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a b s t r a c t 

A potential enabler of a low carbon economy is the energy vector hydrogen. However, issues associated 

with hydrogen storage and distribution are currently a barrier for its implementation. Hence, other indi- 

rect storage media such as ammonia and methanol are currently being considered. Of these, ammonia is 

a carbon free carrier which offers high energy density; higher than compressed air. Hence, it is proposed 

that ammonia, with its established transportation network and high flexibility, could provide a practical 

next generation system for energy transportation, storage and use for power generation. Therefore, this 

review highlights previous influential studies and ongoing research to use this chemical as a viable en- 

ergy vector for power applications, emphasizing the challenges that each of the reviewed technologies 

faces before implementation and commercial deployment is achieved at a larger scale. The review covers 

technologies such as ammonia in cycles either for power or CO 2 removal, fuel cells, reciprocating en- 

gines, gas turbines and propulsion technologies, with emphasis on the challenges of using the molecule 

and current understanding of the fundamental combustion patterns of ammonia blends. 

© 2018 Published by Elsevier Ltd. 
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1. Introduction 

Renewable energy is playing an increasingly important role in

addressing some of the key challenges facing today’s global soci-

ety, such as the cost of energy, energy security and climate change.

The exploitation of renewable energy looks set only to increase

across the world as nations seek to meet their legislative and en-

vironmental obligations with respect to greenhouse gas emissions.

There is broad agreement that energy storage is crucial for over-

coming the inherent intermittency of renewable resources and in-

creasing their share of generation capacity. 

Thus, future energy systems require effective, affordable meth-

ods for energy storage. To date, a number of mechanical, electrical,

thermal, and chemical approaches have been developed for storing

electrical energy for utility-scale services. Storage solutions such as

lithium batteries or redox cells [1–3] are unlikely to be able to pro-

vide the required capacity for grid-scale energy storage. Pumped

hydro and methods such as compressed gas energy storage suf-

fer from geological constraints to their deployment [4–6] . The only

sufficiently flexible mechanism allowing large quantities of energy

to be stored over long time periods at any location is chemical en-

ergy storage [7] . 

Chemical storage of energy can be considered via hydrogen

or carbon-neutral hydrogen derivatives. One such example is am-

monia, which has been identified as a sustainable fuel for mo-

bile and remote applications. Similar to synthesised hydrogen, am-

monia is a product that can be obtained either from fossil fu-

els, biomass or other renewable sources such as wind and pho-

tovoltaics, where excessive electrical supply can be converted into

some non-electrical form of energy [1] . Some advantages of ammo-

nia over hydrogen are its lower cost per unit of stored energy, i.e.

over 182 days ammonia storage would cost 0.54 $/kg-H 2 compared

to 14.95 $/kg-H 2 of pure hydrogen storage [8] , higher volumetric

energy density (7.1–2.9 MJ/L), easier and more widespread produc-

tion, handling and distribution capacity, and better commercial vi-

ability. Ammonia produced by harvesting of renewable sources has

the following properties [9–11] , 

1. It is itself carbon-free, has no direct greenhouse gas effect, and

can be synthesized with an entirely carbon-free process from

renewable power sources; 

2. It has an energy density of 22.5 MJ/kg, comparable to that of

fossil fuels (low-ranked coals have around 20 MJ/kg; natural gas

has around 55 MJ/kg, LNG 54 MJ/kg, and hydrogen 142 MJ/kg); 

3. It can easily be rendered liquid by compression to 0.8 MPa at

atmospheric temperature; and, 
4. An established, reliable infrastructure already exists for both

ammonia storage and distribution (including pipeline, rail, road,

ship); today around 180 million tons of NH 3 are produced and

transported annually. 

.1. Interest in ammonia for power 

Ammonia has recently started to receive attention internation-

lly as a consequence of the primary benefits outlined in the pre-

ious section. For example, Japan has been looking for renewable

lternatives for their energy consumption requirements over the

ast few decades, due to lack of natural energy resource. Hydro-

en has been presented as an attractive solution that could meet

heir energy demands, accompanied by reduction in greenhouse

as emissions. However, Japan has clearly recognised the potential

f ammonia to serve as the hydrogen carrying energy vector, and a

2-member consortium led by Tokyo Gas has been created to cu-

ate “Green Ammonia” promoted by the Cross-Ministerial Strategic

nnovation Program (SIP) of Japan [12] , seeking to demonstrate hy-

rogen, ammonia and hydrides as building blocks of a hydrogen

conomy, Fig. 1 . The Japan Science and Technology Agency (JST)

as announced the intentions of the consortium to develop a strat-

gy for “forming an ammonia value chain” that promotes the lead-

rship of the country in the production and use of the chemical

orldwide. All consortium members have extensive knowledge of

andling ammonia, with multimillion projects in progress or un-

er consideration. For example, IHI Corporation and Tohoku Uni-

ersity plan to invest $8.8 M in 2017 to set up a duel-fuel gas tur-

ine that co-fires one part of ammonia to five parts of methane

13] ; similarly, Chugoku Electric Power Company intends to con-

uct co-firing experiments with coal and ammonia (at 0.6%) at one

f their power plants, paying $373,0 0 0 for the implementation of

his project [14] . 

In the USA, the Advanced Research Project Agency-Energy

ARPA-E), subsidiary of the Department of Energy, has recently

aunched its “Renewable Energy to Fuels through Utilisation of

nergy-Dense Liquids” (REFUEL) program, whose aim is to develop

calable technologies for converting electrical energy from renew-

ble sources into energy-dense carbon-neutral liquid fuels (CNLFs)

nd back into electricity or hydrogen on demand, thereby acceler-

ting the shift to domestically produced transportation fuels, im-

roving American economic and energy security, and reducing en-

rgy emissions [16] . 

ARPA-E announced that grants totalling $32.7 M would be

warded to 16 REFUEL projects of which 13 are focusing on ammo-

ia. From small scale ammonia synthesis using stranded wind en-
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Fig. 1. SIP energy carriers’ 10 focuses for R&D [15] . Courtesy of the Japan Science and Technology Agency (JTS). 
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rgy to improving the Haber–Bosch process, recognised academic

nstitutions and large industrial enterprises are directly involved in

his program [17] . Thus, commitment from the US Department of

nergy to use ammonia as an energy vector and its further imple-

entation in fuelling technologies to convert it back into hydro-

en or energy are materialising through programs such as these.

ignificant work on the use of ammonia for future energy sys-

ems has been undertaken by other US institutions such as the

owa State University and the University of Minnesota. The Univer-

ity of Minnesota [18] has pursued new methods for distributed

mmonia synthesis whereby small plants are able to produce hy-

rogen from wind to manufacture ammonia for fertilizing applica-

ions and fuelling of internal combustion engines. The latter will

un on a mixture of up to 50% ammonia with thermal reformers

o improve combustion efficiency through partial decomposition of

he molecule. This work is supported by recent analyses [19] that

how the implementation of ammonia to US fuel light-duty vehi-

les (LDV) could potentially mitigate up to 30% of the cumulative

O 2 produced by LDV, eliminating up to 96% of carbon emissions

rom the sector by 2040 (718 Mt CO2 per year). Furthermore, these

rograms intend not only to develop new technologies but also for-

ulate public policies that motivated governmental agencies could

mploy to encourage development and employment of such sys-

ems [18] . 

The UK has also shown strong interest in the use of ammo-

ia as a chemical energy store. Works performed by Cardiff Uni-

ersity, Siemens, Oxford University and UK Science and Technol-

gy Funding Council are underway to design and commission a

rst “Green Ammonia Decoupled” device that will show how en-

rgy from wind can be converted to ammonia for its storage and

urther release of energy via an internal combustion engine [20] .

imilarly, Oxford University recently published an extended report

ntitled “Analysis of Islanded Ammonia-Based Energy Storage Sys-

ems” [21] . The work assessed different technologies available in 

he market and the potential economic implications of recovering

tranded, renewable energy in various sites, i.e. islanded and non-

slanded, through use of ammonia. The results demonstrated that

mmonia is economically viable for islanded regions where both
mmonia for energy storage and fertilizer are combined, Fig. 2 . Al-

hough the current market is small and further development on

he synthesis of carbon-free ammonia is needed for further expan-

ion, the proposal shows that under the current scenario the use

f ammonia for these means is feasible. Special emphasis on this

oint needs to be given to those small islands around the UK or

ther islanded nations where such systems can successfully and

conomically be deployed. Politics have also a role to play in the

se of ammonia, which has found support from Parliament in the

orm of Lord Howell of Guilford, who recently wrote in ‘Jpn Times’

hat ammonia will be a “revolutionary disruption coming to the

nergy sector,” and suggests that using ammonia for energy stor-

ge will prove to be “a game-changer at least on the scale of the

hale oil and gas revolution.” Lord Howell of Guilford served as

ecretary of State for Energy and for Transport during his thirty

ears as a British Member of Parliament, and he is now chairman

f the House of Lords International Relations Committee [22] . 

In Australia a new chapter of the NH 3 fuel association has been

ecently opened, with industrial support from companies produc-

ng ammonia and hydrogen, hosted by Monash University. Repre-

entatives of the NH 3 chapter have discussed the interest that am-

onia has spurred over the last year after a large conference in the

S, emphasizing the need to start working closely with the hydro-

en fuel community. The Australian chapter hopes to attract indi-

iduals and industries from Singapore, Malaysia and New Zealand

o increase awareness of the chemical, boosting the profile of the

se of ammonia for energy storage and power generation [23] . The

romotion of these works has led to one of the biggest projects

or the production of green ammonia from solar energy. Yara, the

econd biggest ammonia producer, has announced its intentions to

uild a demonstration plant that will produce ammonia from so-

ar energy in Pilbara, Western Australia. Hydrogen, product of the

lectrolysis of water powered by solar energy, will be used for the

aber–Bosch process in these facilities. Although this is not the

rst project that uses solar energy to produce ammonia, this is

y far the biggest company to commission such a system to date.

he company believes that if the program is successful, “it could

row to a full replacement of our current natural gas consumption
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Fig. 2. Relative market potential of various market segments; 1) “Islanded” energy storage; 2) “Non-islanded” energy storage; 3) “Islanded” fertilizer; 4) “Non-islanded”

fertilizer; 5) “Islanded” energy storage and fertilizer; 6) “Non-islanded” energy storage and fertilizer [21] . Courtesy of Prof. Bañares-Alcantara, Oxford University. 
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by producing hydrogen with a solar field. In the long-term future

you could think about making it so big that it could be a multi-

ple of the current ammonia production. And then you could think

about integration of ammonia into the world market, but also in

the world market of renewable fuel production” [24] . 

Among all mainland European nations, the Netherlands are

leading the promotion of ammonia. The rationale for this fact is

that the Netherlands possess a substantial quantity of renewable

resources as a consequence of the high investment from govern-

ment and industry. Therefore, ammonia appears as an energy car-

rier that has the potential to provide the country with enough en-

ergy for its current demand, whilst allowing producing companies

to export any excess power. Companies including NUON, Gasunie,

Statoil and OCI Nitrogen are assessing the conversion of one of the

Magnum Power plant’s three 440 MW gasifiers with the intention

of using hydrogen, and eventually ammonia, in super batteries that

will feed the station by 2023–2030 [25] . Simultaneously, produc-

ers, distributors and naval designers seek the progression of the

technology in terms of storage in large ship containers that cannot

only mobilise ammonia but also can use it for fuelling purposes. C-

Job Naval and Proton Venture are part of a consortium that seeks

funding opportunities to develop a new generation of super vessels

capable to run on ammonia by 2040 [26] . 

Finally, and with a global interest in the use of ammonia for

power, the International Energy Agency (IEA) has recently become

a promoter of ammonia for a carbon-free future. The Renewable

Energy Division [27] has recognised that ammonia can be used to

tap into stranded energy produced from renewable sources (wind,

solar, tidal, etc.), and then be used to redistribute hydrogen prod-

uct from electrolysers connected to these systems. As evidenced in

their study, ammonia is much less costly to store for a long time

compared to hydrogen, i.e. 0.5 $/kg-H 2 for ammonia compared to

15 $/kg-H 2 for hydrogen over half a year, and at least three times
ess costly to ship on sea or land [28] . However, the concept is

ot directly competing with hydrogen, only with its mobility and

torage. Cedric Philibert, Senior Energy Analyst at the IEA, reflects

hat the production of hydrogen from renewables dates from the

960s, but it is only recently that the increasingly lower cost of re-

ewables starts making these technologies competitive for produc-

ion of the chemical, thus conversion into ammonia for distribution

eems the most economically competitive alternative. 

In this year’s edition of the Energy Technology Perspectives

017 - Catalysing Energy Technology Transformations [29] , for the

rst time the EIA has featured ammonia in two major technol-

gy transformations. First, ammonia production is shown making

 transition away from fossil fuel feedstocks and towards electri-

cation, using hydrogen derived from electrolyzers. Secondly, fol-

owing this assumption that sustainable ammonia will be widely

vailable in the future, the IEA also classifies ammonia as an en-

rgy carrier, in the category of future electricity-based fuels (PtX

ynthetic fuels). The inclusion of this pair of technology transfor-

ations represents a major step towards broader acceptance of

mmonia as an energy vector, from the perspectives of both tech-

ical feasibility and policy imperative. 

Therefore, countries and international agencies have started

aising the awareness of the potential of ammonia for storage of

ydrogen, a rationale that has served to boost research in the area

f its use as energy vector and potential fuel. 

.2. Challenges for ammonia for power 

A viable energy system based on ammonia faces four primary

arriers: 

1. Carbon-free synthesis of ammonia, 

2. Power generation from small to utility-scale size, 
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3. Public acceptance through safe regulations and appropriate

community engagement, 

4. Economic viability for integration of technologies and green

production of ammonia. 

Current ammonia production methods are heavily reliant on

ossil fuels and consequently, barrier ( 1 ) is a challenging area that

till requires exhaustive research and will be treated as a separate

opic. Barrier ( 2 ) above is also critical, since most developments to

ate have focused on improving small- to medium-scale devices

uch as reciprocating engines. However, power output from such

nits using ammonia is relatively modest, typically in the range

f 0.1–1.0 MW. Here, one of the main challenges is the reduction

f NOx emissions and unburned ammonia, contaminants that di-

ectly impact on climate change and are toxic to life, respectively.

t is recognised that NO 2 can aggravate cardiovascular and respi-

atory diseases, with an estimate of 23,500 premature deaths per

ear only in the UK alone [30] . Although considerable research has

een conducted understanding the formation process of this pol-

utant [31] , its formation and consumption during combustion and

ost-combustion processes using ammonia are still at the core of

he research agendas of various research groups. Similarly, toxic-

ty of ammonia is one of the major impediments to deploy these

echnologies, as public perception is very formative and perception

n the nuisance of its smell even at low concentrations is a critical

arrier ( 3 ) that requires further studies, understanding and innova-

ion. Thus, barrier ( 3 ) has played an important role even in small

evices, restricting the deployment of reciprocating engines, i.e. in

ransport or small scale energy production. Therefore, any poten-

ial system based on ammonia needs to undergo health and safety

mpact analyses and a review of current legislations, as well as tak-

ng into account public and end-user perceptions and tolerability.

inally, the Economic viability (barrier 4) of such systems needs

o be proved, encouraging investors to set the foundations of both

ndustries and suppliers capable of delivering equipment and inte-

rated systems that produce green ammonia for its use in power

eneration. 

.3. Significance of ammonia for power generation 

A key step in the realisation of ammonia as a viable energy

ector is releasing the stored energy at the power levels required

or commercial or grid-scale applications. Existing fuel cells, cycles,

eciprocating engines and gas-turbine technologies and the under-

inning science have been developed for use with hydrocarbons

r other fuel sources. Thus, the development of new devices and

echniques that can utilise green ammonia would have the follow-

ng advantages: 

1. Reducing emissions. Being carbon free, ammonia offers the pos-

sibility of fuelling gas turbines, fuel cells and reciprocating en-

gines without direct CO 2 emissions. If the energy (and raw ma-

terials) used to synthesise the ammonia come from renewable

sources, the entire cycle can be made completely carbon-free.

Although the transition from current fuel sources to ammonia

will still produce carbon, a dual-fuel exchange strategy that in-

cludes carbon sources (i.e. methane, methanol) can potentially

lead to an order-of-magnitude reduction of carbon emissions

in the near term [32] , ultimately leading to zero-carbon energy

systems. 

2. Improving security of supply . Ammonia can be synthesised from

abundant raw materials, namely hydrogen (in water) and nitro-

gen (in air). Ammonia is already produced and transported in

considerable volumes ( ∼180 Mtonnes/year [27] ), and is there-

fore a practical and scalable fuel. With the capability of provid-

ing grid-scale energy storage, ammonia facilitates the increasing

exploitation of renewable energy sources. 
3. Reducing costs of energy . Large (grid) scale energy arbitrage

can only be practically achieved by pumped hydro (in suit-

able dams/aquifers), compressed air energy storage (in suit-

able undergrounds cavities), and chemical energy storage (in-

cluding ammonia). The capital costs of ammonia energy stor-

age are comparable to or better than those for compressed air

and pumped hydro but without the attendant geological con-

straints, and substantially lower than other challenger technolo-

gies such as electric batteries [33] . Considerable infrastructure

already exists for the transportation and storage of ammonia,

along with well-established safe handling procedures, and this

reduces the need for investment in further infrastructure and

training [34,35] . Although the economic inertia of using fossil

fuels is entrenched globally, competitive scenarios can be cre-

ated by using such a fuel source that can be traded and moved

using existing infrastructure, build around liquid fuels [32] . 

These aspects require careful consideration, thus recognising ur-

ent further research needs for the realisation of a carbon-free am-

onia economy via storage of renewable energy. 

At present, there is a range of existing mechanical, chemical,

hermal and electrical technologies for storing electrical energy

daptable from small to large scale applications, Fig. 3 . Of all these

echnologies, only Compressed Air Energy Storage (CAES), Pump

ydro and Chemical Energy Storage systems have enough commer-

ial maturity and the ability to store energy for large scale applica-

ions over long periods of time. The first two suffer the limitation

f site placement due to their geographic/geological requirements.

hus, chemical storage via hydrogen and/or derivatives (such as

mmonia) and hydrocarbons present a viable option for practical

nergy storage in the near term. Bearing in mind a desire to re-

uce carbon emissions, then only hydrogen and ammonia remain

s candidates to drive the storage of large quantities of energy with

exible relocation of resources with a reduction on CO 2 emissions.

inally, movement and storage of hydrogen has proved to be more

omplex than for ammonia, for which a fully developed infrastruc-

ure has existed over a century, thus positioning ammonia as a

trong candidate to support the concept of flexible energy storage

t the largest scale. 

Regarding ammonia transition, ammonia can be used to sup-

ort power and heating processing with other fuels, thus increas-

ng its flexibility of usage. Ammonia blends have been assessed

nd compared to conventional and higher hydrocarbon fuels, Fig.

 . These blends were analysed in terms of their Wobbe Index and

olumetric High Heating Value [36] . As observed, the Wobbe in-

exes of the ammonia blends fall very close to that of town gas

i.e. 31%CH 4 , 49%H 2 and 20%CO 2 ) and likely similarly to other syn-

ases. Hydrogen, with a higher Wobbe Index, is closer to ammonia

han hydrocarbon based fuels with a similar volumetric high heat-

ng value, thus rendering conversion equipment simpler. Also, it is

vident that the increase of hydrogen in the ammonia blends (from

% to 75% in this comparative study [36] ) does not show a greater

ncrease in Wobbe Index, a point to be considered when devel-

ping distribution and combustion systems for ammonia-hydrogen

lends, which on this basis could be well started from the prece-

ent of town gas systems. 

