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Abstract  14 

Our understanding of North Atlantic Ocean variability within the coupled climate system is limited by 15 
the brevity of instrumental records and a deficiency of absolutely dated marine proxies. Here we 16 
demonstrate that a spatial network of marine stable oxygen isotope series derived from molluscan 17 
sclerochronologies (d18Oshell) can provide skillful annually resolved reconstructions of key components 18 
of North Atlantic Ocean variability with absolute dating precision. Analyses of the common d18Oshell 19 
variability, using principal component analyses (PCA), highlight strong connections with tropical North 20 
Atlantic and subpolar gyre (SPG) sea surface temperatures (SSTs) and sea surface salinity (SSS) in the 21 
North Atlantic Current (NAC) region. These analyses suggest that low frequency variability is 22 
dominated by the tropical Atlantic signal whilst decadal variability is dominated by variability in the 23 
SPG and salinity transport in the NAC.  Split calibration and verification statistics indicate that the 24 
composite series produced using the PCA can provide skillful quantitative reconstructions of tropical 25 
North Atlantic and SPG SSTs and NAC SSSs over the industrial period (1864-2000). The application of 26 
these techniques with extended individual d18Oshell series provide powerful baseline records of past 27 
North Atlantic variability into the unobserved pre-industrial period. Such records are essential for 28 
developing our understanding of natural climate variability in the North Atlantic Ocean and the role it 29 
plays in the wider climate system, especially on multi-decadal to centennial timescales, potentially 30 
enabling reduction of uncertainties in future climate predictions.  31 

 32 

 33 

 34 

 35 

 36 

 37 

 38 

 39 



2 
 

Main Text 40 

Our understanding of past North Atlantic circulation dynamics and the influence these changes have 41 
on the wider climate system are limited both by the short temporal and limited spatial distribution of 42 
marine observations, as well as by the large uncertainties typical of proxy reconstructions dated using 43 
radiocarbon-derived age models (typically ±100 years). Whilst sediment core records provide 44 
invaluable baseline records of past marine variability, their associated age model uncertainties 45 
preclude the analysis of multiple cores to resolve decadal or sub-decadal scale changes in the spatial 46 
patterns of marine variability. Spatial networking techniques  have facilitated the reconstruction of 47 
regional to hemispheric-scale modes (i.e., patterns) of atmospheric variability based on the analysis 48 
of suites of absolutely-dated, via band counting and crossdating, tree ring series (dendrochronologies; 49 
e.g. (Moberg et al., 2005, Wilson et al., 2016). The precisely-dated nature of the dendrochronologies, 50 
based on crossdating (Black et al., 2016), enables the assessment of the absolute timing of variability 51 
between these climate records constructed across broad geographical regions; local changes affecting 52 
single proxy records are “averaged out” allowing the common variability across the network to be 53 
identified (Wilson et al., 2010).  While such techniques have been extensively used in terrestrial 54 
paleoclimatology, the lack of absolutely-dated and annually-resolved marine climate records has 55 
precluded this approach being widely used in the marine environment. Currently, in the extra-tropical 56 
North Atlantic, investigations of marine proxy networks have been limited to the evaluation of low 57 
frequency (centennial) ocean variability (e.g. Cunningham et al., 2013, McGregor et al., 2015), with 58 
high frequency (decadal/sub-decadal) marine variability being derived through extrapolation of 59 
terrestrial proxy networks, largely dendrochronologies, on adjacent landmasses (e.g. Gray, 2004, 60 
Mann et al., 2009, Rahmstorf et al., 2015). It is important to note that the application of these 61 
terrestrial tree ring proxy networks to derive an ocean climate field reconstruction prevents the 62 
independent examination of the influence that marine variability has on, for example, Northern 63 
Hemispheric surface air temperatures (NHSAT), as the reconstructions of NHSAT incorporate the same 64 
tree ring records. 65 

Here we demonstrate the potential for utilizing a spatial network of precisely-dated marine molluscan 66 
stable oxygen isotope (δ18Oshell) series to reconstruct inter-annual to multi-decadal variability in the 67 
North Atlantic Ocean over the industrial era. Molluscan sclerochronologies, a marine counterpart to 68 
dendrochronologies, provide a basis for the direct application of spatial networking techniques given 69 
their absolutely-dated and annually-resolved nature. In recent years, absolutely-dated δ18Oshell records 70 
have been developed from sites located in Scotland (Reynolds et al., 2017a), Norway (Mette et al., 71 
2016), Iceland (Reynolds et al., 2016) and the Gulf of Maine (Wanamaker et al., 2008). These records, 72 
based on the δ18O analysis of carbonate samples derived from the crossdated annual growth 73 
increments of the long-lived bivalve molluscs Arctica islandica and Glycymeris glycymeris, each 74 
demonstrate significant sensitivity to broad scale North Atlantic Ocean variability. Whilst these four 75 
independent records represent a seemingly small marine proxy network relative to the abundance of 76 
records included in dendrochronological-derived spatial networks, observation-based analysis at the 77 
four sampling locations supports their value in reconstructing broad scale North Atlantic variability. 78 

This study therefore sets out to 1: investigate the potential of generating statistically significant 79 
composite series using principal component analysis (PCA) on multiple δ18Oshell series from the 80 
continental shelf seas of the North Atlantic; 2: investigate the sensitivity of the resulting composite 81 
series to broad scale variability in SSTs and SSSs in the North Atlantic Ocean; 3: quantitatively evaluate 82 
the skill of the composite series at reconstructing components of North Atlantic variability. Our proof 83 
of concept approach used here will enable future workers to apply similar statistical techniques as 84 
more sclerochronological records become available. 85 

