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Abstract

Numerical simulations are a vital tool for understanding gas-liquid two-phase flows,

and robust numerical methods are essential for this purpose. In this regard, a code

library was developed using C++ for the numerical simulation of three-dimensional

gas-liquid two-phase flows and heat transfer. The code is written based on a frame-

work of numerical methods namely; Volume/Surface Integrated Average-Based Multi-

Moment Method (VSIAM3) including Constrained Interpolation Profile-Conservative

semi-Lagrangian (CIPCSL) methods, Coupled Level-Set and Volume-of-Fluid (CLS-

VOF) method, and density scaled CSF model. VSIAM3 is a numerical method for

compressible and incompressible flows based on the multi-moment concept. VSIAM3

employs CIP-CSL schemes for solving the conservation equation. The CLSVOF is an

interface capturing method that is well suited for two-phase flows with surface tension.

The density scaled CSF model is used for the surface tension computation.

An efficient implementation of the numerical methods was investigated through the

discretisation techniques of the conservation equation in VSIAM3. These techniques

were studied through the lid-driven cavity, shock tube problems, two-dimensional ex-

plosion test, and droplet splashing on a superhydrophobic substrate. It has been found

that the use of a less oscillatory CIP-CSL method is essential for robust numerical sim-

ulation of compressible and incompressible flows using VSIAM3 and that the numerical

results are sensitive to the discretization techniques of the velocity divergence term in

the conservation equation.

A parallel code library was also developed using Open MPI (the Message-Passing In-
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terface) for the three-dimensional numerical simulation of gas-liquid two-phase flows

and heat transfer. The parallel performance has been evaluated, and a good scalabil-

ity was obtained. The code library was further validated through the numerical simula-

tion of equilibrium drop, single rising bubble, Kelvin-Helmholtz instability, and turbulent

channel flow. The numerical results were reasonable.

Validations of VSIAM3 for heat transfer problems were also conducted through single-

phase and two-phase Rayleigh-Benard convection. We found that solving the diffusion

term of the Navier-Stokes equation and the conduction term of the energy equation for

all the moments in VSIAM3 is essential for robust numerical simulation of heat transfer

problems using VSIAM3. In addition to that, using Time Evolution Converting (TEC)

for computing the boundary values of the temperature in VSIAM3 as suggested in the

literature influences the robustness of VSIAM3.

In conclusion, an efficient implementation of VSIAM3 for gas-liquid two-phase flows

and heat transfer using VSIAM3 and CLSVOF was developed and validated through

single-phase and gas-liquid two-phase flows and heat transfer problems. The estab-

lished code library is suitable for the numerical simulation of gas-liquid two-phase flows

and heat transfer.



v

Acknowledgements

I would like to extend my gratitude to all those who have helped me complete this work,

both academically and personally.

First I would like to thank my supervisors, Dr. Kensuke Yokoi for his guidance, discus-

sions and much patience during my study, and Prof. Phil Bowen for his advice and

support. I would like to express my sincere gratitude for their support throughout the

duration of my PhD study.

I would like to thank my family for their continuous unlimited support.

I would also like to thank the research office staff and the team of ARCCA system at

Cardiff University for their sincere help.

I would like to acknowledge the financial support of this study provided by Grant from

the Iraqi Ministry of Higher Education and Scientific Research and my employer Uni-

versity of Basrah.



vi

Contents

Abstract iii

Acknowledgements v

Contents vi

List of Publications xi

List of Figures xii

List of Tables xviii

List of Acronyms xix

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Literature Review 8

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8



Contents vii

2.2 Interface Capturing Techniques . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Volume of Fluid Method . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Level Set Method . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.3 Coupled Level Set and Volume of Fluid Method . . . . . . . . . 19

2.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Spatial Discretisation Techniques . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Finite Difference Method . . . . . . . . . . . . . . . . . . . . . . 24

2.3.2 Finite Volume Method . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.3 Finite Element Method . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 VSIAM3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Numerical Methods 41

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 VSIAM3 for Incompressible Flows . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 Equations of Fluid Flow and Heat Transfer . . . . . . . . . . . . 41

3.2.2 Grid for VSIAM3 (M-Grid) . . . . . . . . . . . . . . . . . . . . . . 43

3.2.3 Definition of Moments in 2D . . . . . . . . . . . . . . . . . . . . 44

3.2.4 Definition of Moments in 3D . . . . . . . . . . . . . . . . . . . . 45

3.2.5 Advection Part (fA) . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.6 Stability Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.7 Viscous Term (Non-Advection Part 1 fNA1) . . . . . . . . . . . . 52



Contents viii

3.2.8 Divergence Free and Pressure Gradient (Projection Step) (Non-

Advection Part 4 fNA4) . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.9 The Energy Equation . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 VSIAM3 for Inviscid Compressible Flows . . . . . . . . . . . . . . . . . 59

3.3.1 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.2 Advection Part: CIP-CSL3 . . . . . . . . . . . . . . . . . . . . . . 60

3.3.3 The Non-Advection Part . . . . . . . . . . . . . . . . . . . . . . . 62

3.4 Numerical Methods for Free Surface Flows . . . . . . . . . . . . . . . . 62

3.4.1 Interface Capturing Using Coupled Level Set and THINC/WLIC . 63

3.4.2 The THINC/WLIC Scheme . . . . . . . . . . . . . . . . . . . . . 63

3.4.3 The Level Set Scheme (CLSVOF) . . . . . . . . . . . . . . . . . 66

3.5 Model of Surface Tension Force . . . . . . . . . . . . . . . . . . . . . . 68

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4 Efficient Implementation of Multi-Moment Method 71

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Formulations of the Divergence Term . . . . . . . . . . . . . . . . . . . 73

4.2.1 Formulations of the Divergence Term in Fourier Analysis . . . . 75

4.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3.1 Lid-Driven Cavity Flow . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3.2 Compressible Flows (Sod’s and Lax’s Problems, and 2D Explo-

sion Test) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3.3 Divergence Term Formulations in Complex Free Surface Flows . 91

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92



Contents ix

5 Parallel Computation 98

5.1 The Necessity of the Parallel Implementation . . . . . . . . . . . . . . . 98

5.2 Open MPI and Domain Decomposition . . . . . . . . . . . . . . . . . . . 99

5.3 Evaluation of the Parallel Performance . . . . . . . . . . . . . . . . . . . 100

5.4 Validations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.5 Equilibrium Drop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.6 Single Rising Bubble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.7 Kelvin-Helmholtz Instability . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.8 Numerical Simulation of Turbulent Channel Flow . . . . . . . . . . . . . 110

5.8.1 Mean Velocity Profile . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.8.2 Profile of RMS of Velocity . . . . . . . . . . . . . . . . . . . . . . 114

5.8.3 Turbulent Shear Stress . . . . . . . . . . . . . . . . . . . . . . . 116

5.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6 VSIAM3 for Numerical Simulation of Heat Transfer Problems 119

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.2 Numerical Simulation of Rayleigh-Bénard Convection . . . . . . . . . . 120

6.3 Numerical Simulation of Single-Phase Rayleigh-Bénard Convection . . 121

6.3.1 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.3.2 TEC Formula in Heat Transfer Problems . . . . . . . . . . . . . . 122

6.4 Simulation of Two-Phase Rayleigh-Bénard Convection . . . . . . . . . . 126

6.4.1 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128



Contents x

7 Summary and Recommendations for Future Work 131

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.2 Recommendations for Future Work . . . . . . . . . . . . . . . . . . . . . 133

Bibliography 134

Appendices 154

Sod’s and Lax’s Problems by the CIP-CSLR Method 155



xi

List of Publications

The work introduced in this thesis is based on the following publications.

• Mohammed Al-Mosallam and Kensuke Yokoi, Efficient Implementation of Volume/Surface

Integrated Average-Based Multi-Moment Method, Int. J. Comp. Methods, Vol.

14, No. 2, 2017.

• Mohammed Al-Mosallam and Kensuke Yokoi, Efficient implementation of volume/surface

integrated average based multi-moment method. Presented at: 24th Conference

of the Association for Computational Mechanics in Engineering, Cardiff, UK, 31

March - 1 April 2016.

• Mohammed Al-Mosallam and Kensuke Yokoi, Discretisation strategies of the

conservation equation. Presented at: Toyo University-Cardiff University Work-

shop, Cardiff University, UK 15 February 2016.



xii

List of Figures

1.1 Droplet splash on a dry solid surface. [198] . . . . . . . . . . . . . . . . 2

1.2 Breaking wave: highly deformable air-water interface. [120] . . . . . . . 3

1.3 Single rising bubble in water [15] . . . . . . . . . . . . . . . . . . . . . . 4

2.1 The donor-acceptor interface reconstruction [199] . . . . . . . . . . . . 12

2.2 Comparison of SLIC, PLIC, and FLAIR interface reconstruction tech-

niques [199] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 The WLIC technique [201] . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Schematic figure of the reinitialisation error. (a) the original interface, (b)

the advected interface, (c) reinitialisation error, (d) Error accumulation.

(fls is the level set function) [200] . . . . . . . . . . . . . . . . . . . . . . 18

2.5 A representation of a 1D (a) and 2D (b) Cartesian grid for Finite Differ-

ence methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Geometric representation of the first-order derivative approximations . . 25

2.7 A part of 2D finite volume grid [177]. Cells centres are marked by capital

letters. centres of cell boundaries are marked by small letters . . . . . . 29

2.8 A Multi-moment concept. Representation of flow field in a computational

cell in two dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36



List of Figures xiii

3.1 Schematic figure of the CIP-CSL2 method. ui−1/2 < 0 is assumed. The

moments which are indicated by gray color (φi−1/2, φi and φi+1/2) are

used to construct the quadratic interpolation function . . . . . . . . . . . 44

3.2 Schematic figure of the grid in two dimensional case. ui,j is the cell

average and ui−1/2,j , ui+1/2,j , vi,j−1/2 and vi,j+1/2 are the boundary values 45

3.3 Numerical result of complex wave advection problem using CIP-CSL2.

The advected wave φ(x) is plotted vs. the x-axis . . . . . . . . . . . . . 49

3.4 Numerical result of complex wave advection problem using CIP-CSLR.

The advected wave φ(x) is plotted vs. the x-axis . . . . . . . . . . . . . 50

4.1 The formulations of the divergence term in Fourier analysis, (a) imagin-

ary part and (b) real part . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 Numerical results of lid-driven cavity flow problem. Re = 1000. CIP-

CSL2 with UPW was used for (a). (b) is the result by CIP-CSL2 when the

divergence term was ignored. The line and dot represent the numerical

result and the solution by Ghia [56], respectively. A Cartesian grid of

100× 100 was used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3 Numerical results of lid-driven cavity flow problem using CIP-CSLR with

UPW formulation for the divergence term. Re = 1000. Three different

grid sizes (50×50, 100×100 and 200×200) were used . . . . . . . . . . 79

4.4 Numerical results of lid-driven cavity flow problem using CIP-CSLR with

CDb formulation for the divergence term. Re = 1000. Three different

grid sizes (50×50, 100×100 and 200×200) were used . . . . . . . . . . 80

4.5 Numerical results of lid-driven cavity flow problem using CIP-CSLR with

CDca formulation for the divergence term. Re = 1000. Three different

grid sizes (50×50, 100×100 and 200×200) were used . . . . . . . . . . 81



List of Figures xiv

4.6 Numerical results of lid-driven cavity flow problem using CIP-CSLR with

CDbcc formulation for the divergence term. Re = 1000. Three different

grid sizes (50×50, 100×100 and 200×200) were used . . . . . . . . . . 81

4.7 Numerical results of lid-driven cavity flow problem using CIP-CSLR with

CDbca formulation for the divergence term. Re = 1000. Three different

grid sizes (50×50, 100×100 and 200×200) were used . . . . . . . . . . 82

4.8 Numerical results of lid-driven cavity flow problem using CIP-CSLR with

UPW-CDbcc formulation for the divergence term. Re = 1000. Three

different grid sizes (50×50, 100×100 and 200×200) were used . . . . . 82

4.9 Numerical results of lid-driven cavity flow problem using CIP-CSLR with

UPW-CDbca formulation for the divergence term. Re = 1000. Three

different grid sizes (50×50, 100×100 and 200×200) were used . . . . . 83

4.10 Numerical results of lid-driven cavity flow problem using CIP-CSLR with

DP formulation for the divergence term. Re = 1000. Three different grid

sizes (50×50, 100×100 and 200×200) were used . . . . . . . . . . . . 83

4.11 Comparison among numerical results by CSLR-CDb, CSLR-CDca, CSLR-

CDcc, CSLR-CDbca and CSLR-DP. A Cartesian grid of 50× 50 was used 84

4.12 Comparison among numerical results by CSLR-UPW, CSLR-CDcc and

CSLR-UPW-CDcc. A Cartesian grid of 100× 100 was used . . . . . . . 85

4.13 Numerical results of lid-driven cavity flow using six different formulations

for the divergence term. Re = 5000. A Cartesian grid of 256 × 256 was

used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.14 Numerical results of Sod’s Problem. Plotted are density profiles vs. axial

distance. The dots show the density profile of numerical results. The

line shows the exact solution . . . . . . . . . . . . . . . . . . . . . . . . 89

4.15 Numerical results of Lax’s Problem. Plotted are density profiles vs. axial

distance. The dots show the density profile of numerical results. The

line shows the exact solution . . . . . . . . . . . . . . . . . . . . . . . . 90



List of Figures xv

4.16 The density profiles of the 2-d explosion test at t=0.25 along the line

of y = 0 . The dots represent numerical results by using six different

formulations for the divergence term. The line represents the reference

solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.17 Numerical results of droplet splashing by CSL2-UPW (a), CSLR-UPW

(b) and CSLR-UPW-CDcc (c). VSIAM3 with CSL2-UPW was not stable

after around 1.1ms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.1 Three-dimensional domain decomposition . . . . . . . . . . . . . . . . . 100

5.2 The speedup curve relative to the execution time one processor . . . . 102

5.3 The speedup curve relative to the execution time on the 2 nodes (32

cores) test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.4 Spurious currents in the numerical simulation of the equilibrium drop . . 104

5.5 The pressure of the numerical result of the equilibrium drop. . . . . . . . 104

5.6 Snapshots of the numerical simulation of a single rising bubble . . . . . 106

5.7 A comparison between the numerical result of the bubble rising velocity

and the experimental result (0.215 m/s) [75] . . . . . . . . . . . . . . . . 106

5.8 Initial configuration of the Kelvin-Helmholtz instability problem . . . . . . 108

5.9 Snapshot of the numerical result of the Kelvin-Helmholtz instability at

time= 0.04 sec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.10 Snapshot of the numerical result of the Kelvin-Helmholtz instability at

time= 0.06 sec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.11 Snapshot of the top-view of the instability at time= 0.06 sec . . . . . . . 109

5.12 Schematic figure of the turbulent channel flow . . . . . . . . . . . . . . . 110

5.13 Non-uniform grid resolution in the vertical direction of the computational

domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112



List of Figures xvi

5.14 The mean of the normalized velocity profile in global coordinates. . . . . 113

5.15 The root mean square of the normalized streamwise velocity, urms/uτ . 114

5.16 The root mean square of the normalized spanwise velocity, vrms/uτ . . 115

5.17 The root mean square of the normalized normal velocity, wrms/uτ . . . 115

5.18 The profile of the normalized Reynolds stress, Ruw/u2
τ . . . . . . . . . . 116

6.1 Schematic figure of Rayleigh Bénard Convection . . . . . . . . . . . . . 121

6.2 Rayleigh Bénard convection. Initial temperature distribution. Ra= 10000,

Pr= 0.707 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.3 Temperature distribution for single-phase Rayleigh Bénard convection

problem at t= 60.0 sec. TEC is employed for the boundary values evol-

ution. Ra= 10000, Pr= 0.707 . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.4 Temperature distribution for single-phase Rayleigh Bénard convection

problem at t= 60.0 sec. TEC is abandoned for the boundary values

evolution. Ra= 10000, Pr= 0.707 . . . . . . . . . . . . . . . . . . . . . . 124

6.5 Velocity field for single-phase Rayleigh Bénard convection problem at

t= 60.0 sec. TEC is employed for the boundary values evolution. Ra=

10000, Pr= 0.707 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.6 Velocity field for single-phase Rayleigh Bénard convection problem at

t= 60.0 sec. TEC is abandoned for the boundary values evolution. Ra=

10000, Pr= 0.707 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.7 Two-phase Rayleigh Bénard convection. Initial temperature distribution.

Ra= 20000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.8 Two-phase Rayleigh Bénard convection. Steady state temperature dis-

tribution. Ra= 20000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.9 Two-phase Rayleigh Bénard convection. Steady state velocity distribu-

tion. Ra= 20000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128



List of Figures xvii

6.10 Rayleigh Bénard convection. 3D view of the steady state temperature

distribution. Ra= 20000 . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.11 Rayleigh Bénard convection. 3D view of the steady state velocity distri-

bution. Ra= 20000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

1 Numerical results of shock tube problems by CSLR-UPW. Plotted are

density profiles vs distance, (a) Sod problem and (b) Lax problem. The

dots show the density profile of numerical results. The line shows the

exact solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155



xviii

List of Tables

4.1 Quantitative parameters of the droplet splashing simulations. ρ is dens-

ity, µ is viscosity, D initial droplet diameter, σ is surface tension, v is

impact speed, and θ the equilibrium contact angle . . . . . . . . . . . . 92

4.2 L1 errors in shock tube problems. . . . . . . . . . . . . . . . . . . . . . . 93

4.3 Summary of numerical results of incompressible flows. In the cavity flow

problem, result by CSLR with central difference was slightly better than

that by CSLR with mixed formulation . . . . . . . . . . . . . . . . . . . . 93

5.1 The performance of the parallel implementation . . . . . . . . . . . . . . 101

5.2 The quantitative parameters used in the numerical simulation of the

static drop test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3 The quantitative parameters used in the numerical simulation of the

rising bubble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.4 Simulation parameters for the channel numerical simulation . . . . . . . 112

5.5 Grid resolutions in wall units for the channel numerical simulation . . . . 113

6.1 Comparison of calculated average Nusselt number with the literature. . 124

6.2 Convergence study of the average Nusselt number. Ra = 10000.0. . . . 124

6.3 Comparison of calculated average Nusselt number with the literature. . 127



xix

List of Acronyms

ALE Arbitrary Lagrangian Eulerian

BFC Boundary-Fitted Coordinates

CIP Constrained Interpolation Profile Method

CIP-CSL Constrained Interpolation Profile Conservative Semi-Lagrangian Method

CIP-CSL2 Constrained Interpolation Profile Conservative Semi-Lagrangian Method

Based on Quadratic Interpolation Function

CIP-CSL3 Constrained Interpolation Profile Conservative Semi-Lagrangian Method

Based on Cubic Interpolation Function

CIP-CSLR Constrained Interpolation Profile Conservative Semi-Lagrangian Method

Based on Rational Interpolation Function

CFD Computational Fluid Dynamics

CLSVOF Coupled Level Set and Volume of Fluid Method

CSF Continuum Surface Force Model

DNS Direct Numerical Simulation

ENO Essentially Non-Oscillatory

FDM Finite Difference Method

FVM Finite Volume Method



List of Acronyms xx

FEM Finite Element Method

LSM Level Set Method

LWR Light Water Reactor

MAC Marker and Cell Method

PDE Partial Differential Equation

PLIC Piecewise Linear Interface Calculation Method

THINC Tangent Hyperbolic Interface Capturing Method

SLIC Simple Line Interface Calculation Method

TEC Time Evolution Converting

VOF Volume of Fluid Method

VSIAM3 Volume/Surface Integrated Average Based Multi-Moment Method

WENO Weighted Essentially Non-Oscillatory

WLIC Weighted Line Interface Calculation Method

WRM Weighted Residual Methods



1

Chapter 1

Introduction

1.1 Motivation

Gas-liquid two-phase flows play an essential role in nature and industry. Many nat-

ural processes occur at a free surface. The most widely recognized illustration is

the interface separating air and water; examples are wind blow over rivers and open

channels, bubble formation, rain droplets, atmosphere-ocean interaction and various

types of sea waves. Two-phase flows include multi-physics phenomena. They also in-

clude multi-length and multi-time scales. Examples of interest are sprays, evaporation,

gas absorption and heat transfer accompanying turbulent wind-waves. Other cases

that involve multi-length and multi-time scales are Kelvin-Helmholtz waves which oc-

cur at small-scale motions in the oceans and atmosphere [114, 129] and two-phase

Rayleigh-Benard convection caused by hydrodynamic and thermal interactions of con-

vective flows through the interface [118]. Other interesting examples are water jets

that break into drops and porous media like water in oil reservoirs. Similarly, indus-

trial processes that involve interfacial flows are countless. One can mention interfacial

convection which is vital in many engineering applications [118] such as microfluidics,

material processing, crystal growth [85], and emulsified liquid membrane separation

employed in industrial waste-water treatment [121]. Another notable example is con-

densation on liquid films and its applications in the nuclear industry. The typical ref-

erence situation, in this case, is the refill stage after a loss-of-coolant accident in an

LWR. In this situation, the emergency cooling water comes into contact with the steam

generated in the overheated core. One can also mention boiling heat transfer which
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is the preferred mode of heat transfer to extract large amounts of energy in various

industries like power generation and cooling in metallurgical industries. Two-phase

flows are also essential in fuel combustion where atomization of the fuel and formation

of droplets are essential for combustion to commence. One can mention many other

examples such as heat and mass transfer enhancement in bubbly flows as in bubble

columns [35], gas absorption processes in chemical plants such as in mixing type heat

exchangers, degassers and seawater desalting by multiple distillations [87], and so on.

Figure 1.1: Droplet splash on a dry solid surface. [198]

Since free surface flows appear in such diverse applications, understanding them is

of critical engineering and scientific importance; for instance, for predicting their be-

haviour in nature and applying their fundamentals in engineering applications and in-

dustrial processes. However, despite the extensive work in free surface flows, their

behaviour far less well understood, particularly when the flows involve large interfacial

deformation [11, 169]. This is because flows with interfaces are difficult to invest-

igate and much of our knowledge have acquired by experimental work and dimen-

sional analysis. The later only applicable for simple flow cases, while experimental

measurements are difficult to near interfaces in many flows of practical applications,

where the length and time scales are small [169]. One can mention many essential
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example flows; for instance, wind-driven turbulence and its direct impact on climate

and weather change including extreme weather events like the build-up and decay of

tropical cyclones [43, 58, 52, 113, 210]. The interfacial deformation in wind-driven tur-

bulence significantly facilitates transport of momentum and scalar [89, 53, 76, 171].

Despite the extensive literature, the mechanisms controlling wind-driven interfacial

flow are not fully understood [176, 140]. Experimental works of wind-driven air-water

flow are characterized by the difficulty of the measurements near a turbulent interface

[51, 91]. In this context, due to the difficulties involved in studying such complex flow,

inconsistent conclusions have been reported for the heat transfer coefficients. Based

on field observations, it has been stated that the heat transfer is enhanced by wind

shear and that the latent/sensible heat transfer coefficients have a constant value (e.g.

[151, 54, 50, 99, 34, 130, 209, 94]). On the other hand, experimental investigations

using wind-wave tanks have indicated that the latent heat transfer coefficient is pro-

portional to wind speed (e.g. [123, 208, 39, 91]). The previous example shows the

significant difficulties of studying such complicated flows. Dispensable tool to study

dynamics of two-phase flows with a deformable interface and their underlying mech-

anisms is the numerical simulation.

Figure 1.2: Breaking wave: highly deformable air-water interface. [120]

Numerical simulation of free surface flows is a difficult task even when the interface re-

mains smooth. The governing equations are highly nonlinear, and the interface must
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Figure 1.3: Single rising bubble in water [15]

be determined as part of the solution [169]. Therefore, employing efficient numer-

ical schemes for obtaining the numerical solution is essential. As we can expect,

numerous studies of interfacial flow have used different approximations of the govern-

ing equations or made assumptions about the nature of the interface to accomplish

successful simulation [11]. Concerning these flows, various methodologies for track-

ing and capturing interface motion have been proposed and attempted; for instance,

Front Tracking method, Volume-of-Fluid method, and Level-Set Method. Since each

developed method has advantages and drawbacks, make use of the method with the

best possible features is advantageous for robust numerical simulations. Various nu-

merical schemes were applied to discretise the governing equations of the two-phase

flow such as finite difference, finite volume and finite element schemes. Each method

has its own features and drawbacks. An overview of the common strategies for the

numerical simulation of two-phase flows and the most common spatial discretisation

techniques is given in chapter 2.