Recent Life Cycle Assessments (LCA) conducted by Bicer and

incer [37] show how the use of ammonia for transportation and

ower production can have considerable advantages for the miti-

ation of environmental impacts such as global warming potential,

biotic depletion, etc. The study uses ammonia produced via wind

nergy-based water electrolysis using molten salt electrolytes. It

as shown that vehicles reduce their greenhouse gas (GHG) emis-

ions from 0.270 to 0.100 kg/km. Similarly, the production of 1 MJ

f electricity using ammonia results in a reduction of CO 2 emis-

ions from 0.130 to 0.083 kg CO eq (with a time horizon of 500
2 
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Fig. 3. Comparison between different storage technologies [7] . Courtesy of Dr Ian Wilkinson, Siemens. 

Fig. 4. Wobbe index v HHV of various fuels. Reprinted from [36] with permission 

from Int J Hydrogen Energy, Elsevier. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Hydrogen densities in hydrogen carriers [40] . Courtesy of Prof. Yoshitsugu 

Kojima, Hiroshima University. 
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years, GWP500). For power generation, the main global warming

potential in natural gas power plants is based on the combus-

tion process (i.e. 97% production of GHGs), while in the ammo-

nia power plant the majority of GHGs (i.e. 93%) is due to the pro-

duction of ammonia, with only 6% of gases with global warm-

ing potential being produced by the combustion system. Although

acidification (kg SO 2 eq/MJ) was two orders of magnitude greater

for ammonia due to potential leaks, ozone layer depletion was

half the value when compared to natural gas power systems, i.e.

2.74 × 10 −9 and 5.92 × 10 −9 , respectively. Therefore, the greater po-

tential of ammonia for cleaner power can mitigate the production

of unwanted GHG emissions and contaminants. 

In discussing ammonia storage, comparison with pure hydrogen

is always a point of contention. However, here the potential for in-

troduction of ammonia is presented as a complementary enabler

of the hydrogen economy, rather than a contender. Hence, the aim

of current research groups is to enable the distribution and usage

of hydrogen in a safer, more economically viable manner. There are

indirect and direct hydrogen storage solutions, with the latter be-

ing direct ways to recover hydrogen after heating or pressurisation,

while the former need various steps before hydrogen is recovered. 
The best known direct solutions for hydrogen storage include

etal and complex hydrides, whilst indirect solutions include

team reforming of hydrocarbons or methanol, hydrolysis of hy-

rides and decomposition of ammonia [38] . Organic hydrides such

s methyl cyclohexane (MCH) have also emerged as serious candi-

ates for storage of hydrogen. However, MCH also presents chal-

enges, as it requires a complicated system for returning the base

uel toluene from the point of consumption to the point of pro-

uction while carrying a low gravimetric mass of hydrogen [39] .

imilarly, most current technologies for direct storage fall short for

igher gravimetric hydrogen density, and in particular, for those

hat allow hydrogen desorption at sufficiently low temperatures at

ast rates [38] . 

For indirect solutions, methanol and ammonia currently appear

he most viable options, especially when related to full cells and

istribution systems, although ammonia presents an extra advan-

age as it offers the possibility of truly carbon-free energy. 

Recent investigations [40,41] have considered the development

f new materials for hydrogen storage, Fig. 5 . Ammonia possesses

ne of the highest gravimetric hydrogen densities (17.8 wt%) with
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he highest volumetric hydrogen densities (0.107 kg-H 2 /L), Fig. 5 .

hus, effort s are f ocused on exploiting this quality to create new

echnologies for ammonia conversion into hydrogen. Some results

emonstrate good feasibility for almost complete cracking of NH 3 

nto pure hydrogen [40] , presenting the former as an enabler for a

ydrogen economy. 

Distribution of the fuel is also a critical parameter to con-

ider. Transportation of ammonia is now a mature technology af-

er over a century of development. Recent distribution methods

ave appeared to reduce complexity and the potential for toxic

eaks. Metal amines are solid salts in which ammonia is attached

o a metal ion. From these, hexa-ammine-magnesium chloride has

een considered in some detail as an indirect hydrogen carrier

ince it has both high gravimetric and volumetric hydrogen con-

ent. Furthermore, it is prepared from magnesium chloride, which

s abundant, inexpensive, binds ammonia reversibly, and can be

onsidered safe [38] . This material can be also compacted into

 dense material, which holds approximately 615 kg-NH 3 /m 

3 , or

10 kg-H 2 /m 

3 , almost the same volumetric ammonia content as

hat of liquid ammonia. Due to a much lower ammonia vapour

ressure (200 Pa) and release rate at room temperature, it is actu-

lly possible to handle this material safely at ambient conditions.

hus, hexa-ammine-magnesium chloride (Mg(NH 3 ) 6 Cl 2 ) and simi-

ar materials now present a commercially viable option to mitigate

he toxicity and corrosivity that liquid ammonia presents, justifying

urther the distribution of hydrogen via ammonia [42] , although

urrent developments are based on applications such as NOx re-

uction. 

Nevertheless, the use of hydrogen carriers other than ammonia

re being investigated. Despite the fact that in most industrial sec-

ors one solution among multiple options usually tends to achieve

 position of dominance, here it is conjectured that two or more

hemical storage technologies could co-exist for various shares in

he market. Although this is rare in most circumstances, hydrogen

arriers and ammonia can complement each other very well, hence

nstead of competing, together supporting the transition of a car-

on free economy. Thus, for ammonia to contribute to this eco-

omic transition, new technologies need to be developed for its

onsumption while allowing recovery of hydrogen with increased

fficiencies. This review, for that reason, presents various methods

f conversion from ammonia to power which seek to reduce in-

fficiencies across the whole process of conversion, transport and

ecovery of hydrogen. 

. Background 

.1. General characteristics 

Ammonia is a colourless gas with a sharp, penetrating odour.

ts boiling point is 239.8 K, and its freezing point 195.5 K, with a

ensity of 0.73 kg/m 

3 and an auto-ignition temperature of 930 K

compared to methane, 859 K) under atmospheric conditions. With

n octane number of ∼130, it has a high heat of vaporization

1371 kJ/kg compared to ∼271 kJ/kg of gasoline) and can be han-

led as a liquid in thermally insulated containers. The ammonia

olecule has a trigonal pyramidal shape with the three hydrogen

toms and an unshared pair of electrons attached to the nitro-

en atom. It is a polar molecule and is highly associated because

f strong intermolecular hydrogen bonding. The dielectric constant

f ammonia (22 at 239.2 K) is lower than that of water (81 at

98.2 K), so it is a better solvent for organic materials. However,

ts dielectric constant is still high enough to allow ammonia to act

s a moderately good ionising solvent. Ammonia also self-ionises,

lthough less so than water [43] . The combustion of ammonia is

hallenging, due primarily to its low reactivity, but yields nitrogen

as and water, with a stoichiometric Air Fuel Ratio (AFR) of 6.06
y weight, 

NH3 + 3O2 → 2N2 + 6H2O + heat (1) 

Liquid ammonia is used extensively as a non-aqueous solvent.

he alkali metals as well as the heavier alkaline-earth metals and

ven some inner transition metals dissolve in liquid ammonia. 

It is transported and contained in tanks under modest pressure,

imilar to propane. Production of ammonia as a transport vector

or renewable energy and its subsequent reconversion to hydro-

en are energy intensive steps but the handling and shipping in-

rastructure including regulations for transportation are already in

lace. It is potentially hazardous to inhale. However, ammonia is

eadily detected by its odour, and being lighter than air it rapidly

ilutes in a spill. The energy content of ammonia is 18.8 MJ/kg

LHV), while hydrogen’s is 120 MJ/kg [43] . 

Ammonia is known to have an indirect impact on ozone de-

letion through the formation of nitrous compounds in the atmo-

phere. These are currently considered a negligible contribution to

zone depletion [44] , but will need to be considered for large scale

mmonia utilisation especially considering NOx production. 

.2. Health and safety 

Although the H&S issues associated with the use of ammonia in

lectricity/power generation are minimal when compared to trans-

ortation, Table 1 , several considerations need to be taken into ac-

ount. In addition, the increase in risk management legislation, in-

ustrial cases of dangerous circumstances, and human injuries in-

olving ammonia release [45] need to be taken into account. 

The National Fire Protection Association (NFPA), USA, has clas-

ified ammonia as a toxic substance, thus making it a chemical of

igh risk for health [46] . However, due to its low reactivity, the

azards it presents from accidental combustion or explosions are

uch lower than other fuel gases and liquids, Fig. 6 . 

Human exposure limits of ammonia depend on the legisla-

ion and exposure time. The limit is set between 25 and 50 ppm

ith dangerous consequences for exposure to concentrations above

00 ppm. For instance, the UK Health and Safety Executive (HSE),

stablishes an 8 hrs Time-Weighted Average (TWA) of 25 ppm,

hilst its short-term exposure limit (STEL) is 35 ppm, compared to

 20 ppm TWA and 50 ppm STEL for Europe [47,48] . Table 2 pro-

ides some exposure guidance according to the NFPA. The vari-

nces clearly show that there is a need for research establishing

ore accurate values for industries and a variety of potential users.

nterestingly, CO concentrations of 35 ppm TWA are recommended

y the Occupational Safety and Health Administration (OSHA) [49] .

A further set of recommendations for industrial interests is

iven by the Environmental Protection Agency (EPA), USA, and is

nown as Acute Exposure Guideline Levels (AEGL), which is used

or ammonia. There are 3 categories, Table 3 [50] . 

AEGL-1 is the airborne concentration above which it is pre-

icted that the general population, including susceptible individ-

als, could experience notable discomfort, irritation, or certain

symptomatic, non-sensory effects. However, the effects are not

isabling, and are transient and reversible upon cessation of ex-

osure. 

AEGL-2 is the airborne concentration of a substance above

hich it is predicted that the general population, including sus-

eptible individuals, could experience irreversible or other serious,

ong-lasting adverse health effects or an impaired ability to escape.

AEGL-3 is the airborne concentration of a substance above

hich it is predicted that the general population, including suscep-

ible individuals, could experience life-threatening health effects or

eath. 
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Table 1 

Comparison between ammonia in transportation and electricity/power generation [46] . Courtesy of NH3 fuel 

association. 

Transportation Electricity generation 

Safety Very Critical Not as critical 

Cracking Cracking reactors heavy/expensive Easily done 

Storage tank weight Critical Not an issue 

Storage tank robustness Need to be “indestructible” Existing storage tanks are suitable 

Distribution Complicated Relatively simple 

Start up Problematic Not many start ups 

Operational Pumps operated by non-professionals Delivered/handled by professionals 

Fig. 6. Toxicity and Fire/Explosion comparison of different fuels [46] . Courtesy of NH3 fuel association. 

Table 2 

Exposure guidance [46] . Courtesy of NH3 fuel association. 

Effect Ammonia concentration in air (by volume) 

Readily detectable odor 20–50 ppm 

No impairment of health for prolonged exposure 50–100 ppm 

Severe irritation of eyes, ears, nose and throat. No lasting effect on short exposure 40 0–70 0 ppm 

Dangerous, less than ½ hours of exposure may be fatal 20 0 0–30 0 0 ppm 

Serious edema, strangulation, asphyxia, rapidly fatal 50 0 0–10 0 0 0 ppm 

Table 3 

EPA AEGL guideline [50] . 

Ammonia 7664–41–7 (Final) Expressed in PPM 

10 min 30 min 60 min 4 h 8 h 

AEGL 1 30 30 30 30 30 

AEGL 2 220 220 160 110 110 

AEGL 3 2700 1600 1100 550 390 
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According to some key points in the Compendium of Chemical

Hazards of ammonia from the Health Protection Agency (UK) [51] ,

ammonia has the following characteristics: 

Fire 

• Anhydrous ammonia is non-flammable. Ammonia vapour in air

is flammable and may explode when ignited 

• Chemically stable under normal conditions 

• Emits poisonous fumes when heated to decomposition 

• Use fine water spray and liquid-tight protective clothing with

breathing apparatus 

Health 

• Exposure by any route may be dangerous 

• Secondary contamination may occur 

• CHIP Classification: toxic and corrosive 

• Acute inhalation may result in irritation of eyes and nose with

a sore throat, cough, chest tightness, headache and confusion 
• Acute ingestion of ammonia solutions may result in burns to

the mouth and throat 

• Acute skin exposure may result in deep burns 

• Acute eye exposure may cause inflammation, lacrimation and

photophobia 

• Chronic inhalation has been associated with increased cough,

phlegm production, wheeze and asthma 

• Ammonia is not considered to be carcinogenic to humans 

• Ammonia is not considered to be a human reproductive or de-

velopmental toxicant 

• Environment 

• Dangerous for the environment 

• Inform Environment Agency of substantial release incidents 

Even though it is toxic for humans and most invertebrates (but

ot for fertilising purposes), ammonia is lighter than air, thus al-

owing leakages to move quickly through the rising plume whilst

educing exposure. However, it is usually released in ‘flashing’ liq-

id form, resulting in a dense aerosol cloud which cools as it evap-

rates –hence atmospheric dispersion models refer to low-lying,

old, droplet laden dispersion, which possesses greater risks [52] .

lthough it can be carried away due to its low density, eddy trans-

ort of agents and large/small scale wind variations could occur

53] . Ammonia can spread in a V-Pattern through buildings track-

ng wind; moisture and vegetation can also cause ammonia to be-

ome more turbulent, rolling rather than laying out in a defined

attern. Dry, windy and warm weather diffuses ammonia to the
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Fig. 7. Explosions and cracks in cylinder by build-up pressure, respectively [54] . Courtesy of NH3 fuel association. 
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Fig. 8. Low and upper flammability limits of various substances [46] . Courtesy of 

NH3 fuel association. 
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tmosphere faster than humid, cool and low wind conditions. High

ressure inversions and humidity may cause the vapour to bounce

nd return to ground level before completely diffusing. Therefore,

uidelines recommend always to have a refuge point upwind from

he point of storage/use of ammonia, taking into consideration the

arger scales. Moreover, although toxic, NH 3 becomes perceptible

t very low, safe concentrations and is not carcinogenic. 

Ammonia is also corrosive when mixed with water as pH

apidly increases to 11.6. The corrosiveness of ammonia will mix

ith body fluids like sweat and respiratory tract moisture to cause

rritation. The environmental threat increases when NH 3 goes into

 live body of water. 

.3. Fire/Explosions 

Explosions with the sudden release of ammonia have been doc-

mented, Fig. 7 . The build-up of pressure due to the boiling of

he saturated liquid inside the container due to an external heat

ource can produce situations where the cylinder is unable to re-

ain its structural integrity, resulting in rupture and release of the

ontained gas. If sparks or a heat source are presented the likeli-

ood of explosion increases, with potentially catastrophic scenar-

os. These phenomena are known as BLEVEs (Boiling Liquid Evap-

rating Vapour Explosions). Although this has only been docu-

ented in large industrial facilities and for large containers, care

s required when handling ammonia. Ammonia has a flammability

imit that ranges from ∼18 to 28% fuel mole fraction, Fig. 8 . There-

ore, dilution systems are needed to avoid this range when hot sur-

aces or combustion devices are in use nearby. The likelihood and

everity of ammonia combustion hazards are mitigated somewhat

y the fuel’s slow reaction characteristics, particularly its relatively

igh ignition energy (2–3 orders of magnitude higher than com-

on hydrocarbons) and low laminar burning rate more than four

imes less than methane ( < 0.010 m/s). 

.4. Corrosive nature of ammonia 

An important parameter to consider when selecting a chemical

or power applications either as a working fluid or fuel is to recog-

ise the impact of the former on materials required for pipelines

nd structural components, thus increasing the complexity of some

ystems and potential applicability of such chemical. In the case

f ammonia, the benefits of greater versatility than hydrogen get
lightly blurred as NH 3 is incompatible with various industrial ma-

erials. NH 3 is corrosive to copper, brass and zinc alloys, forming

 greenish/blue colour corrosion. NH 3 should not be mixed with

romine, chlorine, iodine and hypochlorites as ammonia is an al-

aline reducing agent and reacts with acids, halogens, and oxidiz-

ng agents. Cole–Parmer [55] have produced a comprehensive but

ot exhaustive list of compatibility results between ammonia and

arious industrial materials, Table 4 . Thus, careful material selec-

ion needs to be performed when considering ammonia for power

eneration. 

.5. Current position of ammonia for power 

.5.1. Production process 

Historically, ammonia has been manufactured as a fertilizer

o enhance food production via the well-established Haber–Bosch

rocess. Approximately 97% of nitrogen fertilizers are derived from

mmonia [56] . In the latter, high purity (99.99%) hydrogen and

itrogen are typically reacted together at a temperature between

23.2 and 823.2 K at pressures between 10 to 25 MPa in the pres-

nce of a catalytic material [9] . The hydrogen is mainly sourced

rom hydrocarbons - obtained from steam reforming of methane

nd partial oxidation of coal - resulting in a highly carbon inten-

ive process [57] . The production of ammonia consumes an esti-
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Table 4 

Material compatibilities of ammonia as in [55] , Chemical Compatibility Database 

Copyright © Cole-Parmer. A: excellent; B: good- minor effect, slight corrosion or dis- 

coloration; C: fair- moderate effect, not recommended for continuous use, with soft- 

ening or loss of strength, swelling may occur; D: severe- not recommended; N/A: in- 

formation not available. Courtesy of © Cole-Parmer. 

ABS plastic D CPVC A Polycarbonate D 

Acetal (Delrin ®) D EPDM A PEEK A 

Aluminium A Epoxy A Polypropylene A 

Brass D Fluorocarbon (FKM) D Polyurethane D 

Bronze D Hastelloy-C ® B PPS (Ryton ®) A 

Buna N (Nitrile) B Hypalon ® D PTFE A 

Carbon graphite A Hytrel ® D PVC A 

Carbon Steel B Kalrez A PVDF (Kynar ®) A 

Carpenter 20 A Kel-F ® A Silicone C 

Cast iron A LDPE B Stainless Steel 304 A 

Ceramic Al2O3 N/A Natural Rubber D Stainless Steel 316 A 

Ceramic magnet N/A Neoprene A Titanium C 

ChemRaz (FFKM) B NORYL ® B Tygon ® A 

Copper D Nylon A Viton ® D 

Fig. 9. Ammonia production via hydrogen electrolysis and H-B process. Reprinted from [59] with permission from J Cleaner Production, Elsevier. 
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mated 1.8% −3.0% of all global energy [56] , mainly via fossil fu-

els, making it one of the single largest producers of carbon diox-

ide. Moreover, the production process generates vast quantities of

NOx that through Best Available Techniques need to be removed

via Selective non-catalytic reduction, thus increasing cost of oper-

ation [56] . Therefore, new technologies seek to produce hydrogen

from carbon-free sources such as electrolysis of water using sus-

tainable energy, thus mitigating the excessive production of car-

bon emissions while increasing flexibility of production and re-

covery of stranded sources internationally. Recent energy studies

[58] conducted using data obtained from the facility at Leuna, Ger-

many, determined that the use of water electrolysis and pressure

swing adsorption (PSA) to develop decentralised Haber–Bosch pro-

cesses are feasible options as potentially competitive systems for

the production of ammonia, which can be employed for energy

storage. Currently, ammonia production from electrolysed hydro-

gen accounts for approximately 0.5% of global ammonia produc-

tion [9] . However, the greatest limitation to this process are the

economics, which are continually being improved through studies

that have been conducted to show the considerable potential for

the production of hydrogen and ammonia via electrolysis product

of sustainable sources, Fig. 9 , with companies already investigat-

ing the development of industrial facilities to pursue the reduc-

tion of GHGs while improving feedstock and resilience of these

ammonia production methods. Nuclear power has also been con-

sidered [59] , although initial Life Cycle Assessments show their

detrimental impact on various aspects related to confinement and
 u  
isposal of radioactive material, Fig. 10 , thus making renewable

ources the most promising alternative for the near to intermediate

uture. 