 86 

Methodology 87 

Sampling locations and Individual d18Oshell series 88 
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In this study we utilize four independently constructed d18Oshell series derived from the annually-89 
resolved shell growth increments of the long-lived marine bivalve molluscs Arctica islandica and 90 
Glycymeris glycymeris (Supplementary Table 1). The four independent d18Oshell series were constructed 91 
by analyzing the oxygen isotope composition of annual growth increments from shell material that 92 
was collected from the shelf seas off the coasts of Scotland, Gulf of Maine (USA), North Iceland and 93 
North Norway (Figure 1 and Supplementary Table 1). The shells were collected from 6-80 m water 94 
depth. The individual d18Oshell series span a range of time intervals with the shortest spanning the 20th 95 
century (Norway; Mette et al., 2016) and the longest spanning the entirety of the last millennium 96 
(North Iceland; Reynolds et al., 2016). Preliminary analyses of the covariance between the four records 97 
was conducted using linear regression analyses over the record’s coeval period of 1900-2000. The 98 
significance of the regressions was tested using the Ebisuzaki Monte Carlo methodology to take 99 
account for auto-correlation contained in each of the time series (Ebisuzaki, 1997). The d18Oshell data 100 
from each series are shown in Supplementary Figure S1. 101 

 102 
Figure 1: A schematic of the North Atlantic Ocean surface currents (orange arrows) and the sampling 103 
localities (black circles) of stable oxygen isotope series used to construct the d18OPC1-S1-S3 composite. 104 
Ice = Iceland; Nor = Norway; Scot = Scotland; GOM = Gulf of Maine; NAC = North Atlantic Current; GS 105 
= Gulf Stream; EGC = East Greenland Current; WGC = West Greenland Current; ESC = European Slope 106 
Current; IC = Irminger Current; AC = Azores Current. Black boxes 1-3 denote the regions from which 107 
SST and SSS were obtained from the HadISST1 and EN4 SSS gridded data sets for the environmental 108 
analyses. Box 1 represents North Atlantic Current waters; box 2 broadly represents the North Atlantic 109 
subpolar gyre; and box 3 represents the tropical North Atlantic. Bathymetry data provided by Global 110 
Bathymetric Chart of the Oceans (GEBCO; https://www.gebco.net) plotted in GeoMapApp 111 
(www.geomapapp.org). Ocean circulation modified from Marzocchi et al. (2015). 112 

 113 

Spatial network construction and validation 114 

To extract the common variability recorded across the four individual d18Oshell series we used a nested 115 
PCA approach  (Wilson et al., 2010, Cunningham et al., 2013). To evaluate the possible influence of 116 
variable (non-stationary) coherence between the four locations that may occur in response to, for 117 
example, changes in atmospheric and/or ocean circulation patterns over the wider North Atlantic 118 
region, the PCA analyses were conducted using three differing strategies. Strategy 1 was a 119 
conventional nested PCA using the longest period of overlap between the four series (1900-2000) with 120 
the resulting principal component (PC) providing the primary nest. The shortest independent d18Oshell 121 
series (Norway) was then removed and the PCA repeated using the remaining three independent 122 
d18Oshell series for their coeval period. The resulting PC provided the secondary nest (1864-2000). The 123 
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interval of the secondary nest not represented in the primary nest (1864-1899) was then combined, 124 
with no overlap, to provide a final strategy 1 composite series (1864-2000). In strategy 2, the four 125 
independent d18Oshell series were split into three non-overlapping bins with periods spanning 1901-126 
1950, 1951-2000 (containing all four series) and 1864-1900 (containing the three longest series, i.e. 127 
Norway removed) respectively. PCA was then conducted on the three bins independently, generating 128 
PCs for each time period. The PCs from each bin were then combined with no period of overlap to 129 
create a final strategy 2 composite series that spans 1864-2000. In the last approach, Strategy 3, the 130 
four independent d18Oshell series were split into 30 year bins, with each bin overlapping by 20 years. 131 
The PCA was then conducted on each 30 year bin and the PCs combined by arithmetically averaging 132 
the overlapping years to create a final strategy 3 composite series that spans 1864-2000. Strategies 133 
two and three were adopted as they provided at least three bins across the 1864-2000 period with 134 
sufficient data to conduct the PCA (i.e. at least three independent d18Oshell series and ≥30 years 135 
duration). In each strategy a minimum of three independent d18Oshell series contributed to the resulting 136 
composite series throughout the 1864-2000 period. Eigenvalue and percentage variance statistics 137 
were used to evaluate the significance of the PCs produced across all nests using each PCA strategy. 138 
Nests that contained Eigenvalues <1 were omitted from the final composite series. The primary PCs 139 
extracted from the three PCA strategies are referred to hereafter as δ18OPC1-S1, δ18OPC1-S2 and δ18OPC1-S3 140 
respectively and collectively referred to as δ18OPC1-S1-3. The second PCs produced are referred to as 141 
δ18OPC2-S1 and δ18OPC2-S2 respectively. Due to a lack of significance (Eigenvalues <1) no tertiary PC’s were 142 
extracted using strategies 1 and 2 and no secondary or tertiary PC’s were extracted using strategy 3. 143 
PCAs were conducted using SBSS statistics v20 and PAST V3.18. Supplementary Figure S2 shows a 144 
schematic diagram representing the construction of each of the three strategies, the time interval 145 
represented by each of the nests and the respective d18Oshell series each nest contains. 146 

