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Abstract

Droughts often evolve gradually and cover large areas, and therefore, affect many peo-1

ple and activities. This motivates developing techniques to integrate different satellite2

observations, to cover large areas, and understand spatial and temporal variability of3

droughts. In this study, we apply probabilistic techniques to generate satellite derived4

meteorological, hydrological, and hydro-meteorological drought indices for the world’s5

156 major river basins covering 2003–2016. The data includes Terrestrial Water Storage6

(TWS) estimates from the Gravity Recovery And Climate Experiment (GRACE) mis-7

sion, along with soil moisture, precipitation, and evapotranspiration reanalysis. Different8

drought characteristics of trends, occurrences, areal-extent, and frequencies correspond-9

ing to 3-, 6-, 12-, and 24-month timescales are extracted from these indices. Drought10

evolution within selected basins of Africa, America, and Asia is interpreted. Canonical11

Correlation Analysis (CCA) is then applied to find the relationship between global hydro-12

meteorological droughts and satellite derived Sea Surface Temperature (SST) changes.13

This relationship is then used to extract regions, where droughts and teleconnections are14
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strongly interrelated. Our numerical results indicate that the 3- to 6-month hydrologi-15

cal droughts occur more frequently than the other timescales. Longer memory of water16

storage changes (than water fluxes) has found to be the reason of detecting extended17

hydrological droughts in regions such as the Middle East and Northern Africa. Through18

CCA, we show that the El Niño Southern Oscillation (ENSO) has major impact on the19

magnitude and evolution of hydrological droughts in regions such as the northern parts20

of Asia and most parts of the Australian continent between 2006 and 2011, as well as21

droughts in the Amazon basin, South Asia, and North Africa between 2010 and 2012.22

The Indian ocean Dipole (IOD) and North Atlantic Oscillation (NAO) are found to have23

regional influence on the evolution of hydrological droughts.24

Keywords: GRACE Terrestrial Water Storage (TWS), Global Droughts, Canonical

Correlation Analysis (CCA), Sea Surface Temperature (SST), Teleconnections, Drought

Hot Spots

1. Introduction25

The global hydrological (water) cycle has been under influence of both climate change26

and anthropogenic modifications (Tiwari et al., 2009; Zhao et al., 2015). A study by Feng27

and Zhang (2015) suggests that the ongoing global warming could lead to considerable28

declines in soil water due to a lack of snow melt water recharge to the soil during spring29

and summer. Increasing the temperature and less water stored in the surface soil moisture30

might lead to a reduction of precipitation in semi-arid regions. Therefore, the possibility31

of increasing drought events can be expected in future.32

In general, droughts have been categorized into the groups of meteorological or clima-33

tological, hydrological, agricultural, and socioeconomic, among which the first two types34

are of interest in this study (find a critical discussion in Van Loon (2015)). Since drought35

is a complex phenomenon, there is no universal definition for it (Mishra and Singh, 2010).36

Often, the term ‘meteorological drought’ is understood as the shortage in catchment’s37

water fluxes, i.e., precipitation or net precipitation, i.e. precipitation minus evapotranspi-38

ration. The term ‘hydrological drought’ is associated with the shortfalls of water storage,39

as well as (net) precipitations at the same time. Standardized Precipitation Index (SPI,40
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McKee et al., 1993; Guttman, 1999) and Standardized Precipitation-Evapotranspiration41

Index (SPEI, Vicente-Serrano et al., 2010) are often used to represent meteorological42

droughts. Water storage changes are derived by analyzing soil moisture (and in some43

cases groundwater) data and used to produce Standardized Soil (Storage) Index (SSI,44

Mishra and Singh, 2010). In a practical sense, hydro-meteorological droughts may be45

quantified by relating SPI or SPEI and SSI or by merging variables that are used to46

define these indices1 (see e.g., Hao and AghaKouchak, 2013; Carrlão et al., 2016).47

Meteorological and hydrological droughts are inter-related through interactions that48

happen within the water cycle (Van Loon and Laaha, 2015). Generally speaking, any49

higher than normal net evaporation rates over the oceans can change precipitation rates50

on land increasing continental water storage (Mueller et al., 2012). In contrast, a shortage51

in precipitation over land, along with a higher evaporation caused by a meteorological52

drought may lead to shortage in continental water storage and cause a hydrological53

drought (e.g., Wilhite, 2000; Tallaksen et al., 2004). Examples of prolonged meteoro-54

logical drought conditions leading to hydrological droughts are discussed by, e.g., Trigo55

et al. (2010); van Dijk et al. (2013); Van Loon (2015); Forootan et al. (2017) and Schu-56

macher et al. (2018). Index-based drought monitoring systems are often adopted for57

operational purpose. Examples include the SPEI (e.g., Begueŕıa et al., 2010) used by the58

European commission2 or temperature-precipitation indices by the US’s Global Drought59

Information System3. The Global Integrated Drought Monitoring and Prediction Sys-60

tem (GIDMaPS) from the University of California Irvine4 is an experimental system that61

combines various satellite data and climate re-analysis datasets to compute univariate62

and multivariate drought indices (see other examples in, e.g., Ahmadalipour et al., 2017).63

Scientists also base their drought analyses and projections on model simulations, see e.g.,64

Samaniego et al. (2018). A combination of data assimilation and probabilistic forecast-65

ing techniques is used in Yan et al. (2017) to generate more realistic seasonal drought66

forecasts for the USA.67

1http://spei.csic.es/home.html
2http://edo.jrc.ec.europa.eu/gdo/php/index.php?id=2001
3www.drought.gov/gdm/
4http://drought.eng.uci.edu/
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Since the launch of the Gravity Recovery And Climate Experiment (GRACE, Tapley68

et al., 2004) satellite gravity mission in 2002, drought monitoring studies have been using69

its estimates of Terrestrial Water Storage (TWS, a vertical integration of surface water,70

soil moisture, groundwater, and biomass water content) changes to understand global71

and regional hydrological processes (Chen et al., 2009; Rodell et al., 2009; Frappart et72

al., 2012; Houborg et al., 2012; Li et al., 2012; Mueller et al., 2012; Long et al., 2013;73

Thomas et al., 2014; Khaki et al., 2017). For example, Yirdaw et al. (2008) investigated74

2002–2003 droughts in the Saskatchewan River basin. In the Murray Darling basin, the75

hydrological drought of 2002–2006 was found to be related to the meteorological drought76

that was continued from 2000 (Leblanc et al., 2009; Forootan et al., 2012). Various77

studies have demonstrated the connection between the long-term trends or changes in78

the amplitude of seasonal (net) precipitation and TWS (e.g., Zeng, 1999; Seoane et al.,79

2013; Koster et al., 2000; Strassberg et al., 2007). Khandu et al. (2016); Forootan et80

al. (2017) and Schumacher et al. (2018), for example, showed that both climate change81

and anthropogenic contribute to the water storage decline (mainly in groundwater) in82

South Asia, the Middle East, and Australia, respectively. Other studies indicate that a83

persistent decrease in seasonal precipitation leads to a decline in TWS (e.g., Voss et al.,84