As stated, current ammonia production (brown ammonia) is

ainly produced through reformation of hydrogen from natural

as [60] , thus producing an annual global total of ∼290Mt of

O 2 , approximately 1% of carbon dioxide emissions. Unless these

missions are captured and stored or utilised, the sustainability of

ny new cycle running on brown ammonia is significantly detri-

entally affected. Therefore, it is highly desirable for the hydro-

en obtained for the production of ammonia to be obtained from

lternative sustainable sources such as wind, biomass gasifica-

ion, solar. Recent research has been undertaken to determine en-

rgy requirements from various renewable technologies to produce

reen ammonia [60] , showing that the use of biomass can poten-

ially produce higher CO 2 emissions but at lower power require-

ents (although these processes may be carbon neutral), while

ther sources such as wind/solar can have negligible carbon emis-

ions with reduced power consumption compared to fossil ref-

rmation, i.e. 14.248 kW/kg NH3 for green ammonia compared to

7.113 kW/kg NH3 for brown ammonia, hence demonstrating that

mmonia can be produced via renewables to increase the sustain-

ble, greener nature of new power cycles. 

.5.2. Market 

The consensus among analysts is that there is a high degree of

ncertainty regarding the future outlook for the grid-scale energy
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Fig. 10. Damage assessment for different ammonia production sources. Reprinted from [59] with permission from J Cleaner Production, Elsevier. 
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torage market because of the lack of established storage technolo-

ies and the uncertainty concerning government subsidies and reg-

latory frameworks to incentivise markets around the world. How-

ver, a number of analysts have attempted to estimate the size of

he worldwide energy storage market: the Energy Research Part-

ership [61] concluded the global market could be worth in excess

f $600bn over the coming 10–12 years while Navigant Research

stimate global investment in energy storage would total $68bn

etween 2014 and 2024, and be worth over 15$bn/yr by 2024 [62] .

Hence, since ammonia is a disruptive energy storage technol-

gy that can be realised using existing processes for the synthesis

nd storage of ammonia, it can then benefit from the economic

redictions previously stated, as it has the potential to be brought

o market both relatively quickly and in significant volume. Gener-

lly, the ammonia market is estimated at $91–225bn per year [63] .

herefore its production for either power or agriculture will permit

ore flexible energy options worldwide. It is difficult to estimate

he effect of a reliable decoupling mechanism on the energy mix as

 whole. However it is possible to estimate the effect of a percent-

ge swing to the renewables away from the combined gas power

eneration. The economic cost to society of a 1% swing would be

round $1.5bn a year worldwide, thus showing highly profitable

rofiles for interested companies working on the topic. 

For these scenarios to happen, capital costs for ammonia tech-

ologies need to be competitive against other forms of energy stor-

ge. Estimates of the capital costs ($/kW) for ammonia energy stor-

ge (between 1350 and 1590 $/kW [29] ) indicate it will be compet-

tive compared to battery storage technologies such as Li-ion, NaS

nd VREDOX (between 850 and 3,660 $/kW [64] ), but with the ad-

antage of considerably cheaper ( ∼2(O)) capacity costs inherent in

 liquid fuel. Furthermore, it is not constrained by local geology in

he same way as compressed air or pumped hydro. 

However, a number of competing technologies are also un-

er intensive development, including compressed air, thermal, and

lectrochemical (battery) storage, and so predicting with confi-

ence penetration into this uncertain market is challenging. 

.5.3. Distribution 

Anhydrous (without water) ammonia is distributed across the

orld via pipelines, railroads, barges, ships, road trailers and stor-
ge deports. Long term experience of ammonia distribution from

he first quarter of the first century has facilitated the global de-

loyment of ammonia, ensuring that well established distribution

etworks exist across the world. 

In the USA, the NuStar Line (3070 km long) transports ammonia

rom Mississippi into the heart of the corn-belt region of the cen-

ral and northern States of the Union, where it can be distributed

till further via the Magellan line ( ∼1900 km long). Both lines de-

iver approximately 2.9 million tons of ammonia per year [65] . In

astern Europe, a pipeline runs from TogliattiAzot’s plant (Toly-

tti, Samara) to Odessa in the Black Sea and is one of the largest

 ∼2400 km long) with a capacity of 3 million tons per year [66] . 

Western Europe alone transports around 1.5 million tonnes of

mmonia by railway every year. Pipeline transport of liquid am-

onia in the European Union is not as significant as in the US and

n Russia. Only relatively short pipeline systems are in operation.

reater quantities are transported using insulated tank cars capa-

le of storing up to 126,800 litres [67] . When pipeline or railway

onnections are not possible, then large barges, road trailers, nurse

anks and even bottles are used to transport ammonia across re-

ions. Therefore, vast infrastructure exists to support the concept

f using ammonia for distribution of stored energy. 

. Ammonia for power 

Grid-connected energy storage is widely accepted as an enabler

or further deployment of renewables. As energy networks incor-

orate more decentralised power generation, storage is also likely

o play a significant role in load balancing and strengthening dis-

ribution grids. Significant renewable resources are often found in

solated geographies or locations with no grid access. Examples in-

lude the wind resources in the mid-West of the US and the north

f the United Kingdom (e.g. the Orkneys or Hebrides), and Pho-

ovoltaic resources in Africa, the Middle East and Australia. The

ost of a conventional distribution grid connection can be a signif-

cant barrier to exploiting such resources. Ammonia, on the other

and, is competitive against a variety of transmission systems, Fig.

1 [68] . Therefore, the viability of ammonia as an energy carrier

ests on the overall conversion efficiency of the process, including
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Fig. 11. Cost / capacity comparison for selected power transmission methods. 

Reprinted from [68] with permission from ASME. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Kalina cycle with central solar receiver. Reprinted from [76] with permis- 

sion from J Energy Conversion and Management, Elsevier. 
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the ability to convert it at the necessary power levels at the point

of consumption with minimal environmental impact. 

3.1. Initial attempts to use ammonia for power 

The industrial revolution brought an endless number of patents

and new devices for power and transportation, with most utilis-

ing steam as the preferred working fluid. This was not always the

case, with some inventors seeking competitive advantage through

the development of new, more complex systems. Sir Goldsworthy

Gurney - pioneer of the use of oxygen and hydrogen for lighting

and transportation devices - built upon, amongst others the work

of Trevithick’s steam carriage, to develop what was probably the

first ammonia gas locomotive, which required little change from an

ordinary steam engine [69] . However, resistance from others with

vested interests opposed the new invention and he faced competi-

tion from steam railways, which was backed by large financial and

political capital. Similarly, there were attempts to replace horse

drawn street-cars in New Orleans with ammonia powered engines,

although these lost out to electrification projects [70] . Hence it was

not until the 20th century that transport solutions based on am-

monia were developed. 

The first part of the 20th century also saw the development

of what became known as the Haber–Bosch process, where at-

mospheric nitrogen is fixed to industrially produced ammonia. It

is named after its inventors, Fritz Haber and Carl Bosch, who ob-

tained the Nobel Prize for this work. The production of ammonia in

this way revolutionized farming by introducing a cheap and readily

available fertilizer, and it is estimated that half the world’s pop-

ulation increase is due to the use of fertilizers produced via the

Haber-Bosch (HB) process [71] . Nitrogen fixed from air played a

pivotal role in armament production in Germany in World War I

and II for production of ammonium nitrate which has also been

used as a transport fuel where diesel and petrol were not avail-

able. For instance due diesel shortages in Belgium during World

War II, engineers adapted approximately 100 buses to run on liq-

uid ammonia. Although this experiment only lasted until carbon-

based fuels were available again, the use of ammonia with a small

amount of coal gas demonstrated that NH 3 could be used as power

generation fuel [72] . Moreover, further works would follow to use

ammonia as working fluid in advanced cycles, thus wide spreading

the chemical for power generation purposes. 

3.2. Ammonia power cycles 

Although ammonia as a working fluid or carbon dioxide scrub-

ber material in power cycles is not directly linked to the use of
he chemical for energy storage, utilisation of NH 3 into these cy-

les can present an opportunity to initially recover the chemical

or storage, use it as working fluid and finally employ it for release

f energy via fuel cells, engines, rockets or other technologies, in-

reasing overall system efficiency. Thus, a comprehensive review of

he literature on the use of ammonia in power cycles is presented

o complement the various uses of ammonia for power. 

.2.1. As working fluid in power cycles 

In 1984, Alexander Kalina developed a cycle to be used as a

ottoming cycle instead of the Rankine cycle in Combined Cy-

le (CC) power plants and demonstrated that the cycle can reach

igher efficiencies than the Rankine cycle for heat recovery [73] .

he essence of the cycle is the use of an ammonia-water mix-

ure whose change in composition affects the thermodynamics and

ransport properties of the mixture. Since the boiling temperature

f ammonia is lower than water it can then be used for low grade

eat recovery. Moreover, designs for steam turbines can still be

sed with such a mixture due to the close molecular weight be-

ween water and ammonia [74] . The use of the Kalina Cycle (KC)

ith this ammonia-water working fluid can bring up to 20% en-

ancement compared to other cycles [75] . Therefore, it has been

sed for recovery of renewable energies produced from sources

uch as geothermal applications, coal-fired steam plants, triple cy-

les, gas turbine modular helium reactor heat recovery, solar plants

 Fig. 12 ), etc. [74,76] and even conventional power applications

uch as diesel engines [77] . 

Related work has suggested that mixtures of 84% ammonia –

6% water (in mass fraction) can produce superior thermodynamic

nd economic benefits [78] . It has been recognised that combina-
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ions of the cycle with mixtures between 78% to 82% of ammonia

oncentration can provide the best operating conditions in such a

ycle [75] , with some authors even suggesting concentrations as

ow as 50% for especial geothermal applications [79] . Therefore, the

mportance of ammonia in the performance of the cycle is clear,

llowing researchers to explore its properties and concentration

hanges through the cycle to unveil problems such as irreversibili-

ies that can lead to potential design improvements [75] . More re-

ent studies have been concentrated on improvements to the cycle,

specially for geothermal applications [80,81] . 

The use of the cycle at higher temperatures is questionable due

o the nitridation effect, resulting from thermal decomposition of

mmonia, that can potentially corrode equipment [79] . However,

urther work by Kalina and other researchers has demonstrated

ts successful usage at higher temperatures under industrial condi-

ions [76] . Therefore, research groups have also sought to evaluate

he use of ammonia-water mixtures for energy recovery from high

nergy devices such as concentrated solar power plants. However,

uch studies concluded that the use of the cycle was more expen-

ive than the use of state-or-the-art steam Rankine cycles, present-

ng a difference of ∼20% cost per MWh 

−1 [76] . Further studies have

ought improvements of systems with both high temperature and

ressure inlets ( > 773 K, > 10 MPa). New numerical designs based

n the number of recuperators through the cycle, turbine outlet

ressure, separator inlet temperature and the separator inlet am-

onia mass fraction played an important factor to maximise cycle

fficiency up to 31.47% with an ammonia concentration of 80% [82] .

When the KC is integrated to other cycles such as the Rankine,

he system can be operated in various ways to provide power in

on-heating seasons and power plus heat during the winter, thus

llowing operation as either a Kalina cycle or an ammonia-water

ankine cycle (AWRC) [83] . Studies on these cycles have shown

hat increasing the ammonia mass fraction increases the total ex-

rgy destruction cost rate as well as unit cost of electricity pro-

uced by the turbine, showing the benefits of using an ammonia-

ater mixture [74] . 

Ammonia is also considered a good refrigerant, with high po-

ential for future use in domestic applications in addition to its

urrent large industrial use, i.e. in breweries and warehouses [84] .

ue to its low Global Warming Potential –relative heat trapped

y the gas compared to CO 2 - (GWP < 1 based on a 100 year time

orizon), high critical pressure and low Cp, some commentators

elieve ammonia could become one of the most used refriger-

nts of the future for small scale devices, especially if advances in

ixture can be combined with revolutionary heat exchanger de-

igns at microscale level [84–88] . Furthermore, recent studies have

sed the KC for power generation in combination with ammonia-

ater absorption refrigeration to cogenerate power and cooling.

he use of throttling valves, evaporators and removal of expan-

ible working fluid for cooling provided 14–49% higher efficien-

ies with 3.6–70 times higher generated cooling quantities, show-

ng that high ammonia mass fractions produce better performance

nd lower costs [89] . A similar study has been conducted with a

rayton-Rankine combined cycles to integrate ammonia-water re-

rigeration [90] . The study placed a particular emphasis on the ef-

ect of the ammonia condenser temperature on the plant perfor-

ance between summer and winter, i.e. from 313 to 278 K. Results

howed an increase in Coefficient of Performance (COP) and cool-

ng efficiency, with a net power output increase of ∼400 kW. This

s a consequence of the air leaving the evaporator of the system

t cooler temperatures. Low grade heating sources have also been

tudied through numerical and parametric analyses, showing that

ombination of power and cooling provide higher exergy efficien-

ies (available useful power) and net power outputs [91] . 

Cooling and power generation can also be combined to pro-

uce water heating through the use of ammonia-water mixtures,
s demonstrated numerically by Mohammadi et al. [92] who pro-

osed a plant capable of producing 30 kW power employing 8 kW

ooling with efficiencies above 67%. Similar studies have been con-

ucted to determine energy and exergy values for solar driven

ystems [93] , optimization of three-stage (Brayton, Rankine and

alina) combined cycle power systems [94] and flue-gas energy re-

overy from devices such as gas turbines, internal combustion en-

ines and high temperature fuel cells [95] . The cycle can also be

ombined with energy solutions such as gasification and solid fuel

ells, thus achieving high efficiencies > 58% with alternative energy

ources [96] . The results demonstrate that the use of ammonia-

ater cycles can not only increase efficiency, but also provide ver-

atility of operation at medium power outputs. 

Versatility of ammonia and its properties allow the chemical to

e used also as an organic fluid for power generation in Organic

ankine Cycles (ORC). Due to its properties, it has been compared

o other fluids such as R245fa, R236ea, isobutene, isopentane, pen-

ane, toluene to support energy production from the conversion of

enewable energy [97,98] . During some of the tests conducted to

evelop Ocean Thermal Energy Conversion (OTEC) systems, which

re essentially technologies based on platforms that generate en-

rgy through temperature differential to drive heat engines, the

se of ammonia as the working fluid has showed a higher work

apacity than other organic working fluids [97] . Therefore, the use

f ammonia in these technologies has increased over the years. It

ust be noted that although ammonia has the properties to allow

roduction of vapour to run turbines at low temperature differen-

ials [98] , the technology is still controversial in the sea due to the

oxic properties of NH 3 to water living organisms. 

Some futuristic designs have also considered the use of water

nd/or ammonia heat transfer cycles for smaller systems such as

ightweight space radiators [99] . Due to the heavy reliability on ra-

iator subsystems in space, increased efficiency coupled with re-

uced mass is of strategic importance in space thermal systems.

hus, this research showed that after evaluating various working

uids, the most promising design would be a carbon composite

eat pipe with a working fluid of liquid water or ammonia and

riangular fans. 

.2.2. Carbon capture and storage 

One way to increase energy efficiency is by improving combus-

ion processes that use fossil fuels. Thermal efficiencies have been

ncreased as a consequence of new materials and designs that al-

ow higher temperature combustion systems. These new properties

ave established fundamental concepts for more advanced tech-

iques that not only increase combustion efficiency but also are

apable of ensuring low carbon dioxide emissions as part of the

lobal commitment to tackle climate change. 

One of these techniques is the use of carbon capture and stor-

ge (CCS) systems via post-combustion capture. The concept is

ased on recovering CO 2 at the end of the gas turbine, once that

ower has been produced using conventional fuels [100–103] . For

his aim amine scrubbing is the main process in which aqueous

olutions of alkyl amines are used to react with carbon dioxide to

apture it from exhaust gases. Aqueous monoethanolamine (MEA)

s the most commonly used amine for scrubbing CO 2 [104] . The

table and reliable properties of monoethanolamine derive from

ts primary amine and primary alcohol composition. Thus, it has

een assessed for its use in fossil power plants to reduce carbon

ootprint. Since the CO 2 process is reversible, up to 80% of the

missions can be captured but through a highly energy intensive

rocess [105] . Another challenge for this technology is the low re-

ction temperature needed to increase the chemical reaction effi-

iency - since the CO 2 is released at elevated temperatures - re-

ulting in the requirement for flue gases cooling before scrubbing. 
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Fig. 13. Power plant with aqueous ammonia multi-pollutant control system [106] . Courtesy of NETL, USA. 
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One way in which capture efficiency can be increased is by us-

ing a low cost solvent capable of lowering the energy requirements

for regeneration whilst allowing higher CO 2 loading capacity than

that of MEA. Ciferno et al. [106] suggested the use of aqueous am-

monia as an alternative solvent, potentially increasing the CO 2 ca-

pacity and lowering parasitic loads by 15%, with a decrease of net

power plant heat rate of 15% compared to MEA, Fig. 13 . Moreover,

other compounds such as SOx, NOx and mercury could also be re-

moved along with ammonia, making it an attractive chemical for

multi-pollutant capture in power plants [107] . Aqueous ammonia

does not present the problem of absorbent degradation caused by

sulphur and oxygen in the flue gas, while MEA is susceptible to

this degradation [108] . Finally, MEA has a maximum absorption of

0.36 kg CO2 /kg MEA with a removal efficiency of 90% compared to

0.9 kg CO2 /kg NH3 and an absorption efficiency between 95% to 98%

for aqueous ammonia [109] . 

As amines share many material compatibilities with ammonia,

retrofitting an MEA scrubber for an ammonia system would be of

relatively low cost. Another benefit is the low cost of the ammo-

nia process compared to MEA, which is only ∼70% (67.3$/tonne v

86.4$/tonne) of the price of the latter in an ammonia market with

a decreasing cost trend, a consequence of the increased production

of ammonia from developing countries [110] . 

Although the use of ammonia as a carbon capture solvent is

possible [111] , there are challenges before industrial deployment of

this technology. For example, the temperature of the flue gas has to

be lowered for CO 2 absorption with ammonia that could vaporize

in the absorption towers, causing health and safety issues. Equally,

NH 3 reactions with CO 2 depend on pressure, pH and temperature,

making the application of ammonia carbon capture more flexible

but potentially more difficult to control than MEA processes. How-

ever, it is recognised that good progress can be achieved with even

further potential of improvement employing ammonia-based sys-

tems [110] . 

3.3. Fuel cells 

Recently, researchers have proposed a way of making it easier

and cheaper to run hydrogen fuel-cell vehicles by filling them with

ammonia. The ammonia can be stored easily in tanks similar to

those found in gasoline filling stations and then cracked using rel-

atively cheap sodium or lithium catalysts rather than the current
xpensive transition metal catalyst systems [112,113] . At the recent

RPA-E’s Summit [114] , Director Grigorii Soloveichik presented his

ision for future transportation using hybrid vehicles that com-

ine plug-in batteries and fuel cells. He presented the different

riving ranges of various sustainable fuels, emphasizing the poten-

ial of ammonia. In terms of energy density, liquid ammonia con-

ains 15.6 MJ/L, which is 70% more than liquid hydrogen (9.1 MJ/L

t cryogenic temperature) or almost three times more than com-

ressed hydrogen (5.6 MJ/L at 70 MPa). In terms of driving range, a

0.6 L fuel tank of ammonia provides a driving range of 756 km,

lmost twice the range of the same volume of liquid hydrogen

417 km) and three times the range of the same volume of com-

ressed hydrogen (254 km) [114] . 

