of the data: 

										áë 			= 	
1

M
			`áí																																																																									

k

ce)

			(5.3) 

Calculate the covariance matrix of the data:  
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					ì = 	
1

M − 1
			`(áí − áë	)			(áí − áë	)

å																																			

k

ce)

										(5.4) 

Calculate the eigenvectors îc  and eigenvalues ïc of	ñ.  

If î contains the =	eigenvectors corresponding to the largest eigenvalues, then the 

training á can be approximated using 

																á ≈ 	 	áê + 	îò																																																																										(5.5) 

 

where î =	(ô)|ô2|	. . . |ôö) and b is a =	dimensional vector given by 

													ò = 	îõ	(	á −	 	áê)																																																																										(5.6) 

The vector ú defines a set of parameters for a deformable model. As the elements of ú 

may vary, the shape can be varied, using Equation 5.5. The variance of the Nöù parameter 

mc across the training set is given by ïc. By applying limits of ±3√ïc to the parameter mc, 

the generated shape will be similar to shapes in the original training set. The number =  

of eigenvectors to retained can be chosen, so that the model represents some proportion 

(e.g. 98%) of the total variance of the data or the residual terms can be considered noise. 

5.5.2 Applying statistical shape model to VFA images  

 
To build a shape model, a set of 20 VFA images with clear evidence of aortic calcification 

was selected as training data. A statistical SM was created using the method described 

above. For each image in the training set, landmarks were positioned manually at the 

corners and at the centres of the end-plates of each of the first four lumbar vertebrae 

(L1-L4). A further 32 landmarks were placed along the anterior and posterior walls of the 

calcified aorta adjacent to L1-L4, creating 56 landmarks in total. Figure 5-4 shows an 

example of VFA image enhanced for better visualisation (A) and a cropped image with 
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landmarks (B). Figure 5-5 shows the first three modes of shape variation. Here, the first 

three modes of variation explain ≈83% of shape variation in the training data set.  

 

 

 

 

  

 

 

 

 

 

 
Figure 5-4: Example of an annotated VFA image with 56 landmarks (shown as black dots): (A) 
original image; (B) cropped image with landmarks 
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Figure 5-5: (A) First three modes of shape variation ±3#$ in turn, (B) Shape variation with number 
of eigenvalues 
 

 

(B) 

(A) 
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5.5.3 Statistical model of texture  

In order to synthesise a complete image of an object, a shape and texture model is used. 

This section describes how a statistical model can be built to represent both shape 

variation and texture variation. 

A statistical model of the grey-level texture can be built by warping each example image 

so that the control points match the mean shape. This can then be done using a 

triangulation algorithm (Cootes 2004). The resulting samples can be then normalised to 

minimise the global lighting variation by applying a scaling factor ü and an offset † on 

the texture vector gcW: 

¢ = (¢cW + β§)/α																																																																																					(5.6) 

The values of ü	and † are chosen to best match the vector to the normalised mean. 

Assume that 	¢ë	 is the mean of the normalised data, scaled and offset so that the sum of 

elements is zero and the variance of elements is unity. The values of ü and † required 

to normalise gcW are given by: 

α = ¢cW.		¢ë							,											β = (¢cW.		§)/n																																																						(5.7) 

where L is the number of elements in the vectors. 

Thus, for every training set, the profile ¢ can be represented by the mean profile ¢ë and 

variation ß® by applying PCA: 

				¢ = 	¢ë + ß®		ú®																																																																																										(5.8) 

where ¢ë is the mean normalised grey-level vector, ß®	is a set of orthogonal modes of 

intensity variation and ú	® is a set of grey-level parameters.  
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5.5.4 Combined Appearance Model   

The shape and texture of the training set can be represented by the parameter vectors 

úk	and	ú®. A further PCA can be applied to the data after concatenating the shape and 

grey-level variations in one vector to produce a model of the form: 

																		ú = 	©
™k		úk
ú®

´ = 	©
™k			ßk	

å			(	á − 	áê)	

	ß	®	
å			(	¢ −	¢ë	)

			´																																								(5.9)									 

 

where ™k  is the diagonal matrix of weights for each shape parameter that gives 

appropriate balance between the shape and the texture models. By applying the PCA 

on this vector, a further new model can be generated:  

															ò = ≠̈	Æ																																																																											(5.10) 

where ßR	are the eigenvectors and Æ is a vector of appearance parameters controlling 

both the shape and grey-levels of the model.  

 

 

 Applying statistical shape and texture models to VFA images  
 
Figure 5-6 shows the mean and the first three eigenvectors created from the texture 

model. The original texture, the texture described by the combined model and the 

difference between them are shown in Figure 5-7.   
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Figure 5-6: Mean appearance model and first three eigenvectors 
 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 5-7: The original texture, the texture described by combined model and the difference 
between them 
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5.6 Active appearance model (AAM) searching algorithm 

In order to detect the lumbar spine and the aorta in VFA images,  AAM searching 

algorithm developed by Cootes et al. (2001) was used. The mean shape produced was 

placed manually in an approximate correct position in the VFA images. The algorithm 

was then used to fit spine and aorta edges for all images in the data set.   

The process produced a new set of images of segmented lumbar spine (L1-L4) and the 

calcified aorta and its surrounding area. The algorithm was applied successfully to the 

entire set of 73 images and it took 23 seconds for 100 iterations to capture the desired 

two objects for each image. Figure 5-8 shows the searching process using the AAM. 

 
 
 
Figure 5-8: (A) Input image; (B) finding the best fit, initial position (red points) the best fit (blue 
points); (C) segmented spine and aorta 
 

 

5.7 Extracting the aorta from the segmented image 

In order to extract the aorta from the segmented image produced by the AAM searching 

algorithm, the grey-scale image was converted to a binary image by thresholding. A 

connected-component labelling algorithm based on pixel connectivity was then 

implemented. The algorithm works by scanning the image pixel-by-pixel (from top to 



79 
 

 

bottom and left to right) in order to identify connected pixel regions (Burger and Burge 

2013). Each binary image was labelled into 8 connected objects. The pixels labelled 0 

were the background. The pixels labelled 1 made up the first object; the pixels labelled 

2 made up the second object; and so on. The area of each labelled object was computed. 

This was done for all 73 VFA images in the data set. The aorta was extracted as the 

labelled object that had the greatest area in the entire image; all other objects related to 

the background and the spine were removed. Figure 5-9 shows the extracted aorta from 

the example used in Section 5.3. Further examples of calcified aortas extracted from 

various segmented images produced by the AAM are presented in Figure 5-10.  

 

 

Figure 5-9: (A) Segmented calcified aorta and spine produced by AAM; (B) largest region area 
(aorta) 
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Figure 5-10: Examples of segmented aortas with different degrees of calcification and different 
brightness 
 
 

5.8 Calcification Detection 

Although the segmented aorta obtained from the AAM clearly masked out all the calcified 

pixels, sometimes it also detected parts of the aorta that had high brightness due to 

changes in soft tissue composition. This variation in brightness and the influence of 

obesity made the use of a single threshold not applicable in the next stage. Multilevel 

thresholding is a technique that segments a grey level image into several distinct regions 

(Horng 2010). The technique defines more than one threshold for the specified image 

and it segments the image into regions of certain brightness that identify the background 

and several objects. In the application of multilevel thresholding, every segmented aorta 

was processed using specified quantisation levels and output values. 

The popular performance indicator, peak signal to noise ratio (PSNR), was used to 

compare the segmentation results obtained by the multilevel image threshold techniques 

(Horng 2010): 
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,#IÉ = 20w>i)*	 x
255

Éq#Ø
y																																																																			(5.9) 

where RMSE is the root mean square error, defined as:  

																																														Éq#Ø = 	
			∞∑ 	∑ (≤(c,ç)j	≤≥(c,ç)	)¥µ

∂∑∏ 	π
∫∑∏

ªf
																														(5.10)        

                                      

where \	, \≥ are the original and segmented images respectively, each of size q^I.  

Figure 5-11 shows that for three different examples of aorta with low, moderate and high-

calcification the	,#IÉ	reaches saturation after seven levels of threshold levels. Images 

were processed using the maximum threshold values. This technique is called image 

quantisation. As the number of the thresholds increased, the thresholded image tended 

towards the original image and this was evaluated visually. An example of a quantised 

image with different threshold levels is presented in Figure 5-12. It is clear that after 14 

levels of thresholding, the image (F) tended towards the original (A). 

 

Figure 5-11: Plots of PSNR vs. number of thresholds for three different calcified aortas: moderate 
AAC; low AAC; high AAC 
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Figure 5-12: (A) original aorta image; (B) 2-level thresholding; (C) 4-level; (D) 6-level; (E) 7-level; 
(F) 14-level 
 
 
 
 
 
 

5.9 Quantification of AAC 

5.9.1 Feature Extraction 

 
First-order texture analysis was implemented to extract the features of every segmented 

aorta. The main advantage of this approach is the simplicity of using standard descriptors 

(e.g. mean and variance). Regions that did not represent calcification in the aorta were 

removed. This was done by examining connected regions in the binary image were that 

had been automatically labelled. Any region consisting of fewer than 50 pixels was 

removed as it was most likely represented noise not calcification. After that, quantitative 

features related to the degree of the calcification were extracted from the processed 

aorta images.  
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The first feature extracted from each segmented aorta was the fraction of calcified pixels 

to the total number of pixels. Seven further features were obtained by computing the 

grey-level co-occurrence matrix (GLCM) ) ,(N, º) (Honeycutt and Plotnick 2008; Preethi 

and Sornagopal 2014; Harefa and Pratiwi 2016). GLCM is a popular texture feature 

extraction technique due to its simplicity and efficiency in comparison to other methods 

such as wavelet transform. This method is used widely in many texture analysis 

applications (Zhuocai et al. 2011; Harefa and Pratiwi 2016). The additional features were: 

mean, variance, energy, entropy, homogeneity, contrast and correlation. The features 

were computed using the following equations (Jain et al.1995):  

 

 

 
 
 

	
Homogenity		 = 	`

P(i, j)

1 + |i − j|
≈,∆

	
(5.15)	

	

	

 

 

The mean  µ and variance σ are given by: 

	

S»(R=N>L	>S	R(wRNSNKÑ	4N^KwM																																																																												

= 	
L…hmK»	>S	R(wRNSNKÑ	4N^KwM		

=>=(w	L…hmK»	>S	L>L K»>	4N^KwM	
																																																						(5.11)					 

 

 

 

 	 ØLK»iP	 = 			`,(N, º)2

c,ç

	 (5.12)	

	
	

Correlation	 = 		` 				
(i − µ≈)àj − µ∆ãP(i, j)

σ≈σ∆
≈,∆

	
(5.13)	

	

	

	

	

	 Contrast	 = 			 |i − j|2	P(i, j)	 (5.11)	

	 Entropy = 		−`P(i, j)logP(i, j)
≈,∆

	 		(5.16)	
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	 µ≈ = ∑ i	 ∑ P(i, j)ä
≈,∆

ä
≈e) 																		,																µ∆ = ∑ jä

∆	e) 	∑ P(i, j)ä
≈,∆ 	 (5.17,18)	

	

 

Figure 5-13 shows an example of a calcified aorta in the original VFA image and after 

segmentation, quantisation and thresholding to reveal pixels containing calcification. On 

the binary image, pixels that had value of 1 were labelled as calcified. The binary image 

shown in Figure 5-13 (C) was used to calculate the feature represented by the fraction 

of calcified pixels to the total number of pixels. Another example of the calcified aorta is 

shown in Figure 5-14.   

  

σ≈ = ∑ (i −	µ≈)
2

≈e) ∑ P(i, j)ä
≈,∆ 												,																σ∆ = ∑ (j∆e) − µ∆)

2 ∑ P(i, j)ä
≈,∆ 	

	

(5.19,20)	
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Figure 5-13: (A) Original image; (B) segmented aorta, (C) segmented aorta quantised using 7 
threshold levels; (D) binary image after thresholding 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 5-14: (A) Segmented aorta; (B) segmented aorta quantised using 7 threshold levels, (C) 
binary image after thresholding 

A B C D 
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5.10  Automatic Calcification Classification 

The prediction stage is built on two classifiers trained on the training data: Support vector 

machine (SVM) using linear kernel from LIBSVM and K- nearest neighbour (K-nn). K-nn 

is a regular non-parametric and widely used classification method. This method is as 

called non-parametric because it does not require information about the statistical 

properties of pixels (Singh 2016) It is suitable for multi-modal classes and in the 

applications where an object can have many labels.  