2013; Forootan et al., 2014, 2016). Hirschi et al. (2006) studied this effect for 37 mid-85

latitude river basins in Europe, Asia, North America, and Australia, and drew a similar86

conclusion. Examples of the application of GRACE data for assessing global water87

storage trends, seasonal and sub-seasonal variability and extreme events are provided in,88

e.g., Forootan and Kusche (2012); van Dijk et al. (2014); Eicker et al. (2016); Humphrey89

et al. (2016); and Kusche et al. (2016).90

GRACE has been used to study hydrological droughts (e.g., Houborg et al., 2012;91

Sinha et al., 2007). For example, Zhao et al. (2017) developed a new monthly global92

Drought Severity Index (DSI) based on GRACE TWS and showed that it performs93

comparably to other commonly used drought metrics. In the USA’s drought monitoring94

system5, GRACE is used for monitoring groundwater droughts. In regional studies,95

5https://grace.jpl.nasa.gov/applications/drought-monitoring/
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Yirdaw et al. (2008) and Awange et al. (2016b) applied the Total Storage Deficit Index96

(TSDI) proposed by Narasimhan and Srinivasan (2005) using GRACE TWS estimates.97

Most of these existing studies (e.g., Thomas et al., 2014; Zhao et al., 2015; Awange98

et al., 2016b; Khandu et al., 2016; Zhang et al., 2016) have applied GRACE TWS to99

describe the progress of hydrological droughts. It has also been shown that GRACE100

derived drought indices6 combining with other satellite products can better characterize101

droughts (e.g., Australia’s Millennium Drought in van Dijk et al., 2013; Zhao et al.,102

2017, see also). A recent global study by Sun et al. (2017) indicates that GRACE along103

with satellite derived precipitation data can be used to identify extreme hydrological104

events, although the study concludes that the length of GRACE data and its low spatial105

resolution represents a limitation in extracting return periods of extreme events (find a106

detailed investigation in Kusche et al., 2016).107

This study adds to previous research by exploring the relationship between hydro-108

meteorological droughts and major ocean-atmosphere ‘teleconnections’. For this, univari-109

ate (i.e., hydrological and meteorological), as well as multivariate (i.e., hydro-meteorological)110

drought indices are computed for the world’s 156 major river basins that are defined by111

the Global Runoff Data Center7, and see Figure 1). SPEI and SSI are computed to as-112

sess the separate impact of (net) precipitation and water storage changes on the drought113

evolutions, respectively. We also combine the SPEI and SSI in (a probabilistic way)114

and develop a Multivariate Standardized Drought Index (MSDI) for each basin, which115

reflect hydro-meteorological drought evolutions (see also Hao and AghaKouchak, 2013;116

AghaKouchak, 2014; Rajsekhar et al., 2015).117

To generate drought indices of this study, long-term precipitation and evapotranspi-118

ration data from ERA-Interim (1980–2016, Dee et al., 2011), and TWS from GRACE119

(2003–2016) are used. We extend the GRACE TWS estimates backwards to 1980 using120

the water state outputs of W3RA (1980–2012) provided by Schellekens et al. (2017). This121

extension (i) ensures a better representation of hydrological characteristics of river basins,122

and (ii) it also mitigates the possible errors in estimating probability density functions123

6www.ess.uci.edu/~velicogna/drought_data.php
7www.fao.org/nr/water/aquastat/irrigationmap/index.stm

5



that are required to be computed while estimating the desired drought indices. A Monte124

Carlo approach is applied to estimate the impact of uncertainties of input data and the125

applied extension backward to 1980 on the estimation of drought indices.126

The impact of using GRACE TWS on the estimation of drought indices is compared127

with alternative indices computed using soil moisture data from ERA-Interim reanalysis.128

The differences between these indices reflect the contribution of other water compart-129

ments (e.g., groundwater and surface water storage) in the evolution of drought indices.130

Besides, GRACE TWS estimates contain trends, seasonal, and inter-annual variability,131

which better reflect the impact of climate change and anthropogenic modifications (than132

land surface models) in the basin scale (also see e.g., Scanlon et al., 2018; Schumacher133

et al., 2018). Therefore, analyzing GRACE derived drought indices helps us to better134

understand these interactions.135

In order to represent spatio-temporal evolution of droughts, we interpret the com-136

puted SPEI, SSI, and MSDI of selected basins in the Americas, Africa, Asia, and137

Australia. Using the computed indices, different drought characteristics such as severity,138

extent, and frequencies correspond to the 3-, 6-, 12-, and 24- month timescales (suggested139

by Mpelasoka et al., 2017) are investigated. Canonical Correlation Analysis (CCA, Borga140

et al., 1998) is applied to relate the computed drought indices with global Sea Surface141

Temperature (SST, Reynolds et al., 2007) change. This is done for the period of 2003–142

2016, from which we derive hot spots, where teleconnections appear strongly related to143

droughts. This investigation, therefore, extends previous efforts that study the relation-144

ships between teleconnections and water storage changes (e.g., Garćia-Garćia et al., 2011;145

Philips et al., 2012; Anyah et al., 2018; Eicker et al., 2016; Forootan et al., 2018; Ni et146

al., 2018).147

In summary, this study has three major contributions: (A) it provides new insights148

about global scale drought evolution while focusing on the values water storage esti-149

mations derived from GRACE, (B) it evaluates and discusses the properties of global150

hydrological droughts during 2003–2016 and their uncertainties, and finally (C) it ex-151

plores relationships between ocean-atmosphere teleconnections and hydro-meteorological152

droughts over multiple regions.153
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FIGURE 1

2. Data154

2.1. Terrestrial Water Storage Estimates from GRACE155

GRACE Level 2 (L2) products consist of monthly gravity field solutions. The latest156

release of L2 data (RL06) covering January 2003 to December 2015 truncated at spher-157

ical harmonic degree and order 90 are downloaded from the Center for Space Research158

(CSR)8. These residual coefficients represent mainly water mass changes on continents159

(Ramillien et al., 2005). Degree 1 coefficients are replaced with those estimated by Swen-160

son et al. (2008) to account for the movement of the Earth’s center of mass. Degree 2161

and order 0 coefficients are replaced by those from Satellite Laser Ranging (SLR), which162

are more stable than those of GRACE (e.g., Chen et al., 2007). Anomalies due to the163

Glacial Isostatic Adjustment (GIA) are reduced using the output of the model provided164

by Geruo et al. (2013). Correlated noise in L2 products is reduced by applying the DDK2165

anisotropic filter (Kusche et al., 2009). The smoothed fields are then converted to TWS166

changes following Wahr et al. (1998). Basin average values for the 156 river basins of167

Figure 1 and their errors are estimated following (e.g., Khaki et al., 2018a). Our com-168

putations cover the complete mission period of 2003–2016, where Figure 2 shows the169

standard deviations of basin averaged GRACE TWS, their errors, and the signal to noise170

ratio within each basin of Figure 1. During 2003–2016, the computed basin averaged time171

series are temporally interpolated (using a harmonic interpolation). This is also applied172

to other data sets, thus, all available data records have been synchronized. Besides, since173

other data sets have a spatial resolution different than that of GRACE L2 data, they are174

converted to the spectral domain and truncated at spherical harmonic degree and order175