Fuel cells (FC) using ammonia have also been studied exten-

ively for stationary power generation and as power sources for

ransport. Although most cells developed to-date are based on hy-

rogen as fuel, it is recognised that the storage of hydrogen for

uch purposes is still challenging and expensive. Thus, chemical

torage of hydrogen in other liquid fuels could provide a solu-

ion for high density chemical energy storage. Methanol, ethanol,

-octane, ammonia and methane are potential candidates to sup-

ly H 2 to these fuel cells. Therefore, the concept of integrated fuel

rocessor and fuel cell (FP-FC) has gained considerable attention in

he last decade. 

Investigations using ammonia, which undergoes thermal crack-

ng within a high temperature fuel cell to produce hydrogen

nd nitrogen at the anode [116] , have shown that the maxi-

um amount of work that can be obtained from ammonia is

0.33 MJ/mol NH3 , although if the work is calculated in terms of

he H 2 that can be obtained from the cracking of ammonia, the

aximum value is 0.22 MJ/mol CrackedH2 , a value that is similar to

ther more conventional fuels, i.e. methane, n-octane, methanol,

tc. [117] . Thus, ammonia can be used indirectly to produce the

equired hydrogen for energy production in fuel cells, as the am-

onia is cracked by the anode within the cell and thus there is

o need for a fore-line ammonia reformer [115] , Fig. 14 . There-

ore, ammonia, as a well-established fuel with decades of synthe-

is, handling and utilisation expertise across the world, started at-

racting significant attention as fuel for fuel cells during the last

ecade [118–123] . 

Moreover, ammonia fuel cells can also be used to recover waste

nergy from low temperature process streams. Zhu et al. [124] re-
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Fig. 14. Direct ammonia alkaline anion-exchange membrane fuel cell. Reprinted 

from [115] with permission from Electrochem Solid State Lett, IEEE. 
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Fig. 15. Configuration of the introduced ammonia-fuelled portable SOFC system. 

Reprinted from [118] with permission from J Power Sources, Elsevier. 
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orted that low-grade thermal energy can be converted into elec-

ricity using ammonia regenerative batteries. The batteries were

ssessed at different solution concentrations, flow rates, cell pairs

nd circuit connections to study their performance, which reached

 5% energy efficiency relative to the Carnot efficiency. As in other

uel cells, current could be increased using stacked cells, showing

hat the technology could be a promising option for future waste

ecovery. 

Therefore, this review highlights the considerable evolution of

uel cells technology over the past decade, suggesting that further

evelopments are highly likely and that fuel cell will remain a

lausible option for the use of ammonia for power applications. 

Fuel cells are categorized according to their operating condi-

ions and electrolyte material, with six major systems as follow

125] , 

• Alkaline FC 

• Phosphoric Acid FC 

• Solid Oxide FC (SOFC) 

• Molten Carbonate FC 

• Proton Exchange/Polymer Electrolyte Membrane (PEM) FC 

• Direct Methanol FC 

Another category that could fit into the molten systems is

olten Hydroxides [126] . 

.3.1. Solid oxide FC 

The relatively small size of FCs make them good candidates

or small scale energy production, i.e. distributed energy systems

uch as family homes, mobile applications such as cars and small

ommercial vehicles, small industrial processes, etc. For example,

ehicular applications of ammonia based fuel cells are currently

tudied by many research groups with a view to developing new

utomotive units via Solid Oxide FCs. Energy produced by vari-

us electrolytes has been studied, finding that proton-conducting

lectrolytes (SOFC 

–H 

+ ) have superior efficiencies to ion-conducting

lectrolytes (SOFC 

–O) [127–129] . This is confirmed in [130] where

OFC are shown to have significant advantages on combination of

nvironment-friendly power generation with fuel flexibility. 
For the use of combined heat and power applications in auto-

otive systems, Fig. 15 , it has also been recognised that SOFC 

–H 

+ 

ystems can reach efficiencies in the range of 40–60% and exergies

f 60–90% based on the conditions of operation. Moreover, reduc-

ion in cost, size and operating temperature demonstrate that the

echnology has a future in transportation [131] . However, loss of

he exergy in SOFCs remains a significant technological challenge

nd the efficiencies are highly dependent on temperature varia-

ions [116] , requiring further research in this topic to make the

echnology competitive to other ammonia-based systems. 

The advantages of FCs have allowed some researchers to inte-

rate FCs in other energy production units creating hybrid systems

hat produce energy in the ∼kW range. For example, simulations

f a system using solid oxide fuel cells and a Stirling engine for

 bottoming cycle in a power plant were conducted using ammo-

ia as main fuel [132] . It was found that the simplest design was

chieved using ammonia as it can be directly fed into the fuel cell

nlike other potential fuels such as natural gas, DME, ethanol and

ethanol which required fore-line reforming. It was found that it

as sufficient to preheat NH 3 to the desired inlet temperature of

23 K with no requirement for desulphurisation or pre-reformer

eactors. However, the efficiency of the total hybrid cycle using

mmonia was the lowest (57.9%) due to the higher mass fuel flow

ates, lack of reformers to increase operating temperature and less

nergy for the bottoming cycle. Similarly, the reduction of inlet

emperature showed minimum changes using ammonia compared

o all the other fuels. The results for the solid oxide fuel cell using

mmonia were similar to those from other sources that showed ef-

ciencies ∼50% [116] . Other studies carried out by Wei and En-ke

133] demonstrated that the use of ammonia to fuel SOFC provides

ore sustainable energy production than the use of gasoline, diesel

nd even hydrogen in a driving range of 100 km. 

Other researchers have also worked in improving the perfor-

ance of ammonia based fuel cells using various materials and

lm configurations to increase currency at lower degradation rates.

iu et al. [134] used Scandia-stabilized Zirconia (SSZ) based thin

lms to obtain high power output performance from ammonia,

howing that ammonia generated higher power densities than hy-

rogen based FCs at particular temperatures (973 and 1023 K).

imilar work was performed by Zhang et al. [135] and Ma et al.

136] who demonstrated that at 1073–1123 K Yttria-stabilised Zir-

onia (YSZ) thin films running on ammonia had a comparable per-

ormance to those obtained from using hydrogen as a fuel, with

he cell fuelled by ammonia displaying the same electrolyte resis-

ance but a slightly larger interfacial polarization resistance [136] .

oreover, Fuerte et al. [137] demonstrated that such a cell has

n internal resistance that behaves independent of the used fuel

nd that only slight differences exist in polarization resistance and
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Fig. 16. SEM micrographs of a cross-section of an YSZ tested cell. Left) Anode/electrolyte and, right) electrolyte/cathode. Reprinted from [137] with permission from J Power 

Sources, Elsevier. 
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low current density at 973 K, probably due to a slower ammo-

nia decomposition at this temperature. Experiments demonstrated

that no severe changes or deterioration to cell performance were

observed after long operation periods, Fig. 16 . Other researchers

[138] carried out experiments with a fuel cell that incorporated

nickel and a doubly doped barium-cerate electrolyte and an anode

of europium doped barium cerate. The activity of the fuel cell was

reported to be superior to other catalysts, with results that sug-

gested that ammonia could be used as a fuel at temperatures as

low as 723 K. 

Xie et al. [139] reported the development of a number of dif-

ferent electrolytes amongst which BaCe 0.9 Nd 0.1 O 3 −δ (BCNO) pow-

ders were deposited as a thin layer on NiO-BCNO anodes with La 0.5 

Sr 0.5 CoO 3 −δ used as cathodes. These cells were tested with am-

monia and hydrogen and their results showed good performance

with ammonia, with a power density of 3150 W/m 

2 compared to

3350 W/m 

2 produced when using H 2, and both producing voltages

of ∼0.95 V. Similar work has been carried out by other institutions

using other ceramic composites [140–143] and ammonia blends

[144] demonstrating that efficiencies of the fuel cell can increase

up to 30% depending on the blend’s lower heating value as well as

material properties. 

Some studies have developed thermo-electrochemical analyses

using 2D Computation Fluid Dynamics (CFD) models in order to

determine the performance of ammonia-fuelled SOFCs. The studies

considered reactions and heat and mass transfer, finding that the

decomposition of ammonia greatly increases at high temperatures

above 970 K and has a significant impact on the electrical output of

the fuel cell. Moreover, inlet temperatures were found to influence

the performance of the device, with higher temperatures decreas-

ing the electrolyte Nernst potential. Although a higher inlet tem-

perature is desirable to achieve higher electric outputs, the results

suggest that careful consideration is required to determine the in-

let temperature into the system. The simulations carried out sug-

gested that a decrease in operating potential can increase fuel uti-

lization considerably by reducing negative temperature gradients

and that a reduction in inlet gas velocity was an effective method

to reduce the temperature gradient produced by the decrease in

ammonia decomposition. Further analyses on SOFC technology can

be found in the comprehensive review by Afif et al. [125] . 
o  
Most recent achievements have been attained using SOFCs. Ky-

to University announced a new device able to produce power out-

uts of one kilowatt. The device attained “direct current power

eneration efficiency” in excess of 50% and reached 1,0 0 0 hours

f continuous operation [145] . Although the report claims that this

s the most powerful device of its type, the longevity of the de-

ice is also of note. The group has been working with nickel based

aterials [146] , and zirconia, which although inferior to gadolinia

t the time, was taken forward probably as a consequence of its

urability. This fuel cell uses direct supply of ammonia, demon-

trating that the power generated from ammonia was at the same

evel as the one using hydrogen. Previous studies performed by

he group tested different types of ammonia SOFCs, thus provid-

ng further data for this development [147] . Kyoto University also

nnounced the use of auto-thermal cracking devices to modulate

he power production of these fuel cells, demonstrating the pos-

ibility of high-speed activation without using external heating of

H 3 -based SOFC. 

.3.2. Alkaline FC 

Alkaline FC have also been studied over the years, with works

hat go back to the 1960s [125] . Experimental trials [148] have

emonstrated that in contrast to acid PEM fuel cells, alkaline FC

an tolerate ammonia. Because of the simplicity of the conversion

eaction and the absence of carbon monoxide and carbon diox-

de, hydrogen produced by ammonia cracking is ideal to fuel al-

aline fuel cells. Thus, new programs of development have started

n various parts of the world. Specifically, The Alkammonia Project

ims to test the efficiency of alkaline ammonia-fed fuel cells in

roviding power in remote areas for telecom base stations, usu-

lly powered by diesel engines [149] . These types of projects are

ssessed by groups such as Cox et al [150] who recently carried

ut Life Cycle Assessments for Alkaline Fuel Cells (AFCs) fuelled

ith cracked ammonia including all the components of these de-

ices and comparing them to diesel engines, Fig. 17 . The results

uggest that recycling of components can have a relatively small

mpact on costs, but further research is required on improving cell

ifetime, power density and fuel consumption. It should be em-

hasized that the results are highly dependent upon the source

f ammonia used (either reforming, electrolysing, partial oxidation

r biomass gasification). Studies like these are extremely scarce,
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Fig. 17. Alkammonia system schematic. Reprinted from [150] with permission from J Power Sources, Elsevier. 
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aking them now a priority to move forward in the deployment

f large scale projects using ammonia. Some other developments

ave been presented through the years, with specific emphasis on

sing alkaline fuel cells for transport applications. The work done

y the group of Kordesch et al. and the Argonne National Labo-

atory [151] has led to the development of AFCs capable of being

mplemented in cars such as the Silver Volt, where high efficiency

99.99% conversion) cracking devices are employed to fed the for-

er, allowing a 386 km range with only 80 L of ammonia. 

Other research has allowed the use of alkaline media to di-

ectly electro-oxidize in AFCs some chemical compounds that are

igh-energy density chemical hydrogen storage fuels such as boron

ased materials, one in particular containing ammonia is ammo-

ia borane (AB), material that has a standard theoretical potential

f 1.615 V, higher than other fuel cell fuels. Nickel based carbon-

upported electrocatalysts such as Ni 3 Co/C are showing their po-

ential and greater stability compared to platinum or palladium,

specially when it comes to use AB oxidation. Thus, the use of Al-

aline Fuel Cells has also an important role to play in progressing

o a hydrogen through ammonia economy, especially since costs

re lower to other technologies such as PEM [152] . 

.3.3. Molten hydroxide FC 

Direct ammonia-fuelled molten hydroxide fuel cells [126] have

ecently received fair attention for the use of ammonia. The suc-

essful electrochemical oxidation of ammonia using these devices

as confirmed, with constant reactions maintained at 473–493 K

sing flows of 97% ammonia purity over Pt electrodes. Although

he feasibility of direct ammonia fuelled FCs was confirmed, these

ystems still require further development due to their low perfor-

ance when compared to more mature technologies. Further re-

earch performed by Lomocso et al. [153] and Assumpcao et al.

154] suggest that the use of other materials such as Iridium in

ombination with Pt could considerably increase the performance

f these devices, although this simultaneously increases their cost. 

.3.4. Proton exchange membrane FC 

The use of Proton Exchange Membrane (PEM) FCs has gained

onsiderable interest in the generation of small scale power

 ∼5 kW) over the last decade. These systems require a clean hy-

rogen source. Since production of hydrogen from reforming pro-

esses is complex, ammonia has been presented as a potential al-

ernative due to the null existence of carbon molecules that can

oison the anodes of the fuel cell [155] . For fuel cells, ammonia

eeds to be almost completely decomposed ( > 99.5%) at around

tmospheric pressure, a process that requires high temperatures
or both thermodynamic and kinetic reasons. Studies of the reac-

ions that occur between ammonia and hydrogen using different

atalytic materials have received considerable attention. The reac-

ions that occurs between 793 and 963 K using Ni-Pt/Al 2 O 3 were

valuated by Chellappa et al [155] , who found that the activation

nergy for the conversion is much higher than reported previously,

mphasizing that a rate expression that is first-order with respect

o ammonia provide good predictions at high temperatures and

ressures, with inhibition probably caused by the existing hydro-

en in the reaction. Other materials such as ammonia-borane are

ontinuously presented as the closest option for delivery of hydro-

en from ammonia decomposition to automotive power fuel cells

156–159] . Various methods for decomposition of ammonia have

lso been documented and patented to obtain pure hydrogen in-

uxes for PEM fuel cells. These vary from micro-reactors consisting

f an array of alternative catalytic plate channels [160] , multi-stage

xed bed membrane reactors (MSFBMR) [161] , micro-reformers ca-

able of using conventional fuels for heat transfer improvement to

issociate ammonia intro hydrogen [162] , etc. Light metal imides

i.e. lithium imide, Li 2 NH) have also demonstrated their effective-

ess to decompose almost completely ammonia into hydrogen, en-

bling the development of prototypes that can operate at temper-

tures from 773 to 863 K, Fig. 18 [163] . 

Unfortunately, ammonia residuals can have a detrimental effect

n PEM FCs, as the compound contaminates the membrane array,

nherently reducing efficiency [164,165] . As suggested by Uribe et

l. [164] ammonium ions (NH 4 
+ ), the product of ammonia with

rotons occupy charge sites in the PEM causing decrease of over-

ll proton conductivity. Zhang et al. [165] proved that some of this

ontamination can be reversed, although permanent damage is ob-

erved on the membranes. Halseid et al. [166] showed that con-

entrations as low as 1 ppm of ammonia can significantly reduce

he efficiency of PEM FCs in a relatively short period of time. Thus,

lthough the technology is readily available with considerable po-

ential for small powering applications, care needs to be taken to

void contamination from un-decomposed ammonia, subject that

equires the study of further materials to increase resistance and

urability. 

.4. Combustion based technologies 

.4.1. Reciprocating engines 

As previously depicted, ammonia can also be used as fuel for

nternal combustion engines (ICE) and for compression or spark

gnition units. Similar to other alternative fuels such as ethanol,

ethanol, hydrogen and gasoline/diesel blends, the high octane of
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Fig. 18. a) Experimental setup for a cracker using metal imides and b) System overview. Reprinted from [163] with permission from J Power Sources, Elsevier. 

Fig. 19. Gazamo system and ammonia-equipped motor bus, respectively [168] . Courtesy of the Energy Institute. 
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ammonia ( ∼130) can improve combustion properties and reduce

undesirable effects such as knocking [167] . However, it must be

recognised that due to the corrosive nature of ammonia, compo-

nents made out of brass or copper must be removed from the sys-

tem in order to avoid operability issues. 

The use of ammonia as vehicular fuel for motorised applica-

tions goes back as far as 1822 with a proposal from Sir Goldswor-

thy Gurney [69] where he developed an engine to drive a small

locomotive. However, it was not until 1905 that the first small

scale motor was developed by Ammonia Casale Ltd., who took out

patents in Italy in 1935 and 1936 [168] . As early as 1933, Norsk

Hydro operated an internal combustion engine vehicle on hydro-

gen produced from on-board reforming of ammonia [169] . Other

devices followed with minor success. During World War II the

scarcity of fossil fuels in some regions led to the search for al-

ternative fuels for use in public transportation. The lack of diesel

in Belgium in 1942 led to the consideration of first compressed

coal gas, and then ammonia. Ammonia Casale was commissioned

to implement their new patent based on a process that employed

compressed gas and ammonia to replace diesel in the Belgian bus

service. The so-called Gazamo process, Fig. 19 , was implemented
P  
n ∼100 vehicles and continued until diesel fuel became plentiful

gain [168] . 

In the 1960s, further developments ensued in the quest for al-

ernative fuels for IC-Engines, driven by new environmental leg-

slations and early signs of the energy crisis which would impact

n Western economies the following decade. Development work

n spark ignition reciprocating engines, fuelled by ammonia, was

ndertaken for military applications, as conventional engines had

een shown to perform poorly with pure ammonia. In order to im-

rove performance, propositions included increasing spark energy,

ompression ratio, supercharging the engine and adding hydrogen

nto the fuel through dissociation of NH 3 [170–172] . These develop-

ents showed that ammonia needed to be vaporised with at least

–5% (by weight) H 2 for good performance. 

Use of IC engines also received considerable attention during

his period [173–175] . Ammonia vapour and liquid ammonia were

tudied in diesel and spark ignition engines respectively, at high

ompression ratios. Although the tests at 30:1 compression ratio

sing the spark ignition engine were unsuccessful, the results us-

ng ammonia vapour and diesel (for ignition purposes) generated

ptimism for the success of using ammonia as fuel in IC engines.

erhaps surprisingly, very little research and development was un-
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ertaken during the 1970–80s in this field. The literature concern-

ng development of ammonia based engines is very sparse during

his period, with the exception of the AMC GREMLIN at the Univer-

ity of Tennessee in 1974 [176] . The field experienced a revival in

he 1990s, followed by a considerable increase in publications from

004 onwards, with the first ammonia conference in the USA. 

Commercially, ammonia fuelled ICEs have attracted the atten-

ion of various companies and countries around the world as a

romising technology that could contribute to a sustainable fu-

ure. For example, Boothroyd [177] recently proposed the use of

mmonia storage from stranded energy resources in rural areas

o power large scale manufacture near cities for Australia. Since

mmonia distribution is still conducted in Australia by trucks, it

as been proposed to replace long distance trucks by a fleet of

mmonia-inflated airships. Similarly, Leighty [178] proposed the

se of stranded, renewable energy sources in Alaska to produce

mmonia that can be used as fuel for ICE/Fuel Cells/GTs for on-

emand energy production and transportation. 