SVMs are powerful data classification algorithms, which are able to provide high 

accuracy (Chih-Wei Hsu et al. 2008; Singh 2016). SVMs belong to the general category 

of kernel methods. A kernel method is an algorithm that depends on the data through 

dot-products (Kotsiantis 2007; Orrù et al. 2012; Harefa and Pratiwi 2016).  

A linear kernel has been reported to provide the best performance in many applications 

and requires only one parameter to be tuned (Walker 2010). In essence, SVMs are two-

class classifiers but multiclass problems can be solved with multiclass extensions. A 

standard method is the so-called one-versus-the-rest approach, where for every class a 

classifier is trained to compare that class against the rest of the classes.			 

The above classifiers were used to evaluate the automatic method for AAC quantification 

against visual scoring. The classification stage was done using the Orange software 

package (Demšar et al. 2013). A K-folds cross validation method was implemented with 

5 folds to partition the data set into two parts: a set to train the classification model and 

a set to validate the model. The output of this implementation was the assignment of 

each aorta image into one of three classes based on the values of the extracted features. 

Again, the three classes used were as follows: class 1 for mild AAC, class 2 for moderate 

AAC and class 3 for severe AAC.  
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5.10.1 Feature selection 

 
In general, the performance of any automatic classifier is not optimised when all features 

are used. In order to assess the relative importance of the 8 extracted features, the s-

fold cross-validation popular method was used for estimating the correct classification 

rates (CCR). In this method, the available data set is divided into a sub-set used for 

classifier design (i.e., the training set) and a sub-set used for testing the classifier (i.e., 

the test set)  (Ververidis and Kotropoulos 2008). Figure 5-15 shows the CCR for the 

individual features: 1 ratio of calcified area/total area, 2 entropy, 3 variance, 4 energy, 5 

correlation, 6 mean, 7 contrast and 8 homogeneity. The first 5 features were selected for 

the classification stage as they gave the best accuracies were achieved by using these 

features. 

 

 

  
 
Figure 5-15: Variation of CCR with feature number 
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5.11 Comparison of Automatic and Manual Classification 

The results of automatic AAC classification compared with manual visual classification 

are shown in Figure 5-16. The accuracy of K-nn (93.1%, 90.4% and 95.2% for classes 

1, 2 and 3 respectively) was better than that of SVM (87.7%, 83.3% and 94.5%) as shown 

in Figure 5-16(A). The performance of the two automatic classifiers was also assessed 

by receiver operating characteristic (ROC) analysis. Figure 5-16(B) shows the area 

under the curve (AUC) of sensitivity vs. (1 – specificity) for each classifier. Similar 

performance was found for all classes.  
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Figure 5-16: (A) accuracy of K-nn and SVM classifiers for AAC classes 1, 2 and 3; (B) AUC for 
each classifier and AAC class 
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5.12   Summary 

This chapter has presented a method for measuring the severity of abdominal aortic 

calcification automatically in VFA images acquired by DXA in SE mode.  

The automatic method consists of two stages. In the first stage an active appearance 

model has been employed for automatic segmentation. The model was trained on 20 

VFA images and tested on another 53 unseen VFA images. AAM was able to extract 

two relevant objects (the aorta and the spine). The method was robust, i.e. it worked for 

all test images, and it took only 23 seconds to complete the searching process with 100 

iterations  

To quantify AAC automatically, a new method based on popular classification techniques 

was developed and validated against an established manual technique (AC-24). For the 

selected data set of 73 images, the automatic method achieved high accuracy for all 

classes of AAC severity.  

In the next chapter, the work is extended to include VFA images from patients who have 

little or no aortic calcification and validated using a large dataset consisting of 390 VFA 

images.   
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 							Evaluation	of	Automatic	Method	for	AAC	Detection	and	
Quantification			

  Evaluation of Automatic Method for Detection 

and Quantification of AAC in VFA Images   

6.1 Introduction 

The development of an automated system for the detection and quantification of AAC 

based on the analysis of VFA images requires a large dataset for the training and 

validation of the proposed system.  

This chapter evaluates the automatic approach developed in Chapter 5 for AAC 

detection and quantification in VFA images acquired by Hologic DXA scanners in single 

energy mode. The preliminary study proposed an algorithm, which was tested on 73 VFA 

images with clear evidence of calcification. The selected images included three 

calcification degrees: mild, moderate and severe. 

Considering that this algorithm allowed automatic segmentation and quantification of 

AAC in images with three degrees of AAC, it was hypothesised that the same approach 

would enable assessment of AAC in a large number of VFA images including those not 

showing any calcification. 

This chapter presents a validation of the automatic system for all possible AAC 

categories on a large dataset consisting of several hundred images. 

6.2 Study Population  

A set of VFA images from 390 female patients was selected; these included 69 females 

from the first data set. The additional images were retrieved sequentially by patient name 
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in alphabetical order from the DXA scanner archives. Those images with clear artefacts, 

such as metal inside the body, were excluded. Only the first image for each patient was 

taken; no follow up images were included. Each image was anonymised and given a 

study number. The Cardiff University School of Engineering Ethics Committee approved 

this retrospective study.  

 The VFA images were of patients referred for the investigation of osteoporosis between 

2010 and 2017 at the University Hospital of Wales, Cardiff. Images from only females 

were used because the large majority of patients referred for DXA are female. The 

images were acquired by three Hologic DXA scanners: Discovery A (S/N70902) in the 

period between 2010 and 2012, Discovery A (S/N86224) in the period between 2012 

and 2015 and Horizon A (S/N200253) in the period between 2016 and 2017. Images in 

this set had different degrees of aortic calcification: no-calcification, mild, moderate and 

severe calcification. Examples that have been cropped for the abdominal region and 

whose contrast has been enhanced by windowing are shown in Figure 6-1.  A total of 15 

images with anatomical or technical artefacts (e.g patient movement) or inadequate 

space anterior to the aorta for AAC assessment were excluded. Figure 6-2 provides 

some examples of the excluded images. Table 6-1 presents the characteristics of the 

remaining data set of 375 images.   

 

Table 6-1: Characteristics of the final study data set 

 

 

Study Population n= 375 

 

 Estimated Mean Standard deviation(SD) 

Age, y 74.17  13.32 

Height, cm 154.94 7.18 

Weight, Kg 61.07 11.45 
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Figure 6-1:.Examples of VFA images obtained by DXA: (A) a 91- year-old patient with highly 
calcified aorta (AC-24 =19), (B) a 74-year-old-patient with moderate calcified aortic walls (AC-
24= 8), (C) an 82 year-old- patient with mild calcified aorta (AC-24= 3), (D) a 38 year-old- patient 
with no aortic calcification (AC-24=0) 
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Figure 6-2: Examples of VFA images excluded from the dataset due to: (A) inadequate space 
anterior to the aorta; (B) anatomical artefacts, (C) artefacts due to patient movement 
 
 

 

 

 

 

6.3 Variability of AAC Measurement in VFA Images 

The manual scoring system AC-24 was implemented as described in Chapter 2 and AAC 

in each VFA image was categorised as explained in Section 5.4. In addition to the 

previous three categories (mild, moderate and severe AAC), a new category 

corresponding to an AC-24 score of 0 was added. This was done to examine whether 

the algorithm is suitable for patients with no calcification, since this is true in many cases.   

Two tests of the variability of AC-24 scores, with respect to data observers were made. 

These were the variability across multiple observers (inter-observer variability), and 

variability of a single observer (intra-observer variability) (Mchugh 2012).  
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The presence and severity of AAC were assessed by two blinded readers. Reader A 

recorded AC-24 scores twice for the whole set of 375 VFA images. Reader B recorded 

AC-24 scores twice on a sub-set of 100 VFA images selected randomly. Images were 

viewed with Matlab (Mathworks, MA, USA) and the scores were recorded on Microsoft 

Excel spread sheet (2013).      

Intra-class correlation coefficients (ICC) between the two sets of AC-24 readings and 

AAC categories were calculated for each reader individually. The ICC is an index of 

repeated measures. It is widely accepted  and has been used in many studies to examine 

the intra-observer variability of AAC scores in radiographs and VFA images (Lewis et al. 

2016; Grant et al. 2017; Schousboe et al. 2017).  

The inter-observer agreement of AAC scores between reader A and B was measured 

as a simple percent agreement and inter-class correlation coefficient ICC. The Pearson’s 

correlation coefficient is a statistical test that measures the statistical relationship, or 

association, between two continuous variables.  It is regarded as the best method of 

measuring the association between variables of interest because it is based on the 

method of covariance. The pearson’s correlation coefficient was used to assess the 

correlation between the two readers AC-24 scores. 

In addition, inter-class variability for AAC categories was assessed using cohen's Kappa 

(:) cross tabulations algorithm statistics (Nelitz et al. 1999; Davies and Fleiss 1982). 

The kappa algorithm was designed particularly as a measure of agreement between two 

readers for categorical rating; it incorporates correction for chance agreement (Banerjee 

1999; Mchugh 2012). Kappa has been applied by other researches to evaluate the inter-

observer variability in the measurement of the degree of vertebral fracture (Hospers et 

al. 2009; Drampalos 2015). 

Generally, a kappa coefficient of 0–0.20 is considered poor agreement, 0.21–0.4 is fair, 

0.41–0.6 is moderate, 0.61–0.8 is strong, and > 0.8 is considered near-complete 
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agreement (Mchugh 2012; Ridge et al. 2016). Calculation of Cohen’s kappa may be 

performed according to the following formula: 

: =
Pr(() − Pr	(K)

1 − Pr	(K)
																																																		(6.1) 

where Pr(a) represents the actual observed agreement and Pr(e) represents chance 

agreement. The confidence interval (CI) was calculated to assess the precession of : 

estimation and the probability value (4	O(w…K) was used to test the significance of this 

estimation. A 4 value of < 0.05 was considered statistically significant, as most public 

health professionals use this value as a standard.  

The above statistical analysis was computed using SPSS (IBM, New York USA), with 

95% confidence intervals CIs.   

6.3.1   Intra-observer variability of calcification scores  

 
Table 6-2 summarises the intra-class correlation for the two readers. Reader A showed 

high ICC > 0.98 for both AC-24 scores and AAC categories over the entire dataset. The 

ICC of Reader B on 100 images also was > 0.95 for both AC-24 scores and AAC 

categories. 

 

Table 6-2: Intra- observer variability for two readers for AC-24 scores and AAC categories (ICC 
with 95% CI) 

 

 
 
 

 Number 
of VFA (n) 

Intra-observer variability    
P value  

 AC-24 score  4 AAC categories  

Reader A 369 0.988 (0.985 to 0.991) 0.986 (0.982 to 0.989) <0.001 
Reader B  100  0.960 (0.940 to 0.973) 

 
  0.953 (0.929 to 0.968) 

  
<0.001 
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6.3.2 Inter-observer Variability of Calcification Scores 

 
There was a strong and significant linear correlation between the AC-24 scores given by 

the two readers with a Pearson’s correlation coefficient of (»2 = 0.956, 4 < 0.001) Figure 

(6-3). 

 
 
 
 
 
 
 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6-3: The correlation of AC-24 scores between two readers 
 
 
 
 
The other results of the inter-observer variability tests (ICC, kappa correlation and 

percent agreement) as shown in Table 6-3.  

 
Table 6-3: Inter-observer agreement measured for two Readers for AC-24 and AAC categories 
with 95% CI 
 

Method Reader A vs Reader B 
n =100 

  AC-24 scores 4 AAC categories 
ICC inter class 
correlation 

 0.953 (0.931 to 0.969) 
  

0.934 (0.903 to 0.956) 

Kappa correlation 
(κ) 

- 0.634 (0.505 to 0.743)  

  
Percentage of 
agreement 

 - Class 0 Class 1 Class 2 Class 3 
88.9% 73.1% 64.5% 63.0%  
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There was good agreement between the two readers with ICC >0.9.  The intra-observer 

reliability between the two observers was > 0.9 for both AC-24 scores and AAC 

categories.  

 In addition, the percent inter-observer agreement was high in both cases. This 

agreement was 89% on images with no AAC, while it was 63% on images of high AAC. 

Overall, there was strong agreement between the two readers with : = 0.634 as regards 

AAC categories.  