It is important to note that recalculating the PCA across multiple bins and then combining the resulting 147 
PCs (as in strategies 2 and 3) acts to remove the low frequency variability (effectively acting as a high 148 
pass filter) due to the data normalization required in the calculation of the PCA in each bin. As a result, 149 
the δ18OPC1-S2 and δ18OPC1-S3 series only contain variability on timescales <50 and <30 years respectively. 150 
Therefore, to assess the influence our binning strategy might have had on the resulting composite 151 
series, the PCA was repeated, using strategy 1, but based on independent d18Oshell data initially treated 152 
using a range of first order loess high pass filter ranging between 10 to 200 years respectively. The 153 
resulting composite records generated, which each span the 1900-2000 interval and contain all four 154 
individual d18Oshell records, are referred to as d18OPC1-F. 155 

Evaluating the influence of the number of proxy series in the spatial network 156 

Given the relatively low number of independent d18Oshell series utilized it is important to assess the 157 
sensitivity of the composite δ18OPC1-S1-3 series to potential biases associated with an individual d18Oshell 158 
series. To do this, the strategy 1 PCA was repeated with the omission of one individual d18Oshell series 159 
(Supplementary Table 3). The PCA was replicated an additional four times, each time omitting a 160 
different independent d18Oshell series, but always containing at least three d18Oshell series. In total this 161 
approach generated five primary PCs, one containing all four independent d18Oshell series and four 162 
composites containing three independent d18Oshell series, each spanning the interval from 1900-2000. 163 
The PCA statistics and linear regression analyses, evaluated using the Ebisuzaki Monte Carlo 164 
methodology,  conducted between each of the primary PCs, were then used to evaluate the relative 165 
influence of the independent d18Oshell series on the δ18OPC1-S1 series (Supplementary Figure S3 and 166 
Supplementary Table 3). 167 

The d18OPC1-S1-3 series were compared with pseudo primary PCs derived using PCA on the gridded SST, 168 
SSS data products and the predicted d18O composition of aragonite (d18Osyn) at each of the four 169 
locations for the period 1900-2000. The PCA was conducted using SST (HadISST1; Rayner et al., 2003)  170 
and SSS (EN4 SSS; Good et al., 2013) data derived from 2x2o grid boxes from each of the four sampling 171 
locations and the primary  PCs extracted (referred to hereafter as SSTPC1 and SSSPC1 (Figure 3 and 172 
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Supplementary Figure S6). Whilst there are uncertainties associated with gridded data products, 173 
associated with the reduced number of observations during the early half of the 20th century 174 
(Supplementary Figure S4), these pseudo data still provide a useful test of the skill of the composite 175 
series at capturing the long-term variability in the North Atlantic system. Replication of these analyses 176 
using different gridded data products (e.g. ER SST V3 (Smith et al., 2008), ICOADs (Freeman et al., 177 
2017) and HadSST3 (Kennedy et al., 2011) suggests the results are consistent regardless of the data 178 
product used (Supplementary Figure S5). The d18Osyn data were generated using the Grossman and Ku 179 
(1986) aragonite palaeotemperature equation coupled with the local salinity mixing line equations at 180 
each of the four sites (Smith et al., 2005, Cage and Austin, 2010, Mette et al., 2016, Whitney et al., 181 
2017) to convert from local SST and SSS data to d18Osyn. PCA was then conducted, using all three 182 
strategies, on the four independent d18Osyn records to derive the d18Osyn-PC1-S1-3 composite records. 183 
These instrumental composites (SSTPC1, SSSPC1 and d18Osyn-PC1-s1-3), spanning 1900-2000, were correlated 184 
against the coeval d18OPC1-S1-3 series, and the significance tested using the Ebisuzaki Monte Carlo 185 
methodology, to evaluate the relative influence of SST and SSS on the d18OPC1-S1 series.  186 

As the bivalve molluscs lived (and recorded environmental conditions) at their collection water depths 187 
between 6-80 m water, an additional suite of composite series was generated to assess any potential 188 
differences in the comparison with observational sea surface parameters. As no instrumental 189 
measurements of bottom water temperature (or salinity) data are available at the four sampling  190 
locations, we conducted the PCA, using all three strategies, based on modelled bottom water 191 
temperatures at each site. The bottom water temperature data were obtained from an adaption of a 192 
1D physical-biogeochemical model S2P3-R (v1.0) (Marsh et al., 2015) driven by National Centre for 193 
Environmental Prediction meteorology (http://www.ncep.noaa.gov/) and Oregon Tidal Prediction 194 
Software  (http://volkov.oce.orst.edu/tides/otps.html) using bathymetry derived from the ETOP01  195 
Earth topography model (https://www.ngdc.noaa.gov/mgg/global).  The resulting PCs were 196 
correlated against the respective d18OPC1-s1-3 series and the significance of the correlations tested 197 
(Figure 3). Bottom water salinity was not included in this analysis. 198 

Finally, given the shallow depth and habitat restriction to continental shelf seas of the long-lived 199 
marine bivalves used in our reconstructions, we examine the potential influence of including only a 200 
limited number of d18Oshell series from such regions in our spatial network. We constructed a purely 201 
’hypothetical’ spatial network using SST data derived from up to 25 independent 5ox5o grid boxes in 202 
the HadISST1 dataset from across the North Atlantic region (Supplementary Figure S9). Sites included 203 
in the hypothetical proxy network were 1) constrained to the continental margins (14 sites), to 204 
simulate the inclusion of additional sclerochronological records that can only be constructed in shelf 205 
sea locations, and 2) across the entire North Atlantic Ocean (25 sites; Supplementary Figure S9), to 206 
simulate a multi-proxy approach that could include the addition of high-resolution sediment core 207 
records. The resulting hypothetical composites were then correlated against mean North Atlantic SSTs 208 
over the 20th century to evaluate whether increasing the spatial coverage (and number) of records 209 
significantly improved the skill of the resulting network. Only SST data were used for these analyses 210 
due to a lack of salinity mixing line equations from across the entire study area. As no proxy is a perfect 211 
record of SST, clearly using instrumental data to simulate these theoretical reconstructions will likely 212 
lead to an overestimate of the absolute skill of the resulting composite series. However, these analyses 213 
do provide an indication of whether increasing the number of proxy series would result in an overall 214 
increase in skill of the resulting network. 215 