Analyses of the feasibility of ammonia as a sustainable fuel

n internal combustion engines based on thermodynamic perfor-

ance, system effectiveness, driving range, fuel tank compactness

nd cost of driving have also been performed [10,11] . Not surpris-

ngly, the studies concluded that to make ammonia a viable fuel in

CEs, ammonia needs to be mixed with other fuels as combustion

romoters due to ammonia’s low flame speed and high resistance

o auto-ignition. This was confirmed from previous studies where

 dual-fuel approach was usually chosen to implement ammonia

ombustion in IC engines [179,180] . These works and others car-

ied by Liu et al. [181] showed that ammonia fuelled engines have

ow power losses, no more corrosion and no more lubricant con-

umption than conventional fuels. 

Thus, due to the high interest in developing this technology,

atents and commercially available units for transportation are un-

er test evaluation for commercial release in the near future. A

ood reference to previous ammonia patents dating back to 1937

an be found in a patent submitted by Caterpillar Inc. in 2008 for

n engine fuelled using ammonia [182] . Specific to this particu-

ar patent, ammonia has been used as primary fuel with electrical

upplements to the mechanical power to drive a new power sys-

em capable of providing good combustion efficiency. The publica-

ion Ammonia Energy has recognised other stakeholders in the de-

elopment of ammonia fuelled engines, separating them into three

ategories [183] : 

1) Spark Ignition carbon based dual fuels, i.e. Biogas International

(Italy), the Savia Coalition (Italy), Green Transportation Technol-

ogy Group (South Korea), Xiamen University (China), etc. 

2) Compression Ignition carbon based dual fuels such as Sturman

Industries (USA), Hydrofuel Inc (Canada) and Iowa State Univer-

sity (USA) 

3) Hydrogen doped ammonia engines, i.e. Toyota (Japan), Siemens

(UK), etc. 

.4.1.1. Ammonia blending with carbon based fuels. As previously

resented, doping ammonia with other fuels has been considered

ne of the best solutions to improve ammonia combustion in ICEs.

t has been demonstrated [184,185] that high performance can be

chieved using ammonia/gasoline fuelling, a three-way catalytic

onverter capable of cleaning emissions under stoichiometric and

ich conditions over short and long distances [186] . Replacement of

iesel with diesel/ammonia has also been attempted [187] show-

ng promising results with modification to current diesel engines.

ome of the results demonstrated that peak engine torque could be

chieved by using different combinations of diesel and ammonia,

ith a monotonic CO 2 reduction for the same torque output for

ystematic NH increase. Additionally, lower NOx emissions were
3 
easured for ammonia fuel mixes not exceeding 60% NH 3 [188] .

ombinations such as gasoline/ammonia and ethanol/ammonia

189] , ammonium nitrate/ammonia [190] and even pure oxygen us-

ng 100% ammonia [191] have been also attempted, showing that

hese fuel mixtures can provide elevated power outputs under sta-

le conditions, although mainly conditioned by the NOx emissions

roduct of the combustion process. 

Direct gaseous ammonia injection has also been assessed in re-

ent studies by Ryu [192] who showed a high correlation between

he timing and duration of the injection of ammonia in a spark-

gnition-engine. It was noted that the injection timing should be

n the range of 320 to 370 BTDC for gasoline-ammonia fuel mixes.

ue to slow flame-speed propagation of NH 3 , the engine efficien-

ies were observed to be lower than the baseline performance. Fi-

ally, it was found that the emissions were slightly reduced for

ome species, i.e. carbon monoxide, though accompanied with an

ncrease in NOx and NH 3 , as expected. Similar work has focused on

lends of ammonia with commercially available emulsifiers such

s ethanol or methanol that can enhance solubility of the blend

193] . Results proved that pure, liquid phase gasoline is capable

f dissolving only 4.5% (vol) of ammonia at 345 kPa and 286.65 K,

hile the use of 10%(vol) of ethanol or methanol increased the sol-

bility of ammonia to 11% (vol). Further studies showed that gaso-

ine with 30% ethanol or methanol can retain up to 17.35%(vol)

mmonia [194] . At higher engine speeds, better engine perfor-

ances in terms of increased torque and power output were ob-

erved for ammonia rich fuels compared to those for pure gaso-

ine fuels. Thus, it was concluded that hydrogen can be stored as

n ammonia-gasoline fuel blend and successfully recovered with-

ut major modification to the existing infrastructure of the engine

195] . 

One of the most interesting new concepts for ammonia fuelled

ngine technology is the AmVeh, Fig. 20 , developed by the Korean

nstitute for Energy Research (KIER), which is to convert existing

ehicle fleets into 70% NH 3 -30% gasoline vehicles [196] . The de-

elopers have converted an LPG-gasoline unit by adding a con-

rol system and removing the corrodible, copper containing met-

ls - specifically the so-called ‘yellow metal’ high zinc brass. If the

ystem was installed across 20% of the current Korean fleets, the

ountry could reduce CO 2 emissions by 10 million tons annually,

hus aiding their future targets on climate change mitigation. 

Numerical simulations of co-fuelling reciprocating engines with

mmonia have also been conducted to determine best operating

onditions of industrial and transportation engines. Zhong et al.

197] used CFD analyses to model compression ratios, air inlet tem-

eratures and air/fuel ratios using ammonia with n-heptane. The

esults demonstrated that compression ratios of 16:1 and inlet air

emperatures of 800 K allow ignition of ammonia blends through

ompression. Moreover, it was shown that as n-heptane increases,

he ignition temperature required reduces from 800 to 360 K. A

ery comprehensive compilation of data has been gathered by Din-

er et al. [198] with regards to co-fuelling ammonia blends for

iesel locomotives using integrated heat recovery, hydrogen pro-

uction and emission reduction subsystems. Economic considera-

ions such as carbon-tax rates and fuel costs were considered. Fur-

her work has compared a conventional diesel-electric locomotive

hrough energy and exergy efficiency, fuel consumption and envi-

onmental impacts. Results showed that a blend with 50% of fuel

nergy supplied by ammonia can improve heat recovery with a

light increase in energy and exergy efficiencies. Moreover, there

s a considerable reduction of greenhouse gases of up to 53% with

ollutant production (NOx, CO, particulate matter, hydrocarbons)

elow the standards required by 2012–2014 [35] . 

Dimethyl ether (DME) fuels were also assessed using liquid

mmonia–DME mixtures in a compression-ignition engine with a

irect-injection strategy. The cost analysis showed a comparable
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Fig. 20. AmVeh car (top right). Ammonia based engine for transportation in South Korea [196] . Courtesy of NH3 Fuel Association. 

Fig. 21. Range of test conditions using different fuel mixtures. Reprinted from 

[199] with permission from FUEL, Elsevier. 
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fuel energy cost to diesel fuel with ammonia/DME, although the

inclusion of ammonia in the fuel mixture was shown to increase

CO, HC and NO x emissions, with lower power outputs, Fig. 21

[199] . Although injection strategies were developed to enable the

use of ammonia-DME in direct-injection compression-ignition en-

gines [200] , the corresponding engine performance was also linked

to increased CO, HC and NO x emissions, thus suggesting that post-

exhaust treatment would be required for these systems. 

As for all combustion systems, emissions from ammonia com-

bustion play a crucial role in deployment; thus dedicated research

has focussed in this area. Further investigations [201] depicted

gasoline–ammonia combustion in a spark-ignition engine in terms

of the combustion characteristics and exhaust emissions with di-

rect injection. CO emissions were found to decrease but emissions

of NO x and hydrocarbons were increased with ammonia, as ex-

pected due to the high nitrogen content of the ammonia molecule.

Notwithstanding the emissions challenges, however, direct injec-
ion of gaseous ammonia with carbonaceous fuels was proven to

e feasible in engine combustion. 

.4.1.2. Ammonia and hydrogen. Of particular interest is the use of

ydrogen in the ammonia blends, as the molecule can be recov-

red through splitting of ammonia, with the previously stated im-

rovements in combustion performance. Studies show that ammo-

ia can be blended with hydrogen at levels as low as 5% H 2 [202] ,

till providing good power response. Higher doping ratios have also

een deployed [203] , showing, for example, that 10% hydrogen ad-

ition provided optimum efficiency and effective power, Fig. 22 .

igh NOx emissions were present under lean conditions, thus sug-

esting the need for selective catalytic reduction (SCR) of exhaust

ases under these conditions. 

Further studies of reciprocating engines have also been ex-

ended to more commercial applications in Italy, where implemen-

ation of ammonia ICE technology has been performed by DESTEC

n Pisa [204,205] , showing good results for the conversion of a

ombardi 505 cm 

3 gasoline engine into a hydrogen/ammonia sys-

em for waste collection buses. Liquid ammonia contains 1.7 times

s much hydrogen as liquid hydrogen itself [206] . Thus, studies

erformed by Koike et al demonstrated that an ammonia tank

1 MPa) contains 2.5 times as much energy as a hydrogen tank (at

0 MPa) by volume, i.e. a hydrogen tank of 770 L (350 kg) could

e replaced by an ammonia tank of 315 L (172 kg). Further anal-

ses on storage capacity systems demonstrated the superior per-

ormance of ammonia storage capacity for transportation purposes

167] , Table 5 . Consequently, the smaller tanks required for liquid

mmonia were presented as a commercial opportunity for the lo-

al Region of Tuscany [204] . 

The only mechanical modification to the engine required the

ddition of electro-injectors for hydrogen and ammonia to the in-

ake manifold [207] . One of the main features of these devices was

he development of a new patented device capable of cracking am-

onia into hydrogen and nitrogen at the concentration required

or the engine [206] . The experimental results confirmed the need

o dope the ammonia blend with hydrogen and that observed

rake power was less than that for gasoline as a consequence of

he poor heating value of the mixture. The maximum observed

Ox emission was 0.003 g/kJ at half load and 4500 rpm, without

atalytic reduction [207] . Similar thermal ammonia reformers have
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Fig. 22. Performance plots. Plots showing the indicated efficiency versus excess air ratio and the ammonia/hydrogen mixtures at 6.23 Compression Ratio (CR) and 10 CR, 

respectively. Measurements conducted at 1200 RPM. Operability ranges can be presented using these plots. Reprinted from [203] with permission from FUEL, Elsevier. 

Table 5 

Status of storage capacity. Data from [167] . 

Compressed H 2 (70 MPa) Liquified NH 3 (1 MPa) 

Gravimetric – capacity (wt%) – energy density (MJ/kg) 3.5 - 4.2 70 - 13 

Volumetric – capacity (kg/L) – energy density (MJ/L) 0.024 - 2.9 0.380 - 7.1 
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een also evaluated by other research groups to obtain hydrogen

o increase the reactivity of an ammonia fuel blend [167] , showing

hat a 40% hydrogen fraction improves combustion properties close

o those observed for gasoline. 

Recent studies [208] evaluate the implementation of hybrid sys-

ems. Developments show two systems using ammonia-hydrogen

uel for either an internal combustion engine or a combination of

n ICE with PEM fuel cells to power a vehicle, Fig. 23 . The study

as performed with and without dissociation of ammonia. The

esults from the theoretical study show that the amount of ex-

rgy that is recovered using ammonia dissociation (i.e. hydrogen)

re considerable, i.e. 16.4% and 13.1% for the ICE and the ICE-PEM

ystems respectively, consequence of the added hydrogen coming

rom the dissociation unit. Thus, the use of hydrogen from cracked

mmonia is highly beneficial when compared to pure ammonia in-

ection. It must be emphasized that integration of heat recovery for

issociation units played an important role in improving these sys-

ems, concept that can be expanded to other combustion technolo-

ies to increase efficiency while minimizing exergy destruction. 

Regarding emissions, research groups have investigated mecha-

isms governing the nitrogen based emissions in a NH 3 /H 2 fuelled

I-engine [209] . Applications with flue gases exhaust treatment

howed lower levels than legally required when a SCR catalyst was

sed to eliminate all NO x emissions. Gill et al. [210] compared the

ombustion and emissions characteristics of using H 2 , NH 3 and

issociated NH 3 as a dual fuelling approach with diesel fuel in a

ompression-ignition engine. The study showed that pure NH 3 per-

ormed better than dissociated NH 3 at high load in terms of engine

tability and brake thermal efficiency -possibly a consequence of

ncreased heat loss from the combustion chamber, changes to com-

ustion characteristics and changes to the efficiency of H 2 combus-

ion under different loads and concentrations-, while at low loads

he fuels behaved similarly, although it should be noted that using

issociated NH 3 was found to have lower exhaust NH 3 emissions

nd significantly low N 2 O formation compared to un-dissociated
p

H 3 addition. Other advanced technologies such as Homogeneous

harge Compression Ignition (HCCI) have also been used to deter-

ine their impact on the performance and reduction of emissions

hile using hydrogen-ammonia blends [211] . Trials were expanded

o the use of Exhaust Gas Recirculation (EGR) which showed a con-

iderable decrease of NOx consequence of reduced oxygen avail-

ble for combustion. However, it was also recognised that the pro-

uction of N 2 O increases at low temperatures, thus suggesting that

peration using HCCI fuelled with ammonia-hydrogen blends is

easible and low polluting as long as combustion temperatures are

bove 1400 K while using EGR for NOx mitigation. 

In terms of emissions, all modern combustion vehicles are now

equired to operate SCR catalyst systems and/or fuel additive sys-

ems to reduce nitrogen oxides to N 2 gas. Interestingly, these sys-

ems work through the addition of chemicals that decompose to

mmonia, and ammonia then reduces the NOx within the gas flow

ccording to the following equations; 

NO ( g ) +4N H 3 ( g ) + O 2 ( g ) → 4 N 2 ( g ) +6 H 2 O ( l ) (2) 

N O 2 ( g ) +4N H 3 ( g ) + O 2 ( g ) → 3 N 2 ( g ) +6 H 2 O ( l ) (3) 

 O 2 ( g ) +NO ( g ) +2N H 3 ( g ) → 2 N 2 ( g ) +3 H 2 O ( l ) (4) 

Therefore, NOx emissions from ammonia fuelled combustion

evices may be mitigated in a similar fashion. However, it should

e noted that for devices fuelled by ammonia a ready reservoir of

mmonia for NOx reduction will exist and therefore it may be pos-

ible to design ammonia fuelled systems that do not require sec-

ndary exhaust clean-up or high cost catalyst systems to achieve

mission free exhaust. Furthermore, ammonia combustion is often

mproved through preheating or partial decomposition of the am-

onia prior to combustion and it may be possible to parasitically

se the waste heat from exhaust systems to pre-heat or decom-

ose ammonia while simultaneously removing NOx pollutants. 
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Fig. 23. Schematic diagrams of ICE’s without (left) and with (right) PEM fuel cells. Reprinted from [208] with permission from Int J Hydrogen Energy, Elsevier. 
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In summary, clearly further research developing internal com-

bustion technologies fuelled by ammonia is necessary. There is

now increasing interest in these systems and considerable compe-

tition to produce the first commercially viable devices. However,

as described previously, the challenge of reducing further NOx and

unburned ammonia remains at the heart of this research and tech-

nological field. 

3.4.2. Gas turbines 

The gas turbine is another power-generating device which of-

fers the potential benefits through ammonia fuelling described ear-

lier. Hence, a gas-turbine combustor that burns a combination of

NH 3 and other fuels with controlled emissions and combustion

characteristics is highly desirable. Studies that have contributed to

improving understanding of ammonia fuel blends for gas turbine

power generation are summarised in this section. It is noted that

this is an immature field, with relatively few publications concern-

ing the development of ammonia gas turbines. 

Early research on the development of ammonia fuelled gas tur-

bine combustion systems was undertaken during the 1960’s [212–

214] . Those studies demonstrated that ammonia’s ignition energy

was considerably higher compared to fossil fuels due to the low

reactivity of ammonia. Moreover, at stoichiometric conditions, the

quenching distance for ammonia-air (6.7 mm) was 3.5 greater than

for propane, with ammonia burning at narrower equivalence ra-

tio ranges [213] . However, it was also found that dissociation of

ammonia could produce faster flames, which could attain simi-

lar properties to some common hydrocarbons. Thus, it was con-
luded that 28% dissociated NH 3 could be used as a substitute fuel

n gas turbine combustion systems sized for hydrocarbon fuels.

urther experiments demonstrated that the fundamental problem

ith ammonia-air as a turbine fuel is the relatively slow chemical

eaction rate, giving a laminar burning velocity of ∼0.06–0.08 m/s

215] . As air flow is reduced to allow sufficient residence time

or the reaction to progress, diminished Reynolds number effects

ead to reduced turbulence and hence less effective mixing, which

n turn decreases combustion efficiency [214] . Other studies have

een conducted to demonstrate the concept of using ammonia as

n engine fuel, with success in terms of power production that un-

ortunately fell short in terms of emissions performance for NOx

216,217] . 

In the 1960’s, Solar and UC Berkeley investigated a 250HP T-

50 (Technical Report DA-44-009-AMC-824(T)) single can ammo-

ia burner turbine [46] . Performance of the engine using vapour

H 3 was found to be similar to JP-4. Initially, using ammonia in-

ection at 2.35 times that of hydrocarbons provided cooler turbine

nlet temperatures at similar power conditions. However, when

urbine inlet temperatures were matched to those of hydrocar-

ons, ammonia provided 10–20% increase power with high effi-

iencies. In 1991, the Italian power generator ENEL undertook a

esearch program that included ammonia for power generation.

heir conclusions led to positive power production performance

hat was compromised by the high emission of NOx [218] . Grcar

t al. [219] combined experimental and modelling investigations of

mmonia chemistry in a hot combustion environment below adia-
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Fig. 24. Test rig, SPG Advanced Propulsion and Energy [46] . Courtesy of NH3 fuel association. 
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atic flame temperatures. The final products of NH 3 oxidation re-

ained sensitive to mixing even at temperatures below those of

elf-sustaining flames. At these low temperatures, NH 3 oxidation

ccurred in a premixed reaction zone, as sufficiently high temper-

tures led to the development of a non-premixed reaction zone

hat produces significantly less NO than the equivalent premixed

ystem developed, effect potentially caused by the recombination

f ammonia with NOx products and the absence of OH radicals es-

ential for the production of emissions. 

More recently, a number of different approaches have been

ursued to use ammonia as a flexible fuel in gas turbines, with

ost of them finding that emissions are the main limitation of

uch technologies [220] . SPG Advanced Propulsion and Energy

46,220] is one of the few companies claiming to be close to devel-

pment of commercial systems, Fig. 24 . They have presented series

f papers that have summarised the main challenges for the devel-

pment of a reliable technology. These are: a) Lower flame temper-

tures and slower kinetics of NH 3 ; b) unstable combustion; c) re-

iable ammonia vaporization to improve efficiency; d) pre-cracking

f the molecule required to increase flame speed and burning ra-

ios. 

Swirl stabilised combustion of ammonia with other molecules

as briefly been analysed at the University of Iowa by Meyer et al.

221] in a 40 kW burner, with nozzles, swirl stabilisers and a self-

ustained heat exchanger. Stabilisation was achieved using differ-

nt swirlers with different concentrations of ammonia, hydrogen

nd methane. For those experiments where ammonia and hydro-

en were mixed, it was found that the use of a flame holder in-

reased the combustion efficiency, with a demonstrable reduction

n NO X emissions, possibly as a consequence of recombination of

pecies (NOx and unburned ammonia). 