6.4 Relationship between Patient Age and AAC 

As outlined in Section 2.3, there is a strong association between patient age and the 

presence and extent of  AAC (Okuno et al. 2007; Schousboe et al. 2007; Allison et al. 

2008; Honkanen et al. 2008; Grant et al. 2017; Schousboe et al. 2017).  

The association of AAC severity score with age was analysed using linear regression 

analysis for reader A. Reader A had scored the entire data set with ICC >0.98 for AC-24 

score and AAC category.  

Figure 6-4 shows that, overall, AAC score increased with age and that there was a strong 

and significant relationship between them. No calcification was observed in patients 

aged ≤ 40 years; conversely, the majority of patients aged > 40 years were given scores 

indicating some degree of calcification in this dataset. The Pearson’s correlation 

coefficient and 95% CIs between AC-24 scores were, 0.602	(0.543	=>	0.661, 4	 < 0.001). 

Similar results have been obtained in many other studies (Honkanen et al., 2008; Kim et 

al. 2013; Leckstroem et al. 2014; Grant et al. 2017). Furthermore, about 56% of patients 

had AC-24 score of >1 at level L4; this percentage was slightly less at levels L3 to L1: 

48%, 41% and 31% respectively. Overall, the number of posterior aortic wall segments 

that were given AC-24 scores from 1-3 was greater than that for the anterior aortic wall.    
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Figure 6-4: Scatter plot between AC-24 score and age 
 
 
 
 
 

6.5 Evaluation of the Automatic method for AAC detection and 

Quantification   

 

6.5.1 Manual Categorisation of AAC Severity 

 
The total number of aortic regions in VFA images that were successfully segmented by 

the automatic method was 369 out of 375.  Further analysis was restricted to this set of 

375.  
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 The distribution of AAC severity as assessed by reader A using the AC-24 scoring 

system is shown in Figure 6-5. The largest group (127) comprised those images with no 

AAC while the smallest (64) comprised those with severe AAC. There were 93 and 85 

instances of mild and moderate AAC respectively.  

 

 

Figure 6-5: Distribution of AAC severity by reader A based on the AC-24 system: no AAC (0), 
mild AAC (1-4), moderate AAC (5-12) and high AAC (>12) 

 

6.5.2 Classification Accuracy and Feature Selection  

 

 Classification into 4 AAC Categories  
 
 
The performance of three classifiers, namely support vector machine (SVM), K-nearest 

neighbour (K-nn) and random forest (RF), was compared at this stage. The data set was 

partitioned using 5 folds cross validation into a training group to train the classifiers and 

a test group to validate the algorithm.  
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The classification stage was done using the Orange software package (Demšar et al. 

2013). In this analysis, a step to rank the features was applied to evaluate their signifi-

cance. Features were extracted as described in section 5.9.1 and ordered after applying 

the ranking.   

The classification accuracy obtained with these features was tested by adding one 

feature at a time in the rank order. The achieved accuracy was recorded and each 

calculation was repeated with different 5-folds 10 times. Figure 6-6 shows the weighted 

average classification accuracy of the three classifiers as a function of the number of 

features used.   

The accuracy of SVM increased with the number of features to reach 89% using the first 

6 features.  RF accuracy increased until 7 features had been used but decreased slightly 

when the eighth was added. For K-nn, accuracy received its maximum value with 4 

features and remained constant until the addition of the eighth feature where it 

decreased by about 3%. Figure 6-7 shows the effect of increasing the value of K on 

average weighted accuracy for the K-nn classifier; the highest accuracy was achieved 

with K=5.  

 

Figure 6-6: Variation of weighted average classification accuracy with the number of features for 
the three classifiers based on four categories of AAC severity 
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The optimal weighted average accuracy, sensitivity and specificity of each AAC category 

obtained by the three classifiers are listed in Table 6-4. Overall, the best accuracy, 

sensitivity and specificity were achieved with the SVM classifier. 

 

 

Figure 6-7:  Weighted average accuracy obtained by K-nn for different K values 
 
 
 

 

An unpaired t-test revealed a significant difference between the average accuracy 

achieved by SVM and K-nn: 0.022	(CI, 0.0169 − 0.027, p < 0.001), SVM and RF:  

0.0116	(CI, 0.0044 − 0.0189, p = 0.0033) and also RF and K-nn, 0.0103	(CI, 0.0038 −

0.0168, p = 0.0043). 
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Table 6-4: Accuracy, sensitivity, specificity and SD of three classifiers for 4 AAC categories 

 

 

 

 

 

 

The SVM classifier correctly predicted 112 cases out of 127 for class 0 and 57 cases out 

of 64 for class 3 with sensitivity and specificity > 85%. However, there was 

misclassification for classes 1 and 2. Tables 6-5 - 6-7 show the confusion matrices for 

the SVM, K-nn and RF classifiers respectively. 

 

Classifier AAC Category Accuracy Sensitivity Specificity 

 

SVM 

Class 0 0.910± 0.008 0.855± 0.012 0.940± 0.002 

Class1 0.832± 0.011 0.675± 0.017 0.877± 0.006 

Class 2 0.891± 0.008 0.743± 0.023 0.933± 0.004 

Class 3 0.950± 0.003 0.864± 0.018 0.946± 0.006 

Weighted Average 0.892± 0.048 0.785± 0.140 0.923± 0.074 

K-nn 

 
 

Class 0 0.916± 0.004 0.854± 0.010 0.954± 0.003 

Class1 0.810± 0.009 0.628± 0.016 0.867± 0.008 

Class 2 0.830± 0.007 0.678± 0.084 0.868± 0.004 

Class 3 0.912± 0.007 0.761± 0.017 0.917± 0.007 

Weighted Average 0.872± 0.056 0.740± 0.113 0.906 ±0.012 

RF 

Class 0 0.911± 0.026 0.852± 0.007 0.941± 0.011 

Class1 0.821± 0.009 0.627± 0.044 0.866± 0.009 

Class 2 0.861± 0.007 0.644± 0.045 0.901± 0.013 

Class 3 0.933± 0.005 0.797± 0.042 0.92± 0.0140 

Weighted Average 0.881± 0.052 0.740± 0.123 0.910± 0.067 
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Table 6-5: Confusion matrix obtained using the SVM classifier for 4 AAC categories 

  Predicted   
  
 Actual    0 1 2 3 Total 
  0 112 14 1 0 127 
  1 19 61 11 2 93 
  2 0 10 64 11 85 
  3 0 2 5 57 64 
  Total   131 87 81 70 369 

 

Table 6-6: Confusion matrix obtained using the K-nn classifier for 4 AAC categories 

 

 

Table 6-7: Confusion matrix obtained using the RF classifier for 4 AAC categories 

 

  

  Predicted   
  
 Actual    0 1 2 3 Total 
  0 117 10 0 0 127 
  1 21 52 18 2 93 
  2 0 21 50 14 85 
  3 0 1 9 54 64 
  Total   138 84 77 70 369 

  Predicted   
  
 Actual    0 1 2 3 Total 
  0 113 12 2 0 127 
  1 20 55 14 4 93 
  2 0 18 55 12 85 
  3 0 2 10 52 64 
  Total   133 87 81 68 369 
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 Classification into 3- AAC Categories 
 

To improve their sensitivity, groups mild and moderate (class 1 and class 2) were 

merged. The new group comprised VFA images with AC-24 scores in the range 1-12. 

Class 0 (no AAC) and class 3 (severe AAC) (1-12) remained unchanged as the goal was 

to validate the algorithm that had previously been developed.  

Figure 6-8 shows variation of the weighted average classification accuracy for the 3 AAC 

categories with the number of features. Features were ranked and ordered as before.  

The best weighted average accuracy, sensitivity and specificity for each AAC category 

obtained with the three classifiers are shown in Table 6-8.  

Application of the unpaired t-test between three classifiers revealed non-significant 

differences in accuracy between three used classifiers: SVM and K-nn, 

0. 0043	(CI, −0.0014 − 0.010, 4 = 0.128); SVM and RF,	0.0028	(CI, −0.0046 − 0102	4 =

0.4403);	K-nn and RF 0. 0015(CI, −0.005 − 	0.0081, 4 = 0.63). 

The overall accuracy obtained by the three classifiers was about 88%. However, both 

sensitivity and specificity were improved by merging the mild and moderate AAC classes. 

The confusion matrices for the SVM, K-nn and RF classifiers are shown in Tables 6-9 - 

6-11. 
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Figure 6-8: Variation of weighted average classification accuracy with the number of features for 
the three classifiers based on three categories of AAC severity 
 
 
 
Table 6-8: Accuracy, sensitivity, specificity and SD of three classifiers for 3 AAC categories 

Classifier AAC Category Accuracy Sensitivity Specificity 

 

SVM 

 
 

Class 0  0.914± 0.005 0.859± 0.009 0.945± 0.005 

Class 1&2 0.860± 0.007 0.858± 0.009 0.861± 0.008 

Class 3  0.944± 0.005 0.862± 0.015 0.943± 0.005 

Weighted average 
accuracy 0.886± 0.050 0.860± 0.003 0.904± 0.060 

 

K-nn 

 
 

Class 0 0.922± 0.002 0.863± 0.006 0.955± 0.003 

Class 1&2 0.840± 0.007 0.848± 0.001 0.834± 0.007 

Class 3 0.918± 0.006 0.771± 0.015 0.887± 0.006 

Weighted average 
accuracy 0.882±0.057 0.840± 0.045 0.885± 0.076 

 

RF 

 
 

Class 0 0.911± 0.008 0.843± 0.012 0.933± 0.009 

Class 1&2 0.845± 0.030 0.823± 0.016 0.857± 0.013 

Class 3 0.917± 0.032 0.840± 0.033 0.927± 0.009 

Weighted average 
accuracy 0.880±0.0450 0.833± 0.014 0.896±0.052 
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Table 6-9: Confusion matrix obtained using the SVM classifier for 3 AAC categories 

 
Predicted 

  

  
 Actual  
  
  
  

  0 1 and 2 3 Total  

0 116 11 0 127 

1 and 2  17 153 8 178 

3 0 8 56 64 

Total   133 172 64 369 
 

 

 

Table 6-10: Confusion matrix obtained using the K-nn classifier for 3 AAC categories 

 

  
Predicted 

    0 1 and 2 3 Total  
 Actual  0 113 14 0 127 
  1 and 2  17 150 11 178 
  3 0 10 54 64 
  Total   130 174 65 369 

 

 

 

Table 6-11: Confusion matrix obtained using the RF classifier for 3 AAC categories 

 

  
Predicted 

    0 1 and 2 3 Total  
 Actual  0 116 11 0 127 
  1 and 2  16 149 13 178 
  3 0 11 53 64 
  Total   132 171 66 369 
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6.6 Summary 

This chapter has presented a validation of the automatic technique that was developed 

for AAC detection and quantification as discussed in Chapter 5. 

AAC scores obtained by the AC-24 system were strongly related to patient age. The 

pattern of AAC distribution was similar to the findings of many previous studies with the 

highest calcification score being at L4 level.  The developed algorithm achieved high 

accuracy, sensitivity and specificity.  

The present approach may be helpful in identifying patients with atherosclerosis before 

the development of symptoms of cardiovascular disease. It provides a fast (less than 1 

minute) and low-cost assessment of the location and severity of AAC.     

The next chapter presents the design and construction of a phantom to investigate the 

performance of VFA images acquired by DXA in the detection of AAC.   
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 					Phantom	Design	and	construction

 

Phantom Design and Construction 

7.1 Introduction  

In the first part of this thesis, the ability of DXA to provide useful information on abdominal 

aortic calcification has been demonstrated. By analysing VFA images acquired using 

this modality, a new method to quantify AAC in the lumbar region has been developed 

and validated on a large data set with different degrees of calcification.  

The aim of the second part of this study is to challenge the VFA technique under various 

conditions to investigate the capability of the scanner to detect calcification in its early 

stages when its thickness is small. Apart from calcification thickness, detectability may 

be affected by factors such as VFA energy mode and patient body width. A Perspex 

phantom was used to mimic abdominal soft tissue with a strip of aluminium inserted at 

its centre to mimic calcification.  

The aim of this work was to examine the capability of VFA to detect a small uniform 

thickness of material that is equivalent to calcification. To the author’s knowledge, such 

a systematic study has not been done previously.  