 216 

Environmental analyses and reconstruction skill 217 

To evaluate the sensitivity of the proxy and instrumental based composite series to North Atlantic 218 
marine variability, the d18OPC1-S1-3¸ d18OPC2-S1-2, SSTPC1, SSSPC1 and d18Osyn_PC1 series were correlated 219 
against gridded SST (HadISST1; Rayner et al., 2003) and SSS (EN4 SSS; Good et al., 2013) datasets over 220 
the North Atlantic region using point correlation analyses. The point correlations were conducted 221 
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using both raw (un-detrended) and linear detrended annually averaged data over the 20th century 222 
using the KNMI Climate Explorer (Figure 4; Trouet and Van Oldenborgh, 2013). To provide a 223 
quantitative assessment of the identified spatial sensitivities, monthly SST and SSS data were obtained 224 
from the HadISST1 and EN4 SSS datasets for the tropical North Atlantic (0-40oN by 0-80oW), subpolar 225 
gyre (SPG; 50-60oN by 20-60oW) regions and between northern Scotland and the Faroe Isles (57-67oN 226 
by 0-10oW) to broadly reflect the northern trajectory of the NAC. Linear regression analyses were then 227 
performed between the composite series and the mean monthly, annual mean and seasonal mean 228 
SSTs and SSSs over the three regions (tropical North Atlantic, SPG and NAC; Figure 5 and 229 
Supplementary Figure S7). 230 

A split calibration and verification statistical approach was used to calibrate the d18OPC1-S1-3 231 
and d18OPC2-S1-2 series against the target SST and SSS timeseries and to evaluate the level of skill the 232 
calibrated timeseries has in reconstructing the target parameter (North, 2000). The calibration was 233 
generated using linear regression analyses between the d18OPC1-S1-3 and d18OPC2-S1-2 series and the target 234 
parameters, tropical North Atlantic SSTs [HadISST1], SPG SSTs [HadISST1] and NAC SSSs [EN4 SSS],  235 
over the period containing the strongest correlation (either 1900-1949 or 1950-2000 respectively). 236 
The portion of the gridded data not used for the calibration therefore remained independent and was 237 
used to verify and estimate the skill of the final reconstruction. The calibration was then applied to 238 
convert the full length d18OPC1-S1-3 and d18OPC2-S1-2 series to SSTs and SSSs. Whilst gridded data products 239 
spanning the early half of the 20th century contain increased uncertainty, these data still provide a 240 
useful indication of the ability of the calibrated reconstruction to track the long-term changes in SST 241 
and SSS variability over this region. Mean squared errors (MSE) were calculated between the 242 
calibrated d18OPC1-S1-3 series and the target parameters over both the calibration and verification 243 
periods, and reduction of error (RE) and coefficient of efficiency (CE) statistics calculated using the 244 
Ebisuzaki Monte Carlo methodology (Macias-Fauria et al., 2012). The calibration and verification 245 
statistics were estimated using the ReconStats package in Matlab R2015a (Macias-Fauria et al., 2012).  246 

Multiple linear regression analyses were used to examine the total percentage variance that the SPG 247 
and tropical North Atlantic SST explain in the d18OPC1-S1 series. These analyses were conducted using R 248 
V3.4.1.    249 

Assessing the sensitivity to North Atlantic circulation dynamics 250 

As the d18OPC1-S1-3 and d18OPC2-1 series do not overlap with the RAPID observational record of North 251 
Atlantic transport at 26.5oN (Smeed et al., 2016), and only by a few years with the SPG index (Hatun 252 
et al., 2005), it is not possible to directly evaluate the covariance between direct measurements of 253 
North Atlantic circulation dynamics and the d18OPC1-S1-3/ d18OPC2-S1 series. We therefore analyzed the 254 
d18OPC1-S1-3 and d18OPC2-1 series against a tide-gauge based reconstruction of European Slope Current 255 
strength (ESC annual index, Marsh et al., 2017). The strength of the ESC is associated with both Ekman 256 
transport and seawater density gradients (Huthnance, 1984) and is positively linked with both changes 257 
in SPG and Atlantic Meridional Overturning Circulation (AMOC) strength (Marsh et al., 2017). The 258 
d18OPC1-S1-3 and d18OPC2-1 series were correlated against the ESC annual index using linear regression 259 
analyses over the interval from 1957-2000. These analyses were conducted using linear detrended 260 
data to remove the influence of long-term atmospheric warming not associated with changes in ESC 261 
strength.   262 

To evaluate the influence of atmospheric circulation patterns on driving the variability in the proxy 263 
composite series, the proxy composite series were correlated against gridded sea level pressure (SLP 264 
(Trenberth and Paolino, 1980) and zonal wind stress datasets (20th century reanalysis V2 data acquired 265 
from the NOAA/OAR/ESRL PSD available at www.esrl.noaa.gov/psd/) over the 20th century. The 266 
correlations were calculated using the KNMI Climate Explorer Facility (Supplementary Figure 10). 267 

 268 

Results and Discussion 269 
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Spatial network construction  270 