90 and basin averages are computed following Khaki et al. (2018a).176

FIGURE 2

8http://www2.csr.utexas.edu/grace/
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2.2. Global Soil Moisture, Precipitation, and Evapotranspiration Products177

ERA-Interim is a global atmospheric reanalysis produced by the European Center for178

Medium Range Weather Forecast (ECMWF, Dee et al., 2011). The reanalysis delivers179

several key land surface parameters such as soil moisture, vegetation, and snow, among180

others by combining various global observational datasets using an integrated forecast181

model. In this study, monthly soil moisture data from four volumetric layers are obtained182

from 6 hourly 0.25◦×0.25◦ soil moisture data9. To account for meteorological changes,183

global precipitation and evapotranspiration data are used from the provided link and the184

vertical layers are summed up.185

The ERA-Interim data, used in this study, cover the period of 1980–2016. Possible186

lateral water storage flow has not been explicitly considered in the ERA-Interim’s soil187

moisture simulations, which might affect drought indices derived from soil moisture by188

incorporating higher/lower flow in some cases such as winter and after snow melt. To189

mitigate the inconsistencies between the above data, and improve the accuracy of water190

storage and water flux estimations, all above data (GRACE TWS, ERA-Interim’s soil191

moisture, precipitation, and evapotranspiration) are spatially averaged within the 156192

river basins of Figure 1. It is worth mentioning that the rate of change in TWS is193

related to the net precipitation through the water balance equation. However, it has194

been shown that GRACE TWS contains long memory of hydrological processes, while195

fluxes such as precipitation and evapotranspiration introduce water variation with shorter196

wavelength (e.g., Rakovec et al., 2016; Forootan et al., 2017). Therefore, combining197

GRACE TWS and net precipitation data (see Section 3.2) seems to be suitable to explore198

hydro-meteorological drought characteristics (see, e.g., Sun et al., 2017).199

2.3. Sea Surface Temperature Data200

The Version 2 of the daily Optimum Interpolation Sea Surface Temperature (OISST)201

data with 0.25◦×0.25◦ spatial resolution between 2002 and 2016 are used. Infrared satel-202

lite data from the Advanced Very High Resolution Radiometer (AVHRR), in situ obser-203

vations (International Comprehensive Ocean Atmosphere Dataset, Worley et al., 2005),204

9http://apps.ecmwf.int/datasets/data/interim-full-daily/
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and proxies computed from sea ice concentrations are used to generate the OISST v2205

(Reynolds et al., 2007).206

TABLE 1

3. Method207

3.1. Extending GRACE TWS Time Series Backwards to 1980208

Extreme events, such as droughts, are often characterized by their duration, mag-209

nitude (or intensity), extent, and return period. A reliable estimation of these char-210

acteristics requires time series that are long enough and are also well representative of211

hydro-meteorological characteristics of the regions of interest (Cancelliere and Salas ,212

2004). However, a limitation of GRACE data in drought monitoring applications is the213

mission’s limited operational time, i.e. 2002–2017. To mitigate this problem, we use214

TWS simulation of ten global models that are published by Schellekens et al. (2017)215

covering 1979–2012. From these, the W3RA model (van Dijk., 2010) is applied to extend216

GRACE TWS in the 156 river basins of Figure 1, and TWS of other nine models is used217

to estimate uncertainties using the collocation approach of Awange et al. (2016a). It218

is worth mentioning that using simulated TWS data, even after applying the following219

corrections, is not a perfect choice and the estimated drought indices might be still over-220

/under-estimated. However, this impact if far smaller than using short length data sets221

to compute drought indices.222

To extend the TWS estimates backward to 1980, a scale factor and a bias (vertical223

shift) are estimated to match the long-term W3RA TWS to that of GRACE as224

XW3RA = a−1
∗XGRACE − b, (1)

using the common data of 2003–2013. This means that following Scanlon et al. (2018)’s225

conclusion, the basin-averaged GRACE derived TWS estimates are assumed to be more226

realistic than model simulations, in terms of trends, as well as seasonal and inter-annual227

variations. Therefore, in Eq. (1), we consider a ∗XW3RA for the period of 1980–2013228

9



and extend GRACE data backward. In is worth mentioning that here the bias between229

W3RA and GRACE is assumed to be temporally invariant, which is not a sophisticated230

assumption. Applying a time-variable bias correction, however, requires a careful extra231

research and is out of scope of this study. Errors of the extension in Eq. (1) is computed232

using a least squares error propagation Koch (1998), while considering the error fields of233

Figure 2 (Middle). Examples of the original W3RA TWS and the extended time series in234

the Ganges and Nile River basins are shown in Figure 3. The extended TWS time series235

of 1980–2016 are used to compute hydrological indices as described in what follows.236

FIGURE 3

3.2. Multivariate Standardized Drought Index237

Three different drought indices of Standardized Precipitation-Evapotranspiration In-238

dex (SPEI), Standardized Soil moisture (Storage) Index (SSI), and Multivariate Stan-239

dardized Drought Index (MSDI) are estimated to represent different types of droughts.240

SPEI is computed similar to Vicente-Serrano et al. (2010), which is similar to the SPI241

in McKee et al. (1993). In this approach, wet or dry condition are estimated based on242

the frequency distribution of variables (here net precipitations) on a variety of timescales243

from sub-seasonal to inter-annual scales. To compute SPEI, we first fit a gamma prob-244

ability density function to the observed net precipitation (1980–2013) and compute their245

cumulative distribution. Then, these are transformed to standard normal distributions246

following (Wu et al., 2001). The transformed probability varies between +3.0 and -3.0247

(Edwards et al., 1997), which indicates the level of wetness and dryness, respectively.248

In this study, SSIs are computed similar to SPEIs, but soil moisture data from ERA-249

Interim or GRACE TWS estimates are used as inputs.250

Generating MSDI follows a statistical approach that allows us to simultaneously251

incorporate the information of SPEI and SSI. Thus, the temporal averaging of the252

three drought indices used in this study is treated consistently. For each two types of253

samples (X and Y ), the cumulative joint probability density function (Pr) is expressed254

10



as255

Pr(X ≤ x, Y ≤ y) = C(F (X), F (Y )) = q, (2)

where C is a copula, and F (X) and F (Y ) are the marginal cumulative distribution256

functions, and finally q is the cumulative joint probability value (Hao and AghaKouchak,257

2013). In Eq. (2), time series of net precipitation and soil moisture or TWS changes258

can replace the random variables of X and Y . We use Frank copula to model the259

joint distribution in Eq. (2). Following Hao and AghaKouchak (2013), MSDI can be260

computed as261

M = Φ−1(q), (3)

where Φ is the standard normal distribution function, which is computed here empirically.262

In all the above drought indices, the negative index represents that the climate condition263

is dry (drought), while a positive index indicates a wet climate condition (AghaKouchak,264