In the present study, CLSVOF (Coupled Level Set and Volume of fluid) method on fixed

grid has been employed [158, 204]. The THINC/WLIC scheme is used for interface

capturing. WLIC method [201] is employed for interface reconstruction. THINC/WLIC
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method satisfies volume conservation, relatively easy to implement, manages inter-

face motion, and is capable of handling highly deformable interfaces. The Level-Set

method has been employed for the computations of curvature and hence surface ten-

sion force. The CLSVOF method integrates advantages of both VOF method and

Level-Set Method. In the CLSVOF, using a VOF scheme conserves the volume fraction

while maintaining sharp interface, and thus compensate a loss-of-mass disadvantage

of the Level-Set method. A drawback of the VOF scheme is the difficulty in computing

curvature from volume fractions due to the use of sharp volume fractions at the inter-

face. This drawback is covered by the Level-Set method where interface curvature is

computed from the level set function. The level set function in CLSVOF is computed

from both the level set function and VOF function at the previous time step [158].

Accurate computations of the interface velocities are critically important for robust nu-

merical simulation. In the present work, Volume/Surface Integrated Average-based

Multi-Moment method (VSIAM3), Xiao et al.[188, 183, 184], has been employed as

the solver for fluid flow and heat transfer. Volume/Surface Integrated Average-based

Multi-Moment method (VSIAM3)[188, 183, 184] is a numerical method for compress-

ible and incompressible flow based on a multi-moment concept. VSIAM3 employs

conservative semi-Lagrangian (CIP-CSL) method to solve the conservative advection

equation.

VSIAM3 has been used in the present work because it is based on the multi-moment

concept. Multi-moment methods are numerical methods which use multiple integrated

variables (moments) for a physical field and update these moments by utilising differ-

ent formulations yet same conservation laws. VSIAM3 (including CIP-CSL method)

is based of finite volume method. Thus, provides the finite-volume features such as

conservation, computational efficiency, and flexibility in handling irregular geometries.

Multi-moment methods possess attractive features that are well suited for multiphase

flows. For instance, a compact stencil for spatial reconstruction and flexibility in treat-

ing complex geometries. VSIAM3 employs the accurate CIP-CSL advection schemes

featuring modifiable interpolation for reconstruction. In VSIAM3, Cartesian coordin-

ates are used to express the interface, thus, it does not require computational effort for
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continuous reconstruction of the computational grid even with extremely deformable

interface [182, 188].

1.2 Research Objectives

• The first target of the present work is to develop an efficient C++ code library for

the numerical simulation of gas-liquid two-phase flows and heat transfer based

on the VSIAM3 and CIP-CSL schemes. CLSVOF scheme for interface captur-

ing, where the method uses THINC/WLIC scheme as sort of VOF method.

• To study robustness issues in VSIAM3 and to investigate efficient implementa-

tion of VSIAM3 in incompressible and compressible flows.

• To develop a parallel implementation of the code for the numerical simulation

of gas-liquid two-phase flows and heat transfer by using Open MPI (Massage

Passing Interface) so that the numerical simulation can be implemented on a

single node and supercomputers as well.

• To carry out further validation of the solver through three-dimensional numer-

ical simulations of Kelvin-Helmholtz instability, single rising bubble, and turbulent

channel flow.

• To study robustness issues in VSIAM3 heat transfer solver through the numerical

simulation of Rayleigh-Benard convection.

1.3 Thesis Outline

The thesis consists of seven chapters:

• In chapter 1, the motivation, background, and objectives for the present work are

given.
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• In chapter 2, an overview of the literature on the numerical methods for two-

phase flows and discretisation techniques for partial differential equations are

given.

• Numerical methods are presented in chapter 3. VSIAM3 method along with

the CIP-CSL conservation equation schemes (CIP-CSL2, CIP-CSLR, and CIP-

CSL3) are explained in detail in order to simplify the multi-moment framework.

The CLSVOF scheme for interface capturing is also explained.

• In chapter 4, an investigation for efficient implementation of VSIAM3 in single-

phase and gas-liquid two-phase flows is carried out. The implementation was

carried out through cavity flow, one-dimensional Sod and Lax problems, two-

dimensional explosion test, and droplet splashing on dry surface.

• A description of the parallel implementation of the numerical methods is given in

chapter 5. The written code library is further validated through different problems

of single and two-phase gas-liquid flows.

• In chapter 6, We studied robustness issues of VSIAM3 in the numerical simula-

tion of heat transfer problems through numerical simulation of Rayleigh-Binard

convection.

• A summary and suggestions for further work are given in chapter 7.
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Chapter 2

Literature Review

2.1 Introduction

The following literature review addresses the choice of CLSVOF [202, 204] as an in-

terface capturing scheme among other numerical methods for free surface flows. It

also considers the choice of the multi-moment VSIAM3 [188] in the present work for

the spatial discretisation of the Navier-Stokes equations among various discretisation

techniques. First the development of the interface capturing techniques is considered

in section 2.2. An overview of the common spatial discretisation strategies for partial

differential equations is secondly presented in section 2.3. The VSIAM3 is introduced

in section 2.4 followed by a conclusion in section2.5.

2.2 Interface Capturing Techniques

In recent times critical advancements in numerical techniques and computing power

have enabled fast evolution in numerical simulation of two-phase flows. These sim-

ulations of two-phase flows numerically solve the Navier-Stokes equations to predict

fluid dynamics and physical processes in both phases and follow interface motion by

treating an advection-type equation

∂ψ

∂t
+ u

∂ψ

∂x
+ v

∂ψ

∂y
+ w

∂ψ

∂z
= 0. (2.1)
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Where ψ represents the interface (e.g. volume fraction in VOF method, level set func-

tion in Level Set method). This equation states that ψ moves with the fluid [74].

Numerical methods for free surface flows can be categorised depending on the em-

ployed grid type into three groups; fixed grid (Eulerian) [143, 187], moving grid (Lag-

rangian) [42, 65, 79], and Arbitrary Lagrangian Eulerian grid (ALE) [73, 77]. Moving

grid methods consider the interface as a boundary between two domains of meshes,

and allows the mesh to move with the fluid, which results in accurate tracking of the

interface motion. However, to track the interface, the interface motion requires con-

tinuous re-meshing, which in turn, requires substantial computational effort for interfa-

cial flows subjected to high topological changes. In fixed grid methods, on the other

hand, the interface motion is tracked on a non-moving grid and feature the ability to

treat large interfacial deformations, relatively simple interface description, and more

straightforward extension to three dimensions, which makes it more applicable to nu-

merical simulations of complex interfacial flows [136]. ALE method was developed in

an attempt to combine the advantages of the above grid types, while minimizing their

respective disadvantages. The method features precise interface definition, however,

in comparison to fixed grid it only capable of handling small topological changes in the

interface and no inclusion of one phase into the other are assumed (e.g. in application

of ALE with boundary-fitted coordinates (BFCs) on moving grids for wind-driven tur-

bulence [92, 51, 97, 90, 170, 62, 161, 96]). Thus Eulerian methods are generally the

most employed methods for complex two-phase flows [203, 204, 205], because they

allow considering large interfaces deformation.

Eulerian methods for free surface flows can be classified depending on the type of

interface representation into interface tracking methods and interface capturing meth-

ods. Front tracking method represents the interface explicitly (thus they have been

described as interface tracking schemes) by marker-particles. A disadvantage of

this method is the difficulty of handling topological changes like droplets merging and

break-ups [178]. Examples of interface tracking methods are Marker-and-Cell (MAC)

methods [66] and Front-Tracking method [78, 100, 57, 172] . The Marker-and-Cell

(MAC) and the Front Tracking use marker-particles to identify the free surface. The
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original implementation involves only one fluid. Later was extended to include both

phases and applied for various free surface flow problems [57, 149, 133, 166, 168, 41,

172, 163]. Inaccuracies characterise MAC method due to the use of marker-particles

[66]. Front Tracking methods are known to be difficult to apply for interfaces with topo-

logical changes [172].

Interface capturing methods represent the interface implicitly (thus they have been

described as interface capturing schemes). Interface capturing methods include Level

Set methods [3, 127, 126, 159], Volume of Fluid (VOF) methods [74, 143, 145, 108],

THINC methods [187, 186, 106], and Coupled Level Set and Volume of Fluid method

(CLSVOF) [158, 180, 204].

In the following sections, an overview of the main approaches of interface capturing

strategies is given. First Volume of Fluid method (VOF) is introduced in section (2.2.1)

followed by the Level Set method in section (2.2.2) and Coupled Level Set and Volume

of Fluid (CLSVOF) in section (2.2.3). A summary is given in section (2.2.4).

2.2.1 Volume of Fluid Method

The Volume of Fluid method was developed by Hirt and Nichols (1981) [74]. the

method represents the interface implicitly by using Heaviside step function (also called

characteristic function) ξ(x, y):

ξ(x, y) =

 1 for the liquid at point (x,y),

0 for the air at point (x,y).
(2.2)

The Heaviside step function takes a value of 0 for the light fluid and 1 for the other

fluid. Noting that ξ(x, y) is defined at a point (x, y) and not on a computational grid.

The value on the grid is called volume fraction or color function ϑ and is defined as the

cell average of ξ(x, y),

ϑi,j =
1

∆x∆y

∫∫
Ωi,j

ξdxdy, (2.3)
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where Ωi,j is a grid cell. The volume fraction has the value (0 ≤ ϑ ≤ 1).

Crucial advantage of the method is that the volume of the fluid is completely con-

served when the interface advection equation (2.1) is discretised using conservative

formulation.

In the numerical simulations, fluids physical properties are accounted for by the volume

fraction. Moreover, the method allows straightforward extension to multi-dimensional

problems. Thus it has become popular in commercial CFD software and has been ap-

plied for numerical studies of various fluid dynamics problems [9, 26, 37, 46, 82, 107].

On the other hand, major disadvantages of the volume of fluid method are manifested

by the numerical errors caused by the discrete representation of the interface and the

numerical solution of the advection equation. These numerical errors appears as dif-

fusion errors as well as non-physical behaviour in the interface motion called spurious

currents, which are parasitic velocities induced by the numerical method. Moreover,

the Volume of Fluid method is characterised by the difficulty of surface tension force

computation. The curvature calculation is complicated since it requires estimation of

derivatives at the interface of sharp function (Heaviside unit step). Many methods are

developed to improve the volume of fluid method are dedicated to reduce interface

diffusion and to overcome the difficulty of curvature computation.

Most of the proposed developments to overcome difficulty of computing surface ten-

sion term tend to regularise the fluid volume fraction to facilitate the estimation of deriv-

atives [18]. The smoothing of the fluid volume fraction using variety of kernel functions

was proposed in [16, 19]. An investigation was carried out in [33] to study and com-

pare different strategies to overcome the difficulty. These are the smoothing with kernel

functions, using a height function to interpolate the interface and reconstruction of a

distance function, similar to the level sets method. An accurate reconstruction of the

interface is required to reduce the numerical diffusion and the spurious currents and

to achieve a more accurate interface approximation. The main techniques for interface

reconstruction are presented and discussed in the following paragraphs.

In the original algorithm of the Volume of Fluid method, called the donor-acceptor

method by Hirt and Nicolas [74], the interface is reconstructed parallel to one spatial
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Figure 2.1: The donor-acceptor interface reconstruction [199]

direction using the volume fraction information of the adjacent cells in the direction of

interface motion, where the interface is reconstructed either vertically or horizontally

relevant to the coordinate system depending on the adjacent grid cells. The numerical

flux parallel to the interface is estimated using an upwind technique. Other numerical

fluxes are estimated using a both downwind and upwind techniques. Figure 2.1 de-

picts the donor-acceptor method. These techniques are first-order accurate. In order

to reduce numerical diffusion of the interface, Noh and Woodward [122] proposed an-

other geometrical interface reconstruction called the Simple Line Interface technique

(SLIC). The interface reconstruction in the SLIC technique is achieved by introducing

straight lines in the interface containing cells. Here the interface is also reconstruc-

ted parallel to one coordinate direction. Both donor-acceptor and SLIC techniques

are considered as piecewise constant techniques because the interface is taken either

vertical or horizontal. An advantage of both reconstruction techniques is their simpli-

city. However, they are only first-order accurate with respect to grid size [74, 122, 18].

Hence, both techniques produce inaccurate results for simulations of interfaces with

high topological deformations.

Another reconstruction technique, flux line-segment model for advection and interface

reconstruction (FLAIR) was proposed in [8]. FLAIR algorithm is based on approximat-

ing the interface by a set of line segments fitted at the boundary of every two adjacent
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Figure 2.2: Comparison of SLIC, PLIC, and FLAIR interface reconstruc-

tion techniques [199].

cells. The orientation of the interface in a computational cell is found by inspecting the

the cell volume fraction. The new volume fractions are obtained by integrating the area

underneath the interface line-segment.

A more accurate geometric interface reconstruction technique is Piecewise Linear In-

terface Calculation (PLIC). It is attributed to Young [207] and further advanced by Rider

and Kothe [142]. The PLIC technique reconstructs the interface using a line segment

of a slope determined by the gradient of the volume fraction function. This technique is

second-order accurate technique [142]. Figure 2.2 shows a comparison of the SLIC,

PLIC and FLAIR interface reconstruction techniques. The PLIC is robust technique

when the interface has a small or large curvature with respect to the grid size [18].

The key point in the technique is the determination of the direction of each segment

of the reconstructed interface based on the interface normal vector which is also de-

termined using volume fraction values in the adjacent cells [104, 61, 105, 18]. Other

techniques were also proposed. Interface reconstruction technique based on the least

square fit was suggested in [146]. The technique features interface continuity at the
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boundaries of adjacent grid cells.

Disadvantages of the PLIC geometrical reconstruction technique is the computational

cost and the complexity of implementation in three-dimensional problems. Yokoi [201]

proposed an efficient technique for interface reconstruction, namely Weighted Line

Interface Calculation (WLIC). Similar to the SLIC and Hirt and Nicholas interface re-

construction techniques, the WLIC offers simple implementation while considering the

information of the interface normal vector more effectively than the former techniques.

This is achieved by weighting the interface along the coordinate directions rather than

reconstructing it parallel to one spatial direction as in the former techniques. Mean-

ing, in two dimensions for instance, the WLIC employs both the horizontal surface

and the vertical surface for reconstructing the interface by using weights of both sur-

faces calculated form the interface normal as depicted in fig. 2.3. It has been re-

ported that the results by the THINC/WLIC method are almost same with these by

the VOF/PLIC method [202, 204]. The WLIC features a straightforward extension to

three-dimensional problems.

Figure 2.3: The WLIC technique [201]
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The THINC method [187, 185] is conceptually a Volume of Fluid method with the ex-

ception that a smoothed Heaviside function (a one-dimensional piece-wise modified

hyperbolic tangent function ) which can be written as

ξx,i =
1

2

(
1 + αxtanh

(
β

(
x− xi−1/2

∆x
− x̃i

)))
, (2.4)

is used by the THINC method. Where x̃i∆x corresponds to the distance between grid

point xi−1/2 and the interface. The parameters αx and β are important in determining

the quality of the numerical solution. Thus the method satisfy volume conservation.

The method solves the following advection equation

∂ξ

∂t
+∇ · (uξ)− ξ∇ · u = 0. (2.5)

The cell-integrated average of the smoothed Heaviside functions is the fluid volume

fraction. The idea of using a smoothed Heaviside function was first introduced [185].

In the THINC algorithm, the calculation of the interface normal vector benefits from

the feature of using smoothed volume fraction function and it plays an important role

in preventing flotsam and jetsam [201, 202]. This feature allows employing simple

interface reconstruction technique, the WLIC. The characteristic function of the THINC

method is a piecewise hyperbolic tangent function and the flux is calculated based on

dimensional splitting approach.

To conclude, great advances have been accomplished since the presentation of the

volume of fluid method taking the advantage of mass conservation. Most of the de-

velopments in this field were committed to simplify the implementation and improve

the accuracy of the numerical method. The VOF method requires interface recon-

struction for more accurate simulations of interface phenomena. Several geometrical

interface reconstruction techniques have been proposed some of which are charac-

terised by accurate representation of the interface, expensive computational cost and

difficulty of three-dimensional implementations as in the VOF/PLIC technique. How-

ever other techniques provide accurate interface representation, simple implementa-
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tion and straightforward extension to three-dimensional problems like the THINC/WLIC

technique.

2.2.2 Level Set Method

The level set method was first proposed by Osher and Sethian [127] (1988). It is

a numerical method for capturing moving interfaces. The method employs implicit

representation of the interface which is given by zero level set function (ψ = 0) and can

handle interface deformation without special treatment since the interface is embedded

in a higher dimensional function. This function enables robust calculation of geometric

information. Application of the method to simulate multiphase flows was first reported

by Sussman et al. [159]. The level set function is defined as a smooth signed distance

function where it take a positive and negative values for the heavy and light fluids,

respectively. The interface separating the two fluids is thus represented by the set

of points at which the level set function equals zero (ψ = 0). A level set advection

equation (2.1) ( ∂ψ/∂t + u · ∇ψ = 0 ) advects the level set function (ψ) by the flow

velocity field (u) and enables tracking the interface motion. Furthermore, the signed

distance function offers simple and straightforward way for computing the interface

normal vector (n),

n =
∇ψ
|∇ψ|

, (2.6)

and the curvature (κ),

κ = ∇ · ∇ψ
|∇ψ|

, (2.7)

therefore, the surface tension term can be computed simply using the continuum sur-

face force model [16]. Therefore, it has been widely applied to solve various problems

[127, 1, 2, 64, 25, 150, 60].

On the other hand, the level set method has the drawback that the discretisation of the

level set advection equation experiences more numerical error (significant numerical
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dissipation) than Front Tracking or VOF methods when the interface subjects to strong

stretching or tearing (areas of high curvature) [141]. This numerical dissipation causes

issues with mass conservation. Although the level set function can be conserved by

a conservative formulation of the discrete advection equation, the mass enclosed by

the zero level set is not conserved [158]. Moreover, the degeneration of the level

set function; the signed distance function from the interface does not preserved by

the solution of the advection equation; necessitates rescaling the function at each time

step. The issue with the unpreserved level sets function requires updating the distance

function by solving a non-linear hyperbolic type equation to steady state. This step is

called the reinitialisation of the distance function. Improvements to the accuracy and

robustness of the level set method have been carried out. These improvements target

the reinitialisation step to ensure mass conservation, investigating alternative higher-

order discretisation techniques or even using hybrid approaches [111].

Sussman et al. [157] proposed an enhancement to the reinitialisation of the distance

function by fixing the number of iterations required to solve the reinitialisation equation

to steady state. The enhancement guarantees that the level set ensures correct dis-

tance to the interface. It is known that the reinitialisation step affects the position of the

interface (the position of the zero level set) which leads to the so called reinitialisation

error. The reinitialisation error increases at each time step by accumulation. Figure

2.4 depicts the reinitialisation error. Yokoi [200] proposed a development to the level

set method in a Cartesian fixed grid. The proposed improvement aims at preventing

the issue of accumulation of reinitialisation error. In his method, a second level set

function is defined and used to capture the interface. The original level set function

is then reconstructed from the zero level set of the defined function. This treatment

prevents the accumulation of the error because the time evolution is calculated using

the new function.

Several studies have been conducted to enhance the accuracy of the level set method.

Numerical diffusion error is typical of using standard differencing schemes to discretise

the level set equation which also leads to mass conservation issues or distortion of the

signed distance function. It is therefore important to adopt a non-diffusive differencing
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Figure 2.4: Schematic figure of the reinitialisation error. (a) the original

interface, (b) the advected interface, (c) reinitialisation error, (d) Error ac-

cumulation. (fls is the level set function) [200].

scheme such as the third-order accurate ENO (essentially non-oscillatory schemes)

[67] to discretize the level set advection equation as was shown in [157]. Due to the

possible smearing of the interface that could occur if the grid is not sufficiently fine,

it is even desirable to employ higher-order schemes such as the fifth-order accurate

WENO (Weighted essentially non-oscillatory schemes) [110] in order to better capture

the sharp interface. The Total Variation Diminishing Runge-Kutta scheme was also

adopted in [148] as a remedy to the numerical diffusion problem. In simulations with

large topological deformation, [156] proposed combining the level set with adaptive

projection schemes to obtain higher resolution accuracy with low additional computa-

tional cost. An adaptive meshing techniques were also adopted for free surface flows

[112]. Another technique, the Refined Level Set Grid method, was proposed in [69] to

enhance the accuracy of the level set method and to overcome the issue with mass

conservation. The method uses a refined mesh in the interface area in addition to

the original computational mesh, where the level set equation and the reinitialisation

equation are solved on the refined grid. The method however does not totally eliminate

that error. Other strategies to enhance the accuracy of the level set method were pro-

posed, for example mixed methods such as the particle level set method [44] and the

coupled level set and volume of fluid method [158], and adaptive meshing techniques

for free surface flows [112].

In conclusion, the level set method provides desirable features for the numerical simu-
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lation of two-phase flows such as its ability to handle topological changes of interfaces

without the need to special treatments as well as simple computation of the interface

normal and curvature. A disadvantage, however, is the issue with mass conservation

caused by the discretisation of the level set equation which reveal itself as significant

dissipation error. Several remedies has been suggested to overcome the issue such

as using higher-order numerical schemes, improving the implementation of the reini-

tialisation step and proposing mixing strategies to combine the advantages of different

numerical schemes. One of the promising and common strategies in the field is the

coupled level set and volume of fluid method.

2.2.3 Coupled Level Set and Volume of Fluid Method

The mixing of VOF and level set methods is advantageous to combine the desirable

properties of both methods, see for example [158, 173, 202]. It allows mass conserva-

tion and keeps a smooth approximation around the interface, but needs a strategy to

let both the level set function and the volume fraction function work together efficiently.

Several strategies have been adopted. In [173], a signed distance function is recon-

structed from the advected volume fraction function and the interface jump conditions

are satisfied using a method similar to the ghost fluid method [45] for incompressible

flow. The resulted scheme is named Mass-Conserving Level-Set (MCLS) and applied

to simulate bubbly flows [174].

Motivated by simulating microscale jetting devices, Sussman and Puckett introduced

the Coupled Level Set and Volume of Fluid method (CLSVOF) [158] to simulate three-

dimensional and axisymmetric incompressible two-phase flows. The method is super-

ior to both methods since it overcome the loss of mass issue of the level set method by

the advection of the volume fraction function and the interface sharpness is kept by us-

ing the level set method to compute the normal vector and curvature. In [158], a piece-

wise linear interface is used to initialize a new signed distance function at each time

step. Then, the advection algorithm simultaneously solves both the level set equation

and the volume fraction advection equation to advance the free surface on a uniform
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grid. The values of the signed distance function are employed to accurately compute

a gradient and normal for use in the piecewise linear interface reconstruction. Noting

that in the computational cells which are away from the interface (the signed distance

function is larger than a grid resolution) , no interface is assumed and the volume

fraction function is assigned a value of 0 or 1 regardless of the computed value of

it, thus reducing the undesirable appearance of jetsam and flotsam. The interface is

given a specified thickness using a smoothed Heaviside function. The uniformity of

the interface thickness is maintained since the level set function represents a signed

distance to the interface. Furthermore, the level set function can be used to compute

geometric information such as the curvature more efficiently than using the volume

fraction function. Although the presented method produce better results over using

either the level set method only and the volume of fluid method only, the reconstructed

interface appears noisy and lacks time coherence [115]. Moreover, the only way to

remove unsightly and inaccurate flotsam and jetsam is to delete it from the calcula-

tion non-physically removing mass [111]. The researchers in [158] have shown that

the developed CLSVOF is superior to the level set method for problems in which the

interface develops corners, or there is interfacial merging or pinching since the mass

is conserved to a fraction of a percent using CLSVOF while the loss of mass is much

larger in the level set method. Moreover, the CLSVOF is superior to volume of fluid

methods in problems with surface tension.