The Fukishima Renewable Energy Institute (FREA), has devel-

ped fuel flexible platforms to burn liquid NH 3 produced from re-

ewable sources, i.e. wind and solar, in combination with kerosene

n a 50 kW micro-gas turbine, Fig. 25 . Diffusion combustion has

een employed in the prototype by-fuel combustor due to its flame

tability and it has been demonstrated that the equipment can be

un using ammonia-kerosene blends at different concentrations. 

The gas turbine was started with kerosene that was replaced

y ammonia and an output power of 17 and 21 kW was achieved

ith 38% and 30% replacement of kerosene by supplying NH 3 ,

espectively. However, the production of NO X increased consider-

bly based on the amount of ammonia injected, reaching levels

p to 600 ppmV. The NOx emissions challenge for ammonia fu-

lled turbines has been investigated since the first development

f the technology. Currently, the best solution is the use of selec-
ive catalytic converters (SCR) to reduce the emissions produced

y a micro-gas turbine up to levels of 10 ppmV [222–224] . Fur-

her works on this system have been performed using other blends

uch as ammonia-methane blends, and the implementation of rich-

ean combustion systems for NOx reduction has also been demon-

trated with good performance and the reduction of emissions to

alf of those measured without this combustion technique [225] .

ther findings [226] show that additions of hydrogen can improve

ame stability and mitigate even further NOx production, encour-

ging the use of ammonia for power generation at low nitrogen

xide concentrations. 

Other potential beneficiaries of the research undertaken include

he steel industry where ammonia is available as a waste prod-

ct which could be considered as fuel to be used in co-fired low-

ressure furnaces, for example. Co-firing could be achieved us-

ng ammonia and methane/hydrogen to support power produc-

ion of high energy intensive industries. With that aim, groups at

ardiff University (UK) and Tohoku (Japan) are currently investigat-

ng the development of new gas turbine combustion systems ca-

able of providing large power quantities with low emission rates.

he work at Tohoku has determined the exhaust gas compositions

f a particular burner under atmospheric pressure and fuel lean

onditions. It has been demonstrated that as the equivalence ratio

ncreases towards stoichiometry, unburnt species such as NH 3 , CO

nd total hydrocarbons decrease in contrast to NO x and that the

urner achieves combustion efficiencies above 97% for ammonia-

ixing-ratios below 50%. It has been reported that it was diffi-

ult to achieve low emissions and high combustion efficiency in a

ingle-stage combustor, and hence a two-stage combustion system

as been conceptualised and demonstrated, with studies suggest-

ng lower NOx and unburnt gas species emissions while maintain-

ng high combustion efficiencies [227] . 

Valera-Medina et al. [228,229] presented a series of studies us-

ng a generic swirl burner that was fuelled using ammonia and

ydrogen/methane at different concentrations. The results showed

he complexity in stabilizing premixed ammonia blends, identi-

ying a particular pattern of oxygen consumption that was fol-

owed by flame speed reduction, retarding the combustion pro-

ess and eventually pushing the flame back into the combustion

hamber with an inherent aeration. Also, it was recognised that the

se of hydrogen injection required a new injection strategy to en-

ure stable combustion, as premixing eventually led to early flash-

ack. NOx and CO were considerably lower at high equivalence

atios > 1.10, depicting a region of chemically reactive balance be-

ween methane/hydrogen and ammonia combustion, with recom-

ination of NOx emissions with unburned ammonia, increasing OH
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Fig. 25. Photo of the experimental facility of NH 3 -air and NH 3 –CH 4 -air combustion gas turbine power generation [222] . Courtesy of NH3 fuel association. 

Fig. 26. A) OH 

∗ chemiluminescence, mean values out of 200 images. B) Normalized intensity of mean values at 0.84 E.R. at 0.1 MPa (absolute). Reprinted from [228] with 

permission from applied energy, Elsevier. 
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radicals, Fig. 26 , topic that is still under debate across the scientific

community. 

Xiao et al. [230] have also produced data to determine

the potential of using ammonia/methane and ammonia/hydrogen

[231] blends for power generation. Results showed that the use of

ammonia at high pressures as those found in industrial devices can

mitigate the production of NOx by increasing the recombination of

species and compacting the flame front. Moreover, there seems to

be a trend in terms of the production of OH radicals at high equiv-

alence ratios, denoting the recombination of emissions with NH 2 

radicals in the post-flame zone, leading to the formation of nitro-

gen molecules, suggesting scenarios where ammonia gas turbines

can become a feasible, reliable and environmental possibility. 

Companies such as NUON have also started ambitious pro-

grams to develop their capabilities in terms of ammonia fired sys-

tems. The most notable is the “Power-to-Ammonia” program in

which NUON collaborates with TU Delft, Proton Ventures, OCI Ni-

trogen, AkzoNobel, ISPT and the University of Twente [232,233] .

The NUON project perceives ammonia as a “superbattery” that

stores excess renewable power at large scale over long periods.

The new Magnum-plant in Eemshaven, officially opened in 2013,

is proposed to be converted into a green ammonia fuelled facility

instead of a coal plant, thus reducing CO 2 emissions considerably

[234,235] . Similarly, multinational companies such as Siemens have

established R&D roadmaps to position green ammonia and hydro-

gen produced from renewables as energy vectors of the future, us-

ing the chemical in either transport, processes or large power gen-

eration, Fig. 27 . 
p  
It has recently been announced [236] that Chugoku Electric

ower Company has conducted a series of trials at its Mizushima

ower plant in July 2017, where ammonia was added to the

55 MW coal-fired plant at a rate of 450 kg/hr. The company con-

rmed that the addition of the ammonia did not cause the plant’s

ower efficiency to reduce. On the basis of energy content, the

mmonia added represented 0.6–0.8% of total fuel. At this ratio, a

ecrease in carbon dioxide emissions was observed. The Chugoku

emonstration has been the first where ammonia has been burned

n a commercial power plant in Japan. 

Research into the use of ammonia for large power generation in

upport of decarbonising high carbon-producing processes is still

ngoing. Of particular interest are the ill-defined kinetic processes

hat occur at high power outputs using various blends of ammo-

ia with gases such as methane and hydrogen. More specifically,

t equivalence ratios between 1.05 to 1.25 an increase in reactiv-

ty and overproduction of OH species has been observed, suggest-

ng recombination of molecules that require further understanding

nd research to reduce the time to deployment of ammonia power

eneration at a commercial scale. 

.4.3. Propulsion 

Pioneering studies were undertaken during the middle of the

0th century by NASA, who identified through their XLR-99 pro-

ram the need for “combustor enhancers”, i.e. hydrogen, kerosene,

ossil fuels, etc. during start-up and idle for their propulsion en-

ine [190] . According to some documents and “in field” research

176] , Reaction Motors, the company that took over the XLR-99

rogram, decided to use ammonia on their Viking engine (XLR-10).
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Fig. 27. Green ammonia [7] . Courtesy of Dr Ian Wilkinson, Siemens. 

T  

w  

s  

c  

m  

s  

m  

t  

T  

c

 

m  

a  

a  

p  

w  

s  

w  

p  

4  

i  

i

 

f  

i  

[  

p  

t  

t  

p  

b  

t  

s  

b  

a

 

t  

[  

o  

t  

t  

p

 

‘  

C  

c  

t  

a  

i  

v  

o  

t  

M  

m

 

s  

s

3

 

f  

o  

d

3

 

t  

n  

c  

p  

fi  

a  

e  

o  

r  

t  

p  

O  
he rationale behind the use of ammonia and liquid oxygen (LOX)

as the need for a stable fuel with good volumetric energy den-

ity, easy to store, working in the required temperature range, with

ooling properties and also potential for hydrogen engine develop-

ent. However, due to the lack of motivation and no clear under-

tanding of the need for using ammonia and the need for gravi-

etric energy density based fuels, the programme stopped. During

he period that the project ran, the X-15 aircraft was developed.

he aircraft, a powerful device commissioned by NASA, set unoffi-

ial world records in speed and altitude [176] . 

Thomas [237] and Thomas et al. [238] discussed the use of

ethane-ammonia-oxygen blends in terms of their potential to

llow deflagration to detonation transition in small piping lines,

 technique that can be used for propulsion applications. Com-

ositional ranges were obtained by varying the oxygen content

hilst maintaining methane/ammonia ratios of 1.00:1.18. The re-

ults showed that flame speeds were modest for all mixtures

here the oxygen percentage was 39% or less. Similarly, violent

ressure transients were not observed for mixtures with less than

0% oxygen. Beyond these values, violent and sometimes detonat-

ng transitions were observed for the cases analysed, especially for

nitial pressures above ambient. 

Micro-thrusters fuelled with ammonia, a revolutionary concept

or propulsion of small space vehicles, has also received some

nterest especially in Russia, China and the USA. Blinov et al.

239,240] presented some work in terms of the design features and

erformance of ammonia electrothermal micro-thrusters, showing

hat they can become a competitive, cost effective option due to

heir specific impulse increase ∼20%. Fatuev et al. [241] have also

resented work on the development of ACETAM, a rocket fuel

ased on the fluidization of gaseous acetylene by a highly concen-

rated dilution in liquefied ammonia. The characteristics of the fuel

how improvement and higher stability when compared to other

lends at various operating pressures, nozzle expansion degrees

nd efficiency through various stages during space launching. 

Chinese groups have also studied the thermodynamic proper-

ies and potential of propellants using acetylene and ammonia

242] . Various concentrations of acetylene-ammonia with LOX and

ther fuels such as rocket kerosene and methane were evaluated

hermodynamically. The results indicated that a 25% acetylene con-

w  

a

ent was the best in terms of specific impulse and security, with

roperties that were superior to LOX with rocket kerosene. 

Some published work can also be found for the development

of ammonia micro-resisto-jets (MRJ) for micro-satellites by Busek

o. Inc. Robin et al. [243] evaluated the use of ammonia MRJs to

ope with weight and complexity constraints whilst creating a high

hrust/power system. Laboratory experiments showed exit temper-

tures of 573–1448 K, with trust levels of 5–12 mN with specific

mpulses as high as 210 s. These ammonia micro-resistojet pro-

ided up to 25 W nominal power level. Due to the small nature

f the system and its innovative design using platinum tubes, the

otal device weight is about 15 gm. A successful 100 h Engineering

odel (EM) was carried out, leading to further plans for develop-

ent. 

Although the technology is promising, literature on this topic is

till scarce, opening the possibilities for further research for micro-

atellites and other micro-propulsion systems using ammonia. 

.5. Combustion fundamentals of ammonia flames 

As presented, ammonia is a potential fuel that could be used

or cooling, transportation and storage of integrated systems based

n combustion processes, thus delivering significant power for in-

ustrial applications. 

.5.1. Ammonia characteristics 

As discussed, ammonia still faces a long way before being en-

irely recognised as a fuel for power applications. Although tech-

ical barriers are overcome by continuous, high quality research

ombined with advanced innovation, i.e. as the ones presented in

revious sections, one of the main reasons of this trend is the

erce competition between ammonia and other fuels. As stated,

mmonia should not be regarded as a competitor to the hydrogen

conomy, but as an enabler. Therefore, ammonia can find its niche

f application amongst some other fuels that are currently under

esearch. In order to recognise these applications, it is necessary

o know some specific characteristics of ammonia to allow com-

arison with other hydrogen sources employed in power systems.

ut of the vast range of alternatives, methanol and pure hydrogen

ere selected for this review, Table 6 . Methane is also mentioned

s baseline. 
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Table 6 

Ammonia combustion characteristics and comparison with other fuels, 300 K at 100 kPa. 

Methane (CH 4 ) Hydrogen (H 2 ) Methanol (CH 3 OH) Ammonia (NH 3 ) 

Density (kg/m 

3 ) 0.66 [244] 0.08 [244] 786 [244] 0.73 [244] 

Dynamic viscosity × 10 −5 (P) 11.0 [245] 8.80 [245] 594 [245] 9.90 [245] 

Low heating value (MJ/kg) 50.05 [246] 120.00 [246] 19.92 [246] 18.80 [25] 

Laminar burning velocity (m/s) – close to stoich. 0.38 [247] 3.51 [203] 0.36 [247] 0.07 [248] 

Minimum ignition energy (mJ) 0.280 [249] 0.011 [249] 0.140 [249] 8.0 0 0 [212] 

Auto-ignition temperature (K) 859 [10] 773–850 [250] 712 [251] 930 [10] 

Octane number 120 [252] – 119 [253] 130 [10] 

Adiabatic flame temperature (with air) (K) 2223 2483 1910 1850 [10] 

Heat capacity ratio, γ 1.32 [244] 1.41 [244] 1.20 [244] 1.32 [244] 

Gravimetric Hydrogen density (wt%) 25.0 100.0 12.5 17.8 
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It is clear that pure ammonia shows both low specific energy

and laminar burning velocities combined with high auto-ignition

temperatures and elevated ignition energies, making it more diffi-

cult to burn in its pure form. As a consequence, blends with hy-

drogen, i.e. which can be obtained relatively easy from cracking of

the ammonia molecule, have been mostly attempted in more prac-

tical applications. Moreover, the use of ammonia with gases such

as methane, i.e. that shares similar density, viscosity and heat ca-

pacity, makes relatively easy its implementation in co-firing appli-

cations. Thus, ammonia has considerable potential to compete with

other hydrogen-carrier fuels. However, before ammonia can be im-

plemented in power devices, further understanding of its combus-

tion behaviour is required, mainly by further research that not only

demonstrates the concept but also details the chemistry of burning

ammonia for enhancement and control of such a process. 

3.5.2. Reaction models for ammonia 

To develop combustion-based technologies for ammonia utilisa-

tion, it is essential to have a deep understanding of the detailed

chemical process through the ammonia combustion phenomena.

Therefore, research has been dedicated to understand the funda-

mental characteristics of ammonia and the detailed reactions that

occur throughout the combustion process. 

As early as 1960s, studies [254,255] were performed to un-

derstand the chemical reactions of flames containing ammonia.

A wide range of compositions and conditions were investigated

to gain more insight into the kinetics of ammonia-fuelled flames

[256–258] . The first complete description of a detailed chemical

mechanism for ammonia oxidation was proposed by Miller and

Bowman [259] based on the ammonia combustion experiments.

Comparison between the theoretical kinetic model and experimen-

tal data showed good performance of the Miller mechanism for

ammonia combustion over a range of temperatures, equivalence

ratios and pressures, with especial emphasis on the performance

of the NOx chemistry. Actually, mechanisms for NOx formation and

removal processes are carefully considered in this study, of which

important elementary reactions and their coefficients were pro-

vided. The results enabled analyses that demonstrated that NO/N 2 

production is mainly dependant on the fate of NHx radicals, which

are oxidised to form NO through the nitroxyl (HNO) molecule.

Miller’s mechanism has been correlated to a wide range of con-

ditions in several ammonia combustion studies across the years

[260–262] . 

Based on the Miller’s [259] mechanism, Lindstedt et al.

[263] developed a chemical kinetic mechanism model for ammo-

nia oxidation in a wide range of flat laminar flames. Important ele-

mentary reactions were recognised for NO formation processes for

pure ammonia and its blends doped with hydrogen. It was found

that the Zeldovich mechanism is responsible for the NO forma-

tion and conversion under greater fuel concentrations of ammo-

nia/hydrogen flames while the reaction NH + OH plays a more sig-

nificant role in NO formation when using pure ammonia. 
Skreiberg et al. [264] established a detailed chemical kinetic

odel for ammonia oxidation in the presence of hydrogen, car-

on monoxide, and methane. The H/N/O submechanism draws

rimarily on Miller’s work on ammonia flames. In this mecha-

ism, several reactions were characterized more accurately and

he mechanism model satisfactorily predicts flow reactor mea-

urements data. The results are summarised for low temperatures

hich will promote the reaction path NH 3 → NH 2 → N 2 , whilst

H 3 → NH 2 → NH → N is important at higher temperatures. Lind-

tedt’s model has also been employed in several ammonia com-

ustion studies [261,265,266] . 

Among the detailed mechanisms proposed for ammonia com-

ustion, Konnov’s kinetics model [267] has been widely used and

erified for ammonia combustion studies, proving a better perfor-

ance on the prediction of NOx emission and propagation among

any other mechanisms available [266,268–271] . This detailed

hemical kinetics mechanism [272] was originally developed for

he combustion of small hydrocarbon fuels considering the pres-

nce of ammonia. The mechanism model has been updated contin-

ously and in the latest version the model was greatly improved

ompared to previous versions, with particular attention paid to

he upgrading of the H/N/O sub-mechanism in the development of

he model. Specifically, with the improved implementation of the

CN pathway, a more accurate calculation of NO formation and

CN radicals in the flame were obtained. It has been tested against

xperimental data available for oxidation, ignition, and flame struc-

ures in mixtures of nitrogen-containing species, hydrogen, carbon

onoxide and hydrocarbons. 

Duynslaegher et al. [268] found in her stabilised flame ex-

eriments of ammonia–oxygen–hydrogen mixtures that using the

onnov mechanism would overestimate the mole fraction profiles

f radical NH 2 while underestimating the ones of N 2 O. There-

ore, Duynslaegher et al. [273] improved Konnov’s ammonia com-

ustion mechanism model by modifying the reactions contain-

ng nitrous oxide (N 2 O) and amidogen radical (NH 2 ). In this

ork, rate constants were modified for four elementary reac-

ions NH + NO = N2O + H, N2O + H = N2 + OH, NH2 + H = NH + H2,

H2 + NH2 = N2H2 + H2, on the basis of Konnov’s mechanism. As

H 2 is the main intermediate in the oxidation of ammonia and

herefore the precursor related to the formation of almost all the

ombustion products, the improvement of NH 2 radical profile pre-

ictions lead to a significant prediction improvement on radicals

uch as nitrous oxide, nitrogen monoxide and the amidogen radi-

al. In this study a reduction version of the mechanism model was

lso provided for the use in internal combustion engine conditions.

The Tian mechanism [274] was then developed based on

H 3 /CH 4 /O 2 /Ar flame data under low pressure conditions. In Tian’s

esearch, profiles of combustion intermediates and products were

etermined in 11 premixed flames of different mole ratios of

H 3 /CH 4 . The updated chemical mechanism model by Tian et

l. satisfactorily identified detailed flame structure features. The

odel and experiments showed that with more ammonia frac-
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Fig. 28. Flame speed calculation of 40% NH3 flame at normal temperature and 

pressure. Experiments as in [215] . Reprinted from [231] with permission from 

ASME. 
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ion in the fuel mixtures the products of H 2 O, NO and N 2 in-

rease whilst those of H 2 , CO, CO 2 and NO 2 indicate reverse ten-

encies. Analyses performed with this mechanism have demon-

trated key reactions such as H + O 2 = O + OH, NH 2 + O = HNO + H,

H 2 + NO = N 2 + H 2 O, and NH + NO = N 2 O + H, which have promi-

ent effect for NO and N 2 conversion. Also key species such as CH 3 ,

CH 2 , 3CH 2 , CH 2 O, NH 2 , NH and HNO were identified in the oxida-

ion of CH 4 /NH 3 mixtures. Tian’s mechanism has been widely used

ecently over a wide range of conditions [269,275] . 