Despite the large distances between each of the sampling locations significant, albeit weak, Pearson 271 
correlations were identified between the four independent δ18Oshell series (e.g., R=0.30 P<0.1; and 272 
R=0.37 P<0.05 calculated between the Scottish and Gulf of Maine series and between the Iceland and 273 
the Gulf of Maine δ18Oshell series; Supplementary Figure S1 and Supplementary Table 2). Despite the 274 
relatively weak correlations identified between the four independent δ18Oshell series, the nested PCA 275 
resulted in the generation of significant (Eigenvalues >1) primary PCs using all three PCA strategies for 276 
the full period of 1864-2000 and the generation of significant secondary PCs using strategies 1 and 2 277 
(Figure 2). The d18OPC2-S1-2 series were only significant over the period represented by all four individual 278 
δ18Oshell series (1900-2000). Comparison of the replicated proxy composite series generated using PCA 279 
of different combinations of three out of the four  independent δ18Oshell series identified significant 280 
correlations between the resulting PCs (R=0.74-0.97; Supplementary Table S3 and supplementary 281 
Figure S3) and consistently high eigenvalues (1.41-1.73) and percentage variance statistics (43.6-282 
55.1%). This result implies that there is no strong bias in the resulting composite series towards any 283 
of the four independent δ18Oshell series. The identification of coherence between the four independent 284 
d18Oshell series, and generation of significant PCs (i.e. composite series), despite the large distances 285 
between the four locations, suggests a suite of common environmental mechanisms are likely driving 286 
variability across the four sampling localities (Cunningham et al., 2013, Wilson et al., 2016). Such a 287 
result is perhaps not surprising given the previously identified connectivity of the hydrographic 288 
settings of the four sampling locations to wider North Atlantic Ocean variability (Wanamaker et al., 289 
2008, Wanamaker et al., 2011, Mette et al., 2016, Reynolds et al., 2016, Reynolds et al., 2017a).  290 

The application of the PCA, using all three strategies, on the instrumental SST, SSS, δ18Osyn data and 291 
model derived bottom water temperature data generated PCs with significant eigenvalues (>1). 292 
However, whilst the PCA of the δ18Osyn data generated a robust PC1, using strategy 1, the eigenvalues 293 
for PC2 were <1 and therefore the δ18Osyn-PC2 data were not utilized in any further analyses. Linear 294 
regression analyses identified significant coherence between the δ18OPC1-S1 series and the composites 295 
generated using instrumental SST and δ18Osyn (SSTPC1 R=-0.50, P<0.05 and δ18Osyn-PC1 R=0.55, P<0.05; 296 
calculated over the 20th century; Supplementary Figure S6). No significant correlation was identified 297 
between the δ18OPC1-S1 series and the composite derived using SSS across the four sampling locations 298 
(SSSPC1 R=-0.37 P=0.18; Supplementary Figure S6).  These results suggest that SST variability at the 299 
sampling locations dominates the variability in the δ18OPC1-3 series. However, taking both SST and SSS 300 
variability into account (using the δ18Osyn-PC1 record) leads to a marginal improvement of the sensitivity 301 
of the proxy composite series to environmental variability.  302 

The comparison of the proxy derived composites (δ18OPC1-S1-3) against the δ18Osyn and model derived 303 
composites highlights that the proxy composite series are, with the exception of the d18OPC1-S3 and 304 
d18Osyn-S3 series, significantly coherent (P<0.1) with the variability contained in the instrumental and 305 
model based composite series (Figure 3). Whilst the d18OPC1-S3 and d18Osyn-S3 series exhibit no significant 306 
coherence, the d18OPC1-S3 series and corresponding model derived composite series do significantly 307 
correlate (R-=0.40 P<0.05; Figure 3). Given that the Eigenvalue and percentage variance statistics for 308 
these series are significant, it is unlikely that the resulting composite series contain significant non-309 
environmentally driven variability. We therefore suggest that the lack of coherence between the 310 
d18OPC1-S3 and d18Osyn-S3 series stems from differences in temperature and salinity variability between 311 
sea surface and bottom water conditions at the sampling sites. Whilst the gridded data products used 312 
to generate the pseudo proxy network are a measure of surface water conditions, the shells used to 313 
generate the proxy network were collected at a range of water depths between 6-80m. Comparison 314 
of the proxy derived composite d18OPC1-S1-3 series with composites derived utilizing modelled bottom 315 
water temperature data supports this hypothesis, with significant coherence found between the proxy 316 
and model derived composites generated using all three strategies (Figure 3). These results strongly 317 
support the conclusions of recent marine proxy and pseudo-proxy based studies in the Northeast 318 
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Atlantic (Pyrina et al., 2017, Reynolds et al., 2017b) and the North Pacific (Black, 2009, Black et al., 319 
2014) that multiple sclerochronological records can be used as part of a spatial network approach to 320 
investigate past marine variability.  321 

Variability contained in the d18OPC1-S1 series is dominated by a gradual increase in δ18O over the period 322 
from 1864 to ca. 1900 and a significant linear decrease in δ18O over the 20th century (R=-0.74, P<0.001). 323 
The d18OPC1-S2-3 and d18OPC2-S1-2 series are dominated by multi-decadal scale variability and contain no 324 
significant long-term trends. In the case of the d18OPC1-S2-3 series such a result is to be expected as the 325 
PCA strategies employed broadly act as 50- and 30-year high pass filters respectively.  326 