2014).265

Uncertainty of the Computed Drought Indices:266

To account for the uncertainty of input data, while estimating drought indices, a267

Monte Carlo approach is implemented. For this, we generate samples of soil moisture,268

TWS, and net precipitation data from a random distribution N(µ, σ), where µ represents269

the mean values derived by processing the input data in Section 2, and σ of TWS and270

soil moisture is derived from the results of Figure 2 (Middle). For basin averaged net271

precipitation, we consider a multiplicative error of 30% (Tian et al., 2013). To estimate272

the uncertainty of drought indices, we generate 1000 samples of TWS and net precipita-273

tion time series. As a result, 1000 sets of respective drought indices are computed, whose274

median and range are used to interpret the severity of droughts and their uncertainties,275

respectively.276

11



Types of Drought Indices Estimated in this Study:277

As mentioned, for each river basin of Figure 1, the SPEI is calculated using net278

precipitation from ERA-Interim data, while SSISm is based on ERA-Interim’s soil mois-279

ture data that largely represent agricultural droughts, and SSITWS is computed using280

GRACE TWS data. In a probabilistic manner (Eq. (3)), MSDISm is estimated by simul-281

taneously using ERA-Interim soil moisture and net precipitation from ERA-Interim. Fi-282

nally, MSDITWS is derived by combining GRACE TWS and net precipitation data from283

ERA-Interim. Therefore, our estimate MSDIs will likely represent hydro-meteorological284

droughts.285

3.3. Extracting Drought Characteristics in Different Timescales286

To better analyze drought characteristics using the various drought indices, different287

timescales are considered. Averaging periods of 3-, 6-, 12- and 24-month are used here288

to extract persistent patterns. These timescales are generally relevant to a range of289

agricultural and hydrological systems and facilitate a better interpretation of drought290

events (Mpelasoka et al., 2017). For any of these timescales, a drought event begins291

when the drought indices are continuously less than -0.9 for at least 3 months (dry292

condition threshold suggested by Mpelasoka et al., 2017).293

3.4. Canonical Correlation Analysis (CCA)294

CCA seeks to find the linear relationship between two sets of multidimensional vari-295

ables x and y. CCA extracts canonical coefficients u and v such that X = xTu and296

Y = yTv (X and Y are canonical variates) possess a maximum correlation coefficient297

(Chang et al., 2013) using the following function,298

R =
E[XY ]

sqrt(E[X2]E[Y 2])

=
E[uTxyTv]

sqrt(E[uTxxTu]E[vTyyTv])

=
uTCxyv

sqrt(uTCxxuvTCyyv])
,

(4)
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where Cxx and Cyy are covariance matrices of x and y, respectively and the objective in299

above function is to maximize the correlation R. We use an eigenvalue decomposition300

procedure (Forootan, 2014) to find the linear weights producing canonical coefficients,301

which imply maximum possible correlations (see details in Steiger and Browne, 1984).302

There are different canonical coefficients within each set (at most minimum of variable303

numbers in X and Y ) leading to different uncorrelated coefficients. Nevertheless, the304

combination of variables with the first canonical coefficient for each set has the highest305

possible multiple correlations with the variables in the other set.306

Once the coefficients are calculated, they can be used to find the projection of x and y307

onto u and v as canonical variates with maximum correlations. In this study, x contains308

the vectors of SPEI, SSI, and MSDI time series calculated for the 156 river basins of309

Figure 1, while y contains SST data. Different grid windows (5◦×5◦) are selected over310

the oceans including regions, where El Niño Southern Oscillation (ENSO; Barnston et311

al., 1987), North Atlantic Oscillation (NAO; Barnston et al., 1987), and Indian Ocean312

Dipole (IOD; Rao et al., 2002), as well as regions randomly selected in other oceanic313

basins as shown in Figure 4. These choices can help to better capture the global climate314

impact on the land hydrological events. SST data over different boxes (cf. Figure 4) are315

preferred over the climate indicators (e.g., ENSO, IOD, and NAO indices, see Table 1316

for their corresponding references) because: (1) larger number of input variables in the317

CCA can improve its performance to extract the optimize relationship between predictors318

(i.e., SST or teleconnection indices) and predictands (i.e., drought indices), (2) spatially319

distributed boxes better represent oceanic variations than single indices, and (3) SST is320

a better predictor of precipitation than pressure anomaly often used to produce climate321

indices (e.g., L’Heureux et al., 2015). These facts will likely result in better predictions322

of global droughts.323

FIGURE 4
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4. Results324

4.1. Drought Indices325

Here, we first summarize the global drought results derived by computing SPEI,326

SSI, and MSDI for the 156 basins (locations are depicted in Figure 1). The annual327

average of each drought index including SPEI, SSI (SSISm and SSITWS), and MSDI328

(MSDISm and MSDITWS) are calculated for the period of 2004 to 2016. Figure 5 shows329

an example of the averaged drought indices computed in 2008. Maps of other years can330

be found in the Electronic Supplementary Material (ESM).331

FIGURE 5

In general, several similarities are found between SPEI, SSISm by ERA-Interim,332

and SSITWS by GRACE, e.g., for basins located in the Australian continent or North333

America. These indices, however, contain considerable differences in terms of amplitude334

and phase. For example, it can be seen that there are stronger agreements between335

SSISM or MSDISm and SPEI than between SSITWS or MSDITWS and SPEI. The336

reason is that changes in soil moisture has a higher correlation with net precipitation337

than GRACE TWS. Because, in general, changes in TWS involve complicated surface338

and sub-surface processes, while soil moisture changes is dominated by precipitation339

variations (see, e.g., Brocca et al., 2013). We also find that in some basins MSDI fits340

better to SSI indices than SPEI such as those located in the north part of Africa. This341

similarity indicates that water storage deficiency is likely the dominant contribution in342

hydrological drought evolution within these basins.343

Correlations between different pairs of drought indices (2003–2016) are shown in Fig-344

ure 6. Overall, the SSI from both GRACE TWS and ERA-Interim’s soil moisture345

(SSISm or SSITWS) indicates more pronounced dry and wet episodes than SPEI and346

MSDI. The reason is that SPEI and MSDI incorporate net precipitation, which347

contains higher frequency oscillations than the water storage records used in the SSI348

(SSISm or SSITWS). Stronger multi-year trends in water storage data leads to hydro-349

logical drought indices with higher magnitude.350
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FIGURE 6

Figure 7 presents average trends of SPEI, SSITWS and MSDITWS (derived from351

GRACE) for the 156 basins during the study period (2004–2016). It can be seen that352

the MSDI over some regions such as the Nile basin and South America is closer to353

SPEI, and in some other cases is closer to SSI, e.g., within Asia and the Australia’s354

western parts. In the Nile basin, climate variability plays the major role, e.g., through355

precipitation (Awange et al., 2014; Omondi et al., 2014), which is better reflected in the356

estimated SPEI and MSDI. On the other hand, in the case of Asia and specifically357

Middle East, water storage changes, mainly due to anthropogenic impacts, largely drive358

the evolution of drought indices, especially those of GRACE TWS (also shown in Figure359