Mendiara and Glarborg [276] also conducted an experimental

tudy in a laminar flow reactor and developed a chemical kinet-

cs model for NH 3 oxidation in oxy-fuel combustion of CH 4 /NH 3 

ith temperatures ranging from 973 to 1773 K. The reactor in the

xperiments was operated under atmospheric pressure conditions

nd stoichiometries between 0.13 and 0.55 equivalence ratios. The

inetic mechanism model is based on the Tian mechanism describ-

ng CH 4 /NH 3 oxidation, especially extending hydrocarbon/amine

nteraction subsets. Through pathway analyses it was identified

hat the formation of NO is mostly related to HNO which is primar-

ly sourced from NH 2 + O. This detailed chemical mechanism also

uccessfully captured experimental trends for the effects of high

O 2 concentration. 

Mathieu and Petersen [277] studied the oxidation of ammo-

ia under high temperatures (1560–2455 K) and high pressures

around 0.14, 1.1, and 3.0 MPa) conditions. A detailed mechanism

odel was established for ammonia oxidation from shock tube ex-

eriments. The mechanism also provided a state-of-the-art NOx

ub-mechanism which can be used for a wide range of conditions.

he established chemical mechanism has proved accurate in pre-

icting ignition delay times of ammonia oxidation under elevated

onditions, which are more relevant to many industrial applica-

ions. 

There are some other detailed chemical mechanisms, which are

riginally developed for hydrocarbon fuels, also potentially able

o be used in ammonia combustion studies. For instance, the fa-

ous GRI Mech 3.0 mechanism [278] is extensively employed

or combustion of natural gas, which includes the formation of

Ox and reburn chemistry. GRI-Mech 3.0 mechanism is also used

s reference for NH 3 oxidation in some literature [266,269,279] ,

ince ammonia-doped methane/air flames using this mechanism

ave also been studied in the past with satisfactory results [280] .

ther mechanisms such as Åbo Akademi ( ̊AA) kinetic reaction

cheme [281] were created for specific conditions. Particular for
˚ A, the mechanism was developed for combustion of biomass-

erived gases under moderate temperature, being validated in the

ameless ammonia chemistry study of [282] . 

Nozari and Karabeyoglu [283] developed a reduced chemical

echanism for the combustion of ammonia/hydrogen based on the

onnov mechanism, which aims to expedite the design of future

mmonia combustors. Li et al. [284] numerically analysed the en-

ancement of hydrogen addition in ammonia-fuelled blends, with

mphasis on flame speed and ignition. Reactions of O + H 2 = OH + H,

 + O 2 = OH + O and H 2 + OH = H 2 O + H were identified as playing

he most important role in the increased reactivity of the blend.

t high temperature, these findings suggest that blow-off limits,

he concentration of radicals H, OH and O and the maximum

ame temperature are enhanced with H 2 substitution in bench-

ark NH 3 /air flames, demonstrating that hydrogen doping could

otentially facilitate the use of ammonia as a reliable alternative

uel, with increased laminar flame speed, reduction of emissions

nd positive changes in Markstein length. 

Xiao et al. [231] studied ammonia/hydrogen blends with various

inetic models, suggesting that all these mechanism present con-

iderable variance between experimental results at various condi-

ions, Fig. 28 . This was expected as most of the models are de-

eloped for specific equivalence ratios, mixtures, pressures, etc.
owever, it is found with great interest that does not exist yet

 reaction model capable of capturing accurately the great va-

iety of conditions at which ammonia can be burned. There is

till considerable progress to be made before a generalised model

an be proposed and implemented, particularly at specific condi-

ions where low NOx are measured. Currently, each condition will

resent different degrees of reaction, making critical the develop-

ent of mechanisms for specific conditions and fuel blends. 

Therefore, there is still much debate on these phenomena and

heir impact on both the flame and the combustion process when

sing NH 3 . For example, the work done by Okafor et al. [285] en-

bled the development of a more accurate reaction model for

tudies of ammonia-methane flames under atmospheric conditions

sing a combination of laminar burning studies and advanced

mmonia kinetic models. The GRI-Mech 3.0 and Tian’s models

ere utilised to develop a detailed reaction mechanism suitable

or ammonia-methane combustion, finding that Tian’s model un-

erestimates the un-stretched laminar burning velocity owing to

he dominance of HCO( + H, OH, O 2 ) → CO (H 2 , H 2 O, HO 2 ) over

CO → CO + H. This is in accord to recent studies carried out by

iao et al. [286] , who through studies of ignition delay, flame

peed and emissions suggests that Tian’s model was better suited

or analyses of ammonia-methane blends, although there is still a

eed for improvement. 

Hence, there is still considerable debate on the parameters re-

uired for development of a most appropriate model for ammonia

ombustion analyses, problem that has been largely solved by se-

ecting models based on their accuracy at the particular conditions

t which they have shown superior performance compared to the

est. This problem has paved the path for current research on the

opic, with groups across the globe trying to determine the best

odel that fits all the different flame and combustion variables. 

.5.3. Fundamental studies of flame characteristics 

Many parameters influence the flame characteristics. For exam-

le, laminar burning velocity is an important combustion property

efined based on an adiabatic planar un-stretched flame, and is

equired for characterisation of phenomena such as flame stability

nd validation of reaction models. Flame speed, a combination of

he burning rate and density ratio, is also an important parameter

n understanding the fundamentals of a particular flame. Similarly,

he Markstein length, another important combustion parameter,

xpresses the sensitivity of the laminar burning velocity to flame

tretch rate due to themo-diffusive effects [287] . Of course equiv-

lence and compression ratios, ignition delay time, radical forma-

ion, etc. have an important impact on the adiabatic flame. These
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and some other parameters are essential to understand the com-

bustion process of a particular fuel. 

There are already plenty of work performed on the propagation

property of ammonia-based fuels. Takizawa et al. [288] measured

the flame speed for NH 3 /air mixtures of different stoichiometry by

the spherical vessel method under atmospheric conditions, obtain-

ing a maximum value of 0.072 m/s at equivalence ratio of 1.10. Lee

et al. [261] tested laminar premixed hydrogen-added ammonia/air

flames to determine flame speed and NOx and N 2 O emissions. The

results suggested hydrogen as a promising additive for improving

the combustion performance with low NOx and N 2 O emissions

under fuel-rich conditions. Furthermore, other studies [289] were

performed by the same group on the effect of ammonia substi-

tution on ammonia/hydrogen/air flames both experimentally and

computationally. The results showed that ammonia substitution

will significantly reduce laminar flame speed and increase nitrogen

oxide emissions in hydrogen/air flames. It was also found that ni-

trogen oxide emission of fuel rich conditions are much lower than

fuel lean conditions. 

Kumar and Meyer [269] performed a series of measurements

of laminar flame speeds for ammonia/hydrogen/air jet flames. In

this study, ammonia fraction within the fuel was varied in step in-

creases of energy delivered up to a maximum of 80% for equiva-

lence ratios between 0.5 and 1.1. Computational models were de-

veloped using the GRI-Mech 3.0, Tian, and Konnov reaction mech-

anisms. Numerical calculations on laminar flame speed consider-

ing heat loss showed that Konnov mechanism and Tian mech-

anism have good prediction accuracy against experimental data,

highlighting production of the OH radical as the key performance

variable in modelling laminar NH 3 decomposition. Simultaneously,

work conducted by Xiao et al. [231] has demonstrated that the use

of GRI-Mech 3.0 for prediction of ammonia based flames under-

predicts several fundamental characteristics of such flames. Al-

though Konnov’s and Tian’s provided good results, as shown by

others [269] , Mathieu’s performed better when using fundamental

parameters such as flame speed. 

As shown in Fig. 29 [231] , different mechanisms present dif-

ferent performance while predicting flame speed when compared

with experimental data [215] . Results show that performance of

these mechanisms for prediction of various ammonia fractions sig-

nificantly varies, e.g. when ammonia fraction of ammonia is less

than 50% the predictions are relatively poor as compared to those

using greater mole fractions. This indicates that low ammonia frac-

tion combustion chemistry for NH 3 /H 2 blends still needs to be op-

timized. Furthermore, it was identified that hydrogen has an accel-
rant role in hydrogen/ammonia/air combustion, while ammonia

as a major detrimental effect in laminar flame speed. 

In the research of Ichikawa et al. [290] , hydrogen/ammonia/air

ames were experimentally and numerically investigated at ele-

ated pressures up to 0.5 MPa. The laminar flame speed increased

xponentially as the hydrogen fraction in the blend was increased,

eaching a similar order of magnitude observed for conventional

ydrocarbon flames when the hydrogen fraction in the fuel is 0.4.

ecrease of laminar flame speed was identified with increasing

nitial pressure conditions in this study. Moreover, it was demon-

trated that the Markstein length decreases when the ambient

ixture pressure was increased from 0.1 to 0.3 MPa, with the

arkstein lengths at 0.5 MPa very similar to those at 0.3 MPa. 

To determine the impact of practical conditions such as el-

vated ambient temperatures and pressures on the combustion

f ammonia, analysis using premixed ammonia–air mixtures with

quivalence ratios around unity, at conditions which are en-

ountered in Spark Ignition engines have also been performed.

uynslaegher et al. [265] numerically investigated laminar flame

peed and NOx emission concentrations of premixed ammonia

ombustion using Konnov’s mechanism at elevated pressure and

emperature conditions (0.1–4.9 MPa, 298–732 K), relevant condi-

ions for engine operation. In this study, corresponding to a 40% in-

rease in compression ratio, the laminar flame speed increases up

o 30% whilst a difference of 100 K is noted for the adiabatic flame

emperature. It is suggested that both equivalence ratio and com-

ression ratios have an important impact on the adiabatic flame

emperature and laminar flame speed while equivalence ratio is

he major factor influencing the NO formation. Then Hayakawa et

l. [266] evaluated the flame speed for spherically propagating pre-

ixed flames of ammonia/air under elevated conditions. It was the

rst experimental work that clarified the decrease of flame speed

nder high pressure condition up to 0.5 Mpa. It demonstrated

hat Konnov’s model, established for ammonia combustion analy-

es, over-predicts laminar burning velocity. At the same time, Li et

l. [284] numerically investigated the ammonia combustion char-

cteristics under oxygen enriched conditions and proposed it as

 potential method to improve ammonia combustion performance

nd flame speed. 

Sullivan et al. [282] performed both experimental and mod-

lling studies of a laminar ammonia-seeded methane diffusion

ames. Within the conditions of this investigation, it was identi-

ed that with higher ammonia concentration, more percentage of

mmonia is converted to N 2 rather than to NO. In the work from

enshaw et al. [291] the flame speed and combustion products

f premixed NH 3 –CH 4 -air flames at atmospheric ambient condi-

ions were measured using an adiabatic flat flame burner, com-

lemented by numerical simulation. This study was undertaken

or equivalence ratios between 0.5–1.5 and for NH 3 fractions of

% to 5% by volume in the fuel, as observed in some industrial

rocesses. The measured flame speed agreed well with simulated

esults and the addition of 4% ammonia was seen to result in a

0%–20% decrease in flame speed. Both simulations and experi-

ents showed that adding NH 3 to CH 4 -air mixtures resulted in an

ncrease in NOx concentration, especially at stoichiometric condi-

ions, with a minimal effect on CO formation. Near the flamma-

ility limits, less than 0.1% of the incoming NH 3 penetrated the

ame. Konnov et al. [292] conducted an experimental study of

ethane/oxygen/nitrogen flames doped with ammonia (0.5% of

he fuel), in which flame speed with different equivalence ratios

as measured. Li et al. [293] studied ammonia-doped methane/air

ames on a perforated plate burner at atmospheric pressure us-

ng laser-saturated fluorescence (LSF) and probe sampling for NO

oncentrations measurement. It was suggested that the results of

mmonia conversion disagree with some other earlier experiments

ue to their lack of proper coating in cylinders. Also, the exper-
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Fig. 30. Tests carried out at 3 different equivalence ratios (ie. 1.67, 1.00 and 0.60) a) Change in flame speed and mass burning flux for varying Hydrogen-Ammonia ratio, 

specified by the Stoichiometric Fraction of Ammonia (SFA). b) Change in Markstein Number for varying Hydrogen-Ammonia ratio. Symbols for measurements and lines (solid: 

unstretched laminar burning velocities; dashed: mass burning fluxes) for predictions. Reprinted from [262] with permission from Int J Hydrogen Energy, Elsevier. 
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mental results of NOx formation were accurately reproduced by

he flame modelling with the Konnov mechanism, which verified

he capability in predicting ammonia conversion both in lean and

n rich flames. 

At high temperature, findings suggest that blow-off limits, the

oncentration of radicals H, OH and O and the maximum flame

emperature are enhanced with H 2 substitution in benchmark

H 3 /air flames, demonstrating that hydrogen doping could poten-

ially facilitate the use of ammonia as a reliable alternative fuel,

ith increased laminar burning velocity, reduction of emissions

nd positive changes in Markstein length [261,262,290,294–297] .

oreover, the peak laminar flame speed for NH 3 -air combustion

cross equivalence ratio is ∼0.08 m/s, compared to an equivalent

alue of ∼2.80 m/s for H 2 . This provides the opportunity for sig-

ificant variation as the mixture ratio changes. Results presented

y Lee et al. [262] analyse three different equivalence ratios (0.60,

.00, 1.67), increasing the NH 3 mole fraction in hydrogen at five

tages in the range of 0.0–0.3. The changes in flame speed and

ass burning flux measured are shown in Fig. 30 results are

resented against equivalent Stoichiometric Fraction of Ammonia

SFA), in the range 0.0 0 0 – 0.375. 

Further progress in understanding the behaviour of these

ames is reported in [290,298] using hydrogen flames doped with

O and ammonia. Results presented the analysis of using differ-

nt molecules in lean and rich hydrogen blends with O 2 , Ar and

 2 . The findings showed that the doping with NH 3 did not af-

ect concentration profiles of the stable species, H 2 , O 2 and H 2 O

pecies. The zone of NH 3 consumption was reported to be about

.6–0.8 mm in the lean and near-stoichiometric flames and approx-

mately 1.7–1.9 mm for the fuel rich flames. The laminar burning

elocity increased exponentially as the hydrogen fraction in the

lend was increased, reaching a similar order of magnitude ob-

erved for conventional hydrocarbon flames when the hydrogen

raction in the fuel is 0.4. Moreover, it was demonstrated that the

arkstein length decreases when the ambient mixture pressure
as increased from 0.1 to 0.3 MPa, with the Markstein lengths at

.5 MPa very similar to those at 0.3 MPa. 

As for the combustibility of ammonia and hydrogen doped

mmonia/air flames, in the experiments of Shebeko et al.

299] flammability limits for ammonia and ammonia/hydrogen

ixtures were studied at temperatures and pressures of up to

43 K and 1.0 MPa respectively. It was identified that the lower

oncentration limit of ammonia/oxygen flame decreases signifi-

antly at elevated temperature and pressure. Pfahl et al. [300] also

tudied the flammability limits, ignition energies, and flame speeds

f different ammonia contained mixtures experimentally. The ex-

eriments were carried out in a closed combustion vessel at initial

ressures of 0.1 MPa and temperatures of 295 K. The ignition en-

rgy experiment results of lean ammonia–nitrous oxide mixtures

ndicate that under high ignition energies (higher than 50 0 0 J) the

nitiation of combustion occurs independent of fuel amount of am-

onia, while there is an obvious minimum concentration of am-

onia fuel for low ignition energies (up to 10 J). It is also shown

hat increasing the initial amount of nitrous oxide in ammonia–

ir–nitrous oxide gases increases the laminar flame speed. Cic-

arelli et al. [301] explored the flammability map of ammonia and

mmonia/hydrogen mixtures in air at the initial temperature up to

73 K and atmospheric pressure conditions. The flammability map

howed to widen linearly with increased initial temperature. It was

lso shown that as the mixture fraction of the ammonia dissoci-

tion products increased in mixtures of ammonia and hydrogen

nd nitrogen - the ammonia dissociation products, the flammabil-

ty limits tend to widen. 

Lee and Kwon [302] numerically studied counterflow non-

remixed ammonia/hydrogen/air flames at normal temperature 

nd pressure to improve the safety of hydrogen use. Effects of am-

onia on reducing high-stretch extinction limits of hydrogen/air

ames were identified. Um et al. [260] experimentally examined

he combustion stability limits and nitrogen oxide emissions of

on-premixed ammonia/hydrogen/air flames at normal tempera-
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Table 7 

Summary of flammability and stability limit studies in the recent literature for ammonia-based mixtures. 

Reference Methodology Fuel mixture Initial conditions 

Shebeko et al. [299] Experimental reaction vessel NH 3 /O 2 , NH 3 /H 2 /O 2 , NH 3 /O 2 /N 2 , NH 3 /H 2 /O 2 /N 2 , 20–70 °C 0.1–1MPa 

Pfahl et al. [300] Experimental combustion vessel NH 3 /N 2 O/N 2 , NH 3 /N 2 O/O 2 /N 2 100 kPa and 295 K 

Ciccarelli et al. [301] Experimental combustion vessel NH 3 /H 2 /O 2 /N 2 20–600 °C 1 atm 

Lee and Kwon [302] Numerical counterflow NH 3 /H 2 /O 2 /N 2 NTP 

Um et al. [260] Experimental and numerical nozzle NH 3 /H 2 /O 2 /N 2 NTP 

Choi et al. [294] Experimental and numerical counterflow NH 3 /H 2 /O 2 /N 2 34 8–4 95 K 1atm 

4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2

100

1000

( e
mit yaled noitingI

µs
)

10000/T (K-1)

 Exp.
 Tian
 Mendiara
 Konnov
 ÅA
 Mathieu

Fig. 31. Ignition delay times of NH3 mixtures (0.4%NH 3 /0.6%O 2 /99%Ar), 1.1 MPa. Ex- 

periments from [277] . Reprinted from [286] with permission from FUEL, Elsevier. 
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ture and pressure conditions. The study justified the potential

of NH 3 substitution for improving the safety of H 2 combustion

with significant reduction observed in stability limit. Choi et al.

[294] explored the potential of using H 2 as an additive for improv-

ing the reactivity and ignition of nonpremixed NH 3 /air flames. The

extinction limits, flame temperature and morphology of the coun-

terflow nonpremixed ammonia/hydrogen/air flames were experi-

mentally determined at elevated temperatures and normal pres-

sure. Results showed enhanced blow-off limits and the maximum

flame temperature with hydrogen substitution in ammonia /air

flames. A summary of the relevant studies on ammonia combus-

tion stability is presented in Table 7 . 

Ignition delay, another important combustion parameter, can

also provide insights of the accuracy of various chemical models.

In the work of Mathieu et al. [277] , ammonia oxidation and igni-

tion delay time were measured in a shock tube for a wide range

of conditions at pressures above 1.0 MPa. As can be seen from

Fig. 31 , data from Mathieu et al. [277] are compared to several

updated literature models. As for Konnov and ÅA mechanism, it

is clear that differences of more than an order of magnitude are

recorded, while Tian, Mendiara and Mathieu’s mechanisms show

good prediction. Thus, chemistry prediction under various condi-

tions is still a problem for modelling purposes, as the reaction of

ammonia is highly dependent on the conditions used for develop-

ment of each reaction mechanism [231] . For this particular case,

high pressurised conditions seem to be better predicted using the

latest mechanism. 

Emissions related, Li et al. [215] have studied a range of hy-

drogen and ammonia blends in order to observe the emissions

produced at different equivalence ratios, simultaneously showing

that NH 3 burning velocity improved with increasing H 2 concen-

tration in the flame. In addition, fuel-NOx has a dominant role

and thermal-NOx has a negligible role in H 2 –NH 3 -air combustion.