 327 

 328 
Figure 2: Comparison between PCs generated using the three strategies for conducting the PCA and 329 
relative weighting of the isotope series on the PC. A-E) The nested principal component outputs of the 330 
PCA using strategies 1 to 3 respectively. F-J) the relative weighting of the four independent d18Oshell 331 
series in each of the principal components. The red line represents the Scottish d18Oshell series, the 332 
orange represents the Norwegian d18Oshell series, the black line represents the Gulf of Maine d18Oshell 333 
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series and the blue line the d18Oshell series from North Iceland. K-O) and P-T) show the Eigenvalue and 334 
percentage variance statistics for each of the d18OPC1-S1-3 and d18OPC2-S1-2 respectively. 335 

 336 
Figure 3: Comparison between the d18OPC-S1-3 series (red lines), d18Osyn-PC1-S1-3 (black lines) and model 337 
(blue lines) derived composite series generated using the three PCA strategies. The corresponding 338 
correlation coefficients, and Monte Carlo derived probabilities, calculated between the proxy 339 
composites against the pseudo proxy and model derived composites are provided in blue and black 340 
text respectively. Correlations are calculated using the annually resolved data. No d18Osyn-PC2-S1 series 341 
is plotted in panel C as the eigenvalues for this series are not significant (<1). Peak correlations 342 
between the d18OPC-S1-3 series and d18Osyn-S1-S3 were obtained with zero year lag. However, peak 343 
correlations between the d18OPC1S-3 series and Modelled data were obtained with the modelled data 344 
lagging the proxy composite by four to six years. 345 

 346 

Environmental analyses and reconstruction skill 347 

A range of significant relationships were identified using point correlation analyses between the proxy-348 
based composites and gridded SST (HadISST1) and SSS (EN4 SSS) datasets across the North Atlantic 349 
region over the 20th century (Figure 4). In particular, the δ18OPC1-S1 series contains significant coherence 350 
(P<0.1) with mean annual SSTs across the tropical North Atlantic from 0-40oN across the entire width 351 
of the North Atlantic basin and between variability contained in the δ18OPC1-F series, δ18OPC1-S2-3 and 352 
δ18OPC2-S1 series and variability in mean summer SSTs across regions of the North Atlantic broadly 353 
corresponding with the SPG (Figure 4 O, P and L). Quantitative examination of the point correlations, 354 
using linear regression analysis, show peak correlation between the d18O-PC1-S1 series and mean annual 355 
tropical Atlantic SSTs (R=-0.64 P<0.05; Figure 5) and between the δ18OPC1-F, δ18OPC1-S2-3 and δ18OPC2-S1 356 
series and mean summer SPG SSTs (R=-0.31, -0.34 and -0.39 respectively, P<0.05; Figures 4 and 5). 357 
The point correlations identified between the proxy based composite series and HadISSt1 data are 358 
consistent with the relationship observed between the d18Osyn based composites and the HadISST data 359 
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(Figure 4A). The strong coherence between the spatial distribution, and sign, of the point correlations 360 
calculated between the d18OPC1-S1 and d18Osyn-PC1 series when correlated against gridded SST and SSS 361 
products (Figure 4) demonstrates that the variability extracted by the nested PCA and its sensitivity to 362 
basin-scale ocean dynamics is reproducible and, over the observational instrumental period, 363 
predictable using independent instrumental based records.  364 

Examination of the point correlations generated between the d18OPC1-S1-3 and d18OPC1-F (generated by 365 
high pass filtering the individual d18Oshell series; Figure 4 and Supplementary Figure S8) suggests 366 
differences in the spatial sensitivity of the proxy-based composites depending upon the timescale of 367 
variability contained in the composite series. For example, variability contained in the d18OPC1-S1 series, 368 
that incorporates both high and low frequency variability, contains a strong coherence with variability 369 
in the tropical North Atlantic. However, the d18OPC1-S2-3 and d18OPC1-F, that contain only sub-centennial 370 
scale variability, exhibit the strongest correlations with SST variability over the SPG region of the North 371 
Atlantic (Supplementary Figure S8). Given that both the d18OPC1-S2-3 and d18OPC1-F series exhibit similar 372 
sensitivity to SPG SSTs suggests that the coherence is associated with the timescale of variability 373 
contained in the records and not associated with the methodologies used to generate the composite 374 
series. These analyses also highlight significant correlations with between the δ18OPC1-F composites and 375 
tropical Atlantic SSTs, however the correlations are weaker in nature than those identified in the 376 
analysis using the δ18OPC1-S1 series. These analyses therefore suggest that the coherence between the 377 
δ18OPC1-S1 and tropical North Atlantic SSTs is likely associated with longer timescale (centennial) 378 
variability, whilst the high frequency (sub-centennial) variability in the proxy composites is associated 379 
with SPG variability. This interpretation is supported by the examination of multiple linear regression 380 
analyses that highlights that SPG and tropical Atlantic SST variability can explain 41% (P<0.001) of the 381 
variability in the δ18OPC1-S1 series. However, multiple linear regression analyses indicate that sub-382 
centennial SPG and centennial tropical Atlantic SST variability can explain 61% of the variability in the 383 
δ18OPC1-S1 series.  384 

In addition to the strong coherence with SST variability, the point correlation analyses also identified 385 
significant coherence between the proxy based composite series and SSS variability (EN4 SSS) over the 386 
Norwegian Sea and along the coast of Nova Scotia respectively (Figure 4). The point correlations 387 
identified significant correlations (P<0.1) between the δ18OPC1-S2 and δ18OPC2-S1 series when correlated 388 
against mean winter SSS variability over the region of the North Atlantic between the northern British 389 
Isles and Iceland and across the Norwegian Sea (Figure 4K-L). Linear regression analyses between the 390 
δ18OPC1-S2 and δ18OPC2-S1 series and SSS data obtained from this region (57-67oN by 0-10oW) highlight 391 
the significant nature of the coherence between the δ18OPC1-S2 and δ18OPC2-S1 series and mean winter 392 
NAC SSS (R=0.40 and 0.42 respectively P<0.05; Figures 4 and 5).  393 