In diagnostic radiology, phantoms are often made of Perspex and aluminium, where the 

Perspex is used to simulate soft tissue and the aluminium is used as a bone equivalent 

material. There is no commercial phantom that is suitable for this study. The Hologic 

spine phantom, which is used for QC, was not used for this work as it consists of a model 

of vertebrae L1 to L4 moulded from calcium hydroxyapatite mixed in epoxy resin and 

embedded in a homogeneous epoxy resin block.  
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In order to model both abdomen soft tissue and calcification of the aortic region, a new 

phantom of appropriate dimensions and made of appropriate materials was designed 

and constructed.  

This chapter presents the phantom materials used in this study. The chapter also 

discusses the initial experiments that were made to estimate suitable phantom 

dimensions. These preliminary experiments were conducted using the Hologic 

Discovery A DXA scanner (S/N70902) at the University Hospital of Wales (UHW) and 

slabs of Perspex. Imaging VFA was done in single energy mode. 

7.2 Modelling of Abdomen Soft Tissue 

In diagnostic radiology, some measurements must be done with phantoms because it is 

impractical to make such measurements on human subjects. For example, test 

phantoms with tissue substitutes are used to estimate the radiation dose delivered to 

human organs and to evaluate image quality. Various types of phantom model have 

been made to represent specific human anatomy and phantom design has evolved to 

simulate the real patient (Wood et al. 2017). In practice, the radiological properties of 

phantom materials should be as similar as possible to those of tissue.  

In recent years, many studies have addressed the design of experimental phantoms as 

a useful resource in x-ray modelling. Several radiation applications have been tested by 

employing phantoms of inexpensive design and material.  

The transmission of x-radiation through a region of the body depends on the properties 

of tissue, such as effective atomic number	[“”” and physical density	d. The effective 

atomic number	[“””, of a material is the atomic number of a hypothetical element that 

attenuates photons to the same extent as the material. In Hologic DXA,  the x-ray tube 

voltage is switched between 100 kV (as low energy) and 140 kV (as high energy) during 

half-cycles of the power supply (Shepherd 2009; Lorente-Ramos et al. 2011). In the 
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corresponding energy range, the dominant interactions are the photoelectric effect and 

Compton scattering. Generally, the mass attenuation coefficient VW for photoelectric 

absorption is proportional to [“””Z  and 	1 ØZ⁄ , where Ø	is the photon energy. 

Consequently, at low energy the photoelectric effect is the dominant interaction in a 

relatively high atomic number materials such as bone. On the other hand, Compton 

scattering is the dominant interaction in soft tissue, especially at high energy. The mass 

attenuation coefficient ’“ is proportional to electron density and is nearly independent of 

the atomic number of the attenuating medium. 

7.2.1 Phantom Material  

Water and plastic materials are frequently used for dosimetry phantoms as 

recommended by major dosimetry protocols (International Atomic Energy Agency (IAEA) 

2000; International Committee on Radiation Units 2010). Water is used because human 

soft tissue contains about 70% of water.  

In a study by Dae-Cheol et al. (2010), acrylic and water were used as tissue equivalent 

material to examine the effect of the thickness of soft tissue on bone density measured 

using DXA. The most popular acrylic plastic is polymethyl methacrylate (PMMA), which 

is sold under the brand names of Plexiglas, Lucite, Perspex and Crystallite. The 

elemental composition for PMMA, water and soft tissue are summarised in Table 7-1.  

Table 7-1: Elemental composition of water, Perspex and soft tissue (Mihailescu and Borcia 2006; 
Singh et al. 2014) 

 
1https://physics.nist.gov/cgi-bin/Star/compos.pl?matno=262 

Element Properties Elemental mass fraction 

 

Symbol 

Atomic number 

(Z) 

Atomic weight Water Perspex Soft Tissue1 

H 1 1.008 0.112 0.081 0.1012 

C 6 12.011 - 0.600 0.1110 

O 8 15.999 0.888 0.320 0.7620 

N 7 14.007 - - 0.0260 
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Perspex possesses similar x-ray attenuation properties to soft tissue and has been used 

in many studies (Anderson et al. 2000; Caldas et al. 2010; İrem et al. 2016). Perspex is 

used due to its availability and homogeneity and the fact that it is easy to machine. 

However, it is not exactly tissue equivalent as its physical density is greater than that of 

water and its effective atomic number is slightly less. Moreover, the relative electron 

density of Perspex to water is 1.16 (Standard Imaging 2013). The mass attenuation 

coefficients of water and Perspex at 70 keV are 0.1945 and 0.1836 cm2 /g respectively 

(Lewis et al. 2012).   

However, studies have shown that Perspex is suitable for simulating soft tissue (Kelly et 

al. 1998; Anderson et al. 2000; Palm et al. 2002; Losasso 2005; Desai et al. 2010; Caldas 

et al. 2010; İrem et al. 2016). The effective atomic number [“””  and other properties of 

soft tissue, Perspex and water are listed in Table 7-2.  [“””	is expressed by  Hendee et 

al. (2003) as follows:  

 
[“”” = 			 (	() )	 +	(2 2	 +	(Z Z + ⋯+		(◊ ◊	)

)
2.ÿ. 

 

 

 

(7-1) 

where, [), [2	, ….		[◊ are the atomic numbers of the elements in the material and 

(), (2 	… . . (◊ are the fractional contribution of every element to the total number of 

electrons in the mixture. The chemical composition of Perspex is ('Ÿ-21⁄)◊  with a 

density of 1.19 g/cm3 and [“””  of 6.48 (Lewis et al. 2012; Ali et al. 2015). 

 

 

 



113 
 

 

Table 7-2: Properties of soft tissue, Perspex and water (Lewis et al. 2012) 

 

 

 

 

7.2.2 Phantom Dimensions  

 
The estimation of phantom width was based on human body waist and hip 

circumference, while the determination of the length and height of this phantom was 

based on the characteristics of the DXA scanner.  

 

 Phantom Width  
 
In order to estimate the width of the abdominal region, the results of a study by 

Henderson et al. (2002) were used. This published work is a survey of a national sample 

of adults aged between 19 to 64 years; the survey aimed to gather information about the 

nutritional status of the British population. The research provided anthropometric data 

on a representative sample of 2,251 participants. The mean of two recorded 

measurements was taken. Agreement between these two measurements was checked 

and data were included only if the percentage difference was less than 15%.  

According to Henderson et al. (2002), the waist is defined as the mid-point between the 

iliac crest and the lower rib. The hip circumference is defined as the maximum 

circumference over the buttocks and below the iliac crest. Waist and hip measurements 

 

 

Element 

 

Effective atomic 

number 

€‹›› 

 

Density 
(g/cm3) 

 

 

Mass attenuation 

(cm2/gm) 

 

40 keV 

 

70 keV 

Soft Tissue 7.47 1.00 0.2688 0.193 

Perspex  6.48 1. 19 0.2430 0.1836 

Water  6.60 1.00 0.2683 0.1945 
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were taken from a total of 1,782 subjects, 808 men and 974 women. Subsequently, waist 

to hip ratios were calculated (Henderson et al. 2002).  

In order to find the width W of the Perspex phantom that models soft tissue in the 

abdomen, this region was assumed to be elliptic. The circumference C of this ellipse 

(Figure 7-1A and 7-1B) was expressed using the common Ramanujan’s Approximation 

Theorem II (Villarino 2005).  

 

where 

and a and b are the semi-major axis and semi-minor axis of the ellipse 
respectively. 

 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 7-1: (A) abdominal region (B) ellipse shape. 
 
 

 
' = 	π (a + b) x1 +	

3ℎ

10√4 − 3ℎ
	y,																		 (7-2) 

 
		ℎ = 			

(( − m)2

(( + m)2
																							 

(7-3) 

A) 



115 
 

 

The mean ± SD waist and hip circumference of men were 100 ±11.7 cm and 105 ±8.3 

cm respectively. For women, the waist and hip circumference were 86 ±12.1 cm and 106 

±10.8 cm respectively. The range of body width was calculated from the average 

circumference of waist and hip for ± 1SD, ± 2SD and ± 3SD.  

Body width at the lumbar spine region was assumed to be 2a. Taking into account the 

diversity of the shape of human the human abdomen in both genders, three assumptions 

were made to estimate body width: a=b (the minimum), a =1.5b and a=2b (the 

maximum). Table 7-3 and 7-4 show the results of this calculation for men and women 

respectively.  

Table 7-5 summarises the minimum and maximum body width for both women and men. 

The calculation suggested that the phantom width should range between 20 and 50 cm.  
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Table 7-3:  Estimated body width for men 

 

 

 

Waist 
Circumference 
(cm) 

Hip 
Circumference 
(cm) 

Average Body 
Circumference 

Body Width 

a=b 

Body Width 

a=1.5b 
Body Width 
a=2b 

Mean +3Sd 135.1 129.9 132.5 42.197 50.134 54.732 

Mean+ 2Sd 123.4 121.6 122.5 39.013 46.351 50.601 

Mean +Sd 111.7 113.3 112.5 35.828 42.567 46.471 

Mean 100 105 102.5 32.643 38.783 42.34 

Mean-1Sd 88.3 96.7 92.5 29.459 34.999 38.209 

Mean-2Sd 76.6 88.4 82.5 26.274 31.216 34.078 

Mean-3Sd 64.9 80.1 72.5 23.089 27.432 29.948 

 

 

 

 

 

 

 

 



117 
 

 

 

 

Table 7-4: Estimated body width for women 

 

 

 

 
Waist Circumference (cm) 
 

Hip Circumference 

(cm) 
 

Average Body 
Circumference 

(cm) 

Body Width 

a=b 
 

Body Width 

a=1.5b 
 

Body Width 

a=2b 
 

Mean +3Sd 122.3 138.4 130.35 41.513 49.321 53.844 

Mean+ 2Sd 110.2 127.6 118.9 37.866 44.988 49.114 

Mean +Sd 98.1 116.8 107.45 34.22 40.656 44.385 

Mean 86 106 96 30.573 36.324 39.655 

Mean-1Sd 73.9 95.2 84.55 26.927 31.991 34.925 

Mean-2Sd 61.8 84.4 73.1 23.28 27.659 30.196 

Mean-3Sd 49.7 73.6 61.65 19.634 23.327 25.466 
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Table 7-5: Maximum and minimum estimated body width estimated for men and women 
 

 

After calculating the desired width, the Perspex phantom was constructed in several 

configurations to cover the range between 20 cm and 50 cm, taking into account the fact 

that an aluminium strip would need to be sandwiched between two halves of the 

phantom. The phantom was designed using slabs of Perspex of thickness 1 cm, 2.5 cm, 

5 cm and 10 cm. Figure 7-2 shows the Perspex phantom and aluminium strip placed on 

the DXA scanner table. Figure 7-3 shows a schematic diagram of the Perspex phantom 

and its dimensions from three views: superior-inferior (S-I), anterior-posterior (A-P) and 

lateral. 

 

 

 

 

 

 

 

Figure 7-2: Perspex phantom with (aluminium strip) on the DXA scanner table: S=superior, I= 
inferior, A= anterior, P= posterior 
 

 

Gender 

 
 

Waist  

Circumference (cm) 

±SD 
 

Hip 

Circumference 
(cm) ± SD 

 
 

 

Body Width (cm) 

 

Minimum Maximum 

Men 100 ± 11.7 105 ± 8.3 23 55 

Women 86 ± 12.1 106 ±10.8   20 54 
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Figure 7-3: Schematic views of the Perspex phantom and its dimensions: H= height, W= width, 
L= length 
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7.3 Phantom Height and Length 

 
Experiments were done in order to determine an appropriate length (L) and height (H) 

(Figure 7-3) for the phantom.  

 
a) Phantom Height 

For fan-beam Hologic DXA systems, the scan width is fixed by the width of the collimator 

and the operator has no control over this factor.  During the time period over which the 

VFA scans used in this phantom study were acquired, the scan width was 14.5 cm. The 

height of the Perspex phantom should be greater than the scan width to avoid undesired 

air anterior the phantom. To determine the phantom height, a series of Perspex slabs of 

1 cm thickness were used. An initial total height of 9 cm was scanned, and this value 

was increased in steps of 1 cm. The acquired VFA images were visually inspected using 

the Hologic software. Air was clearly present anterior to the phantom (viewed in the 

lateral direction) on VFA images with Perspex height in the range of 9 cm to 16 cm, while 

at 17cm, the Perspex covered the entire width of x-ray beam.  