6). This impact can be seen in SSITWS and MSDITWS. Most of the basins located in360

Middle East exhibit long-term droughts caused by persistent below normal precipitation361

and decline in water storage (see e.g., Forootan et al., 2017; Khaki et al., 2018b). In362

the southern parts of South America, the negative trend can be related to the ice loss363

over e.g., the Patagonian Ice Fields (e.g., Foresta et al., 2018). Minor effects can also364

be caused by the 2010 Maule earthquake. On the other hand, some parts such as the365

southeast and northeast parts of Asia experience a positive precipitation trend. As a366

result, SPEI indicates wet episodes in these regions. Negative values seen in the SPEI367

over the Nile basin are also reflected in the MSDI even though water storage remains368

in the normal range, thus, shows that less than normal net precipitation causes droughts369

in this basin.370

FIGURE 7

Here, we select 12 basins (of various hydro-climatological conditions) to discuss the371

characteristics of drought indices. These include the Mississippi and Colorado basins372

from North America, the Amazon and Salado Atlantico basins from South America, as373

well as the Ganges, Brahmaputra, and Euphrates basins from Asia, and finally the Niger,374

Chad, Nile and Congo basins in Africa. To this end, for any of these basins, spatially375
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averaged SPEI, SSI (both from ERA-Interim and GRACE), and MSDI (derived from376

ERA-Interim and GRACE) during the study period are computed and demonstrated in377

Figures 8 and 9. To enhance the visual comparisons, errors of the drought indices are378

not shown in these figures.379

We find similarities between all the drought indices within the Nile (except during380

2014–2016) and Amazon basins, which show that net precipitation and water storage381

changes are highly correlated in these basins. The important difference between SPEI382

and SSI or MSDI are found to be a phase shift of 1 to 6 months. The values of SSI and383

MSDI change slower than SPEI from one year to other. This, for example, describes384

the main differences between SPEI and MSDI or SSI in the Nile basin, where the385

net precipitation decrease, e.g., in 2008 (due to La Niña) and the deficiency of incoming386

water slowly changes the SSI of 2008–2010 (compare the green and black curves in Figure387

8-Nile).388

In general, our estimated SPEIs are found to be often different from the SSIs and389

MSDIs in other basins. Over the Euphrates (cf. Figure 9), SPEI shows a wet period390

in 2011 and 2013 (SPEI > 1, indicating wet and very wet episodes), while other indices391

represent dry periods (starting in 2008 and the SSI values changes from 0 to less than -2392

in 2015). A similar pattern can be seen in Ganges, Brahmaputra, and Euphrates. This393

is due to a long-term water storage depletion in these basins (see Figure 7), even though394

SPEI and SSISm often shows positive values (e.g., during 2013–2014 in the Ganges).395

In addition to the phase shifts between SPEI and other SSI or MSDI, remarkable396

amplitude discrepancies are also found within most of the basins, e.g., Lake Chad 2007–397

2009, Mississippi 2010–2012, and Colorado 2013–2016 (Figure 8). The reason is mainly398

attributed to the multi-year trend in the water storage changes, which requires a long399

period of wet or dry episodes to return to a normal level.400

FIGURE 8
401

FIGURE 9

In summary, the results indicate that the realistic water storage oscillations and trends402
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in GRACE TWS data considerably change the magnitude and timing of drought indices403

in the assessed basins. However, using only GRACE data to assess hydrological drought404

will be likely misleading, since the SSI and MSDI indices can be dominantly influenced405

by existing TWS trends, which is evident by comparing the green and cyan curves in406

Figure 9. This will be clearer if one compares the indices time series with water storage407

variations. Thus, average groundwater and soil moisture time series are obtained from the408

WaterGAP Global Hydrology Model (WGHM; more details on Döll et al., 2003; Müller409

et al., 2014) within four selected basins, i.e., Ganges, Brahmaputra, Euphrates, and South410

interior. WGHM is chosen here because, beside accounting for the dominant hydrological411

processes that occur on the spatial scale of 50 km, it also accounts for human water use.412

However, it should be noted that WGHM’s simulations contain uncertainties, thus, its413

outputs might be interpreted with caution. The comparison performed here is to assess414

hydrological droughts from an independent source rather than GRACE TWS estimates.415

From our results, it can be seen that negative groundwater trends are largely captured416

by SSITWS and to a lesser degree by MSDITWS. Moreover, the differences between soil417

moisture and groundwater variations can explain the large discrepancies between SSISm418

and SSITWS. This discrepancy, however, does not equally impact MSDI. These result419

confirm our previous finding that the estimated SSI indices are more sensitive to water420

storage changes than MSDI.421

In Figure 10, we demonstrate the impact of uncertainties on the phase and magnitude422

of the drought indices for the two basins of Amazon and Ganges. Our numerical results423

indicate that considering 30% multiplicative errors result in up to 1-level in the magnitude424

of SPEIs. For computing SSIs, while considering the realistic errors of Figure 2 (Middle),425

an error of up to 0.7-level is estimated for the magnitude of SSIs. As a result, the426

uncertainty of MSDIs is dominated by the error of net precipitation as can be seen in427

Figure 10. These uncertainties cause an error in estimating the timing of droughts with428

certain level of severity, which can reach up to 3 to 6 months. It is also worth mentioning429

that the magnitude of the estimated drought indices, discussed above, depends on the430

model data used to extend GRACE TWS backward to 1980. However, our numerical431

assessments (not shown here) indicate that the choice of model has only marginally effect,432
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which is less than the level of uncertainty shown in Figure 10.433

FIGURE 10

4.2. Characteristics of Global Droughts434

In this section, we analyze drought and its spatial and temporal variations within the435

156 river basins of this study. To this end, following Mpelasoka et al. (2017), drought436

indices are considered at four timescales of 3-, 6-, 12- and 24-month. For any of these437

timescales, the drought indices are calculated and are assumed to be a drought when438

they are continuously less than -0.9 for at least three months (dry condition threshold439

suggested by Mpelasoka et al., 2017). Figure 11 illustrates the frequency (month per440

year) of detected droughts for each timescale by SPEI, SSI and MSDI derived from441

GRACE. This figure shows the major drought timescale is 3-month suggested by all442

indices. It can be found from this figure that the longer timescale is considered, the443

less likely a drought may occur. As an instance, for 24-month timescale, droughts are444

detected for only few regions (e.g., in the Middle East and Africa). We also find that445

drought with longer timescales, e.g., 12-month droughts, can be detected from SSI in446

regions such as the Middle East and Northern Africa, while this cannot be detected using447

SPEI (compare Figure 11 top-right with middle-right). This is mainly attributed to the448

longer memory of TWS (than net precipitation), which has led to extended hydrological449

droughts in these regions. One can also see that the SSIs derived from GRACE are450

stronger than the SPEIs, showing that hydrological processes (and their trends) must451

be considered in analyzing drought patterns, e.g., for monitoring agricultural droughts.452

More frequent drought conditions are captured by the indices within Middle East, North453