 394 
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 395 
Figure 4: Point correlations calculated between the gridded SSTs (HadISST1 [panels A-F]) and SSSs (EN4 396 
SSS [panels G-L]) correlated against A,G) the d18Osyn series; B,H) the d18OPC1-S1 series; C,I) the 100-year 397 
first order loess high pass filtered d18OPC1-S1 series; D,J) the d18OPC1-S3 series; E,K) the d18OPC2-S1 series; 398 
and F,L) the d18OPC1-S2 series. Point correlations calculated using annual resolution data over the entire 399 
20th century and are significant at P<0.1 level. The correlations were conducted using KNMI Climate 400 
Explorer (https://climexp.knmi.nl/). 401 
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 402 
Figure 5: Comparison of the temporal and spatial sensitivity of the d18OPC1-S1-S3 and d18OPC2-S1 series 403 
against North Atlantic SSTs and SSS. A) The inverted d18OPC1-S1 (red line) and d18Osyn-PC1 (black line) 404 
series. B) Tropical North Atlantic SST anomalies (black) plotted with the d18OPC1-S1 series (red line); C-405 
D) SST anomalies from the SPG (black lines) plotted with the inverted C) detrended d18OPC1-S1 and D) 406 
the d18OPC1-S3 series respectively (red lines). E-F) SSS anomalies from the NAC (blue lines) plotted with 407 
E) the d18OPC2-S1 and F) the d18OPC1-S2 series. The instrumental data plotted in panels B-F are calculated 408 
as the mean SST/SSS of the data derived from the HadISST1 and EN4 SSS datasets over the areas 409 
highlighted by the black box inserts in Figure 4 panels B-D, K and L respectively. 410 

 411 

The correlations between the hypothetical proxy network, constructed using different numbers of 412 
theoretical proxy records (based on observational SST data) from the continental margins and across 413 
the North Atlantic Ocean, against mean North Atlantic SSTs indicates that increasing the number of 414 
proxy records would increase the sensitivity of the resulting composite series to wider North Atlantic 415 
SSTs. The correlation increases from R=0.68 (P<0.001), when using the SSTPC1 series generated using 416 
the four sampling location used in this study, up to R=0.81 (P<0.001) when using 14 shelf sea sampling 417 
locations. The correlation increases further to R=0.93 (P<0.001) if these 14 shelf sea records could be 418 
integrated with records from the central North Atlantic region. As no proxy record has absolute skill 419 
at reconstructing local SSTs these values are an overestimate of the likely ability of the proxy-based 420 
network to reconstruct North Atlantic North Atlantic SSTs. However, whilst the precise degree of 421 
coherence may vary, these analyses do demonstrate that increasing the number of independent shelf 422 
sea sclerochronological records included in our network would be beneficial and enhance our ability 423 
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to skillfully reconstruct open ocean variability. At present there are no annually resolved surface ocean 424 
proxy records available from the central North Atlantic Ocean that could be included in the network, 425 
but there are numerous high-resolution sediment core proxy records that could potentially be utilized.  426 
Whilst integrating mixed archive proxy records with variable age and proxy uncertainties would 427 
inherently add complexity to the construction of a spatial network (Cunningham et al., 2013; 428 
McGregor et al., 2015), our hypothetical considerations suggest integrating records from this region 429 
would potentially increase the ability of the network to reconstruct past central North Atlantic Ocean 430 
variability, especially at decadal to multidecadal timescales. 431 

The split calibration-verification methodology quantitatively evaluated the skill of each of the proxy 432 
composite series at reconstructing the selected target parameter. The resulting RE and CE statistics 433 
were positive for each of the proxy-based reconstructions of the respective target parameters (Table 434 
1). The RE and CE statistics are significant if greater than zero indicating that the corresponding 435 
reconstructions contain significant skill at reconstructing the target parameters. These results indicate 436 
that the calibrated δ18OPC1-S1 series provides a skillful reconstruction of tropical North Atlantic SSTs, the 437 
δ18OPC1-S2 series skillful reconstructions of NAC SSTs and SPG SSTs, the δ18OPC1-S2 series skillful 438 
reconstructions of mean summer SPG SSTs and the d18OPC2-S1 series a skillful reconstruction of winter 439 
NAC SSTs (Figure 6).  440 

 441 

Table 1: Calibration and verification statistics calculated between the d18OPC1-S1-3 and d18OPC2-S1 series 442 
and North Atlantic SSTs and SSS. The correlation statistics are calculated over the entire 20th century. 443 
The correlation confidents, reduction of error (RE) and coefficient of efficiency (CE) statistics are 444 
calculated using Ebisuzaki Monte Carlo methodology using 1000 reanalyzes. The RE and CE statistics 445 
are significant if ≥0.  All correlations shown in the table are significant at a level of P<0.05. 446 

 447 

Proxy Target parameter R R2 RE CE 

d18OPC1-S1  Annual Tropical Atlantic SSTs -0.64 0.41 0.52 0.14 

d18OPC1-S1 detrended  Summer SPG SSTs -0.39 0.15 0.08 0.08 

d18OPC1-S3  Summer SPG SSTs -0.34 0.12 0.12 0.12 

d18OPC1-S2  Summer SPG SSTs -0.31 0.10 0.08 0.07 

d18OPC2-S1  Winter NAC SSS 0.42 0.18 0.12 0.11 

d18OPC1-S2  Winter NAC SSS 0.40 0.16 0.18 0.17 

 448 
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 449 
Figure 6: A-B) Reconstructed (red line) and observed (black line) tropical North Atlantic SSTs 450 
respectively. C-D) Reconstructed (red line) and observed SPG SSTs respectively. E-F) Reconstructed 451 
(blue line) and observed (black line) winter SSS in the NAC. The shaded red and blue areas around 452 
plots A, C and E represent the two times MSE uncertainty envelope. 453 