The outcome of this experiment was that the height of the Perspex phantom should be 

≥17 cm to avoid the presence of air in the image. A height of 20 cm was chosen.  

b) Phantom Length  

To complete the Perspex phantom design, the length of the phantom was determined. 

In this experiment, a Hologic QDR -1 anthropomorphic spine phantom (Serial no. 10203) 

of length of 20 cm was used. Two VFA images were acquired with different scan length: 

17 cm and 30 cm. Figure 7-4 shows the experimental set up. Images obtained in single 

energy mode are shown in Figure 7-5a and 7-5b.  



121 
 

 

These images were analysed using Hologic software to investigate whether there was a 

difference in pixel values at corresponding locations on the phantom.  To do this, a series 

of landmarks were identified; these included points within the vertebrae, at the edges of 

the vertebrae and outside the vertebrae. The results indicated that there were differences 

in pixel value at corresponding locations on the image acquired with a 30 cm scan length. 

Since this was not the case with the image acquired with a 17 cm scan length, it was 

concluded that the anomalies were due to the presence of air.  

The outcome of this experiment can be summarised as follows: the scan length should 

be less than the Perspex phantom length to avoid air superior and inferior to the 

phantom. For convenience, the length of the phantom was chosen to be 25 cm. 

 

 

 

 

 

 

 

 

  

 
 
 
 
Figure 7-4: Experimental set up for lateral VFA scan of the Hologic spine phantom 
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Figure 7-5: Lateral VFA images of Hologic spine phantom with: a) 17 cm scan length, b) 30 cm 
scan length 
 
 
 
 

 

7.4 Modelling of Calcification  

7.4.1 Phantom Material 

The composition of calcification is identical to that of calcium hydroxyapatite (section 2.4) 

and aluminium has been used in many studies to simulate calcification (Dmitrovsky and 

Boskey 1985; Higgins et al. 2005; Warren et al. 2013).  Table 7-6 lists some physical 

properties of hydroxyapatite and aluminium (Jonson 1993; Manjunatha and 

Rudraswamy 2012). However, there is a difference between these two materials in 

regards their physical properties.    

b) a 
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Table 7-6: Properties of calcium hydroxyapatite and aluminium (Jonson 1993)  

 

 

Aortic calcification takes the form of deposits that are embedded into the soft tissue. 

Ideally, the phantom should be identical to the real case to ensure an accurate simulation 

result. However, in this study, the intention was not to simulate the real pattern of 

calcification within the aorta, but to investigate the performance of VFA to detect uniform 

thicknesses of calcification represented by an equivalent material. This was the simplest 

approach to simulate different thicknesses of a calcification.  

7.4.2    Aluminium Strips Thickness Measurements 

 
In this phantom study, the calcification was modelled using aluminium strips (99% purity) 

and six different thicknesses: 0.05, 0.1, 0.2, 0.3, 0.5 and 1 mm of dimensions 150 mm x 

30 mm. The tolerance was 15% for a thickness of 0.05 mm and 10% for thicknesses > 

0.05 mm.  

The aluminium strips were given identification numbers and their nominal thickness, as 

given by the manufacturer was checked using a Digimatic screw gage micrometre (MDC-

1" PXT) with 0.00005" resolution (Figure 7-6). 

Thickness was measured at fifteen points on each strip. Sets of five measurements were 

made along each edge of the strip and along the central line. Table 7-7 shows an 

 

 

Material 

 

Atomic effective number 

"#$$ 

 

Density 
g/cm3 

 

 

Mass attenuation 

(cm2/gm) 

 

40 keV 

 

70 keV 

 

Hydroxyapatite 

 

15.86 

 

3.15 

 

0.988 

 

0.313 

Aluminium 13.26 2.70 0.568 0.242 
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example of fifteen points measured on a strip of aluminium with a nominal thickness of 

0.5 mm ± 0.05 mm. The nominal thickness and measured mean (SD) thickness of a 

representative set of strips are shown in Table 7-8.  

For the experimental work, different combination of the strips were used to give a range 

of aluminium thickness between 0.05 mm and 2 mm.  

 

 

  

 

 

 

 

 

Figure 7-6: Digimatic micrometre screw gage 
 

Table 7-7: Thickness measurements for one aluminium strip with nominal thickness 0.5 mm 

 
 
 

 

 

 

 

 

 

 

 

 

 

Point # Centre Left edge Right edge 

1 0.472 0.471 0.469 

2 0.475 0.474 0.469 

3 0.469 0.470 0.475 

4 0.473 0.474 0.467 

5 0.473 0.472 0.475 
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Table 7-8: Thickness measurements for six aluminium strips with nominal thickness of 
0.05,0.1,0.2,0.3,0.5 and 1 mm 

 

 

Nominal thickness mm Measured thickness (SD) 
mm Difference % 

0.05 0.0482(0.001) -3.60% 

0.1 0.102(0.0013) +2.30% 

0.2 0.202(0.0023) +1.10% 

0.3 0.288(0.0010) -3.97% 

0.5 0.472(0.0026) -5.60% 

1 0.901(0.0021) -9.88% 

 
 
 

7.5 Summary  

This chapter has presented the phantom designed and constructed to simulate abdomen 

soft tissue and uniform aortic calcification.  

The main features of the phantom can be summarised as follows:  

• The abdomen was simulated with Perspex of width in the range 20 to 50 cm.  

• The phantom height and length were set at 20 cm and 25 cm respectively,   

• In order to mimic the calcification, aluminium strips of thickness ranging between 

0.05 mm and 2 mm were used.  

  

The next chapter presents a phantom study conducted in this research to investigate the 

performance of DXA in the detection of small calcification thickness in the aorta through 

VFA images acquired in single and dual energy and with different phantom 

configurations.  
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 										Performance	evaluation	of	DXA	for	AAC	Detection		

Performance Evaluation of DXA for AAC Detection  

8.1 Introduction 

This chapter presents and discusses the phantom study conducted in the second part of 

this research. The purpose of performing these experiments was to examine the 

capability of VFA images acquired by DXA to detect calcification in the abdominal aorta. 

The minimum thickness of calcification equivalent material that can be detected in VFA 

images was investigated.  

Two types of DXA scanner (Hologic Horizon and Hologic Discovery) were used in this 

study and scans were acquired in two energy modes: single energy (SE) and dual energy 

(DE). The aim of this study was to examine how well VFA images acquired by the DXA 

modality are able detect calcification and to define the limitations of these images. The 

study included investigating: 

• The effect of energy mode on images of different phantom configurations; 

• The effect of the width of the abdomen region, represented by a soft tissue 

equivalent material (Perspex), on VFA image quality; 

• The minimum detectable thickness of uniform calcification, represented by 

aluminium; 

• The repeatability and reproducibility of image contrast and contrast to noise ratio.     
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8.2 VFA Image Acquisition Protocol 

The following steps were developed as the protocol used to acquire VFA images with 

the two Hologic DXA scanners for all experiments in this study. The manufacturer’s 

instructions were followed, and the daily quality control check applied.  

Laser Positioning 

On the control panel, the “Table” switch was pressed to move the table and C-arm to the 

centre position. The position of laser indicator was aligned to be at the centre of the table. 

Phantom Setup 

The Perspex phantom was positioned at the centre of the table, so that the longitudinal 

the laser indicator line (superior-inferior direction) coincided with the midline of the 

phantom. The transverse laser indicator (lateral direction) crossed the phantom at a 

distance of 12.5 cm from both ends of the phantom along its length. 

Scan Acquisition  

VFA scans were performed with the default option; this meant that only lateral scans 

were made and that anterior-posterior views were not obtained.  

Instant vertebral assessment (IVA), as VFA is called in the Hologic system, was 

highlighted on the scan type selection window. Scan length was chosen to be less than 

the phantom length (25 cm). The laser indicator was placed centrally 3.3 cm from the 

superior edge of the phantom and the scan length was set to 18.2 cm. The C-arm was 

positioned using the arm controls on the control panel to acquire the VFA images.  

This protocol was repeated for all phantom configurations, i.e. each configuration of 

Perspex width and aluminium thickness. Aluminium strips of nominal thickness 0.05, 

0.15, 0.2, 0.25, 0.3, 0.5, 0.8, 1.0, 1.3, 1.5, 1.8 and 2 mm were inserted at the centre of 
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the phantom between two Perspex blocks of total width 15, 20, 25, 30, 35 and 40 cm. 

Figure 8-1 shows the experiment setup.  

 

 

 

 

 

 

 

 
Figure 8-1:  Experimental setup for VFA imaging of the phantom 
 

8.3 Preparation of Images for Analysis  

VFA images were exported using Hologic software in DICOM format. Image size was 

502(402 pixels (12 bits) in SE mode and 502(399	pixels (8 bits) in DE mode for both 

scanners. The raw images were analysed using Matlab 2014 software with no pre-

processing and the visibility of the Al strips was enhanced by applying image windowing. 

Artefacts appeared at the edges of images acquired by both scanners in both modes. 

Since these artefacts affected pixel values if they were included within regions of interest, 

they were removed by cropping the images manually. Figures 8-2 and 8-3 depict these 

artefacts on SE and DE images of a phantom configuration comprising15 cm Perspex 

combined with 0.5 mm of aluminium, with suitable windowing for better visualisation.   
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Figure 8-2: Original phantom VFA images acquired by the Hologic Horizon scanner for 15 cm 
Perspex and 0.5 mm Al: (a) single energy mode, (b) dual energy mode 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8-3: Original phantom VFA images acquired by the Hologic Discovery scanner for 15 cm 
Perspex and 0.5 mm Al: (a) single energy mode, (b) dual energy mode 
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For some of the analyses, the entire cropped VFA image was selected as a region of 

interest (ROI). However, for another type of analysis, three rectangular ROIs were 

selected on each image: a central ROI within the aluminium strip and two lateral ROIs 

within Perspex on each side. Figures 8-4 and 8-5 show three ROIs placed on a phantom 

image comprising 15 cm Perspex combined with 0.5 mm of Al in SE and DE modes for 

the two scanners. 

To determine the position and size of the three ROIs, profiles were created of pixel values 

along the entire phantom height for a configuration of 15 cm Perspex combined with 

greatest Al thickness (2 mm). For each point along the profile, the pixel value was the 

mean of 450 rows along the phantom length. This was done so that the central ROI could 

be positioned optimally within the image of the aluminium strip with its edges well away 

from the edges of the strip. Figures 8-6 and 8-7 show examples of the effect of the 

aluminium edges on mean pixel values.  

On Horizon scanner images, the central ROI was defined on column number 135 with a 

width of 50 pixels; this was done to avoid the effect of aluminium edges. The two other 

ROIs were positioned at a distance of 70 pixels horizontally from the right and left sides 

of centre ROI. The right and left ROIs started at column number 15 and 255 respectively 

since they had the same width as the central ROI. 

For the Discovery scanner, the central, right and left ROIs were drawn on columns 30, 

150 and 255 with a width of 50 pixels. Again the distance between the central ROI and 

left/right ROIs was 70 pixels on both sides.   
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Figure 8-4: ROIs on a phantom images of 15 cm Perspex (left, L and right, R) and 0.5 mm 
aluminium (centre, C) obtained with a Horizon scanner: (a) single energy mode, (b) dual energy 
mode 

 

 
 
 
 
 
 

 

 

 

 

 
 
 
 
 
 
 
 
Figure 8-5: ROIs on a phantom images of 15 cm Perspex (left, L and right, R) and 0.5 mm 
aluminium (centre, C) obtained with a Discovery scanner: (a) single energy mode, (b) dual energy 
mode 
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Figure 8-6: VFA image profile showing the aluminium strip edge effect for 15 cm Perspex 
combined with 2 mm aluminium obtained with the Horizon scanner in (a) single energy mode, (b) 
dual energy mode 
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Figure 8-7: VFA image profile showing the aluminium strip edge effect for 15 cm Perspex 
combined with 2 mm aluminium obtained with the Discovery scanner in (a) single energy mode, 
(b) dual energy mode  
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8.4 Uniformity and Noise 

In this study, the influence of Perspex width on VFA images acquired in two energy 

modes was investigated with the two DXA scanners. Images were obtained using the 

protocol discussed in section 8.2 and prepared for analysis as described in the previous 

section. Image quality was assessed in terms of uniformity and noise. 