A coupling of the level set and volume of fluid which only solves the volume fraction

advection equation (VOSET) to advance the interface was presented in [40] for com-

puting incompressible two-phase flows. The aim of this approach is to reduce the

computational cost and simplify the implementation of the CLSVOF. The initial value

of the level set function is computed from the volume fraction function after advection.

The level set function is then reinitialized within a region of three mesh cells on each

side of the interface. The numerical results conserve mass. Advancing the interface

by the solution of the volume fraction advection equation only in CLSVOF was also im-

plemented in OpenFOAM in [95]. The level set function is computed from the volume

fraction function and the interface is represented by the 0.5-contour. The interface is

reconstructed to appropriately simulate the contact line evaporation for boiling heat
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transfer studies.

An adaptive approach is employed to the CLSVOF in [197] for interface capturing

on unstructured triangular grids. The level set equation is solved by a discontinuous

Galarkin finite element method while the advection of the volume fraction is implemen-

ted by a Lagrangian-Eulerian formulation. The method is coupled to a finite element

based Stokes solver. The interface normal is calculated the level set function while the

line constant is reconstructed by a VOF formulation. The researchers show that the

method maintain mass conservation accurately. Moreover, the method is able to treat

topological changes efficiently due to the adaptive grid algorithm.

Yokoi [204, 202] proposed a practical CLSVOF for the numerical simulations of com-

plex free surface flows with surface tension force such as droplet splashing. The

method employs THINC/WLIC scheme as a volume of fluid method, where the WLIC

interface reconstruction technique has been shown to produce as accurate results as

those produced by the PLIC. The WLIC offers simple implementation and straightfor-

ward extension to three-dimensional problems. The method employs a multi-moment

(CIP-CSL and VSIAM3) and the level set curvature interpolation technique. The al-

gorithm is based on advancing the interface by solving the volume fraction advection

equation using THINC/WLIC on a uniform Cartesian grid. The position of the interface

(zero level set) is computed from the volume fraction function using linear interpola-

tion between adjacent grids, then, the signed distance function is constructed within a

grid spacing by the fast marching method [147]. In the computational cells which are

away from the interface, the signed distance function is calculated by the iterative rein-

itialisation step as suggested by Sussman et al. [159] while the values of the signed

distance function at the interface cells are fixed. Noting that the number of iterations in

the reinitialisation step is less than 15 times (typically few iterations). The formulation

accurately conserves mass, where the author reported that the maximum volume er-

ror was less than 10−10. Noting that the volume of fluid methods satisfy conservation

of mass accurately when the divergence-free condition is precisely satisfied, where a

tolerance of the pressure Poisson equation of 10−10 is used.

In conclusion, the coupling approach of the level set and the volume of fluid is em-
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ployed to integrate the advantages of the mass conservation of the later and to main-

tain the interface sharpness and the simplicity of computing interfaces geometrical

information of the former. The coupling of the two methods was achieved using dif-

ferent implementations which vary in the degree of complexity and the accuracy of

the resulted numerical simulations. Generally most of the implementations proceed by

solving the advection equation of both methods and require geometrical interface re-

construction. Other implementations advance the interface by only solving the volume

fraction advection equation. The numerical results of the CLSVOF has been shown to

be superior to those of the standalone implementation of both level set methods and

volume of fluid methods.

2.2.4 Summary

Interface capturing methods include Level Set methods [3, 127, 126, 159], Volume

of Fluid (VOF) methods [74, 143, 145, 108], THINC methods [187, 186, 106], and

Coupled Level Set and Volume of Fluid method (CLSVOF) [158, 180, 204]. Volume of

fluid methods use Heaviside step function to represent the interface. These methods

are characterised by volume conservation and relatively simple to implement, thus,

have become popular in interfacial flow simulations and have been employed in com-

mercial simulation software. Interface reconstruction is necessary to reduce diffusion

caused by advection of VOF function. Various techniques have been used for inter-

face reconstruction such as SLIC (simple line interface calculation) method [122] and

the PLIC (piecewise line interface calculation) method [104, 61, 105]. Although the

PLIC method is considered more accurate than the SLIC method, constructing the

method in three dimensions is significantly difficult [204]. In the Level-Set method, the

interface is represented by a smooth signed distance function, which is the distance

between the interface and the grid points. A distinctive feature of this method is the

relatively simple calculation of curvature using this function and is relatively easy to

implement as compared to the front tracking methods and VOF methods. Thus, the

level set methods have also been widely used. However, the main drawback here is

that Level Set method does not conserve volume. The THINC method is a type of



2.3 Spatial Discretisation Techniques 23

VOF method. THINC method is characterised by non-diffusive VOF function because

it makes use of a smoothed Heaviside function. THINC method employs simple and

easy to implement interface reconstruction method, namely WLIC [201]. It has been

reported that the results by the THINC/WLIC method are almost same with these by

the VOF/PLIC method [204]. The CLSVOF method couples both the Level-Set method

and VOF method. Thus can take advantage of both schemes, namely, the conserva-

tion of mass fraction of the latter, and sharp interface and an easier technique for

computing interface curvature of the former.

2.3 Spatial Discretisation Techniques

Many competing numerical methods are used to discretise partial differential equa-

tions. The Discretisation is the process of converting the governing partial differential

equations to a system of algebraic equations. The most common discretisation meth-

ods which are most suitable for computational fluid dynamics software are finite differ-

ence method, finite volume method, and finite element method. These methods are

related and can be considered as part of a unified framework [49]. Technically, time

derivatives are discretised by finite difference method while spatial derivatives are des-

cretised by any of the methods. These spatial discretisation methods can be regarded

as single-moment methods because they customarily represent problem variables by

one moment either point value such as in finite difference method or cell-integrated av-

erage as in finite volume method and obtain the intermediate values between two vari-

ables by interpolation. On the other hand, in multi-moment method this interpolation

is not necessary because the problem fields are represented by both cell-integrated

averages and boundary values. In the following sections, an overview of finite differ-

ence method is given in section 2.3.1, followed by an overview of finite volume method

in section 2.3.2. Finite element method is presented in section 2.3.3. A summary is

given in section 2.3.4.
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2.3.1 Finite Difference Method

Finite difference method was first introduced by Courant, Friedrichs and Lewy (1928)

[30] in there research on the solution of physical problems using finite differences.

They used a finite difference approximation for the wave equation, and the CFL stability

condition was shown to be necessary for convergence [165].

Figure 2.5: A representation of a 1D (a) and 2D (b) Cartesian grid for Finite

Difference methods.

In finite difference method [6, 165, 49] the grid is usually locally structured, this means

each grid node may be considered the origin of a local coordinate system, whose axes

coincide with grid lines [47]. Figure 2.5 depicts Cartesian grids for finite difference

method. The method represents solution variables of the governing equations on a

set of discrete grid points. Finite difference discretisation is achieved by replacing

the derivatives at a grid point by equivalent finite difference approximations. Finite

difference approximation of a derivative can simply be obtained via the mathematical

definition of a derivative [93] as follows

(
∂T

∂x

)
xi

= lim
∆x→0

T (xi + ∆x)− T (xi)

∆x
(2.8)

The first derivative of a variable T (x), (∂T/∂x)xi at a point xi is the slope of the tangent

to the curve of the variable T(x) at that point. Figure (2.6) depicts the meaning of a first
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derivative and also shows various possible approximations of the derivative at a point.

The derivative of T (x) at xi can be approximated by a straight line passing through

two neighbouring points on the curve of T (x). There are three typical and distinct

finite difference approximations of a derivative, namely backward difference, forward

difference and central difference. These three approximations are shown in fig.(2.6).

The former first and second approximations are shown by the dashed line and the

dotted line, respectively. Backward difference approximates the derivative (∂T/∂x)xi

by the slope of a straight line passing through the point xi and the point before it

xi − ∆x, hence the term backward. Forward difference, on the other hand, can be

obtained from the slope of a straight line passing between xi and the point next to it

xi + ∆x. Central finite difference approximates the derivative by the slope of a straight

line passing between the adjacent points of xi, i.e., xi − ∆x and xi + ∆x. Central

difference is depicted by the line referred to by ’central difference’ in fig.(2.6). There are

systematic methods to approximate the first-order derivative [47]. Discretisation can

be achieved by replacing the derivative at a grid point by equivalent finite difference

approximations using Taylor series expansion.

Figure 2.6: Geometric representation of the first-order derivative approx-

imations.

A continuous differentiable function can be expressed as a Taylor series. For instance

the function T (x) can be expanded in the neighbourhood of the point xi by a Taylor

series of the following form
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T (x) = T (xi) + (x− xi)
(
∂T

∂x

)
i

+
(x− xi)2

2!

(
∂2T

∂x2

)
i

+ . . . , (2.9)

where x is any point on the computational grid.

Many possible expressions for the first-order derivative can be obtained from (2.9).

For example, derivative approximations which is shown in fig.2.6 can be achieved by

substituting the points xi−1 and xi+1 into equation (2.9) for the backward difference

and forward difference, repectively, and ignoring the higher order derivatives in the

Taylor series expansion. This can be written as follows

(
∂T

∂x

)
i

≈ Ti − Ti−1

∆x
. (2.10)

(
∂T

∂x

)
i

≈ Ti+1 − Ti
∆x

. (2.11)

The ignored terms in (2.9) are termed as the truncation error; they specify the approx-

imation accuracy and show the rate at which the error reduces as the grid spacing

between points decreases. The truncation error is dominated by the next term in the

expansion when ∆x � 1 in (2.9) and is typically expressed by O(∆xm), where m is

the order of accuracy. It is evident that the error magnitude reduces as the mesh size

∆x decreases [49]. Hence, backward difference (2.10) and forward difference (2.11)

expressions are both first order accurate O(∆x). Similarly, a central finite difference

approximation can be obtained by expanding (2.9) at both points xi−1 and xi+1 yields

the following expression,

(
∂T

∂x

)
i

=
Ti+1 − Ti−1

2∆x
− ∆x2

3!

(
∂3T

∂x3

)
i

+ . . . , (2.12)

a centred finite difference expression that is second order accurateO(∆x2) is therefore

can be given as

(
∂T

∂x

)
i

≈ Ti+1 − Ti−1

2∆x
. (2.13)
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Finite difference approximations of derivatives can also be achieved using aternative

methods in addition to the Taylor series expansion such as polynomial and spline fit-

ting, integral method and control volume approach [6, 49, 47]. A higher-order accurate

finite difference approximations can be obtained using any of these methods, for in-

stance, polynomial curves by fitting the function to an interpolation polynomial and

differentiate the resulting curve.

Using high-order accurate finite difference expression with sufficiently fine grid gener-

ally produces more accurate solution than when using coarse grid. Formulae which

involve more than two grid points are used to enhance the accuracy of a finite differ-

ence expression such as approximations which include three, five or higher number

of grid points. Using longer grid stencils to enhance accuracy is dispensable in single

moment methods such as the FD method. Expanding the stencil [20, 144, 6, 47] res-

ults in the undesirable properties of creating larger algebraic equations, the numerical

treatment complexity of boundary conditions and increasing communication require-

ments for implementation on parallel computer architectures [154].

Using longer stencils is also not advantageous when the exact solution is not smooth

such as in inviscid supersonic flows where discontinuous solution may arise due to

the presence of shock waves [183]. Higher-order approximations are not appreciably

more accurate than a low-order approximation in the presence of discontinuities. On

the other hand, in viscous flows at high Reynolds number where the inertial forces are

dominant, discontinuities cannot occur but severe gradients in the flow fields present

and hence the exact solution is also not smooth. In the latter case, sufficiently fine

grid is necessary for higher-order approximations to produce accurate solution [155].

When severe gradients present, higher-order derivatives are much larger in magnitude

than low-order derivatives. Higher-order terms in the Taylor series expansion,i.e., in

the truncation error expression do not diminish at such rapid rate as when the flow

fields are smooth [49]. Therefore, unless the grid is sufficiently fine the magnitude of

the high derivative in the leading term of the truncation error may be so large for the

higher-order discretisation that the overall error is comparable to that of a low-order

discretisation.
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2.3.2 Finite Volume Method

The finite volume method [177, 47] is a common choice for numerical simulations

in computational fluid dynamics (CFD), particularly where conservation is important,

since most partial differential equations are mathematical statements of underlying

conservation laws. Therefore the finite volume method has raised as the preferred

strategy in many commercial and open source codes such as FLUENT and Open-

FOAM [131]. It was introduced by Patankar in 1980 [128] who developed it for handling

fluid flow and heat transfer problems. At present, the finite volume method is powerful

in the field of computational fluid dynamics (CFD).

One of the advantages of the method is that local and global conservation is built into

the method. This conservativeness of the numerical method is of great significance

from physical viewpoint and can be accomplished by expressing fluxes of the con-

served quantity through the cell faces of neighbouring computational cells. The direct

connection between the physical conservation concepts and the numerical strategy

constitutes one of the desirable features of finite volume method. Writing a balance

equation for a physical quantity within a control volume makes finite volume method

easier to grasp than other numerical strategies. The method also offers the flexibil-

ity of application to various mesh structures and geometries. The formulation of the

method fits natural execution of boundary conditions, even where the boundaries and

related boundary conditions are complicated. The computational grid itself may be

either structured or unstructured. The finite volume method works proficiently with

either.

In finite volume method the boundaries of the computational cells define the grid in-

stead of the computational points in finite difference grids. The computational variables

are represented as cell-integrated averages and located at the cells (control volumes)

centres. Figure 2.7 shows a Cartesian finite volume grid. Discretisation in finite volume

method, i.e. to replace the integral conservation equations by algebraic equations for

control volumes, is achieved by approximating the surface and volume integrals, such

as the convection and diffusion terms, using various finite difference formulae. De-

pending on the employed approximations, the obtained algebraic equations may or
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Figure 2.7: A part of 2D finite volume grid [177]. Cells centres are marked

by capital letters. centres of cell boundaries are marked by small letters.

may not be similar to those resulted from finite difference method [47].

The approximation of surface integrals including the convective and diffusive terms in

the governing equations can be achieved by calculating the net flux across the control

volume boundary. It can be obtained by summing the fluxes (convective or diffusive)

across all the faces of each control volume in the computational domain. The evalu-

ation of convective and diffusive fluxes over cell boundaries requires the determination

of field values and their gradients on computational cells faces. Therefore approxim-

ations are required using interpolation between adjacent control volumes since field

variables are located at centres of control volumes. A variety of interpolation tech-

niques have been used to calculate field variables at cell boundaries. Each of these

techniques has advantages and disadvantages; the most commonly used are the up-

wind interpolation, linear interpolation and quadratic upwind interpolation.

Also called upwind differencing scheme, the upwind interpolation approximated a field

variables at cell boundaries by their values at upwind cell depending on the field dir-

ection normal to the cell face. This technique avoid producing oscillatory solutions

meaning it is the only technique that assure the boundedness of the solution among

other approximations. However, it produces numerical diffusion because it is first-order
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accurate [47]. Advantage of this approximation is its simplicity, however, a serious

disadvantage of this technique is that the numerical diffusion increases in multidimen-

sional simulations if the flow is not normal to the computational cell boundaries. Very

dense computational meshes are required to achieve accurate solutions.

Another simple approximation technique is the linear interpolation between the two

nearest nodes to the cell face. It is second-order accurate as can be shown by using

the Taylor series expansion. This technique is widely used in finite volume method

because because it is second-order accurate and its simplicity. It is similar to the

central difference approximation in finite difference methods. A disadvantage of this

technique is the possibility of oscillatory solutions as in all higher-order techniques.

Another variant of the linear interpolation technique is the linear upwind technique

which employ extrapolation from two upstream cells. This technique is a second-order

accurate and is more complex than the former technique and is more susceptible to

numerical oscillation [128].

The other technique that has been used to approximate field variables and their deriv-

atives at cells faces is the quadratic upstream interpolation also known as Quick [103].

This technique uses parabola to interpolate between field values in two adjacent cells;

thus requires three points, the third point is chosen in the upwind cell. Quick is a

third-order accurate approximation and is more complex than the linear interpolation

method particularly in non-uniform computational meshes. In comparison to the linear

interpolation technique, Quick is slightly more accurate, however, both approximation

techniques show second-order accuracy and the differences are rarely large [47].

Other interpolation techniques such as higher-order techniques and hybrid techniques

[72] are also proposed to approximate field variables and their derivatives at cells

faces. Higher-order techniques such as the fourth-order central difference scheme

[20, 154] which uses higher-order polynomials or splines are constrained by complex-

ity of application and high computational cost, particularly in implicit formulation. For

instance, using fourth-order polynomial would result in the requirement of fifteen cells

to approximate each cell-face flux which leads to a very expensive equation system

in terms of coding and computation. From an accuracy viewpoint, higher-order inter-
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polation techniques do not necessarily result in more accurate solutions because the

solution accuracy depends on the computational mesh resolution [177]. Increasing

the number of computational cells results in the solution accuracy increase. A highly-

accurate solution can be accomplished when the computational mesh is sufficiently

fine to capture the details of the phenomenon under consideration. The mesh resolu-

tion can be specified by mesh refinement studies.

Another way to approximate the fluxes is the skew upstream differencing techniques

[139] which employ upwind extrapolation along streamlines rather than mesh lines.

Similar to the previous techniques, a first-order accurate upwind technique and a

second-order accurate linear upwind technique have been proposed. However these

techniques have higher accuracy than the previous mentioned techniques, they are

characterised by rather complex formulations and the high number of necessary extra-

polations due to the many possibilities of flow directions. Therefore, these methods are

not popular in the computational fluid dynamics field because in addition to the coding

difficulties, they also may result in unbounded solutions when the computational mesh

is not sufficiently fine.

Hybrid techniques which incorporate two or more techniques to approximate the fluxes

were also proposed. The most popular hybrid technique was proposed by Spald-

ing [153] which switches between the upwind technique and the linear interpolation

technique based on the local Peclet number. Other hybrid techniques which switch

between lower-order and higher-order techniques were also proposed to overcome nu-

merical oscillations in compressible flow applications that involve shock waves [86, 71].

2.3.3 Finite Element Method

Finite element method in engineering was initially developed for structural analysis

[13, 17, 28, 29, 179, 212]. Afterwards, it has been applied for various fields of nu-

merical simulations such as fluid flow and heat transfer [164, 10, 14, 4]. The finite

element method is part of a class of spatial discretisation techniques called weighted

residual methods which also includes spectral methods in their approach to spatial
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discretisation.

Weighted residual methods [48] differ conceptually from finite difference and finite

volume methods in assuming the ability to represent the local change in the solution

variables analytically. The concept is achieved by expressing the solution variables by

a trail solution using a set of trail piecewise functions with constants which are chosen

to give the best solution to the governing equations. For example, a trail solution for

the simple heat diffusion equation can take the following form

T =

N∑
i=1

ciTi, (2.14)

where ci are unknown constants (or functions) and Ti are specified analytic functions.

The trail functions could be polynomials or trigonometric functions while the unknown

constants are to be determined by solving a system of equations generated from the

governing equations [49]. Noting that the substitution of the trail solution in the gov-

erning equations of the problem under consideration yields residual, which is the ap-

proximation error. In the weighted residual methods, the constants of the trail functions

are chosen in such a way that the residual is forced to equal zero by setting weighted

integrals of the residual to zero. The Weighted residual methods uses different for-

mulations of the weighted functions in the weighted integrals such as the subdomain

method, the collocation method, the least square method, and the Galerkin method

[31]. The later is considered as one of the best formulations for the weighted func-

tions and hence most fluid dynamics and heat transfer problems are formulated by the

Galerkin formulation of the finite element method [164].

Spatial discretisation of the physical domain in a finite element model involves sub-

dividing it into a number of geometrically simple domains, called finite elements con-

nected together at their vertices, called nodes. Hence, the computational grid in finite

element method is formed by contiguous collection of finite elements connected to-

gether by their nodes. In comparison to finite difference methods where the solution

variables are represented only at grid nodes (point values), the interpolation is built

in the finite element method. The finite element method writes the trail solutions (e.g.
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2.14) at the nodes connecting the finite elements. The expression of the trail functions

in terms of the nodal unknowns (e.g. 2.14) can be seen as an interpolation between

the point solution Tj at each node. Therefore, the trail solution are called interpolation

functions or shape function [212]. In other words, spatial discretisation in finite ele-

ment method can be divided into two steps. Firstly, the physical domain is subdivided

into a number of finite elements over which a piecewise interpolation is brought to

connect the solution variables to the nodes. Secondly, the solution variables at the

finite element nodes are expressed in algebraic equations using the weighted residual

formulation.

Several types of interpolation functions are used in finite element method. The main in-

terpolation functions are linear interpolation functions and quadratic interpolation func-

tions. In the linear interpolation, the trail solution vary linearly between the nodes con-

necting the finite elements. Typically, domain discretisation introduces errors in any

spatial discretisation technique. The error introduced by the linear interpolation re-

duces by increasing the number of elements. In order to enhance the interpolation

error introduced by the linear interpolation, quadratic interpolation functions are used.

The later is more accurate than the former with the same grid size. Using quadratic

interpolation, grid refinement leads to faster reduction in the discretisation error as

compared to the linear interpolation. Higher order interpolation functions are more

accurate. However, they are seldom used in practise because of the higher computa-

tional cost in comparison to the linear and quadratic functions. The computational cost

increases in multi-dimensional problems [10].

2.3.4 Summary

Two-phase flow problems are described by partial differential equations (PDE). Many

numerical methods exist for the discretization of PDE. Three classical mesh based

methods are finite difference methods, finite volume methods and finite element meth-

ods. In the following summary, a comparison of the advantages and drawbacks of the

spatial discretisation techniques is given.
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Finite differences have the advantages of their derivation from a Taylor series expan-

sion and their straightforward implementation for simple problem geometries, how-

ever, extension of their application to complex geometries is difficult. The finite volume

method employs control volume formulation where the conservation principles for mass,

momentum and energy are applied to discrete control volumes by expressing fluxes

of the conserved quantities around every mesh cell. The finite volume and finite ele-

ment methods are well suited for unstructured meshes allowing flexibility in handling

complicated geometries and making them popular for fluid dynamics computations.

An important property of discretization methods is their order of convergence, which

measures how fast the discretization error decreases when the mesh resolution is

increased. First and second order accurate finite difference and finite volume are

common but their extension to higher orders is cumbersome to implement. For these

methods a higher order approximation usually requires larger interpolation stencils.

This not only increases the band-size of the matrix but also makes it difficult to handle

boundary conditions. In the finite element method, on the other hand, higher order

can be achieved locally inside a compact element, however the computational cost

increases when higher-order accuracy is required. An advantage of multi-moment

methods is the ability to be extended to higher orders of accuracy by increasing the

number of moments in each computational cell. Thus, higher order approximation may

not require larger interpolation stencil.

In comparison to finite difference and finite volume methods, the solution error in finite

element method is not only related to the type of interpolation functions used on a

specific computational grid, it is also affected by an additional error due to the nodal

point solution not coinciding with the analytic solution. Generally, the accuracy of using

linear interpolation functions and quadratic interpolation functions is equivalent to a

second-order and third-order finite difference, respectively [49]. Obtaining solutions of

up to second-order accuracy is straightforward in both finite element and finite volume

methods on unstructured grids. Obtaining higher-order accurate solutions is easier in

finite element method on unstructured grids but with the expense of high computational

cost. Finite volume method handles non-conforming meshes more easily and robustly
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[6].

Both finite volume and finite element methods feature the ability to handle complex

geometries, flexibility in re-meshing the computational domain and the strong math-

ematical foundation. Both methods uses integral form of the governing equations. In

the finite volume method, the physical conservation principles are specified in terms

of fluxes in the surface integrals. The finite element method, on the other hand, uses

integral equations of the weak form and hence is not exactly conservative, therefore af-

fected by stability issues in physical problems which involve discontinuous processes.

In other words, spatial discretisation in methods other than finite volume method, such

as the finite difference and finite element methods, does not necessarily leads to the

conservation of the transport quantities. Therefore, the numerical solutions may mani-

fest non-physical behaviour. The finite volume method, on the other hand, guarantees

the conservation of these quantities, meaning that the strategy is in agreement with

the underlying physical laws at the discretisation level [128].

2.4 VSIAM3

Volume/Surface Integrated Average-based Multi-Moment method (VSIAM3), Xiao et

al. [188, 183, 184] is a numerical method for compressible and incompressible flow.