America, and North West parts of Asia.454

FIGURE 11

We further investigate the spatial variations of drought over each basins by measuring455

the portion of grid points exhibiting droughts (for any timescale) to the number of grid456

points in each basin. This is done for the period of 2002 to 2016, from which time series of457
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the drought area extent for 12 basins are plotted in Figures 12 and 13. From these results,458

the estimates of SSI and MSDI that use GRACE data are closer compared to SPEI.459

Larger areas can be found with drought conditions during 2003 and 2004 in the Ganges,460

Niger, and Brahmaputra basins, 2014–2016 in the Colorado Euphrates, and South interior461

mainly from the SSI and MSDI calculations. A considerable drought extent can be462

observed for the Congo basin between 2006 and 2008. During 2012, considerable spatially463

extended droughts are found in the Salado Atlantico, Niger, Nile+Red Sea neighbor, and464

Congo basins. In the Colorado basin, while GRACE derived SPEI does not show any465

major drought, both SSI and MSDI depict a strong anomaly, which can be explained466

by limited rainfalls.467

FIGURE 12
468

FIGURE 13

We also calculate time series that reflect the evolution of the percentage of area in469

each basin affected by different types of droughts. Linear trends are computed for these470

spatial extents and are displayed in Figure 14. In this figure, drought trends of area471

extent are estimated for different timescales of 3-, 6- and 12-month, using SPEI, SSI472

from GRACE, and MSDI derived from GRACE data and net precipitation (P-E). The473

results indicate that the estimated trends are positive in most of the basins, for example,474

in the Middle East and the southern parts of Africa. Confirming the previous results,475

Figure 14 indicates that the application of GRACE data in computing SSI and MSDI476

reveal stronger drought patterns, which are distributed over larger areas. To complement477

our investigation, we investigate the extent of droughts in the Niger (Ferreira et al., 2018),478

Ganges and Brahmaputra (Khandu et al., 2016), Mississippi (Folger and Cody, 2015),479

Danube (ICPDR, 2017), and Zambezi (Siderius et al., 2018) as investigated in previous480

studies. The results of area extent covered by the three drought indices are reported in481

Table 2, which indicate that precipitation deficit in the Niger and Danube basins and482

water storage deficit in other basins are the main drivers of droughts in these regions.483
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FIGURE 14

4.3. CCA Results to Explore Drought and Teleconnection Hot-spots484

In this section, CCA is applied to relate drought indices (SPEI, SSI, and MSDI485

from GRACE and net precipitation) within the 156 basins of Figure 1 and the SST486

average in 31 windows (5◦×5◦) distributed over the oceans (Figure 4). In order to achieve487

the best results, these windows are located in places where stronger correlation coefficients488

between SST and the ENSO, NAO, and IOD indices can be found. At each grid point,489

CCA establishes the connection between SST values of all windows on the one hand and490

drought indices on the other hand. This connection appears as a set of weight values for491

each SST window and each drought index. Therefore, after applying CCA, combinations492

of drought indices are achieved at each grid point in a way that each drought index is being493

assigned a different weight. The average of computed weights for SPEI, SSI andMSDI494

are found to be 18%, 42%, and 40%, respectively. This shows that SSI and MSDI are495

well related to SST data and has the largest impact in the drought combinations, which496

can be related to the both effects of rainfall and shortage in water storage (derived from497

GRACE data) in drought evolutions. The average extracted combinations of the drought498

indices in 12 selected basins of Figures 12 and 13 are shown in Figures 15 and 16.499

FIGURE 15
500

FIGURE 16

From Figures 15 and 16, multiple droughts are found within the 12 selected basins,501

e.g., during 2012 over Mississippi and Colorado, 2012 over Salado Atlantico, Amazon,502

and Euphrates, 2008 over Euphrates, South interior, and Mississippi. Despite some sim-503

ilarities, some of these patterns have not been captured by individual indices. Besides,504

CCA guarantees that the extracted droughts better describe SST variations related to505

ocean-atmosphere phenomena including ENSO, IOD, and NAO. We compare the perfor-506

mance of the extracted drought by CCA to SPEI, SSI, and MSDI. Considering the 31507

boxes in Figure 4, the estimated correlation coefficients between the drought indices and508
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the grid cell located in the ENSO, NAO, and IOD area are found to be higher than other509

SST time series showing their dominant impact on net precipitation and TWS changes510

(see the results in Table 3). Detailed correlation maps (between each drought index and511

all the climate indicators) can be found in the Supplementary Material.512

Considering the values of the correlation coefficients in Table 3, a stronger relation-513

ship is found between hydrological droughts and ENSO (maximum correlation coefficient514

of 0.75 between MSDI and ENSO). Correlation coefficients of drought indices and other515

climate indicators such as NAO and IOD are found to be moderate. A maximum corre-516

lation coefficient of 0.67 (on average) is found between MSDI and ENSO, which shows517

stronger agreement between indices and ENSO. These results indicate that ENSO is a518

dominant climate mode with widespread influence, whereas IOD and NAO have more519

localized influence (see, e.g., van Dijk et al., 2013; Anyah et al., 2018).520

TABLE 3

In Figure 17, annually averaged drought indices predicted by CCA are shown for the521

156 basins (cf. Figure 1) covering 2004–2015. Negative values of [-3 -1] indicate strong522

relationships between SST changes and the evolution of droughts. The results indicate523

that central to northern parts of Asia exhibit a drought condition in most of the years524

shown in Figure 17. Most parts of Australian continent experience droughts between525

2006 and 2011. Similar drought conditions are also found to be dominant within the526

north part of America, especially in the Mississippi basin during 2004 to 2007. The 2005527

drought over the Amazon basin is captured by the CCA results. During 2003–2012, the528

eastern parts of Africa (e.g., Nile basin) towards its southern parts are found to be dry,529

in particular, in 2007, 2011, 2012, and 2014.530

FIGURE 17
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5. Conclusion531

Large scale drought events, which strongly influence global and regional water re-532

sources, can be determined using hydro-climate variables. In this study, traditional533

univariate, as well as probabilistic multivariate drought indices are estimated by com-534

bining monthly Terrestrial Water Storage (TWS) change data from GRACE, as well as535

ERA-Interim’s soil moisture, precipitation, and evapotranspiration products. These in-536

dices are estimated for the worlds’ 156 major river basins covering 2002–2016, and they537

reflect both hydrological and meteorological evolutions within these basins. Different538

drought characteristics of trends, occurrences, areal extent, and frequencies for the 3-,539

6-, 12-, and 24-month timescales are computed using these indices. We also applied540

Canonical Correlation Analysis (CCA) to understand relationships between the spatial541

and temporal evolution of the estimated hydrological droughts and the major large-scale542

ocean-atmosphere interactions. In summary, we conclude that:543

• The 3-month and 6-month drought timescale are found to be repeated more fre-544

quently (than those of longer timescales), globally.545

• In most of the basins, we observe an increase in magnitude, extent, and in some546

cases, length of hydrological droughts, which could be due to, e.g., less precipitation547

and more evapotranspiration beside excessive water usage.548

• The Multivariate Standardized Drought Indices (MSDI) derived by combining549

GRACE Terrestrial Water Storage (TWS) and net precipitation, as well as ERA-550

Interim soil moisture and net precipitation are found to be better correlated to551

global Sea Surface Temperature (SST) data compared to those drought indices de-552

rived only from water storage data (Standardized Soil moisture (Storage) Index,553