It was observed that thermal-NOx decreases in H 

–NH -air com-
2 3 
ustion compared to pure H 2 -air combustion, while NOx concen-

ration reached its maximum at the stoichiometric condition. Fur-

her works provide modelling analyses of hydrogen-doped ammo-

ia blends with preheating of the reactants. Results showed that

he formation reaction rates of thermal NO from N + O 2 → NO + O,

nd N + OH → NO + H increased with increasing reactant preheating

nder fuel lean condition. Under fuel rich conditions, the reactions

f NH 2 + NO → N 2 + H 2 O, NH + NO → NNH + OH were shown to have

 great effect on the decomposition of NO at all preheating tem-

eratures of the reactants, which results in an extremely low NO

ormation rate, indicating the potential to reduce NO formation in

H 3 combustion [303] . However, it must be emphasized that cur-

ent technologies have been only capable of reducing NOx in the

ombustion zone by a trade-off between the latter and unburned

mmonia. Hence, the results suggest that combustion of H 2 and

H 3 should be carefully considered for the practical utilization of

his blend. 

Characterisation of emission profiles of species such as NH 3 , O 2 ,

 2 O, NO and N 2 O are crucial in gaining understanding and con-

dence in the behaviour of reaction mechanisms with ammonia

uels. In the work of Brackmann et al. [304] data were provided

f OH, NH and NO profiles for premixed ammonia/air flames us-

ng contemporary laser-induced fluorescence at atmospheric pres-

ure. The kinetics analysis combined with this experimental data

howed that the Mendiara mechanism performed best prediction

or temperature, radical profiles and flame front positions. 

Regarding other radicals and their impact on emissions, HNO

s an important radical for the production of NO which is mainly

roduced from the interaction of NH x radicals with OH, H 2 , O, O 2 

nd H 2 O [305] . Thus, enhancement of these radicals can increase

he production of NOx emissions. This has been recently demon-

trated by Valera-Medina et al. [36] who showed the increase of

O emissions by a couple of orders of magnitude in transition-

ng from lean to rich conditions during experiments within an

ndustrially-relevant generic swirl combustor. The increase of OH

adicals in the lean region directly impacts on the production of

NO, thus increasing nitrogen oxides considerably. The trend was

learly identified not only by the experimental diagnostics, but also

y reaction models. Recommendations are based on avoiding these

egimes under fully premixed conditions, suggesting the use of

tratified injection to eliminate lean combustion spots prone to the

nteraction of NH x radicals and OH that will benefit production of

NO. A further study [306] utilising 1D and 2D numerical simu-

ations using GRI-3.0 Mech predicts the production of NOx at dif-

erent oxygen/hydrogen/ammonia concentrations. The results show

he complex interaction between the different formation mecha-

isms of nitrogen oxides, with a competition between thermal and

uel based nitrogen reactions that reaches a peak followed by a

eversal phenomenon. This reversal seems to be caused by a re-

uction in reaction rates combined with the impact of ammonia

s NO production accelerator in the internal layers and as inhibitor

f nitrogen oxides in the external layers. However, as previously

tated, this chemical reaction model has shown a lower perfor-

ance when analysing ammonia based fuels. 
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Fig. 32. Exhaust NO emission as a function of NH3/CH4 mole ratio. Some data from 

[286] . 
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Fig. 33. Flow rate analysis of the consumption of NH3/CH4 in the flame R of 1.0. 

Reprinted from [274] with permission from Combustion and Flame, Elsevier. 

Fig. 34. Reaction path of NO formation. Reprinted from [230] with permission from 

Energy and Fuels, ACS. 

Fig. 35. Normalized sensitivity of NO using Konnov’s. Reprinted from [230] with 

permission from Energy and Fuels, ACS. 

s  

m  

a  

t  

N  

fl  

a  

F  

f  

d  

p  

q

 

s  

m  

v  

[  
Methane, as previously stated, has also been proposed for

lending with ammonia in power generation devices. Oxidation

f NH 3 during oxy-methane combustion, i.e., at high CO 2 concen-

rations, has also been studied as another option to improve the

ombustion process [276] . High levels of CO 2 were shown to en-

ance the formation of NO under reducing conditions, whilst in-

ibiting NO formation under stoichiometric and lean conditions.

he enhanced CO concentrations and variation of the quantity

nd relative proportion of O/H radicals, rather than direct reac-

ions between N-radicals and CO 2 , are responsible for the effect

f a high CO 2 concentration on ammonia conversion. When CO 2 is

resent as a bulk gas, formation of NO is facilitated by an increased

H/H ratio, obtained from CO 2 + H � CO + OH. In addition, high

O levels also enhance HNCO formation. However, the reaction of

H 2 + O to form HNO and NH 2 + H to form NH are inhibited due

o the reduced concentration of O and H radicals. Instead, reactions

f NH 2 with species from the hydrocarbon/methylamine pool pre-

erve reactive nitrogen as a reduced species. These reactions re-

uce the NH 2 availability to form NO by other pathways, for ex-

mple via HNO or NH, and increase the probability of N 2 over NO

ormation. 

In the work of Tian et al. [274] , flames with different mole

atios (R) of NH 3 /CH 4 were experimentally studied. Mole frac-

ion of flame species such as reactants, intermediates and prod-

cts were specifically determined, providing a deep insight into the

haracteristics of ammonia/methane flame chemistry. As shown

n Fig. 32 , an increase in R increases the NO quantities at the

xhaust. Comparison of experimental data against predictions of

everal widely tested kinetic models shows that Konnov mech-

nism gives the best performance, which is also widely verified

n other ammonia combustion studies. The pathway of ammo-

ia oxidation is also figure out in this study, Fig. 33 . Thus, the

tudy concludes that the main formation source of NO is from the

eactions HNO + H → NO + H 2 , HNO + OH → NO + H 2 O (SR306) and

H + O → NO + H (SR376). 

In the work from Henshaw et al. [291] the burning velocity and

ombustion products of premixed NH 3 –CH 4 -air flames at atmo-

pheric ambient conditions were measured using an adiabatic flat

ame burner, complemented by CHEMKIN-PRO simulation. This

tudy was undertaken for equivalence ratios between 0.5–1.5 and

or NH 3 fractions of 0% to 5% by volume in the fuel, as observed in

ome industrial processes. The measured burning velocities agreed

ell with simulated results and the addition of 4% ammonia was

een to result in a 10% - 20% decrease in burning velocity. Both
imulations and experiments showed that adding NH 3 to CH 4 -air

ixtures resulted in an increase in NOx concentration, especially

t stoichiometric conditions, with a minimal effect on CO forma-

ion. Near the flammability limits, less than 0.1% of the incoming

H 3 penetrated the flame. Further numerical studies for premixed

ames using methane/ammonia/air have been undertaken to char-

cterise the use of these blends in industrial processes [230,291] ,

igs. 34 and 35 . Results indicate the potential application of blends

or backup power generation, especially at rich equivalence ratios

ue to the lower NO emissions. However, it is clear the complex

ath during production of emissions, as previously stated, thus re-

uiring further research for their mitigation. 

Other studies have considered the reaction of ammonia with

pecies such as CH 4 , CO and NOx [264] for practical scenarios. Nu-

erical and experimental results showed that NH 3 may be con-

erted mainly to NO or to N 2 , depending on reaction conditions

264] . The aim of these primary measures is to promote the for-
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mation of N 2 by limiting the availability of oxygen while oxi-

dising other molecules. The reactions of NH 3 with the O/H radi-

cal pool is fairly well established over a wide temperature range,

all showing significant non-Arrhenius behaviour. The chemistry of

the smaller amines, NH 2 and NH, is more uncertain; in particu-

lar the rate constants for the radical–radical reactions. At mod-

erate temperatures below 1400 K, the fate of NH 2 largely deter-

mines the oxidation pathway of the ammonia as well as the re-

action selectivity toward NO and N 2 . The key step in the produc-

tion of NO is the fast NH x + HNO reaction. The reactions with these

molecules have been barely studied experimentally in the interme-

diate temperature range, and so their rate constants present sig-

nificant uncertainties. The comparatively low temperatures utilised

in studies to date, as well as the presence of NO, promote the

reaction path NH 3 → NH 2 → N 2 (directly or via NNH), rather than

NH 3 → NH 2 → NH → N, which is important at higher temperatures.

The major reduction of fuel-N species to N 2 occurs by reaction of

amine radicals with NO. 

Although the results are relevant for the study of NH 3 and the

role of radicals across the different boundaries of the flame to-

wards production of nitrogen oxides, it is evident that considerable

work is still required to determine the role of ammonia and other

radicals in the formation and consumption of NOx through flames

to determine a most general and accurate reaction model, as cur-

rently there are various available in the literature. 

Therefore, knowing these parameters can provide support for

development of new designs, equipment and control of emissions

when employing ammonia combustion. Hence, research groups

have been studying these fundamental parameters for the use of

ammonia with various blends under different operational condi-

tions. The ignition characteristics of ammonia, flame speed, Mark-

stein length, combustibility, characterisation of emission profiles of

species such as NH 3 , O 2 , H 2 O, N 2 O and NO [304] , radical forma-

tion, etc. are all crucial in gaining understanding and confidence in

the behaviour of reaction mechanisms with new fuels such as am-

monia. Combination of all these parameters can provide more ac-

curate data for development of new models capable of predicting

the combustion regimes that are imposed in more complex sys-

tems. 

3.5.4. Practical conditions 

More complex scenarios such as combustion of turbulent flames

under atmospheric conditions at high inlet temperatures have fol-

lowed the work of ammonia combustion [307,308] . The studies

elucidate the reduction of NO under fuel rich conditions, with a

specific equivalence ratio where both unburned ammonia and ni-

trogen oxides reach their minimum level. Rich equivalence ratios of

1.15 and 1.20 have provided the best results with the lowest emis-

sions in terms of NO and unburned NH 3 over these simulations

and other data generated by Valera-Medina et al. [228] , points that

require further studies. Similarly, other experiments [309] have

shown that this value changes to 1.05 under atmospheric condi-

tions and isothermal chamber walls. Although fuel-rich conditions

appear to be the most promising for low NOx ammonia combus-

tion, it should be remembered that unburned ammonia is still pro-

duced, and its management needs to be considered for further ap-

plications. 

Zieba et al. [280] have studied the interaction of ammonia at

different concentrations (0 to 900 ppmV) with natural gas (mainly

methane) and two syngases (i.e. one with methane, the other

without it) for flameless applications (so-called ‘FLOX’ systems) at

20 kW power. The results showed that ammonia reacts relatively

late compared to methane at fuel lean conditions, leading to high

NOx emissions. In the pre-ignition zone, the ammonia chemistry is

inhibited due to the absence of free radicals, which are consumed

by the methane–methyl radical (CH ) conversion. In the case of
3 
mmonia/methane-free syngas (i.e. 25%H 2 , 18%CO, 15%CO 2 , 42%N 2 

ol%), ammonia was observed to react very rapidly, and complete

ecomposition was reached in the fuel-rich region of the flame.

he hydrogen contained in the fuel ignites directly after the nozzle

nd releases enough radicals to start the ammonia decomposition.

he released radicals are not completely consumed by other com-

ustibles and easily react with NH 3 [280] . 

As a final remark of this subsection, it is clear from all the cur-

ent research that there is still a knowledge gap related to the in-

eraction of species and radicals at different conditions and fuel

lends, thus prompting the research in these areas to create mod-

ls that accurately predict the behaviour of ammonia doped flames

nder conditions relevant to practical industrial environments. 

.5.5. Combustion catalysis 

Finally, an interesting topic that has contributed to the progres-

ion of combustion/power applications at small and medium scales

s the use of combustion through catalytic materials. Recent re-

earch has shown that using porous blocks is an advantageous and

ractical way to stabilize premixed flames [310,311] . In summary,

orous media improves the fluid properties to enhance burning ve-

ocity, thus increasing flame stabilisation. These characteristics can

ave considerable advantages for the consumption of ammonia for

ombustion purposes. In addition, the high thermal conductivity of

ome materials such as SiC increase the heat conduction from the

ame to the surrounding zones, thus decreasing undesirable emis-

ions [312] . 

Researchers in Turkey and Japan have started working on the

oncept of catalytic combustion of ammonia. Although the liter-

ture that exists on the topic is extremely limited, Hinokuma et

l. [313] have recently published the use of copper oxides and

ilver catalysts supported on aluminium oxides for the combus-

ion of NH 3 . The concept allows low temperature combustion that

inimizes NOx production, as thermal NOx are minimized. Al-

hough thermal NOx is a minor contributor to all nitrogen ox-

des produced in ammonia flames, nevertheless, their reduction

ontributes to emissions control. The use of novel thermal pre-

reatments have ensured that these materials can withstand the

levated temperatures of operation ( ∼1173 K). Similarly, research

onducted by Nozari et al. [314,315] showed the high efficiency of

urning ammonia via SiC porous media with a large operational

ange. Simulations and experiments provided validated results that

emonstrate the potential of burning ammonia at low power rates

sing these configurations, Fig. 36 . 

In Japan, ammonia is building momentum as an important el-

ment in a hydrogen-oriented energy economy [13] . Thus, the re-

earch complies with a new wave of studies that aim to demon-

trate ammonia as a hydrogen carrier capable of providing flexibil-

ty whilst ensuring a cost-effective transition to a hydrogen econ-

my. It is likely that these porous materials will support the use of

mall to medium size boilers, supporting the implementation of a

Hydrogen through Ammonia” economy. 

. Conclusions 

Ammonia is one of the most widely transported bulk-

anufactured chemicals, having been mass produced throughout

he world for more than a century, and its manufacture thought to

ccount for approximately 2% of global energy production. While

mmonia is a toxic and corrosive gas, the wide-ranging experience

nd expertise in synthesis, transportation and utilisation of ammo-

ia significantly reduces concerns about its further exploitation. In-

eed, well tested and successful health and safety protocols and

egulations already exist for every aspect of its industrial applica-

ion, from synthesis through to combustion. 
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Fig. 36. Numerical simulation performed on a SiC porous material to burn ammonia efficiently. Reprinted from [315] with permission from Int J of Hydrogen Energy, Elsevier. 
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The original applications of ammonia were in the chemical and

griculture industries and it still finds its greatest application as a

ertilizer for intensive crop farming. Nevertheless, in addition to its

raditional applications, ammonia is an energetic chemical energy

tore with favourable physical properties, especially when com-

ared to other chemical energy storage media. Notably, it forms

 liquid at relatively low pressures ( ∼0.8 MPa) and is readily and

eversible stored within solids at high gravimetric densities, unlike

ydrogen gas, and may be combusted without producing CO 2 , un-

ike hydrocarbon fuels. Consequently, its energy content has been

xplored as a chemical for power generation globally in recent

ears. Although considerable research into its use as a working

uid in cycles, fuel for combustion engines, electrochemical de-

ices and turbines presents many challenges, these technologies

an become widely adopted and commercially viable with the

ppropriate research and investment. While significant empirical

nd theoretical progress has been made on optimising fuel/co-

uel/oxidant ratios and the nature and process of the combustion

rocesses, more work is still required to develop optimised sys-

ems for specific applications, starting with the development of

odels that are accurate at specific, practical operational condi-

ions. Moreover, the excessive NOx production using this molecule

equires that models focus on developing chemical kinetic models

hat can be integrated within a more general model for use in the

esign and control of ammonia-based fuel systems for power gen-

ration. 

Despite the long period since its inception, most notably in Bel-

ium in 1942, it is only now that ammonia is being seriously con-

idered as fuel both for mobile and large renewable energy storage

pplications, thus supporting reduction of CO 2 with high flexibility

f supply. While ammonia is currently most cheaply synthesised

rom reforming of natural gas, producing H 2 and CO 2 , it may also

e synthesised using sustainable sources including solar, wind or

idal, air (for N 2 via liquefaction) and water (for H 2 via electroly-

is), with minimal environmental pollutants. 

Thus, ammonia can be produced using renewable sources

hich not only contributes to greenhouse emissions reduction, but

lso: 

• Offers flexibility in terms of its utilisation, as it can be em-

ployed as working fluid in power cycles, energy storage from
waste streams, cooling medium, or as chemical for CO 2 cap-

ture; however, there is still a need for research that will provide

the foundations for the coupling of ammonia with the variety

of available options for its use in power cycles, i.e. as a work-

ing fluid from waste streams that thermodynamically enhances

cooling with combined CO 2 capture. Although such concept

seems as a technological advantage, progression on the topic is

in its infancy and needs further evaluation in terms of the im-

pacts of the molecule at high temperatures and flowrates, con-

sequence of the corrosive nature of ammonia; 

• Allows fuel cells to be run effectively using smaller, safer and

economically viable configurations that will enable efficient re-

covery and utilisation of hydrogen for lower environmental im-

pact. However, fuel cells still generally produce per unit low

power and many configurations require clean fuel sources –

i.e. no carbon or ammonia from cracking- to avoid poisoning,

a characteristic that increases equipment complexity and still

needs further technological advances for deployment at scale

and lower cost; other devices, such as high temperature solid

oxide fuel cells and alkaline fuel cells, are appropriate for com-

bined heat and power, and represent a real opportunity for

commercial purposes to exploit ammonia as a fuel source; 

• Enables combustion systems to be employed using a chemical

that, once better understood and characterised, has the poten-

tial of operating at high power whilst producing tolerable levels

of emissions. It must be emphasized that researchers around

the world are now trying to characterise the complex nature

of the interaction of the species and radicals that are formed

during the combustion process of ammonia and the different

combustion characteristics of the flames, thus focusing research

on creating more accurate and simpler models that can be used

for practical applications; 

• In practical power generators such as engines and gas turbines,

the recovery of hydrogen from a chemical capable of distribut-

ing it easily and economically provides great advantages, with

longer operability ranges and feasibility to produce medium to

large power outputs. However, the main issue with these tech-

nologies still relies on the NOx emissions produced through the

combustion process along with unburned ammonia that usually

appears in the flue gas streams. Promising results appear in the
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range of rich fuel combustion ( ϕ > 1.10), where the recombina-

tion of species seems to have positive effects on NOx reduction

through the production of OH radicals, a concept that requires

furthers investigation; 

• Enables advanced propulsion systems to be developed with

smaller tanks, and the capacity to use a chemical with wider

accessibility. Previous developments produced highly advanced

systems that compete with currently available technologies.

Thus, the future for ammonia in propulsion systems could re-

turn to its development for commercial use in large propulsion

devices. However, nowadays the use of ammonia appears to be

focussed on smaller propulsion thrusters for satellites and rock-

ets, which requires energy for splitting the ammonia molecule

into its hydrogen components; 

• Facilitates the development of burners based on catalytic mate-

rials which can be conceptualised for small-scale applications.

These use ammonia and its inherent hydrogen in the produc-

tion of heat, hence reducing the generation of heat from fos-

sil fuel sources. However, these catalytic materials are still un-

der development, currently providing miniscule heat rates un-

der current operation conditions. 

Thus, the ease of storage, transportation and use of ammonia

makes it an attractive candidate to act as the energy vector be-

tween sustainable energy harvesting and mobile and static energy

demands. Consequently, one could imagine its use across all appli-

cation scales from micro-thrusters, small refrigerators and personal

transportation through to large ( > 1MW) energy buffering. How-

ever, as emphasised through this review, there are still many fields

that require further development and understanding, some funda-

mental in nature while others practical in essence. 

Thus, as industry, governments and society turn to more sus-

tainable technologies for power generation, and the use of fossil

fuels becomes ever more constrained “Hydrogen through Ammo-

nia” economy via Ammonia for Power – with supporting research

- provides an attractive, practical proposition which seems to have

increasing industrial support. 
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