VSIAM3 employs conservative semi-Lagrangian (CIP-CSL) method [162, 195, 190,

192] to solve the conservative advection equation. VSIAM3 (including CIP-CSL method)

is a multi-moment finite-volume method for solving the Navier-Stokes equations. Thus,

provides the finite-volume features such as conservation, computational efficiency, and

flexibility in handling irregular geometries. VSIAM3 has been applied to various fluid

dynamics simulations [188, 182, 183, 184] including complex two-phase flows such as

droplet splashing [203, 204, 205] and simulation of a sanitary ware [81].

VSIAM3 including CIP-CSL uses multiple integrated variables (moments) for a physical

field. In a three dimensional context, these are the volume integrated average (VIA)

and the surface integrated averages (SIA), which are considered as the computational
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Figure 2.8: A Multi-moment concept. Representation of flow field in a

computational cell in two dimensions.

variables and are updated simultaneously in time. For example, the temperature is rep-

resented by a VIA located at cell centre and three SIA variables located at the centre of

faces of a three-dimensional computational cell. Similarly, in two dimensions, a phys-

ical quantity is represented by a cell-average value and two line-integrated averages.

In a one-dimensional computations, the multi-moments reduces to a cell-average loc-

ated at cell centre and a point value on the cell boundary. The computational variables

are arranged on a multi-moment fixed grid (M-grid). Figure 2.8 shows the arrangement

of flow field in a computational cell in two dimensions. In the M-grid, the arrangement

of the boundary values (SIA) of the velocity in VSIAM3 and the cell-integrated average

(VIA) pressure form staggered Cartesian grid for the solution of the pressure Poisson

equation. Using both (VIA) and (SIA) as the model variables provides a convenient

framework with a desirable features such as a flexibility in spatial discretization, a com-

pact grid stencil and high robustness and efficiency in simulating incompressible and

compressible two-phase flows. VSIAM3 remarkably makes use of a CIPCSL method

[162, 195, 190, 192] as the continuity equation (the advection equation in conservation

form) solver because it efficiently deploys multi-moments ((VIA) and (SIA)). CIP-CSL

features conservation of the advected quantity, high accuracy, and reduction of the

numerical dispersion for advection [195]. The multiple integrated variables (moments)

employed by multi-moment methods for a physical field are updated by different formu-

lations yet same conservation laws. The cell-integrated average values are updated by
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finite volume formulation, that is by calculating the net flux across the cell boundaries.

The boundary values, on the other hand, are updated by finite difference formulation

(i.e., two different formulations to predict the computational variables).

As the name suggests, VSIAM3 and CIPCSL multi-moment methods can be essen-

tially distinguished from the conventional single-moment finite volume method, as well

as other single moment methods such as the finite difference method. Being the other

model variables, the boundary values are also stored and updated at each step rather

than interpolated from the cell average values. The CIP (Constrained Interpolation

Profile) method [193, 194, 196], IDO (interpolated differential operator) method [7]

and MCV (multi-moment constrained finite volume) [80] can likewise be categorized in

multi-moment methods. On the other hand, the vast majority of numerical strategies

in computational fluid dynamics depend on predicting single-moment of the physical

quantity for each mesh cell, i.e., either cell-integrated average value or point value as

in finite volume method and finite difference method, respectively, such as MUSCL

(monotonic upwind-centred scheme for conservation laws) [175], ENO (essentially

non-oscillatory) [68] and WENO (weighted ENO) [110, 83].

The CIP-CSL is a conservation equation solver which is employed as a part of VSIAM3.

Several CIP-CSL schemes have been proposed for fluid transport, for example, CIP-

CSL2 (CIP-CSL with quadratic interpolation function) [195], CIP-CSL3 (CIP-CSL with

third order interpolation function) [190] and CIP-CSLR (CSL with rational interpolation

function) [192]. These CIP-CSL methods depend on a semi-Lagrangian approach in

which a piece-wise interpolation function is fundamental in determining the reconstruc-

ted profile and the numerical solution. The CIP-CSL methods formulate the piece-wise

interpolation functions using only moments (variables) over one cell and increase the

order of accuracy by increasing the number of moments in each cell, while single-

moment methods increase the order of accuracy by expanding the number of cells

which are used in their spatial discretisation. In the CIP-CSL2 scheme, second-order

piece-wise polynomial interpolation function is utilised as the interpolation function,

and two boundary values (SIA) and a cell-integrated average (VIA) in the upwind cell

were employed as the constraints. In CIP-CSL3, third-order piece-wise polynomial in-
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terpolation function is utilised, and two boundary values and a cell-integrated average

in the upwind cell are utilised as the constraints, and a gradient in the upwind cell is

likewise utilised as a control parameter. CIP-CSL3 is commonly used for compressible

flow simulations and the control parameter is utilised as a limiter. CIP-CSLR is a less

oscillatory CIP-CSL formulation based on rational interpolation functions.

It has been reported that VSIAM3 is a highly robust and efficient numerical strategy

[188, 203, 204, 205]. However, most investigators who attempted to construct the

code could not accomplish robust numerical simulations [124]. This is because the

multi-moment structure of CIPCSL and VSIAM3 has risen some execution difficulties,

and the full detail of the execution of VSIAM3 has not been explained in the previous

works [5]. The issue on the robustness in VSIAM3 has also been implied in [102] and

a treatment based on the Constrained Interpolation Profile (CIP) interpolation between

the computational variables has been proposed. In the present work, an attempt will

be carried out to identify the possible reasons of the issue of robustness in VSIAM3

and CIPCSL and to provide the full details of robust implementation of VSIAM3.

2.5 Conclusions

An overview is presented for the main approaches of interface capturing strategies

(Volume of Fluid, Level Set and Coupled Level Set and volume of Fluid) as well as the

most common spatial discretisation techniques for partial differential equations (FDM,

FVM and FEM). The VSIAM3 multi-moment method is also introduced. The advant-

ages and drawbacks of each strategy are explained with the intention of addressing the

choice of the Coupled Level Set and THINC/WLIC as an interface capturing scheme

and the finite volume based VSIAM3 as the fluid flow and heat transfer solver in the

present work.

As it was mentioned, the coupling approach of the level set and the THINC/WLIC

is employed to integrate the various advantages of both schemes such as the mass

conservation and maintaining the interface sharpness and the simplicity of computing
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interfaces geometrical information. Moreover, THINC/WLIC with its smoothed Heav-

isided function (a piecewise hyperbolic tangent function) is a VOF type scheme. The

smoothed Heavisided function plays an important role in preventing flotsam and jet-

sam. This feature allows employing simple interface reconstruction technique, the

WLIC. Using THINC/WLIC provides attractive features such as the relative simple im-

plementation and the straightforward extension to three dimensions. As it is mentioned

before, it was reported that the results by THINC/WLIC are comparable to VOF/PLIC

[204].

VSIAM3 is a promising numerical framework and it require further investigation, de-

velopment and numerical experimentations. This is because multi-moment methods

(e.g. VSIAM3 and CIPCSL) offers numerous possibilities for the discretisation of the

governing equations and have the ability to be extended to higher-order of accuracy

by using compact stencils. Furthermore, as a finite volume formulation it can naturally

employ unstructured grids and handle complex geometries. VSIAM3 is highly effi-

cient and robust numerical framework [188, 203, 204, 205], however the multi-moment

structure of VSIAM3 and CIPCSL schemes has risen implementation difficulties, and

the full detail of the execution of VSIAM3 has not been explained in the previous works

[5].

In the present study, an investigation will be carried out to identify the possible reas-

ons of the issue of robustness in VSIAM3 and CIPCSL and to provide the full details of

robust and efficient implementation of VSIAM3 and robust code library will be construc-

ted. One of the main topics in the present work is the velocity divergence term in the

conservation equation. This term results from the solution of the conservation equa-

tion by CIP-CSL schemes. The velocity divergence term is important and it has been

rarely mentioned in the literature of CIP-CSL schemes and VSIAM3 [188, 183], and

despite VSIAM3 uses multi-moments of a physical variable no attempt has been done

to use various moments in the discretisation of the term. In the present study various

discretisation techniques for the velocity divergence term in the conservation equa-

tion will be proposed and studied. Furthermore, In the published works of VSIAM3

[188, 182, 189, 81, 183, 184, 80, 203, 204, 205, 5], the numerical framework has not
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been applied to heat transfer problems, particularly heat transfer problems with inter-

faces. In the present study, the energy equation will be discretised using VSIAM3 and

a robust implementation of VSIAM3 in heat transfer problems will be investigated.
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Chapter 3

Numerical Methods

3.1 Introduction

The present work employs a numerical framework based on a one-fluid formulation for

the coupled two-phase flows. The numerical framework is based on the following nu-

merical methods, VSIAM3 (Volume/Surface Integrated Average-based Multi-Moment

Method) , CIP-CSL (Conservative Semi-Lagrangian method), CLSVOF (Coupled Level

Set and Volume of Fluid method), THINC (Tangent of Hyperbola for Interface Captur-

ing), and WLIC (Weighted Line Interface Calculation) method.

In this chapter, The details of the numerical framework are explained. First, the

VSIAM3 method for incompressible flows is elucidated in detail in section 3.2. VSIAM3

for compressible flow is given in section 3.3. Then the interface capturing method for

the simulation of two-phase flows is described in section 3.4 followed by a surface

tension model in section 3.5. The summary comes in Section 4.4.

3.2 VSIAM3 for Incompressible Flows

3.2.1 Equations of Fluid Flow and Heat Transfer

The following governing equations cast in an integral form are used for incompressible

flow of Newtonian fluid with constant physical properties
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∫
Γ
u · ndS = 0, (3.1)

ρ

(
∂

∂t

∫
Ω
udV +

∫
Γ
u(u · n)dS

)
= −

∫
Γ
pndS +

∫
Γ

(2µD) · ndS +

∫
Ω
fdV + Fsf , (3.2)

and for heat transfer

∂

∂t

∫
Ω
TdV +

∫
Γ
T (u · n)dS =

1

ρcp

∫
Γ
q
′′
ndS (3.3)

Equation (3.1) expresses the incompressibility constraint states that the volume of any

incompressible fluid element cannot be changed, where u is the velocity, n the out-

going normal for the control volume Ω with its surface denoted by Γ (see Fig. 3.2).

Equation (3.2) represents the momentum-conservation principle, stating that the rate

of change of fluid momentum in the fixed control volume Ω is the difference in mo-

mentum flux across the volume boundary Γ plus the net forces acting on the volume.

The first and second terms on the left hand side of equation (3.2) are the time rate

of change of fluid momentum in the volume Ω and the net momentum flux across the

control surface Γ, respectively. The first and second terms on the right hand side of

equation (3.2) are the pressure stress and the viscous stresses acting on the con-

trol surface, where Where ρ the density, p the pressure, D the deformation tensor

(D = 0.5(∇u + (∇u)T )). The third term is the total body force on Ω, where, f is the

body force per unit volume Fbf and is taken as the gravitational force (f = ρg) in the

present work.

and Fsf are body forces and surface forces, respectively, integrated on the control

volume Ω. T is the temperature, cp is the specific thermal heat capacity, q
′′

is the

thermal heat flux (q
′′

= κ∇T ). κ is the thermal conductivity. A fractional step approach

[202] is used to solve the governing equations. Equations (3.1) and (3.2) are split as

follows:

ut+∆t = fNA4(fNA3(fNA2(fNA1(fA(ut))))). (3.4)
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1. Advection term (fA):

∂

∂t

∫
Ω
udV +

∫
Γ
u(u · n)dS = 0, (3.5)

2. Viscous term (non-advection part 1 fNA1):

∂

∂t

∫
Ω
udV =

1

ρ

∫
Γ

(2µD) · ndS, (3.6)

3. Body forces term (non-advection part 2 fNA2):

∂

∂t

∫
Ω
udV =

Fbf

ρ
, (3.7)

4. Surface tension force (non-advection part 3 fNA3):

∂

∂t

∫
Ω
udV =

Fsf

ρ
, (3.8)

5. Divergence free and pressure gradient (projection step) (non-advection part 4

fNA4): ∫
Γ
u · ndS = 0, (3.9)

∂

∂t

∫
Ω
udV = −1

ρ

∫
Γ
pndS. (3.10)

These equations are solved by VSIAM3, in which the advection part is solved by a

CIP-CSL method. The CIP-CSL is a directional splitting method.

3.2.2 Grid for VSIAM3 (M-Grid)

VSIAM3 utilizes a grid called multi-moment grid (M-grid) [189]. Figure 3.2 depicts the

grid in two-dimensions, in which all the components of the velocity field are defined

using two different moments, one moment at cell centre ui,j , vi,j , and the other on the

cell boundaries ui−1/2,j , ui,j−1/2 ,vi−1/2,j ,vi,j−1/2 as the cell-integrated average and

the line-integrated average, respectively. The temperature field is likewise defined

using two different moments, i.e., at cell centre Ti,j as the cell average and on all
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i-1/2
i+1/2

i-3/2

x i-1/2 x i+1/2x i-3/2

i-1 i

φ
φ φ

φ φ
ui-1/2

Figure 3.1: Schematic figure of the CIP-CSL2 method. ui−1/2 < 0 is as-

sumed. The moments which are indicated by gray color (φi−1/2, φi and

φi+1/2) are used to construct the quadratic interpolation function.

cell boundaries Ti−1/2,j , Ti,j−1/2 as boundary averages. The rest of the computational

variables such as the pressure Pi,j , volume of fluid (VOF) function ϑi,j and level set

function ψi,j , and the thermophysical properties of fluids such as density ρi,j , viscosity

µi,j , thermal conductivity κi,j are defined only as cell-integrated averages at the cell

centre.

The multi-moment grid system has a vital advantage over numerous other grid sys-

tems. The degrees of flexibility of every velocity component, in VSIAM3, likewise the

temperature are three times in 2D and four times in 3D those in single-moment meth-

ods. This is true because these variables have been defined not only at the cell centre

but also on cell boundaries as shown in Fig 3.2. The extra degrees of flexibility en-

hances the computation of the convection term in the conservation laws. VSIAM3, as

previously mentioned, utilizes CIP-CSL schemes for solving the advection term.

3.2.3 Definition of Moments in 2D

In two-dimensional domain, a cell-integrated average and boundary-integrated aver-

ages are defined as

ui,j =
1

∆x∆y

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

u(x, y)dxdy, (3.11)
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and

ui−1/2,j =
1

∆y

∫ yj+1/2

yj−1/2

u(xi−1/2, y)dy, (3.12)

ui,j−1/2 =
1

∆x

∫ xj+1/2

xj−1/2

u(x, yj−1/2)dx. (3.13)

respectively.

u ,v ,p

u,v
Ω

Γ

i,j
i-1/2,j i+1/2,j

i,j+1/2

i,j-1/2

u,v

u,v

u,v

Figure 3.2: Schematic figure of the grid in two dimensional case. ui,j is

the cell average and ui−1/2,j, ui+1/2,j, vi,j−1/2 and vi,j+1/2 are the boundary

values.

3.2.4 Definition of Moments in 3D

In three-dimensional computations, a cell average and boundary values become volume

integrated average (VIA) and surface integrated averages (SIA), respectively. On a

three-dimensional grid system, these variables are defined as

ui,j,k =
1

∆x∆y∆z

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

∫ zk+1/2

zk−1/2

u(x, y, z)dxdydz, (3.14)

and
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ui−1/2,j,k =
1

∆y∆z

∫ yj+1/2

yj−1/2

∫ zk+1/2

zk−1/2

u(xi−1/2, y, z)dydz, (3.15)

ui,j−1/2,k =
1

∆x∆z

∫ xj+1/2

xj−1/2

∫ zk+1/2

zk−1/2

u(x, yj−1/2, z)dxdz. (3.16)

ui,j,k−1/2 =
1

∆x∆y

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

u(x, y, zk−1/2)dxdy, (3.17)

respectively.

3.2.5 Advection Part (fA)

The CIP-CSL methods are used to solve the scalar conservation equation

∂

∂t

∫
Ω
φdV +

∫
Γ
φ(u · n)dS = 0, (3.18)

here φ is a scalar transported quantity. In the following subsections 3.2.5.1 and 3.2.5.3,

the CIP-CSL2 method [195] and the CIP-CSLR method [192] are explained, respect-

ively.

3.2.5.1 CIP-CSL2

In the CIP-CSL2 method [195], given the cell average (φi), and the boundary values

(φi−1/2) and (φi+1/2) at the nth time step, a quadratic piece-wise interpolation function

Φi(x)

Φi(x) = ai(x− xi−1/2)2 + bi(x− xi−1/2) + φi−1/2, (3.19)

is used to interpolate between xi−1/2 and xi+1/2 as shown in fig. 3.1. The interpolation

function Φi(x) is important in determining the reconstructed profile and the numerical

solution. By applying the following constraints

Φi(xi+1/2) = φi+1/2, (3.20)
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φi =

∫ xi+1/2

xi−1/2

Φi(x)dx/∆x, (3.21)

the coefficients of the interpolation function, ai and bi, are determined as follows

ai =
1

∆x2
(−6φi + 3φi−1/2 + 3φi+1/2), (3.22)

bi =
1

∆x
(6φi − 4φi−1/2 − 2φi+1/2). (3.23)

By using the interpolation function Φi(x), the boundary value φi−1/2 can be updated

by the conservation equation of a differential form

∂φ

∂t
+ u

∂φ

∂x
= −φ∂u

∂x
. (3.24)

A splitting approach is used to solve equation (3.24) as follows

∂φ

∂t
+ u

∂φ

∂x
= 0, (3.25)

∂φ

∂t
= −φ∂u

∂x
. (3.26)

The numerical solution of the advection equation (3.25) is obtained by using a semi-

Lagrangian approach

φ∗i−1/2 =

 Φi−1(xi−1/2 − ui−1/2∆t) if ui−1/2 ≥ 0

Φi(xi−1/2 − ui−1/2∆t) if ui−1/2 < 0.
(3.27)

(3.26) represents a correction due to the divergence term of the velocity and is solved

by a finite difference formulation. The divergence term is one of the main topics in this

work as discussed in Section 4.2. The cell average φi is updated by a finite volume

formulation

φn+1
i = φni −

1

∆x
(Fi+1/2 − Fi−1/2), (3.28)

here Fi−1/2 is the flux

Fi−1/2 =

 −
∫ xi−1/2−ui−1/2∆t
xi−1/2

Φi−1(x)dx if ui−1/2 ≥ 0

−
∫ xi−1/2−ui−1/2∆t
xi−1/2

Φi(x)dx if ui−1/2 < 0.
(3.29)
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3.2.5.2 CIP-CSLR

The CIP-CSLR [192, 191] method is characterized by less numerical oscillations than

the other CIP-CSL schemes. In comparison to the CIP-CSL2, a rational interpolation

function is employed in the CIP-CSLR method instead of equation (3.19). Although

two CIP-CSLR formulations (CIP-CSLR0 and CIP-CSLR1) have been proposed [192],

we explain only CIP-CSLR0 here (hereafter CIP-CSLR0 is referred to as CIP-CSLR in

this work).

Given the cell average (φi), and the boundary values (φi−1/2) and (φi+1/2) at the nth

time step, the reconstruction profile is approximated by the following rational piece-

wise interpolation function

Φi(x) =
αiβi(x− xi−1/2)2 + 2αi(x− xi−1/2) + φi−1/2(

1 + βi(x− xi−1/2)
)2 , (3.30)

which is used to interpolate between xi−1/2 and xi+1/2 as shown in fig.3.1. by us-

ing the constraints (3.20) and (3.21), the rational function cab be determined and the

coefficients αi and βi are determined as follows

αi = βiφi + (φi − φi−1/2)/∆x, (3.31)

βi =
1

∆x

( |(φi−1/2 − φi)|+ ε

|(φi − φi+1/2)|+ ε
+ 1

)
. (3.32)

Here ε is an infinitesimal number to avoid zero division. We used ε = 10−16 for all

results in this work. All other procedures are the same with these in CIP-CSL2.

3.2.5.3 Complex Wave Advection Problem

To show characteristics of CIP-CSL2 and CIPCSLR, a one-dimensional Jiang-Shu

complex wave advection problem was carried out using a constant advection velocity

of u = 1. The initial condition [83] is given by
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φ(x) =



1
6 (G(x, β, ζ − δ) +G(x, β, ζ + δ) + 4G(x, β, ζ)) (−0.8 ≤ x ≤ −0.6),

1 (−0.4 ≤ x ≤ −0.2),

1− |10(x− 0.1)| (0.0 ≤ x ≤ 0.2),

1
6 (F (x, α, a− δ) + F (x, α, a+ δ) + 4F (x, α, a)) (0.4 ≤ x ≤ 0.6),

0 otherwise,

(3.33)

where G(x, β, ζ) = e−β(x−ζ)2 , F (x, α, a) =
√
max(1− α2(x− a)2, 0), a = 0.5, ζ =

−0.7, δ = 0.005, α = 10, and β = log 2
36δ2

. Periodic boundary conditions are used in the

test. The results of the 1D advection using CIP-CSL2 and CIP-CSLR are presented

in figures 3.3 and 3.4, respectively. Using CIP-CSL2, results in the generation of

numerical oscillation around discontinuities as shown in fig.3.3. Non-oscillatory result

is obtained using CIP-CSLR. However, CIP-CSL2 result shows higher accuracy than

CIP-CSLR result.

Figure 3.3: Numerical result of complex wave advection problem using

CIP-CSL2. The advected wave φ(x) is plotted vs. the x-axis.
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Figure 3.4: Numerical result of complex wave advection problem using

CIP-CSLR. The advected wave φ(x) is plotted vs. the x-axis.

3.2.5.4 Multi-Dimensional Cases

For multi-dimensional cases, a dimensional splitting method [188] based on a one

dimensional CIP-CSL scheme is used. In a two-dimensional case, the advection solver

can be constructed as follows

1. For x-direction, φ∗i,j and φ∗i−1/2,j are firstly computed from φni,j and φni−1/2,j by

using 1D CIP-CSL solver. However φni,j−1/2 cannot be updated by using 1D CIP-

CSL solver. Therefore φni,j−1/2 is updated by TEC (Time Evolution Converting)

as follows:

φ∗i,j−1/2 = φni,j−1/2 +
1

2
(φ∗i,j − φni,j + φ∗i,j−1 − φni,j−1). (3.34)

2. For y-direction a similar approach is used . φn+1
i,j and φn+1

i,j−1/2 are computed

from φ∗i,j and φ∗i−1/2,j by using a 1D CIP-CSL method. φ∗i−1/2,j is updated by



3.2 VSIAM3 for Incompressible Flows 51

TEC as follows:

φn+1
i−1/2,j = φ∗i−1/2,j +

1

2
(φn+1
i,j − φ

∗
i,j + φn+1

i−1,j − φ
∗
i−1,j). (3.35)

The TEC formula is an approximation for the time derivative by using linear in-

terpolation.