SSI) or from net precipitation (Standardized Precipitation Index, SPEI). Besides,554

the combination of drought indices of SPEI, SSI, and MSDI estimated by CCA555

indicates a strong connection to the major large-scale ocean-atmosphere phenom-556

ena (e.g., El Niño Southern Oscillation, North Atlantic Ocean, and Indian Ocean557

Dipole). Therefore, CCA might be a useful approach to predict global droughts,558
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while knowing the predicted state of SST or the ENSO and other teleconnection559

indices.560

• GRACE TWS data contain multi-year variations and trend, which are not well561

presented in hydrological model simulations and re-analysis data. Therefore, using562

GRACE data in producing SSI and MSDI better reflects hydro-climatological563

characteristics of global river basins. However, one needs to be aware of unwanted564

anomalies in GRACE fields such as those related to the surface deformation and565

those due to earthquakes. A possible way to eliminate this problem can be achieved566

through a careful assimilation of GRACE data into hydrological models, (e.g.,567

Khaki et al., 2018b; Schumacher et al., 2018), which will be addressed in future568

studies.569

• Uncertainty in input data can cause an error in estimation of the severity of droughts570

and also introduces a phase shift. Basin-averaged drought indices derived from571

GRACE TWS are found to be generally more certain than those estimated using572

ERA-Interim data with a multiplicative error of 30%573

• CCA results reveal regional patterns of hydrological droughts, e.g., the northern574

parts of Asia and most parts of Australian continent between 2006 and 2011, which575

are found to be strongly correlated with the ENSO and the Indian Ocean Dipole576

(IOD) climate variabilities. Correlation coefficients between drought indices and577

the North Atlantic Oscillation are found to be moderate.578

Overall, we conclude that the application of CCA on different hydrological indices (de-579

rived by combining data from different satellite missions) and SST data permits the580

identification of regions where the interactions between hydrological droughts and tele-581

connection are strong. This is investigated here for the period of 2003–2016. In the582

future, this type of analysis by hydrological indices would be completed with new and583

updated satellite data, in particular the ones provided by the geodetic mission GRACE584

Follow-On launched in 2018.585
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Figure 1: The world’s 156 major river basins according to the Global Runoff Data Center. Identification
number of each river basin is reflected in the colorbar. 1 : Magdalena + neighbor; 2 : Orinoco + coastal
neighbor; 3 : Atlantic North Coast; 4 : Pacific Coast - West Amazon; 5 : Amazon; 6 : Tocantins +
coasts; 7 : Paranaiba-Atlantico Nordeste; 8 : Sao Francisco-Atlantico Leste; 9 : Pacific Coast - West
Parana; 10 : Parana; 11 : East Parana; 12 : Salado Atlantico; 13 : Southern Pacific Coast; 14 : Salado
Pampa + Dulce; 15 : Chubut; 16 : Western Mediterranean Coast; 17 : Eastern Mediterranean Coast;
18 : North West Coast; 19 : North West Interior; 20 : North East Interior; 21 : Gambia - West Coast;
22 : Senegal; 23 : Volta - West Coast; 24 : Niger; 25 : Lake Chad - Central Interior; 26 : Nile + Red Sea
neighbor; 27 : Ogooue - Central West Coast; 28 : Congo; 29 : Rift Valley; 30 : North East Coast; 31 :
Jubba; 32 : Rufiji - Central East Coast; 33 : Cuanza - South West Coast; 34 : Okavango; 35 : Zambezi;
36 : Limpopo - South East Coast; 37 : Madagascar; 38 : South West Coast; 39 : Orange; 40 : South
Atlantic Coast; 41 : North Yukon; 42 : Yukon; 43 : South Yukon; 44 : Mackenzie; 45 : North Mackenzie
+ islands; 46 : West Greenland Islands; 47 : North Fraser; 48 : Fraser and neighbors; 49 : Churchill
and neighbors; 50 : Nelson; 51 : Ouest Hudson; 52 : South Hudson; 53 : Labrador - Hudson Coast; 54 :
Labrador - Atlantic Coast; 55 : Saint Lawrence; 56 : Columbia; 57 : West Coast - South Columbia; 58 :
Internal Basins; 59 : Colorado; 60 : Mississippi; 61 : Northern East Coast; 62 : Central East Coast; 63
: Southern East Coast; 64 : Brazos + Colorado; 65 : Rio Grande; 66 : North Western Latin America;
67 : Northern Latin America; 68 : Southern Latin America; 69 : Cuba - Saint Domingue; 70 : Ob; 71
: Taz + North and East Ob; 72 : Yenisey; 73 : Pasina + Taimyra; 74 : Chatanga; 75 : Olenek; 76 :
Lena; 77 : Jana; 78 : Indigirka + neighbor; 79 : Kolyma; 80 : South Kolyma; 81 : Anadyr + Ponzina;
82 : Kamchatka; 83 : Amur; 84 : Amu and Syr Darya; 85 : Turgaj - Interior; 86 : Tes-Chem - Interior;
87 : Tarim + neighbor; 88 : Est Tarim - Interior; 89 : Tiberan plateau; 90 : Interior Loess plateau;
91 : Kerulen; 92 : Liao + Hai; 93 : Yalu; 94 : Japan; 95 : Huanghe - Yellow; 96 : Heihe + coastal
neighbor; 97 : Indus; 98 : Western India; 99 : Southern India; 100 : Krishna + coastal neighbor; 101 :
Godavari; 102 : Mahanadi + Neighbors; 103 : Ganges; 104 : Brahmaputra; 105 : Irrawaddy + neighbor;
106 : Salween + neighbor; 107 : Mekong + coastal; 108 : Xi + neighbor; 109 : Yangtze + coast; 110 :
Malaysia; 111 : Sumatra; 112 : Borneo; 113 : Philippines; 114 : Java; 115 : Sulawesi; 116 : Papua; 117
: Iceland; 118 : Barents Sea; 119 : Northern Divina + neighbor; 120 : Pechora; 121 : Norge Sea; 122
: West Baltic Sea; 123 : East Baltic Sea; 124 : Neva + Southern Baltic Sea; 125 : Great Britain and
Ireland; 126 : Loire + Seine + Garonne; 127 : Rhine + Elbe + Weser; 128 : Danube; 129 : Dniepr +
Don + Dniestr; 130 : Kuban + neighbor; 131 : Volga; 132 : Ural + Northern Caspian Sea; 133 : Kura
+ West Caspian Sea; 134 : East Caspian Sea; 135 : Espagne; 136 : Rhone + Italie; 137 : Balkans; 138 :
Turquie; 139 : Euphrates; 140 : South Caspian interior; 141 : Near East + Sinai; 142 : North interior;
143 : South interior; 144 : Red Sea - North; 145 : Red Sea - South; 146 : East Arabic; 147 : North
Arabic; 148 : Coastal Iran; 149 : Ouest; 150 : Interior and South; 151 : Timor Sea; 152 : Lake Eyre;
153 : Murray; 154 : East coast; 155 : New Zealand; 156 : Tasmania.
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Figure 2: Overview of basin averaged GRACE TWS for 156 basins of Figure 1. (Top) Standard deviation
of basin averaged GRACE TWS covering 2003–2016 showing the strength of signal. (Middle) Standard
deviation of the TWS errors. (Bottom) Noise to error ration computed by dividing the top plot by the
middle one.
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Figure 3: Time series of W3RA TWS covering 1980–2013, which is fitted to that of GRACE using the
common period of 2003–2013. The extended time series of 1980–2017 are used for computing drought
indices, where (top) corresponds to the Ganges River Basin, and (bottom) is related to the Nile River
Basin. Errors are propagated by considering the basin average errors of Figure 2 (Middle).
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Figure 4: Locations of 5◦×5◦ boxes, where their SST data are used to estimate CCA and relate SST
records to drought indices. 10 boxes are chosen in the regions, where ENSO, IOD, and NAO are usually
measured and the rest (21 boxes) are distributed to cover the global oceanic basins.
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Figure 5: Global SPEI, SSI, and MSDI estimated for the 156 basins of Figure 1. The basin averaged
drought indices derived for January to December 2008 are temporally averaged. Individual maps for
each drought index covering 2004–2015 can be found in supplementary information.
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Figure 6: Correlation coefficient maps derived between drought indices over the 156 basins of Figure 1
covering 2002–2016.
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Figure 7: Average trends ([]/year) maps of SPEI, SSI and MSDI derived from GRACE for every basin
during the study period (2002–2016).
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Figure 8: Drought indices computed for eight selected basins (Mississippi, Colorado, Amazon, Niger,
Lake Chad, Congo, Nile, and Salado Atlantico) covering 2003–2016. Locations of the basins are shown
in Figure 1. Error-bars are not shown to enhance visual comparisons. Y-axes represent the degree of
dryness and wetness thus they are unit-less.
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Figure 9: Drought indices computed for three selected basins within Asia (Ganges, Brahmaputra, and
Euphrates) covering 2003–2016 and corresponding groundwater and soil moisture variations time series.
Locations of the basins are shown in Figure 1. Error-bars are not shown to enhance visual comparisons.
Y-axes of the plots on left represent the degree of dryness and wetness thus they are unit-less.