 454 

Sensitivity to ocean and atmospheric circulation 455 

The identification of significant correlations between the δ18OPC1-S1-3 series and tropical North Atlantic 456 
SSTs, SPG SSTs and NAC SSSs highlights the significance of the interplay between the tropical and 457 
subpolar North Atlantic dynamics in modulating environmental variability across the continental shelf 458 
seas of the North Atlantic Ocean. Given the time it takes for signals to propagate northwards through 459 
the surface ocean from the equatorial Atlantic to the subpolar latitudes (Getzlaff et al., 2005), these 460 
results suggest that both marine and atmospheric circulation patterns are playing a role in driving the 461 
common variability across the four independent d18Oshell series.  462 

 463 
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 464 
Figure 7: A) Comparison between the d18OPC1-S3 series (red line and shaded red envelope) and the 465 
Marsh et al., (2017) ESC annual index (black line) and the Hatun et al., (2005) SPG index (blue line). B) 466 
Mean annual SPG HadISST1 SSTs (black line) with years containing SSTs greater than the mean shaded 467 
in black.  468 

 469 

The linear regression analyses between the linear detrended δ18OPC1-S1-S3 series and the ESC annual 470 
index (Marsh et al., 2017) identified a range of correlations (δ18OPC1-S1 R=-0.14, P>0.1; δ18OPC1-S2 R=-471 
0.30, P=0.06; δ18OPC1-S3 R>-0.1 P>0.1). Examination of the correlations between the linear detrended 472 
five year first order loess low pass filtered linear detrended series demonstrates a marked increase in 473 
the strength of the correlations (δ18OPC1-S1 R=-0.27, P>0.1; δ18OPC1-S2 R=-0.62, P<0.01; δ18OPC1-S3 R=-0.57 474 
P<0.05). The identification of significant correlations between the δ18OPC1-S3 series and the ESC annual 475 
index, most notably using the 5-year smoothed linear detrended data (d18OPC1-S2 and d18OPC1-S3), 476 
strongly suggests that the variability captured by the proxy composite series is, in part, associated with 477 
the advection of warm and salty waters through the North Atlantic Ocean surface circulation. These 478 
analyses indicate that periods of enhanced (reduced) ESC strength (by extension SPG strength, Hatun 479 
et al., 2005) coincide with periods of warm (cold) SPG SSTs and lower (higher) δ18OPC1-S2-3 values (Figure 480 
7). The relatively weak coherence with inter-annual variability, however, suggests that other 481 
mechanisms mask the variability on inter-annual timescales. 482 

The point correlation analyses between the proxy composite series against gridded SLP and zonal wind 483 
stress data yielded a range of significant correlations (P<0.1; Supplementary Figure S10). A dipole 484 
pattern of positive and negative correlations was identified over the tropical and polar North Atlantic 485 
regions respectively between the proxy composite series and SLPs using both linear detrended and 486 
non- detrended datasets (Supplementary Figure S10). Similarly, a dipole pattern of correlations over 487 
the tropical and subpolar regions of the North Atlantic was identified in the correlations between the 488 
composite proxy series and zonal wind stress, also using both linear detrended and none detrended 489 
data (Supplementary Figure S10). The identification of significant correlations between the proxy 490 
series and both gridded SLP and zonal wind stress data sets strongly indicates that atmospheric 491 
circulation patterns play a role in propagating the tropical Atlantic and SPG temperature signals 492 
towards the coastal regions of the North Atlantic. These analyses are therefore in agreement with the 493 
proposed mechanisms and forcings identified by previous modelling efforts (e.g. Marsh et al., 2015). 494 
The sign, spatial distribution and seasonality of the correlations between the proxy series and SLPs is 495 
characteristic of the dipole pressure gradient associated with the wNAO, with significant positive and 496 
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negative correlations occurring during winter over the tropical and polar regions of the North Atlantic 497 
respectively (Supplementary Figure S10). 498 

 499 

Conclusion 500 

Although there are presently only a few individual d18Oshell records that span multi-centennial to 501 
millennial timespans, these analyses highlight that applying nested PCA to a suite of 502 
sclerochronological d18Oshell records, from across the North Atlantic Ocean region, can facilitate the 503 
quantitative reconstruction of basin scale ocean dynamics. Supplementing the current network of 504 
d18Oshell records with additional sclerochronological and well dated high resolution sediment core 505 
proxy records of surface ocean variability will further enhance our ability to quantitatively investigate 506 
past ocean dynamics. Whilst the application of terrestrial proxy-derived marine reconstructions (e.g. 507 
Gray, 2004, Mann et al., 2014, Rahmstorf et al., 2015) may currently provide significantly longer 508 
reconstructions, they lack independence from reconstructions of atmospheric dynamics (being based 509 
on the same tree ring series). This lack of independence between the marine and atmospheric 510 
reconstructions restricts our ability to analyze and quantify the influence that marine variability has 511 
on atmospheric climate variability. The development of independent marine reconstructions is 512 
therefore essential for the robust assessment of the past influence of marine variability on the climate 513 
system. The continued development of quantitative reconstructions of past marine variability will 514 
have a profound influence on our ability to validate numerical climate models and to help constrain 515 
uncertainties in near-term decadal scale climate predictions.  516 
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