Similar approach is used for solving the advection equation in three dimensions as

follows

1. For x-direction, φ∗i,j,k and φ∗i−1/2,j,k are firstly computed from φni,j,k and φni−1/2,j,k

by using 1D CIP-CSL solver. Next φni,j−1/2,k and φni,j,k−1/2 are updated by TEC

(Time Evolution Converting) as follows:

φ∗i,j−1/2,k = φni,j−1/2,k +
1

2
(φ∗i,j,k − φni,j,k + φ∗i,j−1,k − φni,j−1,k). (3.36)

and

φ∗i,j,k−1/2 = φni,j,k−1/2 +
1

2
(φ∗i,j,k − φni,j,k + φ∗i,j,k−1 − φni,j,k−1). (3.37)

2. For y-direction, φ∗∗i,j,k and φ∗∗i,j−1/2,k are computed from φ∗i,j,k and φ∗i,j−1/2,k by

the one dimensional CIP-CSL method. φi−1/2,j,k and φi,j,k−1/2 are updated by

TEC as follows:

φ∗∗i−1/2,j,k = φ∗i−1/2,j,k +
1

2
(φ∗∗i,j,k − φ∗i,j,k + φ∗∗i−1,j,k − φ∗i−1,j,k) (3.38)

and

φ∗∗i,j,k−1/2 = φ∗i,j,k−1/2 +
1

2
(φ∗∗i,j,k − φ∗i,j,k + φ∗∗i,j,k−1 − φ∗i,j,k−1). (3.39)

3. For z-direction, φn+1
i,j,k and φn+1

i,j,k−1/2 are computed from φ∗∗i,j,k and φ∗∗i,j,k−1/2 by

the one dimensional CIP-CSL method. φi−1/2,j,k and φi,j−1/2,k are updated by

TEC as follows:

φn+1
i−1/2,j,k = φ∗∗i−1/2,j,k +

1

2
(φn+1
i,j,k − φ

∗∗
i,j,k + φn+1

i−1,j,k − φ
∗∗
i−1,j,k) (3.40)

and

φn+1
i,j−1/2,k = φ∗i,j−1/2,k +

1

2
(φn+1
i,j,k − φ

∗∗
i,j,k + φn+1

i,j−1,k − φ
∗∗
i,j−1,k). (3.41)
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3.2.6 Stability Criterion

The stability criterion for the advection equation is discussed in the literature e.g. [47]

and [155]. The fractional step method described above is performed for each time

step. The stability of the scheme is governed by the CFL condition as a criterion. In

the numerical code, adaptive time stepping is normally used. The time step is then

automatically adjusted using the CFL-condition as a criterion. Adjusting the time step

during simulation gives efficient computations and robust code. The time step size is

adjusted by computing the maximum velocity in each grid cell in each direction

∆tx =
∆x

umax
, (3.42)

∆ty =
∆y

vmax
, (3.43)

∆tz =
∆z

wmax
, (3.44)

and considering the minimum in the computational domain

∆t = cmin (∆tx,∆ty,∆tz) , (3.45)

where umax, vmax, wmax is the maximum velocity in the x, y, and z, respectively. ∆x,

∆y, ∆z is the corresponding cell size where the maximum velocity occurs in the x,

y, and z, respectively. ∆t is the time step size. c is the CFL number. Our numerical

experiments indicate that the scheme is stable when using c = 0.2.

3.2.7 Viscous Term (Non-Advection Part 1 fNA1)

The viscous term is computed by a standard finite volume formulation for cell averages.

For constant fluid viscosity,
(∫

Γ(2µD) · ndS
)

is simplified to
(∫

Γ τ · ndS
)
.



3.2 VSIAM3 for Incompressible Flows 53

1

ρ

∫
Γ
τ ·ndS =

1

ρi,j,k

(
τi+1/2,j,k − τi−1/2,j,k

∆x
+
τi,j+1/2,k − τi,j−1/2,k

∆y
+
τi,j,k+1/2 − τi,j,k−1/2

∆z

)
= D.

(3.46)

For the general case, by substituting for the viscous stress, the viscous term of equa-

tion (3.46) in the x-direction, Dx, becomes

Dx,i,j,k =
1

ρi,j,k

(
µi+1/2,j,k

(
∂u
∂x

)
i+1/2,j,k

− µi−1/2,j,k

(
∂u
∂x

)
i−1/2,j,k

∆x

+

µi,j+1/2,k

(
∂u
∂y

)
i,j+1/2,k

− µi,j−1/2,k

(
∂u
∂y

)
i,j−1/2,k

∆y

+
µi,j,k+1/2

(
∂u
∂z

)
i,j,k+1/2

− µi,j,k−1/2

(
∂u
∂z

)
i,j,k−1/2

∆z

)
,

(3.47)

substituting for the shear strain, equation (3.47) can be written as

Dx,i,j,k =
1

ρi,j,k

(
µi+1/2,j,k (ui+1,j,k − ui,j,k)− µi−1/2,j,k (ui,j,k − ui−1,j,k)

(∆x)2

+
µi,j+1/2,k (ui,j+1,k − ui,j,k)− µi,j−1/2,k (ui,j,k − ui,j−1,k)

(∆y)2

+
µi,j,k+1/2 (ui,j,k+1 − ui,j,k)− µi,j,k−1/2 (ui,j,k − ui,j,k−1)

(∆z)2

)
,

(3.48)

where the boundary values of the viscosity are the average of the cell-centre values,

for example, µi+1/2,j,k = (µi,j,k + µi+1,j,k)/2. Similarly, in the y-direction we have

Dy,i,j,k =
1

ρi,j,k

(
µi+1/2,j,k (vi+1,j,k − vi,j,k)− µi−1/2,j,k (vi,j,k − vi−1,j,k)

(∆x)2

+
µi,j+1/2,k (vi,j+1,k − vi,j,k)− µi,j−1/2,k (vi,j,k − vi,j−1,k)

(∆y)2

+
µi,j,k+1/2 (vi,j,k+1 − vi,j,k)− µi,j,k−1/2 (vi,j,k − vi,j,k−1)

(∆z)2

)
,

(3.49)

and in the z-direction we have
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Dz,i,j,k =
1

ρi,j,k

(
µi+1/2,j,k (wi+1,j,k − wi,j,k)− µi−1/2,j,k (wi,j,k − wi−1,j,k)

(∆x)2

+
µi,j+1/2,k (wi,j+1,k − wi,j,k)− µi,j−1/2,k (wi,j,k − wi,j−1,k)

(∆y)2

+
µi,j,k+1/2 (wi,j,k+1 − wi,j,k)− µi,j,k−1/2 (wi,j,k − wi,j,k−1)

(∆z)2

)
,

(3.50)

The boundary values ui−1/2,j,k, ui,j−1/2,k,ui,j,k−1/2, vi−1/2,j,k , vi,j−1/2,k , vi,j,k−1/2,

wi−1/2,j,k, wi,j−1/2,k and wi,j,k−1/2 are updated by TEC as explained in the previous

subsection. The body force Fbf and the surface forces Fsf are also calculated simil-

arly.

3.2.8 Divergence Free and Pressure Gradient (Projection Step)

(Non-Advection Part 4 fNA4)

By using the divergence of equation (3.10) and
∫

Γ un+1 ·ndS = 0, the following Poisson

equation ∫
Γ

∇pn+1

ρ
· ndS =

1

∆t

∫
Γ
u∗ · ndS, (3.51)

is obtained, where u∗ is the velocity after non-advection part1. (3.51) is discretized as

( 1
ρn+1
i+1/2,j,k

∂xp
n+1)i+1/2,j,k − ( 1

ρn+1
i−1/2,j

∂xp
n+1)i−1/2,j

∆x
+

( 1
ρn+1
i,j+1/2,k

∂yp
n+1)i,j+1/2,k − ( 1

ρn+1
i,j−1/2,k

∂xp
n+1)i,j−1/2,k

∆y
+

( 1
ρn+1
i,j,k+1/2

∂yp
n+1)i,j,k+1/2 − ( 1

ρn+1
i,j,k−1/2

∂xp
n+1)i,j,k−1/2

∆y
=

1

∆t
(
u∗i+1/2,j,k − u

∗
i−1/2,j,k

∆x
+
v∗i,j+1/2,k − v

∗
i,j−1/2,k

∆y
+
w∗i,j,k+1/2 − w

∗
i,j,k−1/2

∆z
),

(3.52)

here

(
1

ρn+1
i−1/2,j,k

∂xp
n+1)i−1/2,j,k ≡

2

ρn+1
i,j,k + ρn+1

i−1,j,k

pn+1
i,j,k − p

n+1
i−1,j,k

∆x
, (3.53)
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(
1

ρn+1
i,j−1/2,k

∂yp
n+1)i,j−1/2,k ≡

2

ρn+1
i,j,k + ρn+1

i,j−1,k

pn+1
i,j,k − p

n+1
i,j−1,k

∆y
, (3.54)

and

(
1

ρn+1
i,j,k−1/2

∂zp
n+1)i,j,k−1/2 ≡

2

ρn+1
i,j,k + ρn+1

i,j,k−1

pn+1
i,j,k − p

n+1
i,j,k−1

∆z
. (3.55)

A preconditioned conjugate gradient (CG) method [12, 70] is used for the pressure

Poisson equation. The convergence tolerance of the pressure Poisson equation εp =

10−10 is used in this work. By using pn+1, the boundary values of the velocity (ui−1/2,j,k,

vi,j−1/2,k, and wi,j,k−1/2) are updated as follows

un+1
i−1/2,j,k = u∗i−1/2,j,k −

∆t

ρi−1/2,j,k

(
∂xp

n+1
)
i−1/2,j,k

, (3.56)

vn+1
i,j−1/2,k = v∗i,j−1/2,k −

∆t

ρi,j−1/2,k

(
∂yp

n+1
)
i,j−1/2,k

, (3.57)

wn+1
i,j,k−1/2 = w∗i,j,k−1/2 −

∆t

ρi,j,k−1/2

(
∂zp

n+1
)
i,j,k−1/2

. (3.58)

Other velocity components (ui,j,k, vi,j,k, wi,j,k, ui,j−1/2,k, ui,j,k−1/2, vi−1/2,j,k, vi,j,k−1/2,

wi−1/2,j,k, wi,j−1/2,k,) are updated by the TEC formula.

3.2.9 The Energy Equation

In a similar manner to equation (3.2), the energy equation (3.3) is split as follows:

T t+∆t = (fNA(fA(T t))), (3.59)

1. Convection term (fA):

∂

∂t

∫
Ω
TdV +

∫
Γ
T (u · n)dS = 0, (3.60)

2. Conduction term (non-advection part fNA):

∂

∂t

∫
Ω
TdV =

1

ρcp

∫
Γ
q
′′
ndS. (3.61)
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The convection term (fA) is solved by using the CIP-CSL methods as explained in

section 3.2.5. The conduction term is discritized by a standard finite volume formula-

tion for the cell average values. Letting
(

1
ρcp

∫
Γ q
′′
ndS = C

)
, the conduction term for

the cell average can be written as

Ci,j,k =
1

(ρcp)i,j,k

(
q
′′

i+1/2,j,k − q
′′

i−1/2,j,k

∆x
+
q
′′

i,j+1/2,k − q
′′

i,j−1/2,k

∆y
+
q
′′

i,j,k+1/2 − q
′′

i,j,k−1/2

∆z

)
.

(3.62)

Substituting for the heat flux (q
′′
), the conduction term (3.62) becomes

Ci,j,k =
1

(ρcp)i,j,k

(
κi+1/2,j,k

(
∂T
∂x

)
i+1/2,j,k

− κi−1/2,j,k

(
∂T
∂x

)
i−1/2,j,k

∆x

+

κi,j+1/2,k

(
∂T
∂y

)
i,j+1/2,k

− κi,j−1/2,k

(
∂T
∂y

)
i,j−1/2,k

∆y

+
κi,j,k+1/2

(
∂T
∂z

)
i,j,k+1/2

− κi,j,k−1/2

(
∂T
∂z

)
i,j,k−1/2

∆z

)
.

(3.63)

Substituting for the temperature derivatives, equation (3.63) can be written as

Ci,j,k =
1

(ρcp)i,j,k

(
κi+1/2,j,k (Ti+1,j,k − Ti,j,k)− κi−1/2,j,k (Ti,j,k − Ti−1,j,k)

(∆x)2

+
κi,j+1/2,k (Ti,j+1,k − Ti,j,k)− κi,j−1/2,k (Ti,j,k − Ti,j−1,k)

(∆y)2

+
κi,j,k+1/2 (Ti,j,k+1 − Ti,j,k)− κi,j,k−1/2 (Ti,j,k − Ti,j,k−1)

(∆z)2

)
,

(3.64)

here the boundary values of the conductivity are the average of the cell-centre values,

for instance, κi+1/2,j,k = (κi,j,k + κi+1,j,k)/2.

The boundary values Ti−1/2,j,k, Ti,j−1/2,k,Ti,j,k−1/2 are updated by TEC.

Our numerical experiments show numerical oscillations when using the TEC formula-

tion to update the boundary values of the temperature. These oscillations affect first

the boundary values of the temperature and then affect the cell averages at later time
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of computations. To resolve this issue, we have suggested that the boundary val-

ues of the temperature (Ti−1/2,j,k, Ti,j−1/2,k, Ti,j,k−1/2) are also updated using a finite

volume formulation in a similar manner to equation (3.62). For example, integrating(
1
ρcp

∫
Γ q
′′
ndS = C

)
around a control volume containing (Ti−1/2,j,k) gives

Ci−1/2,j,k =
1

(ρcp)i−1/2,j,k

(
q
′′
i,j,k − q

′′
i−1,j,k

∆x
+
q
′′

i−1/2,j+1/2,k − q
′′

i−1/2,j−1/2,k

∆y

+
q
′′

i−1/2,j,k+1/2 − q
′′

i−1/2,j,k−1/2

∆z

)
,

(3.65)

Substituting for the heat flux (q
′′
) into (3.65) gives

Ci−1/2,j,k =
1

(ρcp)i−1/2,j,k

(
κi,j,k

(
∂T
∂x

)
i,j,k
− κi−1,j,k

(
∂T
∂x

)
i−1,j,k

∆x

+

κi−1/2,j+1/2,k

(
∂T
∂y

)
i−1/2,j+1/2,k

− κi−1/2,j−1/2,k

(
∂T
∂y

)
i−1/2,j−1/2,k

∆y

+
κi−1/2,j,k+1/2

(
∂T
∂z

)
i−1/2,j,k+1/2

− κi−1/2,j,k−1/2

(
∂T
∂z

)
i−1/2,j,k−1/2

∆z

)
.

(3.66)

Substituting for the temperature derivatives, (3.63) can be written as

Ci−1/2,j,k =
1

(ρcp)i−1/2,j,k

(
κi,j,k

(
Ti+1/2,j,k − Ti−1/2,j,k

)
− κi−1,j,k

(
Ti−1/2,j,k − Ti−3/2,j,k

)
(∆x)2

+
κi−1/2,j+1/2,k

(
Ti−1/2,j+1,k − Ti−1/2,j,k

)
− κi−1/2,j−1/2,k

(
Ti−1/2,j,k − Ti−1/2,j−1,k

)
(∆y)2

+
κi−1/2,j,k+1/2

(
Ti−1/2,j,k+1 − Ti−1/2,j,k

)
− κi−1/2,j,k−1/2

(
Ti−1/2,j,k − Ti−1/2,j,k−1

)
(∆z)2

)
.

(3.67)

In a similar manner, the integration of
(

1
ρcp

∫
Γ q
′′
ndS = C

)
around a control volume

containing (Ti,j−1/2,k) gives
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Ci,j−1/2,k =
1

(ρcp)i,j−1/2,k

(
q
′′

i+1/2,j−1/2,k − q
′′

i−1/2,j−1/2,k

∆x
+
q
′′
i,j,k − q

′′
i,j−1,k

∆y

+
q
′′

i,j−1/2,k+1/2 − q
′′

i,j−1/2,k−1/2

∆z

)
,

(3.68)

Substituting for the heat flux into equation (3.68) gives

Ci,j−1/2,k =
1

(ρcp)i,j−1/2,k

(
κi+1/2,j−1/2,k

(
Ti+1,j−1/2,k − Ti,j−1/2,k

)
− κi−1/2,j−1/2,k

(
Ti,j−1/2,k − Ti−1,j−1/2,k

)
(∆x)2

+
κi,j,k (Ti,j,k − Ti,j−1,k)− κi,j−1,k (Ti,j,k − Ti,j−1,k)

(∆y)2

+
κi,j−1/2,k+1/2

(
Ti,j−1/2,k+1 − Ti,j−1/2,k

)
− κi,j−1/2,k−1/2

(
Ti,j−1/2,k − Ti,j−1/2,k−1

)
(∆z)2

)
,

(3.69)

Similarly, the integration of
(

1
ρcp

∫
Γ q
′′
ndS = C

)
around a control volume containing

(Ti,j,k−1/2) gives

Ci,j,k−1/2 =
1

(ρcp)i,j,k−1/2

(
q
′′

i+1/2,j,k−1/2 − q
′′

i−1/2,j,k−1/2

∆x

+
q
′′

i,j+1/2,k−1/2 − q
′′

i,j−1/2,k−1/2

∆y
+
q
′′
i,j,k − q

′′
i,j,k−1

∆z

)
.

(3.70)

Ci,j,k−1/2 =
1

(ρcp)i,j,k−1/2

(
q
′′

i+1/2,j,k−1/2 − q
′′

i−1/2,j,k−1/2

∆x
+
q
′′

i,j+1/2,k−1/2 − q
′′

i,j−1/2,k−1/2

∆y

+
q
′′
i,j,k − q

′′
i,j,k−1

∆z

)
.

(3.71)

Substituting for the heat flux, equation (3.71) can be written as
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Ci,j,k−1/2 =
1

(ρcp)i−1/2,j,k−1/2

(
κi+1/2,j,k−1/2

(
Ti+1,j,k−1/2 − Ti,j,k−1/2

)
− κi−1/2,j,k−1/2

(
Ti,j,k−1/2 − Ti−1,j,k−1/2

)
(∆x)2

+
κi,j+1/2,k−1/2

(
Ti,j+1,k−1/2 − Ti,j,k−1/2

)
− κi,j−1/2,k−1/2

(
Ti,j,k−1/2 − Ti,j−1,k−1/2

)
(∆y)2

+
κi,j,k

(
Ti,j,k+1/2 − Ti,j,k−1/2

)
− κi,j,k−1

(
Ti,j,k−1/2 − Ti,j,k−3/2

)
(∆z)2

)
.

(3.72)

3.3 VSIAM3 for Inviscid Compressible Flows

Here the application of VSIAM3 to compressible flows is explained.

3.3.1 Governing Equations

The Euler equations describe the dynamics of inviscid compressible flows and are

written as
∂U

∂t
+
∂F (U)

∂x
= 0, (3.73)

where

U =


ρ

m

E

 , (3.74)

F (U) =


m

um+ p

Eu+ pu

 , (3.75)

where m is the momentum per unit volume (m = ρu) and E the total energy per unit

volume. The equations are completed by the equation of state

p =

(
E − ρu2

2

)
(γ − 1), (3.76)
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where γ is the specific heat ratio. By using the VSIAM3 formulation [183], (3.75) is split

into two parts, advection part and non-advection part as follows

F (U) = F I(U) + F II(U) =


m

um

Eu

+


0

p

pu

 . (3.77)

A fractional step approach is used to solve (3.73), in which the advection part

∂U

∂t
+
∂F I(U)

∂x
= 0, (3.78)

is solved by CIP-CSL3 method [190]. The non-advection part

∂U

∂t
+
∂F II(U)

∂x
= 0, (3.79)

is solved by finite volume/difference formulations.

3.3.2 Advection Part: CIP-CSL3

The CIP-CSL3 method is an extension of the CIP-CSL2 method. In this method, third-

order polynomial function is employed as the interpolation function instead of the quad-

ratic function of CIP-CSL2. Then CIP-CSL3 needs one more constraint to determine

all coefficients of the interpolation function. Hence, a control parameter (gradient at

the cell center) is introduced in CIP-CSL3 as the additional constraint. The control

parameter can be used as slope limiter to eliminate numerical oscillation [183]. The

third-order polynomial interpolation function between xi−1/2 and xi+1/2 is written as

Φi(x) = ai(x− xi−1/2)3 + bi(x− xi−1/2)2 + ci(x− xi−1/2) + φi−1/2. (3.80)

In addition to the constraints (3.20) and (3.21), the following constraint

dΦi(xi)

dx
= di, (3.81)

is used to determine the coefficients of equation (3.80) as follows

ai =
4
(
φi+1/2 − φi−1/2 −∆xdi

)
∆x3

, (3.82)
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bi =
3
(
−2φi − φi+1/2 + 3φi−1/2 + 2∆xdi

)
∆x2

, (3.83)

ci =
2
(
3φi − 3φi−1/2 −∆xdi

)
∆x

. (3.84)

The derivative di is given as

di = βid̃i, (3.85)

d̃i = minmod
(
Si+1/2 + Si−1/2

2
, 2Si+1/2, 2Si−1/2

)
, (3.86)

here

minmod(A,B,C) =

 m(A,B,C) if sgn(A) = sgn(B) = sgn(C)

0 otherwise,
(3.87)

m(A,B,C) =


A if min(|A|, |B|, |C|) = |A|

B else if min(|A|, |B|, |C|) = |B|

C else min(|A|, |B|, |C|) = |C|,

(3.88)

and

Si−1/2 =
φ̂i − φ̂i−1

∆x
, (3.89)

where

φ̂i =
3

2
φi −

1

4
(φi+1/2 + φi−1/2), (3.90)

and

βi =

 0.0125 if (uni−1/2 − u
n
i+1/2) < 0.02∆x

1.2 otherwise.
(3.91)

Given at time step n, the cell averages, ρni , uni , pni , mn
i , Eni and the cell boundary values

ρni−1/2, uni−1/2, mn
i−1/2, Eni−1/2, the CIP-CSL3 method is used to obtain the correspond-

ing density at the next time step n+1 (i.e. ρn+1
i and ρn+1

i−1/2) and the provisional values

of the momentum and energy (i.e. m∗i , m
∗
i−1/2, E∗i and E∗i−1/2).
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3.3.3 The Non-Advection Part

A simple explicit equation [183] is used to advance the pressure

pn+1
i = C2

i ∆t

(
u∗i
ρn+1
i+1/2 − ρ

n+1
i−1/2

∆x
+
ρn+1
i

γ∆t
−
m∗i+1/2 −m

∗
i−1/2

∆x

)
, (3.92)

here u∗i =
m∗i
ρn+1
i

, and, C2
i =

γp∗i
ρn+1
i

. The boundary values of the momentum and total

energy are updated as follows

mn+1
i−1/2 = mn

i−1/2 −
∆t

∆x

(
pn+1
i − pn+1

i−1

)
, (3.93)

En+1
i−1/2 = Eni−1/2 −

∆t

∆x

(
un+1
i pn+1

i − un+1
i−1 p

n+1
i−1

)
. (3.94)

The cell averages of the momentum and total energy can be obtained via TEC formula

as follows

mn+1
i = mn

i +
1

2

(
mn+1
i+1/2 −m

n
i+1/2 +mn+1

i−1/2 −m
n
i−1/2

)
, (3.95)

En+1
i = Eni +

1

2

(
En+1
i+1/2 − E

n
i+1/2 + En+1

i−1/2 − E
n
i−1/2

)
. (3.96)

For numerical simulations of compressible flows, CIP-CSL3 should be used. Although

CIP-CSLR is also a less oscillatory CIP-CSL formulation, CIP-CSLR does not include

a slope limiter so that CIP-CSLR cannot prevent oscillation around shock in VSIAM3

(see Appendix for a numerical results by CIP-CSLR).

3.4 Numerical Methods for Free Surface Flows

In this work, we employ the CLSVOF scheme [158, 200] with the THINC/WLIC scheme

[202] as the VOF type scheme for the interface advection and reconstruction. The

CLSVOF interface capturing scheme has been widely used in a variety of applications

including free surface flow simulations with surface tension force [202, 206, 203, 204].

In the following sections, the CLSVOF scheme [200, 202, 206, 203, 204] is reviewed.
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3.4.1 Interface Capturing Using Coupled Level Set and THINC/WLIC

In the CLSVOF scheme used in our simulations, the interface is tracked by a VOF

function which is updated by the THINC/WLIC [203, 204, 205] scheme. The level set

function is built by using the interface indicated by the VOF function.