45



Figure 10: Drought indices and their errors computed for the Amazon (left) and Ganges (right) basins
covering 2003–2016. Locations of the basins are shown in Figure 1 and y-axes represent the degree of
dryness and wetness thus they are unit-less.
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Figure 11: Basin averaged frequency (month/year) of detected droughts in different timescales for each
timescale by SPEI, SSI, and MSDI.

47



Figure 12: Time series of the areal extent of droughts within 6 arbitrary basins (Amazon, Salado
Atlantico, Niger, Lake Chad - Central interior, Nile+Red Sea neighbor, and Congo). The extents are
computed while considering SPEI, SSI, and MSDI in these basins. Error-bars are not shown to
enhance visual comparisons.
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Figure 13: Similar to Figure 12 but for other 6 basins (Colorado, Mississippi, Ganges, Brahmaputra,
Euphrates, and South interior). Error-bars are not shown to enhance visual comparisons.
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Figure 14: Areal extents of trends derived from the SPEI, SSI, and MSDI derived for the 156 basins of
Figure 1, and at different timescales. Note that no significant trend is found for the drought of 24-month
time. Error-bars are not shown to enhance visual comparisons. The color-bar represents linear rate of
the degree of dryness and wetness ([ ]/year).

50



Figure 15: Extracted combinations of drought indices from the CCA, which correspond to 6 arbitrary
basins (Amazon, Salado Atlantico, Niger, Lake Chad - Central interior, Nile+Red Sea neighbor, and
Congo) and their linear trends. Black dashed lines represent the ‘-0.9’ threshold value. Error-bars are
not shown to enhance visual comparisons and y-axes represent the degree of dryness and wetness thus
they are unit-less.
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Figure 16: Similar to Figure 15 but for 6 other river basins (Colorado, Mississippi, Ganges, Brahmaputra,
Euphrates, and South interior). Error-bars are not shown to enhance the visual comparisons and y-axes
represent the degree of dryness and wetness thus they are unit-less.
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Figure 17: Detected hot spots between 2004 and 2015 based on the CCA results. Each global map
indicates a combination of drought indices (SSI, SPEI and MSDI) predicted by the CCA. The annual
averages are shown here.
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Table 1: A summary of the datasets used in this study.

Description Source Acronym Data access

Terrestrial water storage GRACE
Level 2

TWS http://www2.csr.utexas.edu/grace/

Precipitation ERA-
Interim

P http://apps.ecmwf.int/datasets/data/

interim-full-daily/

Evapotranspiration ERA-
Interim

E http://apps.ecmwf.int/datasets/data/

interim-full-daily/

Vertical summation of the total column soil
moisture

ERA-
Interim

Sm http://apps.ecmwf.int/datasets/data/

interim-full-daily/

Optimum Interpolation Sea Surface Temper-
ature

AVHRR-
OISST

SST ftp://eclipse.ncdc.noaa.gov/pub/OI-daily-v2

El Niño Southern Oscillation Index NOAA ENSO www.ncdc.noaa.gov/teleconnections/enso/

North Atlantic Oscillation Index NOAA NAO www.ncdc.noaa.gov/teleconnections/nao/

Indian Ocean Dipole Index NASA IOD http://gcmd.nasa.gov/records/GCMD_Indian_

Ocean_Dipole.html
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Table 2: A summary of average extent areas within the drought-affected regions for sample basins with
specific drought periods.

Areal Extent (%)

Basin Drought Period SPEI SSI MSDI

Niger 2006–2008 (Ferreira et al., 2018) 83 51 64

Ganges 2010 (Khandu et al., 2016) 29 58 77

Brahmaputra 2005 (Khandu et al., 2016) 33 45 51

Mississippi 2012–2013 (Folger and Cody, 2015) 52 76 61

Danube 2013 (ICPDR, 2017) 71 59 86

Zambezi 2015–2016 (Siderius et al., 2018) 56 35 68
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Table 3: A summary of the average and maximum correlations between estimated drought indices
(using GRACE and the ERA-Interim’s soil moisture data separately) and three major large-scale ocean-
atmosphere interactions of ENSO, NAO, and IOD.

NAO ENSO IOD

Drought Index Mean Max Mean Max Mean Max

SPEI 0.39 0.54 0.57 0.68 0.51 0.62

B
y
G
R
A
C
E

MSDI 0.41 0.51 0.67 0.75 0.43 0.72

SSI 0.39 0.44 0.64 0.70 0.53 0.64

B
y
E
R
A
-I
n
te
ri
m

MSDI 0.37 0.63 0.60 0.65 0.35 0.53

SSI 0.35 0.48 0.54 0.73 0.40 0.64

Combination 0.42 0.66 0.78 0.85 0.57 0.79
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