 

8.4.1 Method 

 
VFA images of the Perspex phantom were acquired with no aluminium insert and using 

a range Perspex width: 15, 20, 25, 30, 35, 40 cm. Profiles were drawn of the mean of 

450 pixels in 325 columns in the x direction (phantom length) and also for the mean of 

325 pixels in 450 rows in the y direction (phantom length). The profiles were analysed 

by linear regression and correlation.  

The variations of pixel values in the entire VFA images was also examined. This was 

done by computing the mean and standard deviation for the whole image after cropping 

the artefacts. The percentage coefficient of variation (%CV) was computed:   

	
%./ = 	

12	34	5ℎ7	879:	;<(7=	>9=?7@	3:	5ℎ7	7:5<A7	<89B7	
879:	34	5ℎ7	;<(7=@	34	5ℎ7	7:5<A7	<89B7		 		× 	100 

	

	
(8-1)	

 
 

8.4.2 Results  

 
 
Representative image profiles for Perspex widths of 15 cm, 25 cm and 40 cm in SE and 

DE modes for two scanners are shown in Figures 8-8 to 8-11. 



135 
 

 

Figures 8-12a and 8-12b, show the variation of the mean pixel values with Perspex width 

for the Horizon scanner.  

Corresponding results are shown for the Discovery scanner in Figures 8-13a and 8-13b. 

It is clear that as the width of Perspex increased, noise, represented by the standard 

deviation, also increased. This reflects the fact that the number of photons received by 

the detectors decreased as Perspex width increased. 

Tables 8-1 and 8-2 show the mean, SD and %CV of the pixel values in the entire VFA 

images acquired with the Horizon scanner in SE and DE modes while Tables 8-3 and 8-

4 show corresponding data for the Discovery scanner. The %CV increased with 

increasing Perspex width as the noise in these images increased. 

The two scanners revealed the same trend. The mean pixel value was approximately 

constant at 2048 and 2045 for the Horizon and Discovery respectively in SE mode for 

Perspex widths between 15 cm and 30 cm. It then increased to reach 2053 for the 

Horizon and 2047 for the Discovery for a Perspex width at 40 cm. On the other hands, 

in DE mode, the mean value increased consistently as the Perspex width increased to 

27 cm and decreased thereafter.   

Calculated %CV was consistent between the two scanners. In SE mode, it varied 

between 0.6 % and 16% for the Horizon scanner and 0.7% and 14% for the Discovery 

scanner. In DE mode, %CV increased from 2% to 16% for the Horizon and from 2% to 

17% for the Discovery.  

There was no linear correlation between mean pixel value and distance parallel to the 

scan direction (y direction); AI < 	0.1 for all Perspex widths. However, in some instances 

there was a correlation between pixel values and distance in the x direction. For 

example, with a Perspex width of 15 cm AI = 	0.366, (	; < 0.001) for the Horizon scanner 

and AI = 	0.182, (	; < 0.001) for the Discovery in SE made. In DE mode there was 



136 
 

 

significant and strong correlation between pixel value and distance; for example, 	AI =

	0.693, (; < 0.001	on images of 15 cm of Perspex and AI = 	0.403, (; < 0.001)	with 30 

cm Perspex for the Horizon scanner. There was no corresponding linear correlation AI <

0.1 in DE images for the Discovery scanner. A complete comparison between the two 

DXA scanners is presented in Appendix A. 
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Figure 8-8: Image profiles with Perspex widths of 15 cm, 25 cm and 40 cm in single energy mode 
for the Horizon scanner: (a) in the X direction (left), (b) the Y direction (right) 
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Figure 8-9: Image profiles with the Perspex widths of 15 cm, 25 cm and 40 cm in dual energy 
mode for Horizon scanner: (a) in the X direction (left), (b) in the Y direction (right) 
  



139 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8-10: Image profiles with Perspex widths of 15 cm, 25 cm and 40 cm in single energy 
mode for Discovery scanner: (a) in the X direction, (b) in the Y direction 
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Figure 8-11: Image profile with Perspex widths of 15 cm, 25 cm and 40 cm in dual energy mode 
for the Discovery scanner: (a) in the X direction, (b) in the Y direction 
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Figure 8-12: Variation of the mean (SD) of pixel values with Perspex width for VFA images 
obtained the Horizon scanner in: (a) single energy mode (b) dual energy mode 
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Figure 8-13: Variation of the mean (SD) of pixel values with Perspex width for VFA images 
obtained the Discovery scanner in: (a) single energy mode (b) dual energy mode 
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Table 8-1: Mean, SD and %CV of pixel values for VFA images acquired with the Horizon scanner in 
single energy mode. 

 

 
 
Table 8-2: Mean, SD and %CV of pixel values for VFA images obtained with the Horizon scanner in 
dual energy mode. 

 

 
 

  

Perspex width Mean for the whole image SD % CV 

10 cm 2048.9455 13.1774 0.6431 

12 cm 2048.7597 15.4851 0.7558 

15 cm 2048.5679 20.6625 1.0086 

17cm 2047.8691 24.8719 1.2145 

20 cm 2048.7065 34.4343 1.6808 

22 cm 2048.3918 41.8541 2.0433 

25 cm 2048.1942 57.8862 2.8262 

27 cm 2047.8236 70.8389 3.4592 

30 cm 2048.191 100.3036 4.8972 

32 cm 2049.5182 123.1397 6.0082 

35 cm 2050.2657 173.8707 8.4804 

40 cm 2053.8053 333.8863 16.257 

Perspex width Mean for the whole image SD %CV 

10 cm 57.593 1.2338 2.1423 

12 cm 59.5157 1.5324 2.5747 

15 cm 62.6967 2.0875 3.3296 

17cm 69.6189 2.6741 3.8411 

20 cm 75.0257 3.9531 5.269 

22 cm 83.4262 5.4674 6.5535 

25 cm 89.2148 6.8467 7.6744 

27 cm 108.1815 8.9764 8.2975 

30 cm 81.1224 10.1927 12.5646 

32 cm 90.6329 9.6674 10.6666 

35 cm 75.0146 10.6595 14.2099 

40 cm 67.5282 11.0892 16.4215 
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Table 8-3: Mean, SD and %CV of pixel values for VFA on images obtained with Discovery scanner in 
single energy mode 

 

 

 

 

Table 8-4: Mean, SD and %CV of pixel values for VFA images obtained with the DXA Discovery scanner 
in dual energy mode 

 

 
 

Perspex width Mean for whole image SD %CV 

10 cm 2046.1828 14.6425 0.7156 

12 cm 2045.3142 17.1163 0.8369 

15 cm 2045.1101 20.9119 1.0225 

17cm 2045.4316 24.368 1.1913 

20 cm 2044.9602 32.3009 1.5795 

22 cm 2044.183 38.5146 1.8841 

25 cm 2044.1134 52.8592 2.5859 

27 cm 2043.5641 64.1312 3.1382 

30 cm 2043.6415 90.0949 4.4085 

32 cm 2043.7055 110.254 5.3948 

35 cm 2044.2767 154.6461 7.5648 

40 cm 2047.4683 290.476 14.1871 

Perspex width Mean for whole image SD %CV 

10 cm 55.8848 1.083 1.938 

12 cm 57.1971 1.3484 2.3575 

15 cm 59.8112 2.0522 3.4311 

17cm 63.8523 2.4389 3.8196 

20 cm 71.6345 3.6502 5.0956 

22 cm 76.7139 4.4367 5.7834 

25 cm 84.4554 6.1892 7.3283 

27 cm 96.6264 9.0547 9.3708 

30 cm 86.3086 8.9345 10.3518 

32 cm 89.3758 10.0348 11.2277 

35 cm 80.1153 10.1765 12.7023 

40 cm 71.1926 12.5564 17.6373 
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8.5 Detectability assessment  

As a part of this research, the minimum thickness of calcification equivalent material that can 

be detected in VFA images was investigated. Several approaches were applied to assess 

detectability of a uniform thickness of aluminium embedded in Perspex. These comprised 

human vision and the measurement of contrast (C) and (CNR). This section discusses these 

approaches and describes the methods used. Image analysis was done using the three ROIs 

described in section 8.3.  

8.5.1 Contrast and Contrast to Noise Ratio  

The contrast . that indicates the brightness difference in between the aluminium strip and 

background (Perspex) was computed using the following equation (Dickerscheid et al. 2013; 

Jakubiak et al. 2013):  

 
				N	 =

(OPQ −	OS)
OS

								 
 (8-2) 

Here, OPQ is the mean pixel value in the centre ROI (aluminium) and OS is the mean pixel 

values of within the left and right ROIs (Perspex): 

 
OS = 	

TOS	(UVWX) +	OS(Z[\]X	)	^
2 																															 

(8-3) 

 

where OS	(UVWX)  and OS	(Z[\]X)	are the mean pixel values in the left and right ROIs respectively. 

The detection limit of an imaging system depends on the lesion to background contrast and 

the noise in the background (Bao and Chatziioannou 2010). Image noise was expressed as 

follows:   

                                          O3<@7 = _`
a`

        (8-4) 
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where σS is the standard deviation of the pixel values in two ROIs within Perspex. This was 

calculated using equation (8-5) (Baldelli et al. 2009; Taylor 2016);  

 
cS = dcS	UVWX

I +	cS	Z[\]XI

2  
(8-5) 

 

where σe	fghi and σe	jklmi  are the pixel values in standard deviations of the pixel values within 

the left and right Perspex ROIs respectively.   

The CNR may be used to identify the detectability of aluminium against the background 

(Perspex) and may be defied as:  

 

 

Linear regression and correlation were used to investigate the relationship between Al 

thickness and both C and CNR for different width of Perspex. 

 Results  
 

In general, C and CNR increased with increasing thickness of aluminium for all Perspex widths 

as expected. Figures 8-14 to 8-21 show the results for images acquired in SE and DE mode 

with two scanners for different Perspex widths combined with Al thickness between 0.05 mm 

and 2 mm. For a given Al thickness, C decreased with Perspex width; this was even more 

obvious for CNR since noise also increased with Perspex width.  

Generally, Images obtained in DE mode showed a better contrast and CNR than in SE mode 

for all phantom configurations. DE contrast was about 10 times greater than SE mode contrast 

for both scanners. In addition, DE CNR was approximately 3 times greater than SE CNR.   

 
.On =

(OPU −	OS)
cS

 
(8-6) 
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Figure 8-14: Contrast as a function of Al thickness for different Perspex widths in SE mode images 
obtained with the Horizon scanner 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
Figure 8-15: CNR as a function of Al thickness for different Perspex widths in SE mode images obtained 
with the Horizon scanner  

a) y = 0.0099x + 0.0006

R² = 0.999,p<0.001

b) y = 0.0092x + 0.0003

R² = 0.999,p<0.001

c) y = 0.0085x + 0.0002

R² = 0.997,p<0.001

d) y = 0.0082x + 0.0003

R² = 0.986,p<0.001

e) y = 0.0075x + 4E-05

R² = 0.973,p<0.001

f) y = 0.008x - 0.0002

R² = 0.877,p<0.001
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Figure 8-16: Contrast as a function of Al thickness for different Perspex widths in DE mode images 
obtained with the Horizon scanner 
 

 

 

 

 

 

 

 

 
 
 
Figure 8-17: CNR as a function of Al thickness for different Perspex widths in DE mode images obtained 
with the Horizon scanner 
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Figure 8-18: Contrast as a function of Al thickness for different Perspex widths in SE mode images 
obtained with the Discovery scanner 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8-19: CNR as a function of Al thickness for different Perspex widths In SE mode images obtained 
with the Discovery scanner 
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Figure 8-20: Contrast as a function of Al thickness for different Perspex widths in DE mode images 
obtained with the Discovery scanner 
 
 
 
 

 

Figure 8-21: CNR as a function of the thickness of Al for different Perspex width in DE mode images 
performed with the Discovery 
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8.5.2 Visual Assessment 

 
In addition to the objective method described in the previous section, a subjective 

approach also was used to investigate the minimum thickness of Al that could be seen 

on VFA images of the phantom.   

The presence of aluminium the within Perspex was assessed visually on raw VFA 

images. Images were viewed using both Hologic and Matlab 2014 software windowing 

was applied for better visualisation. 

Figures 8-22 and 8-23 show representative examples of images acquired with phantom 

configurations comprising 25 cm of Perspex combined with 0.15 mm, 0.20 mm and 0.25 

mm of Al in both energy modes for both scanners.  