3.4.2 The THINC/WLIC Scheme

The THINC/WLIC [203, 204, 205] scheme is a kind of VOF scheme. The VOF function

is evolved according to the following advection equation

∂ξ

∂t
+∇ · (uξ)− ξ∇ · u = 0. (3.97)

here u is the velocity, ξ is the characteristic function which has the value of 0 or 1, and

the cell average of ξ is the VOF function ϑi,j which has a value of 0 6 ϑi,j 6 1. In a

two dimensional case

ϑi,j =
1

∆x∆y

∫∫
Ωi,j

ξdxdy, (3.98)

given ϑni,j at the nth time step, ϑi,j is updated by a flux form formulation using a dimen-

sional splitting approach as following

ϑ∗i,j = ϑni,j −
Fnx,i+1/2,j − F

n
x,i−1/2,j

∆x
+ ϑni,j

ui+1/2,j − ui−1/2,j

∆x
∆t, (3.99)

ϑn+1
i,j = ϑ∗i,j −

F ∗y,i,j+1/2 − F
∗
y,i,j−1/2

∆y
+ ϑni,j

vi,j+1/2 − vi,j−1/2

∆y
∆t, (3.100)

with

Fx,i+1/2,j = −
∫ yi,j+1/2

yi,j−1/2

∫ xi+1/2,j−ui+1/2,j∆t

xi+1/2,j

ξis,j(x, y)dxdy, (3.101)
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Fy,i,j+1/2 = −
∫ yi,j+1/2−vi,j+1/2∆t

yi,j+1/2

∫ xi+1/2,j

xi−1/2,j

ξi,js(x, y)dxdy, (3.102)

where Fx,i+1/2,j and Fy,i,j+1/2 are the advection fluxes for x direction and y direction,

respectively. is and js are given as follows

is =

 i if (ux,i+1/2,j) > 0,

i+ 1 if (ux,i+1/2,j) < 0,
(3.103)

js =

 j if (uy,i,j+1/2) > 0,

j + 1 if (uy,i,j+1/2) < 0.
(3.104)

The flux is calculated based on a one dimensional THINC scheme. A piece-wise

modified hyperbolic tangent function is used as a characteristic function of the THINC

scheme

ξx,i =
1

2

(
1 + αxtanh

(
β

(
x− xi−1/2

∆x
− x̃i

)))
. (3.105)

where the parameters αx and β are important in determining the quality of the numer-

ical solution. αx is determined by

αx =

 1 if (nx,i) > 0,

−1 if (nx,i) < 0,
(3.106)

where nx,i = ϑi+1 − ϑi−1 is used for determining (3.106) and β = 3.5. x̃i∆x corres-

ponds to the distance between xi−1/2 and the interface.Using the cell average of ξi, x̃i

can be calculated as follows

ϑni =
1

∆x

∫ xi+1/2

xi−1/2

ξi(x, x̃i)dx. (3.107)
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The WLIC is a simple method for the interface reconstruction which takes into ac-

count the information of the surface normal more effectively than the SLIC method

and maintain simpler implementation than the PLIC method. The WLIC method em-

ploys the information of the interface along the x-coordinate as well as the interface

along the y-coordinate to reconstruct the interface using weights calculated from the

surface normal n:

ξi,j(x, y) = ωx,i,j(ni,j)ξx,i,j(x,y) + ωy,i,j(ni,j)ξy,i,j(x,y), (3.108)

where ωx and ωy are the weights, ξx and ξy are the characteristic functions of the

interface along the x-coordinate and the interface along the y-coordinate, respectively.

The weights ωx and ωy and the characteristic functions ξx and ξy must satisfy the

following constraints

ωx,i,j + ωy,i,j = 1, (3.109)

and

ϑi,j =
1

∆x∆y

∫∫
Ωi,j

ξx,i,jdxdy =
1

∆x∆y

∫∫
Ωi,j

ξy,i,jdxdy, (3.110)

using the following simple weights

ωx,i,j =
|nx,i,j |

|nx,i,j |+ |ny,i,j |
, (3.111)

ωy,i,j =
|ny,i,j |

|nx,i,j |+ |ny,i,j |
, (3.112)

where nx and ny are the Cartesian components of the surface normal n, respectively.

These x-component and the y-component of the surface normal are computed using

3× 3 grid stencil as follows

nx,i,j =
1

4
(nx,i+1/2,j+1/2 + nx,i−1/2,j+1/2 + nx,i+1/2,j−1/2 + nx,i−1/2,j−1/2) (3.113)

ny,i,j =
1

4
(ny,i+1/2,j+1/2 + ny,i−1/2,j+1/2 + ny,i+1/2,j−1/2 + ny,i−1/2,j−1/2) (3.114)

where
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nx,i+1/2,j+1/2 =
1

2∆x
(ϑi+1,j − ϑi,j + ϑi+1,j+1 − ϑi,j+1), (3.115)

ny,i+1/2,j+1/2 =
1

2∆y
(ϑi,j+1 − ϑi,j + ϑi+1,j+1 − ϑi+1,j), (3.116)

In a similar manner, a three-dimensional implementation is straightforward by using

the dimensional splitting approach.

3.4.3 The Level Set Scheme (CLSVOF)

The level set scheme [159] is an interface capturing scheme, in which the interface is

implicitly represented by the level set function ψ = 0 (zero level set). The function is

also called the signed distance function that corresponds to the shortest distance from

points on the grid to the interface. The level set scheme features simplicity particularly

in calculating the curvature of the interface.

The CLSVOF procedure [200] includes calculating the position of the 0.5-contour of the

VOF function ϑ (zero level set) by a linear interpolation between cells. Then the signed

distance function ψ within ∆h from the interface, where ∆h is the grid resolution, is

calculated by the fast marching procedure [147, 3], solving the Eikonal equation:

|∇ψ| = 1. (3.117)

Other ψ values further from the interface is computed by an iterative re-initialization

procedure [159] by solving the following equation to a steady state:

∂ψ

∂τ0
= F (ψ) (1− |∇ψ|) , (3.118)

where τ0 is an artificial time and F (ψ)



3.4 Numerical Methods for Free Surface Flows 67

F (ψ) =


0 for grid cells updated by the fast marching

ψ√
ψ2+ε2

else,
(3.119)

while ψ calculated by the fast marching procedure is fixed. ε = ∆h is used in equation

(3.119). The the number of iterations of the solution of equation (3.118) equals α
∆τ0

[204]. Where 2α is the interface thickness. α = 1.5∆h and ∆τ0 = 0.1∆h were used

in the simulations carried out in this thesis. A smoothed Heaviside function is used as

the color function φ which is used to define the physical properties of the light fluid and

the heavy fluid like the density and viscosity

φ = Hα(ψ), (3.120)

Hα(ψ) =


0 if ψ < −α,
1
2

(
1 + ψ

α + 1
πsin

(
πψ
α

))
if |ψ| 6 α,

1 if ψ > α.

(3.121)

Equation 3.121 sets the color function φ = 1 for the heavy fluid and φ = 0 for the light

fluid. The physical properties such as the density ρ and viscosity µ are calculated as

follows

ρ = ρhφ+ ρl(1− φ), (3.122)

µ = µhφ+ µl(1− φ), (3.123)

where ρh and µh are the density and the viscosity of the heavy fluid, and ρl and µl are

the density and the viscosity of the light fluid.
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3.5 Model of Surface Tension Force

The continuum surface force (CSF) model [16] is well known for computing surface ten-

sion force in various numerical schemes of free surface flows such as VOF schemes

[74, 145] and level set schemes [160, 159, 138]. In the (CSF) procedure [16], the

surface tension effect on a fluid motion is modeled as a body force associated by a

smooth delta function δα and the resulting force corresponds to the product of the

interface gradient and curvature. The surface tension effects are represented in the

simulation model by an external force Fsf in the momentum equation.

Fsf = σκδαns, (3.124)

Where σ is the surface tension coefficient, κ is the local mean curvature and ns is the

unit vector normal to the interface.

In the level set formulation [159], the standard CSF model is formulated using the level

set function ψ

Fsf = σκδα(ψ)nls, (3.125)

where the interface normal nls is calculated by the gradient of the level set function as

nls =
∇ψ
|∇ψ|

, (3.126)

the surface curvature κ is approximated by

κ = ∇ · ∇ψ
|∇ψ|

, (3.127)

and the smoothed delta function δα(ψ) can be estimated using the level set function

as
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δα(ψ) =


1

2α

(
1 + cos

(
πψ
α

))
if|ψ| < α

0 else,
(3.128)

Noting that the corresponding smoothed Heaviside function of equation (3.128) which

is used in the CLSVOF scheme is given in equation (3.121) and that (2α) is the inter-

face thickness.

In this work, a modified level set based standard CSF model is employed within the

CLSVOF formulation, namely the level set based density-scaled balanced CSF model

[204, 205], in which the following balanced force formulation

Fsf = σκ∇φscaling, (3.129)

is used. Equation (3.129) is mathematically equivalent to equation (3.125), yet a dif-

ferent discretization method is used. In the balanced force formulation, it is vital to use

the same discretization for ∇φscaling in 3.129 and the pressure gradient term in the

projection step. For instance, since the x-component of the acceleration due to the

pressure gradient is discretized as

(
∂u

∂t

)
i−1/2,j,k

= − 1

ρi−1/2,j,k

Pn+1
i,j,k − P

n+1
i−1,j,k

∆x
, (3.130)

hence, the x-component of the acceleration due to equation (3.129) must be discret-

ized in a similar manner as follows

(
Fsf
ρ

)
i−1/2,j,k

=
σκi−1/2,j,k

ρi−1/2,j,k

φscalingi,j,k − φscalingi−1,j,k

∆x
, (3.131)

here ρi−1/2,j,k = 1
2(ρi,j,k + ρi−1,j,k), and φscalingi,j,k = Hscaling

α (ψ), where Hscaling
α (ψ) is an

asymmetrical smoothed Heaviside function utilised in this formulation
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Hscaling
α (ψ) =


0 if ψ < −α,
1
2

[
1
2 + ψ

α + ψ2

2α2 − 1
4π2

(
cos
(

2πψ
α

)
− 1
)

+ α+ψ
απ sin

(
πψ
α

)]
if |ψ| 6 α,

1 if ψ > α.

(3.132)

The level set based density-scaled balanced CSF formulation reduces spurious cur-

rents and improves the stability of the CSF procedure [205], particularly in the case of

two-phase flows of high-density ratio.

3.6 Summary

A detailed review and explanation of the VSIAM3 numerical framework for solving the

Navier-Stokes equations have been presented in this chapter. VSIAM3 for incom-

pressible and compressible fluid flow and heat transfer has first been introduced. A

comprehensive explanation of the implementation of CIP-CSL schemes (CIP-CSL2,

CIP-CSLR, and CIP-CSL3) was also given. A description of the execution of various

terms of the Navier-Stokes equations and the energy equation in VSIAM3 has been

accounted for including the projection step and the solution of pressure Poisson equa-

tion on a multi-moment M-grid.

The numerical model is extended based on the one-fluid formulation for gas-liquid two-

phase flows. A review of the coupling of the Level-Set method with the THINC/WLIC

methods has also been presented, where the implementation of the combination of

CLSVOF advection method with the equations of incompressible gas-liquid two-phase

flows is explained. The THINC/WLIC surface capturing scheme has first been re-

viewed. Followed by a presentation of the level set method. Finally, the model of the

surface tension used in the present work is given.

In conclusion, It is worth noting that a detailed construction of the VSIAM3 numerical

framework for gas-liquid two-phase flows and a comprehensive explanation of the im-

plementation complexities which arise from the multi-moment concept has not been

given in a published work.
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Chapter 4

Efficient Implementation of

Multi-Moment Method

4.1 Introduction

Despite that VSIAM3 has been presented as a robust and computationally efficient

numerical scheme [203, 204, 205], most of the analysts who attempted to build up the

code could not complete robust fluid simulations [124]. This is on account of a multi-

moment structure of VSIAM3 (including the CIP-CSL method). The multi-moment

structure has risen complications in the execution of VSIAM3. The issue on the ro-

bustness in VSIAM3 has likewise been suggested in [102] and a conceivable arrange-

ment utilizing the simple CIP interpolation for the problem has been proposed. The

CIP interpolation [196] requires incorporating and updating derivatives of computa-

tional variables in the numerical computations. In this chapter, we study discretization

strategies of the conservative advection equation and their effect on the robustness of

VSIAM3.

As we mentioned in the details of the CIPCSL scheme in (section 3.2.5), the boundary

value φi−1/2 is updated by the conservation equation of differential form in the VSIAM3

framework

∂φ

∂t
+
∂uφ

∂x
= 0. (4.1)
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(4.1) is equivalent to
∂φ

∂t
+ u

∂φ

∂x
= −φ∂u

∂x
. (4.2)

Using a splitting approach to solve (4.2) gives

∂φ

∂t
+ u

∂φ

∂x
= 0, (4.3)

and
∂φ

∂t
= −φ∂u

∂x
. (4.4)

Equation (4.3) indicates the advection of φ therefore, is solved as an interpolation

problem. Equation (4.4) represents a correction of the convected scalar due to the

divergence term of the velocity, i.e., amounts to the change of φ due to the compression

or expansion and is solved by a finite difference formulation.

As mentioned in section 3.2.5.1, the divergence term of the velocity is one of the

main topics in this work. Despite the importance of the divergence term discretiza-

tion on the robustness of VSIAM3 method as shown in this chapter, it has rarely been

mentioned in the published works of VSIAM3 and CIP-CSL advection schemes. Ad-

ditionally, although VSIAM3 is a multi-moment method, no work has been carried out

to examine the divergence term discretization by using various moments and stencils.

In this chapter, we carry out a study of the discretization strategies of the conserva-

tion equation in VSIAM3. An investigation into these strategies is conducted through

the lid-driven cavity flow, shock tube problems, two-dimensional explosion test, and

droplet splashing problem. We found that the use of the (CIP-CSLR) method (section

3.2.5.3) as the conservation equation solver is critically essential for the robustness

of incompressible flow simulations using VSIAM3 and that the use of (CIP-CSL2) in

these simulations affects the robustness of VSIAm3 due to the resulted numerical

oscillations. It is also found that numerical results are sensitive to discretization formu-

lations of the velocity divergence term (3.26) in the conservation equation and various

approximations have been proposed.

In the following section 4.2, different formulations of the divergence term are presen-

ted. Then a study of the divergence term formulations in Fourier Analysis is given
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in section 4.2.1. In section 4.3, the numerical results are presented. Followed by a

summary in section 4.4.

4.2 Formulations of the Divergence Term

In this section, we explain possible discretizations of the velocity divergence term (4.4)

of the one-dimensional conservation equation.

Simple Central Difference based on Boundary Value (CDb)

φ
∂u

∂x
= φ∗i−1/2

uni+1/2 − u
n
i−3/2

2∆x
. (4.5)

In the first works of the CIP-CSL methods [195, 190], the basic central difference

approximation using boundary values has been recommended.

Up-winding approximation with a time average (Upw-Avg1)

φ
∂u

∂x
=

 (φ∗i−1/2 + φni−1/2)(
u∗
i−1/2

−u∗
i−3/2

+un
i−1/2

−un
i−3/2

4∆x ) if ui−1/2 > 0

(φ∗i−1/2 + φni−1/2)(
u∗
i+1/2

−u∗
i−1/2

+un
i+1/2

−un
i−1/2

4∆x ) if ui−1/2 ≤ 0,
(4.6)

This approximation has been suggested in [188, 182] for incompressible flow

situations, where u∗ is the provisional value of the velocity right after the semi-

Lagrangian solution in fluid computation.

Upwind approximation with a time average for compressible flow (UPW-Avg2)

φ
∂u

∂x
=

 φ∗i−1/2(
u∗
i−1/2

−u∗
i−3/2

+un
i−1/2

−un
i−3/2

2∆x ) if ui−1/2 > 0

φ∗i−1/2(
u∗
i+1/2

−u∗
i−1/2

+un
i+1/2

−un
i−1/2

2∆x ) if ui−1/2 ≤ 0.
(4.7)

This approximation has been suggested in [183] for inviscid compressible flow.

It could be noticed that the first approximation uses relatively large stencil while the

last two estimates are not simple regarding implementation and they require storage

for the provisional value of the velocity.

In this chapter, we propose the following approximations of the velocity divergence

term.
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Upwind based on Boundary Value (UPW)

φ
∂u

∂x
=

 φ∗i−1/2(
un
i−1/2

−un
i−3/2

∆x ) if ui−1/2 > 0

φ∗i−1/2(
un
i+1/2

−un
i−1/2

∆x ) if ui−1/2 ≤ 0.
(4.8)

This is a simple upwind approximation based on the boundary values.

Central Difference based on Cell Integrated Average (CDca)

φ
∂u

∂x
= φ∗i−1/2

uni − uni−1

∆x
. (4.9)

This is a central difference approximation based on the cell integrated averages.

In comparison to CDb (4.5), the proposed central difference formulation uses

the cell integrated average in place of the boundary values which results in a

shorter stencil than that of CDb.

Central Difference based Cell Centre Value (CDcc)

φ
∂u

∂x
= φ∗i−1/2

ûni − ûni−1

∆x
(4.10)

This is another central difference approximation based on the cell center val-

ues (ûi), where ûi is the velocity calculated at cell centre [190]. By using the

quadratic function (3.19), ûi can be obtained

ûi =
3

2
ui −

1

4

(
ui+1/2 + ui−1/2

)
. (4.11)

Central Difference based on a 4th-Order Polynomial Function (CDbca)

φ
∂u

∂x
= φ∗i−1/2

(
2
uni − uni−1

∆x
−
uni+1/2 − u

n
i−3/2

2∆x

)
. (4.12)

This formula (4.12) can be derived from a fourth-order central interpolation func-

tion using ui−3/2, ui−1, ui−1/2, ui and ui+1/2 [125].

Mixed Formulation of the Upwind and a Central Difference (UPW-CDcc)

φ
∂u

∂x
=


DUPW if DUPW · DCDcc < 0

DUPW else if |DUPW | < |DCDcc|

DCDcc else,

(4.13)



4.2 Formulations of the Divergence Term 75

Here DUPW and DCDcc represent φ
∂u

∂x
and are calculated by (4.8) and (4.10),

respectively. The mixed formulation is introduced to take advantages of both

upwind and central difference approximations. The formulation employs the up-

wind formula (4.8) when the sign of derivatives of UPW and CDcc are different

(DUPW ·DCDcc < 0) or |DCDcc| is larger than that of |DUPW |. Otherwise the cent-

ral difference formula (4.10) is used. Although we combined UPW with CDcc , it

can be combined with any other central difference formulations. In this work, we

also combined UPW with CDbca (UPW-CDbca).

Interpolation at Characteristic Departure Point (DP)

φ
∂u

∂x
=


φ∗i−1/2

∂Φi−1

∂x
(xi−1/2 − ui−1/2∆t) if ui−1/2 ≥ 0

φ∗i−1/2

∂Φi

∂x
(xi−1/2 − ui−1/2∆t) if ui−1/2 < 0.

(4.14)

This formulation evaluates the divergence at the characteristic departure point

using a CIP-CSL interpolation function.

4.2.1 Formulations of the Divergence Term in Fourier Ana-

lysis

In this section, we carry out Fourier analysis of the introduced divergence term formula-

tions. Fourier analysis presents the resolution of spatial derivatives in the wavenumber

domain. The spatial profile of the velocity U(x) is defined over the domain [0, L] with a

uniform grid spacing ∆x is decomposed into Fourier series

U(x) =
∑
κ

U(κ)ejωx/∆x, (4.15)

where j =
√
−1 and ω = 2πκ∆x/L is the scaled wavenumber. The point value at

xi−1/2 is also decomposed as

ui−1/2 =
∑
κ

U(κ)ejωxi−1/2/∆x. (4.16)

Using (4.16), the point value at xi−1/2+m is decomposed as

ui−1/2+m = ui−1/2e
jωm. (4.17)
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The cell integrated average ui is also decomposed as

ui =
1

∆x

∫ ∆x

0
U(xi−1/2 + x)dx = ui−1/2

ejω − 1

jω
(4.18)

Since equation (4.18) indicates the relation between the point value and the cell in-

tegrated average, the accuracy of the suggested approximations of the velocity di-

vergence term can be analysed by using (4.17) and (4.18). The formulations of the

velocity divergence term in the wavenumber domain can be acquired as follows

Ux,CDb(ω) = j(sin(ω)), (4.19)

Ux,UPW (ω) = (cos(ω)− 1) + j(sin(ω)), (4.20)

Ux,CDca(ω) = j(sin(ω)), (4.21)

Ux,CDcc(ω) = j(
6 sin2(ω/2)

ω
− sin(ω)

2
), (4.22)

Ux,CDbca(ω) = j(− sin(ω) +
8 sin2(ω/2)

ω
). (4.23)

Ux,DP depends on the interpolation function of a CIP-CSL method. However, in this

work, CIP-CSLR and CIP-CSL3 are mainly used and both CIP-CSL methods are em-

ploying nonlinear interpolation function. Therefore we cannot analyse DP formulation.

Figure 4.1 depicts the resolution of various formulations of the velocity divergence term

in Fourier domain. All central difference methods have no error in real part (no diffusion

error) and only UPW has diffusion error, as shown in fig. 4.1 (b). Figure 4.1 (a) has

shown that CDbca is the closest to the exact solution. CDcc is second closest, CDca

third, CDca fourth, and CDb and UPW are the most inaccurate.

4.3 Numerical Results

4.3.1 Lid-Driven Cavity Flow

The lid-driven incompressible flow in a square cavity has been used as a model prob-

lem for assessing numerical methods [56]. This test problem was used to investigate
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Figure 4.1: The formulations of the divergence term in Fourier analysis,

(a) imaginary part and (b) real part.

the discretisation strategies of the conservation equation in multi-moment method. The

tests were conducted at Reynolds number Re= 1000 and Re= 5000. The numerical

results were compared with the solution by Ghia et. al [56]. Ghia et. al employed the

vorticity-stream function formulation of the incompressible Navier-Stokes equations to

solve the shear-driven flow in a square cavity on a uniform fine grid. They employed

multigrid method in the solution of the Navier-Stokes equations to enhance the solution

convergence. Furthermore, second-order accurate central finite-difference approxima-

tions were used for second-order derivatives in the stream function and vorticity equa-

tions. First-order accurate upwind difference formulation was used for the convective

terms. The later formulation results in second-order accuracy at convergence through

a correction scheme. Additionally, they used a grid of (129 × 129) and (257 × 257) for

Re= 1000 and Re= 5000, respectively.

The numerical result of Re= 1000 using the CIP-CSL2 scheme with the upwind formu-

lation (UPW) is shown in fig.4.2a. The figure depicts the horizontal velocity component

along the vertical line through the centre of the cavity. The result shows reasonable

agreement with the solution by Ghia [56], however, the calculation was not stable after

attaining the depicted solution. Although we also examined CIP-CSL2 scheme using

central difference approximations, these were not stable and did not attain the steady-

state solution. Figure 4.2b shows the numerical solution when the velocity divergence
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term was set to zero. In this case although the result was inaccurate, the computa-

tions were free of numerical oscillations. These results suggest that the use of the

CIP-CSL2 scheme in VSIAM3 deteriorates the robustness and the velocity divergence

term is pertinent to the robustness of the numerical method.
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Figure 4.2: Numerical results of lid-driven cavity flow problem. Re = 1000.

CIP-CSL2 with UPW was used for (a). (b) is the result by CIP-CSL2 when

the divergence term was ignored. The line and dot represent the numer-

ical result and the solution by Ghia [56], respectively. A Cartesian grid of

100× 100 was used.

We also inspected the use of the CIP-CSLR scheme in VSIAM3. The numerical res-

ults of the CIP-CSLR scheme with various divergence term formulations are shown

in figures 4.4-4.10 with grid refinement studies where three grid resolutions (50×50,

100×100 and 200×200) were used. Presented in these figures are the horizontal

velocity component along the vertical line through the centre of the cavity and the

vertical velocity component along the horizontal line through the centre of the cavity

in parts a and b, respectively, of each figure. The numerical results indicate reason-

able agreements with the Ghia solution [56] and reasonable convergences as well.

All the numerical computations using CIP-CSLR scheme (with any velocity divergence

term formulation) were oscillation-free in this test problem. These results by CIP-CSL2
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and CIP-CSLR suggest that the use of CIP-CSLR scheme enhances the robustness

of VSIAM3. As detailed in section 3.2.5.3 and [192], CIP-CSLR is a less oscillatory

formulation and CIP-CSL2 is not free of numerical oscillations. Therefore it can be con-

sidered that the numerical oscillations generated by CIP-CSL2 affect the robustness

of VSIAM3 through the velocity divergence term and that the use of a less oscillatory

advection scheme is critically essential for the robust execution of VSIAM3.

The numerical result by UPW are shown in fig. 4.3. The result is almost equivalent

to that of the upwind with a time average approximation given in [188]. Additionally,

implementing the proposed UPW approximation is simpler than the latter.
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Figure 4.3: Numerical results of lid-driven cavity flow problem using CIP-

CSLR with UPW formulation for the divergence term. Re = 1000. Three

different grid sizes (50×50, 100×100 and 200×200) were used.

The numerical results of the central difference formulations are presented in figures

4.4, 4.5, 4.6, and 4.7. These results indicate that central difference formulations are

superior to UPW in this test problem. Although all central difference approximations

give similar results, CDbca and CDcc are slightly better than CDb and CDca as shown

in fig. 4.11 (enlarged figure). The difference between the results by CDbca and CDcc

is barely seen. Furthermore, CDb is superior to CDca in this test problem. The result
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by mixed formulations (UPW-CDcc) and (UPW-CDbca) are shown in figures 4.8 and

4.9, respectively.
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Figure 4.4: Numerical results of lid-driven cavity flow problem using CIP-

CSLR with CDb formulation for the divergence term. Re = 1000. Three

different grid sizes (50×50, 100×100 and 200×200) were used.
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Figure 4.5: Numerical results of lid-driven cavity flow problem using CIP-

CSLR with CDca formulation for the divergence term. Re = 1000. Three

different grid sizes (50×50, 100×100 and 200×200) were used.
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Figure 4.6: Numerical results of lid-driven cavity flow problem using CIP-

CSLR with CDbcc formulation for the divergence term. Re = 1000. Three

different grid sizes (50×50, 100×100 and 200×200) were used.



4.3 Numerical Results 82

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.4 -0.2  0  0.2  0.4  0.6  0.8  1

y

u

CDbca: 200x200
CDbca: 100x100
CDbca: 50x50    
Ghia et al.          

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.6 -0.4 -0.2  0  0.2  0.4

x

v

CDbca: 200x200
CDbca: 100x100
CDbca: 50x50    
Ghia et al.          

(a) (b)

Figure 4.7: Numerical results of lid-driven cavity flow problem using CIP-

CSLR with CDbca formulation for the divergence term. Re = 1000. Three

different grid sizes (50×50, 100×100 and 200×200) were used.
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Figure 4.8: Numerical results of lid-driven cavity flow problem using CIP-

CSLR with UPW-CDbcc formulation for the divergence term. Re = 1000.

Three different grid sizes (50×50, 100×100 and 200×200) were used.
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Figure 4.9: Numerical results of lid-driven cavity flow problem using CIP-

CSLR with UPW-CDbca formulation for the divergence term. Re = 1000.

Three different grid sizes (50×50, 100×100 and 200×200) were used.
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Figure 4.10: Numerical results of lid-driven cavity flow problem using

CIP-CSLR with DP formulation for the divergence term. Re = 1000. Three

different grid sizes (50×50, 100×100 and 200×200) were used.
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Figure 4.12 gives a comparison among UPW, CDcc and UPW-CDcc. The result by

UPW-CDcc is closer to the Ghia solution than that by UPW. The results by UPW-

CDbca are almost identical with these by UPW-CDcc. In this test problem, the mixed

formulations have no advantage over central difference approximations. Nonetheless,

as shown in 4.3.3, the mixed formulation plays an essential part in complex simulations

such as droplet splashing. The result by DP is better than that by UPW but worse than

these by central diference approximations in this test as shown in figures4.10 and 4.11.

Figure 4.13 gives numerical results of Re= 5000. The pattern of the results is almost

same with the results of Re = 1000.
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Figure 4.11: Comparison among numerical results by CSLR-CDb, CSLR-

CDca, CSLR-CDcc, CSLR-CDbca and CSLR-DP. A Cartesian grid of 50×50

was used.
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Figure 4.12: Comparison among numerical results by CSLR-UPW, CSLR-

CDcc and CSLR-UPW-CDcc. A Cartesian grid of 100× 100 was used.

4.3.2 Compressible Flows (Sod’s and Lax’s Problems, and

2D Explosion Test)

We demonstrate the effects of the proposed discretization techniques for the velocity

divergence term through benchmark problems incompressible flows; Sod’s problem

[152] and Lax’s problem [101]. The initial condition of Sod’s problem is

(ρ, u, p) =

 (1.0, 0, 1.0) if x ≤ 0

(0.125, 0, 0.1) if x > 0.
(4.24)

The initial condition of Lax’s problem is

(ρ, u, p) =

 (0.445, 0.698, 3.528) if x ≤ 0

(0.5, 0, 0.571) if x > 0.
(4.25)

All computations were performed on a 400-point uniform grid. Figures 4.14 and 4.15

show numerical results of Sod’s and Lax’s problems, respectively. Table 4.2 gives L1

errors in Sod’s and Lax’s problems.
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Figure 4.13: Numerical results of lid-driven cavity flow using six different

formulations for the divergence term. Re = 5000. A Cartesian grid of

256× 256 was used.
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Numerical results of Sod’s problem by various divergence term formulations exclud-

ing DP are almost similar as can be seen in fig. 4.14. Regarding L1 errors, CDbca

is the most accurate in Sod’s problem, and UPW is the worst as indicated in table

4.2. The other central difference approximations (CDb, CDca and CDcc) fundament-

ally results in similar errors (2.24 × 10−3 − 2.25 × 10−3). Intermediate errors between

those of UPW and CDcc (or CDbca) are shown by mixed formulations (UPW-CDcc

and UPW-CDbca). DP formulation could not simulate Sod’s problem. Computations

using DP was not stable for this test problem. The unstable calculations using DP

formula could be due to the discontinuity in the velocity immediately after the start of

the numerical simulation. DP formulation tends to create a substantial value around

discontinuity compared to other approximations, and this may cause unstable compu-

tations. However if we simulated first 10 time steps using UPW, it was able to simulate

this problem. This means that DP is not so good at the strong discontinuity which

appears at the beginning of this numerical simulation.

Regarding Lax’s shock tube problem, some differences in the numerical results can

be observed particularly around the contact discontinuity as shown in fig. 4.15. It is

evident from fig. 4.15 and table 4.2 that the result by CDb is the worst. This is be-

cause Lax’s problem includes a discontinuity in the initial velocity condition and the

simple central difference approximation (CDb) which requires a longer stencil than the

other approximations cannot manage such discontinuity well. Although DP succeeds

in simulating Lax’s problem, it was the second worst. This will be because of the sharp

discontinuity in the initial condition. Although CDbca was the most accurate in Sod’s

problem (which does not involve the discontinuity in the initial velocity condition), it is

the second worst in central difference methods. This will also be because CDbca uses

a longer stencil like that of CDb. At the same time, CDcc is the most accurate and

CDca second best in Lax’s problem. This will be because CDcc and CDca approxim-

ations use a shorter stencil than those of CDb and CDbca. UPW is less accurate than

CDcc and CDca but more accurate than CDb and CDbca, and has a small numerical

oscillation around the shock (the similar oscillation has also been observed in the previ-

ous work by Xiao [183]). When using the mixed formulation, the small oscillation which

appears in the numerical result by UPW disappears and numerical diffusion immedi-
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ately before/after discontinuities, which is observed in numerical results by all central

difference approximations is also reduced. Although the mixed formulation presents

some enhancements, the results by CDcc and CDca are still more accurate in terms of

L1 error because the mixed formulation is slightly more diffusive on the discontinuities.
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Figure 4.14: Numerical results of Sod’s Problem. Plotted are density pro-

files vs. axial distance. The dots show the density profile of numerical

results. The line shows the exact solution.
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Figure 4.15: Numerical results of Lax’s Problem. Plotted are density pro-

files vs. axial distance. The dots show the density profile of numerical

results. The line shows the exact solution.
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We also carried out numerical simulations of two-dimensional compressible flow (2D

exploion test) [167] on the domain [−1, 1] × [−1, 1]. The initial condition of the 2D

explosion problem is

ρ(x, y, 0) = 1; u(x, y, 0) = 0; v(x, y, 0) = 0; p(x, y, 0) = 1; if r < 0.5

ρ(x, y, 0) = 0.125; u(x, y, 0) = 0; v(x, y, 0) = 0; p(x, y, 0) = 0.1; otherwise,
(4.26)

where r =
√
x2 + y2. The inviscid Euler conservation laws are solved on a 200 × 200

Cartesian grid. The perspective view of the density at t=0.25 is presented in fig. 4.16.

Those formulations of the velocity divergence term can straightforwardly be applied to

multi-dimensional fluid problems, and the pattern is almost same with that discussed

in Sod’s problem.

Nonetheless, as indicated in 4.3.3 , the mixed formulation plays an essential part in

complex flow simulations.

4.3.3 Divergence Term Formulations in Complex Free Sur-

face Flows

Numerical simulations of the effects of the divergence term formulations in VSIAM3 in

a complex gas-liquid two-phase problem like droplet splashing on a superhydrophobic

substrate has been carried out. Parameters of the simulations are given in table 4.1.

A uniform Cartesian grid of 192 × 48 × 192 is used. The details of the simulations are

given in [5]. The results are shown in fig. 4.17. The results indicate that VSIAM3 with

CIP-CSL2-UPW was not stable after a short time of the start of the computations as

shown in fig.4.17 a. Moreover, VSIAM3 using CIP-CSL2 with any central difference

formula was not stable for this test problem. On the other hand, VSIAM3 with CIP-

CSLR is stable when UPW was employed for the velocity divergence term as shown

in fig.4.17 b. However, when using any central difference formulation for the velocity

divergence term, VSIAM3 with CIP-CSLR was also unstable. Furthermore, utilizing a

mixed formulation (UPW-CDcc), VSIAM3 with CIP-CSLR could accomplish stable nu-

merical simulation of droplet splashing and capture droplet splashing well as indicated
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Table 4.1: Quantitative parameters of the droplet splashing simulations.

ρ is density, µ is viscosity, D initial droplet diameter, σ is surface tension,

v is impact speed, and θ the equilibrium contact angle.

Phase ρ(kg/m3) µ(Pa.s) D(mm) σ(N/m2) v (m/s) θ(◦)

Liquid 1000 1× 10−3 7.2×10−2 1.86 2.98 163

Air 1.25 1.82× 10−5 − − − −

in fig.4.17 c.

VSIAM3 with CSL2-UPW could not capture droplet splashing well as shown in Fig.

4.17a. CSL2-UPW also caused relatively large amount of flotsam and was not stable

after around 1.1 ms. VSIAM3 with CSL2 with any central difference formulation was

not stable for this problem. VSIAM3 with CSLR is stable when UPW was used for the

divergence term. The formulation could capture droplet splashing well as shown in Fig.

4.17b. However if we use any central difference formulation for the divergence term,

VSIAM3 with CSLR was also unstable. If we use UPW-CDcc (mixed formulation),

VSIAM3 with CSLR could conduct stable numerical simulation of droplet splashing

and capture droplet splashing well as shown in Fig. 4.17c.

Hereafter CIP-CSLR with UPW-CDbca is employed in the conducted numerical simu-

lations.

4.4 Summary

We studied discretization techniques of the advection transport equation for efficient

implementation of VSIAM3 through the lid-driven cavity flow, shock tube problems, and

droplet splashing.

We investigated the usage of the CIP-CSL2 scheme in addition to the CIP-CSLR

scheme in VSIAM3 through the lid-driven cavity flow and droplet splashing. The nu-
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Table 4.2: L1 errors in shock tube problems.

Sod Lax

CDb 2.25× 10−3 5.67× 10−3

UPW 2.30× 10−3 4.94× 10−3

CDca 2.24× 10−3 4.78× 10−3

CDcc 2.24× 10−3 4.47× 10−3

CDbca 2.21× 10−3 5.05× 10−3

UPW-CDcc 2.28× 10−3 4.61× 10−3

UPW-CDbca 2.27× 10−3 4.67× 10−3

DP N/A 5.47× 10−3

Table 4.3: Summary of numerical results of incompressible flows. In the

cavity flow problem, result by CSLR with central difference was slightly

better than that by CSLR with mixed formulation.

Cavity flow Droplet splashing

CSL2 with upwind Fairly precise and not

robust

Barely capture the

phenomenon and not

robust

CSL2 with central difference Not robust Not robust

CSLR with upwind Fairly precise and ro-

bust

Capture the phe-

nomenon and robust

CSLR with central difference Precise and robust Not robust

CSLR with mixed formulation Precise and robust Capture the phe-

nomenon and robust
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merical results indicated that VSIAM3 using CIP-CSL2 is not robust enough and that

VSIAM3 using CIP-CSLR is highly robust (when an appropriate approximation is used

for the velocity divergence term). These results show that the use of a less oscillatory

formulation (i.e., CIP-CSLR) is a key for robust incompressible flow simulations.

We also found that the numerical results are sensitive depending on discretization

approximations of the velocity divergence term in the advection transport equation.

The numerical results of the lid-driven cavity flow showed that CIP-CSLR with central

difference formulations is superior to the simple upwind formulation in this test. How-

ever, both results are reasonably precise. On the other hand, the numerical results of

droplet splashing showed that VSIAM3 with any central difference formulation is not

robust even though CIP-CSLR is used, while VSIAM3 with the simple upwind formula-

tion was highly robust and captures the droplet splashing well. These results indicate

that the use of the upwind formulation is suitable for robust numerical simulations,

especially for complex gas-liquid two-phase flows like droplet splashing. Although the

central difference formulations are precise for simple flow problems such as cavity flow,

will not be robust enough for complicated flow problems.

Based on the numerical results, we also proposed the mixed formulation using both a

central difference and the simple upwind formulation for the velocity divergence term.

The mixed formulation can simulate the lid-driven cavity well (better than UPW and

slightly worse than CDcc) and also simulate droplet splashing like the result using the

simple upwind. The mixed formulation can take advantages of both central difference

and upwind formulations. We summarize the results of incompressible results in Table

4.3.

We also tested formulations for the divergence term through the inviscid compressible

flow problems (Sod’s and Lax’s problems and 2D explosion test). In Sod’s problem

which does not involve discontinuity in the initial velocity condition, we could not ob-

serve much difference in numerical results by all divergence formulations excluding DP

and DP was not stable. In Lax’s problem which involves the discontinuity in the initial

velocity condition, we could observe some differences, especially around the contact

discontinuity. In this test, CDb and CDbca, which use a wider stencil were less accur-



4.4 Summary 95

ate than CDcc and CDca, and CDcc and CDca, which use a shorter stencil were more

accurate than CDb and CDbca . The mixed formulation shows some improvements

compared to numerical results by any central difference or UPW. However, regarding

L1 error, CDcc and CDca are still better than UPW-CDcc.

In conclusion, employing a less oscillatory CIP-CSL scheme (i.e., CIP-CSLR, CIP-

CSL3, etc.) with an appropriate formulation for the velocity divergence term is critically

important for robust implementation of VSIAM3. As an optimal divergence term for-

mulation, we would suggest the mixed formulation because it is highly robust, more

accurate than UPW and works well for both incompressible and compressible flows

problems.



4.4 Summary 96

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Reference

      CDb

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Reference

      UPW

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Reference

     CDca

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Reference

     CDcc

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Reference

    CDbca

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Reference

  UPWCDcc

(a) (b)

(c) (d)

(e) (f)

Figure 4.16: The density profiles of the 2-d explosion test at t=0.25 along

the line of y = 0 . The dots represent numerical results by using six dif-

ferent formulations for the divergence term. The line represents the ref-

erence solution.
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Figure 4.17: Numerical results of droplet splashing by CSL2-UPW (a),

CSLR-UPW (b) and CSLR-UPW-CDcc (c). VSIAM3 with CSL2-UPW was

not stable after around 1.1ms.
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Chapter 5

Parallel Computation

A parallel implementation of the fluid dynamics and heat transfer solver has been

carried out using C++ and Open MPI [59]. The importance of this implementation

and its evaluation was presented in this chapter. The solver was further validated by

three-dimensional problems; equilibrium drop, single rising bubble problem, Kelvin-

Helmholtz instability, and fully developed turbulent channel flow.

5.1 The Necessity of the Parallel Implementation

Numerical simulation of fluid flow and heat transfer in three dimensions obviously in-

volves a higher number of grids than that of two-dimensional simulations and demands

longer execution time. Additionally, particular physical phenomena, like Rayleigh Bénard

Convection for example, where the driving temperature difference produces slow evol-

ution processes of the velocity and temperature fields, and thus, imposes long com-

putational time with small time steps to attain the steady-state solution. Therefore it is

more efficient to write the code for execution on more than single node and high per-

formance computing in general. Numerical simulation of three-dimensional turbulent

flows, for instance, requires fine spatial mesh with small time steps to resolve the full

range of length and time scales that span the inertial and the dissipative scales. This

requirement increases with the Reynolds number (Re). Kolmogorov hypotheses can

be used to quantify the required mesh resolution. The Kolmogorov length scale (η) is

related to the Reynolds number [12]
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η

L
=
uL

ν

−3
4

= Re
−3
4 , (5.1)

where L, u, and ν are the integral length scale, a typical velocity of the flow and

the kinematic viscosity, respectively. The grid size of ∆ η is required to clarify these

length scales, The demanding complexity of DNS increases as a result of the three-

dimensional nature of turbulent flows. For instance, the simulations of wind-driven

turbulent gas-liquid flows under breaking-waves conditions are performed with fixed

domain lengths and relatively high inertial range. This means high gas-phase free

stream velocity which results in the reduction of the dissipative scale that is the size of

the smallest structures. Considering a domain of dimensions (L3), the number of grid

points needed to resolve the flow

N =

(
L

∆

)3

= Re
9
4 , (5.2)

furthermore, the time step (∆t) considerably decreases with the reduction of the mesh

size which adds to the computational cost. Since the ratio of the largest to smallest

time scales shows
T

∆t
= Re

1
2 , (5.3)

where the term (T/∆t) represents the number of time steps necessary for the largest

eddies to pass the flow domain. In practice, more substantial amount of time steps are

required to allow for the large eddies to pass several times through the flow domain to

obtain meaningful turbulence statistics [177]. In addition to the demanding nature of

the three-dimensional simulations, the combination of the demanding requirements of

the mesh resolution and the time step limitation obviously show the need for parallel

computing.

5.2 Open MPI and Domain Decomposition

Domain decomposition was used to split the computational domain into the required

number of local subdomains for parallel computing. In the present implementation, the



5.3 Evaluation of the Parallel Performance 100

problem domain can be separated into local parts by one-dimensional partitioning to

three-dimensional partitioning depending on the spatial mesh size and the available

number of processors (5.1). This results in the suitable size of the data being commu-

nicated among various processors in a distributed memory architecture. The Message

Passing Interface (Open MPI) implementation [59] was employed for data communic-

ation among processors to be used on distributed memory computers. The physical

variables are defined as local arrays for each core. The parallel implementation de-

ploys the single instruction multi-data manner. This means the local data is assigned

for different processors and the sequence of computations is alike throughout various

processors, which leads to better computational load balancing.

Figure 5.1: Three-dimensional domain decomposition

5.3 Evaluation of the Parallel Performance

The performance tests were run on the supercomputer Raven Advanced Research

Computing at Cardiff University (ARCCA System-Raven). Raven system is a Bullx

b510, a Linux based cluster with 2048 cores (16 cores per node) based on Intel Xeon

e5-2670 2.6GHz. For the scaling tests, the three-dimensional gas-liquid two-phase

flows parallel code was run with a grid size of (2883; i.e., about 23887872 cells). Con-

sidering the availability of the system, the tests were carried out on 1, 32, 64, and 128

cores only. We attempted to run the test on 256 processors, however, after a queue
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Table 5.1: The performance of the parallel implementation

Nodes Cores Time S E PReff

1 1 3982.63 - - -

2 32 185.9 21.42 66.98 98.41

4 64 74.12 53.73 83.96 99.70

8 128 40.48 98.38 76.86 99.76

waiting time of more than two months, the code never started and was terminated by

ARCCA staff. Denoting the execution time with n processor by tn, the speedup (S)

due to the parallel computation

S =
tn1

tn2
, (5.4)

where n1 < n2.

The parallel efficiency (E) of n2 processors relative to n1 processors is

E = S
n1

n2
. (5.5)

The effective parallelization ratio PReff is then given by

PReff =
tn1 − tn2

n2−1
n2 tn1 − n1−1

n1 tn1
. (5.6)

The results of the parallel performance are given in table 5.1. An acceptable perform-

ance has been obtained. The speedup curve relative to the execution time using one

processor is presented in fig.5.2. Figure 5.3 shows the speedup curve relative to the

execution time on the 32 cores test.
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Figure 5.2: The speedup curve relative to the execution time one pro-

cessor.

Figure 5.3: The speedup curve relative to the execution time on the 2

nodes (32 cores) test.
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Table 5.2: The quantitative parameters used in the numerical simulation

of the static drop test .

Droplet

radius

Liquid

density

Air

density

Surface

tension

Gravitational

acceleration

cm g/cm3 g/cm3 dyne/cm cm/s2

1 1 0.001 1 0

5.4 Validations

We further validate the proposed VSIAM3 for gas-liquid two-phase flows including the

parallel implementation through equilibrium drop test, single rising bubble problem,

Kelvin-Helmholtz instability problem, turbulent channel flow, and simulation of wind

wave.

5.5 Equilibrium Drop

To further validate the proposed VSIAM3 including the parallel implementation, and to

inspect the performance of the surface force model and curvature calculation, as well

as, the pressure Poisson solver, a numerical simulation of static drop problem [16] was

carried out. In the test problem, the liquid is inviscid. The other quantitative parameters

of the test problem; the radius of the drop 1 cm, liquid density 1 g/cm3, air density

0.001 dyne/cm3, and the surface tension coefficient 1 dyne/cm. The gravitational

acceleration 0 cm/s2. The quantative parameters are given in table 5.2. A regular

Cartesian mesh of 40 × 40 × 40 cell is employed for the benchmark problem. The

velocity field of the numerical results is shown in fig.5.4. Figure 5.5 shows the pressure

solution of the static drop, where the analytic value of the pressure, P , can be obtained

by the force balance (PπR2 = 2πRσ), and, (P = 2σ/R), where σ is the surface tension

coefficient and R is the drop radius.



5.5 Equilibrium Drop 104

Figure 5.4: Spurious currents in the numerical simulation of the equilib-

rium drop.
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Figure 5.5: The pressure of the numerical result of the equilibrium drop.
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Table 5.3: The quantitative parameters used in the numerical simulation

of the rising bubble .

Volume Density Viscosity Surface tension Rise velocity Rer

mL kg/m3 Pa.s N/m m/s -

0.94 875.5 0.118e−5 0.032 0.215 9.8

5.6 Single Rising Bubble

To further validate the fluid flow solver, a three-dimensional numerical simulation of

single rising bubble has been carried out. This test problem has been used for val-

idating many two-phase flow codes (e.g. [158, 162, 180, 106, 36]). We compare the

numerical results with the experimental data of the spherical cap bubbles presented in

[75] for the case of Rer = 9.8, where Rer is Reynolds number based on bubble radius.

In the test problem, we used a Cartesian grid of 64×64×256 cells, and the domain di-

mensions are 3D×3D×12D, where D is the initial bubble diameter. The bubble volume

and the physical properties are given in table 5.3. Figure 5.6 displays snapshots of the

numerical result. While using high density and viscosity ratios, a comparable terminal

rise velocity of (Rer = 9.7) was obtained. A comparison between the numerical result

and the laboratory measured terminal rise velocity is plotted in fig.5.7.
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Figure 5.6: Snapshots of the numerical simulation of a single rising

bubble.
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Figure 5.7: A comparison between the numerical result of the bubble

rising velocity and the experimental result (0.215 m/s) [75].



5.7 Kelvin-Helmholtz Instability 107

5.7 Kelvin-Helmholtz Instability

The Kelvin-Helmholtz instability problem [21, 129, 137] was used to validate the fluid

flow solver further and also to validate the application of periodic boundary condi-

tions applied to the simulation of turbulent flows. Helmholtz in (1868) first recognized

the fundamental flow problem, but the mathematical formulation of instability was first

proposed and worked out by Kelvin in (1871); thus the name is the Kelvin-Helmholtz

instability [38]. Kelvin–Helmholtz instability can occur when velocity shear is present

within a continuous fluid or when there is sufficient velocity difference across the in-

terface between two fluids. We consider a problem of two fluids flow counter-currently

in a domain of size 1m × 1m × 0.5m in the x, y, and z directions, respectively. The

interface was given by a sinusoidal wave in the diagonal direction as shown in fig.5.8,

z = a sin

12π

√
5.0

3.0

 x+ y√
l2x + l2y

 , (5.7)

with a= 0.01m the wave amplitude, lx and ly are the longitudinal and the transverse

dimensions of the flow domain, respectively. The initial velocity field is then given by

u = U
lx√
l2x + l2y

, (5.8)

v = U
ly√
l2x + l2y

, (5.9)

w = 0.0, (5.10)

where U = 3.0 and −3.0 m/s for the lower and upper phases, respectively. Periodic

boundary conditions were applied in the longitudinal and transverse directions, while

the top and bottom of the flow domain were subjected to a slip boundary condition.