The Al thickness that could be visualised varied from 0.05 mm at 15 cm Perspex width 

to 1.8 mm at 40 cm Perspex width on the Horizon and from 0.1 mm to 1.8 mm on the 

Discovery. Table 8-5 shows the minimum detectable aluminium thickness that could be 

seen on the images in both SE and DE modes together with the corresponding CNR 

values. These CNR values are thresholds for visibility of the strips.  

An Al thickness of 0.05 mm was visible within 15 cm of Perspex on SE images obtained 

with the Horizon scanner and the corresponding CNR was 0.099. The same Al thickness 

was not clearly detectable with the same Perspex width for the Discovery scanner, for 

which the smallest thickness was 0.1 mm with a CNR of 0.117. This suggests a SE CNR 

threshold value of about 0.1 strip detectability with 15 cm Perspex.  

The CNR visibility threshold for the Horizon scanner was less than for the Discovery 

scanner for all Perspex widths in both modes, indicating better performance.  

For both scanners, the CNR visibility threshold was less in SE mode than DE mode, 

indicating that improved contrast with DE is offset by greater noise. 
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Table 8-5: The minimum detectable thickness of Al assessed visually on VFA images and the corresponding CNR values 

 

 
  

Horizon scanner Discovery scanner 

Perspex thickness 

 

Energy Mode 

 

Al 

Thickness (mm) 

Corresponding 

CNR 

Al 

Thickness (mm) 

Corresponding 

CNR 

15 cm 

 

SE 0.05 0.0992 0.1 0.1172 

DE 0.1 0.159 0.1 0.3456 

20cm 

 

SE 0.15 0.0703 0.15 0.1050 

DE 0.15 0.2247 0.15 0.3405 

25 cm 

 

SE 0.2 0.061 0.2 0.0915 

DE 0.25 0.2004 0.2 0.2544 

30cm 

 

SE 0.5 0.101 0.5 0.0766 

DE 0.5 0.1613 0.5 0.2498 

35cm 

 

SE 0.8 0.0569 0.7 0.0618 

DE 0.9 0.1683 0.7 0.1653 

40cm 

 

SE 1.8 0.0833 1.8 0.1012 

DE 1.8 0.1003 1.8 0.1424 

 

Mean SE 

0.079 0.092 

 

 

DE 

0.169 0.250 
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Figure 8-22: Horizon scanner VFA images of 25 cm Perspex combined with 0.15 mm Al (a) SE (not 
visible) and (d) DE (not visible); 0.2 mm Al (b) SE (not visible) and (e) DE (not visible) ; 0.25 mm Al (c) 
SE (visible) and (f) DE (visible) 
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Figure 8-23: Discovery scanner VFA images of 25 cm Perspex combined with 0.15 mm Al (a) SE (not 
visible) and (d) DE (not visible); 0.2 mm Al (b) SE (not visible) and  (e) DE (not visible); 0.25 mm Al (c) 
SE (visible) and (f) DE (visible) 

 
 

 
 
  



155 
 

8.6 Repeatability and Reproducibility of C and CNR 

To evaluate the repeatability of contrast and CNR, images of a phantom combination of 15 

cm, 25 cm and 40 cm Perspex blocks with Al strips of thickness 0.1 mm, 0.5 mm and 1 mm 

acquired five times in both SE and DE modes.  All five scans were performed on the same 

day and under the same conditions with no repositioning. The number of repeated scans was 

chosen to be consistent with the availability of the clinical DXA scanners for this research and 

also to match previous studies (Johnson 1991).     

In addition, the reproducibility of the same two quantities was measured for each phantom 

configuration with the phantom repositioned five times. %CV was used to measure both the 

repeatability and reproducibility. The %CV of C and CNR was calculated as follows:  

	
%#$	%&	# = 	()	#	 		× 	100 

	

	
(8-7)	

 

	
%#$	%&	#23 = 	(	)45#23 		× 	100 

	

	
(8-8)	

 

 

where C and CNR are the mean of 5 values and () and  	()45 are the corresponding standard 

deviations.  
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8.6.1 Results  

Tables 8-6 to 8-9 show the repeatability and reproducibility (%CV) of C and CNR measured 

with the Horizon scanner. The %CV of the pixel mean value in the Perspex ROIs also shown. 

Corresponding data for the Discovery scanner is presented in Appendix B.   

In general, the mean Perspex pixel value was showed good repeatability and reproducibility: 

≤ 0.2% in SE mode and ≤ 10 % in DE mode for Perspex widths of ≤ 25 cm.  

With the Horizon scanner, the repeatability of the mean Perspex pixel value for Perspex widths 

of 15 and 25 cm was about 0.02 - 0.04% in SE mode and varied from 1% up to 9% in DE 

mode.  For a Perspex width of 40 cm this value was about 0.1 - 0.2% in SE mode and up to 

25% in DE mode. With the Discovery scanner, the SE mode results were similar for Perspex 

width of 15 and 25 cm but better (maximum 8%) for a 40 cm width.  

For Perspex widths of 15 and 25 cm, reproducibility of the mean pixel value was similar to 

repeatability. In SE mode, the same was true for a Perspex width of 40 cm but in DE mode, 

repeatability was worse than reproducibility in general. The pattern was similar for the 

Discovery scanner. Again, DE reproducibility was better in the Discovery scanner than the 

Horizon scanner.   

In all cases, the repeatability and reproducibility of C and CNR were very similar. They became 

worse as the width of Perspex increased (for a given thickness of aluminium) and improved 

as the thickness of aluminium increased (for a given Perspex width). With few exceptions, 

repeatability was better than reproducibility. These results are much as expected.   

With the Horizon scanner, the repeatability of C and CNR of 15 cm Perspex combined with 

0.1, 0.5 and 1.0 mm of aluminium was ≤ 6% in SE mode and < 9 % in DE mode. For 25 cm 

Perspex in SE mode, the repeatability was about 25% with 0.1 mm Al, 3% with 0.5 mm Al and 

<1 % with 1.0 mm Al. It was worse in DE mode, varying between about 5% with 1.0 mm Al 

and about 50% with 0.1 mm Al. For 40 cm of Perspex, the reproducibility was always >20%.  
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The Discovery scanner revealed a different trend. A Perspex width of 15 cm combined with 

0.1, 0.5 and 1.0 mm of Al gave a repeatability of < 10 % in SE and DE modes. A Perspex 

width of 25 cm gave a repeatability about 20% with 0.1 mm Al, and < 5 % with 0.5 mm and 

1.0 mm Al in SE mode, whereas corresponding values in DE mode were 18% and <10%. The 

repeatability with Perspex was worse overall with values between 12% and 70% in SE and 

DE modes.  

With the Horizon scanner and 15 cm Perspex width, reproducibility was < 13% in SE and DE 

modes. For 25 cm Perspex with 0.1 mm Al, it was about 60% in SE mode and 70% in DE but 

decreased to < 5% in SE mode and ≤  40% in DE mode with 0.5 mm Al and to <15% in both 

SE and DE modes with 1.0 mm Al. For a Perspex width of 40 cm, reproducibility was worse 

being >30% in both SE and DE modes.  

The Discovery scanner showed a similar trend. The reproducibility was worse than the 

repeatability. On images with 15 cm Perspex, the reproducibility was <10% for all aluminium 

thicknesses in both SE and DE modes. On images with 25 cm Perspex, it was worse in SE 

mode; the minimum was <1% with 1 mm Al while the maximum was 30% with 0.1 mm Al.  

In general, contrast and CNR was repeatable and reproduceable with a Perspex width of ≤ 

25 cm in combination with aluminium thickness ≥ 0.5 mm. Both repeatability and 

reproducibility were poor with Perspex width of 40 cm.  
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Table 8-6: Repeatability and reproducibility (%CV) of the mean Perspex pixel value, C 
and CNR for phantom configuration of 15 cm with 0.1, 0.5 and 1.0 mm of Al measured 
with Horizon scanner 
   

 
 
 

 

 

 

 

 

 

15 cm Perspex 
 

Repeatability Reproducibility 

Al 

0.1 mm 

SE 

Mean of Perspex pixel value 0.0183 0.0186 

C 5.3901 5.7744 

CNR 5.4232 6.3331 

DE 

Mean of Perspex pixel value 1.8507 1.1339 

C 8.3052 12.9255 

CNR 8.8743 11.8961 

 
  Mean of Perspex pixel value 0.0262 0.0154 

Al 

0.5 mm 

 
 

SE C 1.9874 2.9785 

 CNR 1.3162 2.9835 

 Mean of Perspex pixel value 1.1656 2.2599 

DE C 2.8351 3.2269 

 
 

CNR 2.0843 2.0934 

 

Al 

1.0 mm 

 

SE 

Mean of Perspex pixel value 
 

0.0283 
 

0.0344 
 

C 0.8810 1.8423 

 CNR 0.8695 1.9267 

 Mean of Perspex pixel value 1.3034 1.4658 

DE C 2.5026 3.0112 

  CNR 1.2175 1.8986 
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Table 8-7: Repeatability and reproducibility (%CV) of the mean Perspex pixel value, C 
and CNR for phantom configuration of 25 cm with 0.1, 0.5 and 1.0 mm of Al measured 
with Horizon scanner 
 

 
  

25 cm Perspex 
 

Repeatability Reproducibility 

Al 

0.1 mm 

SE 

Mean of Perspex pixel value 0.0292 0.0889 

C 24.5579 57.2288 

CNR 23.9756 57.467 

DE 

Mean of Perspex pixel value 7.3071 10.034 

C 50.9945 67.427 

CNR 52.9731 69.2533 

 
  Mean of Perspex pixel value 0.0366 0.0569 

Al 

0.5 mm 

 
 

SE C 2.8936 5.3308 

 CNR 2.7564 4.8791 

 Mean of Perspex pixel value 3.775 5.6422 

DE C 12.2467 39.8495 

 
 

CNR 8.2234 33.147 

 

Al 

1.0 mm 

 

SE 
 

Mean of Perspex pixel value 
 

0.0237 
 

0.0216 
 

C 0.823 3.1526 

CNR 0.8279 3.1576 

 Mean of Perspex pixel value 8.6093 7.0138 

DE C 6.2123 14.7526 

 
CNR 4.4597 7.1786 
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Table 8-8: Repeatability and reproducibility (%CV) of the mean Perspex pixel value, C 
and CNR for phantom configuration of 40 cm with 0.1, 0.5 and 1.0 mm of Al measured 
with Horizon scanner 
 

  

 
 
 
 

 

 

 

 

40 cm Perspex 
 

Repeatability Reproducibility 

Al 

0.1 mm 

SE 

Mean of Perspex pixel value 0.1314 0.1332 

C 44.6171 61.7815 

CNR 45.0061 61.8532 

DE 

Mean of Perspex pixel value 8.0813 11.2486 

C 67.4902 74.6334 

CNR 68.5326 74.3851 

 
  Mean of Perspex pixel value 0.1524 0.1084 

Al 

0.5 mm 

 
 

SE C 30.165 46.1281 

 CNR 29.6026 46.1779 

 Mean of Perspex pixel value 8.6984 14.3077 

DE C 45.4079 55.7257 

 
 

CNR 45.1173 48.9551 

 

Al 

1.0 mm 

 

SE 
 

Mean of Perspex pixel value 
 

0.1734 0.1865 

C 26.7242 31.7483 

CNR 28.1028 33.8105 

 Mean of Perspex pixel value 25.8578 25.813 

DE C 62.6387 75.708 

  CNR 50.2352 62.972 
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8.7  Conclusion    

DXA is considered as the most accurate modality for the clinical diagnosis of 

osteoporosis and VFA imaging has emerged as a useful method for AAC detection and 

quantification in recent studies  (Goldstein et al. 2010; Lewis et al. 2016; Elmasri et al. 

2016; Grant et al. 2017). This is the first phantom study concerning the capability of DXA 

to detect AAC through VFA images acquired in SE and DE modes. 

Two Hologic scanners were in this study: Horizon, which is the latest version, and 

Discovery. An experimental protocol was developed for this research and was used to 

obtain VFA images from both DXA scanners.  

Different phantom configurations were investigated. Perspex blocks of width 15-40 cm 

were used as tissue equivalent material. These were combined with aluminium strips of 

thickness ranging between 0.05 mm and 2 mm to simulate calcification in the form of 

calcium hydroxyapatite.  

The phantom study concentrated only on the smallest thickness of aluminium could be 

seen using this technique, and not on the whole range of calcification thickness.  