The number of mesh points is 100 × 100 × 50 in the x, y, and z direction, respectively.

Snapshots of the numerical result of the instability at various times are shown in figures
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5.9 and 5.10. Figure 5.11 shows top-view of the instability at time= 0.06 sec. As can

be seen, these figures cleanly depicts the evolution of the instability and validate the

periodic boundary conditions as can be seen in the corners of figures (5.9 - 5.11).

Figure 5.8: Initial configuration of the Kelvin-Helmholtz instability prob-

lem.

Figure 5.9: Snapshot of the numerical result of the Kelvin-Helmholtz in-

stability at time= 0.04 sec.
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Figure 5.10: Snapshot of the numerical result of the Kelvin-Helmholtz

instability at time= 0.06 sec.

Figure 5.11: Snapshot of the top-view of the instability at time= 0.06 sec



5.8 Numerical Simulation of Turbulent Channel Flow 110

5.8 Numerical Simulation of Turbulent Channel Flow

Turbulent channel flow case is considered to validate the proposed VSIAM3 solver fur-

ther and to attain a fully developed turbulent channel flow which can be used to initiate

various moments for the simulation of turbulent wind wave. A schematic representa-

tion of the flow domain is shown in fig. 5.12. A fully developed flow driven by constant

pressure gradient was considered. Assuming constant fluid properties and constant

pressure gradient in the flow direction (Fi = (F1, F2, F3) = (1, 0, 0)), the dimensionless

governing equations [88] can be written as

Figure 5.12: Schematic figure of the turbulent channel flow

∂ui
∂xi

= 0, (5.11)

∂ui
∂t

+
∂uiuj
∂xj

= − ∂P
∂xi

+
1

Reτ

∂2ui
∂xixj

+ Fi. (5.12)

The governing equations are scaled by the domain half height δ as the representative

length and the turbulent frictional velocity (uτ ) as the representative velocity. Where
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the velocity ui is scaled by uτ , P is the pressure normalized by ρu2
τ . Reτ = uτ δ

ν is

the Reynolds number based on the turbulent frictional velocity and the channel half

height. The fully developed turbulent channel flow is homogeneous in the streamwise

and spanwise directions [116], and periodic boundary conditions are used in these

directions. The top and bottom boundaries (z/δ = ±1) are subjected to non-slip and

non-penetration boundary conditions. The initial condition is given by a uniform flow

with disturbances generated by random number.

A case of (Reτ = 380) using a grid of (200×96×240) in the streamise (x), spanwise (y),

and vertical (z) directions, respectively, is considered. Table 5.4 gives the numerical

configurations for the case. The mesh sizes were chosen according to the mesh sizes

in the wall-bonded turbulent flows [132] (e.g., the nearest point to the wall is located

within z+ < 1 in wall units (zuτ/ν), and there are at least 10 points within z+ < 10.

Uniform meshes were used in the streamwise and spanwise directions while non-

uniform meshes are used in the vertical direction with

zk = δ
tanh(θk)

tanh(SF )
+ δ, (5.13)

for θk

θk =
SF (−1 + 2((k − 1)− 1)

Nz
, (5.14)

where k = 1, 2, . . . , Nz. HereNz is the number of grid points in the normal direction. SF

is a stretch factor. Grid resolutions in wall units are presented in table 5.5, where the

superscript (+) represents wall units, i.e., scaling by the ratio of the friction velocity and

the kinematic viscosity (uτν ). Here, a value of SF = 2.17 is considered and results in

the first mesh point away from the wall at z+ = 3.6×10−1 wall units, and the maximum

spacing (at the middle of the channel) is 6.95 wall units. Figure 5.13 shows the resulted

variable grid resolution in the normal direction. The numerical results are presented

in figures (5.14-5.18). The velocity and Reynolds stress results are normalized by

(uτ ) and (u2
τ ), respectively. The numerical results are compared with direct numerical
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Table 5.4: Simulation parameters for the channel numerical simulation

Reτ uτ (m/s) δ (m) ν (m2/s) Lx/δ Ly/δ Lz/δ Nx Ny Nz

380 0.2432 0.025 1.6×10−5 4 1.96 2 200 96 240

395 [116] - - - 6 3 2 256 192 193

simulation data described in Kim et. al [116, 117] where they used spectral method.

The parameters of these data are also described in Tables 5.4 and 5.5.

Figure 5.13: Non-uniform grid resolution in the vertical direction of the

computational domain.

The averaged numerical results (over time and space) were collected after attaining

stationary steady state conditions of the flow, where it exhibits no more change in

the mean axial velocity and the vertical Reynolds stress. In the following sections the

numerical results are presented as compared to the results of Kim et. al [116].
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Table 5.5: Grid resolutions in wall units for the channel numerical simu-

lation.

Reτ SF ∆x+ ∆y+ ∆z+
min ∆z+

max

380 2.17 7.5 7.5 3.6×10−1 6.95

395 [116] - 10.0 6.5 - 6.5

5.8.1 Mean Velocity Profile

The profile of the normalized mean streamwise velocity is shown in figure 5.14. The

mean value of the other velocity components is zero in the entire domain [132, 116].

Typical velocity distribution in wall-bonded turbulent flow is obtained in Fig.5.14, where

the mean velocity profile (ū vs. z/δ) is shown.
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Figure 5.14: The mean of the normalized velocity profile in global co-

ordinates..
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5.8.2 Profile of RMS of Velocity

Another feature of the turbulent channel flow are the components of the Reynolds

stress (turbulence intensities) describing the turbulent fluctuations. These are custom-

arily presented in root mean square value (urms, vrms, wrms). Figures 5.15-5.17 show

the distribution of the three components of the velocity plotted against z/δ. The peak

value of (urms) coincides with that of the (Reτ = 395) result. Away from the wall, the

root mean square velocity distributions is expected to scale with the outer variables,

rather than the wall units. As can be seen in figures 5.15-5.17.
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Figure 5.15: The root mean square of the normalized streamwise velocity,

urms/uτ .
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5.8.3 Turbulent Shear Stress

The negative value of the xz component which is referred to as the turbulent shear

stress is shown in fig.5.18. It is known that the total shear stress (τtot) (normalized by

ρu2
τ )

τtot = −Reuv +
1

Reτ

∂u

∂z
, (5.15)

varies linearly across the channel [132]. However, the viscous shear stress is only

effective in the viscous sub-layer close to the wall. Therefore, the distribution of the

turbulent shear stress can be anticipated to be linear in the outer region of the turbulent

flow as can be seen in fig.5.18. This also shows that the numerical simulation has

attained the statistically steady turbulent flow and the flow is fully developed [132].

The other components of the Reynolds stress tensor vary near zero.

In conclusion, in comparison to the results of Kim et. al [116], the presented numerical

results are reasonable.
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5.9 Summary

A parallel implementation of the three-dimensional code has been constructed using

C++ and Open MPI. The three-dimensional solver of fluid flow and heat transfer can

be executed on single node (serial) and on supercomputers of distributed memory

architecture as well. This can be done by using the domain decomposition based on

the required mesh size and the available number of nodes.

An evaluation of the parallel implementation was also conducted by large scale nu-

merical simulations for two-phase flow on supercomputers with distributed memory

architecture. A good speedup was obtained. The evaluation was carried out within the

available resources of high performance computing up to 128 processors on ARCCA-

Raven.

VSIAM3 was validated further through the equilibrium drop problem, single rising

bubble problem, Kelvin-Helmholtz instability, and turbulent channel flow. Based on

the conducted work the following remarks can be made

• In the equilibrium drop benchmark problem, the resulted velocity field shows very

small spurious currents. The pressure solution is also acceptable in comparison

with the exact solution.

• In comparison with the experimental observations, the numerical results of the

single rising bubble are acceptable. This shows the ability of the VSIAM3 and

CLSVOF numerical model in handling free surface motion up to high density and

viscosity ratios in gas-liquid two-phase flows.

• The results of the numerical simulation of Kelvin-Helmholtz instability shows the

ability of the numerical model for handling complex deformation of the gas-liquid

interface. Therefore, it can be anticipated that the numerical model can be ap-

plied to complex gas-liquid flows that involve highly deformable interface.

• Based on the numerical results obtained for the turbulent channel flow, accept-

able agreement with the results reported in the literature was obtained.
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In conclusion, a robust numerical framework suitable for numerical simulation of two-

phase gas-liquid flow has been constructed. The evident features of the numerical

model of the CLSVOF which utilises multi-moments and CIP-CSL scheme has been

shown. The later is one of the features of the multi-moment method, where an interpol-

ation function of suitable accuracy can be constructed without the constraint of using

longer stencil. This is a desirable feature in multi-phase numerical models, particularly,

in complex flows that involve highly deformable interface such as Kelvin-Helmholtz in-

stability. Furthermore, the extension of the numerical scheme of coupled Level-Set

and THINC/WLIC to three dimensions is straightforward. The numerical schemes can

deal with the complex free surface motion with surface tension. The employed surface

tension model can handle surface tension computation well.
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Chapter 6

VSIAM3 for Numerical Simulation

of Heat Transfer Problems

6.1 Introduction

A two-phase Rayleigh-Bénard problem has been the subject of many theoretical, ex-

perimental, and numerical studies. One can mention the importance of interfacial

convection in many important engineering applications such as microfluidics, material

processing, and crystal growth. The effect of the natural convection with an interface

is particularly significant under microgravity circumstances and on small scales [118].

Rayleigh-Benard Convection features different physical mechanisms and a variety of

instabilities [55].

Deformation of the interface is particularly of great significance under the microgravity

circumstances. The effect of a deformable interface is also essential in a rectangular

cavity [24]. The computation of the finite-amplitude interfacial convection in the de-

formable interface situations is a challenging numerical problem because the interface

layout is affected by the natural convective [119, 23].

When compared to the broadly examined single-layer cases, e.g., [32, 181], relat-

ively few studies have been accounted for two-phase interfacial convection. Some

numerical investigations of two-layer Rayleigh-Benard convection were carried out

[[98, 211, 109, 134, 84]. However, the state of the interface was assumed to be ri-

gid or flat in these studies.
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In this chapter, we validate VSIAM3 for heat transfer problems further through single-

phase and two-phase Rayleigh-Bénard convection.

6.2 Numerical Simulation of Rayleigh-Bénard Con-

vection

Rayleigh-Bénard convection is a type of flow that is only driven by density gradient

due to a temperature difference. The criterion for the Rayleigh-Bénard convection to

occur in a volume of fluid subjected to temperature difference between its top and

bottom boundaries is expressed in terms of the Rayleigh number, Ra = β∆Tgδ3

να , which

implies the ratio of the buoyancy and the viscous forces, Where ∆T is the temperature

difference, β is the thermal expansion coefficient, g is the acceleration due to gravity,

δ is the distance between the plates, ν is the kinematic viscosity, and α is the thermal

diffusivity. Natural convection will commence due to density gradient, and the viscous

forces oppose the resulted fluid motion.

There are many studies of this phenomenon. However, studies of two-phase Rayleigh-

Bénard convection with a deformable interface are rare [22, 63]. The present simula-

tion considers two horizontal layers of immiscible fluids confined between two iso-

thermal walls kept at different temperatures. Figure 6.1 shows the computational do-

main. The fluids are assumed compressible with the Boussinesq approximation. Adia-

batic boundary conditions are applied to the side walls. A non-slip velocity boundary

conditions are applied to all boundaries. The domain has aspect ratio AH = L
δ = 2.0,

and AW = W
δ = 1

2 with L and W being the domain length and width, respectively. The

important non-dimensional parameters of this problem defined based on the physical

properties of the lower layer are the Rayleigh number, Ra = β∆TgPr
ν2

, the capillary num-

ber , Ca =
ρνuref
σ = ρν

√
gβH∆T
σ , and B = β∆T , where ∆T = Th−Tc is the temperature

difference between the hot and the cold walls, and the Prandtl number is Pr = ν/α,

where α = κ/ρCp is the thermal diffusivity.
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Figure 6.1: Schematic figure of Rayleigh Bénard Convection

The local Nusselt number is calculated as

Nux|z=z0 = − δ

∆T

∂T

∂z
, (6.1)

and the average Nusselt number is defined as

Nuavg|z=z0 = − δ

L∆T

∫
∂T

∂z
dx. (6.2)

6.3 Numerical Simulation of Single-Phase Rayleigh-

Bénard Convection

In order to ensure that the heat transfer code is working properly in this test problem, a

numerical simulation of single-phase Rayleigh-Bénard convection in a cavity is carried

out and compared with the published literature [27, 135]. Here, we applied periodic

boundary conditions for the velocity and temperature to the axial and transverse dir-

ections of the domain as in [27]. Non-slip velocity boundary conditions are applied

to the top and bottom walls. Within the two-phase flow code, the physical properties

of the fluids are set to result in a practically single phase flow problem. The dimen-

sionless parameters are set as B = 0.066 and Pr = 0.707. A domain dimensions of

0.08.02×0.04 and grids of 160×40×80 was used in the axial x, spanwise y and vertical

z directions, respectively.
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The initial temperature distribution is linear as depicted in Fig. 6.2 and is given by

T = Tc +
∆T (1.0− z)

δ
, (6.3)

where Tc is the temperature of the top cold surface.

6.3.1 Numerical results

A comparison of the calculated average Nusselt numbers and those reported in the

literature [27, 135] is given in table 6.1. A convergence study were conducted for the

case of Ra = 10000.0. The calculated average Nusselt number for various mesh sizes

are shown in table 6.2. Using finer mesh size results in maximum change of 1.6% in

the calculated average Nusselt number.

6.3.2 TEC Formula in Heat Transfer Problems

Figure 6.3 shows the steady state temperature distribution (Ra = 10000.0). We ob-

served that, using TEC formula for the computation of the boundary value variables

causes numerical oscillation in this simulation problem. The numerical oscillations are

first generated in the boundary values and then affect the cell average values. On the

other hand, solving the diffusion and conduction terms for all the moments enhances

the stability and accuracy of the energy equation solver in the multi-moment method

as shown in Fig.6.4. However, in terms of numerical oscillation, the velocity field dis-

tribution does not show sensitiveness to the use of TEC formula as can be concluded

from figs. 6.5 and 6.6.
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Figure 6.2: Rayleigh Bénard convection. Initial temperature distribution.

Ra= 10000, Pr= 0.707.

Figure 6.3: Temperature distribution for single-phase Rayleigh Bénard

convection problem at t= 60.0 sec. TEC is employed for the boundary

values evolution. Ra= 10000, Pr= 0.707.
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Table 6.1: Comparison of calculated average Nusselt number with the

literature..

Ra 10.0× 103

Nuav

Clever et al. [27] 2.661

Prasianakis et al. [135] 2.644

Present simulation 2.656

Table 6.2: Convergence study of the average Nusselt number. Ra =

10000.0..

Mesh size 80× 20× 40 160× 40× 80 200× 50× 100

Nuav 2.6864 2.6559 2.6432

Figure 6.4: Temperature distribution for single-phase Rayleigh Bénard

convection problem at t= 60.0 sec. TEC is abandoned for the boundary

values evolution. Ra= 10000, Pr= 0.707.
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Figure 6.5: Velocity field for single-phase Rayleigh Bénard convection

problem at t= 60.0 sec. TEC is employed for the boundary values evolu-

tion. Ra= 10000, Pr= 0.707.

Figure 6.6: Velocity field for single-phase Rayleigh Bénard convection

problem at t= 60.0 sec. TEC is abandoned for the boundary values evolu-

tion. Ra= 10000, Pr= 0.707.
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6.4 Simulation of Two-Phase Rayleigh-Bénard Con-

vection

The non-dimensional parameters for the simulation of two-phase Rayleigh-Bénard

convection are set as Ra = 20000.0, Ca = 4× 10−4 B = 0.066, and B = 0.1. The ratio

of the physical properties of the lighter to the heavier fluid are Prr = 1.0, ρr = 0.33,

νr = 1.0, βr = 2.0, αr = 1.0. A domain dimensions of 0.04.01 × 0.02 and grids of

160×40×80 was used in the axial x, spanwise y and vertical z directions, respectively.

The initial temperature distribution is linear as shown in fig.6.7.

Figure 6.7: Two-phase Rayleigh Bénard convection. Initial temperature

distribution. Ra= 20000.

6.4.1 Numerical results

The calculated average Nusselt number at the hot boundary and cold boundary are

given in table 6.3 as compared to the results of Haghshenas et al. [63].

Figures 6.8 and 6.9 show the steady-state distribution of the temperature and velo-

city, respectively. A three-dimensional view of the numerical results of the flow and
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Table 6.3: Comparison of calculated average Nusselt number with the

literature..

Ra 20.0× 103

Nuhotwallav Nucoldwallav

Haghshenas et al. [63] 1.408 −

Present simulation 1.412 1.410

temperature fields are shown in figures 6.10 and 6.11. In fig. 6.9 the fluid motion in

the lower layer is weaker than that in the upper layer. This is because the heavier

fluid in the lower layer has higher density and lower thermal expansion coefficient than

those of the lighter fluid, while the Prandtl number ratio and the viscosity ratio are one.

The lower thermal expansion coefficient of the lower layer leads to a less buoyancy

force and the higher density results in slower temperature change. Therefore weaker

convection and fluid motion are expected. A slight upward bent can be noticed in the

interface due to the use of low B = 0.1 value.

Figure 6.8: Two-phase Rayleigh Bénard convection. Steady state temper-

ature distribution. Ra= 20000.
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Figure 6.9: Two-phase Rayleigh Bénard convection. Steady state velocity

distribution. Ra= 20000.

Figure 6.10: Rayleigh Bénard convection. 3D view of the steady state

temperature distribution. Ra= 20000.

6.5 Summary

We validated the VSIAM3 solver in the numerical simulation of heat transfer further

through the Rayleigh-Bénard convection in single-phase and two-phase problems.
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Figure 6.11: Rayleigh Bénard convection. 3D view of the steady state

velocity distribution. Ra= 20000.

The fluids are assumed compressible with the Boussinesq approximation. First, a

numerical simulation of single-phase Rayleigh Bénard convection was carried out to

ensure the validity of the solver by comparing the obtained Nusselt number with the

literature. Acceptable agreement was obtained. We observed that using TEC formula

for the computation of the boundary values of the temperature affects the robustness of

the energy equation solver and generates oscillations in the temperature field. These

oscillations are generated first in the boundary values of the numerical model and

then affect the cell average values. Therefore, we solve the diffusion/conduction terms

for all the variables of the multi-moment method. Based on that, the resulted solver

is robust and free of numerical oscillations. We also observed that solving the diffu-

sion/conduction terms for all the variables does not affect the computational efficiency

of the solver, and the computational time is almost the same as with using TEC for-

mula.

A two-phase Rayleigh-Binard convection problem was then considered. Consulting

the linear instability analysis of the problem [118], the solver produces the expected

velocity fields in both domains, where the fluid motion is induced by the evolution of

the temperature field. The resulted Nusselt number was compared with the result of a
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similar case in the literature [63]. The latter employed Lattice-Boltzmann method with

a grid resolution about double the resolution used in the present simulation. Good

agreement was obtained.

In conclusion, a robust VSIAM3 numerical model for heat transfer problems requires

solving the diffusion/conduction terms for all the variables rather than employing TEC

formula for the time evolution of the boundary values.
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Chapter 7

Summary and Recommendations

for Future Work

7.1 Summary

In summary, the following remarks can be pointed out :

• Gas-liquid two-phase flows are complex phenomena, and numerical simulation

is an essential tool for studying their dynamics and underlying mechanisms. Ef-

ficient numerical schemes are indispensable for this purpose. In this regard,

A C++ code library has been developed for the numerical simulation of three-

dimensional gas-liquid two-phase flows and heat transfer. The code is written

based on a framework of numerical methods namely; Volume/Surface Integrated

Average-Based Multi-Moment Method (VSIAM3) including Constrained Interpol-

ation Profile-Conservative semi-Lagrangian (CIPCSL) methods, Coupled-Level-

Set-and-Volume-of-Fluid (CLSVOF), and density scaled CSF model. VSIAM3

is a numerical method for compressible and incompressible flows based on the

multi-moment concept. VSIAM3 employs CIP-CSL schemes for solving the con-

servation equation. The CLSVOF is an interface capturing method that is well

suited for two-phase flows with surface tension. The density scaled CSF model

is used for the surface tension computation. The numerical schemes have been

shown to be robust in simulating complex two-phase flows with surface tension.
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• VSIAM3 and CIPCSL schemes are multi-moment methods. The multi-moment

concept has risen difficulties in the implementation of the numerical methods.

A comprehensive explanation of the numerical schemes has been presented in

the present work which clarifies multi-dimensional execution of VSIAM3.

• Discretisation strategies of the conservation equation in VSIAM3 have been

studied for an efficient implementation of VSIAM3 through the lid-driven cavity

flow, shock tube problems, two-dimensional expulsion test, and droplet splash-

ing. Discretisation techniques have been proposed for the velocity divergence

term which result from the solution of the conservation equation using CIP-CSL

schemes. It has been found that using a less oscillatory CIP-CSL scheme (i.e.,

CIP-CSLR, CIP-CSL3, etc.) with an appropriate formulation for the velocity di-

vergence term is critically important for robust implementation of VSIAM3. As

an optimal divergence term formulation, the mixed formulation has been sugges-

ted because it is highly robust for both incompressible and compressible flows

problems.

• A parallel implementation of the code has been developed by using Open MPI for

the three-dimensional numerical simulations of gas-liquid two-phase flows and

heat transfer so that the code can be executed in serial and on supercomputers

as well. The parallel performance was also evaluated, and good speedup has

been obtained.

• VSIAM3 has been validated further through three-dimensional simulations such

as equilibrium drop, single rising bubble, Kelvin-Helmholtz instability and turbu-

lent channel flow. We obtained Reasonable results.

• The developed VSIAM3 solver has also been validated for heat transfer prob-

lems through Rayleigh-Benard convection. Two cases have been considered;

single-phase and two-phase Rayleigh-Benard convection. It has been found

that using TEC formula for computing the boundary values of VSIA3 affects the

robustness of the numerical scheme. Therefore, a solution has been suggested

by solving the diffusion/conduction terms for all the moments in VSIAM3 instead



7.2 Recommendations for Future Work 133

of using TEC formula, which results in robust numerical simulations of single-

phase and two-phase Rayleigh-Benard convection.

7.2 Recommendations for Future Work

Based on the conclusions drawn from the present work the following recommendations

for future work can be suggested

• A more accurate CIP-CSL scheme can be constructed which takes into account

the features of both the (CIP-CSL2) and the (CIP-CSLR), namely the accuracy

of the former and the less oscillation featured by the latter while preserving the

robustness of the numerical framework.

• The use of mixed moments (i.e., cell averages and boundary values) of VSIAM3

in the discretization of the diffusion and conduction terms for each moment can

be investigated. We anticipate that this would more enhance the robustness and

accuracy of the solver.

• The optimisation experiments for the parallel execution of the solver indicated

that the pressure Poisson equation solver accounts for most of the computations

time and exert limitation to further enhance the speed up of the incompressible

flow solver. Thus, further numerical experiments are suggested, particularly, in

pre-conditioners.

• In addition to the previous point, a significant enhancement is expected when

using CUDA alongside OpenMPI, for both the pressure Poisson equation solver

and the cross-nodes communications of various moments used in VSIAM3.

• Complex phenomena can be investigated using the solver such as heat transfer

in wind-driven turbulence. An extensive study of Rayleigh-Benard convection

with the deformable interface can also be carried out.
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Appendix

Sod’s and Lax’s Problems by the

CIP-CSLR Method

Figure 1 shows numerical results of Sod and Lax problems by CIP-CSLR. CIP-CSLR

does not include a slope limiter so that numerical oscillations around shock cannot be

suppressed in VSIAM3.
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Figure 1: Numerical results of shock tube problems by CSLR-UPW. Plot-

ted are density profiles vs distance, (a) Sod problem and (b) Lax problem.

The dots show the density profile of numerical results. The line shows

the exact solution..
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