Thicknesses of up to 5 mm or more have been reported in heavily calcified arteries.  

The study focused on different aspects of VFA performance related to the detection of 

calcification. These included studying the uniformity and noise content of VFA images 

acquired under different conditions. To assess uniformity profiles of mean pixel value 

were generates two directions: perpendicular and parallel to the scan direction. In 

addition, mean (SD) pixel value was plotted against Perspex thickness.  

The detectability limits of calcification were also was investigated. Several approaches 

were applied: these included human vision and the measurement of contrast (C) and 

CNR.  For these measurements’ ROIs were selected carefully to avoid edge effects due 

to the aluminium strips.  
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With the Horizon scanner in SE mode, the mean pixel value was about 2048 for Perspex 

widths of 15 cm to 32 cm. This value increased to 2050 and 2054 for Perspex widths of 

35 cm and 40 cm respectively. With the Discovery scanner in SE mode, the mean pixel 

value was 2045 for Perspex widths between 15 and 32 cm; it then slightly decreased to 

2044 for 35 cm and increased to 2047 for 40 cm. 

DE images revealed the same trend in the two scanners; the mean pixels value 

increased for Perspex width between 15 cm and 27 cm and then decreased for Perspex 

widths ≥ 30 cm.  

In all cases, noise (expressed as the %CV of pixel values) increased as Perspex width 

increased.  

Visual assessment showed that a thickness of aluminium as small as 0.05 mm and 0.1 

mm can be seen on VFA images with 15 cm of Perspex with Horizon and Discovery 

scanners respectively. This thickness increased with Perspex width reach 1.8 mm with 

40 cm of Perspex due to the increase in noise. The CNR threshold for detectability was 

about 0.1 in SE mode and about 0.2 - 0.3 in DE mode.   

For each Perspex width, contrast and CNR increased linearly with aluminium thickness 

and there was a strong and significant correlation in both SE and DE modes for images 

acquired with both scanners. For a given thickness of aluminium, these two decreased 

as Perspex width increased. This was especially true for CNR indices because noise 

increased with |Perspex width.   

8.8 Summary  

This chapter has described a phantom study to evaluate the capability of VFA imaging 

with DXA to detect AAC in the early stages of its formation, where the thickness of 

calcification is small. The study was done in the simplest way by mimicking calcified 

areas of uniform thickness within the abdominal aorta. 
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The results of the study suggest that under idealised imaging conditions, SE and DE 

VFA is capable of detecting small thicknesses of calcification with good linearity and 

acceptable repeatability and reproducibility for body widths in the range 15 and 30.  
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 	Conclusions	and	Future	work		

 

Conclusions and Future Work  

9.1 Introduction 

The goal of the research presented in this thesis was to assess the suitability of DXA 

modality for the detection of AAC using VFA images, with the purpose of finding a low-

cost method of CVD diagnosis.  

The main focus of the thesis was on the automatic quantification of AAC in VFA images. 

The research was divided into two main parts. In the first part, an automatic method for 

AAC detection and quantification in VFA images was developed and evaluated in a large 

number of images. 

Although it was possible to see calcification in the abdominal aorta on VFA images, it 

was difficult to measure its extent using a simple thresholding technique. There was no 

clear difference between calcified and normal pixels. This led to curiosity about VFA 

images and a desire to learn more about them and to assess their suitability for AAC 

detection.  

In the second part of this thesis, the limitations of VFA for the detection of small 

calcification thicknesses were investigated. To this end, a physical phantom study was 

conducted; a Perspex and aluminium phantom simulating soft tissue in the abdomen 

and calcification in the aorta was designed and built. VFA images of different phantom 

configurations were acquired in single energy (SE) and dual energy (DE) modes. The 

minimum detectable aluminium thickness was assessed visually and related CNR. 
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9.2 Contributions to Knowledge   

The main contributions to knowledge presented in this thesis are as follows: 

1. Development of a new automatic method for AAC detection and quantification, 

which might allow clinicians to identify AAC as well as vertebral fractures on VFA 

images.   

2. Validation of the developed automatic system for a wide range of AAC severity 

on a large dataset consisting of several hundred images; 

3. Design and construction of a physical phantom to simulate both soft tissue in the 

abdomen and aortic calcification within this region with the capability to represent 

a range of abdominal width and calcification thickness;   

4. Examination of the sensitivity of VFA imaging with respect to AAC detection 

including: 

a. Investigation of the effect of energy mode on images of different phantom 

configurations;  

b. Investigation of the minimum detectable thickness of calcification 

represented by the phantom material. 

 

9.3 Conclusions 

This research has provided further evidence of the capability of VFA to evaluate AAC. 

The presence of AAC on VFA images is currently considered an incidental finding, but 

the extent and morphology of the calcification may be considered as an additional risk 

factor for future CVD. Although the manual AC-24 scoring system is reliable for AAC 

measurements, it is limited by time and cost.  
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In the first part of this thesis a new approach was developed for AAC detection and 

quantification in VFA images. Initially the method was applied on a small set of selected 

VFA images with only three degrees of AAC severity. Afterwards, the same method was 

extended to include 4 AAC categories, including no AAC, in a large patient image data 

set. 

The main conclusion of this part is that the new method may assist in the identification 

of patients with AAC and classify its severity. This may be exploited in the diagnosis of 

atherosclerosis before symptoms of cardiovascular disease develop. When severe AAC 

is detected, this should be considered in the context of patient disease characteristics 

and history such as advanced age, renal function, chronic inflammatory conditions, CVD, 

diabetes and medication (especially drugs such as statins). Including the degree of AAC 

alongside a BMD report may assist in patient follow-up as regards the progression of 

atherosclerosis and the development of CVD.   

In the second part of this thesis, a physical phantom was used to investigate the 

limitations of VFA for the detection of AAC. The principal conclusion of the second part 

is that under idealised imaging conditions, VFA has the potential to be used for detecting 

small thicknesses of calcification with good linearity and acceptable repeatability and 

reproducibility in SE and DE modes for patients with body width < 30 cm.  

9.4 Limitations   

The main limitations of the research are discussed here. First of all, it is necessary to 

mention that the manual scoring of AAC was done by a reader (A), who, although trained, 

was not an expert in the interpretation of VFA images. Another limitation is that the 

proposed algorithm is not applicable to VFA images that contain anatomical and 

technical artefacts. 
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With regards to the phantom study, it does not reflect the real distribution of calcification 

within the aorta. It is an initial pilot study, which may aid in confirming the ability of VFA 

images to detect calcification in the aorta. 

9.5 Future Work  

For further validation of the automatic approach, interaction with relevant experts needed 

should be persuaded.  This could include land-marking and AAC scoring of VFA images. 

This could be followed by clinical studies to relate AAC severity to indicies of CVD.   

Furthermore, the development and use of a phantom that mimics the real distribution of 

calcification in the aortic walls would be more effective to assess the performance of VFA 

for the detection of AAC.  
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Appendix	A:		Linear	regression	and	correlation	results	
Table A1: Linear regression and correlation of mean pixel value with distance in the X-direction for a range of Perspex widths  

 
 

 

 

 

 

Perspex 
width 

Horizon scanner 

 

Discovery scanner 

 

 

Slope 

 

Intercept 

 

r2 

 

p-value 

 

Slope 

 

Intercept 

 

r2 

 

p-
value 

 

Slope 

 

Intercept 

 

r2 

 

p-value 

 

Slope 

 

 

Intercept 

 

r2 

 

p-value 

 

SE 

 

DE 

 

SE 

 

DE 

15 cm 

 

-0.015 2051.1 0.366 <0.001 0.0048 61.941 0.693 <0.001 -0.009 2046.8 0.182 <0.001 -0.001 59.93 0.03 0.00306 

20 cm 

 

-0.005 2049.5 0.056 <0.001 0.0066 73.972 0.696 <0.001 -0.002 2045.7 0.008 0.112 -0.001 71.83 0.07 <0.001 

 

25 cm 

0.0007 2048.0 0.0006 0.652 0.0080 87.855 0.631 <0.001 -0.004 2045.1 0.015 0.035 -0.001 84.66 0.018 0.0199 

 

30 cm 

0.0032 2047.8 0.005 0.201 0.0062 80.017 0.403 <0.001 -0.002 2044.8 0.001 0.585 0.001 86.35 0.0025 0.386 

 

35 cm 

0.01043 2048.0 0.011 0.050 0.0042 74.253 0.274 <0.001 0.005 2044.5 0.0018 0.46 0.003 79.74 0.053 <0.001 

 

40 cm 

0.0463 2045.8 0.047 <0.001 0.0015 7.048 0.0429 <0.001 -0.014 2051.4 0.0045 0.228 0.007 70.36 0.140 <0.001 
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Appendix	B:	Repeatability	and	Reproducibility		
 
 
Table B1: Repeatability and reproducibility (%CV) of the mean Perspex pixel value, C 
and CNR for phantom configuration of 15 cm with 0.1, 0.5 and 1.0 mm of Al measured 
with Discovery scanner 

 
15 cm Perspex    Repeatability  Reproducibility 

Al  
0.1 mm 

SE 

Mean of Perspex pixel value 0.0119 0.0241 

C  8.4815 9.505 

CNR 8.8361 9.81 

DE 

Mean of Perspex pixel value 0.9399 0.9109 

C  5.5126 6.9489 

CNR 6.0092 6.6894 

  
    Mean of Perspex pixel value 0.0179 0.0307 

Al 
0.5 mm 

  
  

SE C  0.4931 0.7434 

  CNR 2.2844 2.3801 

  Mean of Perspex pixel value 2.0487 2.1392 

DE C  3.7019 4.9793 

    CNR 2.3256 3.3942 

  

Al 
1.0 mm 

  
Mean of Perspex pixel value 0.0223 0.0379 

  

SE C  1.2773 3.7591 

  CNR 1.0897 4.5508 

  Mean of Perspex pixel value 1.4544 0.7388 
DE C  0.6367 1.9863 

  CNR 2.1952 2.2024 
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Table B2: Repeatability and reproducibility (%CV) of the mean Perspex pixel value, C 
and CNR for phantom configuration of 25 cm with 0.1, 0.5 and 1.0 mm of Al measured 
with Discovery scanner 
 

25 cm Perspex    Repeatability  Reproducibility 

Al  
0.1 mm 

SE 

Mean of Perspex pixel value 0.0364 0.0505 

C  21.9436 28.2489 

CNR 21.5114 29.099 

DE 

Mean of Perspex pixel value 4.9545 4.996 

C  18.0404 22.5493 

CNR 16.5005 20.3084 

  
    Mean of Perspex pixel value 0.0335 0.0347 

Al 
0.5 mm 

  
  

SE C  6.2942 7.8785 

  CNR 6.3736 7.3293 

  Mean of Perspex pixel value 2.2472 2.5022 

DE C  1.6763 11.432 

    CNR 2.6346 10.832 

  

Al 
1.0 mm 

  
Mean of Perspex pixel value 0.0236 0.0182 

    

SE C  2.2053 0.5538 
  CNR 3.1145 0.7956 
  Mean of Perspex pixel value 4.1274 5.4389 

DE C  6.2986 10.1902 

  CNR 3.3258 7.9559 
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Table B3: Repeatability and reproducibility (%CV) of the mean Perspex pixel value, C 
and CNR for phantom configuration of 40 cm with 0.1, 0.5 and 1.0 mm of Al measured 
with Discovery scanner 
 

40 cm Perspex    Repeatability  Reproducibility 

Al  
0.1 mm 

SE 

Mean of Perspex pixel value 0.1804 0.2265 

C  61.9452 74.7114 

CNR 62.1688 73.9251 

DE 

Mean of Perspex pixel value 4.7267 7.8225 

C  67.8801 108.5103 

CNR 71.2194 113.8021 

  
    Mean of Perspex pixel value 0.2159 0.1253 

Al 
0.5 mm 

  
  

SE C  72.6538 109.7533 
  CNR 72.0311 108.8998 
  Mean of Perspex pixel value 6.1221 6.6927 

DE C  38.4167 38.5028 
    CNR 38.9035 40.6274 

  

Al 
1.0 mm 

  
Mean of Perspex pixel value 

0.148 0.0836   

SE C  12.9894 19.949 
  CNR 12.08  19.7891  
  Mean of Perspex pixel value 8.0297 13.0142 

DE C  18.3559 37.104 

  CNR 18.8747 32.2055 
 

 

 

 
 
 


